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A B S T R A C T

Hardware devices fabricated with recent process technology are intrinsically
more susceptible to faults than before. Resilience against hardware faults is,
therefore, a major concern for safety-critical embedded systems and has been
addressed in several standards. These standards demand a systematic and
thorough safety evaluation, especially for the highest safety levels. However,
any attempt to cover all faults for all theoretically possible scenarios that a sys-
tem might be used in can easily lead to excessive costs. Instead, an application-
dependent approach should be taken: strategies for test and fault resilience
must target only those faults that can actually have an effect in the situations
in which the hardware is being used.

In order to provide the data for such safety evaluations, we propose scalable
and formal methods to analyse the effects of hardware faults on hardware/soft-
ware systems across three abstraction levels where we:

1. perform a fault effect analysis at instruction set architecture level by em-
ploying fault injection into a hardware-dependent software model called
program netlist,

2. use the results from the program netlist analysis to perform a deductive
analysis to determine “application-redundant” faults at the gate level by
exploiting standard combinational test pattern generation,

3. use the results from the program netlist analysis to perform an inductive
analysis to identify all faults of a given fault list that can have an effect
on selected objects of the high-level software, such as specified safety
functions, by employing Abstract Interpretation.

These methods aid in the certification process for the higher safety levels
by (a) providing formal guarantees that certain faults can be ignored and (b)
pointing to those faults which need to be detected in order to ensure product
safety.

We consider transient and permanent faults corrupting data in program-
visible hardware registers and model them using the single-event upset and
stuck-at fault models, respectively.

Scalability of our approaches results from combining an analysis at the ma-
chine and hardware level with separate analyses on gate level and C level
source code, as well as, exploiting certain properties that are characteristic for
embedded systems software. We demonstrate the effectiveness and scalability
of each method on industry-oriented software, including a software system
with about 138 k lines of C code.
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1I N T R O D U C T I O N

Over the past decades information technology has advanced at a breathtaking
pace. It has experienced significant improvements in every aspect, be it perfor-
mance, size or power consumption. Digital systems that, just a few decades
ago, used to be as large as a side table are nowadays as small as a credit card.
Size has always been a limiting factor for the design of commercial products.
However, the small size of modern digital systems allows them to be integrated
almost everywhere. This enables new and diverse applications for digital sys-
tems and has sparked a gradual process where they perform more and more
tasks in commercial products.

The task of most digital systems is to provide certain features for the prod-
uct in which they are integrated in. For some features digital systems replace
larger analog systems, like drive-by-wire in cars or fly-by-wire in avionics. For
the majority of applications, digital systems are used to add new functionality
to a product, for which smartwatches and smart home products are examples.
This development has already changed the consumer market as is publicly ob-
servable. However, also industry is influenced by this transformation in many
ways, affecting product design, manufacturing and the workplace.

This successive digitalisation has a large impact on our daily life and on
how our society works. It creates an abundance of opportunities like feature-
rich products and new types of jobs. However, it also brings challenges like
new malicious attacks, cyber-crime and misbehaving products. These threats
need to be addressed not just by society but also by engineers who design
current and future generations of digital systems and products.

For example, a malfunctioning or failing digital system controlling the move-
ments of a machinery or vehicle could harm persons close by. Imagine a metal
press that does not recognise a hand or limb between ram and bolster or an
aeroplane which incorrectly ‘thinks’ that it is flying too high.

Frequently, digital systems, like anti-lock braking system (ABS) and elec-
tronic stability program (ESP) in cars, are successfully used to increase the
safety of products for humans. Yet, a failing safety function can make a prod-
uct less safe than a product lacking such a safety function. This situation can
occur when, for example, a failing safety function takes control of the product
or when humans have forgotten how to operate the particular product without
the failing safety function. Unfortunately, the miniaturisation successes in in-
formation technology make digital circuits more susceptible to faults, increas-
ing their likelihood of failure. These safety-critical aspects of digital systems
are the focus of this thesis.
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Besides safety, another important aspect of digital systems is their security,
in particular, their resistance against malicious attacks. Since the publication
of attacks like Meltdown [70] and Spectre [63] the, once sidelined, security
aspect as a potential cause for malfunctioning digital systems received a lot of
attention in recent years. Such attacks can also threaten the product’s safety.
However, issues related to security are not in the scope of this thesis because
their nature is typically quite different to those related to safety and, therefore,
require a different set of methods and analyses than those presented in this
thesis.

1.1 Embedded System

The processor is a commonly known example of a digital system. The task of
a processor is to execute a software program and to provide interfaces for the
software through which it can communicate with components located outside
of the processor. The software execution is performed by cores, of which a
processor can have one or more.

Processors are integrated in computing platforms. Figure 1.1 depicts a typi-
cal composition of a computing platform on an abstract level. The processor
executes the software program that is located in the memory and uses an
input/output-interface (I/O) to interact with the environment. The compo-
nents of a computing platform are typically connected to a shared commu-
nication network, for example a bus, through which they communicate with
each other. The combination of a hardware, like a computing platform, and a
software program is denoted as hardware/software system (HW/SW system).

Processor Memory

Bus

I/O

Figure 1.1: Computing Platform

The software that is executed on the computing platform stores intermedi-
ate values either in specific memory areas like stack or heap or in a component
called register file that is located inside a processor core and has a very limited
storage capacity. In contrast to other registers in the processor core, the regis-
ters in the register file are accessible by the software program for which they
are denoted as program-visible registers.

A computing platform, together with connected peripheral devices like sen-
sors or data storages, forms a computer system. Number and types of the
peripheral devices depend on the use case of the particular system. The soft-
ware that is executed by the processor, i.e., the central processing unit (CPU),
instruments the system’s hardware to provide the desired functionalities. The
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part of a software program that directly interacts with the system’s other com-
ponents is denoted as low-level software, hardware-dependent software or firmware.

Sensors ActuatorsComputing 
PlatformDisplay

Bus

Figure 1.2: Embedded System

A computer system that provides a dedicated functionality to a larger sys-
tem or product in which it is integrated is denoted as embedded system. The
computing platform of the exemplary embedded system in Figure 1.2 uses a
direct connection to communicate with a display and communicates with sen-
sors and actuators via a bus. Today, with several billion units sold each year
the vast majority of processors are used in embedded systems [104].

Some processors are designed for specific tasks. For example, the instruc-
tion types and internal structure of digital signal processors (DSPs) make them
particularly performant in audio or image processing. Processors that do not
have a specialised design are denoted as general-purpose processors.

The combination of a general-purpose processor with other digital compo-
nents provides a large degree of flexibility w.r.t. the implementation of func-
tionalities. This design freedom is a major advantage of embedded systems.

1.2 Safety in Embedded Systems

New manufacturing technologies for digital circuits are constantly being de-
veloped to satisfy an ever increasing demand for improvements in perfor-
mance, area and power consumption. A result of this research effort are ever
more complex transistor structures and manufacturing processes. Modern in-
tegrated transistors, for example, now have a complex three-dimensional struc-
ture that cannot be simplified to the planar model that was used some decades
ago. Some steps in the evolution of field effect transistors (FET), a widely used
transistor for digital circuits, are depicted in Figure 1.3, with increasing com-
plexity from left to right.

Figure 1.3: Transistor Designs [30]
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The larger complexity and smaller distance between their structural ele-
ments have made transistors and their interconnections more susceptible to
faults and lead to an increased probability of errors, malfunctions and failures.

The consequences of a malfunctioning embedded system depend mostly on
its application. For example, a malfunctioning embedded system which pro-
vides infotainment in a car may be annoying but it would not directly affect
the safety of the passengers. However, embedded systems are frequently em-
ployed in safety-critical tasks. For example, in application domains like avion-
ics or autonomous driving they control the speed and direction of travel and
identify obstacles to prevent collisions. In other application domains like pro-
duction automation they verify that nothing, especially no body part, is close
or between a moving mechanical system.

For such safety-critical tasks the requirement of functional safety has become
a key concern in industry and, not rarely, defines the “economic operating
point” of new products. This stimulated the development of several interna-
tional standards like IEC 61508 to define strict measures and requirements for
every phase of the development cycle to ensure functional safety in products.

Examples of industry specific safety standards are:

• ISO 26262 for automotive

• IEC 61511 for industrial processes

• IEC 61513 for nuclear power plants

• IEC 62061 & ISO 13849 for machinery

• EN 5012x for railways

• DO-178 & DO-254 for aviation

• IEC 62304 for medical devices

Yet, it is often not clear how the objectives formulated in these standards
can actually be achieved in practice by the chosen architectures and design
methods, and how this can be documented. For instance, to increase the safety
of an embedded system, a large spectrum of design measures with varying
costs is available both at the hardware and at the software level.

1.3 Motivation

Size and complexity of modern digital systems allow faults to manifest them-
selves in numerous ways at various locations. Implementing protection against
all possible types of faults is costly and sometimes infeasible. We need to focus
on those faults which can actually violate the functional safety of the system.

Safety standards demand the provision of guarantees that faults that are
ignored can never compromise the functional safety of a system. In order to
provide such guarantees the complete behaviour of the fault affected digital
system has to be considered. The most prominent approaches for such safety
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analyses are exhaustive simulation and formal verification. Of those, the for-
mer tends to require an infeasible amount of time to analyse the effects for
every possible input sequence, while for the latter the computational complex-
ity of the analysis quickly becomes impractical.

The need for a formal method that can provide the aforementioned guar-
antees and that is still scalable motivates this thesis. We achieve this goal by
exploiting the following characteristics of embedded systems.

Embedded systems typically provide clearly defined, limited tasks which
implies that, for the most part, the software does not undergo major changes
during a system’s lifetime. This is true especially for low-level software that
constitutes an important component of a chip’s general infrastructure, for ex-
ample, by controlling the communication between application software and
hardware, by implementing important functions for chip management and,
more and more often, by replacing traditionally hardware-implemented con-
trol functions of the system. Such software components are usually part of the
system’s firmware. They are tightly coupled with the hardware and, in many
cases, play a particularly important role for the overall system safety. This
application-specific nature of embedded systems, typically, leads to software
which utilizes only a fraction of the processors capabilities.

The small changes to embedded systems software allows the implementa-
tion of cost-efficient safety measures tailored to a concrete software program.
The limitation to a particular system software restricts the hardware utilization
and, as shown in our experiments, limits the number of locations from where
errors can propagate through the system to make it malfunction.

In this thesis we focus on faults that manifest themselves in processor cores
and do not explicitly consider faults originating from other components of the
embedded system. The main objective of this thesis is to show how formal
methods can be used to identify all faults that can never affect the safety of a
HW/SW system of realistic size. This thesis contributes a method to generate
a computational model on which the effects, and the absence of any effect, of
hardware faults on the software behaviour can be formally proven. Further, it
shows how fault effects can be analysed across multiple abstraction layers in a
formally sound way. Note that by showing that only certain faults can have a
specific effect, e.g., affecting a safety function, formal methods also prove that
every other fault can never cause the considered effect and can, therefore, be
ignored in the corresponding safety evaluation.

1.4 Overview and Scientific Contributions

As motivated in the previous section, the main objective of this thesis is the
development of methods to formally analyse the effects of hardware faults on
the behaviour of a HW/SW system. In order to obtain realistic results, we em-
ployed fault models that are commonly used in the field of testing and anal-
ysed the fault effects on industry-oriented software programs. This research
effort yields a toolbox of methods to formally analyse the propagation of fault
effects across multiple abstraction levels, namely the gate level, the instruction
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set architecture (ISA) level and the higher software level (C level). We achieved
a degree of automation where almost all steps of the methods presented in this
thesis are fully automated. We point out the few steps where manual effort is
required in the corresponding sections.

As the main scientific result of this thesis we present a cross-layer technique
providing formal guarantees on fault effects propagating from the gate level
to the C level. We demonstrate the new approach for systems of realistic size
that were so far deemed intractable for any formal analysis of this kind. The
main elements of this contribution are the following:

1. We develop a set of methods which allow us to improve the scalability
of generating our basic computational model, called program netlist (PN).
This contribution makes it possible to use PNs in our fault effect analyses
even for large firmware and driver systems. We discuss these methods
in Section 4.3.

2. In order to increase the scalability of the fault analysis methods, we de-
velop the dependency analysis presented in Section 4.4. This method al-
lows a cone-of-influence reduction on a PN and decreases the complexity
of any PN-based formal analysis.

3. The ISA-level fault models used in this thesis are designed in such a
way that they have a sound representation on the gate level. We achieve
this by formulating stuck-at and single-event upset (SEU) fault models
for program-visible registers. We provide a detailed discussion on this,
together with several fault description styles, in Section 5.

4. The formal method presented in Chapter 6 (FEA), can analyse the effects
of hardware faults on the program behaviour at the ISA level by injecting
faults in program netlists. The result of FEA are two sets of faults. In the
first set are faults which, for certain input sequences, have an effect on
the considered program behaviour. The faults in the second set never
have an effect on the considered program behaviour.

5. In Chapter 7 we show how the knowledge about the absence of fault ef-
fects obtained from FEA can be used to deductively identify faults on the
gate level which, due to the constraints applied by the executed software
program, also never have any effect on the behaviour of the HW/SW sys-
tem. We denote these faults as application redundant faults. This method
(FTEA) employs automated test pattern generation for this purpose and
identifies gate-level faults that can never have an effect on the considered
program behaviour.

6. In order to analyse fault effects also on higher software abstraction lev-
els, we developed the formal method FPA. FPA takes the ISA-level fault
effects found by FEA, inductively transfers them to faults at the higher
software level (C level) and applies Abstract Interpretation to identify all
other software objects, like safety critical functions, that can be affected
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by a particular fault. The result of FPA is a 1-to-n relation between hard-
ware faults on the ISA level and their effects on the C level. We present
this method in Chapter 8.
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In this chapter we review the various state-of-the-art concepts and methods
from different fields which are used in this thesis and which are relevant for a
deeper understanding of our contributions.

2.1 Abstraction Levels

Abstraction is a method where specific information details are intentionally
left out of consideration. The application of abstraction creates a more general
concept, i.e., an abstract model of a concrete object. For example, the abstract
term transistor is used when the information about the transistor type, e.g.,
bipolar or field effect transistor, is irrelevant for a particular discussion.

The goal of abstraction is to remove complexity by considering only those
aspects which are relevant for a specific purpose. For example, when only the
result value of an addition needs to be analysed time or individual steps the
processor needs to perform the computation are irrelevant and, therefore, can
be ignored.

When an abstract concept is further abstracted every abstraction step creates
a new, higher, abstraction level. In the following sections we provide a survey on
those abstraction levels for hardware and software that are used in this thesis.

2.2 Abstraction Levels for Software

There exist several abstraction levels at which the behaviour of software pro-
grams can be described. In this thesis, only the lowest three of the software
abstraction levels are of relevance, the machine level 2.2.1, the assembly level 2.2.2
and the C level 2.2.3.

2.2.1 Machine Level

Machine language is the actual language read in and executed by the proces-
sor. Its alphabet consists of only two letters, the values of a binary digit (bit)
zero and one. A software program written at machine level, i.e., in machine
language, is called machine code or machine program. The machine level is, there-
fore, the lowest abstraction level for a software program.

In general, machine code is a sequence of bit values situated in the memory
of a computing platform (cf. Figure 1.1). For some processor architectures the
machine code is stored together with the data in the same memory while for
others the machine code is stored separate from the software-accessible data.
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In such architectures, the memory with the machine code, typically, cannot be
written by the software and is, therefore, denoted as read-only memory (ROM).
Memory whose contents can be read and modified by a software program in
any order is denoted as random access memory (RAM). In most systems writing
and overwriting machine code is strictly forbidden during runtime, because
it is extremely error-prone. The smallest addressable unit of a memory is typ-
ically a byte which is a group of 8 adjacent bits. The locations of individual
bytes are identified by their respective memory addresses.

When a processor executes a software program it reads an instruction, i.e., a
group of consecutive bytes denoted as instruction word, from memory, decodes
it and executes the instruction as specified by the architecture the processor im-
plements. This specification is part of the instruction set architecture discussed
in Section 2.3.3.

A segment of the instruction word, denoted as opcode, specifies the opera-
tion the processor is to perform. Other bits define the operands to be used by
the operation. Possible operand types of an instruction are numbers, memory
addresses or registers in the register file. Opcode and operands are written
in binary format and may even be distributed over the instruction word. For
example the bits for operand “imm” in Figure 2.1 are split into two blocks of
adjacent bits located at two different positions in the instruction word.

31 0

imm[11:5] rs2 rs1 func3 imm[4:0] opcode

00000000 01110 00010 010 01000 0100011

Figure 2.1: Example machine code instruction

Consider the example instruction for a RISC-V processor in Figure 2.1. The
numbers at the top of the table are indices for the left-most and the right-
most bit, providing the necessary information how the bits of the instruction
word have to be interpreted. The highest index is used for the most significant
bit (MSB) and the lowest index for the least significant bit (LSB). The first row
shows the fields of a RISC-V instruction format that is used to specify dif-
ferent variants of store instructions, according to the RISC-V instruction set
manual [109]. The instruction consists of the following instruction fields:

• An opcode field to identify the instruction as store instruction.

• A func3 field telling the processor how many bytes have to be written to
memory.

• The fields rs1 and rs2, of which each contains a number addressing a
program-visible register used in the store operation.

• Two fields for the imm operand used to compute the memory location
where the values have to be stored.

The last row of Figure 2.1 shows an example instruction word split into the
corresponding instruction fields. This particular instruction performs a store
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operation (opcode) and stores 4 bytes (func3) of register number 14 (rs2) to
the memory starting with the address that is computed by adding a constant
value (imm) to the value in register 2 (rs1).

2.2.2 Assembly Level

The machine code is what is actually executed by the processor, but its bits
and bytes are very difficult for humans to read and understand. Machine pro-
grams are, therefore, expressed in an abstract representation called assembly
language. Programs in such a language can be translated to machine code using
an assembler. In assembly language, instructions are represented by a textual
description that hides the details of bit values for the individual fields in the
instruction word.

Typically, an instruction specified at assembly level starts with a mnemonic
describing the operation to be performed followed by a comma-separated list
of operands.

At assembly level, numbers are usually written in decimal or hexadecimal
format, and rarely in binary format. Program-visible registers are addressable
via aliases and not just by their number. In some processors the alias provides
information about the register’s intended usage, e.g., for RISC-V processors t0
refers to a register for temporary values and intermediate results.

1 target:

2 li t0, 0

3 ...

4 j target

(a) Symbol

1 mv t0, t1

2 addi t0, t1, 0

(b) Pseudo-Instructions

Figure 2.2: Example features of the assembly level

Memory addresses can also be written in hexadecimal format, however, such
explicit use of memory addresses is rare. Instead, a descriptive symbol denoted
as label is used that implicitly points to a specific memory address. The RISC-V
assembly code in Figure 2.2a shows in line 4 a jump instruction with the label
"target" as operand. This label is defined in line 1 and will be translated to
the memory address of the load immediate instruction in line 2 during the
translation from assembly code to machine code.

Another assembly-level feature that is not supported at the machine level are
pseudo-instructions. Their purpose is to improve development and readability
of assembly code by providing a simplified version of (a set of) semantically
equivalent assembly instructions. For example, both RISC-V assembly instruc-
tions in Figure 2.2b copy the contents of register t1 to register t0 and both
are translated to the same machine instruction. However, the first instruction,
move, requires less assembly level operands and is more expressive.

Except for some special cases, an assembly instruction can be directly trans-
lated to a machine instruction. A translation in the other direction, i.e., from
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machine instruction to assembly instruction, is also possible. In theory, this
task can be difficult to accomplish as shown by [20]. In practice, however, and
in particular for the software considered in this thesis, disassembly is usually
possible using standard techniques and tools.

For low-level programs used in embedded systems the translation from as-
sembly level to machine level is straightforward, so that analysis results ob-
tained at assembly level can be mapped to the machine level in a sound way.

1 is_even_number: xori a0, a0, -1

2 lui t0, 1

3 and a0, a0, t0

4 ret

Figure 2.3: Example assembly code

The RISC-V assembly code function in Figure 2.3 checks whether the pro-
vided value in register a0 is an even or odd number and returns the answer
to the calling function by writing the corresponding binary value of true or
false to register a0. For the computation the number’s bit values are inverted
by using the xor-operation in line 1 and, then, all bits, except the LSB, are set
to zero in line 2. The value of the LSB in a0 tells whether the given number
was even or not.

Even without an explicit comparison it should be clear that the assembly
code in Figure 2.3 is easier to understand than its equivalent machine code.
However, as we will point out in the following section, the next higher abstrac-
tion level allows to write the same function in a much conciser way.

2.2.3 C Level

As program complexity increased, the need for higher abstraction levels grew,
resulting in the development of new programming languages. Nowadays, there
exist many programming languages which support various styles of program-
ming allowing to freely choose the degree of abstraction. Characteristic for
these programming languages is their use of abstracter concepts. For example,
they utilize statements and variables instead of instructions and memory lo-
cations, respectively. The two major advantages are the use of statements and
variables being more intuitive for humans and the size of programs written at
higher abstraction levels being an order of magnitude smaller because a single
statement can represent multiple machine instructions.

A popular example is the C programming language, which is still frequently
used for programming embedded systems, especially for device drivers. These
low-level programs provide an abstract interface to peripheral devices for ap-
plication software written on a higher abstraction level. In the rest of this thesis
we will use the term C level to refer to software abstraction levels above assem-
bly.

The translation process from C level to assembly level is denoted as compila-
tion and is performed by a software program called compiler.
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A major disadvantage of this abstraction level is that knowledge obtained
from C level cannot be transferred to lower abstraction levels in a sound way.
The reason for this is the large degree of freedom in the ways C statements can
be translated to assembly instructions. The assembly code produced by one
compiler can be completely different to the assembly code of another compiler
although they have translated the same C-code. This aspect becomes worse in
the presence of optimisations, as they are regularly performed by compilers.
For example, the value of a variable can be placed in memory, in the register
file or can be optimised away.

1 bool is_even_number(int number)

2 {

3 return (number % 2) == 0;

4 }

Figure 2.4: Example C code

The code in Figure 2.4 is functionally equivalent to the assembly code in
Figure 2.3. It is shorter and uses the modulo operation which may involve
the more complex integer division in the compiled program, whereas the opti-
mised assembly code employs simple logic operations.

2.3 Abstraction Levels for Hardware

Similar to the software domain, the behaviour of hardware can be described
at several abstraction levels, of which the gate level 2.3.1, the register transfer
level 2.3.2 and the instruction set architecture level 2.3.3 are of relevance in this
thesis. In this context, we focus on hardware located inside a processor, partic-
ularly the processor core. Digital circuits can be classified as combinational or
sequential. A digital circuit that only uses its current input values to compute
output values is called combinational circuit, while a circuit that uses previously
computed values, alone or in combination with the current input values, to
compute output values is called sequential circuit. The previously computed
values constitute the state of a sequential circuit. A sequential circuit imple-
ments a transition function that defines how the next values, i.e., the next state,
is computed depending on the previous state and the current input. The state
of a sequential circuit is usually stored in memory elements like flipflops and
registers. A combinational circuit does not have such storage elements.

2.3.1 Gate Level

The gate level is the first abstraction level above the transistor level. At the gate
level transistors and electrical information such as voltage, resistance and ca-
pacitance, of a digital circuit are hidden. Only the logic functions implemented
by the transistor circuitry are represented. Every gate models a Boolean func-
tion abstracting the corresponding transistor circuit. Instead of two discrete
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voltage levels used at the transistor level, the inputs and outputs of gates use
Boolean values which can also be interpreted as bit values.

In1

In2

Out

(a) Transistor level

In1

In2

Out

(b) Gate level

In1 In2 Out

0 0 1

0 1 1

1 0 1

1 1 0

(c) Truth table

Figure 2.5: Gate level abstraction for NAND

Figure 2.5 illustrates the abstraction from transistor level (Figure 2.5a) to gate
level (Figure 2.5b) at the example of the negated AND-operation. Both circuits
implement the same logic function, i.e., for all input scenarios they produce
the same output behaviour, as depicted in Table 2.5c.

The transistor circuit in Figure 2.5a uses the complementary metal-oxide-
semiconductor (CMOS) technology commonly used to manufacture digital cir-
cuits by using two types of metal-oxide-semiconductor field-effect transistors
(MOSFET). One MOSFET type the PMOS transistor, sets the output voltage to
high, i.e., a logical one, and the other transistor type, the NMOS transistor, sets
it to low, i.e., a logical zero.

When compared with the abstraction level of assembly from the software
domain, the gate level provides similar advantages and disadvantages. It re-
duces the overall complexity of a digital circuit and is easier to understand for
humans while allowing the knowledge transfer of analyses to and from the
transistor level in a sound way. However, performing a comprehensive analy-
sis for circuits of realistic size on gate level can be too complex to pursue. This
is particularly true when the full behaviour, i.e., the complete semantics, of the
circuit has to be considered, as is required for fault effect analyses.

2.3.2 Register Transfer Level

The next higher abstraction level is the register transfer level (RT level or RTL).
Abstraction from gate level to RTL is achieved by hiding the computation of
individual Boolean values of the gate level behind modules and statements.

This abstraction is illustrated in Figure 2.6, where the gate-level full adder
in Figure 2.6a and its RT level representation in Figure 2.6b are functionally
equivalent. Both circuits take three Boolean values, In1, In2 and carry-in (CI),
as inputs and compute sum and carry-out (CO).

An advantage of the RT level is that it supports the aggregation of multiple
Boolean/bit values into bitvectors. Figure 2.7 shows a textual description of
a similar circuit by using the hardware description language (HDL) Verilog.
It defines an addition module that takes two 32bit signals interprets them as
signed numbers and assigns the results of the addition to the output signal.
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In1

In2

CI
Sum

CO

(a) Gate level

CO

S

CI

B

A
In1

In2

CI

Sum

CO

(b) RT level

Figure 2.6: RT level abstraction of addition

Popular HDLs for the design of digital circuits at RT level are Verilog and
VHDL1.

1 module signed_addition(

2 input logic [31:0] in1,

3 input logic [31:0] in2,

4 output logic [31:0] sum);

5

6 always_comb

7 begin

8 sum = signed(in1) + signed(in2);

9 end

10 endmodule

Figure 2.7: 32-bit signed addition at RT level

As can be seen in Figure 2.7, the concepts used for designing hardware at
RT level are similar to those used for writing software at C level. Likewise, a
disadvantage of this abstraction level is that most knowledge obtained from
analyses at RT level cannot be soundly mapped to lower abstraction levels,
because statements at RT level can be implemented in many ways at the gate
level.

2.3.3 ISA Level

The instruction set architecture (ISA) specifies the behaviour of a processor dur-
ing software execution and defines what machine code a processor supports
including the instruction types and their formats. The ISA provides, therefore,
the interface between hardware and software. By using the analogy from Sec-
tion 2.2.1: the machine language provides the letters and the ISA defines words
and grammar of the machine language that a processor understands.

ISA specifications are abstract and do not contain implementation details
like exact instruction timing in processor clock cycles. They ensure that soft-
ware written for a specific ISA can be executed on every processor that imple-
ments this ISA.

1 Very High-Speed Integrated Circuit Hardware Description Language
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A processor description on ISA level contains mainly a component to de-
code instructions, a file of program-visible registers and an implementation-
independent description of the processor’s behaviour for each instruction. The
state of a processor core at the ISA level is denoted as architectural state (AS)
and includes the state of the program-visible registers, the program counter
and any program-visible status information.

The advantage of the ISA level is its high degree of hardware abstraction
while retaining the ability to be combined with software on machine level.
Instruction set simulators use this to provide high-performance execution of
software programs compiled for an ISA that may be different from the ISA of
the processor on which the simulator runs.

Since the ISA level is implementation-independent, knowledge obtained
from analyses at ISA level cannot be translated to the gate level in a sound
way in most cases. An exception is knowledge regarding program-visible reg-
isters as they have a representation on the gate level.

The relevant ISAs for this thesis are SuperH2 [86], originally developed by
Hitachi, and RISC-V [109] developed by University of California, Berkeley.

In this thesis we exploit that the ISA level provides a direct connection to
gate level via the register file and an interface to the machine level.

2.4 Verification of Hardware & Software

An important part during the design process of hardware and software is to
ensure that the design meets its specification, e.g., it is free of bugs and re-
silient against faults. The basic idea is to formalise the design specification by
deriving mathematical models, denoted as properties or assertions. A design,
then, complies with its specification only if every property holds for all pos-
sible values at the primary inputs. When the property set is complete, i.e., it
covers every aspect of the specification, then compliance with the specification
is also a necessary condition for the properties to hold.

Primary inputs of a design or a design component are those inputs which
are not controlled by the design or component itself but by the environment,
i.e., by connected external systems or devices which provide values to these
inputs. Examples of primary inputs in software are the register a0 in Figure 2.3
and the variable number in Figure 2.4. Examples of primary inputs in hardware
are In1 and In2 in Figure 2.5 and CI, In1 and In2 in Figure 2.6. Analogous to
primary inputs are the primary outputs of a design which are used by the design
to send values to its environment.

Verification is a complex and time-intensive task where its procedural de-
tails, like the selection of analysis methods and the number and order of the
analysis steps, depend entirely on the individual design and its application
case. That is why there exists a wide range of methods and tools, developed
for different system types and different aspects of hardware and software that
have to be verified. These methods employ one or a combination of the follow-
ing concepts.
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2.4.1 Simulation and Emulation

Simulating a hardware or software design means that its behaviour, which it
would have in the real world, is imitated by a simulation tool that executes
a computational model of the design. The simulation tool executes the com-
putational model, e.g., RT code of hardware or assembly code of software, by
interpreting its statements. The basic idea of the interpretation process is to
simulate the behaviour of a single statement and then determine the successor
statement whose behaviour will be simulated next.

Simulation has the advantages that it is very fast and that it scales linearly
with the number of statements, allowing fast simulation runs of large hardware
and software designs. A simulation run can start from reset or a user defined
start statement in the design and either ends when no successor statement can
be found or when a user defined end statement was simulated.

The disadvantage of simulation is that every simulation run requires a con-
crete value for every primary input of the design. For sequential designs a con-
crete value must be provided for every primary input and every time point,
e.g., a value per clock cycle for hardware or a value per function call for soft-
ware. This dependency on concrete values causes the simulation runtime to
scale exponentially with the number of primary inputs when a simulation run
for every combination of input values has to be performed. Such an exhaustive
simulation is, therefore, rarely feasible for designs of medium and larger size.

Emulation is based on the same principle as simulation. Its major difference
is that the imitation process is executed on a separate piece of hardware for
which the design and the emulation environment is highly optimised. The
runtime per statement during emulation is lower than during simulation pro-
viding a significant speed advantage for a complete emulation run over an
equivalent simulation run. Nonetheless, emulation shares the problem of ex-
ponential scaling w.r.t. the number of primary inputs with simulation. This is-
sue drastically overcompensates the linear speed advantage of emulation such
that exhaustive emulation does not provide a feasible alternative to an infeasible
exhaustive simulation.

Simulation- and emulation-based verification methods check the assertions
during each simulation run and notify the verification engineer when an as-
sertion fails. However, analyses based on non-exhaustive simulation can never
cover the complete design behaviour and can, therefore, never guarantee the
absence of behaviour violating any specification or safety goal. In order to at-
tenuate this disadvantage modern verification methods perform a number of
simulation runs until the probability of specification violations is determined
to be sufficiently low. For safety-critical applications, like avionics or nuclear
power plants, this presents a serious drawback, because the computation of
this probability depends on, possibly flawed, assumptions on the real-world.
Examples of such assumptions are values deemed to be impossible or less
likely for certain primary inputs, or that the rate at which faults appear is
below a certain limit.
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2.4.2 Symbolic Techniques

Hardware circuits or software programs can also be verified by using symbolic
techniques. In the hardware domain the general term for such techniques is
symbolic simulation, while symbolic execution is used in the software domain [27,
28].

Symbolic simulation-based methods and symbolic execution-based methods
share a common methodology from which they inherit its advantages and
disadvantages. In the following, we discuss these similarities.

Symbolic techniques use symbolic values which mathematically represent
sets of data values in the design’s state variables and at its primary inputs [53,
91]. This solves the limitation of classic simulation and emulation where only
single, individual concrete values can be considered in each simulation/execu-
tion run. By using symbolic values, at least in principle, the complete design
behaviour for all input values can be considered in a single symbolic simula-
tion/execution run. A holding assertion, therefore, is valid for the complete
design behaviour.

A disadvantage is that the complexity of the mathematical models increases
with every interpreted statement. For data processing designs, which typically
have a large portion of non-branching statements, the complexity growth with
each statement may be manageable even for designs of medium size.

However, the complexity can increase significantly with each control state-
ment [25] like branches at assembly level or if-statements at C level. The reason
is that control statements can have more than one successor which increases
the number of execution paths. In the worst case, the number of execution
paths grows exponentially with the number of control decisions. This is known
as the path explosion problem [98]. Applying symbolic simulation or symbolic
execution to larger control-centric designs, e.g., designs with a hardware- or
software-implemented finite state machine, is, therefore, rarely feasible.

Symbolic techniques employ several optimisation strategies to keep the com-
putational model compact [6, 81]. By example of symbolic execution, one op-
timisation strategy is to include only reachable program paths in the model.
Such paths are identified in an analysis applied on an intermediate mathemat-
ical model of the program. Another optimisation strategy is to merge identical
program paths [6]. In order to facilitate the execution of both optimisations,
symbolic techniques use control flow graphs which model the control behaviour
of a hardware or software design. We discuss control flow graphs in detail in
Section 2.7.

2.4.3 Formal Verification

Formal verification methods translate the full design into a mathematical model
and combine this with the mathematical model of a property. By applying
mathematical and logical proofs formal methods try to prove the correctness
of the combined model. If this succeeds, it formally shows that the design
complies with the considered property for its complete behaviour. If this fails,
a counterexample can be generated showing a behaviour where the consid-
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ered property fails, i.e., where the design violates the considered aspect of its
specification. The advantage of formal verification is that it considers all pos-
sible values at the primary inputs and can analyse data- and control-centric
designs. A disadvantage is that it can suffer from an exponential complexity
in terms of runtime or memory usage of the formal proof engines, making
the analyses of medium to large designs infeasible. In practice, timeouts and
limited computing resources cause formal verification methods to eventually
terminate inconclusively. A well-known example for the complexity problem
is the formal verification of hardware-implemented multiplication by using
SAT solvers [111]. A SAT solver is a computer program solving the Boolean
satisfiability problem which belongs to the class of NP-hard2 problems.

The methods presented in this thesis employ only formal techniques and for-
mal verification tools guaranteeing that the complete behaviour of an analysed
hardware/software system is considered.

Bounded Model Checking

The formal verification of a sequential hardware design requires to analyse
the design’s behaviour over several time points, i.e., clock cycles, starting from
system reset. In bounded model checking (BMC) [24] this is done by unrolling
the hardware, e.g., duplicating the hardware, and connecting one hardware
instance with another in such a way that every instance models the hardware
behaviour for a specific clock cycle. The number of hardware instances grows
linear with the number of clock cycles to be analysed. Unfortunately, the anal-
ysis complexity grows exponentially with the number of hardware instances.
In practice this is observed by a sharp increase in the computational resource
consumption. This limits the application of BMC in particular and formal ver-
ification in general to verification runs that cover only a small number of clock
cycles after reset. For example, only a dozen clock cycles of unrolling is fea-
sible for a processor of medium size, like in-order RISC-V processors with 5

pipeline stages.

Interval Property Checking

A solution to analyse the hardware behaviour further away from reset than
just a few clock cycles is interval property checking (IPC) [78]. The fundamental
model of IPC, a finite unrolling of the circuit, is the same as in BMC, however
IPC does not need to start from reset. In general, IPC starts from any-state
where registers are not constrained and are allowed to have an arbitrary value.
However, starting from any-state can lead to large over-approximations where
the analysis includes behaviour that is unreachable in practice. This can easily
lead to the situation that an unreachable state causes a property to fail, denoted
as false negative or false counterexample. In practice, false counterexamples are
reduced and excluded by adding invariants to the properties. Invariants are
formulated as logic constraints that are universally valid for the design under

2 non-deterministic polynomial time hardness
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verification and that restrict the set of starting states by excluding unreachable
behaviour.

An application case for IPC is to decompose the specification of a sequential
circuit into properties of manageable time length, each representing a specific
behaviour. We re-use the basic idea of this concept in Section 8.1 where we
analyse the behaviour of a large software system.

Static Software Analysis

In the domain of software verification static and dynamic software analyses are
widely used techniques. Static software analysis-based approaches consider
the behaviour of single statements or complete software programs without
executing them [88]. In contrast, dynamic software analysis-based approaches
require the software program under consideration to be executed, e.g., via
simulation or emulation, making this approach non-formal. Static software
analysis is employed in a variety of verification tasks that includes but is not
limited to the following:

• A simple expression checking algorithm verifying that software code
complies with a specific set of design rules [10].

• A sophisticated formal analysis that mathematically proves the func-
tional correctness or behavioural properties of a software program [34,
106].

The formal methods in the software domain presented in this thesis belong
to the category of static software analysis.

Abstract Interpretation

The semantics of a programming language is a formal description of the be-
haviour of programs. The most precise semantics is the so-called concrete se-
mantics, describing closely the actual execution of the program on all possible
inputs. Yet in general, the concrete semantics is not computable. Even under
the assumption that the program terminates (cf. halting problem [105]), it is
too detailed to allow for efficient computations. A solution is to introduce a
formal abstract semantics that approximates the concrete semantics of the pro-
gram in a well-defined way and still is efficiently computable. This abstract
semantics can be chosen as the basis for a static software analysis. Compared
to an analysis of the concrete semantics, the analysis result may be less precise
but the computation may be significantly faster.

Abstract Interpretation is a formal method for sound semantics-based static
software analysis [32]. It supports formal correctness proofs: it can be proved
that an analysis will terminate and that it is sound in the sense that it computes
an over-approximation of the concrete program semantics. Abstract Interpre-
tation always provides full data and control coverage.

As of today, Abstract Interpretation-based static analysers have evolved to
become standard methods for determining non-functional software quality
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properties [54, 56]. On the one hand, this includes source code properties, such
as compliance with coding guidelines, compliance with software architectural
requirements, as well as absence of runtime errors and data races [58]. On the
other hand, also low-level code properties are covered such as absence of stack
overflows and violation of timing constraints [57, 59].

2.5 Verification of Hardware/Software Systems

A HW/SW system is a digital system where one part of the system is imple-
mented in hardware while the other part is implemented in software. Only
the combination of both parts can provide the required functionalities. Embed-
ded systems, as defined in Section 1.1, are widely deployed types of HW/SW
systems.

The challenge to fully analyse and verify such systems is considerable due to
the large complexity emerging from a combination of hardware and software.
The traditional approach to analyse such systems is to separate the hardware
part from the software part and to analyse each part separately. The advantage
of this approach is that the complexity of each analysis is significantly smaller
than the analysis of the complete HW/SW system. However, this comes at
the cost that the interaction between hardware and software is not considered.
This may allow for certain development faults and error propagation paths to
remain hidden, endangering the correct operation of the HW/SW system.

The methods proposed in this thesis show how the effects of hardware
faults on the behaviour of embedded systems can be formally analysed across
HW/SW boundaries.

2.6 Faults

In every stage of the design and manufacturing process as well as during its
operational lifetime, a fault can lead to an error in a HW/SW system and
cause it to malfunction. Be it a flawed specification, bugs introduced in the de-
sign phase, manufacturing variations or physical wear-out, faults can originate
from several source types and manifest themselves in many ways.

In this section we provide an overview on terminology, categories and stan-
dardisation measures to increase the fault resilience of HW/SW systems.

2.6.1 Terminology

Table 2.1 presents definitions of terms [8] used in this thesis some of which
may be used interchangeably in daily life due to their ambiguous meaning.

Only an active fault produces an error. A fault that is present but does not
produce an error is dormant [8], for example, a fault that sets a value that is
already zero to zero. In order to activate a fault an input sequence denoted as
activation pattern or activation condition is required. Some activation conditions
are trivial, because they are always fulfilled, while others require very complex
combinations of internal state and input sequences.
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Failure A failure is a deviation of the output behaviour from the in-
tended behaviour of a component or system.

Error An error is the incorrect output value of a failing component
or system, i.e., an incorrect state or an incorrect signal value.

Fault A fault is the “adjudged or hypothesized cause of an error”.
Fault Model A fault model describes the effects of a fault on a component

or system at a certain abstraction level.

Table 2.1: Terminology

Faults can be categorised into several fault classes, each representing a spe-
cific aspect of a fault. In Table 2.2 we review the fault classes that are relevant
for this thesis. In general, any combination of fault classes in Table 2.2 are
possible. In this thesis we focus on random faults that appear during the op-
erational lifetime of a system, i.e., faults that are both operational and natural
w.r.t. the fault classes. The examples provided in Table 2.2 reflect this focus. De-
velopment faults like bugs are, in general, out of scope but when they degrade
the safety this degradation can be, for some cases, highlighted by our meth-
ods. In Sections 5.1 and 5.2 we present fault models for internal permanent
and external transient faults, respectively.

Traditional analysis methods have a strong focus on single faults, i.e., they
assume that during a considered time interval during system operation only a
single fault occurs. However, due to shrinking transistor sizes and complexer
transistors, the probability of faults has increased significantly, raising the need
to consider multiple faults. We address this development by explaining how we
inject multiple faults in our computational model and providing experimental
data of fault analyses for multiple faults.

When the effects of a hardware fault manifest themselves as errors, in the
digital domain they appear at first at the lowest digital abstraction level, i.e.,
the gate level. Like correct values, erroneous values are passed on to every suc-
cessor in the fanout of the affected component allowing them to affect several
other values. This is how errors can propagate through a digital circuit. Dur-
ing propagation, errors may become visible at higher abstraction levels and
they may appear in the software after “crossing” the HW/SW boundary. Error
propagation continues until all erroneous values are corrected or until they
cannot propagate further, i.e., cannot affect more components.

Like faults, also errors can be categorised as shown in Table 2.3. In this
thesis we consider both soft and hard errors. Some faults may not affect the
behaviour of a component or system because the propagation of its errors to
any primary output depends on a complex combination of internal state and
input values. While in theory such complex combinations might be possible,
in practice the application, e.g., the software running on a processor, could
prevent the propagation of these errors to any primary output. In situations
where a local analysis cannot provide formal guarantees that an error cannot
have more effects on the system than found in the local analysis we also denote
such errors as latent errors.
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Phase of occurrence
Development fault Faults introduced into the system during development

processes, for example by design engineer mistakes,
bugs in tools or material impurities during production.

Operational fault Faults that occur after shipment when the system is in
use.

Phenomenological cause
Human-made fault Faults that result from human actions, like design mis-

takes or due to a wrongly operated system.
Natural fault Faults that are “caused by natural phenomena without

human participation” [8].

System boundaries
Internal fault Faults originating from mechanisms inside the system,

like electromigration, ageing or thermal processes due
to operational activity.

External fault Faults originating from outside the system, like radia-
tion, unstable power supply or thermal processes due
to environmental temperature.

Persistence
Permanent fault Faults that are always present, for example a short cir-

cuit of wire with the supply voltage.
Transient fault Faults that have only a temporary presence after which

the affected component returns to its fault-free opera-
tion. For example, value changes caused by a particle
strike.

Intermittent fault Transient faults and elusive permanent faults with an
unknown activation pattern are grouped together as in-
termittent faults. Typically, the presence of such faults
seems to be temporary, however, they reappear after
some time.

Table 2.2: Fault Classes [8]

In order to increase the fault resilience of embedded systems, i.e., to identify
all faults that can cause the HW/SW system to fail, the fault effects on the
system’s behaviour have to be analysed such that appropriate measures can be
taken. The state-of-the-art approach for such an analysis is to use fault models
that describe fault behaviour as observed in the real-world, integrate them
into a system model and analyse the behaviour of the fault injected system for
single faults and multiple faults.
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Persistence of the causing fault
Soft Error Errors that are caused by intermittent or transient faults [8].
Hard Error Errors that are caused by permanent faults.

Protection
Detected Error An error is detected when a signal value, e.g., by a safety

measure, indicates its presence [8].
Latent Error An error is latent when it is not (yet) detected [8].
Corrected Error An error is corrected when the error-free state is restored,

e.g., due to logic masking or by an error-correcting algo-
rithm.

Table 2.3: Error Categories

2.6.2 Fault Models

Nowadays, a large number of fault models are in use [113]. In this section we
focus on those models that are used by our methods during the experimen-
tal evaluation. We want to point out that an extension to support other fault
models is straightforward and can be easily implemented.

A permanent fault can occur when a physical connection between a com-
ponent’s output signal and the supply voltage or ground is created, e.g., by
electromigration, causing the affected bit to be permanently set to the cor-
responding binary value. This fault behaviour is commonly modelled as a
stuck-at fault which sets the value of a signal to either zero (stuck-at-0) or one
(stuck-at-1).

As mentioned in Table 2.2, an example scenario for a transient fault is when
an energetic particle strikes a transistor in such a way that it creates a tempo-
rary electrostatic charge that produces a current spike through the transistor.
When such a particle strike changes the output value of a storage element like
a register, it is called single-event upset (SEU). When a particle strike, instead,
changes a value of the combinational part of a system, i.e., a signal value by
affecting a transistor of a gate, it is called single-event transient (SET) [74] or
digital SET (DSET) [39] when a demarcation between the digital and analog
domain is desired. In this thesis we only consider digital signals and digital
fault effects. The effect of an SEU or SET fault is modelled by using a bitflip,
i.e., the corresponding binary value is changed to its opposite, and only the
location of the bitflip determines the name of the event.

In general, the probability that an SET effect is observable at a primary out-
put of an embedded system can be considered relatively low. A reason is that
the manifestation of an SET in circuits implemented in CMOS technology is
much lower than for SEUs [39]. Another reason is that in circuits like embed-
ded systems which are beyond a certain size and complexity an SET needs to
affect a register or other memory elements in order to propagate to a primary
output. This requires the following three conditions to be fulfilled [38]. 1) the
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SET must have an open logic path, i.e., no logic masking, to a memory element,
2) it arrives at the memory element with a sufficient amplitude and duration
and 3) it arrives in the time window where the clock allows the SET effect to
be latched-up by the memory element. In sum, one could argue that SETs are
neglectable. However, the increasing susceptibility of digital circuits towards
SETs due to transistor and frequency scaling as reviewed by [42] requires the
consideration of SETs in safety analyses.

The methods presented in this thesis can identify gate-level faults like SETs
that can never have a certain effect in the following way. We use the analysis
presented in Chapter 6 to identify all combinations of single-bit and multiple-
bit faults in program-visible registers that can never cause the considered ef-
fect at ISA-level. Note that a gate-level fault can affect one or more registers on
higher abstraction levels. We, then, use these results in the analysis of Chap-
ter 7 to deduce the corresponding gate-level faults that can never have the
considered effect.

In logic circuits, different faults may be equivalent in the sense that they
have the same fault effect on the primary outputs and have identical controlla-
bility and observability conditions [26]. For example, both stuck-at-0 faults in
Figure 2.8 require a logic 1 at the inputs of the AND-gate for a fault effect to be
visible at the output and have the same effect on the output of the AND-gate.

stuck-at0

stuck-at0

Figure 2.8: Fault equivalence class example

A benefit of fault equivalence classes is that for simulation-/emulation-based
methods only the effects of a single fault of an equivalence class needs to be
computed, which can significantly reduce the number of required analysis
runs. Formal methods benefit from fault equivalence classes because they can
reduce the necessary amount of injected fault logic. In order to analyse fault
effects on the primary outputs of a component only a single fault per equiv-
alence class needs to be considered, which can significantly reduce the com-
plexity of the formal analysis. We exploit this in our experimental evaluation
in Section 8.4.1. In addition to that, well designed fault resilience methods can
protect against all faults of the same equivalence class.

Unfortunately, the diverse high-level effects of a single low-level fault in com-
bination with the large complexity of HW/SW systems make fault abstraction,
i.e., the development of sound high-level fault models that precisely describe
the effects of low-level faults, infeasible. However, when the details of high-
level effects are not needed in an analysis and the knowledge about any pos-
sible effects is sufficient, e.g., when assessing the fault resilience of a HW/SW
system, then, formally sound abstraction can be achieved, as we show in Chap-
ter 8.
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2.6.3 Fault Injection

In order to analyse fault effects on the behaviour of an embedded system, the
corresponding fault model has to be integrated into the system model. For this
task mutants and saboteurs [47] are widely utilized.

Register[1] = Register[2] + Register[3];

Figure 2.9: Addition

Mutation-based methods inject faults by replacing a component of a system
model with another component, the mutant. The mutant behaves like the orig-
inal component until the fault is activated. The code in Figure 2.9 shows an
addition of two program-visible registers for which we create the mutant de-
picted in Figure 2.10. When the fault’s activation_condition is fulfilled, e.g., a
certain amount of time has passed or a register that the instruction reads con-
tains a specific value, the mutant in Figure 2.10 does not perform the addition
but, instead, writes a specific value to the destination register one.

if activation_condition

Register[1] = ’hBADEAFFE;

else

Register[1] = Register[2] + Register[3];

end

Figure 2.10: Example mutant

The greater goal of a fault analysis, e.g., the certification of fault resilience,
typically, requires the analysis of a large number of fault effects and not just
the effects of one or a few faults. The fault activation condition can be utilised
for this to selectively enable or disable the activation of specific faults for a
fault analysis run. The idea is to instrument the system model with several or
even all faults of a fault list and let the verification engineer decide for each
analysis run which faults are allowed to activate during the analysis.

1 // Saboteur start
2 if activation_condition

3 Register[2] ^= fault_mask;

4 end

5 // Saboteur end
6 Register[1] = Register[2] + Register[3];

Figure 2.11: Example saboteur

Saboteurs are components which are added to a system model to change in-
ternal signals of the system. In order to fulfil their task saboteurs are inserted



2.6 FAU LT S 29

between a component that writes and another component that reads a particu-
lar signal. Like mutants, saboteurs only inject faults when activated. The code
in Figure 2.11 contains the addition of Figure 2.9 prepended by a saboteur. If
the fault’s activation_condition is fulfilled, the saboteur inverts the bits of reg-
ister 2 as specified by the fault_mask, i.e., every zero bit in the fault_mask

inverts the bit at the corresponding position in register 2.
Mutants and saboteurs are very much alike. If we consider only one abstrac-

tion level, their main difference is that mutants change the functionality of
a component while saboteurs affect the communication between components.
However, when multiple abstraction levels are considered, then, a saboteur in
one module may look like a mutant at a higher abstraction level. Similarly a
mutant module may, in fact, be a module with an injected saboteur at a lower
abstraction level.

In this thesis we employ saboteur-based fault injection to analyse the effects
of a faulty architectural state in a processor core. In our experimental setup
we exploit the fault activation condition to analyse several fault effects in a
single analysis run. For example, by leaving fault_mask in Figure 2.11 uncon-
strained a formal method would, then, prove a property for all possible values
of fault_mask, i.e., for all single bitflips and multiple bitflips in register 2.

2.6.4 Safety Standards

A major concern of industrial enterprises is to ensure the safety of their prod-
ucts. Their need for a thorough and widely accepted certification process
yielded several safety standards, most of which focus on a single industry
branch and/or specific aspects of a product or its development process.

For example, the main purpose of standards published by AUTOSAR3 [7]
is to ensure compatibility between products of different manufacturers, but it
also provides rules for software development and design rules for software
to address safety concerns. A comprehensive set of software design rules is
the main goal of the programming standard MISRA-C4 [77]. AUTOSAR and
MISRA-C are widely applied in the software domain. However, their focus is
on the reduction of development faults in the software and not on an increased
resilience of embedded systems against operational faults in the hardware.

Widely applied standards in the domain of safety-critical embedded systems
covering operational faults in the hardware are, for example, DO-178C/DO-
254 for aviation and industry specific standards derived from IEC 61508 like
ISO 26262 for the automotive industry.

The standards require a risk assessment that combines severity and proba-
bility of possible accidents. The result of the risk assessment determines the
safety level requirement for an embedded system. This typically leads to the
requirement that the number of faults that can affect safety-critical regions
over a period of time must stay below a certain limit.

3 AUTomotive Open System ARchitecture
4 Motor Industry Software Reliability Association
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For cost reasons, the set of faults which the system is made resilient against
must be selected carefully. Fortunately, in most applications a protection against
all faults is not necessary because masking mechanisms inherent to the system
prevent a fault from propagating [29, 31].

Single-Point Fault A fault that can affect safety-critical system
parts where it can be neither detected nor cor-
rected.

Residual Fault A fault that can affect safety-critical system
parts and escapes safety measures.

Multiple-Point fault A fault that cannot affect safety-critical sys-
tem parts or a fault that can but is detected or
corrected by safety measures, but still could
violate a safety goal in combination with one
other independent failure.

Detected Multiple-Point fault A multiple-point fault that is detected by
safety measures.

Perceived Multiple-Point fault A multiple-point fault that is perceived by the
driver.

Latent Multiple-Point fault A multiple-point fault that cannot be detected
by safety measures or perceived by the driver.

Safe Fault A single-point fault or multiple-point fault
that cannot affect safety-critical system parts,
e.g., because of logic masking.

Table 2.4: ISO 26262 Terminology (cf. Section 7.4.3.2 of [51])

For example, ISO 26262 requires hardware faults to be classified as “safe
faults”, “single-point faults or residual faults”, “detected or perceived multiple-
point faults” or “latent multiple-point faults” (cf. Table 2.4).

Unfortunately, ISO 26262’s definition of latent fault, which is the short name
of a latent multiple-point fault used in the standard, conflicts with the com-
monly used definition of latent fault presented in [8] (cf. Table 2.1). Since cate-
gorising multiple-point faults is out of the scope of this thesis we use the term
latent fault according to the definition provided in Table 2.1 in the remainder
of this thesis.

Safety mechanisms have to be implemented that prevent faults from leading
to single-point failures, reduce residual failures or prevent faults from being
latent (cf. Section 7.4.3.3 and Section 7.4.3.4 of [51]).

Some parts of a product may have a larger relevance w.r.t. the safety of the
whole product than other parts. ISO 26262 addresses this by defining four
different automotive safety integrity levels (ASIL). Each ASIL requires that cer-
tain quantitative target values for the single-point and latent fault metrics are
met (cf. Section 8.4.5 and Section 8.4.6 of [51]). The values computed for both
metrics can be improved by increasing the fraction of identified “safe faults”
(cf. Section C.2.2 and Section C.3.2 of [51]).
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Due to their growing maturity, formal verification methods receive grow-
ing acceptance by safety norms. In DO-333 [84], the Formal Method Supple-
ment to DO-178C [83], defines formal methods as “mathematically based tech-
niques for the specification, development, and verification of software aspects
of digital systems”. The importance of soundness is emphasized: “an analysis
method can only be regarded as formal analysis if its determination of a prop-
erty is sound. Sound analysis means that the method never asserts a property
to be true when it is not true.”

Also ISO 26262, in its software part, recommends formal verification and
static analysis by Abstract Interpretation as verification methods for higher
criticality levels, e.g., for verification of software architectural design, software
unit verification, or software integration verification (cf. Table 4, Table 7, and
Table 10 of [52]).

In its hardware part, ISO 26262 highly recommends the employment of in-
ductive (for all ASIL) and deductive (for ASIL C and D) methods to analyse the
safety of a hardware design. In industry, failure mode effect analysis (FMEA) [37]
and fault tree analysis (FTA) [110] are widely used techniques to qualitatively
analyse fault effects, including in the embedded system domain [62, 72]. FTA
is a top-down method to deductively identify all low-level faults that can lead
to a failure on higher abstraction levels. FMEA is a bottom-up method that
starts with a low-level set of faults and inductively computes their effects on
higher abstraction levels.

The methods presented in this thesis have similar goals as FMEA and FTA.
Like FMEA, one goal of this thesis is to employ a low-level analysis to compute
the fault effects on higher abstraction levels. And like FTA, another goal of
this thesis is to employ a high-level analysis to identify corresponding faults
on lower abstraction levels. The difference is that the scope of FMEA and FTA
include physical aspects, e.g., failures in the power supply, and in practice are
applied on a very high abstraction level while this thesis focuses on the lower-
level logic of a digital circuit. In contrast to FMEA and FTA which require
substantial manual effort and do not have a definition of completeness, this
thesis is largely automated and can provide guarantees that all possible fault
effects of the considered fault model are found by our analyses. Note that our
methods can be easily integrated into other methods analysing fault effects,
including FMEA and FTA. For example, a product-wide FMEA can take the
results of our method as an input and propagate the computed fault effects
from the digital computing platform further into the rest of the system.

2.7 Control Flow Graph

A control flow graph (CFG) explicitly models all possible outcomes of control
decisions, denoted as control flow, of a software program. Control decisions
are made by control instructions like jump or branch instructions. Definition 1

formally defines a CFG.
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Corollary 1 follows directly from Definition 1. In this thesis we use a slightly
modified CFG definition by re-defining that a single node represents only one
instruction.

Definition 1. A CFG C = (V, E, r) is a triple where V is a non-empty set of vertices,
E ⊆ V ×V is a set of directed edges and r with r ∈ V is the root node. A CFG node
v ∈ V represents a basic block of a software program. Depending on the considered
abstraction level, a basic block is a non-branching sequence of statements or instruc-
tions. The root node r represents the start of the considered software program. There is
an edge e ∈ E with e = (vi, vj) iff there exists an execution of the program where the
processor transitions from the last instruction of vi to the first instruction of vj [3].

Corollary 1. There exists a path p = (e1, e2, ..., en) with ei ∈ E from the root node r
to a node v ∈ V of a control flow graph C, if and only if, the corresponding instruction
sequence is reachable from the software’s start.

Most static software analysis tools use CFGs. Some of them perform their
analysis entirely on a CFG. Others, like the tools used in this thesis, use a CFG
to perform some preprocessing before the actual analysis starts. For example,
in Section 4.1 we discuss how we generate a formal computational model for
a HW/SW system based on a CFG and in Section 8.1 we employ CFGs to find
a feasible decomposition for large software systems.

2.7.1 CFG Generation

Control flow graphs can be generated for software programs on several abstrac-
tion levels, including machine level, assembly level and C level. Generating
CFGs for software programs like firmware and drivers on C level may, gener-
ally, require a complex code analysis. However, as a consequence of standard-
ization efforts, e.g., as given by the MISRA-C or AUTOSAR standards, state-
ments following control decisions are often provided explicitly in the C code of
standard-compliant software programs. The CFG generation for C code com-
pliant with such standards is in practice, therefore, not overly complex.

However, sometimes the C code is not available, for example, because the
software is a third-party intellectual property (IP). Analysing this software then
makes a CFG generation based on machine code or assembly code necessary,
which can be a very complex task to pursue as shown by [61, 103]. An impor-
tant factor for the complexity is the number of indirect jumps and branches
where the successor instruction depends on the concrete value in a program-
visible register. Computing all possible values of such a register is, in general,
very complex. But without the successor information for all instructions, the
generated CFG would not comply with Corollary 1 causing it to be incomplete.
An analysis based on an incomplete CFG yields incomplete results, since not
the entire software behaviour can be considered.

For the generation of our computational model that is used by the methods
presented in this thesis we employ formal methods to complete a CFG ex-
tracted from assembly code. We also exploit properties that are characteristic
for firmware and drivers to reduce the CFG completion complexity.
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2.8 Automated Test Pattern Generation

In the domain of digital circuits, "testing" refers to a class of well established
techniques to detect hard error-producing faults. A widely employed tech-
nique is to apply carefully selected values to the primary inputs of a digital
circuit, i.e., a test pattern, and compare the values on the primary outputs with
the expected values [26].

Test pattern-based testing is applied after manufacturing and before ship-
ping of a digital circuit and aims at detecting permanent faults. Test pattern-
based testing is also applied after shipping by using built-in self-test (BIST) [97].
Like post-production, pre-shipping testing, BIST addresses permanent faults
and faces the problem that the implementation of self-tests to detect all possi-
ble faults can create an infeasibly large area or performance overhead.

The main objective of testing is to detect all faults of a given fault list with
a most compact set of test patterns. Compactness is achieved by removing
unfavourable test patterns from the generated set, e.g, when a test pattern
detects a subset of the faults detected by another test pattern. A test pattern
detects one or more faults by activating them and setting the conditions for
the produced errors to be propagated to a primary output. If the actual output
values produced by a circuit are the same as the expected ones, then the circuit
under test does not contain a fault that is covered by the applied test pattern.
However, if the received response does not exactly match the expectation, then
the applied test pattern has detected a fault.

pi1

pi2

pi3

po1

Figure 2.12: Example gate-level circuit

Lets consider the gate-level circuit in Figure 2.12, which has three primary
inputs, one primary output and a couple of logic gates. Lets assume further
that a test pattern to detect a stuck-at-0 fault at the input of the OR-gate as
indicated by the arrow in Figure 2.13 should be found. In order to activate the
fault the corresponding signal value must be set to one, the opposite of the
fault value, and the other input of the OR-gate must be set to zero so that the
input where the fault is located determines the output value of the OR-gate.

Figure 2.14 shows a possible test pattern, i.e., a value assignment for the
primary inputs, to achieve this. For the fault-free case the output value of the
OR-gate which is also the primary output of the considered component is one
(cf. Figure 2.14) while in the event of the considered stuck-at-0 fault it would
be zero.

A complete set of test pattern contains at least one test pattern for every
fault in a circuit. The generation process for such a set is done in an automated
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stuck-at0
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Figure 2.13: Gate-level circuit for test

Figure 2.14: Gate-level circuit under test

fashion by software tools and, therefore, called automated test pattern generation
(ATPG) [26, 65] .

In general, fault detection requires value assignments at the primary inputs
of a component such that a considered fault is activated, i.e., an error appears,
and the produced error gets propagated to a primary output.

If a fault cannot be activated, then the signal where the fault is located cannot
be controlled. These type of faults are denoted as ATPG uncontrollable [46].
Sometimes no assignment of values to the primary inputs can propagate the
produced error of an activated fault to any primary output. These type of
faults are denoted as ATPG unobservable [46]. ATPG uncontrollable and ATPG
unobservable faults are denoted as untestable faults, because they cannot be
detected by test patterns.

Figure 2.15 shows an example of an uncontrollable fault. In order to detect
the stuck-at-0 fault at the output of the AND-gate pointed by arrow the gate
output has to be set to one. However, this is not possible, because this output is
always zero, for all value combinations at the primary inputs. This stuck-at-0
fault is, therefore, not ATPG detectable.

stuck-at0
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po1

Figure 2.15: Gate-level circuit - uncontrollable signal
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An example for an unobservable fault is depicted in Figure 2.16. Here, a test
pattern for the stuck-at-0 fault at an input of an AND-gate should be found.
The input is controllable and can be set to one, the opposite value of the fault,
by applying a zero to the primary inputs one and two. In order to allow the
value of the first input to determine the output value of the AND-gate the
second input of the gate must be set to one. However, this requires the primary
input two to be set to one which creates a conflict. This conflict prevents the
propagation of the erroneous value at the first AND-gate input to the primary
output of the circuit which makes the considered fault unobservable.

stuck-at0
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Figure 2.16: Gate-level circuit - unobservable fault

Uncontrollable and unobservable faults can indicate the potential for logic
optimisations. For example, untestable faults may be replaced by constant logic
signals of the value that they are stuck at because they do not change the input-
output behaviour of a circuit. Untestable faults that are safe to be removed
are denoted as redundant faults [112]. In hardware systems that do not have a
software part the number of redundant faults can be considered relatively low
as they are typically highly optimised. Digital circuits like general-purpose
processors are designed in such a way that they can execute a large variety
of software programs and provide a large variety of functionalities. However,
a single software program rarely uses all of the resources provided by the
processor.

Particularly drivers and firmware are highly specialised software programs.
This can create a large set of application-dependent uncontrollable and unob-
servable faults. For example when a software program never computes a mul-
tiplication, then faults in the multiplication unit become uncontrollable and
unobservable. We discovered several such application-dependent redundancies in
our experimental evaluation presented in Sections 6.2 and 7.1.

2.8.1 ATPG-based Testing in Practice

ATPG for combinational circuits can be considered a solved problem in prac-
tice. Commercial tools are available that can generate test vectors for designs
of industrial complexity.

Generating test patterns for sequential circuits can be, in contrast to com-
binational circuits, very complex because they contain storage elements like
registers which not only delaying the error propagation by storing values for a
clock cycle but are also used in feedback loops where values are fed back into
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the combinational part of the circuit which significantly increases the compu-
tational effort for every formal analysis and ATPG.

The complexity problem makes the application of ATPG algorithms infeasi-
ble for sequential circuits of large size.

A solution for the sequential ATPG problem is to use all registers in a se-
quential circuit as primary inputs and primary outputs, which reduces the
problem to classical combinational ATPG [112].

This can be achieved by adjusting the circuit in such a way that all registers
are connected to a long register chain, where the input of the first register can
be configured to obtain its value from a primary input and the output of the
last register can be configured to send a value directly to a primary output.
In “system mode”, the sequential circuit behaves like a circuit without this
modification. In “scan mode”, however, the input of each register is connected
to the output of another register. This concept is called scan chain [112], because
it is used to test, i.e., scan, the combinational part of the circuit.

The trade-off for this complexity reduction is that the added long wires to
connect the registers create an area overhead and can have an negative impact
on the circuit’s performance when the capacitance of the extra wiring reduces
the signal speed [49].
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In recent years, significant progress in solver technology has lead to a substan-
tial increase in the capacity of formal hardware verification tools. However,
they still suffer from scalability problems that are inherent to conventional
model checking when HW/SW systems of realistic complexity have to be anal-
ysed. With respect to formal analysis of fault effect propagation in industrial-
scale HW/SW systems, across multiple abstraction levels, only little prior work
exists.

Existing formal techniques [21, 43, 66, 96] which analyse the effects of hard-
ware faults on the behaviour of a HW/SW system require manual effort to
create a highly abstracted model from either the implemented HW/SW sys-
tem or its specification.

Modelling a system on a high abstraction layer can provide important in-
formation about the reliability of an entire system, e.g., an autonomous vehi-
cle [43] or power plant [66]. However, additional methods are required to close
the gap between these high abstraction levels to which fault effects can prop-
agate and the lower abstraction levels where the faults occur first. Providing
such a method is the goal of this work.

Most work employing formal methods for fault analysis on lower abstraction
levels either focus solely on the hardware [22, 71, 93, 99], or on the software [45,
68], and does not take the interaction between both into account. Identifying
safe faults, as is done in [71], helps to certify the resilience of HW/SW sys-
tems for specific safety levels. Such methods can provide valuable insights
in HW/SW systems where the software can undergo drastic changes during
in-field product updates. For those systems, identified safe faults as used for
the assessment of the safety level have to be software-independent. However,
for embedded systems where the software changes only very little over the
system’s lifetime, the identification of application-specific safe faults can be
necessary to provide a timely and cost-efficient certification of the required
safety level.

Furthermore, recent work [80] demonstrates that reducing the vulnerability
against certain faults by software-level hardening alone without consideration
of the underlying hardware can actually increase the cross-layer vulnerability
of a system.

In [35, 67, 82, 92] symbolic techniques are used to formally analyse the effects
of faults. In contrast to our approach, the approach of [92] requires manual ef-
fort to create an abstract formal model and only considers hardware. Also [35]
analyses only hardware and considers fault effects in a processor without tak-
ing into account the software. In [67] only faulty software behaviour is consid-
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ered. A mapping to concrete hardware faults is not attempted. In [82], certain
fault scenarios are examined using symbolic execution to formally analyse
fault effects. The proposed method is able to find all faults that lead to a spe-
cific output scenario for a given input scenario. However, the approach is nei-
ther meant nor expected to scale for a comprehensive fault analysis, as is the
objective of our work.

Most other work pursuing approaches with similar objectives as ours achieve
scalability to large systems by modelling faults at high abstraction levels, or by
using simulation and/or emulation [40, 41, 48, 85, 89].

It is in the nature of all simulative approaches that full confidence can never
be gained on the absence of fault effects. Such simulative approaches can, how-
ever, nicely complement our work. For example, [48] has evaluated the effects
of hardware faults on the architectural processor state and has elaborated on
how intermittent hardware faults on the RT level affect the behaviour of pro-
cessor components, including program-visible components like the register
file. Knowledge about how the effects of physical defects propagate through
the HW/SW layers can be used to develop realistic fault models on the archi-
tectural level and can provide a basis for methods like the one proposed in
this work. The proposed formal approach can also be integrated into a fault
analysis flow where a fast fault simulation discovers the most vulnerable parts
and reduces the fault list for the subsequent formal phase. It is then the task of
the formal approach to complete the picture with all other fault effects and to
generate guarantees that certain faults can never propagate to certain locations.
Such a general setup has already been pursued in [23, 94]. However, they only
consider hardware [23], or suffer from scalability limitations [94] which can be
mitigated in our work by a formally sound composition of models at different
layers.

A key element in this work is the creation of a fault dictionary to iden-
tify both application-dependent safe faults and safety-critical faults in a fully
formal way. In [9] the authors pursued a similar goal by applying a combi-
nation of simulation and formal technique to identify application-dependent
safe faults. Scalability of the formal analysis is achieved by reducing the state
space of the analysed sequential circuit. The method requires manual effort
to constrain parts of the processor, e.g., those that are not used, and to define
fault propagation barriers. It also relies on an automatic translation of simula-
tion traces to formal properties which are the basis for the identification of safe
faults. This exposes the method to the risk that incomplete simulation results,
e.g., a not included corner-case scenario, cause non-safe faults to be classified
as safe faults.

In contrast, our approach does not suffer from this potential inaccuracy
by merit of the formal methods it is based on, which scale even for large
HW/SW systems, as demonstrated in this dissertation. Furthermore, our ap-
proach can directly identify all application-dependent safety-critical faults. The
application-dependent safe faults can, then, be determined as the complement
set of the identified safety-critical faults w.r.t. the complete fault list.
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The program netlist (PN) is the underlying model of the fault analysis methods
proposed in this thesis. A PN formally models the behaviour of a processor
hardware with respect to a specific software program. In this chapter, we start
with a review of this model, originally published in [90]. We then, in Section 4.3
and Section 4.4, provide new contributions to increase the scalability of the
PN generation and PN-based analyses like the methods presented later in this
thesis.
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Figure 4.1: BMC unrolling of HW (middle) vs. program netlist (bottom)
for a CFG (top)

A straightforward approach for the verification of hardware-dependent soft-
ware could be to model the software as machine code stored in a ROM which is
connected to the processor (including CPU and RAM). As a result, a hardware
model for the entire system is obtained which is represented by its transition
relation, T, in the usual way. Verification could be based on BMC by unrolling
this transition relation for a finite number of time steps. For instance, the max-
imum number of clock cycles along the longest execution path of the program
could be chosen for the unrolling. Figure 4.1 presents an example. In order
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to keep the discussion simple, it is assumed that the CPU requires one clock
cycle to execute each instruction.

Such a hardware-style BMC approach is attractive for performing a formal
HW/SW cross-layer analysis since the behaviour of the software can be rep-
resented by hardware structures at the desired level of detail. However, the
approach will yield a complex computational model, similarly as in sequen-
tial ATPG, representing the entire processor hardware multiple times, once in
each i-th time step. Only very small designs and only short execution paths
can be examined with such an approach.

Let us examine in detail what would happen if a SAT solver is used to reason
on such a model when performing a given proof. Consider the piece of CFG
and the BMC unrolling shown in the top and in the middle of Figure 4.1. The
nodes in the CFG represent individual instructions of the machine code. Each
Ti in the model describes all software behaviours that could occur in the i-th
time step. In time step 1 instruction a is executed. No other instruction can be
executed at this point in time. This means that the system can be modelled
under the constraint that this particular instruction is performed. This fact can
be exploited to drastically simplify the transition relation T1. The same process
can be followed to model the system at time point 2. (Only instruction b can
be executed at that time point.) Now consider time point 3. At this time point,
instruction c or instruction e can be executed. T3 can still be simplified but it
now needs to model both of these instructions. Hence, fewer simplifications to
the transition logic can be performed.

We observe that in more complex CFGs with numerous branches and loops
the simplification can benefit from such constraints only during a fairly small
number of steps in the initial parts of a program. At later time points, there
exist many possibilities as to what instructions can be performed. Therefore,
when unrolling the transition relation, the individual Ti has to model (almost)
the entire hardware system, since no (or only few) constraints can be identified.
If a SAT solver has to enumerate the search space to prove some property on
this model, it will obviously suffer from the sheer complexity of this represen-
tation.

Moreover, there is an additional problem for the SAT solver making the
situation even worse. When backtracking through the search space the solver
makes assignments to the variables of this model that mix situations occurring
in different runs of the program. For example, if instruction c is performed at
time 3, it is not possible that instruction f is performed at time 4. If the SAT
solver makes assumptions in its branching decisions relating to instruction c
at time 3 and instruction f at time 4, it will enter the non-solution area of the
search space. It may take a large number of backtracks until this is discovered.

In conclusion, a SAT solver needs to deduce all information about the pos-
sible execution paths of the program via clause learning, backtracking, and
similar concepts “from scratch”. This is because the model lacks an explicit
view on execution paths. Since the program’s control flow is represented only
implicitly by the unrolled hardware, reasoning on the program requires a high
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computational effort. It is apparent that such a model, even if small, is compu-
tationally inefficient and requires excessive computational resources.

4.1 Program Netlist Generation

The PN approach is related to the BMC approach illustrated above, however,
key obstacles to scalability are removed. The basic idea is the following. The
unrolling of the processor with its instruction and data memory is not done by
replicating the full transition relation at every time frame, but rather instruc-
tion by instruction (cf. the PN at the bottom part of Figure 4.1). At branching
points in the software, the unrolled logic is duplicated, modelling each execu-
tion branch separately. This instruction-wise unrolling along execution paths
allows for a significant reduction in the amount of logic that needs to be repli-
cated: Since the actual instruction in every unrolled logic block is known and
fixed, many constants exist that can be propagated in order to simplify the
logic block so that all circuitry that is not needed for modelling the instruction
behaviour is removed.

CFG 1st Step

Unreachable?

Final EXG

Unreachable!

Program Netlist

Figure 4.2: PN generation steps

This analysis is moved to the pre-processing phase, illustrated in Figure 4.2
where the CFG is unrolled into an execution graph (EXG) containing all feasible
execution paths of the software. In each unrolling step, we unroll all program
paths that are known to be reachable (breadth-first algorithm). Unrolling is
performed until every program path either reaches one of the program end
nodes, as defined by the verification engineer, or a control instruction where
the reachability of its successors is unknown (cf. 1st step in Figure 4.2). We then
perform a formal analysis to identify all reachable successor instructions based
on an intermediate PN. We obtain an (intermediate) PN by replacing all nodes
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of the (intermediate) EXG with combinational logic denoted as instruction cell
that formally models the processor behaviour when executing the considered
instruction. We describe instruction cells in detail in Section 4.2. In the final
step of the unrolling process, when all program paths have reached program
end nodes, we create the final PN. Compactness of the generated EXG is en-
sured by pruning, i.e., not unrolling, unreachable program paths and merging
two or more program paths, unless doing so would create a loop [90]. For the
industrial software programs used in our experiments, this effectively prevents
path explosion as it is often experienced in symbolic simulation.

The resulting information about reachable execution paths of the software is
encoded into the control logic of the program netlist (cf. the logic blocks and
signals shown in red in the PN of Figure 4.1). Exploration of the program be-
haviour can be done now by activating or deactivating whole execution path
segments by assigning the active signals associated to the control logic. These
specific control structures make execution paths and the program’s control
flow explicit to the SAT solver. Previous work [90, 107, 108] have shown the
efficiency of this approach. We also use the active signal to merge program
paths. Only one of the program paths to be merged can possibly have a pro-
gram state with an asserted active signal, because only one path is executed in
any given program run. We use the active signal to decide which program state
is forwarded to the next IC. This is illustrated in Figure 4.2 by the multiplexer
in the PN.

The CFG used as the starting point for model generation can be incom-
plete, e.g., branch targets may be unknown because of indirect addressing, as
is often the case when a CFG is generated from a real machine program. This
incompleteness is acceptable because the missing information is generated dur-
ing the model generation process. This is done by interleaving the unrolling
process with a SAT-based analysis, as explained above, to fill in the missing
information.

4.2 Instruction Cells

For a given ISA and program at machine level, the behaviour of the processor
can be precisely modelled for each individual instruction of the program. A
logic block that models atomically the effects of an individual instruction on a
set of state variables is called an instruction cell (IC). The set of state variables
that the cell modifies depends on the type of instruction and includes all regis-
ters of the hardware platform that are visible to the software as well as memory
locations associated with program data variables and input/output registers.
These state variables constitute the program state (PS) of the programmable
HW/SW system.

A somewhat simplified example of an IC template in pseudo-code nota-
tion is shown in Figure 4.3. (Information about bit widths is abstracted in this
and the following examples to make them better readable.) In our practical
implementation instruction cells are specified in SystemVerilog. Figure 4.3 de-
scribes an ADD instruction for RISC-V [109]. As can be seen, the instruction
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1 ADD(const Rd, const Rs1, const Rs2, in PS, out PS’)

2 {

3 PS’ = PS;

4 PS’.RegisterFile[Rd] =

5 PS.RegisterFile[Rs1] + PS.RegisterFile[Rs2];

6 }

Figure 4.3: Instruction cell - RISCV

cell takes as input the register names that the operation is performed on. This
information is encoded in the specific assembler instruction of a program. The
identifiers Rd, Rs1 and Rs2 in the template are replaced with the actual register
addresses when the instruction cell is instantiated during PN generation. The
instantiated instruction cell has only one input, the current program state, and
one output, the next program state. The body of the instruction cell consists of
a forwarding of the program state from the input to the output, with the ex-
ception of the one register that contains the result of the addition. Instruction
cells are time-abstract. i.e., they do not provide cycle-accurate timing informa-
tion. However, the ordering of a sequence of instructions in a PN provides an
abstract model of time that we use for fault injection.

4.3 Scalable PN Generation

Improving the scalability of the PN generation process allows us to analyse
larger software programs. This section presents a number of new techniques,
developed as a part of this dissertation, for reducing the complexity of the PN
generation. Each technique is independent of the others. The safety engineer
is free to select any combination, as needed by the problem instance at hand.

4.3.1 Compositional PN Generation

Large or very complex software programs can cause unfeasible run times for
PN generation. In the following, we present a compositional approach to re-
duce complexity by splitting a software program into segments and generating
a PN for each segment. After PN generation, the segment PNs are combined
into a composite PN that models the behaviour of the full software program.

Splitting a software program into segments is a manual procedure, and find-
ing an optimal decomposition is not trivial. A simple approach would be to
decompose the PN based on software functions. Such a decomposition, though
conceptually simple, usually leads to suboptimal solutions because it does not
take into account the context of the function call within a particular program
execution. Such a general, context-agnostic, program decomposition based on
function boundaries needs to represent and consider all possible argument
values and usually leads to an unnecessarily complex PN. If, however, the call-
ing context is available in the decomposition, then the actual arguments to the
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function and other parameters like the stack pointer or the return address are
known and can be used for model simplification.

We, therefore, propose to first extract the CFG from machine code, e.g., by
using a static software analysis tool, in order to guide the safety engineer in
selecting promising cut points for a decomposition. The CFG provides an ab-
stract view on the machine program and allows the safety engineer to roughly
assess the complexity of program paths in prospective software segments.

We model a given software program as a set of machine instructions, U =

{ι1, ι2, . . .} and a set of program state variables. A machine instruction ιk is
a pair (ak, ck) of a program memory address ak and an instruction word ck.
In a CFG, every instruction is assigned to a basic block consisting of a non-
branching instruction sequence (cf. Definition 1). The ordering of a sequence
of basic blocks is maintained by edges between two basic blocks. Every edge
of the CFG can be used as a cut point for decomposition. A selected CFG edge
indicates the last instruction of a segmentSWi and the first instruction of a new
segmentSWj.

Definition 2. The over-approximation of the starting state of a segmentSWi modelled
in a PN is called abstract starting state ψi,0. The set of program states which the
modelled segmentSWi can end in after starting in any of the states in ψi,0 is modelled
by the abstract ending state ψi,end of the PN.

The execution of a single program run is a sequential execution of segments,
where each segmentSWi starts with program state si,0 and ends with program
state si,end which is the starting state of the next segment segmentSWj. In our
formal model, an abstract state (Definition 2) represents a set of concrete pro-
gram states. When compared with the aforementioned, more naïve, decompo-
sition based on functions, this approach allows us to define larger segments
with benign complexity due to a less complex ψi,0.

After software decomposition by splitting into segments, we generate a PN
for each segmentSWi. For this task we have to constrain the abstract starting
state ψi,0 of all segmentSWi which do not include the startup procedure by an
over-approximation of the possible states at the given point of execution. With-
out such a constraint, PN generation would start from an any-state causing the
generation process to add a large number of unreachable software behaviours.
In the worst case it makes PN generation impossible. Furthermore, the in-
creased complexity of a PN directly affects the complexity of any analysis
using it.

We generate the over-approximation constraint for the abstract starting state
ψi,0 by Abstract Interpretation. In our experiments, we use the static software
analysis tool ValueAnalyzer from AbsInt for this purpose. In practice, the over-
approximations obtained using Abstract Interpretations were so tight that we
did not observe any unreachable software behaviours in the composite PN
model.

We combine the segment PNs to a composite PN by assigning the ending
state of one segment to the starting state of the next segment. The ordering of
segments is determined by the chosen CFG decomposition.
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4.3.2 Instruction Abstraction

Some instructions perform more complex computations than others, leading
to an increased model complexity when generating the PN. This is especially
true for multiplication or division. In many cases, it is possible to reduce the
model generation complexity by abstraction.

We may replace an instruction by an abstract version of it such that the value
space of the abstract computation result is an over-approximation of the con-
crete result. The simplest abstraction is obtained by removing all computation
logic and replacing the output result with a symbolic variable representing
any possible value.

In general, such an abstraction may add software behaviour to the formal
model that does not exist in the actual, concrete, software. In principle, this
may even increase the complexity of the PN instead of reducing it, e.g., when
actually unreachable program paths become reachable in the abstract model.
In the worst case, abstract instructions can make the PN generation infeasible,
but they can never lead to an unsound model. While there may exist spuri-
ous executions in the PN, still, every execution in the actual software has a
representation in the PN.

In practice, it is up to the verification engineer to select instructions for ab-
straction, and to choose appropriate replacements such that the overall model
generation complexity is improved. Fortunately, most instructions causing com-
plexity problems are used in data processing algorithms and often do not affect
the control flow. In such cases, a simple ad-hoc approach can be to replace a
complex instruction by a simpler one that uses the same operand and result
registers. For example, a multiplication may be replaced by an addition. Such
ad-hoc modifications may, in principle, compromise model soundness by rul-
ing out execution paths that were feasible in the original program. However,
we can easily cure this by running a formal property check that tests for newly
missing branches and execution paths. These properties are generated auto-
matically by our tool, and provide an effective aid to the verification engineer
in the process of creating a sound and compact model of a software program.

4.3.3 Program Path Priorities

In order to keep the PN compact, its generation process tries to merge pro-
gram paths as soon as possible, as long as doing so does not create a loop.
Sometimes, a merge at location A can prevent a merge at a different loca-
tion B, because the latter merge would only create a loop if the former was
performed. However, there are cases where the latter merge would have been
better in terms of model compactness and complexity. This issue can cause a
significant increase in the complexity of the PN, impacting every subsequent
analysis and the PN generation process. In the worst case, merge decisions
make the PN generation infeasible due to overly long runtimes.

Finding the optimal locations for merges is difficult and they can change
during the PN generation. Optimizing the PN size during its generation can,
therefore, create an infeasibly large overhead.
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A simpler solution is to orchestrate the PN generation by prioritizing cer-
tain functions in the CFG unrolling. This means that selected functions have a
priority during the PN generation process, i.e., during the CFG unrolling. This
prevents premature merges of non-prioritized PN parts with prioritized PN
parts that have the potential to cause logic duplication of the corresponding
program path due to unfavourable selection of merge locations.

4.3.4 Address Caching

In safety-critical embedded systems, static variables are commonly used to
store non-temporary values. The compiler places them at a fixed location in
the memory, i.e., the address range for such variables stays the same for the
whole runtime of the program.

In addition, most functions in embedded system software access only a spe-
cific set of variables and the function arguments mainly specify the part, i.e.,
the memory addresses, of the variables they access during a single function ex-
ecution. A similar behaviour can be observed for jumps, where, for a specific
jump there is only a fixed set of target addresses and the input values only
select an element from this set as jump target.

We exploit this observation by storing found addresses of memory accesses
and jumps and mapping them to the corresponding instruction. At the next
time, when addresses for the same instruction have to be found, we run a
formal check whether these addresses include the stored set of addresses. If
this check fails, we perform the regular address computation, beginning with
an empty set of addresses. If, however, the check succeeds, we try to find more
addresses by performing the address computation starting with the stored set
of addresses.

Since, in the worst case, we always have to run one extra formal proof, we
limit address caching to situations where the number of found addresses is
larger than a given threshold.

4.3.5 Experiments

For our experimental evaluation of the techniques presented in this section we
generated PNs for several software programs of realistic complexity, including:

• LIN: a driver for a slave node of a Local Interconnect Bus (LIN Bus), used
as a gateway to external buses; obtained from Infineon, proprietary IP.

• FuelSys: a fuel rate controller for a combustion engine, taken from the
fuel control system example of MATLAB [73].

• RSA loop: a loop-based implementation of the Rivest–Shamir–Adleman
(RSA) encryption algorithm, obtained from [4].

• RSA recursive: a recursive implementation of the RSA algorithm, ob-
tained from [5], providing a larger complexity than the implementation
based on a loop.
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• AES: an implementation of the Advanced Encryption Standard (AES) en-
cryption algorithm, obtained from [64], providing a software program
with a large number of memory accesses.

Table 4.1 shows the complexity of each software program in terms of lines
of C code (LoC) and computational model size. We compiled each program
with GCC1 for a RISC-V architecture.

Software Program Lines of C code PN size (# ICs)

LIN 781 3,927
FuelSys 8,869 9,041
RSA loop 61 784
RSA recursive 68 3,063
AES 419 7,441

Table 4.1: Software programs

For these software programs we generated the PN and measured the time
it took to complete the generation process. In order to limit the overall experi-
mental effort, we set a limit of three days for a single PN generation, arguing
that a longer PN generation for a single program is not feasible. PN generation
processes that did not complete after three days are marked by the keyword
timeout.

Program
PN generation runtime (hh:mm:ss)

No Decom- Unroll Instruction Address
Technique position Priority Abstraction Cache

LIN 00:03:35 — 00:03:29 — 00:03:37

FuelSys timeout 00:47:18 timeout timeout timeout

RSA loop 00:00:18 — 00:00:05 00:00:18 00:00:18

RSA recursive timeout — timeout 35:11:26 timeout

AES timeout — timeout — 02:50:47

Table 4.2: Runtimes for PN generation

Table 4.2 shows the runtime of the PN generation for each selected soft-
ware program. The value in the second column is our baseline, showing the
time needed to generate the PN without employing any of the techniques of
this section. The remaining columns show the PN generation times for each
technique. A dash is printed if techniques are not feasible for the particular
software program.

For example, LIN does not make use of instructions that could benefit from
abstraction. Applying the compositional approach is, also, not meaningful
since the time overhead needed for selecting a decomposition would already

1 gnu compiler collection
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be larger than its short baseline PN generation time. The encryption algorithms
only use one or two functions making a decomposition difficult and AES does
not use complex instructions preventing the application of instruction abstrac-
tion.

Whether a particular technique reduces the time for PN generation depends
on the nature of the individual software program. For example, prioritizing
some functions for unrolling or activating address caching in some LIN in-
stances neither improved nor degraded the run times for PN generation. In
the loop implemented RSA algorithm, instructions can only access a single
memory address and never use multiplication results for control decisions.
Instruction abstraction and address caching, therefore, cannot reduce the PN
generation time, but also don’t increase it.

Due to the inherent complexity of FuelSys the PN generation for this pro-
gram is infeasible without our compositional approach. We were also not able
to generate a PN before timeout by using instruction abstraction or address
caching. However, due to its code size FuelSys is a realistic example for a
compositional PN generation. By analysing the CFG of FuelSys and the com-
plexity of its functions, as provided by the source code, we manually decom-
posed FuelSys into nine segments. For each segment, we, then, computed the
constraints for ψi,0 and generated the PN.

Segment
PN generation (time in s) PN size
Baseline Optimized (# ICs)

Segment1 compute 1,458 296 2,436

Segment2 TabIdxS49T1_a 8,947 14 488

Segment3 Tab2DIntp2I1T1_a 464 47 320

Segment4 TabIdxS49T1_a 93 13 569

Segment5 Tab2DIntp2I1T1_a 895 90 630

Segment6 Tab2DIntp2I1T1_a 659 86 618

Segment7 Tab2DS17I2T4169_a 727 350 1,930

Segment8 Tab2DS17I2T4169_a 52,557 1,922 1,564

Segment9 fuelratecontroller 50 5 486

Assembly 15 15 9,041

Overall 65,865 2,838 9,041

Table 4.3: FuelSys segments

Table 4.3 provides information for each segment. In the first column we men-
tion the name of the function where the respective segment starts. Several seg-
ments start with the same function that is called at several program locations.
The second column of the table reports the runtime needed for generating the
PN without the use of other techniques. We then generated the segment PNs
by using additional techniques, as applicable for the particular segment. The
runtimes of the optimized PN generations are presented in the third column.
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The last column shows the size of the generated PNs for the optimized run.
As expected, the number of reachable program paths in a function depends on
the set of possible function arguments and is reflected in the PN size.

A sequential generation of all segment PNs and the final assembly of the
composite PN takes a total of about 45 minutes. When compared with the 18

hours and 17 minutes of the non-optimized PN generation, this is already a
runtime reduction by 95%. Moreover, since the PN generation for one segment
does not depend on the PN generation of other segments a full parallelization
of the generating segment PNs is possible. With parallelization, the wall clock
time for PN generation is dominated by the runtime for generating the PN
of the most complex segment. In our example, this was segment 8 of FuelSys,
which takes about half an hour to compute.

Our experiments show that the PN scalability techniques presented in this
section enable PN generation for software programs that were previously too
complex to process. With the exception of the recursive RSA algorithm the
obtained PN generation runtimes are actually comparable to runtimes that
were previously encountered only for much smaller and simpler programs.
The new techniques boost the software complexity that can be handled in
terms of memory accesses, arithmetic instructions or code size, by orders of
magnitude.

4.4 Cone of Influence Computation

In some applications, resilience measures are desirable which do not protect
the entire program but only specific functions, such as safety functions, or in-
struction sequences inside a function. For example, a loop counter may be
considered more critical than some variable within the loop. In order to en-
sure the correct execution of these critical instructions, resilience measures
only protecting these particular instructions might not be sufficient. Due to
the nature of the program’s computation a fault activated during the execu-
tion of instructions with low criticality might actually propagate to critical
instructions. Therefore, we propose to perform an analysis to determine the
data dependencies of critical instructions identifying the critical registers along
which the relevant data or control information is propagated. This calculation
can be done by analysing the PN and provides a precise description of all
dependencies. Note that pure machine code would not be sufficient for this
analysis since it yields only incomplete CFGs and therefore would lead to an
over-approximation of possible dependencies.

Dependency Type Meaning

Type 0 Data Dependency (Register)
Type 1 Data Dependency (Memory)
Type 2 Control Flow Dependency

Table 4.4: Types of dependencies
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As an example, Figure 4.4 shows an excerpt of the results from a dependency
analysis. The analysis was performed on the PN of the Traffic Alert and Collision
Avoidance System (TCAS) developed by Siemens which is part of the Software-
artefact Infrastructure Repository [102].

Addr. 1346

R: T

W: R1

Addr. 1344

R: R1, R2

W: T

Addr. 1342

R: @0x13B6

W: R1

Addr. 1340

R: @R1

(0x2D54)

W: R2

Addr. 133C

R: T

W: PC

Addr. 1338

R: R1, R2

W: T

Addr. 132A

R: @R1

(0x2D24)

W: R1

Addr. 1328

R: @R1

(0x13B8)

W: R1

Addr. 13F4

R: R3

W: @0x2D24

Addr. 1432

R: R0

W: PC

Type 0

Type 0

Type 0

Type 2

Type 0

Type 0

Type 1

Type 2

Figure 4.4: Dependency analysis

For demonstration of our analysis, an in-
struction was selected that delivers the value
for a variable which is important for the re-
sult calculation of the overall algorithm. The
instruction is shown as the tail node (with
address 1346) at the bottom of Figure 4.4.

The figure shows a part of the dependen-
cies existing for the considered instruction.
These dependencies are extracted from all
reachable program paths leading to this in-
struction and are represented by a graph
as shown. Each node represents an instruc-
tion, its address and information on what
registers or memory location the instruction
reads from (R) or writes to (W). The anno-
tation “R: @R1 (0x0000)”, for example, in-
dicates that the particular instruction reads
from the memory address 0x0000 stored in
register R1. Similarly, “W: R1” means that the
particular instruction writes to R1.

As mentioned before, only an excerpt of
the dependency analysis is shown. Parts
which were removed are indicated by a
dashed line. Solid lines indicate dependen-
cies and are labelled with a type according
to Table 4.4. “Type 0” indicates a direct data
dependency where one instruction writes to
a register which is used by another. “Type 1”
also indicates a data dependency but in this
case one that exists through a memory value
rather than register content. The last type,
“Type 2”, indicates that the particular instruc-
tion depends on a correctly executed jump or
branch instruction.

It is worthwhile noting that the uppermost
node (with address 1432) represents a jump
instruction which needs the value of a regis-
ter to calculate the jump target address. Due
to the characteristics of the used model all
possible target addresses are known so that
it is possible to trace in the PN both in for-
ward and backward direction to extract the relevant dependencies.
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As can be noted, the paths in the dependency graph of Figure 4.4 are not
numbered with consecutive instruction addresses. In fact, in our experiments
it could be observed that the topology of the computed dependency graph is
not identical and not even in a simple relationship with the topology of the
program’s execution graph. This demonstrates that indeed additional infor-
mation is obtained from the proposed analysis which may be valuable when
designing cost-efficient resilience solutions. Their effectiveness can be certified
by proving equivalent behaviour of the protected code segment for a given
fault list.

In our experiments we employ this dependency analysis to reduce the com-
plexity of our PN-based analyses. The runtime of a PN-based analysis depends,
to a large degree, on the number and the types of instructions modelled in the
PN as well as the combinational depth, i.e., the longest path from a primary
input to the analysed IC. Removing parts of the PN that are not relevant for
a fault analysis proof target resulting from a given fault can significantly de-
crease the analysis runtime. For this purpose, we use the dependency analysis
to perform a cone-of-influence (COI) reduction. The COI computation starts at
the head instruction cell, e.g., a cell that accesses a safety-critical variable, and
performs a structural backward trace to find the ICs in the transitive fan-in.
The trace stops at the primary inputs of the PN that provide the starting state
s0 ∈ ψi,0 to the software program. Every IC not in the cone-of-influence, i.e.,
not in the dependency graph can be removed from the proof instance.
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Analysing the behaviour of software with respect to hardware faults requires
a model of the fault-affected HW/SW system. Every injected fault needs a
description for its activation condition including the time at which the fault
occurs and how long it lasts as well as a specification of its logical behaviour,
i.e., how it affects the execution of an instruction. We model the logical be-
haviour of a hardware fault by describing its effects on the program state, i.e.,
how a faulty instruction execution deviates from the correct one. This can be
accomplished by modifying the corresponding IC description in an appropri-
ate way, as we explain in the next sections.

In order to model the temporal behaviour of a fault, we do not use clock
cycle accuracy but a more abstract notion of time in order to handle larger pro-
cessors with unpredictable execution times. Abstraction is performed in such
a way that time is represented by the order of the instructions in the program.
Every instruction cell inside a PN represents a unique abstract time point. An
abstract time point in a PN represents one or more concrete time points that
depend on the execution path taken by the program. A fault changing the PS
that is read by an IC, therefore, models several faults that change the PS in
the same way and appear at concrete time points before the execution of the
corresponding instruction in the processor core.

Machine Code Instruction Cells

Fault Logic

Incomplete CFG

CFG Unrolling

Program Netlist

FINE PN

Fault Injection

(a) Type A(fter)

Machine Code Instruction Cells

Fault LogicIncomplete CFG Fault Injection

CFG Unrolling

Program Netlist

FINE PN

Fault instrumented 
Instruction Cells

(b) Type B(efore)

Figure 5.1: FINE PN generation flow

The proposed methods, however, are easily adaptable for time-accurate ICs
that can be created for processors with predictable execution times. In [108] a
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time-accurate version of an IC called timed instruction cell was introduced for
this purpose.

We model faulty behaviour of a HW/SW system with fault-injected PNs
(FINE PNs) by instrumenting fault-free ICs with fault logic. We distinguish
between two FINE PN generation processes, depending on when the IC instru-
mentation is applied. If the fault injection is performed after the PN generation
(cf. Figure 5.1a), we denote the resulting PN as type A FINE PN or A-FINE PN.
If the fault injection is performed before the PN generation (cf. Figure 5.1b),
the result is a type B FINE PN or B-FINE PN. Figure 5.1 show the FINE PN
generation flow for both generation types.

The fully automated instrumentation and unrolling processes are the same
for both types. The only difference is that, during the generation of a B-FINE
PN, the fault logic inside the instrumented ICs allow the activation of program
paths that are unreachable in the fault-free case. Every fault effect is, therefore,
modelled inside the B-FINE PN, including not only modified data but also
modified write and branch addresses. However, this incurs high complexity
and runtime in the PN generation process and the subsequent analysis, espe-
cially if indirect branches (using an address register) are involved, in which
case the control flow may take an arbitrary path and likely leads to a system
failure. With a small modification, though, the PN generation becomes signifi-
cantly less complex, at the price of a less accurate model of control flow errors.
The idea is to generate the PN without injected faults at first and then add
the fault injection logic to the fault-free PN in a separate step. As a conse-
quence, the fault-injected PN, i.e., the A-FINE PN, does not include program
paths which can only be reached as a result of a fault. In Sec. 8.2.1 it will be
shown how A-FINE PN, in spite of this inaccuracy, can still be used for a con-
servative, i.e., formally sound, fault injection technique. It is the task of the
safety engineer to select the appropriate FINE PN depending on the complex-
ity of the software to be analysed. In our experimental evaluation we rarely
observed cases where a fault changes the control flow but does not change the
program’s behaviour.

In general, a PN-based fault analysis provides a large degree of freedom
in choosing different fault models. In this thesis we focus on stuck-at faults
representing hard errors and SEUs representing soft errors. We discuss fault
injection for both types of faults in Sections 5.1 and 5.2. Extensions to other
fault models are possible.

5.1 Stuck-At Faults

The stuck-at fault is a widely used fault model to describe faults that origi-
nate from permanent defects in the physical structure of a circuit. A stuck-at
fault inside the hardware of a processor core can have an effect on multiple
processor instructions. The effects of faults belonging to this fault class can
be modelled by creating a corresponding fault description for every affected
instruction cell. Correct modelling of multiple faults and their effects on differ-
ent instructions is more challenging. We achieve this, as elaborated below, by
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adding auxiliary constants, registers and ports to the fault description of an
IC.

1 fault_injection_1_preliminary(const Rn, in PS, out PS’)

2 {

3 PS’.Activation_Condition += 1;

4 if(PS.Activation_Condition.bit(LSB) == 0)

5 {

6 PS’.RegisterFile[Rn].bit(MSB) =

7 PS.Fault_Register.bit(MSB);

8 }

9 }

Figure 5.2: Modelling stuck-at faults – example

The example shown in Figure 5.2 illustrates a very simple case of a stuck-at
fault description that can be integrated into the description of an IC. The fault-
injected IC could, then, be considered a mutation. However, if the injected
fault logic prepends or appends the IC logic and modifies only the program
state the fault logic can also be considered a saboteur that resides inside an IC.
The stuck-at fault modelled in the example of Figure 5.2 is activated on every
second execution of the injected instruction and affects the most significant
bit of program-visible register Rn. This may be used to model, e.g., a situa-
tion where only one out of two adders in a superscalar pipeline is affected
by the stuck-at fault. For this purpose the architectural state was augmented
by two auxiliary registers: Activation_Condition and Fault_Register. The former
has an initialization value of zero while the latter is left uninitialized. The Ac-
tivation_Condition register is incremented every time the affected instruction
is executed, and the fault becomes active whenever the least significant bit of
the Activation_Condition register is zero, i.e., on every second incrementation of
Activation_Condition. Then, the MSB of the target register is assigned the value
of the MSB of the unspecified register Fault_Register. In effect, the MSB of the
target register is treated like an open input in our formal analysis. This way,
both faults, stuck-at-0 and stuck-at-1, can be considered at the same time.

Note that it is possible to describe more than one fault for a particular in-
struction. A fault description with more than one fault can serve two purposes.
It can be used to model multiple faults and to examine their combined effect
on the program. The second purpose is to model several faults (single or mul-
tiple) in the same program netlist, thus avoiding the effort of re-generating the
program netlist for every fault to be examined.

In order to support such complex fault descriptions for fault lists with a
large number of faults and to separate the activation and deactivation of faults
from the computation of the internal processor state, the occurrence of a fault
given in the fault list can be encoded into the data of an auxiliary memory at
a specific location addressed through auxiliary ports. These auxiliary ports do
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not correspond to variables of the original software but are only used in our
computational model to gain better control on the activation conditions.

During fault analysis the values of these ports are set appropriately so that
the activation of specific faults and combinations of faults can be enabled or
disabled. In fact, using this construction, it is sufficient to generate a single
FINE PN to analyse the effects of several single faults and/or several multiple
faults together with the original fault-free behaviour.

1 fault_injection_1(const Rn, in PS, out PS’, Fault_Port Port)

2 {

3 Port.Address = 0xABCD;

4 PS’.Activation_Condition += 1;

5 if((PS.Activation_Condition.bit(LSB) == 1) &&

6 (Port.Data == 1))

7 {

8 PS’.RegisterFile[Rn].bit(MSB) =

9 PS.Fault_Register.bit(MSB);

10 }

11 }

Figure 5.3: Modelling stuck-at faults – allowing for several faults in a single model

In Figure 5.3 the code of Figure 5.2 was modified such that a memory access
to a configuration variable at address 0xABCD was added to the fault descrip-
tion. The configuration variable is an auxiliary construct that allows to enable
or disable the activation of a specific fault.

5.1.1 Insertion of Fault Injection Logic

Fault injection is provided by inserting a fault description at the start or at
the end of the corresponding IC. Actual injection of a fault is later controlled
by setting the corresponding permission bits in the auxiliary configuration
variables for the fault (cf. Figure 5.3).

An injected fault changes the behaviour of the original instruction cell by
either performing additional changes of the program state or by overwriting
changes of the fault-free part.

The example in Figure 5.4 shows an instruction cell providing several possi-
ble fault injections to a SuperH2 [86] ADD instruction. As described in [90], the
PN model generation steps are interleaved with a SAT-based analysis to prune
the control space of the program. When ICs are instrumented with fault logic
before the PN is generated this analysis is extended to the instruction cells
with their fault descriptions so that all possible fault scenarios are included in
the FINE PN.

Note that in this case the FINE PN models all fault behaviours of the fault
list. This makes it possible to perform a global reasoning over all faults or sets
of faults. For example, one could compute the set of all faults that lead the
program into a specific program state.
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1 ADD(const Rm, const Rn, in PS, out PS’, Fault_Port Port)

2 {

3 ProgramState PS_temp = PS;

4

5 PS_temp.RegisterFile[Rn] =

6 PS.RegisterFile[Rn] + PS.RegisterFile[Rm];

7

8 fault_injection_1(Rn, PS_temp, PS_temp, Port);

9 fault_injection_2(Rm, Rn, PS_temp, PS_temp, Port);

10 fault_injection_3(Rm, Rn, PS_temp, PS_temp);

11 ...

12

13 PS’ = PS_temp;

14 }

Figure 5.4: Instruction cell with fault injection

Obviously, a B-FINE PN modelling a large number of possible faults may
turn out to be more complex than the corresponding PN for the fault-free case
or the B-FINE PN for only a small subset of these faults. Depending on the
complexity of the model it may therefore be advisable to partition the fault
list and to analyse each partition in a separate B-FINE PN, or to perform the
analysis based on an A-FINE PN.

5.2 SEU Faults

Large memory components like RAM blocks can be efficiently protected against
SEUs by conventional fault resilience techniques such as error correction codes.
Therefore, we do not consider faults in the main memory. Instead, we analyse
the effects of SEUs that occur in or propagate to program-visible registers.

1 Inject_SEU(const Rs, const Time_ID, in PS, out PS_temp)

2 {

3 Activation_Condition =

4 (PS.Time_ID == Time_ID) && PS.Register_Selection[Rs];

5 Bitmask =

6 ’32(signed(Activation_Condition)) & PS.Bit_Selection;

7

8 PS_temp.RegisterFile[Rs] =

9 PS.RegisterFile[Rs] ^ Bitmask;

10 }

Figure 5.5: Modelling SEU faults

The change in the program state, due to an SEU occurring in a register bit,
is modelled by adding fault logic to the ICs as shown with stuck-at faults in
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Section 5.1.1. The example in Figure 5.5 shows the logic for an SEU-injecting
saboteur. In this example, the condition computed in Activation_Condition has
to be fulfilled before changes are applied to the register Rs. In order to pass this
information to the logic, we add the registers Time_ID, Register_Selection and
Bit_Selection to the program state. Time_ID is a unique ID for each instruction
in the PN modelling an abstract time point and used to enable fault activation
only for a specific instruction cell inside the PN. Note, that the same machine
instruction can appear in multiple instantiations as instruction cell in a PN.
If an ID is selected that does not appear in a particular PN, then, no fault is
allowed to become active and the PN models the fault-free behaviour. Regis-
ter_Selection and Bit_Selection are used to select the register and bit position
for fault injection. If the activation condition is checked, Activation_Condition
is either 0 or 1 so that a sign extension will generate a bit vector where all bits
are either 0 or 1, respectively. If the condition is not fulfilled, then all bits in
Bitmask are 0 and, therefore, do not change the program state. If the condition
is fulfilled, then Bit_Selection determines which bits in Bitmask are 0 and which
are 1. Every bit position in register Rs is flipped when there is a 1 at the cor-
responding position in Bitmask, so that individual bits can be selected during
fault analysis.

1 ADD_SEU(const Rd, const Rs1, const Rs2, const Time_ID,

2 in PS, out PS’)

3 {

4 ProgramState PS_temp = PS;

5

6 Inject_SEU(Rs1, Time_ID, PS_temp, PS_temp);

7 Inject_SEU(Rs2, Time_ID, PS_temp, PS_temp);

8

9 PS’ = PS_temp;

10 PS’.RegisterFile[Rd] =

11 PS_temp.RegisterFile[Rs1] + PS_temp.RegisterFile[Rs2];

12 }

Figure 5.6: Instruction cell with SEU fault injection

A comparison between the fault injection logic for a single register in Fig-
ure 5.5 and the IC logic in Figure 4.3 shows that every fault injection adds
some amount of complexity to the PN comparable to that of an instruction.
This may seem like a strong impact on the overall complexity of the fault anal-
ysis. Fortunately, this is not the case because fault injection logic only needs
to be added to those registers that are read by the particular IC. Note that
this optimization exploits the basic property of the PN model that under any
program input only one path in the PN can be activated [90]. Therefore, a
propagating fault can affect only one program path which prevents it from
interacting with itself in case of path branches and path merges in the PN. The
fault only becomes effective when it reaches the first IC in which the affected
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register is read and processed. The injected and analysed fault represents a
class of equivalent faults (cf. Section 2.6.2).

The IC in Figure 5.6 shows an example how faults can be injected in the
ADD-IC from Figure 4.3. This instruction reads only from registers Rs1 and
Rs2. This is why only in these registers faults are injected. Here, Time_ID mod-
els the fault equivalence class.

According to the RISC-V ISA [109] description register 0 is special as it al-
ways contains the value 0. For the fault effect analysis we assume that this
register is still a valid fault target as it could possibly be implemented as reg-
ister that is initialised during the reset sequence.
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We use FINE PNs to perform our fault effect analysis (FEA) where we formally
analyse the effects of hardware faults on the software behaviour including
program states, I/O sequences and the control flow. Note that all registers
modelled in the PN are program-visible registers of the design. A FINE PN-
based FEA, therefore, either finds the effects of ISA-level hardware faults on
the ISA-level software behaviour or formally proves the absence of any effects.

FINE PN

Deactivate Faults Activate Faults

Fault-Free PN Faulty PN

Formal 
Property Checking

Equivalence 
Checking

Application-Redundant 
Faults

Unobservable
Faults

Uncontrollable 
Faults

Abstraction Level: 
ISA / Machine Level

Fault Effect Analysis

Formal 
Property Checking

Fault ↦ Effects

Figure 6.1: ISA fault effect analysis flow

We use FEA to achieve three different analysis goals:

1. Detect ISA-level register bits that cannot be controlled by the software.

2. Find ISA-level faults whose effects cannot be observed outside of the
processor.

3. Identify the set of ISA-level faults that can have a specific effect on the
software behaviour as specified by the safety engineer.

All three goals are shown on the bottom of Figure 6.1. The rest of Figure 6.1
shows the analysis flow of FEA for achieving these goals. Independent of the
analysis goal FEA always starts with the generation of a FINE PN (cf. Chap-
ter 5).
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In the rest of this section we describe the flow depicted in Figure 6.1 for each
analysis goal.

The preferred approach to analyse whether a fault has a certain effect (the
right-most goal in Figure 6.1) is to formulate the effect that should be analysed,
e.g, that even in the presence of faults store instructions never access certain
memory areas, as a property of the FINE PN and prove it using formal prop-
erty checking. The result of this analysis is a relation between the complete set
of enabled faults and the checked effect; information about individual fault
effects of the selected fault set is not preserved. The safety engineer can ad-
just the granularity of the analysis by performing multiple analysis runs and
enabling only certain faults in each run, e.g., faults affecting a specific program-
visible register. We follow this approach in Chapter 8 to identify all ISA-level
faults that can corrupt a specific set of variables in the PS.

When the goal is to to find unobservable faults we propose to perform equiv-
alence checking by comparing a fault-injected PN with its fault-free counter-
part as depicted in the centre of Figure 6.1. The advantage of this approach
is that it can benefit from sophisticated optimizations used in standard hard-
ware equivalence checking. For this purpose, we duplicate the generated FINE
PN, disable all faults in one of the instances (left-hand side in Figure 6.1) and
enable some or all faults in the other (left-hand side in Figure 6.1). The FINE
PN with all faults disabled, then, models the fault-free behaviour of the soft-
ware program while the other FINE PN models the behaviour for the enabled
fault set. Figure 6.2 shows the comparison between two example PNs by using
“miters”. A method for checking the equivalence of two structurally different
PNs was already proposed in [107].

Fault-Free PN Fault Injected PN

?

?

Primary Output

Primary Output

Figure 6.2: Comparing two PNs by using “miter”



6.1 U N C O N T R O L L A B I L I T Y & U N O B S E RVA B I L I T Y I N P N S 63

We define two programs to be equivalent iff they produce the same output
sequence for any applicable input sequence. Programs with enabled faults
represent new programs different from the original. The safety engineer can
adjust the granularity of the equivalence check by enabling only certain faults
for an individual analysis run.

There are two possible outcomes of the equivalence check. The first one is
that the PNs are equivalent, i.e., the corresponding programs produce the same
I/O sequences. In this case, the considered fault has no effect on the program
behaviour regardless of what values the inputs have. We denote such faults as
application-redundant, or, like in [9], application-dependent safe fault. In the second
case the PNs are not equivalent. This means that they differ in either data or
address of one or more I/O accesses, in the number of I/O accesses, their
order or any combination thereof. In such cases, a subsequent analysis may be
used to categorize the error. For example, a simple structural analysis of the
two PNs can yield the information on whether the considered fault can affect
only data or may also modify the control flow of the program. If the software
program modelled by the considered PN is merely a component of a larger
software system a subsequent analysis, as presented in Chapter 8, can yield
the information how fault effects can propagate further in the system.

Also formal property checking on the fault-free PN, as shown on the left-
hand side in Figure 6.1, can be useful to gain valuable testability information
about the system. In particular, it is often of relevance to determine what state
bits of the system assume a constant value under all possible program runs.
Similarly like in linting tools for hardware a set of assertions can be gener-
ated that checks for each architectural state variable in the PN whether or
not it is constant. In the context of testing, the constant variables represent
non-controllable fault locations. This can be useful in a subsequent analysis to
explore gate-level testability of faults, as described in Chapter 7.

6.1 Uncontrollability & Unobservability in PNs

The signals in a combinational netlist can be uncontrollable or unobservable.
Just like in the classical ATPG problem (cf. Section 2.8) the bits of a PS instance
in a PN can be uncontrollable, i.e., their values are the same for every value as-
signed to the PN’s primary inputs. If a bit is uncontrollable in all PS instances
of a PN, then it is also uncontrollable in the corresponding program-visible
registers of the processor. Likewise, faults injected into a PN can be found un-
observable, i.e., there exists no value assignment for the PN’s primary inputs
such that the fault affects the PN’s I/O behaviour. In Chapter 7 we exploit
the presence of unobservable faults and uncontrollable bits in the architectural
state to find more untestable faults at the gate level.

6.2 Experiments

A first set of experiments was conducted to evaluate the potential of FEA by
analysing to what extent fault injection affects the runtime of the PN genera-
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tion as well as the size of the resulting model. The experiments were conducted
with two different programs:

• LIN: a driver for a slave node of a Local Interconnect Bus, used as a gate-
way to external buses; obtained from Infineon, proprietary IP.

• TCAS: a software-implemented traffic alert and collision avoidance sys-
tem, developed by Siemens; obtained from the Software-artefact Infras-
tructure Repository [102].

For each considered software program two PNs were generated for the Su-
perH2 [86] ISA. The first PN, referred to as fault-free, was generated without
fault injection logic, while in the second run a B-FINE PN was generated for
a fault list consisting of stuck-at faults by using fault injection logic, as pre-
sented in Section 5.1. The list of faults that were provided for in the injection
logic comprised all stuck-at-0 and stuck-at-1 faults at the individual bits of the
program-visible data registers. In the SuperH2 ISA 552 such bits were identi-
fied. At the selected bits all single faults as well as all combinations of multiple
faults are implicitly represented by the fault injection mechanism. In the gen-
erated FINE PN, all faults of the different fault types can be analysed either
independently as single faults or in arbitrary combinations as multiple faults
without repeating the model generation.

We used gcc to compile the software programs. All experiments were per-
formed on an Intel i7-4790 CPU at 3.6 GHz with 16 GB RAM. The timing mea-
surements were performed using the profiling tool gprof 1. We also used timing
reports on individual proof instances of the applied commercial tool [79].

Program
CPU time (in s)

Fault-Free Faults Injected

TCAS 7.56 147.48
LIN 63.66 1,081.50

Table 6.1: CPU times for PN model generation (SuperH2)

Table 6.1 shows the time needed to generate the PNs. It can be observed that
inclusion of fault injection logic has a significant effect on the runtime of the
PN generation process. However, when taking into account that a large num-
ber of different single bit faults and an astronomical number of multiple faults
are modelled in the FINE PN the increase in runtime seems acceptable. Also
note that this model needs to be generated only once and can be re-used for
all subsequent fault injection experiments. Moreover, in practice, it will usually
not be desired to conduct a full formal analysis for all theoretically possible
faults, as they are considered in the above experiments. Instead, simulation-
based approaches may first be used to boil down the fault list to a smaller
set of faults for which a detailed formal analysis is of interest, as outlined in
Chapter 3.

1 GNU profiler
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Alternatives to ensure scalability are the decomposition of the fault list into
smaller parts and to generate a B-FINE PN individually for each part, the
generation of an A-FINE PN if program paths that are unreachable in the fault-
free case do not need to be considered, or the decomposition of the software
program into smaller components and to perform a FEA individually on each
component, as done in Section 8.

Program
# Instructions in PN

Fault-Free Faults Injected

TCAS 656 771
LIN 1,862 3,313

Table 6.2: Number of instructions in PN models (SuperH2)

Table 6.2 shows how many instructions each generated PN contains. It can
be observed that the fault-injected PN generated for the TCAS program is 115

instructions or 18% larger than the fault-free PN. Obviously, the faults that
have been injected, in most cases, do not have an effect on the control flow of
the program. For the LIN program the fault-injected PN is by 1451 instructions
(78%) larger than the original version. As a result of modelling possible fault
locations the program apparently was able to take program paths which were
previously unreachable, adding many new instructions to the PN.

In the next experiment, we ignored scenarios with multiple faults and re-
stricted our analysis to find out which of the injected single faults are applica-
tion-redundant, i.e., do not have any effect on the possible program behaviours.
The analysis was done by performing equivalence checks, as described in the
first section of this chapter, using the commercial tool OneSpin 360 DV [79].

Taking into account the entire I/O behaviour of the system allows us to
check application redundancy for all injected faults. CPU times for conduct-
ing the required equivalence checks between the fault-free PN and the FINE
PN were nearly the same for all faults in both designs. In order to solve the
SAT problem, the commercial tool [79] reported CPU time requirements of
1.73 seconds on average in case of TCAS and 5.13 seconds on average in case
of LIN, per fault. For comparison, we conducted the same analysis with a A-
FINE PN yielding in time requirements of 0.0 seconds on average for TCAS
and 2.9 seconds on average for LIN. Note that these experiments can be eas-
ily parallelized in a multi-processor computing environment. We were able to
prove application redundancy for 896 faults in the case of TCAS and 544 faults
in the case of LIN.

As outlined at the start of this chapter, we proceeded to identify constant val-
ues in the program-visible registers. These constants identify non-controllable
fault locations. Table 6.3 shows for each examined program the number of
testable faults, the number of untestable faults in total, of those the number of
non-controllable faults and the number of unobservable faults. Unobservable
faults are identified by proving the untestability of both the single stuck-at-1
and stuck-at-0 fault at the respective fault location.



66 I S A - L E V E L FAU LT E F F E C T A N A LY S I S

Program
ISA-level faults

testable untestable uncontrollable unobservable

TCAS 208 896 490 896
LIN 560 544 443 512

Table 6.3: FEA: untestable faults (SuperH2)

Interestingly, not a single fault in the LIN driver and in the TCAS software
could be identified that is untestable although it is separately controllable
(when not observable) or observable (when not controllable). This strongly
supports our argumentation in Chapter 7 that ISA-level observability and ISA-
level controllability can be considered separately in the proposed gate-level
testability analysis.

Obviously, a large amount of application-redundant faults could be identi-
fied in both case studies. This clearly shows that the effect of hardware faults
on the software behaviour indeed varies widely and supports the original mo-
tivation of this thesis, as described in Section 1.3.

Beyond application redundancy also other fault scenarios of interest to the
user can be explored. For example, for certain faults of the LIN bus we could
observe that the LIN node was virtually disconnected from the bus.

6.2.1 Fault Effect Analysis - RISC-V Results

In the previous part of Section 6.2, we compiled two software programs for
the SuperH2 ISA, created a B-FINE PN for each of them and applied FEA
on each FINE PN to identify untestable ISA-level faults. In this section we
present the results of a similar experimental setup where we compiled the
software program TCAS for the RISC-V ISA [109], created an A-FINE PN for
this program and applied FEA on the FINE PN. The other parameters of the
experimental setup, like compiler and computer on which the analysis was run,
are identical to the previous section. Like in Section 6.2, the fault list for the
injection logic comprised all stuck-at-0 and stuck-at-1 faults at the individual
bits of the program-visible data registers. For the RISC-V ISA we identified
1024 such bits.

Program CPU time (in s) # Instruction in PN

TCAS 2 237

Table 6.4: CPU times for PN generation and model size (RISC-V)

Table 6.4 shows the runtime for the model generation and the number of
instruction cells in the generated A-FINE PN. These numbers are the same as
for the fault-free PN, because in order to obtain an A-FINE PN a fault-free PN
is generated first and then faults are injected into the fault-free PN. The time
required to perform the fault injection, i.e., replacing the logic of the ICs, is
insignificant compared to the time for PN generation. Furthermore, the fault
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injection after PN generation does not increase the number of instructions in
the PN.

Like in Section 6.2, in the first analysis we identified program-visible regis-
ter values that cannot be controlled by TCAS in the fault-free case. The corre-
sponding non-controllable faults are presented in column 3 of Table 6.5. In the
second analysis, we allowed only single stuck-at-1 and single stuck-at-0 faults
to be active and analysed whether the can affect the program output. The num-
ber of faults that do not have an effect are shown in column 4 of Table 6.5. The
first two columns of this table show how many faults are testable and how
many are untestable when both uncontrollable and unobservable faults are
considered. Overall 65% of all ISA-level stuck-at faults are untestable. When
compared with the results obtained from SuperH2 and B-FINE PN it shows
that an A-FINE PN-based analysis on other ISAs can deliver similar results.

Program
ISA-level faults

testable untestable uncontrollable unobservable

TCAS 708 1,340 1,285 1,154

Table 6.5: FEA: untestable faults (RISC-V)

An interesting result of FEA for the TCAS program is that for register 16

only a stuck-at fault in the most significant bit (MSB) is observable. A further
analysis revealed that the value in the MSB decides which branch the program
takes and that a single stuck-at fault anywhere else in the register cannot affect
the branch decision. FEA also revealed that a stuck-at-0 in the least significant
bit (LSB) of either register one or register five is not observable. The reason
for this is that these registers are only used to compute jump target addresses
which always have a zero LSB, because the start address of every instruction
is memory-aligned, i.e., always a multiple of 2.

6.2.2 Dependency Analysis

We further demonstrate the use of the dependency analysis described in Sec-
tion 4.4 by means of the LIN driver, compiled for the SuperH2 ISA. For a brief
illustration of the dependency analysis (at the example of TCAS), please refer
to Section 4.4.

We selected a specific code segment in the LIN driver that we assumed to
be safety-critical depending on the LIN bus environment.

Table 6.6 shows the results. The first entry shows the number of nodes in
the generated COI graph, as described in Section 4.4, for the selected code
segment. By a structural trace in the COI graph we identified the state bits
that potentially have an impact on the safety-critical code segment (second
entry). Note that this number is significantly smaller than the total number of
state bits (552) in the program-visible registers of the hardware platform.

After identifying these “syntactically critical” registers fault injection was
performed at these registers in the same way as in the previous section and
the testability of the faults was determined with respect to observability in
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Nodes in cone of influence 259
Syntactically critical state bits 289
Semantically critical state bits 200
Total no. of safety-function-redundant state bits 352
Total no. program-visible state bits in SuperH2 552

Table 6.6: ISA-level dependency analysis – LIN driver

the safety-critical code segment. This was done by adapting the equivalence
check discussed in the beginning of this chapter to compare only the variables
of the selected code segment. It turned out that some faults are “redundant”
w.r.t. the critical functionality. Only if at least one of the two stuck-at faults at a
syntactically critical state bit is testable then the state bit is also “semantically
critical” (third entry).

In other words, if we assume that the critical code segment is the only safety
function, as by ISO 26262, of the system, it is certified that the system is safe
w.r.t. to all stuck-at faults (or bit-flips) occurring at register bits that are not
semantically critical. The total number of these “safety-function-redundant”
state bits, i.e., state bits which are not contained in the COI graph, or state bits
which are only syntactically but not semantically critical, is shown as fourth
entry in Table 6.6.

The fact that not all syntactically critical state bits are actually semantically
critical can be used to prune the COI graph by removing all untestable registers
and related dependencies. This can lead to a more compact model which is
beneficial, for example, in a manual analysis of the COI graph for diagnosis
purposes, or when taking design measures to improve the fault resilience of
the critical code segment.
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In this chapter we answer the question how the results obtained from FEA
at the ISA level can be used to evaluate faults in all other parts of the com-
puting hardware w.r.t. their testability under the given software program. The
enabling idea is to exploit that program-visible registers create a direct link to
the gate-level, i.e., all faults modelled in the PN registers are also modelled in
the corresponding gate-level registers.

FINE PN

Deactivate Faults Activate Faults

Fault-Free PN Faulty PN

Formal 
Property Checking

Equivalence 
Checking

Application-Redundant 
Faults

Unobservable
Faults

Description of 
Computing HW

Uncontrollable 
Faults

Application-Redundant 
Faults

Abstraction Level: 
ISA / Machine Level

Abstraction Level: 
Gate Level

Fault Effect Analysis

ATPG

Fault Desensitisation 
of Computing HW

Fault Testability Analysis

Figure 7.1: ISA/gate cross-level fault analysis flow
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Figure 7.1 illustrates the steps of our ISA/gate cross-level fault analysis. In
the first step, we model the effect of hardware faults on the software by inject-
ing stuck-at faults into the bit-level variables of the architectural state of the
PN, as explained in Chapter 5. In the second step we then analyse these faults
w.r.t. their testability (i.e., controllability and observability) under all possible
runs of the software. We described this in detail in Chapter 6.

In the third step, which is the topic of this chapter, we use the ISA-level testa-
bility information obtained from FEA to determine the testability of hardware
faults anywhere in the combinational logic under the given software program.

We take the testability of faults in the architectural state bits determined by
FEA, transfer this information into the hardware domain and perform a fault
testability analysis (FTEA) at gate-level. FTEA determines a set of faults in the
gate-level circuitry of the computing platform that are untestable because their
testability depends on the testability of architectural state bits.

This is, in fact, a sequential ATPG problem. Before showing how our ap-
proach works, we first discuss how it can, in principle, be formulated as a
classical gate-level sequential ATPG problem. The circuit under test consists of
(at least) the processor, the main memory, the CPU bus and the bus interfaces
of the I/O devices accessed by the program. The main memory holds instruc-
tions and data of the software. We define the primary inputs and the primary
outputs of the circuit to be the contents of memory locations and I/O device
registers at certain addresses. The evaluation of these inputs and outputs may
be restricted to certain time points of execution. The problem we are consider-
ing is to find, for each considered fault in the logic circuitry of the computing
platform, either a test sequence or the proof that no test sequence exists. A test
sequence is a sequence of program inputs such that a fault effect propagates
to one of the program outputs. If no test sequence exists, then the fault is
application-redundant, i.e., untestable in the system running the considered
software. In principle, a standard sequential ATPG tool could be applied to
this problem.

Classical ATPG algorithms employ unrolling of the circuitry similar to the
one shown in the middle part of Figure 4.1 to find test sequences reachable
from the initial state. However, as already elaborated in Section 4, such an
approach is clearly intractable for the problem instances considered in this
thesis. The unrolling would have to span a potentially very large number of
clock cycles representing the execution of many instructions of the program.
(Out of curiosity, we actually conducted this experiment using a commercial
ATPG tool. As expected, the tool was overwhelmed with the complexity of the
problem and aborted with time-out.)

In contrast, the approach presented in this thesis is, in fact, computationally
feasible for low-level software programs of realistic size. It exploits the higher
abstraction level of program netlists to determine the sequential testability in-
formation for faults in program-visible state variables and then transfers this
information to the gate level.

Figure 7.2 shows the general approach based on the canonical model of a se-
quential circuit as a finite state machine (FSM) with inputs, outputs and bit-level
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Figure 7.2: Hardware fault affecting software behaviour

state variables. A subset of the state variables belongs to the program-visible
registers that are modelled also in the PN as architectural state (AS). They
are marked orange in Figure 7.2. Other state variables, like internal buffers,
pipeline registers, reservation stations, etc., exist only in the RTL. They do not
have a direct mapping to state variables of the software model, however, they
may influence these variables indirectly because the software-visible state vari-
ables are in their transitive fanout. They are marked green in Figure 7.2. Let
us now assume that FEA found a stuck-at fault, FAS, in some AS register bit
to be application-redundant, i.e., it is not testable under all runs of the ap-
plication. This means that there exists no sequence of inputs to the program
such that the fault can be activated and observed at the same time. This has
consequences on other fault locations in the hardware. Consider a stuck-at
fault, FC, in the combinational logic of the design (cf. Figure 7.2). While this
fault may be testable in general, it may be redundant under the designated
software application if its testability depends on the testability of the fault FAS.

In the following we consider the combinational stuck-at test problem and
treat flip-flops as pseudo-inputs and pseudo-outputs of the combinational
logic. (Considering combinational rather than sequential ATPG greatly reduces
the complexity of the analysis. Nevertheless, as will be shown below, we “im-
port” the sequential testability information from FEA so that the computed
results are sequential redundancies.) An input pattern is a set of binary value
assignments to the inputs and pseudo-inputs. Let CC(x) be the characteristic
function of all input patterns x that activate the fault FC, and let OC(x) be the
characteristic function of the input patterns that make the fault FC observable
at any one of the primary outputs or pseudo-outputs. CC(x) represents the
controllability of the fault FC; it is equal to the logic function of the transitive
fanin of FC if the fault is stuck-at-0, and to its inverse if the fault is stuck-at-1.
The conjunction CC(x) ·OC(x) represents the characteristic function of all test
patterns of FC.

Likewise, CAS(x) and OAS(x) represent the controllability and observability
patterns of the fault FAS. Since we consider only the combinational circuitry
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and the fault FAS is located at a pseudo-output, the fault is observable at the
gate-level under all input patterns and it is OAS(x) = 1.

With respect to the sequential ATPG problem discussed above, the charac-
teristic functions CAS(x) and OAS(x) represent conservative over-approximations
of the respective sets of input patterns for controlling and observing the fault.
This is because not all combinations of value assignments are possible at the
pseudo-inputs to the combinational logic because, in the sequential circuit, the
flip-flops hold the state of the processing hardware during software execution
and the possible state vectors depend on the program state.

How can we now transfer testability information about architectural state
bits into the gate-level ATPG problem? In FEA we inject the stuck-at fault
FAS, as described in Section 5.1, into all instruction cells that process the cor-
responding architectural state bit. Suppose the analysis determines that FAS

has no effect on the behaviour of the software. This means that for all input
patterns x such that CAS(x) = 1 the fault FAS is not observable.

At the gate-level, this has consequences for the internal hardware fault FC. It
becomes untestable if it can only be observed through the location of the fault
FAS and if every test vector for FC activates the fault FAS, i.e., CC(x) ·OC(x)⇒
CAS(x). This is a testability constraint that can be added to the ATPG problem
for the faults in the combinational circuitry.

Combinational Logic

HW fault

0
1

Inputs and
pseudo‐inputs

Outputs and
pseudo‐outputs

0

Figure 7.3: Auxiliary construction for ATPG

Figure 7.3 shows an auxiliary construction that allows us to easily add this
constraint so that we can use a standard combinational ATPG tool for finding
untestable faults anywhere in the combinational logic. We add a logic block
computing the controllability condition, CAS(x), of the fault FAS. This can be
implemented by duplicating the transitive fanin logic of the fault site, and
adding an inverter in case the fault is stuck-at-1. This logic block drives a mul-
tiplexer that routes the original signal to the output if CAS(x) = 0, allowing any
error signal to propagate and become visible at the output. In case CAS(x) = 1,
however, error propagation is blocked and a constant value appears at the
output. This exactly models the testability constraint discussed above.

The auxiliary construction shown in Figure 7.3 may potentially lead to long
ATPG runtimes because of the large reconvergent fanout introduced. Fortu-
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nately, it can be simplified substantially. Note that a program netlist represents
the possible program runs in a HW/SW system and therefore is of special na-
ture. By construction of our model, always only one path in the generated exe-
cution graph can be activated at a time [90] by assertion of the corresponding
active signals (cf. Section 4.1). The resulting program netlist, although contain-
ing a possibly high degree of reconvergent fanout, will only propagate signals
along a single path that represents a program run. In a well-written software
running on a reasonable hardware architecture, it will occur only in rare cases
that a program input necessary to activate an architectural state bit destroys
its observability along the same path. The intuition behind this argument is
that if software computes a certain value it most likely also uses it (i.e., reads
it) some time later. Therefore, untestable stuck-faults at the application level,
as determined by FEA, are usually unobservable independently of controlla-
bility conditions or uncontrollable independently of observability conditions.
This was confirmed by our experimental results. Consequently, when further
exploring the testability of faults at the gate-level, it is sufficient in practice to
only consider the following two special cases of ISA-level testability results:

Special case (1): The stuck-at-0 (stuck-at-1) fault FAS is, by FEA, determined
to be uncontrollable because in the program the AS state bit holds a constant
logic value 0 (1) that is not modified by the software (cf. Chapter 6). Viewed
in the gate-level circuit of Figure 7.2, this means that the AS state bit holds a
constant value in all states visited by the FSM. This represents a constraint on
the reachable state set of the FSM (in fact, an invariant). In the ATPG problem,
such a constant value may be injected at the pseudo-input belonging to the AS
state bit as a constraint. This constraint may cause other faults in the logic to
become untestable. Note that nothing can be deduced for the pseudo-output
corresponding to FAS unless also unobservability of the fault has been proven
by FEA at the ISA level.

Special case (2): Both faults, the stuck-at-0 and the stuck-at-1 fault, at the
fault site FAS are not testable. This means that the fault site is not observable,
regardless of the logic value computed at that logic signal. Since controllability
has no influence on the observability of the fault site, the auxiliary construction
is simplified by setting the the multiplexer select input in Figure 7.3 to CAS(x)+
CAS(X) = 1. This is equivalent to completely removing the output marked
“FAS” from the combinational logic. As a result, all logic dominated by this
output and possibly some faults also in other parts of the combinational logic
become untestable.

Special case (2) can be made even more effective in identifying undetectable
hardware faults on the gate level by the following observation. If a fault FAS

has been found to be unobservable by FEA, it is possible that it is unobservable
independently of other unobservable faults. For example, some bit in a general-
purpose register may never be read by the software, hence it does not influence
the output of the program and it is unobservable, regardless of its contents. It
is very likely that another bit in the same register has the same property. As
is well known, however, faults may generally be dependent on each other, i.e.,
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while a single fault may be unobservable, multiple fault signals may not. This
must be taken into account by our algorithms.

The fault injection infrastructure presented in Section 5.1.1 allows us, in a
single SAT instance, to analyse all multiple faults that result from all possi-
ble combinations of a selected set of single faults. Single faults that turn out
to be untestable independently of each other can be used simultaneously for
untestability detection on the gate-level.

HW fault

Inputs and
pseudo‐inputs

Outputs and
pseudo‐outputs

multiple
unobservable 
pseudo‐outputs

Figure 7.4: Multiple unobservable faults

Figure 7.4 illustrates how faults that are known to be unobservable indepen-
dently of each other increase the likelihood that gate-level faults in the com-
binational logic become untestable. Given that FEA has proven that arbitrary
combinations of fault signals do not propagate to any output of the program
netlist, we may remove the corresponding pseudo-outputs as a group from the
gate-level ATPG problem. As a result, all stuck-at faults in the combinational
logic that propagate fault signals exclusively to any combination of these out-
puts will become redundant.

Algorithm 1 finds all combinations of faults that are unobservable and inde-
pendent of each other. It takes as input a set of faults, F, that have been proven
on the program netlist to be application-redundant by unobservability (i.e.,
special case (2) from above). Each fault location in F is both stuck-at-0 and
stuck-at-1 application-redundant. The algorithm computes by an exhaustive
depth-first search the maximum compatibility classes of unobservable fault lo-
cations. In other words, its output is the set of all largest sets of fault locations
whose pseudo-outputs can be removed from the ATPG test problem simulta-
neously. It makes use of the recursive function explore_fault_combination().
This function has as input a current combination of faults, C, and a set of re-
maining faults to be tried, D. The function tries out all combinations of the
set C with any one of the remaining faults (line 13). For each new combina-
tion FEA is invoked (line 16). If no test exists for the multiple-fault combina-
tion C′ then at least the unobservable faults in C′ are compatible with each
other. We can try to add more faults to the combination by recursively calling
explore_fault_combination() (line 18). If, however, the current combination
C cannot be successfully combined with any element d ∈ D then C needs to
be stored as a maximal compatible class.

In principle, the runtime of this algorithm could become prohibitively long
for large fault sets. In practice, however, it turns out that all or almost all unob-
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1 L := ∅ ; /* global variable */

2 /* input F: set of unobservable single AS fault locations */

3 /* output L: set of maximal compatible fault sets */

4 Function maximal_compatible_fault_classes(F) is
5 L := ∅;
6 explore_fault_combination(∅, F);
7 return L;
8 end

9 /* input C: current combination of faults */

10 /* input D: set of remaining faults to be tried */

11 Function explore_fault_combination(C, D) is
12 maximal := true;
13 foreach d ∈ D do
14 C′ := C ∪ {d};
15 D′ := D \ {d};
16 if multiple_faults_unobservable(C′) then
17 maximal := false;
18 explore_fault_combination(C′, D′);
19 end
20 end
21 if maximal then
22 L := L ∪ {C}; /* keep current combination C */

23 end
24 end

Algorithm 1: Algorithm for maximal compatible classes of unobservable faults

servabilities are independent of each other and can be put in a single compati-
bility class. This simplifies the algorithm to a (nearly) linear sweep through all
involved bits. Runtimes for this algorithm, in our experience, therefore were
negligible.

The results of the ISA-level testability analysis by FEA can now be used to
identify application-redundant stuck-at faults at the gate level. The two spe-
cial cases above are independent of each other and the resulting testability
constraints can be applied simultaneously in the gate-level analysis.

Therefore, we proceed as shown in function application_redundant_hw_-

faults() in Algorithm 2. We use an ATPG tool to find untestable hardware
faults in the combinational logic (line 10). We run ATPG once for each multi-
ple unobservability class C found in algorithm maximal_compatible_fault_-

classes() of Algorithm 1. In every ATPG run we also inject the set of constant
values determined by FEA (special case (1) above).

Before presenting experimental results, let us compare again the presented
approach with the classical sequential ATPG problem discussed in the begin-
ning of this chapter. The application redundancies computed by our approach
for the gate-level circuit are sequential redundancies caused by the constraint
of running a certain program. Due to the introduced simplifications it may be
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1 /* input K: set of constant register bits */

2 /* input L: set of maximal compatible fault sets */

3 /* output R: set of application-redundant hardware faults */

4 Function application_redundant_hw_faults(K, L) is
5 R := ∅;
6 foreach C ∈ L do
7 /* prepare ATPG run */

8 apply constant values K as pseudo-input constraints;
9 block error propagation through pseudo-outputs in C;
10 U := ATPG(); /* returns untestable hardware faults */

11 R := R ∪U;
12 end
13 return R;
14 end

Algorithm 2: Algorithm for computing application-redundant hardware faults

that our approach misses some application redundancies. For example, if a
fault is observable for some inputs and controllable for others but never ob-
servable and controllable at the same time, then such a fault will be missed
by our approach. However, as mentioned before, such faults are unlikely to
exist in software programs, and we did not encounter any such instance in our
experiments, as detailed in Section 7.1. It should be stressed that the proposed
approach is conservative, i.e., it never deems a fault application-redundant that
is not.

7.1 Experiments

We performed an experimental evaluation for a computing platform contain-
ing a 32-bit superscalar processor (Aquarius [2]). The platform is an open-
source implementation of SuperH2 [86], an instruction set architecture devel-
oped by Hitachi and currently produced by Renesas. The experiments were
conducted with two different programs:

• LIN: a driver for a slave node of a Local Interconnect Bus, used as a gate-
way to external buses; obtained from Infineon, proprietary IP.

• TCAS: a software-implemented traffic alert and collision avoidance sys-
tem, developed by Siemens; obtained from the Software-artefact Infras-
tructure Repository [102].

For the following experiments, the computing platform Aquarius was syn-
thesized to the gate level using Synopsys Design Compiler™ [100]. Synopsys
TetraMAX™ [101] was used for running combinational ATPG on the synthe-
sized design.

Table 7.1 shows some data for the gate-level computing platform used in
our experiments before any ISA-level testability constraints from FEA have
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primary inputs 51
primary outputs 73
state bits 1,217
target stuck-at faults 79,184
untestable stuck-at faults 3,367

Table 7.1: Gate-level analysis – Design statistics for Aquarius

been applied. This is done in our next experiment, following the procedures
of Section 6.2 to identify application-redundant stuck-at faults at the gate level.

Program
Testability of Gate-Level Faults

application-
uncontrollable

multi-signal single-signal
redundant unobservable unobservable

TCAS 30,949 26,439 24,858 12,234
LIN 28,529 25,728 22,689 8,584

Table 7.2: Gate-level fault analysis for Aquarius

Table 7.2 shows the results of our gate-level fault analysis. For both programs
a large number of application-redundant stuck-faults could be identified at the
gate level (first data column). In fact, more than a third of all modelled stuck-at
faults at the gate level turned out to be application-redundant for these pro-
grams. The second data column shows the number of untestable faults at the
gate level that result when only the uncontrollabilities identified by FEA of Ta-
ble 6.3 are applied, i.e., when removing line 9 in the algorithm of Algorithm 2.
The third column shows the results when only unobservability is taken into
account, i.e., when line 8 in Algorithm 2 is removed. Finally, the last column
shows the results when the experiment of the third column is repeated but
only Algorithm 1 is omitted, i.e., only single-signal unobservabilities are used
for the gate-level analysis. A comparison between column 3 and 4 shows that
examining and grouping multiple unobservabilities indeed increases the num-
ber of application redundancies that can be identified at the gate level.

CPU times for the different runs of ATPG on the gate-level implementa-
tion of Aquarius varied between 0.81 and 1.41 seconds for all experiments
described in the above tables.

7.1.1 Fault Testability Analysis - RISC-V Results

We performed the same experimental evaluation as in Section 7.1 for the
FWRISC-S [11] computing platform containing a 32-bit non-pipelined proces-
sor. The platform implements the RV32IMC variant of the RISC-V instruction
set architecture which includes instructions for multiplication and support for
a compressed instruction format. The RISC-V ISA was developed by the Uni-
versity of California.
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We started with an ATPG run on the gate-level FWRISC-S computing plat-
form before any ISA-level testability constraints from FEA were applied. Ta-
ble 7.3 shows some data obtained from this ATPG run.

primary inputs 68
primary outputs 103
state bits 2,596
target stuck-at faults 91,146
untestable stuck-at faults 14,552

Table 7.3: Gate-level analysis – Design statistics for FWRISC-S

We then applied constraints to the gate-level processor obtained from FEA
on the ISA level and performed FTEA. For this purpose we used FEA to find
the maximum compatibility class of multiple unobservable fault locations as
discussed earlier in this chapter. Table 7.4 shows the results of this analysis.
Like in FTEA for Aquarius (cf. Section 7.1) our analysis identified a third of
all gate-level stuck-faults as application-redundant (first column). The second
column shows the number of uncontrollable gate-level faults when only un-
controllable faults found at the ISA level are applied. The last column shows
the number of unobservable gate-level faults when only observability, i.e., the
computed compatibility class, is taken into account.

Program
Testability of Gate-Level Faults

application-
uncontrollable

multi-signal
redundant unobservable

TCAS 33,308 26,288 24,314

Table 7.4: Gate-level fault analysis for FWRISC-S

For the experiments conducted in this section, an individual ATPG run on
the gate-level implementation of FWRISC-S took between 1.52 and 1.68 sec-
onds. Overall, we conducted four ATPG runs on the FWRISC-S computing
platform.



8I S A / C C R O S S - L E V E L FAU LT A N A LY S I S

In this chapter we answer the question how ISA-level effects of hardware faults
can be mapped to the C-level and how the propagation of the abstracted fault
effects can be analysed at C level for a complete software system. This is partic-
ularly useful for software systems that are too large to be analysed by a single
ISA-level FEA. The basic idea of this cross-level analysis is that the software
interface specified by the ISA description serves as a foundation for higher
software abstraction levels.

Software System

Fault Propagation Analysis

SW Object ↦ SW LocationsHW Fault ↦ SW Locations

Unique Corruption Sets 
(XML-File)

Fault Effect Analysis

CompilationMachine Code

SW Decomposition

Abstraction Level: 
ISA / Machine Level

Abstraction Level: 
C Level

FINE PN generation

Translation from 
Machine Code to C Code

HW Fault ↦ State Variables Derive Sets of Corrupted 
SW Objects

HW Fault ↦ SW Objects

Figure 8.1: ISA/C cross-level fault analysis flow

The flow chart in Figure 8.1 shows the steps of our method that combines
the fault effect analysis on ISA level with a fault propagation analysis (FPA) on
C level to formally analyse the cross-layer effects of faults. FEA employs formal
property checking and equivalence checking while FPA is based on Abstract
Interpretation. The only input of the combined approach is the source code
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of a software program on which it performs two fault analyses at different
abstraction levels.

The first one is the FEA (cf. Chapter 6), operating at the ISA and machine
level. In order to obtain accurate results the software program is compiled
for the target system. This ensures that the machine code analysed by FEA is
the same that runs on the embedded system. We achieve scalability to large
software programs by using two orthogonal methods. The first method decom-
poses the software and generates a FINE PN for each software component. The
second method consists of a set of techniques for accelerating PN generation.
Section 4.3 describes how this helps to scale the formal software model used
by FEA to complex programs composed from several modules. Our approach
is largely automated. Only the software decomposition and the corresponding
configuration of the PN generation are manual work. PN generation as well as
FEA are fully automated.

FEA computes, for every hardware fault in a program-visible register, the set
of potentially affected state variables at the interface of a software component.
These state variables are associated with corresponding software objects at the
C level using information from software compilation. The output generated by
FEA is a mapping between hardware faults in program-visible registers and
all potentially affected high-level software objects, thereby creating a formally
sound abstract representation of all faults at the C level.

Based on this mapping we compute sets of corrupted C-level software ob-
jects which are passed to the second analysis, FPA. FPA operates on source
code written at C level. It determines whether the high-level software image
of the hardware fault can affect user-defined locations in the software, such
as certain safety functions that were defined by a safety engineer. In the final
step, the outputs of both methods are combined, so that all possible locations
on C level to which a fault at the machine level can propagate are known.

8.1 Software Decomposition

For scalability of our approach, we split the software program into components
and perform a separate run of FEA for each component. It is not possible to
combine the results of the individual FEAs by a simple aggregation to obtain a
formal description of the global fault effects. This is because faults can propa-
gate and spread out through multiple components where they can affect more
or other parts of the software.

We address this problem by using the local FEA results as inputs to the
proposed FPA conducted globally at a higher abstraction level. The interface
between the software components is, therefore, also the interface between the
two abstraction levels, specifically the machine level for FEA and the C level
for FPA. The challenge is to define this interface in such a way that fault effects
identified at the low abstraction level can be modelled at the high abstraction
level without any loss of formal precision.

The given software program, systemSW, consists of a set of machine in-
structions, U = {ι1, ι2, . . .} and of program state variables. A machine instruc-
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tion ιk is a pair (ak, ck) of a program memory address ak and an instruction
word ck. The software is decomposed into m components componentSWi with
U = ∪m

i=1Ui, where Ui is the set of machine instructions of component i.
Each software component communicates with other components and, across

individual executions, also with itself, through a set of n state variables, V =

{v1, . . . , vn}. A state variable, vj, is a processor register or a memory location,
including ones mapped to peripheral device registers. The content (valuation)
of a state variable, s(vj), contributes to the program state. The program state
space is given by the product of the individual variable state spaces. We define
the program state sk as the combined contents of all program state variables
immediately before instruction ιkis executed: sk = (s(v1), s(v2), . . . , s(vn)).

Definition 3. The interface of a componentSWi is defined by partitioning the state
variables Vi into the following classes, Vi = πi ∪ κi ∪ ϕi ∪ γi ∪ ϑi:

1. Persistent variables πi: accessed only by componentSWi, e.g., static module
variables;

2. Communication variables κi: used by componentSWi to communicate with
componentSWl , where i 6= l, e.g., shared-memory variables

3. Foreign variables ϕi: only read by componentSWl , with i 6= l, e.g., static
variables of other components

4. Volatile variables γi: e.g., device registers

5. HW-protected variables µi

6. Other variables ϑi: e.g., temporary variables, unused or inaccessible memory
locations

In normal, fault-free operation, only a subset of the program state variables
are visible to the software. Faults may, however, affect addressing and thereby
change the set of state variables accessed by the software.

Note that the classification of state variables µi as hardware-protected is
possible for hardware platforms providing memory protection units. If a fault
modifies a write operation such that the access becomes illegal then the fault
can be considered as detected and can be ignored in FEA.

The partitioning according to Definition 3 is a straightforward process and
is similar to already existing practices of structuring the memory space in
safety-critical systems [50].

The disadvantage of decomposing the software and analysing the compo-
nents individually is that we lose information about the program context when
a component begins execution. However, we can compute an over-approxima-
tion of the program starting state of the component using Abstract Interpre-
tation [32]. We use the commercial tool ValueAnalyzer [1] from AbsInt for this
purpose.
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Definition 4. The over-approximation of the program starting state of componentSWi
is called the abstract starting state ψi,0. The set of program states which compo-
nentSWi can end in after starting in any of the states in ψi,0 is called its abstract
ending state ψi,end.

As will be described below, the abstract states ψi,0 and ψi,end (cf. Definition 4)
are used in FEA to take into account the connection of componentSWi with
other components.

FPA requires that the affected parts of the interface at the machine level can
be translated to the corresponding parts at the C level. Note that some register
and memory locations, e.g., temporary variables allocated on the stack, do not
have a representation at higher abstraction levels. This is especially true after
compiler optimizations have been applied. In practical systems, when using
a “natural” decomposition, e.g., by function calls, the variables of classes π, κ

and γ can be mapped to C-level objects. Only some parts of ϕ and ϑ, typically
located on the stack or in registers, cannot be mapped. In the few cases where
a fault redirects a write operation to such an variable in memory, an additional
FEA analysis is run targeting this very variable.

FEA also requires that the abstract time point when the communication hap-
pens is uniquely identified. It is given by some machine instruction (a, c) that
writes to an element of κi. The corresponding program locations at the C level
can be determined using DWARF debug information.

8.2 Fault Effect Analysis for Software Components

For each software component FEA is performed on the corresponding FINE
PN. As discussed in Section 6, we build a “miter” structure similar to hardware
equivalence checking, by combining a fault-free PN with a fault-injected PN.
We use a SAT solver to find a program execution in which the fault-injected
PN produces a behaviour in the considered program state variable that differs
from the fault-free PN for the same inputs.

FEA computes which program state variables written by a software compo-
nent can be affected by a given fault. It creates a 1-to-n mapping between each
fault and a set of potentially affected variables of the component’s interface, as
defined in Section 8.1. A fault effect analysis for a particular fault or software
component does not depend on other fault effect analyses, which allows for
full parallelization of the computation. Runtime can be traded for fault site
resolution by adapting the granularity level of the analysis. For example, if we
do not care about the exact bit position of an SEU fault in a program-visible
register, we may opt to analyse all single bit flips in the same register in a
single run of FEA.

8.2.1 Fault Injection

As presented in Chapter 5, we can insert fault logic into the PN after (type
A) or before (type B) the PN generation. Generating a B-FINE PN leads to
a model where all fault effects are formally modelled in the generated PN.
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However, since this incurs high complexity and runtime in the PN generation
process and the subsequent analysis, especially if indirect branches (using an
address register) and indirectly addressed memory locations are involved, we
employ A-FINE PNs in our experimental evaluation. The inaccuracies, i.e., not
modelled fault induced program paths and memory accesses can be compen-
sated as discussed in the following.

Not all variables in a component’s interface are relevant for the fault analy-
sis — only those that affect other components. Also variables affecting future
invocations of the same component are relevant as they could be affected by
latent faults (cf. Section 2.3). Modifications of temporary and other variables
that go out of scope when a software component terminates can be ignored.

Definition 5. The fault-relevant variables of componentSWi are the persistent, com-
munication and foreign variables, Ṽi = πi ∪ κi ∪ ϕi. The fault-relevant program state
s̃i,k = (s(ṽ1), s(ṽ2), . . . , s(ṽr)) is the sub-state given by the combined valuations of
the fault-relevant variables, ṽi ∈ Ṽi, before executing the instruction ιk. By s̃i,end we
denote the fault-relevant program state after termination of componentSWi.

Definition 6. For a given componentSWi, the transition function, ∆̃i(s0), computes
the fault-relevant program ending state, s̃i,end, as a function of the program starting
state s0.

Definition 6 defines the transition function of the program netlist describing
componentSWi. (In our compositional approach it is constrained by ψi,0 de-
scribing the abstract starting state, as derived by Abstract Interpretation using
ValueAnalyzer [1].)

If a B-FINE PN was generated, we could determine all relevant fault effects
simply by checking whether there exists a starting state for which the execu-
tion of the software component computes different ending states in the faulty
and the fault-free case, i.e., ∃s0 ∈ ψi,0 : ∆̃i(s0) 6= ∆̃′i(s0). In practice, how-
ever, this would mean that all variables at all possibly modified addresses in
all modified control flows have to be checked. This is feasible only for small
problem instances. For the simplified model, i.e., the A-FINE PN, obtained by
injecting faults only after fully generating the fault-free PN for the component,
we have to take a modified approach.

We separate the possible fault effects into two separate categories. The first
category is given by fault effects that propagate to a component’s interface
(cf. Definition 3) along execution paths explicitly modelled in the A-FINE PN.
The second category consists of fault effects that lead to severe control flow
alterations not modelled by the A-FINE PN. They are considered separately,
as described in Section 8.2.2.

For the first category of fault effects, it is a key observation that a fault can
affect the state variables of a component’s interface only in one of three ways:

1. It can change the data when writing to a state variable of the interface.

2. It can change the address of a write operation to a program state variable.
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3. It can activate or deactivate a write operation to an interface variable
by changing the control flow, e.g., by modifying execution predicates or
branch conditions.

A software component modelled by a PN produces a fixed number of write
transactions, modelled by a vector of “write ports” in the PN model. For a
given starting state s0, a certain set of writes are active while the others are
inactive, depending on the execution path taken as a result of s0.

Definition 7. A write transaction τ(s0) is a triple τ(s0) = (α, β, η) consisting of
an active flag α(s0), a target address β(s0) and write data η(s0). All three elements
are functions of the starting state s0 of the componentSWi. A fault-relevant write
transaction τ̃ is one where the target address belongs to a fault-relevant state variable.

The active flag of a transaction τ corresponds directly to the active-signal
of store instructions in the PN. (As illustrated in Figure 4.1, the active-signal
indicates for every instruction whether or not it lies on the execution path
triggered by s0.) The target address, β(s0), points to a program state variable.
A fault may modify the target address, and, thus, the variable written to in the
transaction. The PN model contains address resolution logic that computes
what fault-relevant or fault-irrelevant program state variables are affected by
a write transaction. Finally, a fault may modify the data, η(s0) for a given
starting state, s0.

Ti is the vector of all write transactions of componentSWi for a given s0 ∈ ψi,0.
Note that Ti is a vector, not a set, because there may be several accesses to the
same variable and their order is relevant. T̃i is the sub-vector of all fault-relevant
write transactions. A fault has an effect on the fault-relevant state variables of
the program ending state si,end, if there exists a starting state s0 for which the
fault-free execution and the fault-affected execution produce different write
transaction(s):

∃s0 ∈ ψi,0 : T̃i 6= T̃′i

In our tool, this check is implemented as an assertion checked on the com-
putational model which consists of the PN modelling the software component
and the set of constraints, ψi,0, modelling the abstract starting state of program
execution. The check is much simpler than the one for the B-FINE PN because
the simplified model excludes severe control flow alterations leading to arbi-
trary modifications of program state. Instead, the control flow is confined to
the software segments existing in the original software. While wrong branch
decisions are modelled, wrong branch target addresses are not.

8.2.2 Modelling Severe Control Flow Errors

Faults may, nevertheless, affect the flow of control in such a way that it com-
pletely deviates from the execution paths of the original program. This can
happen whenever the fault effect modifies the contents of a register that is
used in a branch target address computation. A branch that depends on the
contents of a register is called an indirect branch. Indirect branches are often
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used in jump or call tables. Faults affecting indirect branches lead to control
flow errors (CFEs) that are likely to result in a program crash.

In the PN, control flow is modelled using the active-signal that indicates, for
every instruction, whether it is on the execution path under the current assign-
ment of s0 ∈ ψi,0. Instruction cells modelling branches have two or more suc-
cessors, each continuing a different execution path, depending on the branch
condition. Whenever the IC modelling the branch instruction is active, at most
one of its successors has an asserted active-signal. For indirect branches, the
PN compares the computed branch address against a list of possible successor
addresses and asserts the active-signal of the one successor that matches. If
none of the addresses match, the active-signal is lost.

We detect severe control flow errors that alter the execution such that it is no
longer modelled by the paths in the PN by detecting the loss of the active-signal.
The branch instruction where this happens is identified and reported to the
high-level FPA at C level. Additionally, we conservatively mark all program
variables of all componentSWi as corrupted.

Note that control flow errors in indirect branches that do not lead to a loss of
the active-signal are still modelled by the approach described in the previous
sections.

8.2.3 Composing the Fault Dictionary

FEA determines, for a given componentSWi and a given fault λ of the fault list:

• whether the fault leads to a severe control flow error corrupting all pro-
gram state variables, or, if not,

• the set of fault-relevant interface variables affected by the fault.

The result of FEA is a database mapping faults to program state variables,
back-annotated to the C statements writing the variables, by specifying source
file and line number.

Fault propagation analysis at the C level, to be described in the follow-
ing section, takes this database as input. For a given fault, it iterates over
all componentSWi to determine the fault effects. FPA takes as starting point
the set of program variables in a componentSWi affected by a selected fault. It
enumerates all situations in which the affected C statements are executed, i.e.,
if the componentSWi is called several times, then an analysis is performed for
every call.

The result of FPA is a set of fault effects for a given fault related to high-
level software objects, such as selected variables or safety functions, as can be
specified by a safety engineer.

For a given fault, the results of all FPA runs are aggregated and inserted into
the fault dictionary to document the high-level consequences of this fault.

In the following section, we describe the technology underlying a single run
of FPA.
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8.3 Fault Propagation Analysis

The fault propagation analysis was developed by AbsInt [1] during a joint re-
search project. It leverages the taint analysis framework available in the static
analyser Astrée [44, 58] whose main purpose is to perform runtime error analy-
sis in C/C++ programs. Data corruptions are translated into taint hues, whose
propagation is analysed as a part of Astrée’s data and control flow analysis.
With its combined runtime error and taint analysis, Astrée can track the flow
of data corruptions through the program to determine all affected control de-
cisions and induced runtime errors. Since Astrée is a sound analyser based
on Abstract Interpretation, the absence of alarms about runtime errors or cor-
rupted control decision constitutes a proof of absence of such defects. In this
section we will give a brief overview of Abstract Interpretation, the design
of Astrée and the foundations of taint analysis, and then focus on the taint
analysis-based FPA.

8.3.1 Astrée

Astrée’s main purpose is to report program defects caused by unspecified
and undefined behaviours in C/C++ programs. The reported code defects
include integer/floating-point division by zero, out-of-bounds array index-
ing, erroneous pointer manipulation and dereferencing (buffer overflows, null
pointer dereferencing, dangling pointers, etc.), data races, lock/unlock prob-
lems, deadlocks, etc.

Astrée uses abstractions to efficiently represent and manipulate over-approx-
imations of program states. One simple example of abstraction used perva-
sively in Astrée is to consider only the bounds of a numeric variable, forget-
ting the exact set of possible values within these bounds. However, more com-
plex abstractions can also be necessary, such as tracking linear relationships
between numeric variables. As no single abstraction is enough to obtain suffi-
ciently precise results, Astrée is actually built by combining a large set of effi-
cient abstractions. Some of them, such as abstractions of digital filters or finite
state machines, have been developed specifically to analyse control-command
software as these constitute an important share of safety-critical embedded
software. In addition to numeric properties, Astrée contains abstractions to
reason about pointers, pointer arithmetic, structures and arrays (in a field-
sensitive or field-insensitive way). Finally, to ensure precision, Astrée keeps
a precise representation of the control flow, by performing a fully context-
sensitive, flow-sensitive (and even partially path-sensitive) inter-procedural
analysis. Combined, the available abstract domains enable a highly precise
analysis with low false alarm rates.

To deal with concurrency defects, Astrée implements a sound low-level con-
current semantics [75] which provides a scalable sound abstraction covering
all possible thread interleavings. The interleaving semantics enables Astrée, in
addition to the classes of runtime errors found in sequential programs, to re-
port data races, and lock/unlock problems, i.e., inconsistent synchronization.
The set of shared variables does not need to be specified by the user: Astrée
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assumes that every global variable can be shared, and discovers which ones
are effectively shared, and on which ones there is a data race. After a data race,
the analysis continues by considering the values stemming from all interleav-
ings. Since Astrée is aware of all locks held for every program point in each
concurrent thread, Astrée can also report all potential deadlocks.

Practical experience on avionics and automotive industry applications are
given in [55, 76]. They show that industry-sized programs of millions of lines
of code can be analysed in acceptable time with high precision for runtime
errors and data races.

8.3.2 Taint Analysis

Taint analysis is widely used in security analysis for the verification of secure
information flows. It aims at tracking the origin of values computed by a pro-
gram, by assigning imaginary taint hues to variables at the program locations
of interest, and propagating them during analysis. Astrée has been equipped
with a generic abstract domain for taint analysis. It allows Astrée to perform
normal code analysis, with its usual process-interleaving, interprocedural and
memory layout precision, while carrying and computing taint information at
the byte level. Any number of taint hues can be tracked by Astrée, and their
combinations will be soundly abstracted.

Taint propagation can be formalized using a non-standard semantics of pro-
grams, where an imaginary taint is associated to some input values. Consid-
ering a standard semantics using a successor relation between program states,
and considering that, at C-level, a program state is a map from memory lo-
cations (variables, program counter, etc.) to values in V, the tainted semantics
relates tainted states, which are maps from the same memory locations to
V× {taint, notaint}, and such that if we project on V we get the same relation
as with the standard semantics.

To define what happens to the taint part of the tainted value, one must define
a taint policy. The taint policy specifies:

• Taint sources which are a subset of input values or variables such that in
any state, the values associated with that input values or variables are
always tainted.

• Taint propagation describes how the tainting gets propagated. Typical
propagation is through assignment, but more complex propagation can
take control flow into account, and may not propagate the taint through
all arithmetic or pointer operations.

• Taint cleaning is an alternative to taint propagation, describing all the
operations that do not propagate the taint. In this case, all assignments
not containing the taint cleaning will propagate the taint.

• Taint sinks is an optional set of memory locations. This has no semantical
effect, except to specify conditions when an alarm should be emitted
when verifying a program (an alarm must be emitted if a taint sink may
become tainted for a given execution of the program).
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Tainted input is specified through directives (__ASTREE_taint((var;hues)))
attached to program locations. Such directives can precisely describe which
variables, and which part of those variables, are to be tainted, with the given
taint hues, each time this program location is reached.

Taint sink directives (__ASTREE_taint_sink((var))) may be used to declare
that some parts of some variables must be considered as taint sinks for a given
set of taint hues. When a tainted value is assigned to a taint sink, then Astrée
will emit a dedicated alarm, and remove the sinked hues, so that only the first
occurrence has to be examined to fix potential issues with the security data
flow.

The main intended use of taint analysis in Astrée is to expose potential vul-
nerabilities with respect to security policies or resilience mechanisms. Thanks
to the intrinsic soundness of the approach, no tainting can be forgotten, and
that without any bound on the number of iterations of loops, size of data or
length of the call stack. This makes it well suited as a basis for sound FPA.

8.3.3 Taint-based Fault Propagation Analysis

The FPA of Figure 8.1 is implemented by making extensions to the taint analy-
sis in Astrée. As described above, taint sources and taint sinks are defined by
Astrée directives that can be conceptually applied to arbitrary program loca-
tions. Those directives can be directly inserted in the code, but they can also
be specified externally, without source code changes, by a formal language
specifying locations of the abstract syntax tree [60].

In order to model FPA, each data corruption is translated into an Astrée
taint directive that taints the affected set of variables determined by FEA, as
described in Section 8.2, with a hue that identifies this particular corruption.
The destructive effect on the values of the affected variables is expressed by an
additional Astrée directive ((__ASTREE_modify((var;full_range)))) that mod-
els an arbitrary change of its values. In the sequel of the program, such value
changes might cause runtime errors, or changes in its data and control flow.

With its combined runtime error and taint analysis, Astrée can track the
flow of data corruptions through the program. Whenever a control decision
is reached by a tainted variable, a taint alarm is raised. In order to track back
runtime errors or data and control flow changes to faults, the results of the
Astrée analysis can be compared to the results of the analysis before fault
modelling.

Since Astrée is a sound analyser that operates on over-approximations, the
absence of an Astrée alarm for a control statement is proof that the statement
is not affected by data corruptions. In the same way, statements that are not re-
ported to be affected by runtime errors, are guaranteed to be free from runtime
errors.

The following program fragment shows the modelling of a data corruption
on the variable j in line 1. The first directive expresses the arbitrary destruction
of values, the second taints the affected variable with hue 1. The corruption has
two critical effects on the code that are reported by Astrée:
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• an array index out-of-bounds error in arr[j]

• an influence on the execution paths controlled by the statement
if (x > b)

1 j = a;

2 __ASTREE_modify((j));

3 __ASTREE_taint((j; 1));

4 x = arr[j]; /* ALARM: array index out=of=bounds */
5 if (x > b) { /* ALARM: hue 1 reaches taint sink */

Figure 8.2: Astrée Directives in C Code

To automate this analysis, Astrée provides an XML interface for specifying
byte-level memory locations that are corrupted at specific program locations.
This set of corruptions is automatically transformed into Astrée directives that
are conceptually at the affected program locations, as displayed above. The
listing below shows a simplified example, expressing corruption of the first
two bytes of the variable j.

1 <memory_location mlid="0" ...>(char*)&j+0</memory_location>

2 <memory_location mlid="0" ...>(char*)&j+1</memory_location>

3 <program_location ... line="1" column="1"/>
4 <data_corruption mlid="0" plid="0">1</data_corruption>

Figure 8.3: FEA-to-FPA Interface

8.4 Experimental results

For our experimental evaluation we implemented a demonstrator system con-
sisting of several software modules representative in size and complexity of
typical embedded-system software. The software modules interact with each
other through shared memory.

The demonstrator includes four software modules:

• LIN: a driver for a slave node of a Local Interconnect Bus, used as a gate-
way to external buses; obtained from Infineon, proprietary IP.

• FuelSys: a fuel rate controller for a combustion engine, taken from the
fuel control system example of MATLAB [73].

• TCAS: a software-implemented traffic alert and collision avoidance sys-
tem, Developed by Siemens; obtained from the Software-artefact Infras-
tructure Repository [102].

• RSA: An encryption algorithm based on a loop implementation, obtained
from [4].
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• Scheduler: controls the execution of the above modules, own develop-
ment.

Since firmware examples, such as the above, are hard to find as open-source,
and since the system composed by these modules is only of medium com-
plexity, we decided to demonstrate the scalability of our approach by creating
a larger system using numerous instances of these modules. Although this
system may not be technically meaningful, it creates a similar computational
complexity for our analysis as would be the case for a system with the same
number of different modules of comparable size. Table 8.1 shows the lines
of C code for each module of the system. The table also shows the number
of instances for each module that we integrated into the system. The com-
plete software system subject to our compositional FPA comprises a total of
137,900 LoC. It has been compiled with gcc for a RISC-V architecture.

Module
Lines of C-code

# instances
PN generation PN size

(per instance) (time in s) (# ICs)

Scheduler 2,829 1 590 9,246
LIN 781 1 215 3,927
TCAS 125 5 2 237
FuelSys 8,869 15 2,838 9,041
RSA 63 10 5 784

System 137,900 - 43,435 -

Table 8.1: Software System

The scheduler orchestrates the executions of the different modules by calling
them in a pre-defined order: At first, the LIN slave node receives a set of
data through the bus LIN communication variables (modelled by κLIN), which
are then distributed to other software modules by the scheduler using the
shared memory variables of the receiving modules (κFuelSys, κTCAS, κRSA). After
the execution of any of the software modules its computation result is moved
to the input variables of the LIN node, κLIN. Finally, the LIN node sends this
data out on the bus.

In this experimental setup we selected SEUs appearing program-visible reg-
ister bits as our fault model in order to provide an application of FEA for soft
errors.

8.4.1 Fault Effect Analysis (FEA)

The experiments for FEA were run on a computer with two Intel®Xeon®Gold
6234 CPUs and 252 GB of main memory. As back-end property checker for FEA
we used OneSpin 360 DV [79]. With this tool a property checking run consists
of several phases. Parsing, elaboration and compilation cannot be parallelized
but run as single threads. The actual property check on the computational
model can be parallelized and was configured to use 30 threads.



8.4 E X P E R I M E N TA L R E S U LT S 91

We decompose the system based on the “natural” boundaries of its modules,
i.e., we consider one componentSWi for each module instance. A PN modelling
the fault-free behaviour is then generated for each component. The last two
columns in Table 8.1 show the runtime of PN generation and the size of the
generated PNs. The total PN generation time aggregated over all modules and
their different instances amounts to about 12 hours.

For each module, we classify the interface variables according to Definition 3.
We use debug information to identify the binary versions of the C-level vari-
ables and analyse the PN to determine stack and heap areas. With this in-
formation we obtain and partition a total of 940 state variables into interface
classes for each componentSWi. This was done manually and took less than
30 minutes for each component. We also used the PN to identify all abstract
time points where a componentSWi performs a write operation, i.e., a write
transaction (cf. Definition 7), to the program state.

Module
# of Variables # write transactions

πi κi ϕi γi ϑi µi to memory

Scheduler 15 93 1 2 1 828 1,079
LIN 14 2 2 2 1 919 534
TCAS 13 2 2 2 1 920 24
FuelSys 51 2 2 2 1 882 359
RSA 0 6 1 2 1 930 70

Table 8.2: Interface Classes & Write Transaction

Table 8.2 presents for each module the number of interface variables and
the number of potential write transactions. Note that the complexity of FEA is
sensitive to the number of interface variables and the number of write trans-
actions because a fault may possibly affect every variable in combination with
every write transaction. Table 8.2 demonstrates the efficacy of the composi-
tional approach since the number of interface variables and transactions to be
considered is drastically smaller for a single component than for the system as
a whole.

For the subsequent Fault Effect Analysis, we generate a COI-reduced A-
FINE PN for every instruction performing a write transaction. In the context
of our COI computation (cf. Section 4.4) this instruction is the head at which the
COI reduction starts. FEA considers all single SEUs over all program-visible
registers. Note that fault injection in our formal approach (cf. Chapter 5) al-
lows us to consider several faults implicitly in a single run of FEA, leaving it
to the SAT solver to enumerate all single fault injections. This increases the
performance of our analysis at the price of losing the information which indi-
vidual fault of the selected fault set is responsible for the fault effect possibly
observed by FEA. In our experiments, we configured our tool to consider all
single-bit SEUs of a selected register over all abstract time points in a single
run. This is motivated by the assumption that hardening only a single bit of a
register and only for specific time points is not practical.
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The runtime of FEA for the componentSW LIN is delineated in Figure 8.4.
The blue curve plots the runtime for each COI (left y-axis), where the COIs
are sorted by increasing PN size (# of instruction cells) on the x-axis. The red
curve shows the ratio of runtime and PN size.

Figure 8.4: LIN SEU Fault Analysis Runtime

We note that the runtime of FEA increases nearly linearly with the number
of instruction cells in the PN. The long runtime per node for the first COIs is
due to preprocessing overhead when a small PN has to be analysed.

Module Injected SEUs
Runtime % of propagating SEUs w.r.t.

(in h) Variables Ṽ Control Flow

Scheduler 9,467,904 460.00 75 69
LIN 4,021,248 7.00 38 34
TCAS 242,688 0.02 28 6
FuelSys 9,257,984 55.00 69 69
RSA 802,816 0.50 69 63

System 161,600,512 1,297.10 75 75

Table 8.3: FEA Results

Table 8.3 shows the results of FEA applied to the complete SEU fault list for
the different componentSWi. The second column shows the number of faults
that are injected at the different abstract time points of the componentSWi.
This number is # SEU-affected register bits × # ICs. The computation time for
analysing these faults is given in column 3. Thousands of individual properties,
each with a runtime of only a couple of seconds, are processed sequentially
in our experiments. In the case of FuelSys, for example, FEA checks 670,000

properties. Each property is independent of all other properties and checks
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whether an SEU which strikes at an arbitrary abstract time point and an arbi-
trary bit in a specific register can have an effect on a specific write operation
such that a specific interface variable is affected by the fault. It is straightfor-
ward to highly parallelize these numerous calls to the property checker which
would drastically reduce the elapsed real time for FEA. Moreover the runtime
is dominated by the front-end phases of parsing, elaboration and compilation
for the numerous calls of the commercial property checker. We expect that a
more direct coupling of its back-end solvers with FEA can reduce computa-
tion times by an order of magnitude. (This, however, is beyond the scope of
our research environment.)

Column 4 presents the percentage of fault-relevant interface variables (cf. Def-
inition 5) to which a fault was propagated. The right-most column gives the
percentage of faults that cause a severe control flow alteration (Section 8.2.2).
The bottom row of the table shows cumulative results for the system as a
whole. In particular, we observe that only SEUs in 24 out of 32 registers (i.e.,
75 %) can affect some fault-relevant variable in any of the componentSWi, or
lead to severe control flow alterations somewhere in the system.

Note that, by merit of the formal nature of our approach, we can provide
guarantees on which faults never cause a certain fault effect.

Based on this analysis we create a mapping between all SEUs and the poten-
tially affected interface variables. Overall 618 taints for the FPA on the C level
were generated.

8.4.2 Fault Propagation Analysis (FPA)

The taints generated by FEA are used as input to FPA. The communication
between both analyses is fully automated through the XML interface (cf. Sec-
tion 8.3.3). Table 8.4 displays some general information about the input data
that is supplied by FEA to FPA. The second column shows the number of
C-level addresses (at byte granularity) belonging to C variables affected by
some fault. Similarly, column 3 provides the number of source code locations
in which a fault manifests itself.

Module
Memory Program

Taint hues Directives
Runtime

locations locations (in s)

Scheduler 631 221 19 21,764 7,200
LIN 16 79 12 1,179 5,300
TCAS 110 21 9 1,813 1,400
Fuelsys 41 123 22 3,466 1,500
RSA 1 2 20 21 1,400

Total runtime (system w. multiple componentSWi instantiations) 56,000

Table 8.4: Taint Analysis Inputs and Runtime

When analysing the fault database generated by FEA we observe that often
a number of different machine-level faults lead to an identical fault effect in
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the high-level software, i.e., they have the same abstract image in terms of C-
code objects. The fourth column in Table 8.4 shows the number of different
abstract fault images for each componentSWi. Each such fault image creates
a unique taint hue (cf. Section 8.3.2) for FPA. Every taint hue is applied to
the affected memory and program locations, each leading a corresponding
set of Astrée directives (cf. Section 8.3.2). Column 5 reports the number of
generated Astrée directives for each module. The right-most column shows
the runtime of Astrée for injecting all faults to a componentSWi and evaluating
their effect in the composed system of 137,900 LoC. Without exploiting its
inherent options for parallelization, FPA completes the analysis for all faults
and all componentSWi after a total of 56,000 seconds, clearly demonstrating the
scalability of FPA to large systems.

We used FPA to analyse the fault effects w.r.t. runtime errors, control flow
errors and corrupted variables.

Runtime errors

As a first experiment, we used Astrée to identify all runtime errors (cf. Sec-
tion 8.3.1) existing in our system without any fault injection. Astrée identified
65 software weaknesses in different modules, possibly causing such runtime
errors. We then used FPA to examine what fault injections could possibly lead
to additional runtime errors. For one taint hue, i.e., for one set of machine-
level hardware faults, Astrée identified a catastrophic runtime error induced
by a pointer corruption, and stopped all further analysis. After excluding this
case from consideration, an additional 20 runtime errors were identified and
related to the hardware faults causing them. Conversely, our compositional
approach formally proves for all other faults that no additional runtime errors
can be caused.

Control Flow Errors

Astrée identified a total of 3,724 control decisions in the software. The static
analysis for the fault-free software identified none of these decisions as po-
tentially flawed. For the fault-injected system, FPA reveals that 1,157 control
decisions can be affected by one or several faults. For more than 2/3 of the
control decisions it is formally proven that they cannot be affected by any of
the faults.

Corrupted Program Variables

Our compositional fault propagation analysis yields a database, as described in
Section 8.2.3, that links fault effects at the C level to SEUs at the hardware level.
Besides runtime errors and control flow errors, the collected fault effects also
include data corruptions in the individual program variables of the software
system.

The generated database allows for a detailed analysis, e.g., identifying a set
of faults which affects a set of program variables belonging to a selected safety
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function. For example, we chose an apparently safety-critical variable track-
ing transmission errors in the LIN bus and determined that SEUs in only 3

registers can propagate to this safety function. This provides valuable infor-
mation when implementing hardware level resilience measures. Our database
also supports implementing resilience measures at the software level. For the
example of the safety-critical LIN variable, we can determine that all SEUs
occurring during execution of any componentSWi other than LIN do not prop-
agate to this variable.

Similarly, our database allows for error containment analysis. For example,
it yields that SEUs occurring during execution of LIN / TCAS / FuelSys / RSA
can propagate to at most 2.77 % / 2.76 % / 2.82 % / 2.72 % of program variables
anywhere else in the software system, respectively. In combination with our
fault dictionary, such information provides a strong basis for HW/SW cross-
layer resilience measures.

The database can be extended for even more fine-grained risk assessments
by additionally taking into account fault probabilities as well as use case statis-
tics for the software.
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The main contributions of the concepts and methods presented in this thesis
are the following.

Scalable Program Netlist Generation By exploiting properties that are char-
acteristic for embedded systems software, like firmware and drivers, we devel-
oped several techniques that can significantly reduce the complexity of the PN
generation process and any subsequent analyses, e.g., fault analyses, on the
generated PN.

We have shown the efficacy of the techniques in our experimental evalua-
tion, where they allowed the PN generation for software programs that was
previously infeasible.

Each technique is independent from the others allowing the safety engineer
to freely select any combination, as needed by the problem instance at hand.

Fault Injection in Program Netlists We presented techniques to describe and
inject fault logic in a formal model by employing saboteurs that allow to enable
or disable the activation of specific faults for individual analysis runs. The
instruction cell-based fault injection provides a large degree of freedom in
describing faults at ISA level.

By example we showed how widely used single-event upset and stuck-at
fault models can be injected into program netlists. The inserted fault logic
allows to formally analyse individual single-faults, any combination of single-
faults and any combination of multiple-faults.

Fault Effect Analysis on ISA level We demonstrated how formal techniques
can be employed to analyse the effects of hardware faults in program-visible
registers on the software behaviour. Our formal method has the advantage
that it can actually certify the absence of error effects for a given application.

The conducted experiments showed that for embedded software a large
fraction of faults at the ISA level can never have any effect on the software
behaviour at all. In analogy to redundant faults in testing, we call such faults
application-redundant. We ensured realistic results in our experiments by ana-
lysing industry-oriented software programs that are publicly available.

An interesting observation is that the nature of untestable stuck-at faults at
the application level is different from the nature of stuck-at redundancies in
combinational circuits. In realistic circuits typically only a small number of
stuck-at faults turns out to be combinationally redundant. Combinational re-
dundancies are usually caused by complex logic dependencies in the circuit
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making it impossible to fulfil the requirements for fault controllability and ob-
servability simultaneously. They indicate sub-optimal circuitry and are usually
removed in a well-optimized circuit. Stuck-at redundancies at the application
level, on the other hand, can occur in fairly large numbers. Experimental data
obtained from fault injection campaigns with simulation like in [36, 69] sup-
port this finding.

At the application level, it is rare that redundancies result from contradictory
controllability and observability requirements along all possible program runs.
If it occurs this might indicate some optimization potential in the computing
platform, similarly like in the case of combinational stuck-at redundancies. We
did not encounter any such case in our experiments. Instead, an application-
level redundancy most often results from a completely unused hardware re-
source leading to a fault site where, independently of each other, the require-
ment of controllability and/or the requirement of observability are violated.

Fault Testability Analysis on the Gate Level We used the results obtained
from ISA-level fault effect analysis for a gate-level testability analysis by ex-
ploiting the connection between ISA and gate level, as provided by program-
visible registers.

The presented deductive method uses knowledge about faults that are un-
controllable and unobservable at application level to reduce the controllability
and observability of faults at the gate level. We applied this method at gate
level on an Aquarius computing platform that implements the SuperH2 ISA
and on an FWRISC-S computing platform implementing the RISC-V ISA. The
Aquarius contains a superscalar processor with five pipeline stages, while the
processor in FWRISC-S is non-pipelined. Despite the differences we were able
to identify a significant number of application-redundant faults that become
untestable for a certain software program for both computing platforms.

The work of other research groups support our findings also here. A mask-
ing of over 30% of gate-level faults was found in [69]. In [36] an even larger
fraction of 72% of the injected gate-level faults were masked. In such cases,
the proposed approach can provide full confidence by a formal proof of re-
dundancy. The high number of redundancies that were identified reflects the
fact that the given software does not fully exploit all available resources and
“features” the hardware provides. Unlike a combinational circuit that is aggres-
sively optimized for a fixed Boolean function, a standard hardware platform is
built to run a wide variety of software. It is therefore never perfectly optimized
w.r.t. the specific software that is running on it in some application.

Fault Propagation Analysis on C level We concluded this thesis by present-
ing a scalable and formal approach to analyse fault effects for large hardware/-
software systems. One important contribution is that safe faults can be deter-
mined with formal rigour, avoiding overly pessimistic estimations and provid-
ing more precise classifications.

The basic ingredients of this approach are i) our fault effect analysis at ISA-
level, ii) a smart decomposition of the software system and the partitioning
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of its state variables and iii) a C-level static analysis based on Abstract Inter-
pretation. We have shown how the problem of fault propagation analysis can
be decomposed such that a formally sound compositional approach based on
these ingredients can be developed. In particular, two formal methods at dif-
ferent abstraction levels, SAT-based Interval Property Checking and Abstract
Interpretation, are combined. At the low level, we conduct a local analysis of
machine code and model the occurrence of faults in program-visible registers
of the gate-level hardware. Data corruptions are automatically mapped to the
C level and their propagation is tracked by a sound taint analysis. Experimen-
tal results show that our approach is feasible for embedded systems of realistic
size.

9.1 Outlook

The focus of this thesis was to develop a formal and scalable method to analyse
the effects of hardware faults across abstraction levels and the hardware/soft-
ware boundary.

The methods and findings of this thesis can provide the basis for subsequent
research projects.

9.1.1 Bespoke Processor Design

The observation from our experiments is that a significant number of faults at
the ISA and gate levels are application-redundant, i.e., they do not contribute
to the functionality provided by the hardware/software system.

As mentioned in the conclusion on our Fault Testability Analysis, we found
that low-level software employed in embedded systems does not fully exploit
the resources provided by a general-purpose processor. This indicates a large
hardware optimisation potential for embedded systems. Strict requirements
for area and power provide motivation to develop a systematic and sound
application-specific optimisation method for general purpose processors. A fully
automated customisation of commercial-off-the-shelf processors can be a faster
and less expensive alternative, compared to a fully customised application
specific circuit design.

In a recently published work of our research group [95] we developed a
formal analysis that can identify application-dependent uncontrollable signals
in gate-level processors. As presented in [95], this information can be used
to optimise the hardware by removing the identified application-redundant
signals.

The next step would be to extend this analysis to identify unobservable
faults at RT or gate level to further optimise the hardware design.

9.1.2 Online Error Detection

Most measures to detect errors during the operational lifetime of a hardware/-
software system rely on knowledge obtained from CFGs. However, CFGs have
the disadvantage that they do not explicitly model individual program paths,
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because every instruction is represented only once inside a CFG. CFG-based
error detection techniques have, therefore, the intrinsic disadvantage that they
are based on a model that over-approximates the space of reachable program
paths. This could allow several faults to remain undetected.

Furthermore, recent findings in [87] show that CFG-based online control
flow checking methods can actually increase the vulnerability of a hardware/-
software system against soft errors.

This may motivate the development of a program netlist-based approach for
online control flow checking. We expect that the explicitly exposed program
paths in program netlists enable the design of stricter control flow checkers.

A limitation of a program netlist-based approach for online detection might
be that data flow is only modelled implicitly in program netlists. Therefore,
faults that cause only silent data corruptions and never affect control decisions
cannot be detected. A program netlist-based approach can still provide an
improvement for existing error detection methods.

The methods presented in this thesis could, then, be used to formally certify
the efficacy of the developed online detection methods.

9.1.3 Abstract Interpretation for Program Netlists

The experiments in this thesis demonstrated the scalability of techniques based
on Abstract Interpretation. As discussed in Section 8.3, the key concept behind
Abstract Interpretation is to replace complex concrete semantics of operations
with simpler abstract semantics.

The trade-off is that the abstract semantics lead to some degree of over-
approximation that can result in false negatives when applied to property
checking. In terms of fault analysis this means that a hardware fault could
be identified as having some effect on the software behaviour while it actually
does not.

If successfully applied to program netlist-based analyses, e.g., by implement-
ing interval arithmetic [33], Abstract Interpretation can further improve scala-
bility. Note that the program netlist generation itself would benefit from such
scalability improvements.
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Die Erfolge bei der Entwicklung neuer Fertigungsprozesse in der Halbleiter-
industrie erlauben die Produktion von digitalen Schaltungen mit immer klei-
neren Abmessungen. Dieser Fortschritt ermöglicht es nicht nur, große analoge
Komponenten durch kleine digitale Komponenten zu ersetzen, sondern auch
völlig neue Funktionen in einem Produkt zu realisieren.

Die Kehrseite dieser Miniaturisierung ist, dass die kleineren und komplexe-
ren Strukturen von Bauelementen, wie z. B. Transistoren, deutlich fehleranfäl-
liger sind. Die Konsequenzen daraus können nicht nur unerwünscht sein, wie
zum Beispiel fehlerhaft funktionierendes Infotainment, sondern auch lebens-
gefährlich, wenn zum Beispiel Industriemaschinen nicht mehr erkennen, ob
sich ein Arm oder Bein zwischen beweglichen Teilen befindet.

Die Robustheit gegenüber Hardwarefehlern in digitalen Systemen ist des-
halb ein Hauptanliegen bei der Entwicklung von eingebetteten Systeme, in
deren Anwendungsgebiet Personen zu Schaden kommen könnten. Eine Rei-
he von Standards tragen diesem Anliegen Rechnung und fordern für die Ge-
währleistung der Sicherheit von Personen (im Folgenden kurz „Sicherheit“ ge-
nannt) , insbesondere für die höchsten Sicherheitsgrade, eine systematische
und gründliche Untersuchung der Systeme.

In der Theorie ließe sich eine Schaltung vielleicht gegenüber jedem mögli-
chen Fehler absichern, in der Praxis wäre das allerdings, falls überhaupt, nur
mit gewaltigen Kosten möglich. Unserer Meinung nach sollte sich der Schutz
gegen Hardwarefehler stattdessen auf solche konzentrieren die das Systemver-
halten in einer Art verändern, dass es unsicher wird.

Bei eingebetteten Systemen, in denen Hardware und Software miteinander
interagieren, kann die Berücksichtigung der ausgeführten Softwareprogram-
me helfen, die Anzahl der zu betrachtenden Fehler deutlich zu reduzieren.
Der Grund dafür ist, dass die auf einem Prozessor ausgeführten hardwarena-
hen Programme, wie z. B. Treiber oder Firmware, meist nicht den gesamten
Funktionsumfang des Prozessors verwenden. Hinzu kommt, dass solche Pro-
gramme in eingebetteten Systemen sehr spezifische Funktionen bereitstellen,
welche, falls überhaupt, meist nur geringfügige Änderungen während der Pro-
duktlebenszeit des Systems erfahren. Diese Eigenschaft erlaubt es, programm-
spezifische Schutzmaßnahmen sicherheitskonform einzusetzen.

Im Unterschied zu simulationsbasierten Methoden, wie sie üblicherweise in
der Industrie eingesetzt werden, können formale Methoden das gesamte Ver-
halten eines Hardware/Software-Systems betrachten und sind deshalb in der
Lage, die Sicherheit eines eingebetteten Systems zu zertifizieren. Eine auf for-
malen Methoden basierende Fehleranalyse kann deshalb die zu untersuchen-
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den Fehler in zwei Kategorien aufteilen: in der einen Kategorie sind die Fehler,
welche die Sicherheit beeinträchtigen können und gegen die deshalb Maßnah-
men ergriffen werden müssen, und in der anderen Kategorie sind die Fehler,
welche, unter Betrachtung des gesamten Hardware/Software-Verhaltens, nie-
mals die Sicherheit gefährden können und deswegen ignoriert werden können.

Der Forschungsbeitrag dieser Arbeit besteht in der Entwicklung formaler
Methoden, mit denen sich:

1. die Fehlerauswirkungen auf das Programmverhalten mittels Fehlerinjek-
tion auf der Ebene der Instruktionssatzarchitektur (ISA) formal analysie-
ren lassen,

2. die auf der ISA-Ebene ermittelte Abwesenheit von Fehlereffekten auf die
Gatterebene übertragen lässt und es dann gestattet, deduktiv mittels Test-
mustergenerierung „applikationsredundante“ Fehler zu identifizieren,

3. die auf der ISA-Ebene ermittelten Fehlerauswirkungen auf Objekte der
höheren Softwareebene übertragen und dann induktiv mittels abstrak-
ter Interpretation weitere Softwareobjekte, wie z. B. Sicherheitsfunktio-
nen identifizieren lassen. Das Ergebnis dieser Analyse ist eine 1-zu-n-
Relation von Fehlern auf der ISA-Ebene und ihren Auswirkungen auf
der C-Ebene.

10.1 Programmnetzlisten

Für die Analyse von Fehlerauswirkungen auf der ISA-Ebene verwenden wir
Programmnetzlisten. Diese wurden bereits in [90] vorgestellt, weswegen wir
hier nur deren grundlegende Konzepte erklären, bevor wir in den nachfolgen-
den Abschnitten den Forschungsbeitrag dieser Arbeit vorstellen.

Eine Programmnetzliste modelliert das Verhalten eines Prozessors, welcher
ein bestimmtes Softwareprogramm ausführt. Für die Generierung von Pro-
grammnetzlisten wird ein Softwareprogramm auf Maschinenebene und eine
Beschreibung der Maschinenbefehle auf Architekturebene verwendet. Schlei-
fen im Kontrollfluss des Maschinenprogramms werden abgerollt, um ein azy-
klisches Modell zu erhalten. Der Kontrollfluss kann zu diesem Zeitpunkt noch
unvollständig sein, sodass formale Analysen des bereits abgerollten Teils not-
wendig sind. Die Ausführung eines Maschinenbefehls wird mit Hilfe von
Schaltungsbeschreibungssprachen, wie z. B. SystemVerilog, modelliert. Diese
Modelle beschreiben die Veränderungen am Programmzustand, d. h. die Wer-
teänderungen in programmsichtbaren Registern und im Speicher.

10.1.1 Skalierbarkeit von Programmnetzlisten

Um die Erzeugung von Programmnetzlisten auch für größere und komplexere
Programme zu ermöglichen, haben wir in dieser Arbeit eine Reihe von Verbes-
serungen entwickelt, die wir in den nachfolgenden Abschnitten beschreiben.
In unseren Experimenten konnten wir zeigen, dass die nachfolgend beschrie-
benen Techniken die Programmnetzlistenerzeugung signifikant beschleunigen
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können. Die Techniken nutzen jeweils bestimmte Eigenschaften von Software,
welche in eingebetteten Systemen eingesetzt wird, aus. Die Programmnetzlis-
tenerzeugung für Programme, welche die jeweilige Eigenschaft nicht erfüllen,
kann daher nicht von diesen Techniken profitieren, sie wird aber auch nicht
davon beeinträchtigt.

Kompositionelle Programmnetzlistenerzeugung Anstatt die Programmnetz-
listen monolithisch für das gesamte Softwareprogramm aufzubauen, analy-
sieren wir zunächst den Kontrollflussgraphen eines Programms, um für ei-
ne kompositionelle Programmnetzlistenerzeugung geeignete Stellen im Pro-
grammfluss zu finden. Funktionsaufrufe sind zum Beispiel geeignete Stellen,
an denen sich die Programmnetzlistenerzeugung mit geringem Aufwand auf-
trennen lässt.

Zunächst wird für jede gewählte Trennstelle, eine eigene Teil-Programm-
netzliste erzeugt. Anschließend werden alle Teile zu einer Gesamt-Programm-
netzliste zusammengefügt. Um bei dieser Prozedur Überabschätzungen im
modellierten Programmvehalten der Teil-Programmnetzlisten zu minimieren,
berechnen wir mit Hilfe von Abstrakter Interpretation erreichbare Wertebereiche
der Variablen im Startzustand der Teil-Programmnetzliste.

Überabschätzungen können im schlimmsten Fall dazu führen, dass die er-
zeugte Programmnetzliste auch nichterreichbares Programmverhalten model-
liert. Für Fehleranalysen bedeutet das, dass einige Fehler, welche eigentlich
keine Auswirkungen haben, in der Analyse als Fehler mit Auswirkungen aus-
gegeben werden (falschpositiv). Falschnegative Ergebnisse sind nicht möglich.

Befehlsabstraktion Komplexe Maschinenbefehle können die während der
Programmnetzlistenerzeugung durchgeführten Analysen erschweren. Diese
können jedoch durch einfachere Maschinenbefehle ersetzt werden, wenn der
oder die Ersatzbefehle das Ausgabeverhalten des Originalbefehls überabschät-
zen. Auch dadurch kann zusätzliches Programmverhalten hinzukommen, was
jedoch, genau wie bei der kompositionellen Programmnetzlistenerzeugung,
nur zu falschpositiven und nicht zu falschnegativen Ergebnissen führen kann.

Programmpfadprioritäten Zur Vermeidung von Programmpfadexplosionen,
können mehrere Programmpfade zu einem einzigen zusammengefügt werden,
sofern dabei keine Schleife entsteht. Es kann jedoch passieren, dass zum Bei-
spiel, wenn an zwei Stellen Programmpfade zusammengefügt werden könn-
ten, es nur an einer der beiden Stellen tatsächlich möglich ist, da ansonsten
beim Zusammenfügen an der jeweils anderen Stelle eine Schleife erzeugt wer-
den würde. Durch ungeschickte Wahl der Stellen, an denen Programmpfade
zusammengefügt werden, kann es vorkommen, dass andere Pfade einzeln aus-
gerollt werden müssen. Eine größere Anzahl von Pfaden, welche nicht mit an-
deren zusammengelegt werden können, kann die Komplexität von Programm-
netzlisten stark ansteigen lassen. In einigen Situationen kann suboptimales Zu-
sammenfügen durch Priorisierung einzelner Programmabschnitte vermieden
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werden. Ein priorisierter Programmabschnitt muss vollständig abgerollt sein,
bevor ein Zusammenlegen mit anderen Programmpfaden erlaubt ist.

Adressspeicher In hardwarenahen Softwareprogrammen greifen Befehle im
Maschinencode häufig auf die gleichen Speicheradressen zu. Hierbei sind vor
allem diejenigen Befele von Interesse, welche für die Registerwerte zur Be-
rechnung der Speicheradresse verwenden. In der Theorie kann sich der Regis-
terwert bei jeder Befehlsausführung unterscheiden, in der Praxis ändern sich
diese Werte bei hardwarenaher Software jedoch häufig nicht. Diese Besonder-
heit lässt sich für die Erzeugung von Programmnetzlisten ausnutzen, indem
gefundene Adressen, auf die ein Befehle zugreift, zwischengespeichert werden.
Wenn für den gleichen Befehl wieder die Adressen, auf welche dieser zugreift,
ermittelt werden sollen, wird überprüft, ob es die zwischengespeicherten sind,
wodurch nicht jede Adresse erneut einzeln ermittelt werden muss.

10.2 Fehlerinjektion

Um mittels Programmnetzlisten Fehlerverhalten modellieren zu können, fü-
gen wir Fehlerinjektionslogik in die Befehle der Programmnetzliste ein, wel-
che die Werte im Programmzustand verändern kann. Die Fehlerinjektionslo-
gik erlaubt es, je nach gewählter Konfiguration, die Auswirkungen von einem
Einzelfehler, einer beliebigen Menge an Einzelfehlern oder einer beliebigen
Menge an Mehrfachfehlern in einer Programmnetzliste zu modellieren und
zu analysieren. Es ist möglich, einzelne oder alle Fehler zu deaktivieren. Sind
alle Fehler deaktiviert, modelliert die fehlerinjizierte Programmnetzliste das
fehlerfreie Verhalten.

Die in dieser Arbeit verwendeten Fehlermodelle sind stuck-at-Fehler, welche
zu der Klasse der permanenten Fehler gehören, und single-event-upsets, die
zu der Klasse der temporären Fehler gehören.

10.3 Fehlereffektanalyse

Für die Analyse von Fehlereffekten auf der Architekturebene erzeugen wir
zunächst eine Programmnetzliste für ein gegebenes Programm und eine be-
stimmte Prozessorarchitektur (hier RISC-V und SuperH2). Daran anschließend
fügen wir Fehlerinjektionslogik in die Befehle der Programmnetzliste ein und
duplizieren die fehlerinjizierte Programmnetzliste. In der einen Programm-
netzliste deaktivieren wir alle Fehler, während wir in der anderen nur die Feh-
ler aktivieren, deren Auswirkungen während eines einzelnen Analysedurch-
laufs betrachtet werden sollen. Mit der Aktivierung von nur bestimmten Feh-
lern lässt sich die Granularität der Analyse bezüglich der Relation von Fehler-
menge zu Fehlereffekten einstellen.

Unsere Experimente zeigen, dass nicht nur etliche stuck-at-Einzelfehler, son-
dern auch eine große Menge an stuck-at-Mehrfachfehlern keine Auswirkun-
gen auf das Ausgabeverhalten der analysierten Programme haben. Die ent-
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sprechenden Fehler sind also an den Programmausgängen, und damit auch
außerhalb des eingebetteten Systems, nicht beobachtbar.

Außerdem konnten wir in unseren Experimenten nachweisen, dass die Wer-
te in etlichen programmsichtbaren Registern vom Softwareprogramm nicht
kontrolliert werden können. Das bedeutet, dass es nicht möglich ist, dem be-
trachteten Programm eine Wertesequenz zu übergeben mit der sich die ent-
sprechenden Programmzustandswerte ändern lassen.

10.4 Fehlertestbarkeitsanalyse

Weil die Fehlereffektanalyse nur Aussagen auf der Architekturebene liefert, ist
das Ziel der Fehlertestbarkeitsanalyse herauszufinden, ob es auch auf der Gat-
terebene Fehler gibt, welche nicht mittels sogenannter Testpattern testbar sind,
weil das ausgeführte Programm das Prozessorverhalten zu sehr einschränkt.
Testbar bedeutet hier, dass es eine Wertebelegung für die Schaltungseingänge
gibt, wodurch ein bestimmter Fehler fehlerhafte Werte an den Schaltungsaus-
gängen erzeugt.

Zu diesem Zweck haben wir eine Methode entwickelt, mit der sich maxi-
male Verträglichkeitsklassen an nicht beobachtbaren stuck-at-Mehrfachfehlern
auf der Architekturebene berechnen lassen. Wir verwenden diese Verträglich-
keitsklassen, um mittels hinzugefügter Logik die Propagation der entsprechen-
den Fehler auf der Gatterebene zu unterbinden. Damit lässt sich die Fehlerbe-
obachtbarkeit für den Prozessor auf Gatterebene einschränken.

Analog dazu lässt sich die Fehlertestbarkeit auch dank der entdeckten kon-
stanten Werte im Programmzustand durch Hinzufügen von Logik weiter ein-
schränken.

Zum Ermitteln der softwareabhängigen testbaren und nicht-testbaren Fehler
verwenden wir automatische Testpatterngenerierung (ATPG).

Für die experimentelle Evaluation haben wir die Methode auf den beiden
unterschiedlichen Rechnerplattformen Aquarius und FWRISC-S angewandt.
Die Aquarius Rechnerplattform implementiert die SuperH2 ISA und besitzt ei-
ne fünfstufige Instruktionspipeline, während die FWRISC-S Rechnerplattform
die RISC-V ISA implementiert und keine Instruktionspipeline besitzt. Außer-
dem haben wir sowohl einen Vertreter für datenflussdominierte als auch einen
Vertreter für kontrollflussdominierte Softwareprogramme untersucht. Für bei-
de Rechnerplattformen und Softwareprogramme zeigen unsere Experimente,
dass auch auf der Gatterebene ein erheblicher Anteil an Fehlern nicht testbar
wird, wenn konkrete Programme das Prozessorverhalten einschränken.

10.5 Fehlerpropagationsanalyse

Bei der Fehlerpropagationsanalyse untersuchen wir, wie Fehlereffekte von der
Architekturebene in die höheren Softwareebenen, wie z. B. die C-Ebene, und
dort in Funktionen, welche für die Sicherheit besonders wichtig sind, hinein
propagieren können.
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Um dies zu erreichen haben wir eine Fehlereffektanalyse mit single-event-
upsets durchgeführt, in der wir untersuchten, welche Fehler sich auf relevan-
te Variablen des Programmzustandes auswirken können. Wir konnten zeigen,
dass zahlreiche Programmzustandsvariablen für die Fehlerpropagation irrele-
vant sind, weil zum Beispiel deren Werte nicht mehr verwendet werden oder
weil sie geschützt sind und daher jedes fehlerinduzierte, illegale Überschrei-
ben entdeckt wird.

Die entdeckten Fehlereffekte bezüglich der relevanten Programmzustands-
variablen haben wir an die Fehlerpropagationsanalyse auf der C-Ebene weiter-
gereicht, welche von Forschungspartnern der AbsInt GmbH entwickelt und
durchgeführt wurde. Anhand der Fehlerpropagationsanalyse konnten eine
Reihe von Laufzeitfehlern, wie zum Beispiel Veränderungen des Kontrollflus-
ses oder Speicherzugriffsverletzungen, identifiziert werden.

In einem abschließenden Experiment konnten wir dank der Kombination
von Fehlereffektanalyse und Fehlerpropagationsanalyse diejenigen Fehler iden-
tifizieren, deren Effekte eine von uns ausgewählte kritische Funktion beein-
trächtigen können. Die Differenzmenge von Fehlerliste und der identifizierten
Fehler liefert, dank Einsatz formaler Methoden, die Menge an Fehlern, die sich
garantiert nicht auf die ausgewählte kritische Funktion auswirken können.

10.6 Fazit

In dieser Arbeit wurden Methoden entwickelt, mit denen sich die Effekte von
Hardwarefehlern auf das Verhalten hardwarenaher Software formal analysie-
ren lässt. Die entwickelten Methoden erlauben es, die Möglichkeit von Feh-
lereffekten, sowie deren Abwesenheit, über Abstraktionsebenen hinweg zu be-
stimmen. Der Verifikationsingenieur kann hierbei bestimmen, ob die Effekte
eines einzelnen Fehlers oder eine beliebige Kombination mehrerer Fehler be-
trachtet werden sollen. In unseren Experimenten konnten wir zeigen, dass die
Methoden auch für Softwaresysteme mit industrienaher Komplexität skalie-
ren, und, dass ein großer Teil von Hardwarefehlern sich tatsächlich niemals
auf das Softwareverhalten auswirken kann.



B I B L I O G R A P H Y

[1] AbsInt Angewandte Informatik GmbH, Germany. AbsInt. url: https:
//www.absint.com.

[2] T. Aitch. Aquarius: a pipelined RISC CPU. 2003. url: http://opencores.
org/project,aquarius.

[3] F. E. Allen. “Control flow analysis”. In: ACM SIGPLAN Notices 5.7 (July
1970), pp. 1–19. doi: 10.1145/390013.808479.

[4] Amruth Pillai. RSA. Accessed: 2021-04-22. url: https://gist.github.
com/AmruthPillai.

[5] Andrew Kiluk. RSA. Accessed: 2021-04-13. url: https://github.com/
andrewkiluk/RSA-Library.

[6] T. Arons, E. Elster, et al. “Efficient symbolic simulation of low level
software”. In: Proceedings of the conference on Design, automation and test
in Europe - DATE. ACM Press, 2008. doi: 10.1145/1403375.1403577.

[7] AUTOSAR. AUTOSAR. url: https://www.autosar.org/.

[8] A. Avizienis, J.-C. Laprie, et al. “Basic concepts and taxonomy of de-
pendable and secure computing”. In: IEEE Transactions on Dependable
and Secure Computing 1.1 (Jan. 2004), pp. 11–33. doi: 10.1109/tdsc.
2004.2.

[9] A. C. Bagbaba, F. A. da Silva, et al. “Automated Identification of Appli-
cation-Dependent Safe Faults in Automotive Systems-on-a-Chips”. In:
Electronics 11.3 (Jan. 2022), p. 319. doi: 10.3390/electronics11030319.

[10] R. Bagnara, A. Bagnara, et al. “The MISRA C Coding Standard and its
Role in the Development and Analysis of Safety- and Security-Critical
Embedded Software”. In: Static Analysis. Springer International Publish-
ing, 2018, pp. 5–23. doi: 10.1007/978-3-319-99725-4_2.

[11] M. Ballance. Featherweight RISC-V. 2021. url: https://github.com/
Featherweight-IP/fwrisc.

[12] C. Bartsch, N. Rödel, et al. “A HW-dependent Software Model for
Cross-Layer Fault Analysis in Embedded Systems”. In: International
Workshop on Resiliency in Embedded Electronic Systems. 2015.

https://www.absint.com
https://www.absint.com
http://opencores.org/project,aquarius
http://opencores.org/project,aquarius
https://doi.org/10.1145/390013.808479
https://gist.github.com/AmruthPillai
https://gist.github.com/AmruthPillai
https://github.com/andrewkiluk/RSA-Library
https://github.com/andrewkiluk/RSA-Library
https://doi.org/10.1145/1403375.1403577
https://www.autosar.org/
https://doi.org/10.1109/tdsc.2004.2
https://doi.org/10.1109/tdsc.2004.2
https://doi.org/10.3390/electronics11030319
https://doi.org/10.1007/978-3-319-99725-4_2
https://github.com/Featherweight-IP/fwrisc
https://github.com/Featherweight-IP/fwrisc


108 B I B L I O G R A P H Y

[13] C. Bartsch, N. Rödel, et al. “A HW-dependent Software Model for
Cross-Layer Fault Analysis in Embedded Systems”. In: 19th GI/ITG/GMM
Workshop Methoden und Beschreibungssprachen zur Modellierung und Veri-
fikation von Schaltungen und Systemen, MBMV 2016, Freiburg im Breisgau,
Germany, March 1-2, 2016. Ed. by R. Wimmer. Albert-Ludwigs-Universität
Freiburg, 2016, pp. 10–21. doi: 10.6094/UNIFR/10634.

[14] C. Bartsch, N. Rödel, et al. “A HW-dependent Software Model for
Cross-Layer Fault Analysis in Embedded Systems”. In: 2016 17th Latin-
American Test Symposium (LATS). 2016, pp. 153–158. doi: 10.1109/LATW.
2016.7483356.

[15] C. Bartsch, C. Villarraga, et al. “Efficient SAT/Simulation-based model
generation for low-level embedded software”. In: 17th GI/ITG/GMM
Workshop Methoden und Beschreibungssprachen zur Modellierung und Veri-
fikation von Schaltungen und Systemen, MBMV 2014, Böblingen, Germany.
Ed. by J. Ruf, D. Allmendinger, et al. Cuvillier, 2014, pp. 147–157.

[16] C. Bartsch, C. Villarraga, et al. “Safety across the HW/SW interface -
Can formal methods meet the challenge?” In: International Symposium
on Integrated Circuits, ISIC 2016, Singapore, December 12-14, 2016. IEEE,
2016, pp. 1–3. doi: 10.1109/ISICIR.2016.7829707.

[17] C. Bartsch, C. Villarraga, et al. “A HW/SW Cross-Layer Approach for
Determining Application-Redundant Hardware Faults in Embedded
Systems”. In: Journal of Electronic Testing 33.1 (2017), pp. 77–92. doi:
10.1007/s10836-017-5643-3.

[18] C. Bartsch, S. Wilhelm, et al. “Compositional Fault Propagation Analy-
sis in Embedded Systems using Abstract Interpretation”. In: 2021 IEEE
International Test Conference (ITC). 2021.

[19] C. Bartsch, S. Wilhelm, et al. “Combining Fault Effect Analysis and
Fault Propagation Analysis to Determine Source Code Level Effects of
Hardware Faults”. In: Embedded World. WEKA FACHMEDIEN GmbH,
2022.

[20] M. A. Ben Khadra. “Techniques For Efficient Binary-Level Coverage
Analysis”. en. PhD thesis. 2021. doi: 10.26204/KLUEDO/6410.

[21] C. Bernardeschi, A. Fantechi, et al. “Model checking fault tolerant sys-
tems”. In: Software Testing, Verification and Reliability 12.4 (2002), pp. 251–
275.

[22] A. Bernardini, W. Ecker, et al. “Efficient handling of the fault space in
functional safety analysis utilizing formal methods”. In: 2016 IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC). IEEE,
Sept. 2016. doi: 10.1109/vlsi-soc.2016.7753546.

[23] A. Bernardini, W. Ecker, et al. “Where formal verification can help in
functional safety analysis”. In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). 2016, pp. 1–8. doi: 10.1145/2966986.
2980087.

https://doi.org/10.6094/UNIFR/10634
https://doi.org/10.1109/LATW.2016.7483356
https://doi.org/10.1109/LATW.2016.7483356
https://doi.org/10.1109/ISICIR.2016.7829707
https://doi.org/10.1007/s10836-017-5643-3
https://doi.org/10.26204/KLUEDO/6410
https://doi.org/10.1109/vlsi-soc.2016.7753546
https://doi.org/10.1145/2966986.2980087
https://doi.org/10.1145/2966986.2980087


B I B L I O G R A P H Y 109

[24] A. Biere, A. Cimatti, et al. “Symbolic Model Checking Without BDDs”.
In: Proceedings of the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems. TACAS ’99. London, UK, UK:
Springer-Verlag, 1999, pp. 193–207. isbn: 3-540-65703-7. doi: 10.1007/3-
540-49059-0_14.

[25] R. E. Bryant. “Symbolic Simulation—Techniques and Applications”. In:
Conference proceedings on 27th ACM/IEEE design automation conference -
DAC. ACM Press, 1990. doi: 10.1145/123186.128296.

[26] M. L. Bushnell and V. D. Agrawal. Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Springer US, 2002. doi:
10.1007/b117406.

[27] C. Cadar and K. Sen. “Symbolic Execution for Software Testing: Three
Decades Later”. In: Commun. ACM 56.2 (Feb. 2013), pp. 82–90. issn:
0001-0782.

[28] W. Carter, W. Joyner, et al. “Symbolic Simulation for Correct Machine
Design”. In: 16th Design Automation Conference. IEEE, 1979. doi: 10 .

1109/dac.1979.1600119.

[29] C.-Y. Cher, K. P. Muller, et al. “Soft error resiliency characterization and
improvement on IBM BlueGene/Q processor using accelerated proton
irradiation”. In: International Test Conference. 2014, pp. 1–6. doi: 10.1109/
TEST.2014.7035317.

[30] N. Cohen. Samsung at foundry event talks about 3nm, MBCFET develop-
ments. May 10, 2022. url: https://techxplore.com/news/2019-05-
samsung-foundry-event-3nm-mbcfet.html.

[31] C. Constantinescu, M. Butler, et al. “Error injection-based study of soft
error propagation in AMD Bulldozer microprocessor module”. In: IEEE/I-
FIP International Conference on Dependable Systems and Networks (DSN
2012). 2012, pp. 1–6. doi: 10.1109/DSN.2012.6263922.

[32] P. Cousot and R. Cousot. “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints”. In: Proc. of POPL’77. Los Angeles, CA: ACM Press, 1977,
pp. 238–252.

[33] P. Cousot. “Abstract Interpretation”. In: ACM computing surveys 28.2
(June 1996), pp. 324–328. issn: 0360-0300. doi: 10.1145/234528.234740.

[34] V. D’Silva, D. Kroening, et al. “A Survey of Automated Techniques for
Formal Software Verification”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 27.7 (July 2008), pp. 1165–1178.
doi: 10.1109/tcad.2008.923410.

[35] A. Darbari, B. A. Hashimi, et al. “A New Approach for Transient Fault
Injection Using Symbolic Simulation”. In: 14th IEEE International On-
Line Testing Symposium. 2008, pp. 93–98.

https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1007/3-540-49059-0_14
https://doi.org/10.1145/123186.128296
https://doi.org/10.1007/b117406
https://doi.org/10.1109/dac.1979.1600119
https://doi.org/10.1109/dac.1979.1600119
https://doi.org/10.1109/TEST.2014.7035317
https://doi.org/10.1109/TEST.2014.7035317
https://techxplore.com/news/2019-05-samsung-foundry-event-3nm-mbcfet.html
https://techxplore.com/news/2019-05-samsung-foundry-event-3nm-mbcfet.html
https://doi.org/10.1109/DSN.2012.6263922
https://doi.org/10.1145/234528.234740
https://doi.org/10.1109/tcad.2008.923410


110 B I B L I O G R A P H Y

[36] J. M. Daveau, A. Blampey, et al. “An industrial fault injection plat-
form for soft-error dependability analysis and hardening of complex
system-on-a-chip”. In: IEEE International Reliability Physics Symposium.
Apr. 2009, pp. 212–220.

[37] U. D. of Defense. Procedures for Performing a Failure Mode Effects and
Criticality Analysis. 1949.

[38] S. E. Diehl, J. E. Vinson, et al. “Considerations for Single Event Im-
mune VLSI Logic”. In: IEEE Transactions on Nuclear Science 30.6 (1983),
pp. 4501–4507. doi: 10.1109/tns.1983.4333161.

[39] P. Dodd, M. Shaneyfelt, et al. “Production and propagation of single-
event transients in high-speed digital logic ICs”. In: IEEE Transactions
on Nuclear Science 51.6 (Dec. 2004), pp. 3278–3284. doi: 10.1109/tns.
2004.839172.

[40] M. Ebrahimi, L. Chen, et al. “CLASS: Combined logic and architectural
soft error sensitivity analysis”. In: Design Automation Conference (ASP-
DAC), 2013 18th Asia and South Pacific. 2013, pp. 601–607.

[41] L. Entrena, M. Garcia-Valderas, et al. “Soft Error Sensitivity Evaluation
of Microprocessors by Multilevel Emulation-Based Fault Injection”. In:
IEEE Transactions on Computers 61.3 (2012), pp. 313–322. issn: 0018-9340.

[42] V. Ferlet-Cavrois, L. W. Massengill, et al. “Single Event Transients in
Digital CMOS—A Review”. In: IEEE Transactions on Nuclear Science 60.3
(June 2013), pp. 1767–1790. doi: 10.1109/tns.2013.2255624.

[43] J. Fritzsch, T. Schmid, et al. “Experiences from Large-Scale Model Check-
ing: Verifying a Vehicle Control System with NuSMV”. In: 2021 14th
IEEE Conference on Software Testing, Verification and Validation (ICST).
IEEE, Apr. 2021. doi: 10.1109/icst49551.2021.00049.

[44] J. Giet, L. Mauborgne, et al. “Towards Zero Alarms in Sound Static
Analysis of Finite State Machines”. In: Computer Safety, Reliability, and
Security (SafeComp). Springer, 2019, pp. 3–18. isbn: 978-3-030-26601-1.

[45] T. Given-Wilson, N. Jafri, et al. “An Automated Formal Process for De-
tecting Fault Injection Vulnerabilities in Binaries and Case Study on
PRESENT”. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE, Aug. 2017.
doi: 10.1109/trustcom/bigdatase/icess.2017.250.

[46] L. Goldstein. “Controllability/observability analysis of digital circuits”.
In: IEEE Transactions on Circuits and Systems 26.9 (Sept. 1979), pp. 685–
693. doi: 10.1109/tcs.1979.1084687.

[47] J. Gracia, J. Baraza, et al. “Comparison and application of different
VHDL-based fault injection techniques”. In: IEEE International Sympo-
sium on Defect and Fault Tolerance in VLSI Systems. IEEE Comput. Soc,
2001. doi: 10.1109/dftvs.2001.966775.

https://doi.org/10.1109/tns.1983.4333161
https://doi.org/10.1109/tns.2004.839172
https://doi.org/10.1109/tns.2004.839172
https://doi.org/10.1109/tns.2013.2255624
https://doi.org/10.1109/icst49551.2021.00049
https://doi.org/10.1109/trustcom/bigdatase/icess.2017.250
https://doi.org/10.1109/tcs.1979.1084687
https://doi.org/10.1109/dftvs.2001.966775


B I B L I O G R A P H Y 111

[48] J. Gracia-Moran, J. Baraza-Calvo, et al. “Effects of Intermittent Faults on
the Reliability of a Reduced Instruction Set Computing (RISC) Micro-
processor”. In: IEEE Transactions on Reliability 63.1 (2014), pp. 144–153.
issn: 0018-9529.

[49] P. Gupta, A. Kahng, et al. “Routing-aware scan chain ordering”. In: Pro-
ceedings of the ASP-DAC Asia and South Pacific Design Automation Confer-
ence. IEEE, 2003. doi: 10.1109/aspdac.2003.1195137.

[50] J. Guyomarc’h and J.-B. Hervé. “Static and Verifiable Memory Parti-
tioning for Safety-Critical Systems”. In: IEEE International Symposium
on Software Reliability Engineering Workshops (ISSREW). 2020, pp. 79–84.
doi: 10.1109/ISSREW51248.2020.00041.

[51] ISO 26262. Road vehicles – Functional safety – Part 5: Product development
at the hardware level. 2018.

[52] ISO 26262. Road vehicles – Functional safety – Part 6: Product development
at the software level. 2018.

[53] R. B. Jones. Symbolic Simulation Methods for Industrial Formal Verification.
Springer US, 2002. doi: 10.1007/978-1-4615-1101-4.

[54] D. Kästner and C. Ferdinand. “Efficient verification of non-functional
safety properties by abstract interpretation: Timing, stack consumption,
and absence of runtime errors”. In: Proceedings of the 29th International
System Safety Conference ISSC2011, Las Vegas. 2011.

[55] D. Kästner, B. Schmidt, et al. “Analyze This! Sound Static Analysis for
Integration Verification of Large-Scale Automotive Software”. In: Pro-
ceedings of the SAE World Congress 2019. SAE International, 2019.

[56] D. Kästner. “Applying Abstract Interpretation to Demonstrate Func-
tional Safety”. In: Formal Methods Applied to Industrial Complex Systems.
John Wiley & Sons, Inc., July 2014, pp. 191–234. isbn: 9781119004707.
doi: 10.1002/9781119004707.ch8.

[57] D. Kästner and C. Ferdinand. “Proving the Absence of Stack Over-
flows”. In: Lecture Notes in Computer Science. Springer International Pub-
lishing, 2014, pp. 202–213. doi: 10.1007/978-3-319-10506-2_14.

[58] D. Kästner, L. Mauborgne, et al. “High-Precision Sound Analysis to
Find Safety and Cybersecurity Defects”. In: 10th European Congress on
Embedded Real Time Software and Systems (ERTS 2020). Toulouse, France,
2020. url: https://hal.archives-ouvertes.fr/hal-02479217.

[59] D. Kästner, M. Pister, et al. “Confidence in Timing”. In: SAFECOMP
2013 - Workshop SASSUR (Next Generation of System Assurance Approaches
for Safety-Critical Systems) of the 32nd International Conference on Computer
Safety, Reliability and Security. Toulouse, France: HAL, 2013. url: http:
//hal.archives-ouvertes.fr/SAFECOMP2013-SASSUR/hal-00848489.

https://doi.org/10.1109/aspdac.2003.1195137
https://doi.org/10.1109/ISSREW51248.2020.00041
https://doi.org/10.1007/978-1-4615-1101-4
https://doi.org/10.1002/9781119004707.ch8
https://doi.org/10.1007/978-3-319-10506-2_14
https://hal.archives-ouvertes.fr/hal-02479217
http://hal.archives-ouvertes.fr/SAFECOMP2013-SASSUR/hal-00848489
http://hal.archives-ouvertes.fr/SAFECOMP2013-SASSUR/hal-00848489


112 B I B L I O G R A P H Y

[60] D. Kästner and J. Pohland. “Program Analysis on Evolving Software”.
In: CARS 2015 - Critical Automotive applications: Robustness & Safety. Ed.
by M. Roy. Paris, France, 2015. url: https://hal.archives-ouvertes.
fr/hal-01192985.

[61] D. Kästner and S. Wilhelm. “Generic Control Flow Reconstruction from
Assembly Code”. In: Proceedings of the joint conference on Languages, com-
pilers and tools for embedded systems software and compilers for embedded sys-
tems - LCTES/SCOPES '02. ACM Press, 2002, pp. 46–55. doi: 10.1145/
513829.513839.

[62] J. Kloos, T. Hussain, et al. “Risk-Based Testing of Safety-Critical Embed-
ded Systems Driven by Fault Tree Analysis”. In: IEEE Fourth Interna-
tional Conference on Software Testing, Verification and Validation Workshops.
IEEE, Mar. 2011. doi: 10.1109/icstw.2011.90.

[63] P. Kocher, J. Horn, et al. “Spectre Attacks: Exploiting Speculative Execu-
tion”. In: 2019 IEEE Symposium on Security and Privacy (SP). IEEE, May
2019. doi: 10.1109/sp.2019.00002.

[64] kokke. AES. Accessed: 2021-04-30. url: https://github.com/kokke/
tiny-AES-c.

[65] W. Kunz, J. Marques-Silva, et al. “Sat and ATPG: Algorithms for Boolean
Decision Problems”. In: Logic Synthesis and Verification. Springer US,
2002, pp. 309–341. doi: 10.1007/978-1-4615-0817-5_12.

[66] J. Lahtinen. “Verification of Fault-Tolerant System Architectures Using
Model Checking”. In: Lecture Notes in Computer Science. Springer Inter-
national Publishing, 2014, pp. 195–206. doi: 10.1007/978-3-319-10557-
4_23.

[67] D. Larsson and R. Haehnle. “Symbolic Fault Injection”. In: Proc. 4th
International Verification Workshop (Verify) in connection with CADE-21.
Vol. 259. 2007, pp. 85–103.

[68] H. M. Le, V. Herdt, et al. “Resilience evaluation via symbolic fault injec-
tion on intermediate code”. In: 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, Mar. 2018. doi: 10.23919/date.
2018.8342123.

[69] M. L. Li, P. Ramachandran, et al. “Accurate microarchitecture-level fault
modeling for studying hardware faults”. In: IEEE 15th International Sym-
posium on High Performance Computer Architecture. Feb. 2009, pp. 105–
116.

[70] M. Lipp, M. Schwarz, et al. “Meltdown: Reading Kernel Memory from
User Space”. In: (2018), pp. 973–990. url: https://www.usenix.org/
conference/usenixsecurity18/presentation/lipp.

[71] S. Marchese and J. Grosse. “Formal Fault Propagation Analysis that
Scales to Modern Automotive SoCs”. In: DVCON Europe. 2017.

https://hal.archives-ouvertes.fr/hal-01192985
https://hal.archives-ouvertes.fr/hal-01192985
https://doi.org/10.1145/513829.513839
https://doi.org/10.1145/513829.513839
https://doi.org/10.1109/icstw.2011.90
https://doi.org/10.1109/sp.2019.00002
https://github.com/kokke/tiny-AES-c
https://github.com/kokke/tiny-AES-c
https://doi.org/10.1007/978-1-4615-0817-5_12
https://doi.org/10.1007/978-3-319-10557-4_23
https://doi.org/10.1007/978-3-319-10557-4_23
https://doi.org/10.23919/date.2018.8342123
https://doi.org/10.23919/date.2018.8342123
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp


B I B L I O G R A P H Y 113

[72] R. Mariani, G. Boschi, et al. “Using an innovative SoC-level FMEA
methodology to design in compliance with IEC61508”. In: Design, Au-
tomation & Test in Europe Conference & Exhibition. IEEE, Apr. 2007. doi:
10.1109/date.2007.364641.

[73] MathWorks. Fixed-Point Fuel Rate Control System. Accessed: 2021-04-02.
url: https://www.mathworks.com/help/fixedpoint/ug/fixed-point-
fuel-rate-control-system.html.

[74] D. Mavis and P. Eaton. “Soft error rate mitigation techniques for mod-
ern microcircuits”. In: IEEE International Reliability Physics Symposium.
Proceedings. 40th Annual (Cat. No.02CH37320). IEEE, 2002. doi: 10.1109/
relphy.2002.996639.

[75] A. Miné. “Static analysis of run-time errors in embedded real-time par-
allel C programs”. In: Logical Methods in Computer Science (LMCS) 8.26

(1 2012), p. 63.

[76] A. Miné and D. Delmas. “Towards an industrial use of sound static
analysis for the verification of concurrent embedded avionics software”.
In: 2015 International Conference on Embedded Software (EMSOFT). IEEE,
Oct. 2015. doi: 10.1109/emsoft.2015.7318261.

[77] MISRA. MISRA-C. url: https://www.misra.org.uk/misra-c/.

[78] M. D. Nguyen, M. Thalmaier, et al. “Unbounded Protocol Compliance
Verification using Interval Property Checking with Invariants”. In: IEEE
Transactions on Computer-Aided Design 27.11 (Nov. 2008), pp. 2068–2082.

[79] OneSpin Solutions GmbH a Siemens Business. OneSpin 360 DV-Verify.
url: https://www.onespin.com/products/360-dv-verify/.

[80] G. Papadimitriou and D. Gizopoulos. “Demystifying the System Vul-
nerability Stack: Transient Fault Effects Across the Layers”. In: 2021
ACM/IEEE 48th Annual International Symposium on Computer Architecture
(ISCA). IEEE, June 2021. doi: 10.1109/isca52012.2021.00075.
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