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Introduction

This thesis is based on motivation from two groups of scientific fields: engineering and mathe-
matics. It consists of theoretical results which were highly motivated and supported from the
applied perspective.

On the one hand, engineering sciences such as civil engineering and materials science want
to design sustainable and cost-effective materials with desirable mechanical properties. For that
purpose, computational models which estimate mechanical properties from microstructural prop-
erties and production parameters are made. Hence, microstructural properties are characterized
from real samples. In our case, computed tomography (CT) is used to non-destructively gain
insight into the material microstructure. This results in large 3d images which are usually pro-
cessed by means of algorithms or methods from the fields of image processing and computer
vision.

On the other hand, mathematics is focused on algorithm and method design and its properties.
Here, the image is interpreted as a composition of different objects or structures. In many cases,
objects are anisotropic and occur at different scales. Hence, scale and orientation combined with
object position in the image convey important information related to the understanding of the
image. For automatic (non-manual) analysis of the object, object features are extracted and
used for the characterization of the class to which the object belongs. The natural assumption
of human vision is that we can extract these features regardless of object position, orientation,
or scale. This assumption is formalized through the concepts of equivariance and invariance. In
the literature, translation invariance, i.e. invariance to the position of the object, in the image is
well-studied in contrast to the orientation and scale invariance. For these reasons, Part I deals
with the directional filtering for various types of materials, while Part II focuses on the scale in
the context of crack segmentation.

The goal of this thesis is to bring these engineering and mathematics closer and to design
methods which satisfy mathematical formalism and rigour, and help engineers practically process
the large amounts of data that they nowadays produce. Next, we give a more detailed overview
of the thesis content and highlight its main contributions.

In Part I, we deal with lower dimensional and directed structures in engineering materials
such as cracks, fibers, or closed facets in foams. The characterization of such structures in
3d is of particular interest in various applications in materials science. In image processing,
knowledge of the local structure orientation can be used for structure enhancement, directional
filtering, segmentation, or separation of interacting structures. The idea of using banks of directed
structuring elements or filters parameterized by a discrete subset of the orientation space is
proven to be effective for these tasks in 2d. However, this class of methods is prohibitive in 3d
due to the high computational burden of filtering on a sufficiently fine discretization of the unit
sphere. Our first contribution of Part I is a method for 3d voxelwise orientation estimation and
directional filtering inspired by the idea of adaptive refinement in discretized settings (see [1]
and Chapter 2). Furthermore, an operator for the distinction between isotropic and anisotropic
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structures is defined based on our method. This operator utilizes orientation information to
successfully preserve structures with one or two dominant dimensions. Finally, the feasibility
and effectiveness of the method are demonstrated on 3d micro-computed tomography images
in three use cases: detection of a misaligned region in a fiber-reinforced polymer, segmentation
of cracks in concrete, and separation of facets and strut system in partially closed foams. As a
second contribution of Part I, by varying the length of the line structuring element, our method is
used to construct granulometry in the sense of mathematical morphology and characterize fiber
length and orientation distributions in fiber reinforced polymers produced by either 3d printing
or by injection moulding (see [2] and Chapter 3).

In Part II, we investigate possible applications of the Riesz transform as a feature extractor
motivated by the need to achieve scale invariance of neural networks. In convolutional neural
networks, scale invariance is typically achieved by data augmentation. However, when presented
with a scale far outside the range covered by the training set, neural networks may fail to gener-
alize. As a first contribution of Part II, we introduce the Riesz network, a novel scale invariant
neural network (see [3] and Chapter 6). Instead of standard 2d or 3d convolutions for combining
spatial information, the Riesz network is based on the Riesz transform which is a scale equivari-
ant operation. As a consequence, this network naturally generalizes to unseen or even arbitrary
scales in a single forward pass. As an application example, we consider detecting and segmenting
cracks in tomographic images of concrete. In this context, ’scale’ refers to the crack thickness
which may vary strongly even within the same sample. To prove its scale invariance, the Riesz
network is trained on one fixed crack width. We then validate its performance in segmenting
simulated and real tomographic images featuring a wide range of crack widths.
Furthermore, scattering networks have shown how to design powerful and robust hierarchical
image descriptors which do not require a lengthy training procedure and which work well with
very few training examples. The scattering network also represents a simple mathematical model
proxy of neural network. However, scattering networks rely on sampling of scale dimension and
hence become sensitive to scale variations and are unable to generalize to unseen scales. As a
second contribution of Part II, we define an alternative feature representation based on the Riesz
transform (see [4] and Chapter 8). It inherits the property of scale equivariance from the Riesz
transform and completely avoids sampling of the scale dimension. Mathematical foundations
behind this representation are laid out and analyzed. This representation is compared to the
scattering network with 4 times more features and performs comparably well on texture classifi-
cation with an interesting addition: scale equivariance. Our method gives superior performance
when dealing with scales out of the training set distribution. The usefulness of this property
is further shown on the digit classification task, where accuracy remained stable even for scales
that are 4 times larger than the scale in the training set.
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Chapter 1

Introduction

In the past few decades, micro-computed tomography (µCT) has gained momentum in materi-
als science and engineering for the purpose of detailed and fully 3d investigation of materials’
micro-structures. Materials of interest include concrete, fiber-reinforced materials, foams, woven,
and non-woven materials. Characterization of the geometric micro-structure enables understand-
ing and modelling of the material structure and gives a unique insight into the connection of
parameters of the production process and the resulting material’s properties.

Many materials have a highly anisotropic structure and contain lower dimensional or directed
features. In these cases, classical image processing methods such as noise reduction filters should
be used carefully to preserve directional information as well as thin lower dimensional features.
Moreover, nowadays image sizes well above 2 0003 pixels have become common. Therefore,
efficient image processing techniques that can handle this massive amount of 3d data are needed.

Many methods in image processing have been developed for the 2d case and extended to
3d. Hence, 2d image processing methods often serve as an inspiration for methods in 3d. In
2d, robust smoothing, segmentation, and analysis of fibrous structures is achieved by rotated
anisotropic Gaussian filters whose main axis orientation is evenly sampled on the unit semi-circle
[5, 6]. The optimal orientation is then chosen pixelwise. However, Wirjadi [7] shows that in 3d,
this approach becomes computationally too intensive as the number of orientations to be checked
to sample as densely as in 2d increases enormously. The idea of filtering using a fine sampling of
the orientation space can nevertheless be utilized in 3d. To this end, we reduce the computational
burden by checking only a subset of all orientations (Figure 1.1). This subset is adapted to the
current pixel based on orientation information derived from its local neighbourhood. This idea
of adaptive filtering around local orientation serves as a central building block of two methods
developed in Part I.

Chapter 2 has a focus on directional filtering and orientation analysis. The goal here is to
design a general method based on the idea of adaptive filtering which can efficiently remove noise
and distinguish structures in 3d CT images based on their dimensionality. This method is proven
to be useful for analysing various types of materials: fiber-reinforced composites, concrete, and
partially closed foams. This chapter is based on [1].

Chapter 3 shows an application only for fiber-reinforced composites. Here, we extend the
method from Chapter 2 to measure fiber length voxelwise using the concept of granulometry from
the field of mathematical morphology. Using voxelwise length information and local orientation,
the number-weighted fiber length and orientation distributions can be estimated. We apply this
method for the comparison of microstructural properties of 3d printed and injection moulded
fiber-reinforced composites. This chapter is based on [2].

12
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Figure 1.1: Example of a search cone (red) around (θ, φ) = (2, 2) (green, in spherical coordinates,
units: radians) on the unit half-sphere (blue) and their discretized counterparts. This depicts the idea
behind adaptive filtering: filter only on the orientations (red points) around the estimated orientation
(green point) and avoid filtering on the remainder of the orientation space (blue points). The parameters
are δmax = 0.5 and n = 24, see Section 2.3 for their interpretation.
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Chapter 2

3d adaptive morphology

In this chapter, we introduce an adaptive framework for directional filtering and orientation
analysis in 3d. Our method requires an initial orientation estimation in each voxel to start with.
Filtering is then performed only on orientations close to the given initial orientation (Figure 1.1).
This drastically reduces the run-time compared to classical directional filter banks which search
the full evenly sampled orientation space.

In 3d, lower dimensional structures may be either linear (1d) or planar (2d). To be able to
treat both cases, we use two classes of structuring elements (SEs): line segments and squares.
We estimate the initial orientation by the established method based on the eigenvectors of the
Hessian matrix or more roughly by probing the main directions (main axes, plane, and space
diagonals) induced by the voxel grid and choosing one of them. Furthermore, following an idea
of [8], we derive a local structure shape operator by comparing filter responses with varying SE
in orthogonal spaces. Finally, we apply our method to three tasks in the analysis of materials
structures based on computed tomography (CT): segmenting misaligned regions in a polymer
reinforced with long glass fibers, segmentation of cracks in concrete, and facet identification in
ceramic foams.

To summarize, we devise a method for fast and yet effective directional filtering in 3d and an
operator for characterizing local structure shape. Both prove to be useful for analyzing materials
structures highly relevant in practice.

2.1 Connections to adaptive mathematical morphology and
filter banks

Our approach combines ideas from two fields of classical image processing: filter steerability
or filter banks, and adaptive mathematical morphology. So far, these methods were mostly
developed for and applied to 2d images. In 2d, directional filter banks are based on the principle of
filtering in a set of orientations evenly-sampled on the unit semi-circle and selecting an orientation
based on the maximal/minimal filter response [6, 9, 10, 11, 12, 13]. This class of methods has
been applied to the tasks of filtering, segmentation, and orientation analysis.

In 2d, an even sampling of the unit semi-circle is easily obtained by choosing equidistant
points on the interval [0, π). In 3d, sampling of the unit semi-circle is replaced by sampling on
the unit half-sphere [8, 14, 15]. Achieving an even sampling is not a trivial task [5, 14]. Sets
of exactly equidistant points on the unit sphere exist only for certain numbers of points [16],
with the simplest examples being N = 2 and N = 6. For other numbers of points, sets of
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approximately equidistant points can be computed using optimization methods. See [5, 17] for
overviews on this topic. Wirjadi [5, 7] adapted the optimization method from [18] to the upper
half-sphere.

Classical mathematical morphology uses fixed structuring elements (SEs) for filtering (e.g.
dilation, erosion, opening, or closure). Adaptive morphology expands these concepts by varying
shape and/or size of the SE in each pixel location depending on local image information. Most
common features used for selecting adaptive SEs are local gray value differences [19, 20], local
orientation [21, 22], local structure tensor [23], salience [24], or local path alignment with the
image structure [25, 26, 27].

Our approach is closely related to [23] who construct elliptical SEs whose axis orientations and
sizes are derived from the eigenvectors and eigenvalues of the local structure tensor. Alternatively,
directional information can be determined by the analysis of the Hessian matrix in each pixel. The
extracted directions have been used for directional line filtering [21, 22], adaptive morphological
filtering (erosion or dilation with linear SE) or anisotropic Gaussian filtering for enhancement of
linear structures [28].

Many approaches in adaptive mathematical morphology rely on constructing complex SEs
which in 3d result in enormous run-times and require significant computational resources [29].
Hence, 3d applications of adaptive morphology are still rare, with a few exceptions [19, 22, 26].

2.2 Preliminaries

Let D ⊂ Z3 be a discrete grid. Then, LD = {I|I : D → R+, x 7→ I(x) ∈ R+} is the family of
all mappings from the grid D to the real non-negative numbers. An element I ∈ LD is called
an image.

Most morphological operations and image filters require the choice of a SE (or filter mask).
A SE B is defined as a subset of Z3. Here, we only consider reflection invariant SEs (x ∈ B ⇐⇒
−x ∈ B) with 0 ∈ B, namely line segments and squares. For any pixel (lattice point) p ∈ D,
B (p) = {m ∈ D|m − p ∈ B} refers to a copy of B translated to the pixel p. Then, some filter
γB : LD → LD is defined as

γB(I)(p) =
⊗

{I (m) |m ∈ B (p)},

where
⊗

represents the filtering operation. For instance, computing the mean or median of the
gray values yields a mean or median filter while computing the minimum or maximum yields an
erosion or dilation, respectively.

Line SEs of a given length can uniquely be parametrized by their orientation. Square SEs will
be parametrized by their normal orientation. However, squares are not invariant with respect
to rotations around the normal orientation. To obtain a unique parametrization, we choose one
of the square’s edges to be contained in the intersection of the xy plane and the plane with
the desired normal orientation. The center of the square is then shifted to the origin to ensure
reflection invariance. In the special case that the normal orientation is the z axis, the square
is aligned to the x and y axes with center in the origin. Line SEs are discretized using the
Bresenham line algorithm [30]. Starting from the center pixel, the line is discretized only in
one direction and reflected to ensure symmetry of the SE. In this way, the line is sampled in a
translation invariant way but efficient implementation1 is not possible. For detailed discussion
on line discretization, we refer to [31]. Square SEs are constructed by discretizing one of their
edges and shifting it along the orthogonal edge.

1We refer to the efficient implementation from [10] whose computation time is constant and independent of
line length. It is based on exploiting periodicity in the line discretization.
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Figure 2.1: Discretization of S2
+ (right) by extrapolation from the unit circle in 2D (left) for n = 24.

Blue dots represent the uniform discretizations of the circle (left) or the sphere (right), while red dots
(left) are projections of points from the unit circle to the unit square.

The unit sphere in R3 will be denoted by S2. Due to the symmetry of the SEs, orientations
on the unit half-sphere S2

+ := {u = (u1, u2, u3) ∈ R3 : ||u|| = 1, u3 ≥ 0} are sufficient for the
parametrization. In practice, only finitely many orientations can be considered which requires
an even sampling of the orientations on S2

+ to avoid introducing systematic errors. We follow
the approach of [17] which exploits analogies from the 2D case to compute fast and easily an
approximately even sampling on S2

+ without complicated optimization. The idea is to evenly
discretize the unit circle with n points which are then projected onto the unit square. Applying
this procedure in the three coordinate planes (xy, yz, and xz) yields a sampling on the unit cube.
The sampling points are then projected on the unit sphere, see Figure 2.1, and finally restricted
to S2

+.
The parameter n should be a multiple of 8 to ensure that the coordinate axes and diagonals are

contained in the sampling. The total number of sampled points on S2
+ is N = n2/8+ (n/4+1)2.

2.2.1 Estimating input orientations

Our method for directional filtering and orientation estimation from Section 2.3 requires roughly
estimated local orientations as input. We suggest two ways to obtain this input.

Local orientation from Hessian matrix

An established approach for estimating orientation in 3d images is by analysis of the eigenvalues
and eigenvectors of the Hessian matrix [32]

Hσ =
(
∇2
)
(I ∗ gσ) , (2.1)

see e.g. [7]. Here, gσ : D → R+, gσ(x) = 1
(2πσ2)3/2

e−
||x||2

2σ2 is a Gaussian kernel with standard

deviation parameter σ. The parameter σ affects the scale of the observation and should be chosen
depending on local structure thickness.
Throughout this chapter, the objects of interest will be bright structures on dark background.
In this case, the eigenvalues of high absolute value have a negative sign [33]. Thus the largest
eigenvalue is in fact the smallest in absolute value and vice versa. Hence, the eigenvector of the
Hessian matrix Hσ with the largest eigenvalue represents the direction of the smallest change of
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Figure 2.2: Base axis search. The 13 orientations from pixel 0 on the upper half-sphere: 4 green in the
xy plane, 3 red in the first diagonal plane, 3 cyan in the xz plane, 3 blue in the second diagonal plane.

gray values and is used to estimate the local structure orientation in the image when using a line
segment as SE. When using the square SE, we use the eigenvector corresponding to the smallest
eigenvalue to estimate the normal direction, as this vector represents the orientation yielding the
strongest change of gray values.

Another established approach for this task is to use the structure tensor [7, 34], which is
based on the first order derivatives:

Sσ,ρ = gρ ∗ ((∇f ∗ gσ)(∇f ∗ gσ))T ,

where ρ is an additional spatial smoothing parameter on the tensor space. The orientation is
then estimated from the eigenvectors as done for the Hessian matrix.

Base axis search

In some cases, local orientation cannot be estimated well via the Hessian matrix, for instance
due to poor contrast, noise, imaging artifacts or interaction between structures (as for example
in fiber-reinforced materials with high fiber volume fraction). In this case, we consider a small
subset of orientations and use the orientation of maximal response as input. For example, the
subset consisting of the orientations of the edges, face and space diagonals of the lattice’s unit
cell yields a test set consisting of 13 orientations (Figure 2.2).

This way of initial orientation estimation may appear rather rough. However, it will be
refined and adapted to the local image structure by the subsequent adaptive filtering.

2.3 3d adaptive line morphology

We aim at efficient and robust directional filtering and orientation estimation in large 3D im-
ages. Our main strategy is fine filtering adapted to a given local input orientation. This way,
computationally expensive filtering on all sampled orientations can be avoided.

In practice, we assume that each image pixel is assigned a rough estimate of the local ori-
entation of the image content obtained by one of the methods described above. Input images
for the adaptive filter are thus an original image I ∈ LD, and an image of the same size as I
containing input orientations v(p) ∈ S2

+ for each pixel p ∈ I.
We then consider filter banks with line segment or square SEs that are uniquely parametrized

by the line orientation or square normal, respectively. For selecting a subset of filter orientations
from the sphere discretization, we define a proximity measure on the parameter space and filter

18



on the much smaller subset of orientations that are close to the given input orientation. Due to
the restriction to a subset, we can afford to sample the subspace of the parameter space very
finely. This allows to align the SEs precisely to the local image content. We measure proximity
by the angular distance between the input orientation in a pixel and the orientations of the SE.
That is, for two points u,w ∈ S2

+, we set

d (u,w) = arccos (|u · w|) , (2.2)

where ”·” denotes the standard scalar product.
Let S = {u1, ..., uN} be an even sampling of the unit half-sphere. Then, for every pixel p ∈ I
with input orientation v(p) ∈ S2

+ we define the search cone for δmax > 0 as

C (p) = {u ∈ S : d (u, v (p)) ≤ δmax}, (2.3)

see Figure 1.1 for an illustration.
For line or square SEs of half-length L parametrized by orientation u ∈ S2

+, the filtering op-
eration is denoted as γu,SE : LD → LD. Here, SE ∈ {ℓL, sL} represents the type of structuring
element (ℓ line segment or s square) used for filtering. For every pixel p we then report the
maximal filter response on its search cone C (p) and the corresponding orientation by setting

ΓSE
max(I) (p) = max

u∈C(p)
[γu,SE (I) (p)], (2.4)

and
ΓSE
arg(I) (p) = argmax

u∈C(p)

[γu,SE (I) (p)]. (2.5)

Note that the correct full notation would be ΓSE
max(I, v) for input orientation image v : D → S2

+.
We restrict to ΓSE

max(I) for the sake of easier readability. In summary, parameters of the method
are the sampling size N of the unit (half-)sphere, the bound δmax on the angular distance defining
the size of the search cone, and the half-length of the SE L (half edge length in case of a square)
measured in the maximum (ℓ∞) metric2.

2.3.1 Operator for local shape characterization

Identification and characterization of lower dimensional structures is needed in many applications.
For example, fibers are locally one-dimensional substructures of the image while cracks are often
locally planar. To formalize this, we differentiate three types of structures in 3d images based
on their dimension following [33]: blob-like (3d), plate-like (2d), and tubular (1d).

Information on the local dimension or shape can be obtained by comparing filter responses
with line and square as SE in orthogonal spaces. To be more precise, in a pixel p, filter responses
of a square filter with normal u and a line segment filter oriented in u are compared via

Raniso (p) = | [γu,ℓL (I)] (p) − [γu,sL (I)] (p) |. (2.6)

Note that the operator is actually a function of the input image I and the orientation image,
but again we opt for the more compact notation omitting the orientation dependency.
If the structure is isotropic, filter responses in orthogonal directions should be similar and hence
Raniso (p) tends to be low. On the other side, if the structure is anisotropic, filter responses tend

2Maximum or Chebyshev distance metric here refers to the following distance function d∞ : Rd × Rd → R+

defined as d∞(a, b) = maxi=1,··· ,d |ai − bi|. The reason why we prefer maximum distance over Eucledian distance
is that we want to filter on lines that have approximately the same number of voxels.
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Figure 2.3: Example: Removing a 3D ball from a 2D plate and a 1D fiber from a binary image by
using the shape operator Raniso as defined in (2.6) with SE = ℓ with γu,ℓL being a median filter.

to differ because line and plate cannot be fitted to the structure at the same time. Hence, high
values of Raniso (p) indicate local anisotropy.

The orientation u = ΓSE
arg(I) (p) is determined by equation (2.5) with SE chosen depending

on the goal of the analysis: If SE = s, then Raniso distinguishes 2d from 3d structures. If
SE = ℓ, then Raniso differentiates 3D structures on the one hand and 1d/2d structures jointly
on the other hand, see Figure 2.3 for a toy example.

Junctions, where two or more oriented structures meet as in Figure 2.3 and Figure 2.7, are
hard to classify based on local orientation or anisotropy as the superposition may no longer
feature a clearly preferred orientation. There are several works in the literature [8, 17, 28]
that propose ways to deal with junctions when segmenting vessels. In 2d, Su et al [28] detect
junction points in a post-processing step and handle them by a tailor-suited filter. That results in
increased computational burden and run-time. Altendorf [17] detects junctions, removes them,
and finally reconnects fibers based on local orientation. Sazak et al [8] achieve correct junction
handling in 3D, mostly thanks to covering the full sampling space on several scales.

We adapt the operator Raniso from equation (2.6) for improved junction handling as

R∗
aniso (p) = |ΓsL

max(I) (p)− (ΓℓL
max(I

c))c (p) |, (2.7)

where ΓℓL
max(I

c) represents filtering with SE = ℓ on Ic i.e. on the inverted or negative image of
I with Γs

arg(I) as an input orientation and δmax = 0.5. This operator R∗
aniso is well suited for

detecting junctions of locally plate-like structures as in Figure 2.7, comes however also at the
cost of increased computational effort.

We give a short intuition behind this operator on crack junction example (Figure 2.7). The
operator ΓsL

max(I) (p) adjusts the plane normal using our adaptive approach to one of the cracks
in the junction. Hence, the filter response here should be high. When filtering with a line on the
inverse image with ΓℓL

max(I
c), adaptive line filtering has the highest filter response when the line

is contained within the concrete. The same would apply to single cracks. After inverting back
the filter response we get the lowest filter response and hence the difference between the two
operators is high in the junctions. When the same operations are performed on a 3d (spherical)
object, R∗

aniso will still remain low because of the isotropic local neighbourhood. Hence, this
operator is able to distinguish between intrinsically 3d objects and intersections between two
overlapping 2d objects.
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Method Time (s)
Our 45.3
Base 166.7

Base (efficient) 75.5

Table 2.1: Run-time comparison of our method with brute-force approach and efficient algorithm of
[10] for parameters L = 5, n = 16, δmax = 0.5, and SE = ℓ applied to simulated crack image of size
2563.

Figure 2.4: Run-time analysis for varying parameter configurations on the image from Table 2.1.
Left: varying discretization parameter n for δmax = 0.5 and L = 5, right: varying half-length parameter
L for δmax = 0.5 and n = 16. Here, the parameter n refers to the number of sampled points on the
intersection of unit sphere and xy plane in contrast to the total number of sampled points on the sphere
N , as described in Preliminaries.

2.3.2 Improved efficiency

Here, we argue why our approach is more efficient than filter banks using all evenly sampled
points on S2

+. For sampling N orientations, the filter bank would run N filters per pixel. For
our adaptive filtering, the number of orientations considered per pixel can be approximated by
Acone
Asphere

N , where Acone = 2π(1− cos(δmax)) is the surface area of the spherical cap representing

the search cone (red region in Figure 1.1) and Asphere = 2π is the surface area of S2
+. This yields

(1− cos(δmax))N orientations to be considered in each pixel.
For δmax = 0.5, that we use throughout the chapter, this equals 0.1224N . For the adaptive

filtering with base axis search input, 13 additional scans are required for the computation of
the initial orientation estimate. Hence, the total number of filtered orientations per pixel equals
13 + (1 − cos(δmax))N . This is smaller than N for all N ≥ 16. Note that according to [7]
a sampling with N = 98 is not sufficiently fine for local fiber orientation estimation. Thus,
efficiency is significantly improved.

For the case of adaptive filtering with input orientations derived from the Hessian, an explicit
formula is harder to find as the complexity of the input orientation estimation is the sum of
complexities of Gaussian filtering (O(mWmH +mWmD+mHmD) complexity3), finite difference
filters (O(mW ·mH ·mD) complexity), and the eigenvalue analysis. In practice, it turned out to
be even faster than the base axis search.

3For an image of size mW ·mH ·mD voxels. The Gaussian kernel is separable and there are O(1) per pixel in
recursive implementations of a 1D Gaussian filter.
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Our method is compared with methods for directional line filtering (SE = ℓ) in all sampled
orientations and run-times are given in Table 2.1 and Figure 2.4. Our method could be extended
brute force to line filtering in every orientation by setting δmax = π

2 , i.e. by selecting the
largest possible search cone. We denote this approach by ”Base” in Table 2.1. However, more
efficient implementations of directional filters have been suggested [10, 35, 36, 37, 38]. These
implementations exploit periodicity in the SE discretization to achieve linear complexity in image
size and constant complexity in the length of the SE. We compare our method to the one of [10],
denoted by ”Base (efficient)” in Table 2.1. As expected, our method is more than three times
faster than ”Base”. Furthermore, our method also proves to be faster than ”Base (efficient)”
for L = 5. However, for increasing half-length L, ”Base (efficient)” will eventually4 become
faster than our method due to constant complexity in the half-length L (Figure 2.4 right).
Unfortunately, our method cannot be implemented in this way, since each pixel has its own
search cone i.e. its own subset of orientations for filtering.

2.4 Applications

We now apply the proposed methodology to three types of structures: fibers, cracks, and partially
closed foams. Fibers are long, locally cylindrical objects that can be detected using 1d line SEs.
Cracks can be seen as 2d surfaces which can locally be captured by a 2d square SEs. Since plate-
like cracks have to be distinguished from blob-like pores, our local shape operator is needed.
Finally, in ceramic foams, essentially one-dimensional struts and essentially two-dimensional
closed walls are intertwined, but shall be analyzed separately.

All run times reported in the following are observed using a machine equipped with an Intel
i7-8665U processor running at 1.90 MHz and 16 GB of RAM, running on Linux OS.

2.4.1 Use case 1: Misaligned region segmentation in a GFRP

Glass fiber reinforced polymers (GFRP) are widely used in light-weight construction. Mechanical
properties of the material like strength and stiffness are strongly anisotropic depending on the
local orientation of the fibers in the material. Therefore, fiber orientation analysis plays an
important role in developing fiber reinforced composites and dimensioning parts made of them.
A common way to produce this type of materials is injection molding. During this process, fibers
essentially follow the flow. However, it is well known that fiber orientations deviate in a central
layer whose exact characteristics depend on the production parameters. Local fiber orientations
can be predicted by numerical simulations, but prediction gets harder with increasing fiber length
and fiber volume fraction. Quantifying the misalignment helps to understand how production
parameters influence it and to check the quality of flow simulations [39].

Procedures for detecting anomaly regions are based either on orientation analysis using the
Hessian matrix, see [40], or on fiber separation and subsequent analysis of the orientations of
these individual fibers. In many cases, single fiber separation is not possible due to sample
properties or insufficient resolution. This is a particular problem in materials with high fiber
volume fraction, where fibers frequently touch even if the fiber cross-section is sufficiently well
resolved. In these cases, Hessian based orientation analysis may be locally unstable. We thus
use the base axis search for estimating input orientations.

We reconsider one of the 3d images of GFRP discussed by [39]. Samples and CT images are
provided by the Leibniz Institute for Composite Materials (IVW) in Kaiserslautern, Germany.

4By using linear interpolation one can estimate that this should happen when the half-length L is close to 100.
However, for the image size of 2563 used here, many voxels will be affected by edge effects.
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(a) Original reconstructed CT image (b) Image (a) masked with segmented fiber component

(c) Fibers aligned with injection direction (d) Mean filter in 20× 20× 20 pixel cube applied to (c)

(e) Aligned region by thresholding (d)
overlaid on (a)

(f) Misoriented region (complement of (e))
overlaid on (a)

(g) Comparison 1: aligned region overlaid on (a) using
orientation from Hessian matrix (σ = 1)

(h) Comparison 1: misoriented region overlaid on (a)
using orientation from Hessian matrix (σ = 1)

(i) Comparison 2: aligned region overlaid on (a) using
orientation from structure tensor (σ = 1, ρ = 3)

(j) Comparison 2: misoriented region overlaid on (a) us-
ing orientation from structure tensor (σ = 1, ρ = 3)

Figure 2.5: Use case 1. Misaligned region detection in a long-glass-fiber-reinforced polymer: from
left to right, from top to bottom - 2d slice views of the input image, fiber component, fibers following
the injection direction, smoothed system of those fibers, region where fibers are aligned, and misaligned
region. Slices consist of 1 100× 500 pixels cropped from 1 100× 500× 200 pixels with spacing 4µm.



Figure 2.6: Use case 2. 2D slice views of crack detection by adaptive square filtering: input image I
(inverted version of the original image), standard median filter with 7 × 7 × 7 mask (for comparison),
ΓsL
max(I), and Raniso (from left to right). The image consists of 256 × 256 × 256 pixels with spacing

37.83µm.

We crop a sub-volume of 1 100× 500× 200 pixels, see Figure 2.5a).
Due to the high fiber volume fraction, fibers cannot be separated completely. Hence, we aim

at segmenting the misaligned region based on the estimated orientation ΓℓL
arg(I). This is achieved

through a four step procedure which includes:

1. orientation estimation,

2. separation of the fiber system based on orientation,

3. region detection using the dominant orientation,

4. post-processing.

It demonstrates the abilities of our improved adaptive orientation estimation. Step by step results
of the procedure are shown in Figure 2.5. Next we describe each step in detail.

In the first step, we apply our method using ΓℓL
arg(I) from equation (2.5) with a line SE with

parameters n = 40, L = 20, δmax = 0.5 using the median filter. This takes 98 minutes. In
the second step, the fiber component is segmented. Fiber bundles should provide more stable
orientation information than single fibers which may also be outliers. To extract the bundles, we
apply the approach of [41] to the image ΓℓL

arg(I). The method is based on the 2nd order orientation
tensor, roughly the 2nd moment of the local orientation, averaged over a small neighborhood,
see [7] for details. In fiber pixels, the orientation tensor has one dominant eigenvalue. Hence,
the ratio of the largest and the second eigenvalue can be used to select fiber bundles. The result
is shown in Figure 2.5b.

In the third step, the orientation image ΓℓL
arg(I) is masked with the detected fiber bundles.

A dominant orientation and its range are clearly visible from a 2d histogram of the remaining
parts of ΓℓL

arg(I) in spherical coordinates which enables separation of the aligned region. That is,
pixels whose orientation in spherical coordinates is in the range [1.3, 1.7]×[1.1, 1.9] are considered
aligned with the dominant orientation (y, thus vertical in the xy slices shown in Figure 2.5c). In a
final fourth step, a mean filter with a 30×30×30 filter mask (Figure 2.5d) and final thresholding
yield the aligned and misaligned regions (Figure 2.5e and 2.5f, respectively).

Note that the refined orientation estimation is crucial in this process. To show effective-
ness of our method, we use the same four-step procedure with one change: in the first step
we plug in the orientation estimation from the established methods. Applying the same frame-
work to the orientation data obtained from the Hessian matrix did not yield convincing results
(Figure 2.5g and 2.5h). Using the structure tensor [7, 34] instead yields slightly better results
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(Figure 2.5i and 2.5j). However, single misaligned fibers in the aligned region still cause artifacts,
and boundary and shape of the misaligned region remain less smooth and compact compared to
the one derived by our approach.

2.4.2 Use case 2: Crack segmentation

Concrete is the most used construction material. 3d imaging by µCT enables non-destructive
investigation of its internal structure in high resolution. In particular, damage processes and
crack formation can be analyzed which is vital for better understanding of the properties of
various concrete types and mixtures.

Crack segmentation in 3d images of concrete is challenging due to: (i) cracks being thin
structures of varying shape and thickness, and (ii) concrete being a highly heterogeneous ma-
terial with a variety of sub-types and components (e.g. pores, cement matrix, larger gravel,
reinforcement structures). In CT images, cracks can be distinguished from most other structure
components by means of their low gray value. However, cracks and pores, both being filled with
air, appear typically similarly dark. Hence, distinguishing both components requires additional
local shape characterization. We perceive cracks to be 2d structures being thin compared to
other concrete components. For their segmentation, we apply our operator Raniso from equation
(2.6) with input orientation v = ΓsL

arg(I) computed on the inverted image. Crack structures will
have high values of Raniso such that they can successfully be distinguished from ball-shaped
pores by simple thresholding.

We test our method on a 256×256×256 pixel simulated crack image. The concrete background
is derived from a sample provided by the Department of Civil Engineering, Rheinland-Pfalz
Technical University Kaiserslautern-Landau, and scanned at Fraunhofer ITWM with a pixel
edge length of 37.83µm. For details on the crack simulation and image synthesis, we refer to
[42].

Results are shown in Figure 2.6 for the parameters n = 16, L = 3, and δmax = 0.5 using
the median filter on a square. The initial orientations are estimated from the Hessian matrix.
The adaptive filtering using the input orientation from the Hessian matrix takes 57 seconds. For
comparison, we also show the original image filtered by a 7× 7× 7 median filter, i. e. the edge
length of the filter mask is equal to the SE edge length. Both filters reduce noise. The 7× 7× 7
median filter blurs the crack and reduces the contrast. Our filter ΓsL

max(I) is able to enhance the
crack structure while reducing background noise at the same time. Additionally, R∗

aniso allows
for a better handling of crack junctions than Raniso, see Figure 2.7.

Figure 2.7: Use case 2. Junction analysis on 3d crack image: Raniso (left) and R∗
aniso(right).

For the final segmentation, we threshold the output of R∗
aniso with lower and higher thresholds
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Single crack Junctions
P R F1 P R F1

Raniso 0.78 0.83 0.79 0.84 0.80 0.82
R∗

aniso 0.73 0.84 0.77 0.83 0.84 0.83
FF 0.80 0.79 0.76 0.78 0.87 0.82
TM 0.78 0.76 0.76 0.80 0.74 0.77

Table 2.2: Quantitative comparison of operators Raniso and R∗
aniso with Frangi filter (FF) and template

matching (TM).

and use the results as mask and marker image, respectively, in a morphological reconstruction
by dilation according to [43]. The higher threshold extracts just the crack centerline, while the
lower threshold extracts the full crack structure. The morphological reconstruction reduces noise
and ensures extraction of the crack as a connected component.

Since the crack was simulated, there exists an unambiguous ground truth to compare our
thresholded and post-processed result with (Figure 2.8). Overall, the crack structure is well cap-
tured in the segmentation, albeit being slightly smoothed. The boundary regions of pores being
erroneously segmented as crack can be removed by post-processing. Note that the morphological
reconstruction improves crack coverage compared to the simple thresholding applied earlier [42].

Table 2.2 provides further quantitative analysis and comparison with related methods. The
methods are tested on two sets of simulated cracks: a single crack (Figure 2.6) and cracks with
junctions appearing in the simulated images with two intersecting cracks. Crack intersections or
junctions are challenging because there is no single dominant crack direction (Figure 2.7). Each
set has five samples. Average values of Precision (P), Recall (R, true positive rate), and F1 score
are reported for a fixed parameter configuration. More details on these metrics can found in
Appendix D. For all methods, the final segmentation is derived by morphological reconstruction
as described earlier. The Frangi filter [33] and template matching as devised by [44] are compared
with Raniso and R∗

aniso. Our methods give slightly higher average F1 scores for both the single
crack and the crack junctions samples. Our operator R∗

aniso, designed to improve junction
handling, gives higher recall values than Raniso on the crack junctions samples (Figure 2.7).

2.4.3 Use case 3: Partially closed foams

Ceramic foams are routinely used to filter metal melts. They are produced by covering an open
cell polymer foam template by a ceramic slurry. The resulting structure can be decomposed into
struts and two-dimensional walls. The latter are formed when facets of the open cells of the
polymer foam are closed by the slurry. Closed windows in foams affect the permeability. The
walls are preferably parallel to the direction in which the polymer foam is squeezed when wetting
it with the slurry. Detection and orientation analysis of closed facets enables realistic modelling
of foam structures [45, 46, 47] and the impact of closed windows on permeability [48].

Our operator Raniso from equation (2.6) with input orientation v = ΓsL
arg(I) is applied to

simulated 3D ceramic foams with partially closed facets generated by [46] (referred to as Example
1). The foam is simulated by the strut system of a Laguerre tessellation and some closed facets
of the tessellation to create the walls. This results in a foam system whose struts and closed
facets have thickness 1. Locally adaptable dilation then yields a realistic foam structure with
variable thickness of struts and facets (Figure 2.10). This simulated data provides a precise
ground truth for validation of our approach. Both, the varying structure thickness and the
smooth transition between struts and walls make the separation challenging, see Figure 2.9. We
expect our framework to be most effective in the central part of the facet since this is where the
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Figure 2.8: Use case 2. 3D renderings of the crack segmentation: ground truth and crack obtained by
thresholding the post-processed local Raniso. The image consists of 256× 256× 256 pixels with spacing
37.83µm.

planar structure is most pronounced.

Figure 2.9: Use case 3, Example 1. Zoomed in 2d slice view and 3d rendering of the simulated ceramic
foam structure: no clearly perceivable boundary between facets and struts.

Our framework is applied with square SE and parameters n = 24, L = 10, and δmax = 0.5
using the mean filter on the SE. The run time is ∼ 30 minutes on an image of size 670×670×270
pixels. Furthermore, the operator Raniso is used to distinguish between closed facets and struts.
Afterwards, the segmented facet system is post-processed by applying ΓsL

max(I) using the median
filter to refine detection and remove artifacts.

The segmentation results together with the ground truth are shown in Figure 2.11. 3D
renderings of the results can be found in Figure 2.12. Visually, no obviously misclassified facets
can be observed. The segmented strut system covers 75% of the pixels in the strut ground truth.
If we introduce an error tolerance by dilating the segmented strut system by 1 pixel, coverage
further improves to 93.9%. Since each facet’s medial surface is known, we can calculate the
percentage of the facets that was at least partially detected. Approximately 89% of the facets
are recognized by our framework. Small and thick facets are the hardest to detect and are often
confused with struts even in the eye of the observer. Additionally, the location of the precise
boundary between the facets and the struts is highly subjective. Nevertheless, both the coverage
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Figure 2.10: Use case 3, Example 1. 2d slice views of the ground truth from left to right: simulated
foam, strut system, facet system.

Figure 2.11: Use case 3, Example 1. 2d slice views of results. From left to right: separated facets and
struts (white - struts, gray - facets), struts overlap with ground truth, and facets overlap with ground
truth (for the last two images: white - overlap, gray - difference).



Figure 2.12: Use case 3, Example 1. Rendered results for the simulated foam: original image (white -
struts, gray - facets), strut system, and facet system.

Figure 2.13: Use case 3, Example 2. Rendered results for the real ceramic foam: original image (white
- struts, gray - facets), strut system, and facet system. The rendered sub-image consists of 400×400×50
pixels with spacing 33.91µm.

percentages and the visual evaluation prove that our framework gives reliable and satisfactory
results.

Finally, our framework is applied to a CT image of a real silicon carbide foam. The sample
was scanned at Fraunhofer ITWM with pixel edge length 33.91µm (referred to as Example 2).
Further details are described in [47]. On the sub-volume of 500× 500× 100 pixels, our algorithm
takes 9.5 minutes. Results are shown in Figure 2.13. In this case, no ground truth is available.
Hence, the results can only be evaluated visually. The segmented wall system contains some
strut pixels. The majority of the walls is however segmented correctly.

2.5 Discussion

We have presented a framework for adaptive directional filtering of 3D image data. The restric-
tion of filter orientations to a cone centered in an initial input orientation avoids checking the full
sampled orientation space. That results in significant run-time savings compared to previously
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suggested methods.
Our algorithm has three main parameters: the half-length L of the SE, the opening angle

of the cone δmax, and the sphere discretization parameter n. The half-length parameter L
depends strongly on the application. It has to approximate the size of the object of interest to
be effective. The parameters δmax and n balance run-time and accuracy. The SE size L limits
the discretization density n since the number of discrete SEs of half-length L is restricted. For
example, there are only 13 discretized lines with half-length 1 in the ℓ∞ norm (base axis, plane
diagonals, space diagonals).

Our method requires a map of input orientations at which the cone is centered. These have
to be close to the correct orientation, but do not have to fit it very well. The adaptive filter on
the search cone is in fact able to fix imprecision in input orientations or scale and finds the most
appropriate orientation. This makes the method more robust and less dependent on the scale
parameter σ than classical Hessian directional filtering [22].

Our framework is very flexible, can be adapted to specific tasks, and used as building block
for various image processing pipelines. This is in particular demonstrated by the adaption of
Raniso to R∗

aniso for handling of crossing cracks.
We have validated our framework in use cases from materials science, it is however not re-

stricted to that area. In biomedical applications, [13, 21, 22] have used approaches similar to
ours but with line SE exclusively. Our algorithm can enhance and extract vessels straightfor-
wardly, too. Therefore, our framework can be seen as a robust, flexible, and multi-functional
method for filtering, enhancement, and separation of oriented structures in 3D. The two outputs
– orientation information and filtered image – can be used to solve multiple tasks.

Future work will explore more complex SEs while preserving computational efficiency. An-
other topic of further research is a thresholding method for precise and reliable unsupervised
segmentation of cracks based on ΓSE

max(I) from equation (2.4) and R∗
aniso from equation (2.7).
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Chapter 3

3d adaptive line granulometry

In this chapter, we derive a method based on the concept of granulometry for analyzing both fiber
length and orientation without single fiber separation. First, we explain the need for analyzing
fiber length and orientation in fiber reinforced composites. Secondly, we show how to define
granulometry on binary images from 3d adaptive line morphology from the previous chapter.
We show that this extension indeed satisfies the properties of granulometric functions from
mathematical morphology. Finally, we show an application example for quantifying length and
orientation in two types of fiber reinforced polymers (FRP): injection moulded and 3d printed.

3.1 Analyzing the fiber length and orientation

The mechanical and physical properties of fiber reinforced materials are connected to the mi-
crostructural characteristics of the fiber system. For example, the tensile strength of a fiber
reinforced material will be improved significantly in a direction orthogonal to the dominant ori-
entation of the fiber system. The length of fibers and fiber volume fraction can have a similar role
as well. Generally, fiber length is known in advance from the fiber material specifications given
by the producer. However, during the production process, fibers can break and tear apart effec-
tively changing their length. Furthermore, the orientation of the fiber system is highly dependent
on the production process and its parameters. Hence, the characterization of fiber length and
orientation from CT images is the most precise way to analyze the fiber length and orientation
of the sample.

For the fiber orientation, a variety of well-approved and robust methods are available, see
e.g. [6, 7]. Unbiased estimation of the fiber length distribution based on image data is however a
much harder task. Various methods have been suggested, usually building on the separation of
the fibers. They require therefore very high resolutions [49, 50, 51], nearly unidirectional fibers
[49, 52, 53], or user interaction [53, 54]. For a more detailed discussion see [55]. Ambiguities due
to the need to merge fiber segments [17] or to resolve fiber-fiber contacts [50] are unavoidable.
Moreover, the notorious censoring problem of properly treating fibers not completely observed is
taken into account only very rarely [49, 56, 57]. As a consequence, pyrolysis of the composite and
subsequent analysis of the manually separated fibers is still advertised as the method of choice
till today [58] although being highly error-prone as well.
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3.2 Preliminaries

For our purpose, we define granulometry only for binary images. For D ⊂ Z3 a discrete grid, we

define the space of binary images L
{0,1}
D = {I|I : D → {0, 1}}. Binary images can be interpreted

as a set X ⊂ D or as a function I(p) = 1X(p). This means that I(p) = 1 if p ∈ X, and
otherwise 0. We will use these two notations interchangeably in this chapter. When possible we
will define morphological operators on the space of grayvalue images LD. However, all proofs in

this chapter will be restricted to the space of binary images L
{0,1}
D .

In this chapter, we allow for the slight abuse of notation by using d as a distance function
on both spatial and orientation domains. When measuring the distance between voxels d :
R3 × R3 → R+ denotes Chebysev (maximum) distance d∞ from Section 2.3. Alternatively, for
the orientations d : S2

+ × S2
+ → [0, π] refers to angle distance metric from equation (2.2).

In the following sections we focus on the line as a structuring element. Similarly as in
Section 2.3, let ℓL(u) ⊂ D be a discretized line of length L with orientation u ∈ S2

+ centered at
the origin. Then let ℓL(u)(p) = {p∗|p∗ − p ∈ lL(u)} be a translated version of lL(u) centered
at voxel p ∈ D. Furthermore, let L∗ = d(p, p∗) be the distance between voxels p and p∗. Then
ℓ+L∗(u)(p∗) is a half-line segment from ℓL∗(u)(p∗) between p and p∗.

The previous chapter was based on directional filtering with orientation map v : D∩X → S2
+.

In this chapter, we need the following key assumption on the orientation map v in order
to construct operators from mathematical morphology in a mathematically sound way:

• For binary image I = 1X ∈ L
{0,1}
D , orientation is estimated in the beginning and the

orientation map v : D ∩ X → S2
+ is kept fixed and used to construct the oriented

structuring element for all subsequent morphological operators.

The reason for this is that we want to achieve that our operators satisfy the key properties of
classical morphological operators which usually use the same structuring element of fixed size in
every voxel.

3.3 Extension from 3d adaptive line morphology

To characterize fiber length we will construct granulometry based on the line opening filter.
Granulometry in mathematical morphology was originally designed to measure the size distribu-
tion of grains using balls of varying radius. The maximal fitting ball is taken as its size. Note
that the result of this process is a voxel weighted size distribution. For our application example
this size distribution is actually a length distribution of the fiber system. We will discuss later
how to convert it to a more common type of size distribution, the number weighted one. First,
we give an explanation of why we choose this setup.

Why do we characterize fibers with the line as a structuring element? Fibers are
cylindrical elongated objects, i.e. we assume that the length of the fiber is at least two times
larger than its diameter. Hence fibers can be deemed to be one dimensional objects with small
thickness in 3d space. Since we are interested only in the characterization of the length, out of
simple structuring elements (ball, plane, and line), the line fits best for this purpose.

Why do we use the opening as a filter? The assumption of this step is that the fiber
system is segmented, binarized, or separated from the remaining material matrix. Then, line
erosion preserves all the voxels in which a symmetric line of fixed length can fit. These correspond
to the fiber centers. In the following step, line dilation reconstructs the remainder of the voxels
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belonging to the same fiber from fiber centers, i.e. in these voxels a non-centered line of a given
length can be fitted. All voxels belonging to the shorter fibers are hence removed.

Why do we introduce line granulometry? We are interested in characterizing the length
distribution of the fiber system. Hence, it is intuitive to vary the length of the line and perform
line opening with increasing line length until all voxels are removed. For every voxel the maximal
length of the fitted non-centered oriented line is recorded as the fiber length at that voxel. This
translates exactly into the concept of granulometry.

First, we give precise definitions of granulometry according to mathematical morphology in
Section 3.3.1. Next, we aim at defining adaptive line opening as a morphological filter which
will be used to construct 3d adaptive line granulometry. We do this gradually in three steps.
As a first step, we define morphological operators on the constant orientation map for u ∈ S2

+

(Section 3.3.2). These are needed to understand how to generalize these operators to voxelwise
varying orientation map v : D∩X → S2

+ (Section 3.3.3). As it turns out, naive generalizations of
these operators can cause undesired effects when measuring fiber length. Finally, we construct an
adaptive line opening and prove that it can be seen as a morphological opening (Section 3.3.4).
This three-step process is depicted in Figure 3.1.
The final goal is to use these morphological line operators to construct 3d adaptive granulometry
(Section 3.3.5). This is followed by the proof of granulometric axioms (Section 3.3.6) and imple-
mentation algorithm (Section 3.3.7). As an output of granulometry, we get the maximal length
of the fitted line in every voxel. We show how to utilize this information to get the number
weighted orientation and length distribution (without any correction for edge effects) in Section
3.3.8.

3.3.1 Definition of granulometry

The concept of granulometry is inspired by the sieving of granular material with sieves of increas-
ing hole sizes. In mathematical morphology, sieves of different sizes can be seen as openings and
closings with structuring elements whose size is defined through a parameter l > 0. Openings are
used for bright objects on a dark background, while closings work with dark objects on a bright
background. These morphological operators are suitable because they remove all structures in
the image whose shape can not be matched with a structuring element of size l. In other words,
their size in terms of structuring elements is smaller than l. This was first proposed by Matheron
[59]. Hence, granulometry can be seen as a family of functions with the size parameter l that
satisfy certain axioms motivated by the sieving of the grains, see e.g. [31].

Definition 1. A family {Φl : L
{0,1}
D → L

{0,1}
D }l>0 of functions is called granulometry if the

following three axioms are fulfilled:

1. anti-extensivity implies that Φl shrinks X ⊂ D, i.e.

Φl(X) ⊆ X for all l > 0. (3.1)

2. increasingness implies that for X,Y ⊂ D for which X ⊂ Y the following holds

Φl(X) ⊆ Φl(Y ) for all l > 0. (3.2)

3. absorption: when applying two granulometric functions for l,m > 0, the following holds

Φl(Φm(X)) = Φm(Φl(X)) = Φmax(m,l)(X). (3.3)
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Figure 3.1: Comparison of three settings for defining morphological line operators (from left to right):
constant orientation map, voxelwise varying orientation map, and voxelwise varying orientation map
in the adaptive setting. Interesting voxels are marked with green circle, orientations in the voxels are
marked with blue arrow. Adaptive filtering is marked with orange arrows and yellow curve.

To summarize, the goal of granulometry is to separate image structures based on their size. In
mathematical morphology this is done by using a structuring element of fixed shape with varying
size. In this chapter we aim to characterize fiber length in every voxel with line structuring
element, i.e. we want to construct a line granulometry similar to [10, 35, 60, 61].

3.3.2 Morphological line operators on constant orientation map

First, we define the erosion and dilation on the line structuring element of length L ∈ N oriented
at voxelwise constant orientation u ∈ S2

+ (Figure 3.1, left). This means that we use the line of
the fixed length L with the same fixed orientation u at every voxel.
Erosion EℓL(u) : LD → LD is defined via

EℓL(u)(I)(p) = min
p∗∈ℓL(u)(p)

I(p∗).

Dilation δℓL(u) : LD → LD can be defined in several ways. We give three definitions. The
first two definitions are equivalent if the line of the same length L and orientation u is used as
a structuring element. Under the same conditions, the third one is equivalent to the first two
but it is defined only for binary images. The need for introducing these three definitions will be
discussed in the following section for voxelwise varying orientation map. First, analogously as in
erosion, in voxel p we can look for the maximum on the line passing through p:

δ
(1)
ℓL(u)

(I)(p) = max
p∗∈ℓL(u)(p)

I(p∗).

Secondly, we can look for the maximum of values of all pixels p∗ whose line passes through voxel
p

δ
(2)
ℓL(u)

(I)(p) = max
p∈ℓL(u)(p∗)

I(p∗).
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Finally, we give the third equivalent1 definition of line dilation on L
{0,1}
D that we refer to as

connectivity-preserving dilation. It is defined on a mask J = 1Y for some Y so that
X ⊂ Y ⊂ D:

δ
(3)
ℓL(u)

(I, J)(p) = max
p∈ℓL(u)(p∗)

(
I(p∗)1ℓ+

L∗ (u)(p∗)⊂Y

)
, (3.4)

where L∗ = d(p, p∗) and ℓ+L∗(u)(p∗) is a half-line segment from ℓL∗(u)(p∗) between p and p∗ that
must be contained in the mask J . From now onwards, we will use the connectivity-preserving
dilation to construct an opening with the notation

δℓL(u)(·, J) := δ
(3)
ℓL(u)

(·, J)

for some J ⊂ D as a prior. Since we aim to construct an opening, we will use the (binary) input

image I as a prior to limit the reconstruction. An opening γOℓL(u) : L
{0,1}
D → L

{0,1}
D is then the

erosion followed by the dilation:

γOℓL(u)(I)(p) = δℓL(u)
(
EℓL(u)(I), I

)
(p) (3.5)

The reason why we apply the mask is that with the dilation we want to reconstruct only the
voxels belonging to the original image I. This will be very important in the context of our
framework with voxelwise varying orientation. There is an additional characterization of our
opening:

Lemma 1. p ∈ γOℓL(u)(I) if and only if there exists a voxel p∗ ∈ X s.t. ℓL(u)(p
∗) ⊂ X and

p ∈ ℓL(u)(p
∗).

Proof. If p ∈ γOℓL(u)(I), then we have one of the two cases:

1. p ∈ EℓL(u)(I).
Then from the definition of erosion, it holds ℓL(u)(p) ⊂ X. Hence, for p∗ = p the claim is
satisfied.

2. p /∈ EℓL(u)(I).
Then from the definition of connectivity preserving dilation, there exists p1 ∈ EℓL(u)(I) s.t.
p ∈ ℓ+L1

(u)(p1) ⊂ X for L1 = d(p, p1) ≤ L. From the definition of erosion, we further have

ℓ+L1
(u)(p1) ⊂ ℓL(u)(p1) ⊂ X. Hence, for p∗ = p1, the claim is satisfied.

For reverse, let p, p∗ be voxels s.t. ℓL(u)(p
∗) ⊂ X and p ∈ ℓL(u)(p

∗).
We immediately have p∗ ∈ EℓL(u)(I) and p∗ ∈ γOℓL(u)(I). Furthermore, we have p ∈ ℓ+L∗(u)(p∗) ⊂
ℓL(u)(p

∗) ⊂ X for L∗ = d(p, p∗). Hence, from the definition of connectivity preserving dilation
it follows p ∈ δℓL(u)

(
EℓL(u)(I), I

)
= γOℓL(u)(I).

This interpretation will be used in the proof that this operator is indeed an opening in the
sense of mathematical morphology. There is an additional result as a consequence of the previous
lemma:

Corollary 1. If there exists a voxel p∗ ∈ X s.t. ℓL(u)(p
∗) ⊂ X, then ℓL(u)(p

∗) ⊂ γOℓL(u)(I).

1Claim of the equivalence is obviously dependent on the selection of the mask J . For J = δ
(2)
ℓL(u)

(I), the

equivalence holds true. Another type of equivalence is achieved on the opening (dilation-erosion) operator, i.e.

δ
(2)
ℓL(u)

(EℓL(u)(I)) = δ
(3)
ℓL(u)

(EℓL(u)(I), I).
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Definition 2. Any function γ : L
{0,1}
D → L

{0,1}
D is an opening as a morphological operator if

it satisfies the following properties:

• anti-extensivity: for X ⊂ D
γ(X) ⊆ X

.

• increasingness: for X,Y ⊂ D s.t. X ⊂ Y it holds

γ(X) ⊆ γ(Y ).

• idempotence:
γ(X) = γ(γ(X)).

Lemma 2. γOℓL(u) is an opening on L
{0,1}
D according to Definition 2.

Proof. Anti-extensivity for γOℓL(u) is ensured by the connectivity-preserving dilation operator.

δ
(3)
ℓL(u)

. Formally, let p /∈ X. For every voxel p∗ ∈ X s.t. p ∈ ℓL(u)(p
∗), it holds ℓL(u)(p

∗) ̸⊂ X

and hence p /∈ γℓL(u)(I).
Increasingness is satisfied in the context of the fixed orientation map u that is used for both

images. This is shown in the following lines: assume p ∈ γOℓL(u)(X), then from Lemma 1 there

exist a voxel p∗ ∈ X at which the line ℓL(u)(p
∗) ⊂ X can be fitted and p ∈ ℓL(u)(p

∗) ⊂ X. From
X ⊂ Y implies that p, p∗ ∈ Y and p ∈ ℓL(u)(p

∗) ⊂ Y , and hence p ∈ γOℓL(u)(Y ) using Lemma 1.
Hence, the increasingness is satisfied.

To prove idempotence, by anti-extensivity we have γOℓL(u)(γ
O
ℓL(u)

(X)) ⊆ γOℓL(u)(X).

Let p ∈ γOℓL(u)(X)

• Then from Lemma 1 there exist p∗ ∈ X and line ℓL(u)(p
∗) ⊂ X s.t. p ∈ ℓL(u)(p

∗).

• However, from Corollary 1 it also holds ℓL(u)(p
∗) ⊂ γOℓL(u)(X) and p∗ ∈ γOℓL(u)(X).

According to Lemma 1, this implies p ∈ γOℓL(u)(γ
O
ℓL(u)

(X)). Hence, γOℓL(u)(X) ⊆ γOℓL(u)(γ
O
ℓL(u)

(X)).

3.3.3 Morphological line operators on voxelwise varying orientation
map

In this section we show generalizations of the line erosion and dilation from the previous section
on the voxelwise varying orientation map v : D ∩X → S2

+, see Figure 3.1, center. Furthermore,
we analyze the three definitions of line dilations in a non-constant voxelwise orientation setting
and discuss which one is the most suitable for the application in mind: adaptive line granulometry
based on adaptive line opening for measuring fiber length distribution.
First, erosion EℓL(·, v) : LD → LD for the orientation map v is defined via

EℓL(I, v)(p) := EℓL(v(p))(I)(p) = min
p∗∈ℓL(v(p))(p)

I(p∗).

The three dilation operators can be easily extended to the orientation map v. We refer to them

as δ
(1)
ℓL

(·, v), δ(2)ℓL
(·, v) : LD → LD, and δ

(3)
ℓL

(·, J, v) : L
{0,1}
D → L

{0,1}
D , respectively

δ
(1)
ℓL

(I, v)(p) := δ
(1)
ℓL(v(p))

(I)(p) = max
p∗∈ℓL(v(p))(p)

I(p∗).
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δ
(2)
ℓL

(I, v)(p) = max
p∈ℓL(v(p∗))(p∗)

I(p∗).

δ
(3)
ℓL

(I, J, v)(p) = max
p∈ℓL(v(p∗))(p∗)

(
I(p∗)1ℓL∗ (v(p∗))(p∗)⊂Y

)
,

for L∗ = d(p, p∗).

Two interpretations of δ
(2)
ℓL

(·, v) on binary images: Definition of δ
(2)
ℓL

(·, v) can be seen
literally: for every voxel p we search for all voxels p∗ with lines ℓL(v(p

∗))(p∗) and check if p
belongs to that line. Alternatively, we can start at voxel p∗ and update maximums for all voxels
p on the line ℓL(v(p

∗))(p∗). Furthermore, one can see that only active voxels affect the maximum.
Hence, we can do this only for active (non-null) voxels p∗.
In the remaining sections we will use the second interpretation. Furthermore, this interpretation
is also the one that will be used in practice due to efficiency (Section 3.3.7).

The difference between δ
(1)
ℓL

(·, v) and δ
(2)
ℓL

(·, v): We explain the definitions of these two di-
lations on a simple example. Imagine having an image of a fiber of length 2L oriented at u
and applying a line erosion EℓL(·, v) on it. Here, only voxels in the fiber center are still active.

Dilation δ
(1)
ℓL

(·, v) would check every voxel and its corresponding orientation in an attempt to

reconstruct the whole fiber. On the other hand, δ
(2)
ℓL

(·, v) would only use the orientation in the
center of the fiber, i.e. in the active voxels to reconstruct the whole fiber. In this case inactive
voxels do not depend on their own voxel orientation but rather on the orientation of the active
voxels in their vicinity. Hence, the principles behind these two dilations are very different when
using non-constant orientation in every voxel. Figure 3.2 shows an example of when these two
dilations can result in very different results for a voxelwise varying orientation map. In this ex-

ample, a completely disconnected fiber is reconstructed using δ
(1)
ℓL

(·, v). In granulometry this is

an undesirable property which is avoided by δ
(2)
ℓL

(·, v). It can also occur that fibers are touching,

δ
(2)
ℓL

(·, v) handles similar situations better than δ
(1)
ℓL

(·, v), and hence δ
(2)
ℓL

(·, v) is preferred.

The difference between δ
(2)
ℓL

(·, v) and δ
(3)
ℓL

(·, v): These two definitions of line dilations are
similar. The only difference is the connectivity-preserving property. However, it is not obvious
which one would be preferred in the context of line opening on the voxelwise varying orientation
map.

3.3.4 Adaptive morphological line operators

Selection of the line dilation operator

First, we give a short and intuitive comment on the difference between δ
(2)
ℓL

(·, v) and δ
(3)
ℓL

(·, v)
in the adaptive setting. We do this without giving explicit formal definitions for the sake of
brevity.
Adaptive sampling around the input orientation is shown to contribute to the robustness of
filtering in the previous chapter. However, Figure 3.3 shows an example where an adaptive

version of δ
(2)
ℓL

(·, v) can reconstruct a close-by nearly parallel fiber. Similar effects happen for
the orientation maps with estimation errors. This serves as motivation to use an alternative

connectivity-preserving dilation δ
(3)
ℓL

(·, v). This operator does not guarantee to correctly handle

the case when nearly parallel fibers are touching. However, δ
(3)
ℓL

(·, v) seems to be the most suitable

38



39

Figure 3.2: Illustration of the principles behind the morphological line operators on the voxelwise
varying orientation map. On input image with two orthogonal fibers of lengths 5 and 10 voxels (top left)
is applied an erosion operator EℓL(·, v) for L ∈ ⟨5, 10⟩ ∩ N as illustrated in the green circle (top right).

Afterwards, the two dilation operators δ
(1)
ℓL

(·, v) (bottom left) and δ
(2)
ℓL

(·, v) (bottom right) are applied

to the eroded image. For δ
(1)
ℓL

(·, v) we start at every voxel (e.g. see voxels marked with p) and check if
the oriented line (blue or red arrows) in that voxel passes through the green square (e.g. voxel p∗). For

δ
(2)
ℓL

(·, v) we start only at the green square (e.g. voxel p∗) and check which voxels can be reached from

there (blue arrows). Red arrow indicates the difference between δ
(1)
ℓL

(·, v) and δ
(2)
ℓL

(·, v).

Figure 3.3: Example for the adaptive line opening with the dilation operator δ
(2)

ℓL(u) on the eroded fiber

image (green). Voxels (e.g. voxel p in red circle) not belonging to the original fiber can be reconstructed
by the dilation in the case of nearly parallel nearby fibers. Voxel p∗ is marked in the green circle, while
input orientation v(p∗) is marked with blue arrow. Orange arrow is a selected orientation from the search

cone C(p) which reconstructs the nearby fiber. This serves as a motivation for the definition of δ
(3)

ℓL(u).



dilation out of all three proposed dilation operators to be used on a voxelwise varying orientation
map in the adaptive setting.

Definitions of adaptive morphological line operators

After selecting the appropriate line dilation definition for the voxelwise varying orientation map
v : D ∩X → S2

+ in the previous section, we can extend line dilation and erosion to the adaptive
setting and define adaptive morphological line opening (Figure 3.1, right).

First, we define adaptive line erosion and dilation according to the definitions from the pre-

vious section. Adaptive line erosion EL(·, v) : L
{0,1}
D → L

{0,1}
D is trivially defined by plugging

in the erosion operator EℓL(u) in equation (3.4).

EL(I, v) (p) = max
u∈C(p)

(
EℓL(u) (I) (p)

)
.

The maximum operator across all orientations in the search cone C(p) is used because we want to
have at least one oriented centered line to be fitted in voxel p in order to keep it active. Note that
the search cone C(p) depends on the orientation map v by C (p) = {u ∈ S : d (u, v (p)) ≤ δmax}.
For the adaptive dilation DL(·, v, J) : L

{0,1}
D → L

{0,1}
D more care is required due to the voxelwise

varying orientation map v. Here, the notation is slightly different because the adaptivity is related
to the voxel p∗ in the vicinity of the targeted voxel p. Hence, it can not be written elegantly in

terms of δ
(3)
ℓL(u)

, but the similarity is still visible

DL(I, v, J) = max
p∈ℓL(u)(p∗),u∈C(p∗)

(
I(p∗)1ℓ+

L∗ (u)(p∗)⊂J

)
,

for L∗ = d(p∗, p). Finally, our adaptive opening ΓℓL
max(·, v) : L

{0,1}
D → L

{0,1}
D is defined as

ΓℓL
max(I, v) (p) = DL(EL(I, v), v, I). (3.6)

There is an additional characterization of our adaptive opening:

Lemma 3. p ∈ ΓℓL
max(I, v) if and only if there exist a voxel p∗ ∈ X s.t. ℓL(u)(p

∗) ⊂ X and
p ∈ ℓ+d(p,p∗)(u

∗)(p∗) ⊂ X for u, u∗ ∈ C(p∗) and d(p, p∗) ≤ L.

The proof goes similar as in Lemma 1 but slightly more technical. Here, voxel p is re-
constructed in the dilation step from voxel p∗. This implies that the erosion preserves voxel
p∗. Hence, condition ℓL(u)(p

∗) ⊂ X comes from the adaptive erosion EL. The condition
p ∈ ℓ+d(p,p∗)(u

∗)(p∗) ⊂ X comes from the adaptive dilation DL. This interpretation will be used

in the proof that this operator is indeed an opening in the sense of mathematical morphology.
There is an additional result as a consequence of the previous lemma:

Corollary 2. If there exists a voxel p∗ ∈ X s.t. ℓL(u)(p
∗) ⊂ X and ℓ+L∗(u∗)(p∗) ⊂ X for some

u, u∗ ∈ C(p∗) and L∗ ≤ L, then ℓ+L∗(u∗)(p∗) ⊂ ΓℓL
max(I, v).

Lemma 4. ΓℓL
max(I, v) is indeed an opening for the fixed orientation map v on L

{0,1}
D according

to Definition 2.

Proof. Anti-extensivity is a consequence of connectivity-preserving dilation DL. Let p /∈ X.
Then for every p∗ ∈ X and for all u ∈ C(p∗) s.t. p ∈ ℓL(p

∗)(u), it holds ℓL(p
∗)(u) ̸⊂ X. Hence,

p /∈ ΓℓL
max(I, v).
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The increasingness is satisfied in the context of a fixed orientation map v : D → S2
+ that

is used for both images. This is shown in the following lines: assume p ∈ ΓℓL
max(X, v), then

there exist p∗ ∈ X and u, u∗ ∈ C(p∗) at which line ℓL(u)(p
∗) ⊂ X can be fitted and p ∈

ℓ+d(p,p∗)(u
∗)(p∗) ⊂ X. From X ⊂ Y implies that p, p∗ ∈ Y and ℓL(u)(p

∗), ℓ+d(p,p∗)(u
∗)(p∗) ⊂ Y .

Hence, from Lemma 3 p ∈ ΓℓL
max(Y, v). Hence, the increasingness is satisfied. However, here

we stress the importance of the fixed orientation map v. For the different orientation maps
v1, v2 : D → S2

+ for X ⊂ Y , respectively, the increasingness may not be satisfied.
The proof of idempotence is also similar. First, ΓℓL

max(Γ
ℓL
max(I, v), v) ⊆ ΓℓL

max(I, v) holds from
anti-extensitivity.
Second, let p ∈ ΓℓL

max(I, v).

• Then from Lemma 3 there exist p∗ ∈ X and u, u∗ ∈ C(p∗) so that ℓL(u)(p
∗) ⊂ X and

p ∈ ℓ+d(p,p+)(u
∗)(p∗) ⊂ X.

• From Corrolary 2 it also holds p∗ ∈ ℓL(u)(p
∗) ⊂ ΓℓL

max(I, v) and ℓ
+
d(p,p+)(u

∗)(p∗) ⊂ ΓℓL
max(I, v).

Hence, from Lemma 3 p ∈ ΓℓL
max(Γ

ℓL
max(I, v), v).

3.3.5 Adaptive line granulometry

For the fixed orientation map v, the family of functions {ΓℓL
max(·, v), L ∈ N} is a granulometry

generating family, i.e. it satisfies the axioms from Definition 1. This will be shown in the following
section. In practice, L is limited by some Lmax ∈ N and the length of the longest fitting line in
the voxel p is then found to be a function Lgranulometry(·, v) : D → [0, Lmax] ∩ N

Lgranulometry(I, v)(p) = argmax
L∈[0,Lmax]∩N

(
ΓℓL
max(I, v)(p)− ΓℓL+1

max (I, v)(p)
)
. (3.7)

For binary images, line opening at the step L ∈ [1, Lmax] of granulometry removes all the

fibers shorter than L. The difference of line openings ΓℓL
max(I, v)(p) − Γ

ℓL+1
max (I, v)(p) = 1 only

in the case when our adaptive line opening at the step L preserves voxel p and our adaptive
line opening at the step L + 1 removes it. Otherwise, this difference always equals 0. Hence,
Lgranulometry aims at recording the argument of the spike in the difference of line openings

ΓℓL
max(I, v)(p)− Γ

ℓL+1
max (I, v)(p). Keeping track of L through granulometry at which opening step

each fiber voxel disappears, yields what can be interpreted as a local fiber length distribution.
This new voxel based method is similar to the path openings [62] in avoiding explicit fiber

separation but differs in not adapting to curves. This reduces the effort but clearly induces
an underestimation of the length of curved fiber fractions. The line segment granulometry
suffers from the well-known problems in discretizing the 3d orientation space sufficiently finely
if implemented naively [7]. Our adaptive morphology framework yields however a way out by
restricting the searched orientations to a conic subset of the full orientation space centered about
a roughly estimated preferred orientation. Within this cone, sampling the orientations very finely
is affordable. Here, this framework is applied for the first time for fiber length estimation.

To summarize, our method needs the following inputs: The orientation map v and the width
of the orientation cone δmax about it, the maximal half-length Lmax of the line segments used
as structuring elements, and a parameter controlling fineness of the discretization n.

In the applied part of the chapter, the orientation map is obtained from eigenvalue analysis
of the Hessian matrix of second order gray value derivatives as described in [7], with σ = 4.
Since we aim at measuring the local fiber length, the half-length parameter L ∈ [1, 350] for the
structuring element is large, in particular increased compared to [1]. The parameters controlling
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Figure 3.4: Lemma 5: graphical proof on the existence of p(1) and ℓ+L(u
(1)(p(1)) ⊂ X (orange line)

from ℓL(u)(p
∗) ⊂ X (black line) and ℓ+L(u

∗)(p∗) ⊂ X (green line). A denotes the area contained in X
due to the convexity of the connected components of X.

the fineness of discretization n = 1400 and the width of the orientation cone δmax = 0.2 are kept.
The latter two result in 368 201 discrete orientations for the whole orientation space restricted
to 7 340 falling into the cone.

3.3.6 Proof of granulometry axioms

Adaptive line granulometry is specific in the sense that every voxel uses the initial orientation
map v as an input which varies across the image domain. This implies that the granulometry
axioms from Section 3.3.1 are not trivially satisfied. The key condition is that the orientation
map v is estimated at the beginning and the same orientation map v is used through the family
of granulometric functions.
However, we need additional assumptions on the image X and orientation map v. Motivated by
the observation that fibers are often modelled as cylinders [7], we assume that every connected
component of X is convex. Additionally, we expect that the orientation map v allows only for
gradual changes across the spatial domain. In the context of measuring fiber length, one would
expect that the orientation map v would be similar in the voxels which belong to the same fiber.
These two assumptions are used in the following lemma.

Lemma 5. Let X ∈ L
{0,1}
D be a binary image s.t. every connected component is convex and v

be its orientation map which is sufficiently smooth, i.e. for p1, p2 ∈ X s.t. d(p1, p2) = 1 it holds
d(v(p1), v(p2)) < C << δmax for some C > 0. Then, it holds

ΓℓL+1
max (X, v) ⊆ ΓℓL

max(X, v).

Proof. Let p ∈ Γ
ℓL+1
max (X, v), then from Lemma 3 there exist p∗ ∈ X and u, u∗ ∈ C(p) s.t.

ℓL+1(u)(p
∗) ⊂ X and ℓ+d(p,p∗)(u

∗)(p∗) ⊂ X for d(p, p∗) ≤ L+ 1.
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• If d(p, p∗) ≤ L, then by using ℓL(u)(p
∗) ⊂ ℓL+1(u)(p

∗) in Lemma 3, it implies p ∈
ΓℓL
max(X, v).

• On the other hand, let d(p, p∗) = L+ 1.

– Let
⌢

uu∗ = {w ∈ S2
+ | d(w, u), d(w, u∗) ≤ d(u, u∗)} ⊂ S2

+ be a circle arc2 between u

and u∗. Then
⌢

uu∗ ⊂ C(p∗).

– Since ℓ+L+1(u)(p
∗), ℓ+L+1(u

∗)(p∗) ⊂ X and connected components of X are convex, it

holds A = {q ∈ ℓ+L+1(w)(p
∗) | w ∈

⌢

uu∗} ⊂ X (Figure 3.4).

– Then there exists p(1) ∈ ℓL+1(u)(p
∗) s.t. d(p(1), p∗) = 1 and d(p(1), p) = L (Fig-

ure 3.4). Because of the smoothness of the orientation map, it holds u ∈ C(p(1)),
ℓL(u)(p

(1)) ⊂ X, and there exists u(1) ∈ C(p(1)) s.t. p ∈ ℓ+L(u
(1))(p(1)). From the

convexity assumption it follows that ℓ+L(u
(1))(p(1)) ⊂ A ⊂ X.

– Now, we apply Lemma 3 for p(1), u, and u(1) to show p ∈ ΓℓL
max(X, v).

Lemma 6. Under the assumptions from Lemma 5,
(
ΓℓL
max(·, v)

)
L>0

is a granulometry for fixed

orientation map v on L
{0,1}
D according to Definition 1.

Proof. 1. anti-extensivity from equation (3.1) is an immediate consequence of the anti-
extensivity of the adaptive line opening ΓℓL

max(·, v).

2. increasingness from equation (3.2) is an immediate consequence of the increasingness of
the adaptive line opening ΓℓL

max(·, v).

3. absorption is also satisfied. If we assume M < L, then ℓM (u) ⊂ ℓL(u) for all u ∈ S2
+.

• Lemma 5 gives the following result for L > M :

ΓℓL
max(X, v) ⊆ ΓℓM

max(X, v). (3.8)

• Also, applying ΓℓM
max(·, v) on ΓℓL

max(X, v) does not affect the image. First, from anti-
extensivity of the opening we have ΓℓM

max(Γ
ℓL
max(X, v), v) ⊆ ΓℓL

max(X, v).
Second, from idempotence of the opening and equation (3.8), it follows ΓℓL

max(X, v) =
ΓℓL
max(Γ

ℓL
max(X, v), v) ⊆ ΓℓM

max(Γ
ℓL
max(X, v), v). Hence, it holds

ΓℓM
max(Γ

ℓL
max(X, v), v) = ΓℓL

max(X, v).

• On the other hand, we have ΓℓL
max(Γ

ℓL
max(X, v), v) ⊆ ΓℓL

max(Γ
ℓM
max(X, v), v) from increas-

ingness of the opening and equation (3.8). Now, from idempotence of the opening
ΓℓL
max(X, v) = ΓℓL

max(Γ
ℓL
max(X, v), v), it follows

ΓℓL
max(X, v) ⊆ ΓℓL

max(Γ
ℓM
max(X, v), v).

• Reverse also holds from ΓℓM
max(X, v) ⊆ X. Hence, due to the increasingness of the

opening
ΓℓL
max(Γ

ℓM
max(X, v), v) ⊆ ΓℓL

max(X, v).

This proves equation (3.3).

2Here, d : S2
+ × S2

+ → [0, π] refers to angle distance metric from equation (2.2). When measuring the distance
between voxels we slightly abuse notation by again using d as the distance function. However, in this case
d : R3 × R3 → R+ denotes Chebysev (maximum) distance d∞ from Section 2.3.
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3.3.7 Implementation details

Here, we give an efficient algorithm for our adaptive line granulometry, see Algorithm 1. Our
algorithm is split in two steps: erosion and dilation step.
In the erosion step, for voxel p we walk on the every line in its search cone starting from p until
we reach the inactive (null, non-binary) voxel or until Lmax-th voxel. We record the number of
voxels on the line between p and this voxel, i.e. the distance on the line. We do the same for
the reflected line as well and record the minimum of these two distances of voxels. Finally, we
take the maximum of these distances over all the lines in the search cone. This represents the
maximal length of the symmetric line that can be fitted in voxel p. We refer to this length map
as an erosion length map or E : D → [0, Lmax] ∩ N in Algorithm 1.
In the dilation step, we use the erosion length map E as an input. The erosion length map
tells us the length of the line that should be used in the dilation step for every voxel. For every
voxel p, we record the maximum of E(p∗) for those pixels p∗ for which there exists a line in
their search cone so that the line passes through p. In practice, we do this by initializing the
granulometry length map Lgranulometry with E (denoted with G in Algorithm 1). Then starting
at every voxel p∗ and walking over voxels p in every line of length E(p∗) in the search cone, we
compare E(p∗) with the granulometry length G(p) and update it with E(p∗) if it is larger than
the current granulometry length in p. Walking on a line is stopped if we reach a null pixel and
moved on to the next line in the search cone.

3.3.8 Length weighted length and orientation distributions

The number weighted fiber length distribution refers to the distribution for which only one
length is recorded per fiber. This is intuitive since we see a fiber as one unit with one length.
The number weighted fiber length distribution motivates single fiber segmentation as a method
of choice in many applications. However, in this section we explain how to alternatively estimate
the number weighted length distribution from the adaptive line granulometry.

Any probability distribution of a random variable (e.g. length or orientation) can be estimated
empirically from the observations as a set of pairs H = {(vali, wi); i ∈ {1, · · · , N}}, where vali
denotes the value of the measured characteristic, wi its weight in the distribution, i is an index,
and N ∈ N is the number of pairs. Based on this, one can define a normalized frequency of the

interval ⟨x1, x2] as FH(x1, x2) =
∑
i,x1<vali≤x2

wi∑
i wi

. Usually, when sampling voxelwise length or

orientation in the image, equal weights are given to every voxel, i.e. wi = 1.

Length weighted length distribution

The output of granulometry Lgranulometry is a map which estimates the length for every voxel
in the image. The resulting fiber length histogram is not the empirical number weighted fiber
length distribution. On the one hand, the histogram is length weighted as longer fibers cover
more voxels. On the other hand, sample cutting results in cut fibers, too, and longer fibers are
more likely to be affected. The length weighting is removed by weighing each histogram bin with
the respective fiber length under the assumption of the constant diameter of fibers in the sample.
Formally, the voxel weighted length distribution is estimated from a set

H len
voxel = {(Lg(p), 1) | p ∈ D0},
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Algorithm 1 Adaptive line granulometry

procedure Adaptive-line-granulometry(X,n, δmax, Lmax, v)
# Input binary image X,
# sphere discretization n,
# cone width δmax,
# maximal length Lmax,
# orientation map v.
Output image G, # to be initialized later
Temporary image E, set to 0 for all voxels
# Erosion step
for voxel p ∈ X do

for orientation u ∈ C(p) do
for i = 1 : Lmax do

if ℓLmax(u)(p)[i] /∈ X or −ℓLmax(u)(p)[i] /∈ X then
if i > E(p) then

E(p) = i-1;
Break;

end if
end if
# Case we reached Lmax

if i = Lmax then
E(p) = Lmax;

end if
end for

end for
end for

#Dilation step
G= E.copy();
for voxel p∗ ∈ X do

for orientation u ∈ C(p∗) do
for i = 1 : E(p∗) do

p = ℓE(p∗)(u)(p
∗)[i]

if p /∈ X then
Break;

end if
if G(p) < E(p∗) then

G(p) = E(p∗);
end if

end for
# Reflection of line around p
for i = 1 : E(p∗) do

p = −ℓE(p∗)(u)(p
∗)[i]

if p /∈ X then
Break;

end if
if G(p) < E(p∗) then

G(p) = E(p∗);
end if

end for
end for

end for
Return G

end procedure



where Lg := Lgranulometry(I, v) is a granulometry from the previous sections3 and D0 = {p ∈
D | Lg(p) > 0} ⊆ D. Now, the number weighted length distribution can be estimated as

H len
number = {(Lg(p),

1

Lg(p)
) | p ∈ D0}.

The bias due to the incomplete observation could be reduced by so-called minus-sampling or
weighing the lengths with the reciprocal of the probability of observing fibers of this length at
all (Miles-Lantouejoul method [63]). However, the focus here lies on the differences of the fiber
components in the two materials under consideration in the next section. This means that we
implicitly assume that the edge effects for both types of materials are either similar or negligible
and do not disturb the comparability.

Length weighted orientation distribution

Similarly as for granulometry, we get voxelwise information on orientation. Note that this is again
the length weighted distribution because it is defined per voxel and the orientation distribution is
shifted towards the orientation of the long fiber since they consist of more voxels than short ones.
For conversion to the number weighted orientation distribution, adaptive line granulometry is
needed: orientation in every voxel is given a weight inversely proportional to the value of the
adaptive line granulometry in that voxel. Given the weights, the number weighted orientation
distribution is estimated.
Formally, the voxel weighted orientation distribution is estimated as a set

Ho
voxel = {(v(p), 1) | p ∈ D0}.

Now, the number weighted orientation distribution can be estimated as

Ho
number = {(v(p), 1

Lg(p)
) | p ∈ D0}.

3.4 Materials and imaging: injection moulded vs 3d printed

3.4.1 Fiber material and specimen production

Materials under investigation are fiber reinforced polymers (FRP) which are made using two
different production techniques: injection moulding and 3d printing4. Both types of material
under investigation have 30 % nominal fiber mass content.

Injection moulded FRP The moulded material is a Sabic STAMAX 30YK270E5. Blocks of
26mm × 7mm × 2mm were cut out via micro water jet cutting from 280mm × 80mm × 2mm
moulded plates 97mm distal from film gate in the center (see Figure 3.5, left). The blocks were
divided in two stripes, which were polished afterwards. Five micro specimens in 0◦ and 30◦ direc-
tions to the moulding direction were cut out per stripe. The upper left corner of each specimen
was trimmed by a 45◦ angle, to reproduce the extraction directions and position within the plate.

3This is introduced for more compact notation.
4Here, a Fused Deposition Modeling (FDM) 3d printer is used which works by depositing melted filament

material made of thermoplastic polymers layer by layer until the full object is formed.
5See www.sabic.com for further information on material and manufacturing process.
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Figure 3.5: Micro sample extraction from injection molded (IM) plates (bottom), slicing extracted
blocks in two stripes (upper left) and sample geometry in mm (upper right).

Figure 3.6: Producing stripes for sample extraction via 3d printing.

3d printed FRP The material for 3d printing is BASF filament Ultrafuse PP GF36. Stripes
were laid down in four layers, each 0.2 mm high, using an Ultimaker S5. The printing trajectory
was chosen such that the fiber orientation in all layers is similar to 0◦ in injection moulding.
The printing direction, except the wall layer, was unidirectional in all layers (see Figure 3.6).
Apart from these lay-up adjustments, the filament manufacturer’s printing parameters for the
Ultimaker S5 were applied. After printing and polishing in exactly the same way as the moulded
samples, micro specimens were cut as described in Section 3.4.2.

3.4.2 Micro specimens

As shown in Figure 3.5 (right), two stripes were cut out from the block (see Figure 3.5, green
transparent) with a water jet cutting machine Daetwyler WJ F4B2, followed by polishing sym-
metrically from both sides with diamond paste (3µm) to ≈ 500µm thin stripes. Figure 3.7 shows

6See www.forward-am.com for further information on material and manufacturing process.
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Figure 3.7: Samples extracted from polished stripes via micro water-jet cutting

Figure 3.8: Microscopic view on the gauge area of a micro sample used in this work

the water jet cut micro specimens before the final manual extraction from the polished stripe.
The width of the specimens in the center is measured by light microscopy (see Figure 3.8). The
thickness of the stripes is determined before cutting using a micrometer gauge.

3.4.3 3d imaging by computed tomography

Fraunhofer ITWM’s CT device is used for 3d imaging of the samples. The CT device is equipped
with a Feinfocus FXE 225.51 X-ray tube with maximum acceleration voltage 225 kV, maximum
power 20W, and a Perkin Elmer flat bed detector XRD 1621 with 2 048 × 2 048 pixels. The
tube voltage of 110 kV is rather low and the integration time of 1 s high, in particular to enable
separation of air (pores and background) and matrix material by gray value. Tomographic
reconstructions are obtained from 1 200 projections, each averaged over five, resulting in an
overall integration time of 5 s. The voxel edge length of 2µm ensures proper resolution of the
fiber diameter. A representative slice as well as a volume rendering are shown in Figure 3.9.

Additional to the samples described above, a sample of the original, unprocessed Ultrafuse
PP GF30 filament was imaged at voxel edge length 1.8µm (Figure 3.11).
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Figure 3.9: Representative reconstructed CT images: slice views. Left: 3d printed sample. Right:
Injection molded sample. Visualized are approximately 1 200 × 1 500 × 100 voxels corresponding to
2.4mm × 3mm × 0.2mm. Note that the fiber component of the printed material (left) appears denser
in the volume rendering in spite of identical fiber volume fractions. This is a purely visual effect due to
the thinner and therefore more fibers.
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Figure 3.10: Representative reconstructed CT images. Renderings of the fiber component. Left: 3d
printed sample. Right: Injection molded sample. Visualized are approximately 1 200×1 500×100 voxels
corresponding to 2.4mm× 3mm× 0.2mm.

Figure 3.11: CT image of filament used for 3d printed samples: xy slice (1 000×1 300) and 3d rendering
(500× 500× 500 voxels) corresponding to representative subvolume of size 0.9mm× 0.9mm× 0.9mm.
Voxel edge length is 1.8 µm. During 3d printing the filament is melted and passed through the heated
extrusion nozzle to create a layer of 3d printed material.



3.5 Application: comparing fiber length and orientation

Here, we report the results of our analysis on three samples for each of these two types of FRP.
In the following figures and tables, we will use 3DP-1, 3DP-2, and 3DP-3 to mark 3d printed
samples. Three injection moulded samples will be referred to as IM-1, IM-2, and IM-3. For every
sample Lgranulometry is calculated for the parameter configuration from Section 3.3.4. The length
weighted length and orientation distributions are corrected to number weighted counterparts
according to Section 3.3.8.

3.5.1 Fiber Lengths

25% quantile Median 75% quantile
(µm) (µm) (µm)

filament 52 103 182
3DP-1 54 94 166
3DP-2 50 94 166
3DP-3 50 90 158
IM-1 178 374 590
IM-2 182 378 594
IM-3 174 374 590

mean(IM)/mean(3DP) 3.47 4.05 3.62

Table 3.1: Estimates for fiber length quantiles per sample.

The analysis confirms the visual impression: fibers in the 3d printed samples are in general
shorter than in the injection molded ones. However, 3d adaptive granulometry enables more
in-depth analysis. Length histograms are shown in Figure 3.12, 2d slices with the color mapped
lengths in Figure 3.13. Quantiles of the empirical length weighted distributions are given in
Table 3.1. The last row of Table 3.1 shows the ratio of mean quantile length of IM samples to
mean quantile length of 3DP samples. This gives a quantification that in general fibers in IM
samples are between 3.5 and 4 times longer than the fibers in 3DP samples. Length histograms
from Figure 3.12 shows the different shapes of distributions of 3DP and IM samples. Length
histograms of 3DP samples are highly concentrated up to 100 µm with fast decay towards higher
lengths, e.g. very low number of fibers exists for length around 300 µm. On the other hand,
length histograms of IM samples have fatter tails at both ends of the length histograms, i.e. in
IM samples we observe both very long (above 600 µm) and very short (below 100 µm) fibers.

Table 3.1 contains the quantiles for the filament sample as well (Figure 3.11). The filament
image was cropped to 1 000× 1 300× 1 000 voxels. Contrary to the printed samples, the filament
is quite porous. As a consequence, the fiber volume fraction in the filament sample is in the range
⟨8.26%, 12.08%⟩ depending on the gray value threshold chosen for binarization, which is lower
compared to the average volume fraction of the 3DP printed sample ⟨11.67%, 18.13%⟩. In spite
of these slight ambiguities the fiber length analysis proves what had to be expected: There are
more longer fibers in the filament. Note that the 75% quantile might be even higher in reality,
but the longer the fibers are, the more likely they are cut off by the sample or image edges.

3.5.2 Fiber Orientation

In order to be consistent with the fiber length analysis, the line granulometry map was used for
the orientation estimation, too. That means, the local fiber orientation in a voxel is the one of
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sample mean µ concentration κ shape index strength index
3DP-1 (-0.03, 0.99, 0.004) 5.31 1.71 4.87
3DP-2 (-0.12, 0.99, 0.006) 5.46 1.71 4.86
3DP-3 (-0.10, 0.99, 0.009) 4.96 1.71 4.86
IM-1 (-0.07, 0.99, -0.010) 5.97 3.61 5.16
IM-2 (-0.11, 0.99, 0.015) 5.47 3.61 5.15
IM-3 (-0.08, 0.99, -0.004) 5.87 3.61 5.15

Table 3.2: Comparison of orientation distributions: estimation of the parameters.

the longest line segment passing through this voxel and fitting into the fiber system.
The samples do not differ strongly with respect to fiber orientation. All feature a strong

prevalence of the y-direction (the horizontal one in the slices visualized in Figures 3.9 and 3.13),
see also the mean fiber orientations in the 2nd column of Table 3.2. Fitted von Mises-Fisher
distributions7 differ only slightly in the concentration parameter as reported in the 3rd column
of Table 3.2, with the injection moulded samples featuring higher concentration. The spherical
density plots in Figure 3.14 reveal a tendency of the fiber orientations in the 3d printed sam-
ples to deviate out-of-plane. This becomes manifest in the red to yellow blobs indicating higher
concentrations being more roundish, while in the injection moulded samples orientations rather
vary in-plane and thus the high concentration areas are rather elliptical. It would be interesting
to further link the orientation distribution to the length distribution and differences in the pro-
duction process (injection moulding vs 3d printing). However, this is beyond the scope of the
thesis.

These observations are backed by the shape and strength indices of the orientation distribu-
tions according to [64] given in Table 3.2, too. These distribution free summary statistics for
spherical data capture the shape varying from girdle (0) to clustered (∞) and how strong this
shape actually is, i.e. the greater the strength statistics, the better it is described by the shape
index. The fiber orientations in the IM samples are more clustered and this shape is slightly
clearer.

7This was done using Maximum Likelihood Estimate (MLE) using R-package function vmf.mle from library
CRAN - Package Directional, see https://cran.r-project.org/web/packages/Directional/index.html.
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Figure 3.12: Length weighted, uncorrected empirical length distributions for the two samples shown
in Figure 3.9. Left: 3d printed sample. Right: injection molded sample.
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Figure 3.13: Color coded length map for the two samples shown in Figure 3.9. Left: 3d printed samples
(from top to bottom: 3DP-1, 3DP-2, and 3DP-3). Right: injection molded samples (from top to bottom
IM-1, IM-2, and IM-3).
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Figure 3.14: Color coded empirical orientation distributions. Top: 3d printed samples (3DP-1, 3DP-2,
and 3DP-3). Bottom: injection molded samples (IM-1, IM-2, and IM-3).



3.6 Discussion

This chapter constructs 3d adaptive line granulometry based on the idea of 3d adaptive morphol-
ogy from the previous chapter. This method relies on voxelwise information and avoids single
fiber segmentation. Fiber length distribution is measured using line structuring element. Math-
ematical formulation of the method and its relationship with the concepts from mathematical
morphology are thoroughly presented and discussed. 3d adaptive line granulometry extension
enables the estimation of the number weighted fiber length and orientation distribution, as shown
in the comparison study between injection moulded and 3d printed fiber reinforced polymers.

The major drawback of the introduced method is the inability to measure curved fibers due to
the use of a straight (line) structuring element. Literature suggests that path openings should be
suitable for this task [62]. The possible direction for future research could be the investigation
if the path opening algorithm can be combined with the idea of orientation estimation from
the local image information to reduce the number of paths that need to be covered. This is
particularly relevant for 3d applications due to the large number of possible paths.

Another missing ingredient of this method is the adjustment for the edge effect due to the
cutting of the fiber during the specimen preparation. To gain the correct and unbiased fiber
length and orientation distribution these effects need to be accounted for. This could be done by
reweighting the voxel weighted length distribution based on their distance to the boundary, i.e.
as fiber is closer to the boundary, the more likely it will be cut during the sample preparation
and hence altering the original length distribution.
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Part II

Construction of scale equivariant
deep and scattering networks
based on the Riesz transform
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Chapter 4

Introduction

The Riesz transform is a singular integral operator1 which enables the decomposition of the high
dimensional signal into instantaneous phase, frequency, and amplitude. Furthermore, the Riesz
transform has two properties which make it a good candidate for feature extraction: a differential
interpretation and scale equivariance. Generally, there are only few studies in the image process-
ing and computer vision community regarding the Riesz transform. So far, major research efforts
related to the Riesz transform were mainly concentrated in the signal processing community. In
the following chapters we aim at bridging the gap in understanding the Riesz transform and its
properties and relating them to possible applications. Furthermore, we show how to embed the
Riesz transform in a popular deep learning framework to achieve scale invariance (Chapter 6)
and how to design a Riesz scattering representation (Chapter 8), a simple mathematical model
of neural networks which requires a small number of training examples. Chapter 6 is based on
[3], while Chapter 8 is contained in [4]. These methods based on the Riesz transform are able
to achieve generalization to scales that are previously unseen during training. This is useful for
many applications where objects occur at different scales. Hence, only a few scales have to be
present in the training set for Riesz-based methods to achieve a good performance on a wider
range of scales. This is in contrast with standard methods in deep learning.

Our main motivation for using the Riesz transform is based on the observation that cracks
in CT images occur in a large range of scales. Hence, scale invariance is identified as one of the
key properties of crack segmentation methods. The main goal of Part II is to design methods
that can segment cracks of arbitrary width. Although crack segmentation of CT images is a 3d
problem, we start by developing methods based on the Riesz transform for 2d. There are several
reasons for this. Firstly, scale equivariance in 2d images is an active field of research where a
unique solution currently does not exist. We believe the Riesz transform is a viable solution
to this problem. Secondly, development of novel methods is easier for 2d, since 2d images are
more tractable, smaller (less memory hungry), and easier to analyze than the 3d counterpart.
Afterwards, we switch to 3d, as a main goal of our research. From theoretical perspective this
switch to the 3d is trivial. However, from a practical point of view memory requirements for 3d
case are significantly higher. Hence, we introduce adjustments to deal with this issue.

In this chapter we give details on potential theory related to the invention of the Riesz
transform, introduce basic notions of equivariance and invariance that will be extensively used
in Part II, and give details on the Hilbert transform and the analytic signal as 1d counterpart of
the Riesz transform and the monogenic signal. In this chapter we do not give a formal (explicit)
definition of the Riesz transform, but rather an implicit one through the historical context of

1Singular integral operator is a convolution operator with a function that has a singularity at the origin.
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Section 4.1. However, although the explicit definition is not a hard requirement to understand
the content of this chapter, one is encouraged to skip forward to Section 5.2 of the following
chapter for the formal definition.

4.1 Origin of the Riesz transform

The Riesz transform is called after Marcel Riesz, a Hungarian mathematician who made several
contributions to harmonic analysis and potential theory in the 20th century. Marcel Riesz [65]
proved that the Riesz potential is an inverse for the power of the Laplace operator on Euclidean
space. The significance of this is that Laplace operators occur in many differential equations
describing physical phenomena. For example, the diffusion equation describes heat and fluid
flow, while the wave equation models wave propagation.

Formally, let f : Rd → R be a locally integrable function. Then for 0 < α < d, the Riesz
potential Iα(f) : Rd → R is defined as

Iα(f)(x) =
1

cα

∫
Rd

f(y)

|x− y|d−α
dy, (4.1)

where cα = πn/2 Γ(α/2)
Γ((d−α)/2) is a constant with Γ denoting the gamma function. This is also

written as
Iα(f) = (−△)−α/2f (4.2)

in a sense of an inverse of the Laplace operator △. The connection between Riesz potential and
Riesz transform is the following: the Riesz transform R is the differential of the Riesz potential
for α = 1:

R =
∂

∂x
I1, (4.3)

where ∂
∂x

is the differentiation operator. The Riesz transform is the only scale (dilation) equiv-
ariant operator among all differential operators of the Riesz potential DIα for 0 < α < d. Con-
nections between function f , its Riesz potentials and Riesz transform are given by the Sobolev
inequalities. The first result is also known as Hardy–Littlewood–Sobolev fractional integration
theorem.

Theorem 1. Let f ∈ Lp(Rd), 0 < α < d, and 1 < p < d/α. Then for q > 0 defined via

1

q
=

1

p
− α

d
,

there exists a constant C depending only on p such that

||Iα(f)||q ≤ C||f ||p. (4.4)

The proof of the theorem can be found in [66](Chapter 5, §1.3, Theorem 1). Furthermore,
authors in [67] establish L1-type estimates for Iα, known as L1-Sobolev inequalities. That is, for
p = 1 and 1

q = 1− α
d , there exist a constant C ′ s.t.

||Iα(f)||q ≤ C ′||R(f)||1. (4.5)

The significance of L1-Sobolev inequalities is in the fact that boundedness of the Riesz
transform implies boundedness of the Riesz potential, i.e. of the whole family of functions
for 0 < α < d.
The scale equivariance of the Riesz transform, the fractional Laplacian interpretation of the Riesz
potential from equation (4.2) and L1-Sobolev inequalities (4.5) motivate the need to explore the
Riesz transform as a tool for feature extraction and image analysis.
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Figure 4.1: Illustration of equivariances on the MNIST dataset [68]. F represents the first order Riesz
transform R1 from equation (5.1), while Lg is a (semi-)group operation. We show the examples for
rescaling and translation.

4.2 Equivariance and invariance

Here, we give a formal definition and an intuitive interpretation of equivariance and invariance.
Let L = {f : Rd → R} be a set of functions that we refer to as images. Let (G, .) be a group or
semigroup. Let Lg : L → L be a family of operators that transform an image based on group
element g ∈ G defined as Lg(f) = f(x.g−1) for f ∈ L . The operator F : L → L is said to be
equivariant to Lg if

F (Lg(f)) = Lg(F (f)), ∀f ∈ L ,

or invariant to Lg if
F (Lg(f)) = F (f), ∀f ∈ L .

Visualizations of these properties are given in Figure 4.1 and Figure 4.2. An additional ex-
ample on equivariance is given in Figure 5.2. Invariance is a stronger property than equivariance.
It implies that applying operator Lg does not have any effect on the result of operator F . In the
context of images, equivariance implies that the order in which we apply the operators F and
Lg on the input image does not matter. Invariance implies that operator F removes the effect
of operator Lg. In applications, it is useful to have equivariant feature extractors, which serve
as a input to a classifier which should be invariant to certain transformations, i.e. classification
should not be sensitive to applying these transformations. For example, usually we want to
achieve invariance to translation, rotation, or rescaling (Figure 4.2).
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Figure 4.2: Illustration of invariances on the MNIST dataset [68]. F represents a classifier, while Lg

is a (semi-)group operation. We show the examples rescaling, rotation, and translation.



4.3 Hilbert transform and analytic signal

Since the Riesz transform is a high dimensional generalization of the Hilbert transform, we give
a short introduction to the Hilbert transform and the analytic signal. The goal is to understand
the motivation behind the Riesz transform. We based this section on an overview on this topic
from [69].

4.3.1 Hilbert transform and analytic signal

The analytic signal was originally introduced by Gabor [70] in the 1940s. It is related to the
processing of 1d signals such as speech or music, where compression of signals based on frequency
bands was shown to preserve most of the information contained in the signal. Since the analytic
signal is constructed from the Hilbert transform, we start by definition of the Hilbert transform.

Hilbert transform: For f ∈ L2(R) = {g : R → R |
∫
R |g(x)|2dx <∞}, the Hilbert transform

H : L2(R) → L2(R) is defined in the spatial domain as a convolution with the Hilbert kernel
h(t) = 1

πt :
H(f) = f ∗ h.

In the Fourier domain it is obtained by multiplication with F(h)(u) = −i sign(u):

F(H(f))(u) = −i sign(u)F(f)(u),

where sign : R → R is an operator which is equal to 1 for u > 0, 0 if u = 0, and otherwise −1.
The Hilbert transform shifts the phase of the signal by π

2 . We illustrate this in the following
example.

Example Hilbert transform of the cosine function: Let f : R → R be

f(t) = cos(wt)

for w > 0, then
F(H(f))(u) = −i sign(u) π[δ(u− w) + δ(u+ w)],

where δ(t) denotes Dirac delta function, i.e. δ(t) = limb→0
e−(x/b)2

|b|
√
π

. Now, for u = w we have

F(H(f))(w) = −iπ,

while for u = −w we have
F(H(f))(−w) = iπ.

For u /∈ {−w,w}, it holds
F(H(f))(u) = 0.

This can be written more compactly as

F(H(f))(u) = iπ(−δ(u− w) + δ(u+ w)) =
π

i
(−1)(−δ(u− w) + δ(u+ w)) =

=
π

i
(δ(u− w)− δ(u+ w)) = F(sin(w·))(u).

Hence,

H(cos(w·)) = sin(w·) = cos(w ·+π
2
).
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Analytic signal: The analytic signal of a real-valued signal is a complex signal constructed
by adding the Hilbert transform as an imaginary part of the input signal:

fA = f + iH(f).

In the Fourier domain this turns out to be

F(fA)(ω) = F(f)(ω)(1 + sign(ω)).

Hence, the analytic signal removes all negative frequencies of the real-valued functions by extend-
ing it to the complex domain. The original signal can be of course reconstructed by taking the
real part of the analytic signal. Additional properties include: orthogonality ⟨f,Hf⟩ = 0 and
energy preservation ||f ||2 = ||H(f)||2. Since fA is a complex signal, it allows for representation
in polar coordinates:

f(t) = A(t)eiϕ(t).

Here, A(t) =
√
f(t)2 +H(f)(t)2 is known as local amplitude, while ϕ(t) = arctan(H(f)(t)

f(t) ) is

called local phase. According to [71], amplitude and phase enable orthogonal decomposition into
structural (phase) and energetic (amplitude) information. This means that if one changes one of
these characteristics, this will not affect the other one.

4.3.2 Analytic function

Next, we look at the characterization of the analytic signal through analytic functions. This can
be best understood through the Riemann-Hilbert problem:

∂F

∂z
(z) = 0, for z = x+ iy ∈ C, y > 0 (4.6)

with boundary condition
Re(F (x)) = f(x), x ∈ R (4.7)

The solution is given by the Cauchy integral up to a constant C ∈ C

F (z) =
1

2πi

∫
R

1

τ − z
f(τ)dτ + C. (4.8)

To show connections between the Cauchy integral and the analytic signal we need the Sokhotski-
Plemelj formula. It is defined for a complex-valued function g which is defined and continuous
on the real line, and states that for a < 0 < b it holds:

lim
ϵ→0+

∫ b

a

g(τ)

(τ − iϵ)
dτ = iπg(0) + p.v.

∫ b

a

g(τ)

τ
dτ, (4.9)

where p.v. denotes the Cauchy principal value of the integral because the Hilbert kernel is not
defined at 0. Then, we look at the Cauchy integral (for C = 0) at the boundary value of the real
(upper) half-plane in the complex space, i.e. as y → 0

lim
y→0

F (x+ iy) =
1

2πi
lim
y→0

∫
R

1

(τ − x)− iy
f(τ)dτ

(4.9)
=

=
1

2πi

(
iπf(x) + p.v.

∫
R

f(τ)

τ − x
dτ
)
=

1

2

(
f(x) + p.v.

∫
R

f(τ)

π(x− τ)
dτ
)
=

=
1

2
(f(x) + iH(f)(x)) =

1

2
fA(x).
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In our proof we apply the Sokhotski-Plemelj formula to the function g(τ) = f(τ + x) for x ∈ R.
Hence, we have established a connection between the analytic signal as a boundary value of
the analytic function from the Riemann-Hilbert problem in the upper half-plane. The Riemann-
Hilbert problem represents a main guideline on how to generalize the Hilbert transform to higher
dimensions.

4.3.3 Derivation of Riesz transform from Riemann-Hilbert problem

This derivation is based on Clifford algebra. Since this is outside the scope of the thesis, we just
state the main result for d = 2. More details on this can be found in [69]. The Dirac operator
on Rd is a first order differential operator needed to generalize its counterpart in 1d

D =

d∑
k=1

∂

∂xk

The Riemann-Hilbert problem based on the Dirac operator can be defined in 2d as

DF (x) = 0, x = (x1, x2, x3) ∈ R3, x3 > 0 (4.10)

with boundary condition

Re(F (x1, x2)) = f(x1, x2), (x1, x2) ∈ R2. (4.11)

Similarly, as in 1d it can be shown that the boundary value of the solution ends up being the
monogenic signal fM = f + iR1(f) + jR2(f) from [71] up to factor 1

2 , where R = (R1,R2) is
the Riesz transform. More details on the monogenic signal are given in Section 5.3.1. Hence, the
Riesz transform serves as an analogue to the Hilbert transform when generalizing the Rieman-
Hilbert problem to higher dimensions.
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Chapter 5

The Riesz transform

5.1 Overview of the Riesz transform in image and signal
processing

The Riesz transform is a generalization of the Hilbert transform to higher dimensional spaces, as
shown in Chapter 4. First practical applications of the Riesz transform arise in signal processing
through the definition of the monogenic signal [71] which enables a decomposition of higher
dimensional signals into local phase and local amplitude. First, a bandpass filter is applied to
the signal to separate the band of frequencies. Using the Riesz transform, the local phase and
amplitude can be calculated for a selected range of frequencies. For more details we refer to
[71, 72].

As images are 2d or 3d signals, applications of the Riesz transform naturally extend to
the fields of image processing and computer vision through the Poisson scale space [73, 74]
which is an alternative to the well-known Gaussian scale space. Köthe [75] compared the Riesz
transform with the structure tensor from a signal processing perspective. Unser [76] related
higher order Riesz transforms and derivatives. Furthermore, they give a reason for preferring the
Riesz transform over the standard derivative operator: The Riesz transform does not amplify
high frequencies.

Higher order Riesz transforms were also used for analysis of local image structures using
ideas from differential geometry [77, 78]. Benefits of using the first and second order Riesz
transforms as low level features have also been shown in measuring similarity [79], analyzing and
classification of textures [69, 80], and orientation estimation [81, 82].

Since wavelets have been proven to be very useful for multiresolution signal analysis, it was
natural to extend the concept of monogenic signal to wavelets. This has been done through
generalization of the analytic wavelet transform to higher dimensions [83] by preserving locality
of the wavelet and introducing monogenicity through the Riesz transform. Furthermore, in
[84, 85] the monogenic signal is applied to an isotropic wavelet that generates a wavelet frame.
This results in a new mother wavelet that is directed, steerable, and also generates a wavelet
frame. All these results enabled a multiresolution monogenic signal analysis. In [76] Unser
derives an Nth order extension of [84] using the high order Riesz transforms. An example of this
construction is illustrated on so called Riesz-Laplace wavelets. Unser and colleagues [76, 85] are
the first ones utilizing the scale equivariance property of the Riesz transform, and have inspired
the design of quasi monogenic shearlets [86].

Interestingly, in early works on the Riesz transform in signal processing or image processing
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[71, 72, 74], scale equivariance has not been noticed as a feature of the Riesz transform and hence
remained sidelined. Usefulness of the scale equivariance has been shown later in [76, 78].

Recently, the Riesz transform found its way into the field of deep learning: Riesz transform
features are used as supplementary features in classical CNNs to improve robustness [87]. In our
work, we will use the Riesz transforms for extracting low-level features from images and use them
as basis functions which replace trainable convolutional filters in CNNs or Gaussian derivatives.

5.2 Definition of the Riesz transform

Let L2(Rd) = {f : Rd → R |
∫
Rd |f(x)|

2dx <∞} be the subset of functions from L with

finite L2-norm. Formally, for a d-dimensional signal f ∈ L2(Rd) (i.e. an image or a feature
map), the Riesz transform of first order R = (R1, · · · ,Rd) is defined in the spatial domain as
Rj : L2(Rd) → L2(Rd)

Rj(f)(x) = Cd lim
ϵ→0

∫
Rd\Bϵ

yjf(x− y)

|y|d+1
dy, (5.1)

where Cd = Γ((d + 1)/2)/π(d+1)/2 is a normalizing constant and Bϵ ⊂ Rd is ball of radius
ϵ centered at the origin. Alternatively, the Riesz transform can be defined in the frequency
domain via the Fourier transform F

F(Rj(f))(u) = −i uj
|u|

F(f)(u) =
1

|u|
F(∂jf)(u), (5.2)

for j ∈ {1, · · · , d}. High order Riesz transforms are defined by applying a sequence of first order
Riesz transforms. That is, for n1, n2, ..., nd ∈ N ∪ {0} we set

R(n1,n2,...,nd)(f)(x) := Rn1
1 (Rn2

2 (· · · (Rnd
d (f)))(x), (5.3)

where Rnj
j refers to applying the Riesz transform Rj nj times in a sequence. Let N =

∑d
i=1 ni

for the rest of Part II. Then, we refer to (5.3) as an N -th order Riesz transform.
The Riesz transform kernels of first and second order resemble those of the corresponding

Gaussian derivatives (Figure 5.1). This can be explained by the following relations

R(f) = (−1)(−△)−1/2∇f (5.4)

R(n1,n2,...,nd)(f)(x) = (−1)N (−△)−N/2 ∂Nf(x)

∂n1x1 · · · ∂ndxd
. (5.5)

The fractional Laplace operator △N/2 acts as an isotropic low-pass filter. The main properties
of the Riesz transform can be summarized in the following way [76]:

• translation equivariance:

Rj(Tx0
(f))(x) = Tx0

(Rj(f))(x),

where x0 ∈ Rd and j ∈ {1, · · · , d}. Tx0
(f)(x) : L2(Rd) → L2(Rd) is a translation operator

defined as Tx0(f)(x) = f(x− x0). This property reflects the fact that the Riesz transform
commutes with the translation operator.

• steerability:

Here, steering refers to the process of calculating an arbitrarily oriented filter as a linear
combination of basis filters [9]. The Riesz transform is defined only for the (orthogonal) base
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Figure 5.1: Visualizations of Riesz transform kernels of first and second order. First row (from left to
right): R1 and R2. Second row (from left to right): R(1,1), R(1,2), and R(2,2).

axes of Rn. However, in practice the relevant features can be oriented arbitrarily. Hence,
it is beneficial to orient the Riesz transform. This is achieved through the directional
Hilbert transform Hv : L2(Rd) → L2(Rd) in direction v ∈ Rd, ||v|| = 1 which is defined as
F(Hv(f))(u) = isign(⟨u, v⟩). Hv is steerable in terms of the Riesz transform, that is

Hv(f)(x) =

d∑
j=1

vjRj(f)(x) = ⟨R(f)(x), v⟩.

In 2d, the directional Hilbert transform for a unit vector v = (cosϕ, sinϕ), ϕ ∈ [0, 2π]
becomes Hv(f)(x) = cosϕR1(f)(x)+sinϕR2(f)(x). This is equivalent to the link between
gradient and directional derivatives [76] and a very useful property for learning oriented
features.
High order steerability: similarly, higher order directional Hilbert transforms H(N)

v :
L2(Rd) → L2(Rd) can be steered by higher order Riesz transforms:

H(N)
v (f)(x) =

∑
|n|=N

N !

n!
vnRn(f)(x).

where v = (v1, · · · , vd) ∈ Rd is a unit vector and vn :=
∏N

i=1(vi)
ni . For example, for

d = N = 2 and v = (cosϕ, sinϕ) we have:

H(2)
v (f)(x) = cos2(ϕ)R(2,0)(f)(x) + sin2(ϕ)R(0,2)(f)(x) + 2 cos(ϕ) sin(ϕ)R(1,1)(f)(x).

• all-pass filter [71]: Let H = (H1, · · · , Hd) be the Fourier transform of the Riesz kernel,
i.e. F(Rj(f))(u) = i

uj
|u|F(f)(u) = Hj(u)F(f)(u). The energy of the Riesz transform for

frequency u ∈ Rd is defined as the norm of the d-dimensional vector H(u) and has value 1
for all non-zero frequencies u ̸= 0, i.e.

|H(u)| = 1, u ̸= 0.
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The all-pass filter property reflects the fact that the Riesz transform is a non-local operator
and that every frequency is treated fairly and equally. Combined with scale equivariance,
this eliminates the need for multiscale analysis or multiscale feature extraction.

• scale (dilation) equivariance:

Rj(La(f))(x) = La(Rj(f))(x),

for a > 0 and j ∈ {1, · · · , d}. La : L2(Rd) → L2(Rd) is a dilation or rescaling operator
defined as La(f)(x) = f(xa ). That is, the Riesz transform does not only commute with
translations but also with scaling.

Scale equivariance enables an equal treatment of the same objects at different scales. As this
is the key property of the Riesz transform for our application, we will briefly present a proof.
We restrict to the first order in the Fourier domain. The proof for higher orders follows directly
from the one for the first order. We have to show that

[Rif
( ·
a

)
](x) = [Rif ]

(x
a

)
. (5.6)

Proof. Remember that the Fourier transform of the dilated function is given by F(f(α·))(u) =
1
αd

F(f)( uα ). Setting g(x) = f(xa ), we have F(g)(u) = adF(f)(au). This yields

F

(
Rj(f

( ·
a

)
)

)
(u) = F

(
Rj(g)

)
(u) = i

uj
|u|

F(g)(u) = i
uj
|u|
adF(f)(au) =

= ad
(
i
auj
a|u|

)
F(f)(au) = adF

(
Rj(f)

)
(au) = F

(
Rj(f)

( ·
a

))
(u).

Figure 5.2: Interpretation of the Riesz transform on a mock example of 550 × 550 pixels: aligned
rectangles with equal aspect ratio and constant gray value 255 (left) and response of the second order
Riesz transformR(2,0) of the left image sampled horizontally through the centers of the rectangles (right).
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Figure 5.2 provides an illustration of the scale equivariance. It shows four rectangles with
length-to-width ratio 20 and varying width (3, 5, 7, and 11 pixels) together with the gray value
profile of the second order Riesz transform R(2,0) along a linear section through the centers of
the rectangles. In spite of the different widths, the Riesz transform yields equal filter responses
for each rectangle (up to rescaling). In contrast, to achieve the same behaviour in Gaussian
scale space, the scale space has to be sampled (i.e. a subset of scales has to be selected), the
γ-normalized derivative [88] has to be calculated for every scale, and finally the scale yielding the
maximal absolute value has to be selected. In comparison, the simplicity of the Riesz transform
achieving the same in just one transform without sampling scale space and without need for a
scale parameter is striking.

5.3 Riesz transform and signal decomposition

5.3.1 Decomposition using the monogenic signal

Generally, the goal of the analytic or the monogenic signal is to extract useful information from
a signal by means of decomposition. For example, a 2d signal f can be decomposed into local
amplitude, orientation, and phase. Here, we summarize results for the 2d case from [71]. First,
the monogenic representation fM (x) of the signal f ∈ L2(R2) at point x ∈ R2 is calculated:

fM (x) = f(x) + iR1f(x) + jR2f(x) = f(x) + if1(x) + jf2(x),

where i and j can be seen as imaginary units and are related to the notation and calculus from
Clifford analysis [71]. Here, we use the notation: f1(x) := R1f(x) and f2(x) := R2f(x). Then,
local amplitude |fM (x)| is given by:

|fM (x)| =
√
f(x)2 + f1(x)2 + f2(x)2.

Local orientation and local phase refer to structural information at the point x. Local orientation
is determined from (f1(x), f2(x)) following the differential interpretation of the Riesz transform:

v(x) = tan−1

(
f2(x)

f1(x)

)
.

Local phase is defined in the direction orthogonal to the local orientation:

ϕ(x) =
fD(x)

|fD(x)|
tan−1

(√
f1(x)2 + f2(x)2

f(x)

)
,

where fD(x) = (−f2(x), f1(x), 0). Then, given local phase and local amplitude of the monogenic
signal, the full signal can be reconstructed:

fM (x) = |fM (x)|e(−j,i,0)·ϕ(x).

5.3.2 Poisson scale space

The most well-known linear scale space is Gaussian scale space [89, 90, 91, 92]. It was thought
to be the only scale space until works from Felsberg and Sommer [73, 74] where Poisson scale
space was defined from the Laplace equation. They have shown that Poisson scale space satisfies
most of the axioms of Gaussian scale space. Later it was shown in [93, 94] that the functions
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u ∈ L2(Rd+1) that satisfy reasonable axioms based on these two scale spaces are the solutions of
the family of pseudo differential equations based on parameter α ∈ ⟨0, 1]:

∂

∂s
u = −(−△)αu

lim
s→0

u(x, s) = f(x),

for image f ∈ L2(Rd) and (−△)α is a fractional Laplacian operator1. This class of infinitely
many new scale spaces based on parameter α ∈ ⟨0, 1] is referred to as α-scale spaces [93, 94].
Interestingly, α-scale spaces connect Poisson and Gaussian scale space. For α = 1, we get the
diffusion equation and Gaussian scale space, while for α = 1

2 we get Poisson scale space. Accord-
ing to [74] Poisson scale space, also known as monogenic scale space, unites two fundamental
concepts: scale space and phase-based image processing. Since phase-based image processing is
related to the Riesz transform and monogenic signal, we give a short overview of Poisson scale
space.

Felsberg and Sommer [73] looked at the solution of the Laplace equation on R2 with an
additional scale dimension:

△u(x, y, s) = ∂

∂xx
u(x, y, s) +

∂

∂yy
u(x, y, s) +

∂

∂ss
u(x, y, s) = 0. (5.7)

The fundamental solution of the Laplace equation is known as a Newton potential

u(x, y, s) =
c√

x2 + y2 + s2
,

where c is an arbitrary constant. Since differential operators commute, derivatives of u also
satisfy the Laplace equation

g(x, y, s) =
∂

∂s
u(x, y, s) =

s

(x2 + y2 + s2)
3
2

,

hx(x, y, s) =
∂

∂x
u(x, y, s) =

x

(x2 + y2 + s2)
3
2

,

hy(x, y, s) =
∂

∂y
u(x, y, s) =

y

(x2 + y2 + s2)
3
2

.

In the previous step we set the constant c to −1. Here, g acts as an isotropic lowpass filter and
it is known as a Poisson kernel. The Poisson kernel satisfies the five axioms of Iijima [89, 95]
which define linear scale space. Furthermore, it holds

lim
s→0

hx(x, y, s) =
x

(x2 + y2)3/2
,

lim
s→0

hy(x, y, s) =
y

(x2 + y2)3/2
,

which are exactly the kernels of the Riesz transform for d = 2, i.e. for image f it holds lims→0(f ∗
hx(·, ·, s)) = R1(f) and lims→0(f ∗hy(·, ·, s)) = R2(f). This means that at scale 0 (f, f ∗hx, f ∗hy)
is a monogenic signal. For scale s > 0, (f ∗g, f ∗hx, f ∗hy) can be seen as a monogenic signal of the
lowpass filtered signal f ∗ g. This allows for a monogenic decomposition of the scale decomposed
signal.

1Here, fractional spatial Laplacian is defined only in terms of variables from the spatial domain Rd rather than
on the joint spatial and scale domain Rd+1.
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5.3.3 Decomposition using high order Riesz transform

The high order Riesz transform also enables useful signal decomposition. Here, we follow the
results given in [85]. The first theorem is a result of the invertibility of the high order Riesz

transform. Throughout this section, let n = (n1, · · · , nd) be a multivector s.t. |n| =
∑d

i=1 ni = N
and N ∈ N.

Theorem 2. The N-th order Riesz transform allows for the following decomposition:∑
|n|=N

N !

n!
(Rn1

1 · · ·Rnd
d )∗(Rn1

1 · · ·Rnd
d ) = Id. (5.8)

Proof. The proof is done based on [76] in the Fourier domain.
For input signal f we have

F((Rn1
1 · · ·Rnd

d )∗(Rn1
1 · · ·Rnd

d )(f))(w) =
(−iw
||w||

)n( iw

||w||

)n
F(f)(w)

=
( w2

1

||w||2
)n1

· · ·
( w2

d

||w||2
)nd

F(f)(w).

Using this equation on the left side of equation (5.8) in the Fourier domain

F
( ∑

|n|=N

N !

n!
(Rn1

1 · · ·Rnd
d )∗(Rn1

1 · · ·Rnd
d )f

)
(w) =

∑
|n|=N

N !

n!
F
(
(Rn1

1 · · ·Rnd
d )∗(Rn1

1 · · ·Rnd
d )f

)
(w)

=
∑

|n|=N

N !

n!

( w2
1

||w||2
)n1

· · ·
( w2

d

||w||2
)nd

F(f)(w) =
∑

|n|=N

N !

n!

( (w2
1)

n1 · · · (w2
d)

nd

||w||2N
)
F(f)(w)

= [from multinomial theorem] =
1

||w||2N
(w2

1 + · · ·w2
d)

NF(f)(w)‘ = F(f)(w).

Hence, the Nth order Riesz transform decomposes a signal into p(N, d) =
(
N+d−1
d−1

)
compo-

nents from which the original signal can be reconstructed. The next theorem states that this
decomposition preserves the L2-norm of the signal.

Theorem 3. The N-th order Riesz transform satisfies the following Parseval-like identity:∑
|n|=N

N !

n!
⟨Rnf,Rng⟩L2

= ⟨f, g⟩L2
, (5.9)

for every f, g ∈ L2(Rd).

This implies the conservation of signal energy ||f ||∑
|n|=N

N !

n!
||Rnf ||2 = ||f ||2. (5.10)

and the contraction property
||Rnf ||2 ≤ ||f ||2, (5.11)

for any multivector n. For N = 1, this turns out to be ||f ||2 = ||R1(f)||2+ ||R2(f)||2 or in terms
of the previous section |fM (x)|2 = 2|f(x)|2.
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Nonexpansiveness of the Riesz transform: For multivector n it holds:

||Rn(f)−Rn(g)||2 ≤ ||f − g||2, (5.12)

Proof. Since Rn is a linear operator, it holds Rn(f−g) = Rn(f)−Rn(g). Hence, the contraction
property implies nonexpansiveness:

||Rn(f)−Rn(g)||2 = ||Rn(f − g)||2 ≤ ||f − g||2.

These properties will be useful for understanding the decay of energy, i.e. amplitude with the
increasing depth of the Riesz scattering representation in Chapter 8.
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Chapter 6

The Riesz network

6.1 Introduction

In image data, the same objects may occur at highly varying scales. Examples are cars or
pedestrians at different distances from the camera, cracks in concrete of varying thickness or
imaged at different resolution, or blood vessels in biomedical applications (see Figure 6.1). It is
natural to assume that the same object or structure at different scales should be treated equally,
i.e. should have equal or at least similar features. This property is called scale or dilation
invariance and has been very well investigated in classical image processing [88, 96, 97].

Neural networks have proven to segment and classify robustly and well in many computer
vision tasks. Nowadays, the most popular and successful neural networks are Convolutional
Neural Networks (CNNs). It would be desirable that neural networks share typical properties of
human vision such as translation, rotation, or scale invariance. While this is true for translation
invariance, CNNs are not scale or rotation invariant by default. This is due to the excessive use
of convolutions which are local operators. Moreover, training sets often contain a very limited
number of scales. To overcome this problem, CNNs are often trained with rescaled images
through data augmentation. However, when a CNN is given input whose scale is outside the
range covered by the training set, it will not be able to generalize [98, 99]. To overcome this
problem, a CNN trained at a fixed scale can be applied to several rescaled versions of the input
image and the results can be combined. This, however, requires multiple runs of the network.

One application example, where the just described challenges naturally occur is the task of
segmenting cracks in 2d or 3d gray scale images of concrete. Crack segmentation in 2d has been
a vividly researched topic in civil engineering, see [42] for an overview. Cracks are naturally
multiscale structures (Fig. 6.1, top) and hence require multiscale treatment. Nevertheless,
adaption to scale (crack thickness1) has not been treated explicitly so far.

Recently, crack segmentation in 3d images obtained by computed tomography (CT) has
become a subject of interest [44, 42]. Here, the effect of varying scales is even more pronounced
[100]: crack thicknesses can vary from a single pixel to more than 100 pixels. Hence, the aim is
to design and evaluate crack segmentation methods that work equally well on all possible crack
widths without complicated adjustment by the user.

In this chapter, we focus on 2d multiscale crack segmentation in images of concrete samples.
We design the Riesz network which replaces the popular 2d convolutions by first and second order
Riesz transforms to allow for a scale invariant spatial operation. The resulting neural network

1Crack scale, thickness, and width refer to the same characteristic and will be interchangeably used throughout
the paper.
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Figure 6.1: Examples of similar objects appearing on different scales: section of a CT image of concrete
showing a crack of locally varying thickness (top) and pedestrians at different distances from the camera
(bottom, taken from [101]).

is provably scale invariant in only one forward pass. It is sufficient to train the Riesz network
on one scale or crack thickness, only. The network then generalizes automatically without any
adjustments or rescaling to completely unseen scales. We validate the network performance
using images with simulated cracks of constant and varying widths generated as described in
[42, 102]. Our network is compared with competing methods for multiscale segmentation and
finally applied to real multiscale cracks observed in 2d slices of tomographic images.

There is just one publicly available dataset which allows for testing scale equivariance –
MNIST Large Scale [99]. We analyze the performance of the Riesz network on this dataset.

Next, we give an overview of deep learning methods from the literature that are robust to
variations in scale. Deep learning methods which have mechanisms to handle variations in scale
effectively can be split in two groups based on their scale generalization ability.

6.1.1 Scale invariant deep learning methods for a limited range of
scales

The first group can handle multiscale data but is limited to the scales represented either by the
training set or by the neural network architecture. The simplest approach to learn multiscale
features is to apply the convolutions to several rescaled versions of the images or feature maps
in every layer and to combine the results by maximum pooling [98] or keeping the scale with
maximal activation [103] before passing it to the next layer. In [104, 105], several approaches
based on downscaling images or feature maps with the goal of designing robust multiscale object
detectors are summarized. However, scaling is included in the network architecture such that
scales have to be selected a priori. Therefore, this approach only yields local scale invariance,
i.e. an adaption to the scale observed in a given input image is not possible after training.

Another intuitive approach is to rescale trainable filters, i.e. convolutions, by interpola-
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tion [106]. Another intuitive approach is to rescale trainable filters, i.e. convolutions, by inter-
polation [106]. In [104], a new multiscale strategy was derived which uses convolution blocks of
varying sizes sequenced in several downscaling layers creating a pyramidal shape. The pyrami-
dal structure is utilized for learning scale dependent features and making predictions in every
downsampling layer. Layers can be trained according to object size. That is, only the part of
the network relevant for the object size is optimized. This guarantees robustness to a large range
of object scales. Similarly, in [105], a network consisting of a downsampling pyramid followed
by an upsampling pyramid is proposed. Here, connections between pyramid levels are devised
for combining low and high resolution features and predictions are also made independently on
every pyramid level. However, in both cases, scale generalization properties of the networks are
restricted by their architecture, i.e. by the depth of the network (number of levels in the image
pyramid), the size of convolutions as spatial operators as well as the size of the input image.

Spatial transformer networks [107] focus on invariance to affine transformations including
scale. This is achieved by using a so-called localisation network which learns transformation
parameters. Finally, using these transformation parameters, a new sampling grid can be created
and feature maps are resampled to it. These parts form a trainable module which is able to handle
and correct the effect of the affine transformations. However, spatial transformer networks do
not necessarily achieve invariant recognition [108]. Also, it is not clear how this type of network
would generalize to scales not represented in the training set.

In [109], so-called structured receptive fields are introduced. Linear combinations (1 × 1
convolutions) of basis functions (in this case Gaussian derivatives up to 4th order) are used to
learn complex features and to replace convolutions (e.g. of size 3×3 or 5×5). As a consequence,
the number of parameters is reduced, while the expressiveness of the neural network is preserved.
This type of network works better than classical CNNs in the case where less training data is
available. However, the standard deviation parameters of the Gaussian kernels are manually
selected and kept fixed. Hence, the scale generalization ability remains limited.

Making use of the semi-group property of scale spaces, scale equivariant neural networks
motivate the use of dilated convolutions [110] to define scale equivariant convolutions on the
Gaussian scale space [111] or morphological scale spaces [112]. Unfortunately, these neural
networks are unable to generalize to scales outside those determined by their architecture and
are only suitable for downscale factors which are powers of 2, i.e. {2, 4, 8, 16, · · · }. Furthermore,
scale equivariant steerable networks [113] show how to design scale invariant networks on the
scale-translation group without using standard or dilated convolutions. Following an idea from
[109], convolutions are replaced by linear combinations of basis filters (Hermite polynomials with
Gaussian envelope). While this allows for non-integer scales, scales are still limited to powers of
a positive scaling factor a. Scale space is again discretized and sampled. Hence, a generalization
to arbitrary scales is not guaranteed.

6.1.2 Scale invariant deep learning methods for arbitrary scales

The second group of methods can generalize to arbitrary scales, i.e. any scales that are in a
range bounded from below by image resolution and from above by image size, but not necessarily
contained in the training set. Our Riesz network also belongs to this second group of methods.

An intuitive approach is to train standard CNNs on a fixed range of scales and enhance
their scale generalization ability by the following three step procedure based on image pyramids:
downsample by a factor a > 1, forward pass of the CNN, upsample the result by 1

a to the original
image size [99, 100]. Finally, forward passes of the CNN from several downsampling factors
{a1, · · · , an > 0 | n ∈ N} are aggregated by using the maximum or average operator across
the scale dimension. This approach indeed guarantees generalization to unseen scales as scales
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can be adapted to the input image and share the weights of the network [99]. However, it requires
multiple forward passes of the CNN and the downsampling factors have to be selected by the
user.

Inspired by Scattering Networks [114, 115], normalized differential operators based on first
and second order Gaussian derivatives stacked in layers or a cascade of a network can be used
to extract more complex features [116]. Subsequently, these features serve as an input for a
classifier such as a support vector machine. Varying the standard deviation parameter σ of the
Gaussian kernel, generalization to new scales can be achieved. However, this type of network is
useful for creating handcrafted complex scale invariant features, only, and hence is not trainable.
A more comprehensive overview on this subfield is given in Chapter 8.

Its expansion to trainable networks by creating so-called Gaussian derivative networks [117]
is one of the main inspirations for our work. For combining spatial information, γ-normalized
Gaussian derivatives are used as scale equivariant operators (γ = 1). Similarly as in [109], linear
combinations of normalized derivatives are used to learn more complex features in the spirit of
deep learning. During the training step, prior knowledge of the scale for every instance in the
training set is required, i.e. the standard deviation parameter σ of the Gaussian kernel is set to
reflect the scale of every instance, while the trainable weights are shared. In the inference step,
the scale dimension needs to be discretized, sampled, and for each scale σ, the forward pass of
the network has to be executed.

6.2 Riesz network

In the spirit of structured receptive fields [109] and Gaussian derivative networks [117], we use
the Riesz transforms of first and second order instead of standard convolutions to define Riesz
layers.

As a result, Riesz layers are scale equivariant in a single forward pass. Replacing standard
derivatives with the Riesz transform has been motivated by [75], while using a linear combination
of Riesz transforms of several order follows [80].

6.2.1 Riesz layers

The base layer of the Riesz networks is defined as a linear combination of the Riesz transforms
of several orders implemented as 1d convolution across feature channels (Figure 6.2). Here, we
limit ourselves to first and second order Riesz transforms. Thus, the linear combination reads as

JR(f) = C0 +

d∑
k=1

Ck · Rk(f) +
∑

k,l∈N0,k+l=2

Ck,l · R(k,l)(f), (6.1)

where {C0, Ck|k ∈ {1, · · · , d}}∪{Ck,l|l, k ∈ N0, l+k = 2} are parameters that are learned during
training.

Now we can define the general layer of the network (Figure 6.2). Let us assume that the Kth

network layer takes input F (K) = (F
(K)
1 , · · · , F (K)

c(K)) ∈
(
L2(Rd)

)c(K)

with c(K) feature channels

and has output F (K+1) = (F
(K+1)
1 , · · · , F (K+1)

c(K+1) ) ∈
(
L2(Rd)

)c(K+1)

with c(K+1) channels. Then

the output in channel j ∈ {1, · · · , c(K+1)} is given by

F
(K+1)
j =

c(K)∑
i=1

J
(j,i)
K (F

(K)
i ). (6.2)
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Figure 6.2: Building blocks of Riesz networks: the base Riesz layer from equation (6.1) (left) and the
full Riesz layer from equation (6.2) (right).

Here, J
(j,i)
K is defined in the same way as JR(f) from equation (6.1), but trainable parameters

may vary for different input channels i and output channels j, i.e.

J
(j,i)
K (f) = C

(j,i,K)
0 +

d∑
k=1

C
(j,i,K)
k · Rk(f) +

∑
k,l∈N0,k+l=2

C
(j,i,K)
k,l · R(k,l)(f). (6.3)

In practice, the offset parameters C
(j,i,K)
0 , i = 1, · · · , c(K) are replaced with a single parameter

defined as C
(j,K)
0 :=

∑c(K)

i=1 C
(j,i,K)
0 .

6.2.2 Proof of scale equivariance

We prove the scale equivariance for JR(f). That implies scale equivariance for J
(j,i)
K (f) and

consequently for F
(K+1)
j for arbitrary layers of the network. By construction (see Section 6.2.3),

this will result in provable scale equivariance for the whole network. For any scaling parameter
a > 0 and x ∈ Rd, we have

JR

(
f(

·
a
)

)
(x) = C0 +

d∑
k=1

Ck · Rk

(
f(

·
a
)

)
(x) +

d∑
k=1

d∑
l=k

Ck,l · R(k,l)

(
f(

·
a
)

)
(x)

(5.6)
= C0 +

d∑
k=1

Ck · Rk(f)(
x

a
) +

d∑
k=1

d∑
l=k

Ck,l · R(k,l)(f)(
x

a
)

= JR(f)(
x

a
). ■

6.2.3 Network design

The basic building block of modern CNNs is a sequence of the following operations: batch nor-
malization, spatial convolution (e.g. 3× 3 or 5× 5), the Rectified Linear Unit (ReLU) activation
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function, and Max Pooling. For more details on these operations, the reader is referred to Ap-
pendix A. Spatial convolutions have by default a limited size of the receptive field and Max
Pooling is a downsampling operation performed on a window of fixed size. For this reason,
these two operations are not scale equivariant and consequently CNNs are sensitive to variations
in the scale. Hence, among the classical operations, only batch normalization [118] and ReLU
activation preserve scale equivariance. To build our neural network from scale equivariant trans-
formations, only, we restrict to using batch normalization, ReLUs, and Riesz layers, which serve
as a replacement for spatial convolutions. In our setting, Max Pooling can completely be avoided
since its main purpose is to combine it with spatial convolutions in cascades to increase the size
of the receptive field while reducing the number of parameters.

Generally, a layer consists of the following sequence of transformations: batch normaliza-
tion, Riesz layer, and ReLU. Batch normalization improves the training capabilites and avoids
overfitting, ReLUs introduce non-linearity, and the Riesz layers extract scale equivariant spatial
features. For every layer, the number of feature channels has to be selected. Hence, our network
with K ∈ N layers can be simply defined by a (K + 2)-tuple specifying the channel sizes2 e.g.
(c(0), c(1), · · · c(K), c(K+1)). The final layer is defined as a linear combination of the features from
the previous layer followed by a sigmoid function yielding the desired probability map as output.

The four layer Riesz network we apply here can be schematically written as 1 → 16 → 32 →
40 → 48 → 1 and has (1·5·16+16)+(16·5·32+32)+(32·5·40+40)+(40·5·48+48)+(48·1+1) =
18 825 trainable parameters.

6.3 Applications in 2d crack segmentation

In this section we evaluate the four layer Riesz network defined above on the task of segmenting
cracks in 2d slices from CT images of concrete. Particular emphasis is put on the network’s
ability to segment multiscale cracks and to generalize to crack scales unseen during training.
To quantify these properties, we use images with simulated cracks. Being accompanied by an
unambiguous ground truth, they allow for an objective evaluation of the segmentation results.

Data generation: Cracks are generated by the fractional Brownian motion (Experiment 1) or
minimal surfaces induced by the facet system of a Voronoi tessellation (Experiment 2). Dilated
cracks are then integrated into CT images of concrete without cracks. As pores and cracks are
both air-filled, their gray value distribution should be similar. Hence, the gray value distribution
of crack pixels is estimated from the gray value distribution observed in air pores. The crack
thickness is kept fixed (Experiment 1) or varies (Experiment 2) depending on the objective of
the experiment. As a result, realistic semi-synthetic images can be generated (see Figure 6.3).
For more details on the simulation procedure, we refer to [42, 102]. Details on number and size
of the images can be found below. Finally, we show applicability of the Riesz network for real
data containing cracks generated by tensile and pull-out tests.

Quality metrics: As metrics for evaluation of the segmentation results we use precision (P),
recall (R), F1-score (or dice coefficient, Dice), and Intersection over Union (IoU). We refer to
Appendix D for more details.

2Channel dimension c(0) denotes the dimension of input image, e.g. for grayvalue images c(0) = 1. Channel
dimension c(K + 1) denotes the dimension of the final output of the network. For the crack segmentation the
output map is the binary image, e.g. c(K + 1) = 1.
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Figure 6.3: Cracks of width 3 used for training: before (first row) and after cropping (gray value images
in the second row). Binary images in the second row represent ground truth images of the gray value
images in the same row. Image sizes are 256× 256 (first row) and 64× 64 (second row).

Training parameters: If not specified otherwise, all models are trained on cracks of fixed
width of 3 pixels. Cracks for the training are generated in the same way as for Experiment 1 on
256×256 sections of CT images of concrete. Then, 16 images of size 64×64 are cropped without
overlap from each of the generated images. In this way, images without cracks are present in the
training set. After data augmentation by flipping and rotation, the training set consists of 1 947
images of cracks. Some examples are shown in Figure 6.3. For validation, another set of images
with cracks of width 3 is used. The validation data set’s size is a third of the size of the training
set.

All models are trained for 50 epochs with initial learning rate 0.001 which is halved every 20
epochs. ADAM optimization [119] is used, while the cost function is set to binary cross entropy
loss.

Crack pixels are labelled with 1, while the background is labelled with 0. As there are far more
background than crack pixels, we deal with a highly imbalanced data set. Therefore, crack and
pore pixels are given a weight of 40 to compensate for class imbalance and to help distinguishing
between these two types of structures which do not differ in their gray values.

6.3.1 Measuring scale equivariance

Measures for assessing scale equivariance have been introduced in [111, 113]. For an image or
feature map f , a mapping function Φ (e.g. a neural network or a subpart of a network), and a
scaling function La we define

∆a(Φ) :=
||La(Φ(f))− Φ(La(f))||2

||La(Φ(f))||2
.

Ideally, this measure should be 0 for perfect scale equivariance. In practice, due to scaling and
discretization errors we expect it to be positive yet very small.

To measure scale equvariance of the full Riesz network with randomly initialized weights,
we use a data set consisting of 85 images of size 512 × 512 pixels with crack width 11 and
use downscaling factors a ∈ {2, 4, 8, 16, 32, 64}. The evaluation was repeated for 20 randomly
initialized Riesz networks. The resulting values of ∆a are given in Figure 6.4.
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Figure 6.4: Measure of scale equivariance ∆a for the four layer Riesz network with randomly initial-
ized parameters w.r.t. the downsacling factor a. Mean (black), minimum, and maximum (gray) of 20
repetitions. Points on the line correspond to a ∈ {1, 2, 4, 8, 16, 32, 64}.

The measure ∆a was used to validate the scale equivariance of Deep Scale-spaces (DSS) in
[111] and scale steerable equivariant networks in [113]. In both works, a steep increase in ∆a

is observed for downscaling factors larger than 16, while for very small downscaling factors, ∆a

is reported to be below 0.01. In [113], ∆a reaches 1 for downscaling factor 45. The application
scenario studied here differs from those of [111, 113]. Results are thus not directly comparable
but can be considered only as an approximate baseline. For small downscaling factors, we find
∆a to be higher than in [113] (up to 0.075). However, for larger downscaling factors (a > 32),
∆a increases more slowly e.g. ∆64 = 0.169. This proves the resilience of Riesz networks to very
high downscaling factors, i.e. large changes in scale.

6.3.2 Experiment 1: Generalization to unseen scales

Our models are trained on images of fixed crack width 3. To investigate their behaviour on crack
widths outside of the training set, we generate cracks of widths {1, 3, 5, 7, 9, 11} pixels in images
of size 512 × 512, see Figure 6.9. Each class contains 85 images. Besides scale generalization
properties of the Riesz network, we check how well it generalizes to random variations in crack
topology or shapes, too.

Ablation study on the Riesz network

We investigate how network parameters and composition of the training set affect the quality of
the results, in order to learn how to design this type of neural networks efficiently.

Size of training set: First, we investigate robustness of the Riesz network to the size of the
training set. Literature [109] suggests that neural networks based on structure receptive fields
are less data hungry, i.e. their performance with respect to the size of the training set is more
stable than that of conventional CNNs. Since the Riesz network uses the Riesz transform instead
of a Gaussian derivative as in [109], it is expected that the same would hold here, too.

The use of smaller training sets has two main benefits. First, obviously, smaller data sets
reduce the effort for data collection, i.e. annotation or simulation. Second, smaller data sets
reduce the training time for the network if we do not increase the number of epochs during
training.
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Method
w1 w3 w5 w7 w9 w11
Dice Dice Dice Dice Dice Dice

baseline 0.352 0.895 0.941 0.954 0.962 0.964

width 1 0.535 0.761 0.738 0.678 0.634 0.631
width 5 0.317 0.891 0.935 0.951 0.959 0.957

mixed width 0.297 0.865 0.905 0.935 0.954 0.962
trainset 489 0.356 0.877 0.929 0.945 0.954 0.958
trainset 975 0.365 0.919 0.942 0.954 0.964 0.966

layer 2 0.297 0.865 0.905 0.935 0.954 0.962
layer 3 0.366 0.915 0.940 0.954 0.966 0.971
layer 5 0.390 0.914 0.950 0.960 0.969 0.972

Table 6.1: Experiment 1. Ablation study: scale generalization ability of Riesz networks. Baseline is
trained on 1 947 images with cracks of width 3 and has 4 layers. Cells are colored in lightgray if the
metric is better than for the baseline, but not by more than 0.02. Dark gray color is used for metrics
being more than 0.02 better compared to the baseline.

We constrain ourselves to three sizes of training sets: 1 947, 975, and 489. These numbers
refer to the sets after data augmentation by flipping and rotation. Hence, the number of original
images is three times smaller. In all three cases we train the Riesz network for 50 epochs and with
similar batch sizes (11, 13, and 11, respectively). Results on unseen scales with respect to data
set size are shown in Table 6.1 and Figure 6.5. We observe that the Riesz network trained on
the smallest data set is competitive with counterparts trained on larger data sets albeit featuring
generally 1− 2% lower Dice and IoU.

Choice of crack width for training: There are two interesting questions with respect to
crack width. Which crack width is suitable for training of the Riesz network? Do varying crack
thicknesses in the training set improve performance significantly?

To investigate these questions, we choose three training data sets with cracks of fixed widths
1, 3, or 5. A fourth data set combines crack widths 1, 3, and 5. We train the Riesz network with
these sets and evaluate its generalization performance across scales. Results are summarized
in Figure 6.6 and Table 6.1. Crack widths 3 and 5 yield similar results, while crack width 1
seems not to be suitable, except when trying to segment cracks of width 1. Cracks of width 1
are very thin, subtle, and in some cases even disconnected. Hence, they differ significantly from
thicker cracks which are 8-connected and have a better contrast to the concrete background.
This indicates that very thin cracks should be considered a special case which requires somewhat
different treatment. Rather surprisingly, using the mixed training data set does not improve the
metrics. Diversity with respect to scale in the training set seems not to be a decisive factor when
designing Riesz networks.

Number of layers: Finally, we investigate the explanatory power of the Riesz network de-
pending on network depth and the number of parameters. We train four networks with 2 − 5
layers and 2 721, 9 169, 18 825, and 34 265 parameters, respectively, on the same data set for 50
epochs. The network with 5 layers has structure 16 → 32 → 40 → 48 → 64 and every other net-
work is constructed from this one by removing the required number of layers at the end. Results
are shown in Table 6.1 and in Figure 6.7. The differences between the networks with 3, 4, and
5 layers are rather subtle. For the Riesz network with only 2 layers, performance deteriorates
considerably (3− 5% in Dice and IoU).
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Figure 6.5: Experiment 1. Effect of the training set size on generalization to unseen scales. The
baseline Riesz network is marked with 1 947, w3, and layer 4 and with square symbol □. Left: Dice,
right: IoU.

In general, Riesz networks appear to be robust with respect to training set size, depth of network,
and number of parameters. Hence, it is not necessary to tune many parameters or to collect thou-
sands of images to achieve good performance, in particular for generalization to unseen scales.
For the choice of crack width, 3 and 5 seem appropriate while crack width 1 should be avoided.

Comparison with competing methods

Competing methods: The four layer Riesz network is compared to two other methods –
Gaussian derivative networks [117] and U-net [120] on either rescaled images [99] or an image
pyramid [100]. The Gaussian derivative network uses scale space theory based on the Gaussian
kernel and the diffusion equation. Using the γ-normalized Gaussian derivatives from [88], layers
of first and second order Gaussian derivatives are constructed [117]. U-net has around 2.7 million
parameters, while the Gaussian derivative network has the same architecture as the Riesz network
and hence the same number of parameters (18k).

We design an experiment for detailed analysis and comparison of the ability of the methods
to generalize to scales unseen during training. In typical applications, the thickness of the cracks
would not be known. Here, crack thickness is kept fixed such that the correct scale of cracks is a
priori known. This allows for a selection of an optimal scale (or range of scales) such that we have
a best case comparison. For the Gaussian derivative network, scale is controlled by the standard
deviation parameter σ which is set to the half width of the crack. For the U-net, scale is adjusted
by downscaling the image to match the crack width used in the training data. Here, we restrict
the downscaling to discrete factors in the set {2, 4, 8, ...}. For widths 1 and 3, no downscaling
is needed. For width 5, the images are downscaled by 2, for width 7 by 4, and for widths 9
and 11 by 8. For completeness, we include results for the U-net without downscaling denoted
by ”U-net plain”. Table 6.2 yields the prediction quality measured by the Dice coefficient, while
the other quality measures are shown in Figure 6.8. Exemplary segmentation results are shown
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Figure 6.6: Experiment 1. Effect of the crack width in the training set on generalization to unseen
scales. The baseline Riesz network is marked with 1 947, w3, and layer 4 and with square symbol □.
Left: Dice, right: IoU.

Figure 6.7: Experiment 1. Effect of the network depth on generalization to unseen scales. The baseline
Riesz network is marked with 1 947, w3, and layer 4 and with square symbol □. Left: Dice, right: IoU.
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Figure 6.8: Experiment 1. Comparison of the competing methods. Results of the simulation study
with respect to crack width. Training on crack width 3.
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Figure 6.9: Experiment 1. Columns (from left to right): crack of widths 3, 5, 7, and 11. Rows (from
top to bottom): input image, ground truth, Riesz network, plain U-net, U-net with scale adjustment,
and Gaussian derivative network. All images have size 512× 512 pixels.



Method
w1 w3 w5 w7 w9 w11
Dice Dice Dice Dice Dice Dice

U-net plain 0.391 0.904 0.715 0.555 0.440 0.401
U-net scale adj. 0.391 0.904 0.853 0.833 0.809 0.810

U-net-mix scale adj. 0.420 0.917 0.929 0.916 0.921 0.921
Gaussian network 0.004 0.765 0.764 0.709 0.759 0.843
Riesz network 0.352 0.895 0.941 0.954 0.962 0.964

Table 6.2: Experiment 1. Comparison with competing methods: Dice coefficients for segmentation of
cracks of differing width. Training was performed on crack width 3. Best performing method bold.

in Figure 6.9.
As expected, the performance of the plain U-net decreases with increasing scale. Scale ad-

justment stabilizes U-net’s performance but requires manual selection of scales. Moreover, the
interpolation in upsampling and downsampling might induce additional errors. The decrease in
performance with growing scale is still apparent (10− 15%) but significantly reduced compared
to the plain U-net (55%). To get more insight into performance and characteristics of the U-net,
we add an experiment similar to the one from [99]: We train the U-net on crack widths 1, 3, and
5 on the same number of images as for one single crack width. This case is referred to ”U-net-mix
scale adj.” in Table 6.2. Scales are adjusted similarly: w5 and w7 are downscaled by factor 2,
w9 and w11 are downscaled by factor 4. The results are significantly better than those obtained
by the U-net trained on the single width (10− 15% in Dice and IoU on unseen scales), but still
remain worse than the Riesz network trained on a single scale (around 7% in Dice and IoU on
unseen scales).

The Gaussian derivatives network is able to generalize steadily across the scales (Dice and
IoU 74%) but nevertheless performs worse than the scale adjusted U-net (around 10% in IoU).
Moreover, it is very sensitive to noise and typical CT imaging artifacts (Figure 6.9).

On the other hand, the Riesz network’s performance is very steady with the growing scale.
We even observe improving performance in IoU and Dice with the increase in crack thickness.
This is due to pixels at the edge of the crack influencing the performance metrics less and less the
thicker the crack gets. The Riesz network is unable to precisely localize cracks of width 1 as, due
to the partial volume effect, such thin cracks appear to be discontinuous. With the exception
of the thinnest crack, the Riesz network has Dice coefficients above 94% and IoU over 88% for
completely unseen scales. This even holds for cases when the crack is more than 3 times thicker
than the one used for training.

6.3.3 Experiment 2: Performance on multiscale data

Since cracks are naturally multiscale structures, i.e. crack thickness varies as the crack propa-
gates, the performance of the considered methods on multiscale data is analyzed as well. On
the one hand, we want to test on data with an underlying ground truth without relying on
manual annotation prone to errors and subjectivity. On the other hand, the experiment should
be conducted in a more realistic and less controlled setting than the previous one, with cracks
as similar as possible to real ones.

We therefore use again simulated cracks, this time however with varying width [102]. The
thickness is modeled by an adaptive dilation. See Figure 6.10 for realization examples. The
change rendering our experiment more realistic than the first one is to exploit no prior information
about the scale. The Riesz network does not have to be adjusted for this experiment while the
competing methods require scale selection as described in Section 6.3.2. Without knowing the
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scale, testing several configurations is the only option. Note that in this experiment we used a
different crack simulation technique [102] than in Experiment 1. In principle, we cannot claim
that either of the two techniques generates more realistic cracks. However, this change serves as
an additional goodness check for the methods since these simulation techniques can be seen as
independent.

We adjust the U-net as follows: We downscale the image by several factors from {2, 4, 8, 16...}.
The forward pass of the U-net is applied to the original and every downscaled image. Subse-
quently, the downscaled images are upscaled back to the original size. All predictions are joined
by the maximum operator. We report results for several downscaling factor combinations spec-
ified by a number N , which is the number of consecutive downscaling factors used, starting at
the smallest factor 2. Similarly as in Experiment 1, we report results of two U-net models: the
first model is trained on cracks of width 3 as the other models in the comparison. The second
model is trained on cracks with mixed widths. Including more crack widths in the training
set has proven to improve the scale generalization ability in Experiment 1. Hence, the second
model represents a more realistic setting that would be used in practice where the crack width is
typically unknown. We denote the respective networks as ”U-net pyramid” N and ”U-net-mix
pyramid” N .

For the Gaussian network, we vary the standard deviation parameter σ in the set {1.5, 3, 6, 12}.
This selection of scales is motivated by the network having been trained on crack width 3 with
σ = 1.5. We start with the original σ and double it in each step. As for the U-net, we test
several configurations, now specified by the number N of consecutive σ values used, starting at
the smallest (1.5). We denote the respective network ”Gaussian network” N .

Results are reported in Table 6.3 and Figure 6.10. We observe a clear weakness of the Riesz
network in segmenting thin cracks (Figure 6.10, first and last row). Despite of this, the recall is
still quite high (90%). However, this could be due to thicker cracks - which are handled very well
- contributing stronger to these statistics as they occupy more pixels. Nevertheless, the Riesz
network deals with the problem of the wide range scales in an elegant way, just with a single
forward pass of the network.

The performance of the U-net improves with including more levels in the pyramid, too.
However, this applies only up to a certain number of levels after which the additional gain becomes
minimal. Moreover, applying the U-net on downscaled images seems to induce oversegmentation
of the cracks (Figure 6.10, second and third row). Including a variety of crack widths in the
training set improves the overall performance of U-net in all metrics. This confirms the hypothesis
that U-net significantly benefits from variations in the training set. However, this model of U-net
is still outperformed by the Riesz network trained on a single crack width. The Gaussian network
behaves similarly as the U-net, with slightly worse performance (according to Dice or IoU) but
better crack coverage (Recall). As the number of σ values grows, the recall increases but at the
same time artifacts accumulate across scales reducing precision. The best balance on this data
set is found to be three scales.

6.3.4 Experiment 3: Application to cracks in CT images of concrete

Finally, we check the methods’ performance on real data: cracks in concrete samples generated
by tensile and pull-out tests. In these examples, the crack thickness varies from 1 or 2 pixels
to more than 20 pixels (Figure 6.11). This motivates the search for methods that automatically
generalize to completely unseen scales. Here, we can assess the segmentation results qualitatively,
only, as no ground truth is available. Manual segmentation of cracks in high resolution images
is time consuming and prone to individual biases.

The first sample (Figure 6.11, first row) is a concrete cylinder with a glass fiber reinforced
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Figure 6.10: Experiment 2. Cracks with varying width. From left to right: input image, ground truth,
results of the Riesz network, and the U-net with 4 pyramid levels. Image size 400× 400 pixels.



Method
Multiscale cracks

Precision Recall Dice IoU
U-net, plain 0.655 0.322 0.432 0.275

U-net pyramid 2 0.598 0.518 0.555 0.384
U-net pyramid 3 0.553 0.623 0.586 0.414
U-net pyramid 4 0.496 0.705 0.582 0.411
U-net-mix, plain 0.471 0.288 0.358 0.218

U-net-mix pyramid 2 0.626 0.646 0.635 0.466
U-net-mix pyramid 3 0.624 0.804 0.703 0.542
U-net-mix pyramid 4 0.583 0.899 0.707 0.547
Gaussian network 2 0.553 0.503 0.527 0.358
Gaussian network 3 0.418 0.735 0.533 0.364
Gaussian network 4 0.306 0.857 0.451 0.291

Riesz network 0.901 0.902 0.902 0.821

Table 6.3: Experiment 2. Performance on simulated multiscale cracks.

composite bar embedded along the center line. A force is applied to this bar to pull it out of
the sample and thus initiate cracking. Cracking starts around the bar and branches in three
directions: left, right diagonal, and down (very subtle, thin crack). Crack thicknesses and thus
scales vary depending on the crack branch. As before, our Riesz network is able to handle all
but the finest crack thicknesses efficiently in a single forward pass without specifying the scale
range. The U-net on the image pyramid requires a selection of downsampling steps, accumulates
artifacts from all levels of the pyramid, and slightly oversegments thin cracks (left branch).

The second sample (Figure 6.11, second row) features a horizontal crack induced by a tensile
test. Here we observe permanently changing scales, similar to our simulated multiscale data.
The crack thickness varies from a few to more than 20 pixels. Once more, the Riesz network
handles the scale variation well and segments almost all cracks with minimal artifacts. In this
example, U-net covers the cracks well, too, even the very subtle ones. However, it accumulates
more false positives in the areas of concrete without any cracks than the Riesz network.

6.3.5 Robustness to additive Gaussian noise

In this section, we investigate how performance of methods changes with respect to the random
Gaussian process with increasing standard deviation. The goal of this experiment is to analyze
performance of the Riesz network to ”poor” imaging conditions when trained on the original
data.

The dataset with fixed crack width 3 from above was used. First, images are normalized
with min-max normalization to be in the range [0, 1], then random Gaussian noise is added, and
again min-max normalized. We test it for six different Gaussian random processes with fixed
seed 0, i.e. for six standard deviations σ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.5} (Figure 6.12 and Figure
6.13). Here, standard deviation 0 means that no noise has been added to the image. The Riesz
network is compared with U-net-mix, a version of the U-net from before that was trained on
all three types of fixed crack widths. This model of the U-net is preferred rather than the one
trained on a single crack width because the goal here is to test the models that would be used
in practice. However, we use fixed crack width to remove the effect of the scale selection for the
U-net and to measure only the effect of the noise.
Results are shown in Table 6.4. Segmentation results are shown in Figure 6.12 and Figure 6.13.
For a very small amount of noise (σ = 0.01) both methods are stable. However, as more noise
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Figure 6.11: Experiment 3. Real cracks in concrete from pull-out test (first row) and tensile test
(second row): slice from input CT image, results of the Riesz network and of U-net with 2 pyramid
levels. Image sizes are 832× 1 088 (1st row) and 544× 992 (2nd row).

seed 0 0 0.01 0.05 0.1 0.2 0.5
Riesz-precision 0.8198 0.8177 0.7310 0.5175 0.2399 0.0799

U-net-mix-precision 0.9062 0.8883 0.4415 0.1344 0.0368 0.0228

Riesz-recall 0.9866 0.9857 0.9490 0.7745 0.3545 0.1145
U-net-mix-recall 0.9273 0.9064 0.4584 0.1410 0.0406 0.02424

Riesz-Dice 0.8955 0.8939 0.8259 0.6205 0.2861 0.0941
U-net-mix-Dice 0.9167 0.8973 0.4498 0.1376 0.0386 0.0242

-

Table 6.4: Robustness to additive Gaussian noise on a dataset with fixed crack width 3: comparison
of the Riesz network with U-net-mix with growing standard deviation of σ of Gaussian random noise.

is added, the performance of the U-net-mix steeply decays. Even for σ = 0.05, the performance
of the U-net-mix degrades with Dice close to 0.45. For the same σ, the Riesz network is much
better (Figure 6.12): Dice is almost 0.83, while recall is still high, i.e. close to 0.95. With
further increase in σ, the performance of the Riesz network also decreases, however the decay is
more gradual than for U-net-mix. Already at σ = 0.2, both methods are not able to produce
meaningful results anymore (Figure 6.13).
This experiment implies that the Riesz network is more robust to additive Gaussian noise and in
general indicates that the Riesz network could perform better with respect to changes in imaging
conditions, e.g. contrast, noise, and illumination.

6.3.6 Application to fiber reinforced concrete

It is a well-known weakness of concrete that it has low tensile strength, i.e. under high tensile force
it fails abruptly and explosively. For that reason, reinforcement material is mixed with the cement
paste creating a composite material. Most common reinforcements are steel rebars. Nowadays,
fibers have become widely used as reinforcement in concrete creating a new class of reinforced
concrete materials, e.g. ultra high performance fiber-reinforced concrete [121, 122, 123]. A
variety of materials can be used for fiber material, including glass, carbon, and basalt. Since
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Figure 6.12: Robustness to additive Gaussian noise. First row: input image, second row: crack
segmentation from the Riesz network, third row: crack segmentation from U-net-mix. From left to right:
σ = 0, 0.01, 0.05.



95

Figure 6.13: Robustness to additive Gaussian noise. First row: input image, second row: crack
segmentation from the Riesz network, third row: crack segmentation from U-net-mix. From left to right:
σ = 0.1, 0.2, 0.5.



all of these materials have different mechanical properties, the properties of fiber reinforced
concrete are connected to the properties of the concrete mixture, including the fiber material.
Hence, a lot of effort has recently been invested in the investigation of fiber reinforced concrete
samples with various material configurations. In the context of CT imaging, different materials
mean different energy absorption properties, i.e. fibers can appear both brighter or darker
than concrete, which can result in very different images. In the context of crack segmentation,
this means that our methods should be able to efficiently handle these variations. This section
compares the performance of the Riesz network, U-net, and U-net-mix from the previous sections
on three different fiber reinforced concrete images: Figure 6.14, Figure 6.15, and Figure 6.16.
We comment on possible post-processing steps to improve results and discuss the robustness of
the methods in the context of fiber reinforced concrete.

In Figure 6.14 high performance concrete (HPC) with polypropylene fibers as reinforcement
is shown. See [124] for more details on sample and crack initiation. In this image, fibers are long
and appear dark and hence interfere with the crack in the center. All three methods are able to
extract the central and dominant crack in the middle. The Riesz network is not able to segment
the thin crack on the left from the main crack, contrary to both U-nets. However, both U-nets
accumulate a much larger amount of misclassified noise compared to Riesz network.

In Figure 6.15 sample reinforced with steel fibers is shown. For more details see [55, 125].
In this image, fibers appear bright and create uneven illumination effects. We use a simple pre-
processing step to understand if we can reduce this effect and improve the performance of the
methods. Simple morphological openings with square structuring elements of half-sizes 2 and 5
are used for that purpose. As the size of the structuring element increases, segmentation results
improve for all three methods. While the Riesz network struggles with low contrast cracks on
the right, both types of U-net segment falsely many non-crack voxels.

The CT image from Figure 6.16 originates from ultra high performance fiber reinforced con-
crete (UHPFRC) with steel fibers [122]. Here, fibers turn out to be bright structures in the
images. These extremely highly X-ray absorbing fibers affect the gray value dynamics of the CT
images. Morphological openings with square structuring elements of half-sizes 2 and 5 are applied
to reduce this effect. As we increase the size, crack segmentation improves for the Riesz networks.
Both types of U-net segment large amount of noise, even with opening as a pre-processing step,
rendering them as ineffective for this sample.
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Figure 6.14: Cracks in high-performance concrete with polypropylene fibers. First row: input image
(left), segmentation results from the Riesz network (right). Second row: U-net (left) and U-net mix
(right). Image size is 933× 764.

Figure 6.15: Cracks in concrete with steel fibers. Rows: input image, segmentation results from the
Riesz network, U-net and U-net mix, respectively. Columns: original images, images after applying
square closing of half-size 2, and images after applying square opening of half-size 5. Image size is
1 295× 336.
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Figure 6.16: Cracks in concrete with ultra high performance fiber-reinforced concrete (UHPFRC) with
steel fibers. Rows (from left to right): input image, segmentation results from the Riesz network, U-net
and U-net mix, respectively. Column: original images, images after applying square opening of half-size
2, and images after applying square closing of half-size 5. Image size is 1 579× 772.



6.4 Results on MNIST Large Scale dataset

We test the Riesz networks on a classification task on the MNIST Large Scale3 [99] to test wider
applicability of Riesz networks outside of crack segmentation task. This data set was derived
from the MNIST data set [68] and it consists of images of digits between 0 and 9 belonging to one
of ten classes (Figure 6.17) which are rescaled to a wide range of scales to test scale generalization
abilities of neural networks (Figure 6.18).

Figure 6.17: 10 classes in MNIST Large Scale data set. All images have size 112× 112.

Figure 6.18: Variation of scales in MNIST Large Scale data set (from left to right): scales 0.5, 1, 2, 4
and 8. All images have size 112× 112.

Our Riesz network has the channel structure 12-16-24-32-80-10 with the softmax function
at the end. In total, it has 20 882 parameters. Following [117], only the central pixel in the
image is used for classification. We use the standard CNN described in [99] but without any
scale adjustments as a baseline to illustrate the limited scale generalization property. This CNN
has the channel structure 16-16-32-32-100-10 with the softmax function at the end and in total
574 278 parameters. The training set has 50 000 images of the single scale 1. We used a validation
set of 1 000 images. The test set consists of scales ranging in [0.5, 8] with 10 000 images per scale.
All images have size 112×112. Models are trained using the ADAM optimizer [119] with default
parameters for 20 epochs with a learning rate 0.001 which is halved every 3 epochs. Cross-entropy
is used as loss function.

Figure 6.19 shows validation and training loss during 20 epochs. Interestingly, the Riesz
network converges faster and even its validation loss remains lower than the training loss of
CNN. Accuracies for the different scales are shown in Table 6.5.

3https://www.zenodo.org/record/3820247
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Figure 6.19: Train and validation loss per epoch for the Riesz network and CNN (as a baseline).

scale 0.5 0.595 0.707 0.841 1 1.189 1.414 1.682
CNN 40.74 64.49 88.35 96.87 97.77 96.08 80.06 38.68
Riesz 96.34 97.59 98.06 98.54 98.58 98.50 98.45 98.40

Riesz-pad20 96.33 97.57 98.07 98.48 98.63 98.54 98.49 98.46
Riesz-pad40 96.34 97.55 98.07 98.47 98.63 98.58 98.53 98.44

FovAvg 17ch tr1 [99] 98.58 99.05 99.33 99.39 99.40 99.39 99.38 99.36
FovMax 17ch tr1 [99] 98.71 99.07 99.27 99.34 99.37 99.35 99.36 99.34

scale 2 2.378 2.828 3.364 4 4.757 5.657 6.727 8
CNN 25.90 24.91 23.64 21.34 19.91 18.87 18.04 15.64 11.79
Riesz 98.39 98.24 98.01 97.51 96.42 93.5 81.58 67.66 51.82

Riesz-pad20 98.39 98.35 98.33 98.16 97.78 97.08 95.48 91.10 79.78
Riesz-pad40 98.46 98.39 98.34 98.29 98.16 97.80 96.82 93.75 83.6

FovAvg 17ch tr1 [99] 99.35 99.31 99.22 99.12 98.94 98.47 96.20 89.17 71.31
FovMax 17ch tr1 [99] 99.33 99.35 99.34 99.35 99.34 99.27 97.88 92.76 79.23

Table 6.5: Classification accuracy (in %) of MNIST Large Scale data set. Best performing method
bold.

The Riesz network shows stable accuracy for scales in the range [0.5, 4]. The CNN, which has
way more degrees of freedom, is only competitive for scales close to the training scale. Results
for two scale adjusted versions of the CNN as reported in [99] are also given in Table 6.5. Their
performance is slightly superior to the Riesz network (around 1− 2%). However, it is important
to note that this approach uses (max or average) pooling over 17 scales.

Further works considering the MNIST Large Scale data set are [112, 117]. Unfortunately, no
numeric values of the accuracies are provided, so we can compare the results only qualitatively.
The Riesz network’s accuracy varies less on a larger range of scales than those of the scale-
equivariant networks on Gaussian or morphological scale spaces from [112] that were trained
on scale 2. The Gaussian derivative network [117] trained on scale 1 yields results in a range
between 98% and 99% for medium scales [0.7, 4.7] using pooling over 8 scales. The Riesz network
yields similar values but without the need for scale selection.

On the smallest scale of 0.5, the Riesz network seems to give a better result than [117], while
it is outperformed on the largest scales. The reason for the latter is that digits start to reach the
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boundary of the image. To reduce that effect, we pad the images by 20 and 40 pixels with the
minimal gray value. Indeed, this improves the accuracy significantly for larger scales (Table 6.5),
while it remains equal for the rest of the scales. For example, for scale 8, accuracy increases
from 51.8% to 79.8% (padding 20) and 83.6% (padding 40). This is a better accuracy than that
reported in [117] and [99] for models trained on scale 1.

6.5 Discussion

In this chapter we introduced a new type of scale invariant neural network based on the Riesz
transform as filter basis instead of standard convolutions. Our Riesz neural network is scale
invariant in one forward pass without specifying scales or discretizing and sampling the scale
dimension. Its ability to generalize to scales differing from those trained on is tested and validated
in segmenting cracks in 2d slices from CT images of concrete. Usefulness and elegance of the
method become manifest in the fact that only one fixed scale is needed for training, while
preserving generalization to completely unseen scales. This reduces the effort for data collection,
generation or simulation. Furthermore, our network has relatively few parameters (around 18k)
which reduces the danger of overfitting.

Experiments on simulated yet realistic multiscale cracks as well as on real cracks corroborate
the Riesz network’s potential. Compared to other deep learning methods that can generalize to
unseen scales, the Riesz network yields improved, more robust, and more stable results.

A detailed ablation study on the network parameters reveals several interesting features: This
type of networks requires relatively few data to generalize well. The Riesz network proves to
perform well on a data set of approximately 200 images before augmentation. This is particularly
useful for deep learning tasks where data acquisition is exceptionally complex or expensive. The
performance based on the depth of the network and the number of parameters has been analyzed.
Only three layers of the network suffice to achieve good performance on cracks in 2d slices of CT
images. Furthermore, the choice of crack thickness in the training set is found to be not decisive
for the performance. Training sets with crack widths 3 and 5 yield very similar results.

The two main weaknesses of our approach in the crack segmentation task are undersegmen-
tation of thin cracks and edge effects around pores. In CT images, thin cracks appear darker
than thicker cracks due to the partial volume effect. For the same reason thin cracks look dis-
connected. Thin cracks might therefore require special treatment. In some situations, pore edge
regions get erroneously segmented as crack. These can however be removed by a post-processing
step and are no serious problem.

To unlock the full potential of the Riesz transform, validation on other types of problems is
needed. In the following chapter, the method is adjusted for 3d since CT data is originally 3d.

An interesting topic for further research is to join translation and scale invariance with ro-
tation invariance to design a new generation of neural networks with encoded basic computer
vision properties [115]. This type of neural network could be very efficient because it would have
even less parameters and hence would require less training data, too.
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Chapter 7

The Riesz network in 3d: crack
segmentation in CT images of
concrete

Concrete is the base material in civil engineering, e. g. in buildings and bridges. It is a combi-
nation of aggregates, cement, and water. Its quality, durability, and mechanical stability have
to be ensured. This is connected to its material composition, e.g. water-to-cement ratio, type
of cement paste used, type of aggregates used, drying conditions, the addition of reinforcements,
etc. For investigating concrete behaviour under load, various stress tests can be applied to con-
crete specimens. Concrete is known to be a brittle material with high compressive strength but
low tensile strength. Hence, concrete tends to develop cracks under load. For example, during
tensile testing, cracks occur when the applied force exceeds the tensile strength of the concrete.
With the increase of force, the specimen may eventually fail. To increase tensile strength, rein-
forcement is added during the mixing phase. This improves tensile strength, but still mechanical
properties of new materials have to be thoroughly studied before they can be used in critical
applications such as building or bridge construction. Shape, size, and location of the cracks,
as well as the sample’s post-cracking mechanical behaviour provide valuable information on the
specific properties of the studied concrete. Characterization of cracks can help to understand
and analyze the effect of adding reinforcements in the concrete. With the naked eye, the cracks
are only visible on the sample surface and neither their full 3d structure nor the correlation of
the crack with local structural features can be observed.

Micro-computed tomography (µCT) can provide the missing information. This imaging
method enables unique, non-destructive insight into 3d microstructures. The most important
components of a typical laboratory CT device are the X-ray emitting tube, the turntable holding
the sample, and the flat bed detector (Figure 7.1). During the scan, the sample is rotated by a
predefined angular increment. In each position, a 2d X-ray projection image is taken. Finally, the
3d image of the sample is reconstructed computationally from the projections. In laboratory CT
devices, the X-rays usually form a cone. The position of the sample between the X-ray tube and
the detector therefore controls the magnification and together with the number and size of the
detector pixels the voxel size. The voxel gray values represent essentially local X-ray attenuation,
which in turn depends on the atomic numbers of the elements passed by the beam. Concrete
matrix, aggregates, and air filled pores absorb X-rays differently. Thus, the corresponding voxels
should feature different gray values, too. The heterogeneous composition and varying density of
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Figure 7.1: CT setup at Fraunhofer ITWM, Kaiserslautern, Germany. 1 - flat bed detector, 2 -
turntable holding the sample, 3 - X-ray emitting tube.

the concrete however result in varying voxel gray values within the concrete matrix.
A major benefit of CT being a non-destructive method is the following: the same concrete

specimen can be scanned several times during the mechanical test and even in-situ. However, to
gain the desired structural information, the reconstructed µCT images need to be processed and
analyzed. These images can be very large (up to 2 0002 × 10 000 voxels). Hence, manual crack
segmentation is not feasible and automatic image processing is needed.

This chapter deals with automatic crack segmentation in 3d CT images of concrete using
Riesz networks. Here, we consider a crack to be a two dimensional air filled structure or surface
with varying width, shape, topology, and orientation. Since cracks are essentially empty spaces,
they appear dark in CT images. We designed computational studies based on semi-synthetic data
with simulated cracks that enable objective comparison of the Riesz network to the established
methods. This is followed by the application to real crack data on various types of concrete
samples and various types of cracks.

7.1 Riesz network: adjustments for 3d

Extension of the Riesz network from 2d to 3d is straightforward: only the number of Riesz
transforms increases. In 2d there are five Riesz transforms of first and second order

{R1,R2,R(2,0),R(1,1),R(0,2)},

while in 3d there are nine Riesz transform of first and second order

{R1,R2,R3,R(2,0,0),R(0,2,0),R(0,0,2),R(1,1,0),R(1,0,1),R(0,1,1)}.

The three layer Riesz network we apply here can be written as (1, 16, 16, 32, 1). It has (1 · 9 ·
16 + 16) + (16 · 9 · 16 + 16) + (16 · 9 · 32 + 32) + (32 · 1 + 1) = 7 153 trainable parameters. This is
most remarkable when comparing to the 3d U-net from [126] with more than 2 million parameters.

Details on training For the training set we use semi-synthetic realistic crack images with
simulated cracks [42] and hence we have unambiguous ground truth available. The training set
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consists of three crack images of width 3 and three crack images of width 5 of size 2563 cropped
into non-overlapping 643 images. This training set corresponds to the same crack images as in
[100, 126], but without the crack images of width 1, see also Section 7.3.1 for more details. In
total, the training set has 1302 images of size 643. As loss function binary cross entropy is used
and optimized with ADAM [119] with batch size 2 for 20 epochs with an initial learning rate of
0.005 which halves every 5 epochs.

7.1.1 Need for window adjustment in 3d

As a reminder our Riesz network in 2d from the previous chapter has 18 825 trainable parameters
and can be written as (1, 16, 32, 40, 48, 1). In 3d it has 7 153 trainable parameters and can be
written as (1, 16, 16, 32, 1). It is logical to assume that when moving from 2d to 3d, more
parameters would be needed rather than less. The reason for this is that the cracks in 3d can
have larger variations in crack topology, shape, orientation, etc. than the cracks in 2d due to
an extra degree of freedom which 3d has in comparison to 2d. However, for the Riesz networks
we are limited with memory during computations in 3d. In practice, 3d images often have a
larger number of voxels than 2d and hence it is easier to run out of memory. For example, for a
400× 400 image, in 2d the Riesz network required memory is bounded by the number of feature
maps in the fifth step of the networks, i.e. 48 × 400 × 400 = 768 × 104 = 7.68 million float
variables are needed. On the other hand, for a 400 × 400 × 400 image in 3d the Riesz network
required memory is bounded by 32×400×400×400 = 1 024×106 = 2048 million float variables.
Hence, memory requirements increase fast from 2d to 3d. These memory limitations make the
Riesz network unable to work on large 3d CT images, e.g. images of size 1 0003. Hence, we
make adjustments by cropping the input image into nonoverlapping 4003 cubes and segmenting
cracks on these subwindows. Finally, the original image is assembled from subwindows. This
adjustment by limiting the window size disables the Riesz network to be fully scale invariant
with respect to scales larger than a cropped image window. However, scale invariance to all the
scales smaller than the cropped window size is preserved. The experimental part of this chapter
shows that in most cases taking the window size of 4003 is enough to capture all the interesting
cracks.

7.2 Crack segmentation on CT images: previosuly known
methods

First studies [44, 127, 128] on crack segmentation methods for 3d CT images date back to 2011
and focus on classical methods from image processing, e.g. sheet filter, template matching, etc.
Recently, methods from machine and deep learning such as 3d U-net and random forest have
successfully been used for crack segmentation tasks [42], too. Another important contribution of
[42] is the ability to simulate realistic crack structures with fractorial Brownian motion. Further-
more, this study analyzed and compared several methods from classical image processing and
machine learning on semi-synthetic image data with the corresponding ground truths. The best-
performing methods were Hessian-based percolation [44] and the 3d U-net [129]. Subsequently,
both approaches were successfully adapted to real CT data of concrete [100, 124, 126].

We take these two methods used in several studies [100, 124, 126], namely Hessian-based
percolation [44] and 3d U-net [42]. Since these are well-tested methods, they serve as a baseline
to which the Riesz network can be compared to. We refer to Appendix C for details on the
methods. For simulation studies we compare the Riesz network only to the 3d U-net because
they belong to the same class of methods, i.e. deep learning. For real data the Riesz network
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is compared to both methods. Here, the goal is to analyze the usefulness of the Riesz network
among all methods that could potentially be used for automatic crack segmentation in 3d CT
images of concrete.

7.3 Experiments on simulated data

Quality metrics for experiments on simulated data are described in Appendix D.

7.3.1 Comparison with neural networks on a simulated dataset with
fixed width cracks

In this part, we test our methods on a dataset from [42]. For the ground truth image of the crack,
a fractional Brownian surface is used. We create a dataset of 60 semi-synthetic crack images of
size 2563 voxels (Figure 7.3). It consists of 20 images per crack width 1, 3, and 5. Each of the
three groups consists of eight images with one crack, six images with two cracks in parallel planes,
and six images with two cracks in orthogonal planes (Figure 7.2). The background patches are
extracted from four 3d CT images of concrete. The concrete samples represent the same concrete
type consisting of aggregates, cement matrix, and air pores. The size of air pores and aggregates
varies in each concrete specimen. Since the 3d CT images are sufficiently large, we can use
different background patches for each image.
Out of the 60 images, nine (three per group) are reserved for training the learning methods. One
image of each group is used for validation. The remaining images are used for the evaluation of
the methods. This dataset was designed to evaluate the performance of the methods with respect
to the varying crack shape, topology, orientations, and simple branching. By keeping the crack
width fixed, this dataset removes the effect of the scale on the performance. Nevertheless, this
dataset serves as a valuable benchmark to understand how Riesz network performs compared to
3d U-net, a well-tested and well-investigated method.

Details on the models The Riesz network is compared to the two models of 3d U-net: U-net
single scale and U-net multiple scale. Both of these models have the same architecture and
number of parameters but differ on the training data, i.e. on the subset of the set that was
reserved for training.

U-net single scale is trained only on a single scale depending on the crack width in the test
set. Hence, it represents three models trained on crack widths 1, 3, and 5, each trained on 768
images. U-net multiple scale is one model which is trained on all three scales simultaneously,
i.e. in total on 2304 images. This model is optimized for several crack widths and hence is a
more realistic type of model which could be used in practice. Both of these models have around
2 million trainable parameters and details on training can be found in [42]. Our Riesz network
is trained on crack widths 3 and 5 simultaneously, see Section 7.1 for details. Crack width 1
seems to be different from the remaining two due to the fact that strict connectivity may not be
preserved (Figure 7.4) and hence end up being harder to segment.

Results Table 7.1 and Figure 7.5 show the results of the Riesz network in comparison with two
3d U-net models trained on different data [42, 100]. The Riesz network does not perform well on
crack width 1, while on the other two crack widths performance is significantly better. For width
3 and 5 recall from the Riesz network is very competitive with both U-nets, outperforming them
in recall for crack width 3. This indicates that the Riesz network is indeed able to recognize crack
structure in the image. However, the main problem is low precision, i.e. high sensitivity to noise.
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Figure 7.2: 3d renderings of simulated crack surfaces in an image of size 2563. First row: crack width
1 and crack width 5. Second row: two cracks of width three in parallel planes and two cracks of width
three in orthogonal planes.



Figure 7.3: From left to right: 2d slices of the images featuring simulated cracks (crack width 1, 3, and
5 voxels, image size 2562 pixels), 3d rendering of a simulated crack (image size 2563 voxels).

This could be due to a low number of parameters which makes precise crack localization and
distinction from noise hard. When using tolerance1 1, the median F1 score of the Riesz network
reaches 0.83 for crack width 3 and 0.9089 for crack width 3, while the median recall of 0.99 for
both crack widths implies that the whole crack surfaces have been detected. With tolerance 1,
the median F1 score of the Riesz network is still lower than those of both U-nets in the median
F1-score (Figure 7.5).

Adding more parameters to the Riesz network A previous study on the Riesz networks
in 2d indicates that 7k parameters may not be enough to achieve satisfying results. Here, we
experiment with the 3d Riesz network with more parameters. We double the number of channels
in each layer resulting in a network architecture which can be written as (1, 32, 32, 64, 1) with in
total 28 129 parameters. This model was trained analogously as the smaller Riesz network, i.e.
with the same training set, number of epochs, batch size, learning rate, and its decay (Section
7.1.1). However, in pytorch this network is not able to run on full 2563 voxel images without
crashing. Hence, we run it on non-overlapping 1283 windows and check if the increased number

1See Appendix D for an explanation of tolerance.
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Crack width 1
3d U-Net 3d U-Net, Riesz network

single scales trained [42] multiple scale trained [100] (crack width previously unseen)
min median mean min median mean min median mean

precision 0.9842 0.9956 0.9949 0.5983 0.7768 0.7883 0.0480 0.1966 0.1907
(tol1) (0.995) (0.9996) (0.9994) (0.9159) (0.9946) (0.9891) (0.0838) (0.3250) (0.3187)
recall 0.6879 0.9539 0.9152 0.3570 0.7872 0.7429 0.3277 0.8510 0.79108
(tol1) (0.8847) (0.9847) (0.9710) (0.7063) (0.9725) (0.9332) (0.6677) (0.966) (0.9388)

F1 score 0.8129 0.9739 0.9509 0.4955 0.7854 0.7468 0.0838 0.3233 0.3397
(tol1) (0.9387) (0.9921) (0.9846) (0.8271) (0.9827) (0.9581) (0.1820) (0.4799) (0.4691)

Crack width 3
3d U-Net 3d U-Net, Riesz network

single scale trained [42] multiple scales trained [100]
min median mean min median mean min median mean

precision 0.6494 0.9574 0.9383 0.9173 0.9504 0.9544 0.2474 0.5334 0.5101
(tol1) (0.7091) (0.9962) (0.9728) (0.9592) (0.9984) (0.9952) (0.3624) (0.7135) (0.6655)
recall 0.9028 0.9578 0.9565 0.9044 0.9580 0.9553 0.9044 0.9757 0.9694
(tol1) (0.9409) (0.991) (0.9838) (0.9561) (0.9917) (0.9879) (0.9519) (0.9959) (0.9879)

F1 score 0.7824 0.9516 0.9451 0.92533 0.9483 0.9546 0.3958 0.7063 0.6673
(tol1) (0.8294) (0.9900) (0.9767) (0.9654) (0.9956) (0.9925) (0.5320) (0.8328) (0.7947)

Crack width 5
3d U-Net 3d U-Net, Riesz network

single scale trained [42] multiple scales trained [100]
min median mean min median mean min median mean

precision 0.895 0.9743 0.9692 0.9503 0.9806 0.9803 0.4452 0.7077 0.6882
(tol1) (0.9828) (0.9988) (0.9972) (0.9940) (0.9996) (0.9991) (0.6023) (0.8198) (0.8012)
recall 0.616 0.9354 0.9036 0.7675 0.948 0.936 0.4369 0.9735 0.9307
(tol1) (0.7877) (0.9927) (0.9720) (0.9560) (0.9969) (0.9917) (0.7880) (0.9950) (0.9809)

F1 score 0.7517 0.9537 0.9334 0.8605 0.968 0.957 0.4825 0.8281 0.7897
(tol1) (0.8745) (0.9954) (0.9822) (0.9774) (0.9979) (0.9954) (0.7422) (0.9089) (0.8854)

Table 7.1: Results of the deep learning methods on the simulated datasets with fixed width cracks.
The highest value is given in bold. Metrics with tolerance 1 are given in brackets. Visualizations on F1
score and recall are shown in Figure 7.5.



Figure 7.4: CT image with a simulated crack of width 1. Red boxes show disconnectivity of the thin
crack structure which makes the correct segmentation harder.

of parameters improves precision on cracks on this dataset.
Table 7.2 and Figure 7.5 compare the two types of Riesz networks on the same dataset

with three crack widths. We notice that recall remains roughly the same as in the smaller
Riesz network, while precision significantly improves (10− 20%) and consequently the F1 score.
However, these results still lag the precision and F1 metrics of the U-nets in Table 7.1. A
possible explanation is that memory restrictions for 3d images disable the Riesz network from
having enough degrees of freedom (i.e. parameters) to improve localization of the segmented
cracks in 3d settings.

Adding post processing: keep 5 largest connected components Extracting the largest
connected components can reduce the effect of noise in the segmentation results and hence
improve precision. Here, we keep the 5 largest connected components as a simple post-processing
step. Results are also shown in Table 7.2. With this simple post-processing step, precision rises
around 8− 9% without tolerance for all three crack widths. This further improves the F1 score.
Most importantly, recall remains roughly the same in all three cases. This experiment shows that
the Riesz network could benefit even more with more sophisticated post-processing and close the
gap between two types of U-net on these datasets with fixed crack widths. When using tolerance
1, for both post-processing strategies F1-score comes close to 0.89 for crack width 1 and 0.94
indicating overall good performance in this task.

7.3.2 Comparison with neural networks on a simulated dataset with
multiscale cracks

As alternative to the fractional Brownian surface, crack structures can be modelled as a minimal
surfaces from a realization of a random spatial Voronoi tessellation [102]. The locally varying
thickness featured by real cracks can be captured by adaptive dilation of the crack. That is, a
morphological dilation with the size of the structuring element varying according to a size map is
applied. Here, the size map is kept constant in the yz plane while changing in x direction. This
means that in each 2d x slice of the 3d image of the crack, the foreground is dilated Ni times
by a 2× 2 pixel square structuring element, where i is the slice index. The Ni, i = 0, . . . , n are
incremented following a Bernoulli distribution with parameter 0 < p < 1. This crack is integrated
into the real concrete background in the same way as for cracks from fractional Brownian surface.
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Figure 7.5: Visualization of the mean F1 score (first row) and recall (second row) for the models from
Table 7.1 and Table 7.2. The Riesz network lags the two U-net models in the F1 score, while giving
similar recalls (except for width 1). Improvements in the F1 score can be achieved by using models from
Table 7.2 (first row left) with a small decrease in recall (second row). When using tolerance 1 (first row
right) this gap in the F1 score is even smaller.
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Crack width 1
Riesz network Riesz network Riesz network
29k parameters 7k parameters 5 largest connected components

min median mean min median mean min median mean
precision 0.1524 0.3897 0.3973 0.0480 0.1966 0.1907 0.0529 0.2752 0.2722
(tol1) (0.2826) (0.5656) (0.5485) (0.0838) (0.3250) (0.3187) (0.0991) (0.4132) (0.4454)
recall 0.2922 0.8635 0.7675 0.3277 0.8510 0.79108 0.2211 0.84151 0.7677
(tol1) (0.67) (0.9564) (0.9206) (0.6677) (0.966) (0.9388) (0.3862) (0.9526) (0.8865)

F1 score 0.2134 0.5401 0.51834 0.0838 0.3233 0.3397 0.0854 0.4172 0.39420
(tol1) (0.3982) (0.7032) (0.6906) (0.1820) (0.4799) (0.4691) (0.1578) (0.5813) (0.5793)

Crack width 3
Riesz network Riesz network Riesz network
29k parameters 7k parameters 5 largest connected components

min median mean min median mean min median mean
precision 0.3358 0.7223 0.6903 0.2474 0.5334 0.5101 0.2760 0.628 0.5905
(tol1) (0.4748) (0.8566) (0.8144) (0.3624) (0.7135) (0.6655) (0.4042) (0.8072) (0.7587)
recall 0.75302 0.9692 0.9515 0.9044 0.9757 0.9694 0.9043 0.9756 0.9693
(tol1) (0.8627) (0.9918) (0.9785) (0.9519) (0.9959) (0.9879) (0.9511) (0.9959) (0.9875)

F1 score 0.5017 0.8182 0.78955 0.3958 0.7063 0.6673 0.4315 0.7509 0.7233
(tol1) (0.6437) (0.9185) (0.8847) (0.5320) (0.8328) (0.7947) (0.5756) (0.8889) (0.8478)

Crack width 5
Riesz network Riesz network Riesz network
29k parameters 7k parameters 5 largest connected components

min median mean min median mean min median mean
precision 0.6367 0.8557 0.8181 0.4452 0.7077 0.6882 0.5716 0.7976 0.7709
(tol1) (0.7479) (0.8942) (0.8885) (0.6023) (0.8198) (0.8012) (0.7698) (0.8995) (0.8916)
recall 0.3481 0.9674 0.9257 0.4369 0.9735 0.9307 0.42481 0.9778 0.9422
(tol1) (0.6049) (0.9902) (0.9614) (0.7880) (0.9950) (0.9809) (0.7168) (0.9945) (0.9764)

F1 score 0.4787 0.9017 0.8638 0.4825 0.8281 0.7897 0.5474 0.8803 0.8407
(tol1) (0.7114) (0.9476) (0.9340) (0.7422) (0.9089) (0.8854) (0.7903) (0.9443) (0.9301)

Table 7.2: Effect of the increasing the number of parameters in the Riesz network on the simulated
datasets with fixed width cracks. Metrics with tolerance 1 are given in brackets. Visualizations on F1
score and recall are shown in Figure 7.5.



Tolerance 0
3d U-Net, multiscale [100] 3d U-Net, fine-tuned Riesz network
min median mean min median mean min median mean

precision 0.822 (10) 0.920 0.931 0.880 (10) 0.976 0.984 0.671 (10) 0.848 0.854
recall 0.182 (7) 0.859 0.929 0.046 (7) 0.878 0.963 0.805 (7) 0.918 0.920

F1 score 0.307 (7) 0.869 0.918 0.088 (7) 0.897 0.970 0.773 (10) 0.872 0.898

Tolerance 1
3d U-Net, multiscale [100] 3d U-Net, fine-tuned Riesz network
min median mean min median mean min median mean

precision 0.962 (12) 0.989 0.992 0.991 (4) 0.997 0.998 0.846 (10) 0.923 0.917
recall 0.374 (7) 0.923 0.984 0.096 (7) 0.913 0.989 0.942 (7) 0.983 0.985

F1 score 0.544 (7) 0.946 0.986 0.175 (7) 0.930 0.994 0.912 (10) 0.957 0.961

Table 7.3: Results of the multiscale and the fine-tuned 3d U-Net and the Riesz network on 15 images
with synthetic multiscale cracks for tolerances 0 and 1. The images yielding the minimal values are
named in parentheses. Results of this table are summarized in Figure 7.6.

We compare the Riesz network with two types of 3d U-net models. The first 3d U-net model
is first pretrained on cracks generated by fractional Brownian surfaces and later trained further
on additional crack images generated by Voronoi tessellations that are not in the test set. This
second step of training is often called fine-tuning or calibration. Hence, we refer to this model
as 3d U-net fine-tuned. The second model is a standard 3d U-net from [100] trained on cracks
generated by the fractional Brownian surface [42]. The difference between this 3d U-net model
and the one from the previous section is in the inference step: during crack segmentation it is
applied to several images downscaled by factors {1, 0.5, 0.25}, which are afterwards upscaled to
the original image size. The final segmentation result is obtained by taking a voxel-wise maximum
over all images. We refer to this as 3d U-net multiscale. We compare the Riesz network with
these two U-net models on 15 images (numbered 1 to 15) featuring Voronoi tessellation based
multiscale cracks.

Results Results of this experiment are shown in Table 7.3, Figure 7.6, and Figure 7.7. 3d
U-net fine-tuned achieves the highest values in precision and F1 score for this dataset. The Riesz
network lags 3d U-net fine-tuned in median F1-score by only 0.02. This is especially encouraging
since the Riesz network was not tuned on this type of data, contrary to this 3d U-net model.
However, when given a crack image that deviates a lot in contrast or noise level from the training
set (Figure 7.7, right), the performance of 3d U-net fine-tuned drops by a large factor as can be
seen in the minimal values for these metrics in Table 7.3 and Figure 7.6. The same holds true for
3d U-net multiscale. On the contrary, the Riesz network seems to be more stable to variations
in image quality, imaging conditions, etc. (Figure 7.7, right). When it comes to recall, the Riesz
network dominates the two U-net models. When we use a tolerance of 1 voxel in the metrics,
the Riesz network seems to become even more competitive in F1 score with 3d U-net fine-tuned.
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Figure 7.6: Visualization of the minimum (dashed line) and mean (solid line) values of the performance
metrics for the three models from Table 7.3. The Riesz network has slightly worse mean values and
significantly better minimum values of the performance metrics.
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(a) Image 10 from the test dataset. (b) Image 7 from the test dataset.

(c) Segmentation result from 3d U-net multiscale. (d) Segmentation result from 3d U-net multiscale.

(e) Segmentation result from 3d U-net fine-tuned. (f) Segmentation result from 3d U-net fine-tuned.

(g) Segmentation result from the Riesz network. (h) Segmentation result from the Riesz network.

Figure 7.7: Segmentation results on the multiscale cracks dataset.



7.4 Application to real cracks in 3d CT images

Conclusion from simulation studies

The simulation studies show that the Riesz network represents a viable alternative to 3d U-net
models. Riesz network achieves high recall on both simulated datasets with the exception of
crack width 1. Precision is unfortunately lagging, probably due to a lower number of parameters
than in the 2d case from Chapter 6. Precision can be improved by post-processing techniques
such as extraction of the largest connected components.

An interesting observation about the Riesz network was made in the second simulation study
on multiscale cracks: the Riesz network gave a more stable performance on images whose ap-
pearance deviates a lot from most of the images in the training set. This suggests that the
Riesz network could be potentially better on varying types of concrete compositions, imaging
conditions, etc. We keep this hypothesis in mind for the following sections of the chapter.

From simulated to real cracks

In this section we move from semi-synthetic images with available ground truth to real crack
images with no ground truth. For real datasets it is hard to acquire reliable ground truth.
Here, the only possibility remains manual or semi-automatic annotation. However, these images
potentially consist of hundreds of slices, which are time consuming and exhausting to label
slicewise. Tools for semi-automatic annotation for 3d data usually rely on annotating 2d slices,
ignoring the depth, i.e. the third dimension. The reliability or quality of semi-automatic or
manual annotation is also subject to doubt due to human factor2. For this reason, we evaluate
results in this chapter only qualitatively by analyzing 2d slices and 3d renderings. 2d sliceview
enables us to see the finer structure of segmented cracks, e.g. if very thin cracks are not segmented
or if the crack is oversegmented. 3d renderings tell us about the global shape and structure of
cracks and help us see if the segmented crack is salient or if the major part of the crack is
not segmented. This chapter is based on eight CT images with real cracks which were originally
segmented with 3d U-net and Hessian-based segmentation in the following studies [100, 124, 126].
Hence, these methods serve as a baseline to which Riesz network can be compared to. Parameter
configurations for these two methods can be found in original publications (Appendix C)

7.4.1 Crack segmentation in normal and high performance concrete
from tensile tests

This dataset was first used in [100]. Cracks in this dataset have large variations in crack width
or scale requiring similar adaptation to multi-scale cracks as for the simulated multiscale cracks.
However, here crack branching is completely random, i.e. less controlled than in simulated cracks,
e.g. compare Figure 7.3 with Figure 7.8. Furthermore, transitions in crack scale are smoother
and allow for changes in crack growth phases (thinning vs thickening) within the same crack,
e.g. compare Figure 7.7 with Figure 7.8.

Concrete samples

The cylindrical test specimens with a diameter of 48.0 mm consist of a normal-strength (normal
concrete - NC) and a high-strength (high performance concrete - HPC) fiber reinforced concrete.

2For example, there are differences in perceptions between annotators which can affect the consistency of the
annotations. There are also possible variations in the consistency for the same annotator, e.g. at the beginning
and at the end of the working day.
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An amount of 2.0% by volume of fibers made from glass fiber reinforced polymer (GFRP) are
added to each concrete mix. The test specimens are clamped in a tensile testing machine with
a maximum tensile load of 10 kN. The objectives of the test series are to open the initial crack
and to achieve a defined crack width between 0.1 and 0.4 mm.

CT imaging

Each sample is scanned by the laboratory µCT device at Fraunhofer ITWM, Kaiserslautern,
Germany. A Feinfocus FXE 225.51 X-ray tube with a maximum acceleration voltage 180.3
kV and a maximum power of 12.7 W, and a Perkin Elmer flat-bed detector XRD 1621 with
2 048 × 2 048 pixels were used. The tube voltage is set to 180 kV and the integration time
is 1 second. Tomographic reconstructions are obtained from 1 200 projections. Details on the
resulting images are given in Table 7.4. To evaluate our methods, cropped versions of the images
that contain most of the crack structure are considered.

Size [voxels] Cropped size [voxels] Voxel edge length
NC12 1 912× 1 538× 1 913 1 000× 550× 880 22.7 µm
HPC11 1 905× 1 593× 1 905 1 000× 500× 880 22.7 µm
HPC1 1 981× 1 981× 1 677 1 050× 1 050× 600 20.4 µm
NC2 2 009× 2 009× 1 665 1 100× 1 000× 520 20.4 µm

Table 7.4: Information on the µCT image data.

Results

We compare the Riesz network from the simulation study to the 3d U-net and Hessian-based
percolation, see Appendix C for details. Figure 7.8 gives a comparison of sliceview shown in
Figure 7 of [102], while Figure 7.9 and Figure 7.10 compare renderings from the three methods
after post-processing. This includes the extraction of the largest connected components followed
by the median filter on 3× 3× 3. Additional sliceviews on the Riesz network’s results before and
after applying the median filter as a simple post-processing step are given in Figures 7.11, 7.12,
7.13, and 7.14.

From the renderings in Figure 7.9 we observe a similar appearance of cracks for all three
methods. For sample NC12 the Riesz network seems to give the surface with the least holes, i.e.
the most connected. This does not hold in general for HPC11. Here, the Riesz network’s crack
has holes at similar positions as the one from the 3d U-net and they are even bigger but it seems
to perform better than both methods at the front left corner where all three methods struggle to
segment a connected surface. In the renderings in Figure 7.10 the Riesz network’s crack seems
to have more holes in the crack surface than the cracks from the other two methods, but again
segments more connected crack surface at the front left corner in the sample NC2. Results for
HPC1 are almost identical for all three methods.

From the sliceview in Figure 7.8 segmentation results seem similar on the high level, but
the Riesz network seems to give small improvements in connectivity, recall, and localization of
cracks in the areas where crack orientation changes as marked by red boxes. This comes with
a small expense of additional noise getting segmented. Figure 7.11 reflects the ability to handle
large range variations in scale without any assumption on crack width except for the window
adjustment due to computational reasons. The remaining two methods require the selection of
the scale range and discretization of scales either through downsampling (3d U-net) or through
the sampling of Gaussian scale space (Hessian-based percolation). Furthermore, we can notice
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Figure 7.8: Sliceview comparison from Figure 7 of [100]. From left to right: input image, segmentation
results with Hessian-based percolation, 3d U-net, and the Riesz network+median filter. Red boxes mark
improvements in connectivity, recall, and localization of cracks in the areas where crack orientation
changes with respect to the baselines.

that the Riesz network is partially able to handle thin cracks until they turn to subpixel or
very low contrast pattern (Figure 7.11 and Figure 7.14). Figure 7.12 reflects the lower precision
of the Riesz network as noticed in computational studies, i.e. a lot of noise near the crack is
misclassified as crack. This could be partially resolved by simple post-processing with a median
filter. Figure 7.13 shows the ability to segment cracks with many orientation changes that look
very different than the training set (Figure 7.3). Here, together with Figure 7.14, we can observe
weakness of the Riesz network to missclassifying the borders of fibers as cracks.
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Figure 7.9: Renderings of the cracks segmented by (from top to bottom): Hessian-based percolation,
3d U-net, and the Riesz network on NC12 (left) and HPC11 (right) samples (Table 7.4).
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Figure 7.10: Renderings of the cracks segmented by (from top to bottom): Hessian-based percolation,
3d U-net, and the Riesz network on NC2 (left) and HPC1 (right) samples (Table 7.4).
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Figure 7.11: Sample NC12: input image (left), segmentation results from the Riesz network before
(center) and after (right) post-processing with the median filter with mask 3× 3× 3.
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Figure 7.12: Sample HPC11: input image (left), segmentation results from the Riesz network before
(center) and after (right) post-processing with the median filter with mask 3× 3× 3.
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Figure 7.13: Sample NC2:input image (left), segmentation results from the Riesz network before
(center) and after (right) post-processing with the median filter with mask 3× 3× 3.
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Figure 7.14: Sample HPC1: input image (left), segmentation results from the Riesz network before
(center) and after (right) post-processing with the median filter with mask 3× 3× 3.



7.4.2 Crack segmentation in concrete from pull-out tests

This dataset was originally used in [126], as a follow-up study from [100]. Cracks were created in
a concrete sample with embedded rebar by pulling out the rebar. Hence, these cracks differ from
the ones from [100]. These two works together give an idea of how reliable crack segmentation
methods are in segmenting various types of cracks.

Concrete samples

Three concrete samples with embedded rebar were prepared. On two of these specimens, pull-out
tests were applied. The first specimen (Image 1) was loaded until failure, i.e. until the bar was
completely pulled out of the concrete. The second specimen shows cracking but the bar stays
in place. For this specimen, two scans were taken. Image 2 refers to the central part of the
specimen, while Image 3 is a scan of the bottom part. Interestingly, the cracks in the two scans
exhibit very different characteristics regarding shape and width. Finally, the third specimen
(Image 4) has not been subjected to a pull-out test at all but contains a crack which occurred
during the concreting process.

Size [voxels] Cropped size [voxels] Voxel edge length
Image 1 (I1) 1 965× 1 965× 1 716 1 000× 900× 500 26.8µm
Image 2 (I2) 1 979× 1 979× 1 547 1 000× 1000× 700 25.8µm
Image 3 (I3) 1 987× 1 987× 1 577 1 000× 1 000× 800 25.8µm
Image 4 (I4) 959× 959× 1 849 368× 268× 1 500 80.0µm

Table 7.5: The four reconstructed µCT images used in the following.

CT imaging

The concrete specimens were scanned at the Fraunhofer ITWM, Kaiserslautern, Germany. The
µCT device consists of a Feinfocus FXE 225.51 X-ray tube with maximum acceleration voltage
180.3 kV and maximum power of 12.7 W. The detector is a Perkin Elmer flat-bed detector XRD
1621 with 2 048 × 2 048 pixels. For Image 1 and Image 4, a tube voltage of 180 kV was used.
The integration time was set to 1 second. 1 200 projections were used for acquiring tomographic
reconstructions. For Image 2 and Image 3, a tube voltage of 160 kV, an integration time of 0.5
seconds and 400 projections were used. The CT setup is shown in Figure 7.15. Details on the
reconstructed images are given in Table 7.5. The segmentation methods are applied to cropped
images that contain most of the crack structure.

Results

Figure 7.16 gives a comparison of sliceview shown in Figure 4 of [126], while Figure 7.17 and
Figure 7.18 compare renderings from the three methods after post-processing. This includes
the extraction of the largest connected components followed by the median filter on 3 × 3 × 3.
Additional sliceviews of the Riesz network are given in Figures 7.19, 7.20, 7.21, and 7.22.

Based on renderings in Figure 7.17 and Figure 7.18, and sliceview comparison Figure 7.16,
we can observe that the Riesz network works significantly better than the baselines on one out of
four samples while having high recall on all four samples. We see that the Riesz network segments
more crack surfaces for sample I2 and more connected crack surface for sample I4. For sample
I1 and I3 the Riesz network segments what seems to be too many noise voxels misclassified as a
crack.
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Figure 7.15: From left to right: side view of the specimen for Image 2 and 3, side and top view of
Image 1, and CT imaging setup when scanning Image 4.

For sample I1 the Riesz network segments part of the rebar as a crack due to the cropping of
the input image into non-overlapping subwindows and assembling them back after the inference
(Section 7.1.1). Due to subwindow size of 4003 rebar is not evenly cut, i.e. smaller part of the
rebar is cut as the elongated structure at the edge which reminds of a crack in shape and hence
gets misclassified. This can be seen in Figure 7.19 where the left boundary of segmented rebar
appears straight up to the edge effects of the method as marked with red boxes. Figure 7.19 and
Figure 7.21 also show that sometimes grain edges in samples I1 and I3 get classified as cracks
because they seem darker than the surrounding. Figure 7.22 shows that in the case of sample
I4 oversegmentation and poor localization can happen to the Riesz network. In contrast, Figure
7.21 and sample I3 give examples of good localization of crack structures (red boxes) and the
ability to detect very thin cracks albeit disconnectedly (blue box). Figure 7.20 (red boxes) of
sample I2 shows the impressive performance of the Riesz network in segmenting very thin cracks.
From Figure 7.16 (red boxes) it appears that the Riesz network gives better segmentation results
than the competing methods on sample I2: cracks appear more connected and compact, even
the air ring between rebar and concrete is fully classified as a crack since it is a 2d surface with
thickness in 3d space.
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Figure 7.16: Sliceview comparison from Figure 4 of [126]. From left to right: input image, segmentation
results with Hessian-based percolation, 3d U-net, and Riesz network+median filter. Red boxes mark
the improvements in the segmentation results of the Riesz networks compared to the remaining two
methods.
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Figure 7.17: Renderings of the cracks segmented by (from top to bottom): Hessian-based percolation,
3d U-net, and the Riesz network on I1 (left) and I2 (right) samples (Table 7.5).
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Figure 7.18: Renderings of the cracks segmented by (from top to bottom): Hessian-based percolation,
3d U-net, and the Riesz network on I3 (left) and I4 (right) samples (Table 7.5).
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Figure 7.19: Sample I1: input image (left), segmentation results from the Riesz network before (center)
and after (right) post-processing with the median filter with mask 3× 3× 3. Red boxes show the edge
effects which occur due to the cropping of the input image into non-overlapping 4003 subwindows.
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Figure 7.20: Sample I2: input image (left), segmentation results from the Riesz network before (center)
and after (right) post-processing with the median filter with mask 3×3×3. Red boxes mark thin cracks
that were correctly segmented by the Riesz network.
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Figure 7.21: Sample I3: input image (left), segmentation results from the Riesz network before (center)
and after (right) post-processing with the median filter with mask 3× 3× 3. Red boxes shows examples
of good localization of crack structures. Blue box shows an example where the Riesz network was able
to detect very thin cracks albeit disconnectedly.
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Figure 7.22: Sample I4: input image (left), segmentation results from the Riesz network before (center)
and after (right) post-processing with the median filter with mask 3× 3× 3.



7.4.3 Fiber reinforced concrete sample

This experiment on CT images of real cracks involves one sample with a very different material
composition and a different method of crack initiation, see [124] for details. Another important
aspect is that a different CT device (other than the one from Fraunhofer ITWM) was used for
imaging. This experiment is the final experiment on 3d CT images to assess the quality of the
Riesz network.

Concrete samples

Fiber reinforced concrete sample Bending tensile strength tests were carried out on hard-
ened high performance concrete with polypropylene fibers (PP) MasterFiber 235 SPA [130]. The
tests were conducted on beam specimens of dimensions 100× 100× 400 mm3 in accordance with
EN 14651 [131]. A sample before and after testing is shown in Figure 7.23.

Figure 7.23: Fiber reinforced concrete before and after tensile test.

CT imaging

The fiber reinforced concrete sample was scanned at the Fraunhofer EZRT, Fürth, Germany.
The dimension of the sample allowed for the application of a 300 kV microfocus X-ray tube from
Hamamatsu Photonics. The sample was scanned at 290 kV. The detector has a sensitive area
of approx. 42 x 42 cm² and a pixel size of 139 µm. The sample was positioned on a rotary axis
for measurement and imaged onto the detector with a magnification factor of 2.3. This results
in an effective voxel size of 60.4 µm in the object. For the 3d reconstruction, 3 600 angles were
acquired along a complete rotation of the sample with an exposure time of 0.8 s each. The total
measurement time was 48 min. Details on the sample are given in Table 7.6.

Size [voxels] Cropped size [voxels] Voxel edge length
2 145× 2 001× 2 427 1 600× 1 600× 1600 60.4 µm

Table 7.6: Information on the µCT image data for fiber reinforced concrete sample (RPTU-EZRT).
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Results

In this sample crack thickness varies from a few voxels to a couple of hundreds of voxels. Hence,
Hessian-based percolation and 3d U-net require additional adjustments [124]. For example,
the Frangi filter uses 38σ’s (or 38 scales) in the range [0, 75] in the selection of candidate
voxels3. 3d U-net model uses downscaling factors {0.0625, 0.09375, 0.125} for big cracks and
{0.125, 0.25, 0.375, 0.5} for smaller cracks. Note that these smaller downscaling factors are nec-
essary because large ones tend to remove very thin cracks. These adjustments have to be done
manually with prior analysis of crack properties, i.e. mostly crack width. For the Riesz network
we test two variants. The first variant downscales the original image with only a single down-
scaling factor 0.5 and uses the same Riesz network with two different window sizes: 1003 and
4003. The smaller window size is used to segment thinner cracks which are harder to segment
on larger windows because of thicker cracks and the partial volume effect. The second variant
uses the Riesz network with downscaling factor 0.25 only on window size 4003.

Figure 7.24 gives a comparison of sliceview shown in Figure 5 of [124], while Figure 7.25
compares renderings from the three methods after post-processing. This includes the extraction
of the largest connected components followed by the median filter on 3 × 3 × 3. Additional
sliceview on the Riesz network are given in Figures 7.26, 7.27, and 7.28.

Renderings in Figure 7.25 reveal similar crack structures for all three methods. Hessian-based
percolation seems to be the most sensitive to misclassifying the dark fibers as cracks, while the
Riesz network and 3d U-net seem to be equally resistant to this effect.

Figure 7.24 and Figure 7.27 show the problem with the Riesz network in the middle of the
cracks due to the edge effect from non-overlapping window cropping i.e. crack ends up being on
the border of cropping and hence this effect occurs. Figure 7.28 shows results from the second
variant of the Riesz network and proves that the Riesz network is able to segment the largest
crack opening without edge effects when the crack is fitting to the window size. This further
stresses the drawback of the need for window adjustment from Section 7.1.1. Furthermore, the
Riesz network seems to recognize part of the grains in the crack opening and not classify them as
crack voxels in Figure 7.24. Other methods tend to remove or oversmooth them. This is further
stressed in Figure 7.26. Segmentation of very thin cracks which are parallel to the main crack
opening is only partial and disconnected as marked by red boxes in Figure 7.27. Hessian-based
percolation seems to perform better on thin cracks (Figure 7.24). The reason for this can be
two-fold. Hessian-based percolation is the only method that uses full-sized CT image of this
sample where no downscaling interpolation error exists. Secondly, Hessian-based percolation is
the only method that has implicitly included a post-processing step as a part of the method.
Here, the region growing algorithm could potentially reconstruct a crack even if it was partially
detected such as in Figure 7.27 (red boxes) for the Riesz network. However, the cost of the region
growing algorithm is that parts of the dark fiber get misclasified as cracks.

3For the comparison HP used 14σ’s for range [0.5, 7.5] in Section 7.4.1 and 28σ’s for range [0.5, 15] in Sec-
tion 7.4.2. For more details on parameters see Appendix C.
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Figure 7.24: Sliceview comparison from Figure 5 of [124]. From left to right: input image, segmentation
results with Hessian-based percolation, 3d U-net (all in the first row), the Riesz network+median filter
on input image downscaled with factor 0.5, and the Riesz network on input image downscaled with factor
0.25 (all in second row). The Riesz network recognizes part of the grains in the crack opening and does
not classify them as crack voxels (red boxes).
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Figure 7.25: Renderings of the cracks segmented by (from top to bottom): Hessian-based percolation,
3d U-net, and the two versions of the Riesz network on EZRT-RPU sample (Table 7.6).
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Figure 7.26: Sample EZRT-RPTU: input image (left), segmentation results from the Riesz network
before (center) and after (right) post-processing with the median filter with mask 3 × 3 × 3 applied
to input image downscaled with factor 0.5. Slices in x-direction. Red boxes mark examples of good
localization of crack structures in the segmentation results of the Riesz network.
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Figure 7.27: Sample EZRT-RPTU: input image (left), segmentation results from the Riesz network
before (center) and after (right) post-processing with the median filter with mask 3 × 3 × 3 applied to
input image downscaled with factor 0.5. Slices in y-direction. Red boxes mark thin cracks that were
partially segmented by the Riesz network.

Figure 7.28: Sample EZRT-RPTU: input image (left), segmentation results from the Riesz network
before (center) and after (right) post-processing with the median filter with mask 3 × 3 × 3 applied to
input image downscaled with factor 0.25. Slices in y-direction from Figure 7.27.



7.5 Conclusion

In this chapter, the Riesz network has been generalized to 3d and applied to crack segmentation
tasks in 3d CT images. When moving from 2d to 3d, the Riesz network is adjusted to work
only on 4003 subwindows because of the memory issues. Afterwards, the 3d Riesz network has
been extensively tested and compared to the relevant methods on two simulated datasets with
available ground truth and on eight 3d CT images with real cracks. Conceptually, the Riesz
network positions itself between classical methods (e.g. Hessian-based percolation) and deep
learning methods (e.g. 3d U-net) in the following sense: it uses a determinstic (non-trainable,
parameter-free) feature extractor which is combined with 1d convolutions and non-linearities
creating a deep layered structure. As a consequence, the number of parameters is significantly
reduced from millions (e.g. 3d U-net) to thousands. The most interesting property that the
Riesz network possesses theoretically and others do not is scale invariance. In practice, the Riesz
network requires less user interference compared to the compared methods, see Section 7.4.3.

A simulation study shows that the Riesz network has a high recall, i.e. good coverage of
the crack structure. However, precision is significantly lower compared to 3d U-net. Precision
is further improved with a simple post-processing technique: extraction of the largest connected
components. This implies that the Riesz network would benefit the most from more sophisticated
post-processing methods which remove noise. A simulation study shows the weakness of the Riesz
network to segment thin cracks correctly. This has been a known weakness of the competing
methods as well.

Application to real data confirms the hypothesis on high recall with lower precision. Here,
better localization than the segmentation results from the competing methods can be observed in
a few samples. The high recall is proven to be particularly useful on sample I2 from Section 7.4.2,
where way more crack structures than for competing methods have been segmented. On the
remaining datasets, the verdict is similar as in the simulation study: most of the crack structures
are recognized but with the cost of more noisy voxels being misclassified than for the baselines.
Hence, the same conclusion on the post-processing strategy seems to be valid here, too.

From a theoretical perspective, the Riesz network is both scale and translation invariant.
While simulation studies on the Riesz network systematically cover the problem of scale invari-
ance, the problem of rotation invariance has not been explicitly studied. Rotation invariance
needs to be ensured as well for the crack segmentation methods. The questions for future re-
search remain: should the Riesz network learn rotation invariance through rotation diversity
of the training set? Should the Riesz network be modified to be theoretically both scale and
rotation equivariant? See e.g. [132, 133] as an example of the rotation equivariant architectures.

As a final conclusion of the chapter, one can claim that the Riesz network is useful for crack
segmentation task in 3d CT images. An important feature is that scale invariance can simply be
achieved up to the window size. Only crack widths of 3 and 5 are used for training, while inference
can be achieved for arbitrary crack widths up to the window size. This reduces the effort for data
collection and very few scales need to be present in the training set for the method to achieve
scale generalization. However, due to the low number of parameters in 3d, post-processing steps
are necessary to get noise-free results.
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Chapter 8

The Riesz scattering
representation

8.1 Introduction

Deep learning offers very powerful tools for various tasks in computer vision and image processing,
e.g. segmentation or classification. However, one of its main drawbacks is that it is data-hungry,
i.e. it requires a large amount of annotated data with enough inter-class variability for the
training part to be successful. For that purpose when very few data is available, manual feature
extraction combined with a classifier (e.g. PCA or SVM) becomes more practical and useful.

Hierarchical feature representations are an efficient way to extract universal features that can
be used for a wide range of tasks. The idea originates from so-called scattering networks [134],
where a complex wavelet is used to extract the local amplitude. Rotated and rescaled versions of
this wavelet capture diverse features and serve as one layer of the representation. The hierarchical
representation then arises from applying the same set of wavelets on the amplitudes from the
previous layer. In this way, higher order nonlinear features can be extracted and utilized.

Generally, it is desirable that any feature representation satisfies basic properties of human
vision and is able to handle acquisition variability of 2d digital cameras (Section 4.2). However,
achieving that is not trivial at all. Here, we impose translation invariance as a basic condition
that the representation should satisfy and investigate how to achieve robustness to scale changes
or even scale invariance.

Mathematically, scale space is a continuous semi-group, so scales are unlimited. However, it is
important to note that images are discretized and bounded representations of the real world and
for that reason scale in the images is bounded from two sides [116]. From below it is bounded by
image resolution or pixel size (inner scale). Details smaller than the pixel size cannot be recorded.
From above, image scale is bounded by the image size (outer scale). What happens outside of
the image cannot be observed. A typical approach for obtaining scale invariance is to sample the
scale dimension and to extract features at each sampled scale, e.g. in the SIFT descriptor [96].
However, different scales in the image are not independent and many of them are not relevant for
the given task such that a uniform sampling of the scale dimension results in highly redundant
representations. Another problem arises from scale sampling when the window size is changed.
In that case, we might need more or less scales for the image, depending on whether the window
size is decreased or increased. Furthermore, when the pixel size changes, scale sampling has to
be adjusted to derive a comparable representation. For these reasons, scale sampling is inflexible
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and bears potential risks and instabilities during automatic feature extraction.
In this chapter, we design a hierarchical feature representation based on the Riesz transform as

an alternative to scattering networks. The Riesz transform can be used to construct a quadrature
filter for signal decomposition into amplitude and phase. Computing the amplitude acts as a
nonlinear transformation and is used to build layers in depth. Our representation inherits the
scale equivariance property of the Riesz transform. Global average pooling at the end results
in a scale and translation invariant hierarchical representation. Theoretical implications of this
representation are discussed and its application for texture and digit classification is presented.
In these applications, robustness to scale variations is observed. Furthermore, our representation
generalizes to completely unseen scales that are not covered by the training set.

8.1.1 Related work on scattering networks

Scattering networks and related work:
The idea behind scattering networks is to design hierarchical image descriptors similar to CNNs
which are robust or (locally) invariant to transformations from a fixed compact Lie group [134].
Details on scattering networks can be found in Appendix G.

The design is based on constructing a nearly quadrature filter1 from Morlet or other types
of wavelets, i.e., a filter that decomposes the signal into amplitude and phase. The filtering
is repeated for several rescaled and rotated versions of the Morlet wavelet. Only amplitude
information is kept, and the same set of wavelets is applied to the amplitudes sequentially to
derive higher order features.

An important result of Mallat [134] is that the scattering network is Lipschitz continuous with
respect to the actions from the diffeomorphism group. This means, the scattering network yields
very similar outputs for the original image and ”slightly locally” deformed versions of it. As a
first application example, a scattering network on the translation group was used to construct
a (locally) translation invariant feature representation which was applied to texture and digit
classification problems [136, 114]. This representation was further extended to local invariance
for translations, rotations, and scalings [115], which proves to be useful for unknown viewing
conditions in texture classification. Furthermore, a scattering network that is stable to rotations
and deformations along the rotation axes was applied to solve object classification tasks in [137].

While scattering networks have shown to perform well on datasets with little training data
(e.g. with 46 images per class on the CUReT dataset in [114]), this class of methods is still
outperformed by CNNs on large datasets such as Caltech or CIFAR [137]. A possible explana-
tion for this has been suggested in [138]: scattering networks are not able to represent complex,
edge-like patterns, e.g. checker-boards patterns. Later, it was shown in [139, 140] that hybrids
of scattering networks and deep CNNs can compete with end-to-end trained fully convolutional
deep CNNs and outperform them in the small data regime. The authors replace early trainable
convolutional layers with pre-defined scattering layers. Furthermore, Cotter and Kinsbury [141]
design another hybrid version by using a scattering transform followed by a trainable 1d con-
volution as a building block of their scattering representation. The latest work on scattering
networks enables parametrization of the Morlet wavelets [142], i.e. parameters are trainable and
hence can be optimized for a suitable task. This results in a more problem adapted wavelet filter
bank which is not necessarily a wavelet frame but is experimentally proven to be as stable to
deformations (shear, scaling, and rotations) as classic scattering networks.

1Since the estimation of these characteristics is intrinsically noisy, various quadrature filters have been devised,
see [135] for an overview and Appendix F for basics on quadrature filters. Appendix G introduces the Morlet
wavelet. The reason for being nearly quadrature filter is due to the parameter β on the real part of the filter, i.e.
it is not reflexive in the wavelet orientation.
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The importance of scattering networks lies in the fact that they represent the simplest
non-trainable and nonlinear feature extractor which arranges convolutional filters and non-
linearities in cascades. This constitutes the closest well-studied and mathematically sound proxy
model [143, 144] for trainable neural networks (e.g. CNNs) which are nowadays commonly used
in a wide range of applications.

The so-called monogenic wavelet scattering network combines a scattering network with
monogenic wavelets [145]. However, scale equivariance is not utilized and translation equiv-
ariance is not assumed. Hence, it is a highly redundant and scale-dependent representation
which extracts 90, 000 features for a 200 × 200 image. The latest work [146] uses higher order
Riesz transforms to classify rocks based on textures. However, here non-linearity is not applied
and no feature hierarchy has been constructed. Hence, the model resembles classical manual
feature extractors. Nevertheless, this work serves as a proof of concept that with a relatively low
number of Riesz-based features (between 100 and 400) good performance can still be achieved.

Lindeberg’s paper [116] is the only work in literature that considers scale equivariance (or
covariance) in the same context as we do. An oriented quasi quadrature measure is defined from
first and second order Gaussian derivatives and used for subsequent classification of textures.
This representation depends on the sampling of the scale dimension which results in feature
vectors of dimension 4,000. This feature dimension seems to be too redundant compared to the
standard scattering network [114].

8.2 Riesz hierarchical representation

The construction of the Riesz hierarchical network is similar to that of scattering networks [134]
(Appendix G). This is can be summarized as a three step process: apply complex filter bank
to image, apply modulus operator as non-linearity, and repeat previous two steps to construct
hierarchies. The main novelty is in fact that we use a smaller and less redundant filter bank
compared to [114] based on the Riesz transform which ensures stability to variations in scales.
The properties of the Riesz transform as stated above ensure that the most important properties
of scattering networks such as nonexpansiveness and translation equivariance are preserved.

8.2.1 Base function and its properties

Instead of the Morlet wavelet, we use a scale-free Riesz transform kernel to construct a complex
base function and eliminate the need for scale selection. For x = (x1, x2) ∈ R2 the complex base
function ψ : R2 → C is defined as

ψ(x) = ir1(x) + r(2,0)(x), (8.1)

where r1 and r(2,0) are kernels of the Riesz transform of first order R1 and second order R(2,0),
respectively. In other words, for f ∈ L2(R2) it holds:

(f ∗ ψ)(x) = iR1(f)(x) +R(2,0)(f)(x),

Note that convolution with ψ is scale equivariant and a quadrature filter2. The latter is easily
deduced from its differential interpretation since the first (second) order Riesz transform
resembles the first (second) order derivative operator (see Equations (5.4) and (5.5)) and can be
seen as an edge (line) detector.

2See Appendix F for details.

144



Steerability: An image can be thought of as a composition of differently oriented components,
signals, or patterns. Note that the base function ψ is not an isotropic function as it is oriented
vertically. Hence, the convolution with the base function preserves (amplifies) all patterns rotated
in (or close to) the vertical axis, while it diminishes signals oriented horizontally. For this reason,
it is useful to define a rotated version of the base function ψ. This is particularly important
for images that are not uni-directional, i.e. that have multiple relevant orientations. Our base
function and the rotated filters derived from it are steerable, i.e. there exist basis filters from
which any rotated filter can be steered (Section 5.2, Figure 8.1, top).

Formally, let G be a finite rotation group. For group element r = (cosϕ, sinϕ) ∈ G, the base
function ψ can be rotated using the steerability of the Riesz transform (Section 5.2) via

ψ[r](x) := ψ(rx) = ihr(x) + h(2)r (x)

where hr and h
(2)
r are kernels of directional Hilbert transform or steered Riesz transform of first

order Hv and second order H(2)
v from Section 5.2. Then, the final filter bank can be schematically

visualized (Figure 8.1, top). This yields

(f ∗ ψ[r])(x) = iHr(f)(x) +H(2)
r (f)(x),

where
Hr(f)(x) = cosϕR1(f)(x) + sinϕR2(f)(x),

H(2)
r (f)(x) = cos2(ϕ)R(2,0)(f)(x) + sin2(ϕ)R(0,2)(f)(x) + 2 cos(ϕ) sin(ϕ)R(1,1)(f)(x).

requires computation of five Riesz transforms: two of the first order (R1,R2) and three of the
second order (R(2,0),R(0,2),R(1,1)). A visualization of the extracted features from the steered
base functions based on the Riesz transform can be found in Figure 16 of Appendix H.

Nonexpansiveness of the base function ψ: Nonexpansiveness is preserved if the complex
base function is multiplied by the real scalar C ≤ 1

2 . Generally, it holds

||C ·(f ∗ψ)−C ·(g∗ψ)||2 ≤ C||(f−g)∗ψ||2 = C||R1(f−g)||2+C||R(2,0)(f−g)||2 ≤ 2C||f−g||2.

Similarly, this holds for the rotated version of ψ. This follows from the following lemma:

Lemma 7. The following two inequalities hold for f ∈ L2(Rd):

• ||Hr(f)||2 ≤ ||f ||2,

• ||H(2)
r (f)||2 ≤ ||f ||2.

Proof. A short and more concise version of the proof can be found in [4]. Here, we prove the
stronger results for the first and second order directional Hilbert transform:

||Hr(f)||2 + ||Hr+π/2(f)||2 = ||f ||2

and
||H(2)

r (f)||2 + ||H(2)
r+π/2(f)||

2 + 2||HrHr+π/2(f)||2 = ||f ||2.

These results imply that the orthogonal directional Hilbert transforms preserve the total energy
||f || of the signal f .
Here, we will use the following notation: let r = (cosϕ, sinϕ), then r+π/2 := (cos(ϕ+ π

2 ), sin(ϕ+
π
2 )).
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• Proof of the inequality ||Hr(f)||2 ≤ ||f ||2.:

||Hr(f)||2 + ||Hr+π/2(f)||2 =

= || cosϕR1(f) + sinϕR2(f)||2 + || cos(ϕ+ π/2)R1(f) + sin(ϕ+ π/2)R2(f)||2 =

= cos2 ϕ||R1(f)||2 + sin2 ϕ||R2(f)||2 + 2 sinϕ cosϕ⟨R1(f),R2(f)⟩+
+ sin2 ϕ||R1(f)||2 + cos2 ϕ||R2(f)||2 + 2 sin(ϕ+ π/2) cos(ϕ+ π/2)⟨R1(f),R2(f)⟩ =

= ||R1(f)||2 + ||R2(f)||2 +
(
sin(2ϕ) + sin(2ϕ+ π)

)
⟨R1(f),R2(f)⟩

= ||R1(f)||2 + ||R2(f)||2
(5.9)
= ||f ||2.

• Proof of the inequality ||H(2)
r (f)||2 ≤ ||f ||2.:

||H(2)
r (f)||2 + ||H(2)

r+π/2(f)||
2 + 2||HrHr+π/2(f)||2 =

(⃝)
= || cos2(ϕ)R(2,0)(f) + sin2(ϕ)R(0,2)(f) + 2 cos(ϕ) sin(ϕ)R(1,1)(f)||2+
+ || cos2(ϕ+ π/2)R(2,0)(f) + sin2(ϕ+ π/2)R(0,2)(f) + 2 cos(ϕ+ π/2) sin(ϕ+ π/2)R(1,1)(f)||2+

+ 2|| cos(ϕ) cos(ϕ+ π/2)R(2,0)(f) +
(
cos(ϕ) sin(ϕ+ π/2) + sin(ϕ) cos(ϕ+ π/2)

)
R(1,1)(f)+

+ sin(ϕ) sin(ϕ+ π/2)R(0,2)(f)||2 =

=
(
cos2(ϕ) + sin2(ϕ)

)2
||R(2,0)(f)||2 +

(
cos2(ϕ) + sin2(ϕ)

)2
||R(0,2)(f)||2

= +2
(
sin2(2ϕ) + cos2(2ϕ)

)2
||R(1,1)(f)||2+

+ 2
(
cos2(ϕ) + cos2(ϕ+ π/2)

)(
sin(2ϕ) + sin(2ϕ+ π)

)
⟨R(1,1)(f),R(2,0)(f)⟩+

+ 2
(
sin2(ϕ) + sin2(ϕ+ π/2)

)(
sin(2ϕ) + sin(2ϕ+ π)

)
⟨R(1,1)(f),R(0,2)(f)⟩

+ 2
(
cos(ϕ) sin(ϕ) + cos(ϕ+ π/2) sin(ϕ+ π/2)

)2
⟨R(0,2)(f),R(2,0)(f)⟩ =

(△)
= ||R(2,0)(f)||2 + 2||R(1,1)(f)||2 + ||R(0,2)(f)||2 (5.9)

= ||f ||2.

(⃝) Here, we give details on how term HrHr+π/2(f) is calculated.

HrHr+π/2(f) = Hr

(
Hr+π/2(f)

)
= Hr

(
cos(ϕ+ π/2)R1(f) + sin(ϕ+ π/2)R2(f)

)
=

= cos(ϕ+ π/2)Hr

(
R1(f)

)
+ sin(ϕ+ π/2)Hr

(
R2(f)

)
=

= cos(ϕ+ π/2)
(
cos(ϕ)R1R1(f) + sin(ϕ)R2R1(f)

)
+

+ sin(ϕ+ π/2)
(
cos(ϕ)R1R2(f) + sin(ϕ)R2R2(f)

)
=

= cos(ϕ+ π/2) cos(ϕ)R(2,0)(f) + cos(ϕ+ π/2) sin(ϕ)R(1,1)(f)+

+ sin(ϕ+ π/2) cos(ϕ)R(1,1)(f) + sin(ϕ+ π/2) sin(ϕ)R(0,2)(f) =

= cos(ϕ+ π/2) cos(ϕ)R(2,0)(f) +
(
cos(ϕ+ π/2) sin(ϕ) + sin(ϕ+ π/2) cos(ϕ)

)
R(1,1)

+ sin(ϕ+ π/2) sin(ϕ)R(0,2)(f).
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(△) Terms with ⟨R(1,1)(f),R(2,0)(f)⟩ and ⟨R(1,1)(f),R(0,2)(f)⟩ disappear due to sin(2ϕ)+
sin(2ϕ+ π) = sin(2ϕ)− sin(2ϕ) = 0.
Term with ⟨R(0,2)(f),R(2,0)(f)⟩ also disappear because cos(ϕ) sin(ϕ)+cos(ϕ+π/2) sin(ϕ+
π/2) = 0. This is consequence of cos(ϕ+ π/2) sin(ϕ+ π/2) = − cos(ϕ) sin(ϕ) for every ϕ ∈
[0, 2π]. For ϕ ∈ [0, π/2]∪[π, 3π/2] it holds sin(ϕ+π/2) = − cos(ϕ) and cos(ϕ+π/2) = sin(ϕ).
For ϕ ∈ [π/2, π] ∪ [3π/2, 2π] it holds sin(ϕ+ π/2) = cos(ϕ) and cos(ϕ+ π/2) = − sin(ϕ).

Now, a similar proof shows nonexpansiveness for steered base function ψ[r].
The reason for requiring nonexpansiveness in [134] is that the representation should be stable
(Lipschitz continuous) to small deformations, i.e. it should not amplify their effect [143]. Note
that the selection of the coefficient C determines the decay of energy as we increase the depth
of the Riesz representation. Its role in the Riesz representation will be analyzed later.

Zero integral of base function ψ: This result serves as a motivation to introduce non-
linearity in the scenario where we assume (global) translation invariance. To achieve translation
invariance, pooling operators must compute pooling statistics on the features map across the
whole image domain3. If one applies global average pooling without non-linearity, the result
would inevitably be 0 for every feature removing all the discriminative characteristics of the
transformed signal. Zero integral of base function ψ also guarantees that representation is in-
variant to constant shifts in grayvalues. This result is given in the following lemma:

Lemma 8. Integral of base function ψ equals to 0, i.e.

p.v.

∫
R2

ψ(x)dx = 0

.

Proof. Since from equation (8.1) we have
∫
R2 ψ(x)dx = i ·

∫
R2 r1(x)dx+

∫
R2 r

(2,0)(x)dx, this can
be done separately for real and imaginary part. The kernel r1 in the real part is anti-symmetric,
i.e. r1(x) = −r1(−x) and hence p.v.

∫
R r1(x)dx = 0. In the imaginary part, kernel r(2,0) = r1 ∗r1

and hence

p.v.

∫
R2

r(2,0)(x)dx = p.v.

∫
R2

p.v.

∫
R2

r1(t)r1(x− t)dtdx = p.v.

∫
R2

r1(t)
(
p.v.

∫
R2

r1(x− t)dx
)
dt =

= [y = x− t change of variables] = p.v.

∫
R2

r1(t)
(∫

R2

r1(y)dy
)
dt = [r1 is anti-symmetric] = 0.

Above p.v. refers to the Cauchy principal integral since the convolution with the Riesz kernel is
not defined at 0.

8.2.2 Path ordered scattering

The goal of this section is to design a universal hierarchical representation (Figure 8.1, top) of the
image structure which would be useful in the sense that a simple classifier (e.g. PCA or SVM)
can be constructed on top of the representation without the need to train a deep representation
or adjust parameters.

3Section 8.2.3 is focused on pooling operators for global translation and scale invariance.
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Figure 8.1: Top: extraction of features from quadrature filter based on the Riesz transform. Bottom:
construction of Riesz representation.



Alternative to Scattering networks

Let GM = {k π
M , k ∈ {0, 1, · · · ,M − 1}} be a finite rotation group where M ∈ N controls the

discretization of the group. Then we define the base transformation layer:

W (f) := {C(f ∗ ψ[r]), r ∈ GM}

where C ≤ 1
2 is a scaling constant which is needed to preserve nonexpansiveness or control energy

decay. To ensure that both the coordinate axes and the diagonal directions are included in GM ,
we choose M = 4m for some m ∈ N.

Similar to scattering networks, we then apply a non-linearity operator. Here, we apply the
amplitude operator to every feature map from W (f) and discard the phase. This yields

S(f) = A(W (f)) := {A(g), g ∈W (f)},

where A : L2(Rd,C) → L2(Rd) is the pointwise amplitude operator of the complex functions i.e.
A(g1(x) + ig2(x)) =

√
g1(x)2 + g2(x)2. To create a multilayer deep representation, we apply the

operator S sequentially. That is, for the k-th layer:

Sk(f) := Sk(f) = S(· · ·S(f)), (8.2)

and let S0 := f. Selected feature maps up to depth 3 from the Riesz feature representation prior
to pooling are visualized on two examples in Figure 17 and Figure 18 of Appendix H. The final
representation Φ with K ∈ N layers is the ordered list of feature maps from all depths

Φ(f) =
(
Sk(f) | k = 0, · · · ,K

)
, (8.3)

This representation yields in total
∑K

k=0M
k features per pixel.

Nonexpansiveness of Riesz representation Φ(f): A requirement from [114, 134] is that
the total energy of the layer equals the energy of the input f . Although this is needed to achieve
Lipschitz continuity to diffeomorphism actions, this results in fast energy decay and reduces
the importance of features in deeper layers. For this reason the depth of scattering networks
is usually limited to 2 [134, 114]. However, this property is only relevant when using classifiers
such as PCA that do not use any feature normalization or preprocessing. On the other hand,
prior to training a SVM on the features from the Riesz representation, the feature vectors are
normalized coordinatewise with maximal absolute value. This normalization removes the effect
of energy decay.

Strictly theoretically, to achieve nonexpansiveness of 1
K+1Φ for M = 4m for m ∈ N, one can

choose C = 1
M by the following arguments.

First, we analyze nonexpansiveness of the operator S(f) = A(W (f)). Here, we have

||S(f)− S(g)||2 = ||A(W (f))−A(W (g))||2 ≤ ||A
(
W (f)−W (g)

)
||2 =

= ||W (f − g)||2 = C
( ∑

r∈GM

||i · Hr(f − g) +H(2)
r (f − g)||2

)
=

= C
( ∑

r∈GM

||Hr(f − g)||2 +
∑

r∈GM

||H(2)
r (f − g)||2

)
.

From Lemma 7 we have
∑

r∈GM
||Hr(f − g)||2 ≤ M

2 ||f − g||. A similar statement can be
shown for the second summand.

149



For C = 1
M , this yields

||S(f)− S(g)||2 ≤ C

(
M

2
||f − g||2 + M

2
||f − g||2

)
= ||f − g||2.

Since Φ defined for some K ∈ N has depth K, it needs to be scaled by 1
K+1 to achieve

nonexpansiveness. We experimentally investigate the effect of the constant C on the overall
representation performance in Section 8.3.2.

Equivariance properties

As stated in Section 5.2 above, the Riesz transform is equivariant to two types of transforma-
tions: translation and scaling. In this section, we show that the Riesz representation inherits
these equivariances. To prove this, it is enough to prove that the operator S is equivariant to
these transformations since the Riesz representation consists of applying this operator in se-
quence. The operator S consists of two types of transformations: a convolution with complex
base functions ψ and applying the pointwise amplitude operator A. By construction the base
functions preserve both types of equivariances. The amplitude operator A is a pointwise function
and hence preserves equivariance to scaling and translation. Next, we sketch the proof of the
last claim.

Theorem 4. Let A : L2(Rd,C) → L2(Rd) be a (continuous) pointwise operator that only depends
on the pixel values. Then A is equivariant to translation and scaling.

Proof. Being a pointwise operator formally means there exists a function F : C → R such that
for every x ∈ Rd it holds that A(f)(x) = F (f(x)). For a translation operator Tx0

: L2(Rd,C) →
L2(Rd,C) for x0 ∈ Rd defined as Tx0(f)(x) = f(x− x0), it follows

Tx0
(A(f))(x) = A(f)(x− x0) = F (f(x− x0)) = F (Tx0

(f)(x)) = A(Tx0
(f))(x).

For a scaling operator La : L2(Rd,C) → L2(Rd,C) where a > 0 defined as La(f)(x) = f(xa−1),
the proof is analogous:

La(A(f))(x) = A(f)(xa−1) = F (f(xa−1)) = F (La(f)(x)) = A(La(f))(x).

8.2.3 Pooling operations for scale and translation invariance

The output of the operator Φ from Equation (8.3) is a sequence of feature maps which have
the same size as the input image. Furthermore, the operator Φ is both scale and translation
equivariant. The goal is to use a pooling operation ρ : L2(Rd) → R that enables the transition
from equivariance to invariance (Section 4.2).

For that purpose, a global pooling operator ρ is applied to every feature map from Φ. A
global pooling operator is an operator which takes an image or feature map f ∈ L2(Rd) as an
input and computes a single summary statistic on the whole image, i.e. ρ : L2(Rd) → R. When
applied to an image, this pooling function ρ becomes a global operator over a bounded, discrete
domain.

In contrast, one can compute summary statistics on non-overlapping windows on the image,
e.g. Max Pooling in Appendix A. These pooling statistics depend on the position in the image
or local image structure. Hence, they are called localized or local pooling operators. These

150



operators only guarantee local invariance depending on the size of the window on which they
are calculated. The drawback with local pooling operators is that they are not comparable for
images of different sizes since the feature vectors after pooling have different sizes. Hence, we
focus on global pooling on bounded discrete domains D ⊂ Zd, only.

Standard choices for global pooling operators are average and maximum pooling. Average
pooling takes the mean value of the feature map. Hence, it is important that the aspect ratio
between the object and the background is fixed. On the other hand, max pooling takes the
maximal value of the feature map. Here, the requirement from average pooling does not need
to be fulfilled to achieve invariant features because it is based on recording the extreme values
rather than the average ones.

Standard choices for global pooling operators are average and maximum pooling. Average
pooling takes the mean value of the feature map. To obtain comparable values for different scales,
it is important that the ratio between the object and the background is fixed when altering the
scale. An alternative is global max pooling which reports the maximal value of the feature
map. However, in noisy conditions the extreme values are more sensitive to outliers compared to
the mean values. Furthermore, this operator does not guarantee nonexpansiveness of the Riesz
feature representation.

8.3 Experiments

Throughout this section, we use a Riesz feature representation with depth 3 based on a discrete
rotation group withM = 4 angles, if not specified otherwise. In this case, the output of the Riesz
feature representation for an image of arbitrary size consists of 85 features. The nonexpansiveness
constant C from Section 8.2.2 is set to 1, as justified later experimentally in Section 8.3.2.

8.3.1 MNIST Large Scale

MNIST Large Scale has already been used in Section 6.4 for the Riesz networks. See Figure 6.17
and Figure 6.18 for image examples.

Figure 8.2: Extracting the bounding box (right) from the input image (left). Input image is of size
112× 112, bounding box is of size 16× 24.

Why scale equivariance is not perfectly suited for this or similar problems?

Remember that scale equivariance implies that the Riesz transform commutes with the scaling
operator. In other words, it does not matter in which order we apply Riesz transform and scaling
operator to the image. In practice, however, the images under consideration have a bounded
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scale 0.5 0.595 0.707 0.841 1 1.189 1.414 1.682
FovAvg 17ch tr1 [99] 98.58 99.05 99.33 99.39 99.40 99.39 99.38 99.36
FovMax 17ch tr1 [99] 98.71 99.07 99.27 99.34 99.37 99.35 99.36 99.34

RieszNet [3] 96.34 97.59 98.06 98.54 98.58 98.50 98.45 98.40
RieszNet-pad40 [3] 96.34 97.55 98.07 98.47 98.63 98.58 98.53 98.44

ours-MLP 82.78 91.47 94.19 95.23 96.23 95.73 95.79 95.63
ours-SVM 82.36 91.29 93.86 94.83 95.74 95.19 95.13 95.04

scale 2 2.378 2.828 3.364 4 4.757 5.657 6.727 8
FovAvg 17ch tr1 [99] 99.35 99.31 99.22 99.12 98.94 98.47 96.20 89.17 71.31
FovMax 17ch tr1 99.33 99.35 99.34 99.35 99.34 99.27 97.88 92.76 79.23
RieszNet-pad [3] 98.39 98.24 98.01 97.51 96.42 93.50 81.58 67.66 51.82
RieszNet-pad40 [3] 98.46 98.39 98.34 98.29 98.16 97.80 96.82 93.75 83.6

ours-MLP 95.60 95.73 95.79 95.69 95.61 95.64 94.76 88.26 67.92
ours-SVM 95.08 95.02 95.01 94.97 95.05 95.03 94.00 86.19 63.96

Table 8.1: Classification accuracies (in %) for the MNIST Large Scale data set. Several methods
trained on the full training set (50,000 images) at scale 1. Best performing method bold. Accuracies for
FovAvg 17ch tr1 and FovMax 17ch tr1 are taken from [99].

domain. Hence, mean pooling as discussed above may be sensitive to changes of the size ratio
between object and background. Also, problems may arise when an object partially leaves the
image when upscaling. This problem is particularly relevant for non-local feature extractors such
as the Riesz transform. It is interesting to notice that neural networks might overcome this issue
through the training procedure as demonstrated for a trainable Riesz network [3] in Chapter 6.
However, Riesz scattering network uses global average pooling as a summary statistics which
makes it sensitive to this effect.

To deal with the changing size ratio between the object and the background, one can de-
termine the bounding box around the object of interest. Restriction to the bounding box will
preserve the size ratio between object and background. Note that in general, the bounding
box computation should be scale equivariant to preserve the same property of the Riesz feature
representation. Here, we design a simple scale equivariant four step bounding box algorithm:

1. normalize the image gray values with min-max normalization to be in the interval [0, 1],

2. pad the image with 50 zero pixels on each side,

3. threshold the image with t = 0.5, and

4. draw the bounding box on the binary image.

Finally, the bounding box is enlarged to capture black background by elongating the diagonals
by 40%. The bounding box is cropped from the image (Figure 8.2) and input to the Riesz feature
representation. Afterwards, the SVM classifier is trained on the output from the previous step.
The MLP model used for the comparison has roughly 30, 000 trainable parameters (see Table
8.4 ”MLP depth 3 angle 4”).

Multilayer perceptron (MLP) as classifier

A multilayer perceptron (MLP) is a fully connected feedforward neural network whose layers
consist of a fully connected layer (or 1d convolution), batch normalization, and non-linear acti-
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scale 0.5 0.595 0.707 0.841 1 1.189 1.414 1.6828
RieszNet train 1000 [3] 86.94 89.07 90.98 91.54 91.64 91.93 91.61 91.42
ours-MLP train 1000 70.72 80.65 84.38 87.13 89.00 87.21 87.53 87.26
ours-SVM train 1000 71.16 80.28 82.98 84.79 87.49 85.09 84.99 84.81
ours-SVM train 5000 78.02 86.97 89.81 91.20 92.26 91.48 91.31 91.11
ours-SVM train 20000 80.38 89.67 92.20 93.31 94.66 93.91 93.97 93.70
ours-SVM train 50000 82.36 91.29 93.86 94.83 95.74 95.19 95.13 95.04
ours-MLP train 50,000 82.78 91.47 94.19 95.23 96.23 95.73 95.79 95.63

scale 2 2.378 2.828 3.364 4 4.757 5.657 6.727 8
RieszNet train 1000 [3] 90.93 90.24 89.32 87.97 85.78 82.01 74.84 67.31 56.88
ours-MLP train 1000 87.48 87.28 87.27 87.33 87.27 86.98 86.14 78.00 59.79
ours-SVM train 1000 84.74 84.75 84.55 84.50 84.53 84.26 83.71 70.97 48.33
ours-SVM train 5000 91.38 91.18 91.12 91.18 91.14 91.01 90.15 78.23 53.04
ours-SVM train 20000 93.83 93.75 93.71 93.64 93.77 93.59 92.82 84.19 60.69
ours-SVM train 50000 95.08 95.02 95.01 94.97 95.05 95.03 94.00 86.19 63.96
ours-MLP train 50,000 95.60 95.73 95.79 95.69 95.61 95.64 94.76 88.26 67.92

Table 8.2: Classification accuracies (in %) for the MNIST Large Scale data set. Methods trained on a
reduced training set comprising 1, 000 images. Best performing method in bold. Training set scale is 1.
Note that [99] does not report the accuracies for FovAvg 17ch tr1 and FovMax 17ch tr1 on a training
set of size 1,000 images.

vation (ReLU). We explore the MLP as an alternative to the SVM and feed it with the output
of the Riesz representation.

Details on training: We apply the following hyperparameters: cross entropy loss, batch
size 50, Adam optimizer [119] with initial learning rate 0.001. Number of epochs and learning
rate decay are adapted to the size of the training set. For a training set of 1, 000 images, we use
75 epochs and step decay for which the learning rate halves every 10 epochs. For a training set
of 50, 000 images, we use 30 epochs and halve the learning rate every 4 epochs.

Comparison with state-of-the-art

The goal of this experiment is to validate scale equivariance properties of the Riesz representation
as well as to deduce how many training examples are needed to achieve decent performance. Table
8.1 shows a comparison of our method with state-of-the-art methods: RieszNet [3] from Section
6.4 and CNN on a rescaled version of the images [99]. Details on both methods can be found in
Section 6.4.

Generally, accuracies of our method are stable for scales in the range [0.707, 5.657] for both,
SVM and MLP. The MLP performs slightly better (around 1%) than the SVM. However, the
costs of training and parameter tuning for the MLP are higher. Both competing methods achieve
4− 5% higher accuracy than our Riesz representation baseline with SVM. However, this agrees
with similar experiments reported in the literature [137] when comparing scattering and deep
networks on large datasets.

Accuracies depending on the number of training images are reported in Table 8.2. Here,
only a comparison with RieszNet is available. Accuracy with SVM improves significantly as we
have more training examples (by 10% in accuracy for 1,000 vs 50,000 training examples) since
more training examples generally increase the diversity of handwriting styles for digits. However,
performance on the relatively small training set of 1,000 examples (100 training examples per
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class) is around 85% for SVM and stable for the scales in the range [0.707, 5.657]. When trained
on the same training set of size 1,000, MLP is better than SVM (87% vs 85%). Interestingly, MLP
outperforms RieszNet for scales larger than 4.757. This could be due to the window cropping
procedure.

Ablation study on Riesz representation using MLP classifier

We vary the fineness of discretization of the rotation group and the depth of the Riesz feature
representation to understand how to optimally balance Riesz feature representation size and
accuracy. The multilayer perceptron with 2 hidden layers each having 128 channels is used as a
classifier for every parameter configuration of the Riesz feature representation. We perform this
only on a subset of available scales {0.5, 1, 2, 4, 8} to reduce the runtimes. Results are shown in
Table 8.3. Details on architecture and the number of parameters are given in Table 8.4.

In the chosen architecture, the output of the Riesz feature representation is the first channel.
Therefore, the number of parameters of the MLP depends on the parameter configuration of the
Riesz feature representation. We use again the Riesz feature representation of depth 3 and with
4-angle rotation group as baseline. Results are reported using the full training set of 50, 000
images.

The increase in depth from 3 to 4 improves the results by not more than 1%, while the number
of parameters increases by a factor of 4. This indicates that the new features are non-informative
and redundant. Similar effects can be observed when enlarging the finite rotation group from 4
to 8 angles. Simultaneously reducing the depth to 2 yields results slightly worse (around 2%)
than those of the baseline while the number of features stays roughly the same: 85 vs 73. These
results indicate that for this problem between 70 and 100 features should be optimal.

MLP/scale 0.5 1 (t) 2 4 8
# training images depth # angles

1,000 3 4 70.72 89.00 87.48 87.30 59.79
1,000 4 4 68.40 90.85 90.39 90.29 49.60

50,000 2 8 79.45 94.08 93.64 93.64 67.08
50,000 3 4 82.78 96.23 95.60 95.61 67.92
50,000 3 8 83.64 96.77 96.42 96.48 73.77
50,000 4 4 80.23 96.83 96.48 96.50 64.16

Table 8.3: Results (accuracies in %) of the ablation study for the MLP on MNIST Large Scale. The
test set consists of 10,000 images per scale. Trained on scale 1.

architecture parameters
MLP depth 2 angle 8 73-128-128-10 27,786
MLP depth 3 angle 4 85-128-128-10 29,322
MLP depth 3 angle 8 585-128-128-10 93,322
MLP depth 4 angle 4 341-128-128-10 62,090

Table 8.4: Details of the applied MLPs with 2 hidden layers. Note that affine batch normalization was
used for the two hidden layers in MLP, which increases the number of trainable parameters.
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8.3.2 KTH-tips

KTH-tips [147, 148] consists of images of ten classes of textures under varying illumination,
orientation, and scale. Texture classes are real materials (sandpaper, crumpled aluminium foil,
styrofoam, sponge), fabrics like corduroy, linen, and cotton, and natural structures like brown
bread, orange peel, and cracker (Figure 8.3). Each class has 81 images split in 9 scales. We use
40 images for training and the rest for testing. In this dataset, textures fill the image window.
Moreover, textures are spatially homogeneous by nature. Thus, no bounding box is needed. A
particularly interesting aspect of this dataset is scale variation within every class due to the
varying viewing conditions, e.g. due to the changing distance between the camera and the object
(Figure 8.4).

As a baseline here, we use Bruna’s scattering network [114], implemented using Kymatio [149].
See Appendix G for more details on the baseline. As suggested by the authors, a depth of 2 is
used. We use the discrete rotation group withM = 4 (as for the Riesz feature representation), i.e.
filters are steered for the following angles {0, π4 ,

π
2 ,

3π
4 }. The maximal number of scales (J = 7)

is selected to achieve global translation invariance. The scattering network gives 365 features as
an output. For both representations, a PCA classifier with the first 20 principal components is
used.

PCA classifier

Here, we give details on PCA classification according to [150]. Let n ∈ N be the number
of training images per class, C ∈ N the number of classes, and let {I1, · · · , In} denote the
images belonging to class c. Let Ec(Φ) denote the expected value of the P -dimensional Riesz
feature representation for an image from class c. Practically, it is estimated by the mean of
{Φ(I1), · · · ,Φ(In)}. The goal of the PCA is to approximate the centered data Φ − Ec(Φ) on
class c by its projection to a lower (d-) dimensional space Vc for d << P . The subspace Vc is
then said to be spanned by d principal components. After computing Vc for every class c, the
projection errors when projecting a given input image I on each Vc can be calculated. The smaller
the projection error, the more likely is the image to belong to that class. Hence, a classification
rule can be easily derived: Let PVc be the projection operator for class c. The define the PCA
classifier kPCA for image I by

kPCA(I) = argmin
c

||Φ(I)− Ec(Φ)− PVc(Φ(I)− Ec(Φ))||2.

We used the PCA implementation sklearn [151] in Python.

Experimental analysis of nonexpansiveness (Experiment 0)

In Mallat’s work [134], nonexpansiveness together with decay of wavelets is a key to proving
Lipschitz continuity to small deformations (Appendix G). enerally, missing nonexpansiveness was
identified as the main reason why neural networks are sensitive to small deformations. However,
in many applications, the output of the feature representations is scaled prior to training the
classifier (e.g. SVM), or batch normalization is used. Feature scaling and batch normalization
distort the nonexpansiveness. Hence, even if a scattering network is used, one should be careful
in classifier design to preserve the nonexpansiveness of the scattering network.

Experimentally, we investigate how sensitive the performance of the Riesz feature represen-
tation is to changes in the nonexpansiveness constant C. For M = 4, C should be 1

4 to achieve
nonexpansiveness. For C < 1

4 , one has strict inequality for S, i.e. ||S(f) − S(g)|| < ||f − g||,
while for C > 1

4 , there exists a constant C1 = 4C > 1 s.t. ||S(f)− S(g)|| ≤ C1||f − g||. Hence,
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Figure 8.3: Sample classes in KTH-tips dataset.

Figure 8.4: Scale variation in KTH-tips dataset for aluminium foil sample.



C 0.125 0.25 0.5 1 2 4
ours 96.34 97.07 96.83 97.32 96.83 96.10

Table 8.5: (Experiment 0): Accuracy of our Riesz representation (in %) for scaling factor C on the
randomly split KTH-tips dataset.

for every C, the Riesz feature representation Φ(f − g) remains bounded by C1||f − g|| for some
constant C1 > 0. This is in contrast to feature scaling and batch normalization.

We found that the choice of C did not have a large effect on the classification accuracy on
the KTH-tips dataset (Table 8.5). Hence, in all experiments in the paper, we keep C fixed to 1.

seed 42 seed 21 seed 10 seed 5 seed 0 mean (std)
ours-PCA 97.32 94.39 94.88 95.12 96.34 95.61 (1.196)

Scattering-PCA 97.56 95.61 98.05 96.10 98.05 97.06 (1.133)

Table 8.6: (Experiment 1): Random splitting for 5 seeds: accuracy (in %). Our Riesz representation
has depth 3 and uses 4 angles, resulting in 85 features. The scattering network has depth 2 and uses 4
angles (in total 365 features).

Random splitting of the dataset (Experiment 1)

This experiment tests the general performance of the methods on this dataset, i.e. how expressive
features of two methods are in characterizing the textures. Following the commonly applied
approach, we split the dataset randomly into training and test sets without any regard for
orientation, scale, or illumination. We report the accuracy over 5 random splitting with seeds
in Table 8.6. The scattering network achieves slightly better results in this setting, but uses 4
times more features. However, random splitting of the dataset does not shed light on how useful
or robust the representation is under completely unseen conditions, e.g. scales.

Scale robustness for random splitting of the dataset (Experiment 2)

The goal of this experiment is to test robustness of our representation with respect to rescaling
of the image. For this purpose, images are scaled by factors from the range [0.5, 2] using spline
interpolation. Scaling imitates small camera movements.

Note that rescaling can destroy valuable texture information due to blurring or interpolation.
Hence, performance is expected to worsen as the rescaling factor deviates further from 1. For this
experiment, the Riesz feature representation does not require any adjustments since it works on
arbitrary image sizes. In contrast, the scattering network requires either cropping (for upscaling)
or reflective padding (for downscaling) to the fixed image size of 200 × 200. To analyze the
effect of cropping and padding on the performance of the method, we report the results for the
Riesz feature representation both on the same input images as for the scattering network (with
cropping/padding) and on the unchanged rescaled images (without cropping/padding).

For fixed seed, accuracy is shown in Table 8.7 where scale 1 refers to the original image without
rescaling. Here, we can notice that the Riesz feature representation without padding/cropping is
significantly more stable to the larger scale variations than the scattering network. Interestingly,
results for the Riesz feature representation with cropping (Table 8.7 top) are significantly better
than for the scattering network, while in the case of padding (Table 8.7 bottom) results are
comparable to those of the scattering network. This implies that the padding disrupts the
textural composition.
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scaling factor 1.05 1.1 1.15 1.25 1.5 2
ours PCA 96.34 96.59 96.34 96.34 96.10 96.10

ours PCA (cropping) 95.37 94.63 95.37 95.37 93.41 86.10
scattering PCA 97.56 96.34 95.37 94.15 81.95 65.37

scaling factor 0.5 0.75 0.85 0.9 0.95 1
ours PCA 82.44 95.37 95.85 97.07 96.58 97.32

ours PCA (padding) 67.56 89.02 94.15 94.88 94.39 97.32
scattering PCA 65.12 90.00 96.34 96.10 96.83 97.56

Table 8.7: (Experiment 2): Scale robustness for random splitting of the dataset: controlled scaling
of test set. Accuracy in %. The Riesz representation (ours) has depth 3 and uses 4 angles (in total 85
features). The scattering network has depth 2 and uses 4 angles (in total 365 features).

train-first 40 train-mid 40 train-last 40
ours-PCA 77.07 86.82 88.75

Scattering-PCA 55.61 79.02 62.25

Table 8.8: (Experiment 3): Scale dependent splitting: accuracy (in %). The Riesz representation
(ours) has depth 3 and uses 4 angles (in total 85 features). The scattering network has depth 2 and uses
4 angles (in total 365 features)

Scale robustness for scale dependent splitting of the dataset (Experiment 3)

Since scale information is known for this dataset, we can choose different scales for training
and test sets and test the scale generalization ability this way. We test the performance of the
methods on scales that are outside of the training set scale distribution. This is useful in settings
where we are not able to collect all possible scales in the training set. This experiment tests larger
scale variations than the previous one. Here, we conduct 3 experiments based on the selection
of scales in the training set. The 40 training images are selected from either the smallest, the
medium-sized or the largest scales in the dataset.

Scale variation for the aluminium foil class is shown in Figure 8.4. Results on the remainder of
the dataset for each training set splitting are shown in Table 8.8. The just described setting turns
out to be the hardest due to completely unseen scales in the testing set. The Riesz representation
reaches accuracies in the range [0.77, 0.88] which is an improvement over the scattering network
with accuracies in the range of 8− 25% depending on the scenario.

8.4 Discussion

The Riesz feature representation is a hand-crafted feature extractor based on stacking quadrature
filters using first and second order Riesz transforms in a hierarchy. This representation creates
features that are scale and translation equivariant and treats scale dimension continuously, i.e.
it avoids sampling or discretization of the scale dimension.

As a result, the number of features is significantly reduced compared to other representations
such as scattering networks. Our representation contains only 85 features, which is a reduction
by factor 4 compared to the corresponding scattering representation.

A consequence of scale equivariance is the generalization to unseen scales. We show this
empirically on the MNIST Large Scale dataset by training an SVM classifier on the Riesz feature
representation on a fixed scale, and testing on unseen scales that differ significantly from the one
in the training set. Moreover, our representation proves to be useful for texture classification on
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the KTH-tips dataset with a small training set. When including all scales in the training set,
the Riesz feature representation yields results comparable to those of the scattering network.
However, when splitting training and testing set along scales, the Riesz feature representation
turns out to be more robust.

Important benefits of scattering networks are that they avoid the time-consuming training
process and parameter tuning as needed for CNNs and work well even for small training sets.
Only 40 and 500 training images per class were needed for KTH-tips and MNIST Large Scale,
respectively, to achieve accuracies over 0.9. The most important benefit of using the Riesz
transform is however that robustness to scale variations is ensured without additional training.

All types of scattering networks including our approach rely on using only the amplitude to
design feature representations, i.e. the phase is completely discarded. In one of the first works
on scattering networks [114] it was argued that phase can be reconstructed from amplitude
information by solving the so-called phase recovery problem [152]. However, phase recovery is a
non-convex optimization problem. Hence, the question remains open, how to utilize the phase
information in the framework of scattering networks and whether that would result in improved
capabilities of this class of methods.

The main challenge in applying the Riesz feature representation to a wider range of problems
(e.g. object detection) is to devise a scale equivariant bounding box algorithm. This is required
for images with complex scenes which contain several objects belonging to different classes. A
scale equivariant bounding box algorithm is hence subject of future work.

Finally, naturally, our representation can be used to create hybrid trainable representations
by combining them with building blocks of deep neural networks, see e.g. [141, 139, 140].
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Conclusion

This thesis deals with the design of methods for image analysis that satisfy the basic properties of
human vision: translation, rotation, and scale invariance. These refer to the analysis of objects in
the image independent of their position, orientation, and size relative to the observer or camera.
Since it is easier to impose translation invariance than the remaining two, this thesis focuses on
rotation (Part I) and scale (Part II) invariance separately.

Another important aspect of the thesis is a practical one. All the methods in the thesis were
designed with a clear application in mind as demonstrated throughout the thesis. Engineering
materials in combination with computed tomography (CT) offer endless possibilities to analyze
oriented structures regardless of their orientation and size. Hence, the mulitdisciplinary aspect
between mathematics and engineering science, e.g. civil engineering and materials science is very
prominent.

Part I of the thesis deals with orientation independent filtering for various materials in 3d. The
main goal is to design computationally affordable but robust methods for 3d. Since orientation
space in 3d is harder to finely cover or sample in a reasonable time, we focused on a subset of
the orientation space based on the orientation estimation from local image information. Hence,
we designed 3d adaptive morphology and local shape operator to denoise lower dimensional
oriented structures and distinguish them based on their shape/dimensionality. Later, we extend
our method to 3d adaptive line granulometry for quantifying number weighted fiber length and
orientation distribution from voxelwise measurements.

The main result of Part II is a scale invariant neural network called Riesz network for the
segmentation of cracks in CT images of concrete. The Riesz network uses scale equivariant
layers based on the Riesz transform to achieve generalization to the scales far outside of the scale
distribution on which it was trained. This is shown practically by training a Riesz network on
crack widths 3 and 5 (in pixels) and validated by segmenting cracks of more than 20 pixels width.
All this can be achieved without sampling the scale dimension. These abilities make the method
very attractive and unique in the field of deep learning. The Riesz transform has other useful
properties related to signal decomposition and energy preservation. Hence, it is used to construct
the first scale equivariant scattering network called Riesz feature representation. This type of
non-trainable network works with very few training examples and achieves superior performance
to scale variations than the original scattering network.

This thesis covers a wide range of topics, but many ideas introduced here open up space for
further extensions and improvements. For example, orientation and scale invariance have been
introduced separately in two different methods. A more general aim would be to design a single
method that is both scale and orientation invariant. If additionally, it was translation invariant,
it would reflect all the basic properties of human vision. Preliminary work on this in a classical
manner interestingly already exists [78] through the combination of second order Riesz trans-
form and Frangi filter, but somehow significance of this work remained sidelined in the general
image processing community. The development of alternatives to this remains a goal for future
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research. This would be an ideal solution for training deep models for a crack segmentation task
in 3d CT images since it would require training data to cover only a few scales and orientations
in order to achieve invariance over full scale and orientation dimensions.
Furthermore, our methods in Part I are based on orientation estimation from local image struc-
ture. However, the question of the optimal orientation estimator and how to design it was not
studied in this thesis, both generally and in the context of our method. A general study on this
already exists [7]. An interesting question related to our method is if it is possible to mathe-
matically determine the optimal size of the search cone δmax based on the level of noise that is
present in the image. In the case of the Hessian matrix, this is related to the robustness of the
calculation of the eigenvector with respect to various types and amounts of noise.
Another aspect is that while theoretical scale equivariance can be shown to hold for Riesz net-
works in Part II, it is not clear how effective it would be in other applications other than CT
image, e.g. large visual databases such ImageNet. This is also due to the lack of datasets (and
their quality) on which scale equvariance of the methods can be experimentally evaluated. How-
ever, small steps in the right direction are on the horizon [153]. Furthermore, the thesis does not
answer the question of whether the Riesz transform is the only suitable or even optimal scale
equivariant feature extractor that can be elegantly embedded in deep networks. Nevertheless,
according to the author’s belief applications of the Riesz transform in this thesis open up many
interesting research paths and possibilities that the wider research community could benefit from.
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Appendix

A Definition of the basic building blocks in deep learning

The basic idea behind neural networks can be summarized in a quote from [154]: “A motivation
for the family of functions defined by multi-layer neural networks is to compose simple trans-
formations in order to obtain highly non-linear ones.” This book [154] also covers the basic
definitions of these simple building blocks. We here aim to give more rigorous definitions.

Convolution operator on a single channel: Generally, the convolution operator combines
two functions: the input function with the weighting function or kernel. For point x ∈ Rd

in the domain, the weighting function gives weight to f(y) for every point y ∈ Rd based on
its relative position to x. It is useful for extracting linear features. The convolution operator

∗ : RRd × RRd → RRd is defined as

(f ∗ g)(x) =
∫
Rd
f(u)g(x− u)du =

∫
Rd
f(x− u)g(u)du.

Discrete convolution operator on a single channel: Images are discretized versions of
reality. Hence, their domain is a subset of Z2. For that reason, the convolution operator needs
to be discretized for x ∈ Zd

(f ∗ g)(x) =
∑
k∈Zd

f(k)g(x− k) =
∑
k∈Zd

f(x− k)g(k).

Machine and deep learning models are based on learning the kernel function g through the
optimization algorithm to achieve the optimal feature representation. This step is also known as
training

1d convolution: 1d convolution is also known as a fully connected layer or 1× 1 convolution
and it is calculated as a scalar product operator across multiple channels without any spatial av-
eraging. Neural networks extract several feature maps from a single input image. 1d convolution
combines information across channels creating more complex features. Formally, let ninput ∈ N
be a number of input channels, then ϕconv1d : (RZd)ninput × Rninput → RZd is defined using a
weight vector w = (w1, · · · , wninput) ∈ Rninput

ϕconv1d(f, w)(x) = ⟨f(x, ·), w⟩ = wT f(x, ·) =
ninput∑
k=1

f(x, k)w(k).

The weight vector w serves as degrees of freedom or trainable parameters which will be inferred
during the training process. From the equation from above, the name 1d convolution may be
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misleading. However, this operator can be written as the sum of the convolutional operators

with a fixed function g ∈ RZd across channel dimension, where g(x) = 10(x) i.e. g(0) = 1 and
g(x) = 0 if x ̸= 1:

ϕconv1d(f, w)(x) = ⟨(f ∗ 10)(x, ·), w⟩ = wT
(
(f ∗ 10)(x, ·)

)
=

ninput∑
k=1

(
w(k)

∑
y∈Zd

f(y, k)10(x− y)
)
.

For this reason, this is a special case of the generalization of the discrete convolutional operator
from a single channel (ninput = 1) to multiple channels (ninput > 1).
Generally, the output of the transformation is not a single channel but rather many channels,
i.e. noutput ∈ N channels. In this case the vector w becomes a matrix W ∈ Rninput×noutput

and the scalar product is replaced with matrix-vector multiplication. Formally, the whole mul-

tichannel 1d convolution can be elegantly defined through the operator ϕmulti
conv1d : (RZd)ninput ×

(Rninput×noutput) → (RZd)noutput

ϕmulti
conv1d(f,W )(x) =WT

(
(f ∗ 10)(x, ·)

)
.

2d/3d convolution: 2d/3d convolution extends 1d convolutions to the spatial domain Zd.
This is useful for learning kernels for feature extractions. Learned kernels replace hand-crafted
features and outperform them. Formally, let ninput, noutput ∈ N be the number of the input

and the output channels, respectively, and let Hl = [− (l−1)
2 , (l−1)

2 ]d ⊂ Zd be a square window

of edge length l centered at 0. Then, for point x ∈ Zd the operator ϕconv2d : (RZd)ninput ×
(Rninput×noutput)Z

d → (RZd)noutput can be defined as a sum of 1d convolutions on the square
window x+Hl = {x+ y|y ∈ Hl} with edge length l ∈ N centered at x.

ϕconv2d(f,W )(x) =
∑
y∈Hl

ϕmulti
conv1d(f,W (y))(x− y) =

∑
y∈Hl

W (y)T
(
(f ∗ 10)(x− y, ·)

)
.

Here, W ∈ (Rninput×noutput)Z
d

gets an additional spatial dimension based on the size of the
square window l and consequently the number of parameters increases proportionally to l.
2d/3d convolutions are not well defined at the edge pixels of the images. Therefore, either
convolutions are not applied to edge pixels reducing the image size by l − 1 or either null or
reflective padding can be applied to preserve the original input image dimensions.
2d/3d convolutions are usually defined as local operators on window sizes 3 × 3 or 5 × 5 in 2d,
and on window size 3× 3× 3 or 5× 5× 5 in 3d. The reason for this is to extract local features
and to keep the number of parameters as low as possible. One can extend the size of windows
and learn non-local features by cascading 2d/3d convolutions in sequences. An example of this
is shown in Figure 5. Here, five 3×3 convolutions are needed to cover the window of size 11×11
which results in 5 · 3 · 3 = 45 parameters. If we decide for simple 11 × 11 convolution, it would
contain in total 121 parameters, which is more than two times more than in the first case. By
combining 3 × 3 with max pooling and downsampling one could further reduce the number of
2d convolutions to reach this window size and consequently the number of parameters (see next
paragraph). This gives a motivation why very local 3 × 3 or 5 × 5 convolutions are used in
practice.
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Figure 5: Number of cascaded 3× 3 convolutions needed to reach a point on the 21× 21 grid from the
center point (11, 11).

Figure 6: Number of cascaded 3×3 convolutions with 2×2 max pooling needed to reach a point on the
21× 21 grid from the center point (11, 11). Number (e.g. 1,2) refers to the number of 2d convolutions,
while ”m” refers to the max pooling in the same cascade. Convolution 2 (3× 3 in the cascade has reach
of 5 pixels in the input feature map because of the downsampled version of the feature map after max
pooling.

Max Pooling: Similarly as for 2d/3d convolutions, max pooling is usually defined on some
local neighbourhood of the point, usually on the square of edge length l ∈ N. Max pooling

ϕmaxpool : N× (R)Zd × Zd → (R)Zd is defined

ϕmaxpool(l, f, x) = max
j=(j1,··· ,jd),|j1|,··· ,|jd|≤ l−1

2

f(x+ j).

Pooling operators establish invariance to local translations (up to l ∈ N pixels) in the feature
maps. For this reason, in practice max pooling is applied on non-overlapping windows reducing
effectively the size of the feature maps by the factor of local translation invariance l.
Combining 2d convolutions with non-overlapping max pooling and cascading them increases the
size of covered windows even more than only cascading 2d convolutions. This further reduces
the number of parameters. An example is shown in Figure 6. In this case, only 2 steps of 2d
convolution and max pooling are needed to cover the window of size of 12×12. Hence, even fewer
parameters are required here: 2 ·3 ·3 = 18 parameters originating from only two 2d convolutions.
This is further parameter reduction from 45 parameters in Figure 6.

Rectifier or rectified linear unit or ReLU: ReLU is a pointwise nonlinear operator. For
a ∈ R it is defined as function ϕrelu : R → R

ϕrelu(a) = max(a, 0).

ReLU can be interpreted as an activation function, i.e. it is activated only for the positive inputs
while it is deactivated for the negative ones enabling sparse feature representation.
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Sigmoid function: For a ∈ R, sigmoid function ϕsigmoid : R → R

ϕsigmoid(a) =
1

1 + e−a
.

It is usually used as a final nonlinearity in two-class classification problems and it can be inter-
preted as a probability of the input belonging to the first class.

Softmax function: For a = (a1, · · · ad) ∈ Rd it is defined as a function ϕsoftmax : Rd → Rd

ϕsoftmax(a) = (
ea1∑d
j=1 e

aj
, · · · , ead∑d

j=1 e
aj
) ∈ Rd.

In contrast to ReLU, the softmax function is not a pointwise operator and it can be considered
as a probability distribution or scores over a finite set of outcomes. Softmax is usually used as
a final nonlinearity in multiclass classification problems to extract a probability per class.

Batch normalization [118]: During training, the training set is usually randomly split into
batches, i.e. smaller subsets of the training set on which the back-propagation algorithm is
applied. Batch normalization works on the single batch of the training set {f1, · · · , fn} and
represents a very important regularization technique which contributes to the stability and con-
vergence of the training process. Formally, it can be defined as a pointwise operator ϕbatchnorm :

RZd → RZd

ϕbatchnorm(fi)(x) =
fi(x)− E[f ]√

V ar[f ]
,

where E[f ] and V ar[f ] represent the expected value and variance of the feature map set {f1, · · · , fn},
respectively, and are in practice estimated by the sample mean or variance. Alternatively, it can
be more robustly estimated as a weighted average between the previous estimate and the new
batch mean or variance with some momentum mom ∈ ⟨0, 1⟩. For example, let µk−1 be the mean
estimate from the previous step and µ+

k the mean from the current batch, E[f ] is estimated by
µk with

µk = (1−mom) · µk +mom · µ+
k .

There is a possible improvement in the batch normalization by introducing trainable parameters

β, γ ∈ R resulting in a similar operator ϕ+batchnorm : RZd → RZd

ϕ+batchnorm(fi)(x) = γ
fi(x)− E[f ]√

V ar[f ]
+ β.
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B Additional experiments on scale selection for competing
methods related to Riesz network

The largest benefit of the Riesz network is avoiding the sampling of the scale dimension. Here, we
give more detailed insight into scale sampling in practice for competing methods: U-net applied
on rescaled images and Gaussian derivative networks. We show how segmentation results change
as we add additional scales to the output. As we add new scales, cracks that belong (or are
close) to the added scales get segmented. However, additional noise gets segmented, too. These
noise pixels that are misclassified as cracks originate from two sources: interpolation error and
high frequency information characteristic for CT imaging. For simulated data this is shown in
Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11. For real cracks this is shown in Figure 15.

The main drawback is that one needs to select the range of scales on which to apply these
methods. Since the scale dimension in the images is bounded from above by the size of the view
window, when having images of different sizes scale sampling needs to be adjusted or recalibrated.
It is not trivial how to achieve this in a general manner. In contrast, the Riesz transform enables
simultaneous, continuous, and equal treatment of all scales automatically adapting to the image
size.
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Figure 7: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 8: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 9: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 10: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 11: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 12: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 13: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 14: Experiment 2. Cracks with varying width. First row: input image and ground truth image.
Second row: U-net applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Third row:
U-net-mix applied to several levels of pyramids {1, 2, 3, 4} (from left to right). Fourth row: Gaussian
derivative networks aggregated on growing subsets of scale set {1.5, 3, 6, 12} (from left to right). Image
size 400× 400 pixels.
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Figure 15: Experiment 3. Real cracks in concrete: slice from input CT image, results of the Riesz
network and of U-net and U-net-mix with ranging pyramid levels (from 1 to 4). Image sizes are 832×1 088
(1st row) and 544× 992 (4th row).



C Details on Hessian-based percolation and 3d U-net

Hessian-based percolation Hessian-based percolation [44] is a two-step algorithm. In the
first step, candidate crack voxels are selected from the Frangi filter [33]. Frangi filter calculates
the shape statistics from eigenvalues of the Hessian matrix in every voxel of the image. These
shape statistics based on eigenvalues can be designed to produce a high response in dark, planar
regions in the image. To obtain the candidates, we apply hysteresis thresholding (t1 ≥ t2) to
the filter values. This means that the connected component from the foreground voxels for the
threshold t2 is reconstructed if at least one voxel from the foreground voxels for the threshold t1
belongs to that connected component. The Frangi filter [33] for our use-case is defined as follows.
LetH(p, σ) = (hi,j)

3
i,j=1 and hi,j(p) = (I∗ ∂

∂xi
∂

∂xj
gσ)(p) be the Hessian matrix of image I at voxel

p, where gσ is standard Gaussian kernel with σ > 0. Further let |λ1(p, σ)| ≤ |λ2(p, σ)| ≤ |λ3(p, σ)|
be the eigenvalues of H(p, σ). For each voxel p let

E(p, σ) =

 exp(−Q2
A(p, σ)/α) exp(−Q2

B(p, σ)/β)(1− exp(−R2(p, σ)/ησ)), λ3(p, σ) > 0 , λ2(p, σ) ̸= 0
exp(−Q2

A(p, σ)/α)(1− exp(−R2(p, σ)/ησ)), λ3(p, σ) > 0 , λ2(p, σ) = 0
0, else

(4)
with

QA(p, σ) =
|λ2(p, σ)|
|λ3(p, σ)|

, QB(p, σ) =
|λ1(p, σ)|√

|λ2(p, σ)||λ3(p, σ)|
, R(p, σ) =

√√√√ 3∑
i=1

λi(p, σ)2,

and weighting parameters α, β, ησ > 0. It is often recommended [33] to choose α = β = 0.5,
independently of the image content and the choice of σ. The parameter ησ depends on scale by
setting ησ = 2(maxpR(p, σ))

2. To account for multiple scales, the Frangi filter is defined as

F (p) = max
σmin≤σ≤σmax

E(p, σ), p ∈ I, (5)

where 0.5 ≤ σmin ≤ σmax ∈ R are an upper and a lower bound of scale space which is in practice
sampled, i.e. E(p, σ) is calculated only for the finitely many scales in the interval [σmin, σmax].
The values of F (p) lie in [0, 1). The higher F (p), the more likely p belongs to a crack structure.
We consider voxel p to be part of the preselection set HF if F (p) ≥ t0 for some threshold t0 ∈ R.

In the second step, a region-growing process is started in each preselected voxel. The resulting
region is then considered to be part of a crack if its shape matches a fixed shape criterion. Denote
the set of candidate voxels by HF and the input image by I. The iterative region-growing
algorithm consists of the following steps:

1. For p ∈ HF initialize the percolated region as P = {p} and set t = I(p)+ε for a predefined,
real-valued ε.

2. Add all neighbors q of P to P that satisfy I(q) ≤ t.

3. Set t = max (maxq∈P I(q), t) + ε.

4. Repeat 2 and 3 until the region P comes in contact with the boundary of a cubic window
of predefined size (2W + 1)3, W ∈ N, centered at p.

5. Compute the shape criterion

F3D = |P ∩HF |/|P | ∈ [0, 1].

If F3D ≥ f for some predefined f > 0, every voxel in P is considered to be part of the
crack structure.
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6. Repeat 1-5 for every voxel p ∈ HF . Voxels that have been detected less often than a
predefined threshold t̃ ∈ N are not considered to be part of the crack structure.

The percolation step serves as a post-processing step which could remove noisy misclassified
voxels and improve connectivity in the crack structure.

3d U-net The deep learning neural network which was extensively tested for crack segmenta-
tion in 3d CT images is the 3d U-Net [129]. The model consists of a contracting path (encoder),
which contracts the input image, and the extracting path (decoder), responsible for expanding
the image. The depth of the 3d U-Net is three which means it consists of three convolution
blocks in the contracting path (16, 32, and 64 filters), one bottleneck (128 filters), and three
convolution blocks in the extracting path (64, 32, and 16 filters).

The convolution block of the contracting path consists of two 3d convolutions of kernel size
three, each followed by a batch normalization and a rectified linear unit (ReLU) activation. In
the next step we apply a max pooling layer with stride two for downsampling. In the expansive
path, we use a 3d transposed convolution of kernel size three for upsampling at the beginning
of each step. The transposed convolution is followed by a concatenation with the corresponding
cropped feature map from the contracting path.

Due to the memory restrictions, the U-net is applied to image patches of size 643. Images are
thus tiled into patches of this size. To reduce possible edge effects, patches overlap by 14 voxels.
Training data is augmented with rotation, flip and downscaling (zoom 0.5 and 0.25) operations
to ensure robustness. In total, the U-net was trained on 3 456 images for 20 epochs with batch
size 2. The Adam optimization algorithm [119] was used with a learning rate of 0.001 which is
cut in half every 5 epochs.

The cracks observed in the CT data are partially much thicker than five voxels. Hence, scales
covered by the U-net are limited by the crack widths in the training set (crack width 1,3, and
5). To take this into account, we use a multi-scale approach. That means, the prediction of the
network is computed on the original image as well as on images downscaled by factors 0.5 and
0.25. In this way, crack widths covered by this U-net with a multiscale adjustment range from
1 to 4× 5 = 20 voxels. Predictions for downscaled images are then upscaled to the original size
for all images. The final prediction is derived from the voxelwise maximum, thresholded at 0.5.

Parameter configurations Parameter configurations for every dataset used in this thesis are
discussed in each publication separately [100, 124, 126].
Specifically, for Section 7.4.1 one should refer to [100]. For Section 7.4.2 details can be found in
[126], while [124] discussed the parameter configuration for Section 7.4.3.

D Quality measures for evaluation of segmentation results

To evaluate the goodness of the methods, we compare their outputs with the respective ground
truths voxelwise. Outputs and ground truths are binary images. Hence, quality metrics can be
defined based on the number tp (true positive) of correctly predicted crack voxels, the number
tn (true negative) of correctly predicted background voxels, the number fp (false positive) of
falsely predicted crack voxels, and the number fn (false negative) of falsely predicted background
voxels. Formally, let X : D → {0, 1} be the prediction image and Y : D → {0, 1} the ground
truth image. Then, these metrics are defined

tp := tp(X,Y ) =
∑
p

1X(p)=Y (p)=1, tn := tn(X,Y ) =
∑
p

1X(p)=Y (p)=0
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fp := fp(X,Y ) =
∑
p

1X(p)=1,Y (p)=0, fn := fn(X,Y ) =
∑
p

1X(p)=0,Y (p)=1

Precision (P), recall (R) and F1-score (F1) are defined as

P (X,Y ) =
tp

tp+ fp
, R(X,Y ) =

tp

tp+ fn
,

F1(X,Y ) =
2PR

P +R
.

where the F1-score is the weighted average of precision and recall.
Precision provides information on what proportion of voxels classified as positive is indeed

positive. Recall measures the fraction of positive voxels that are classified correctly. In general,
precision is a good measure when fp or oversegmentation should be penalized more while recall
puts more weight on fn or missing out on segmenting the crack. The F1-score is used when a
balance between precision and recall is pursued. In particular, it is a suitable overall measure
when dealing with class imbalance. Note that alternative measures, as for instance the accuracy,
may be less meaningful due to the high percentage of background voxels.

For segmentation tasks, it is not unusual to introduce a certain voxel tolerance tol. That
means: A true crack voxel is considered tp in the output if its distance to the positives is less
or equal tol. Otherwise, it is considered fn. A predicted crack voxel is only counted as fp if its
distance to the true crack voxels is larger than tol. Tolerance penalizes more misclassifications
far from the crack than the ones in the approximate vicinity.

Intersection over Union (IoU) compares the union and intersection of the foregrounds X and
Y in the segmented image and the corresponding ground truth, respectively. That is

IoU(X,Y ) =
|X ∩ Y |
|X ∪ Y |

.

All these metrics have values in the range [0, 1] with values closer to 1 indicating better perfor-
mance.

E Fourier transform and related results

The Fourier transform decomposes a function in the time domain to frequency components. This
can be seen as a switch of bases or representations from time-localized functions to frequency-
localized functions. To do this the Fourier transform uses complex sinusoidal functions. The
output of the Fourier transform is a complex-valued function. If a certain frequency is not
presented in the signal, the Fourier transform at that frequency equals 0. The Fourier transform
is an invertible transform, i.e. one can go back from the frequency or Fourier domain to the
time domain without any loss of information. The uncertainty principle states the connection
between frequency and time representation of the function: functions that are localized in the
time domain are spread out across the frequency domain and the other way around.

The Fourier transform is originally derived for 1d signals. However, extension to higher
dimensions is analogous. For higher dimension time domain is more often called the spatial
domain. Here, we give a definition of Fourier transform F for a d-dimensional real function
f : Rd → R, which represents images that are objects of interest in this thesis. Here, x =
(x1, · · · , xd) is a point in the spatial domain, while ω = (ω1, · · · , ωd) denotes a point in the
frequency domain. Now, the Fourier transform (FT) F of f ∈ L2(Rd) can be defined as

f̂(ω) := F(f)(ω) =

∫
Rd
f(x)ei⟨ω,x⟩dx.
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Here, ⟨ω, x⟩ :=
∑d

k=1 xiωi is a standard scalar product in Rd. Inverse Fourier transform F−1 is
defined as

f(x) = F−1(f̂)(x) =

∫
Rd
f̂(x)e−i⟨ω,x⟩dω.

Next, we give results based on the Fourier transform that are essential to understanding
the content of this thesis. Linearity of the Fourier transform means that for any α, β ∈ C and
f, g ∈ L2(Rd) it holds

F(αf + βg)(ω) = αF(f)(ω) + βF(g)(ω).

Linearity combined with the inverse Fourier transform F−1 implies that

f = g ⇐⇒ F(f) = F(g).

The rescaling operation with real factor a > 0 is interesting for us in the context of the Riesz
transform and scale equivariance. There exists a useful result on this in the Fourier domain

F(f(a·))(ω) = 1

ad
F(f)(

ω

a
).

The result on the Fourier transform with respect to differentiation of f ∈ L2(Rd) with continuous
derivatives in the spatial domain is given as

F(
∂

∂xk
f)(ω) = i2πωkF(f)(ω).

The Plancherel theorem is relevant to Chapter 8 and the energy preservation of the Riesz feature
representation.

Theorem 5. Parseval’s formula and Plancherel theorem: For f, g ∈ L2(Rd) square
integrable functions, Parseval’s formula holds

⟨f, g⟩L2(Rd) =

∫
Rd
f(x)g(x)dx =

∫
Rd
f̂(ω)ĝ(ω)dω,

where g denotes the complex conjugate of g. Then Plancherel theorem is only the consequence of
Parseval’s formula

||f ||2L2(Rd) =

∫
Rd

|f(x)|2dx =

∫
Rd

|f̂(ω)|2dω.

An important result on the Fourier transform and convolution is given in the following theo-
rem.

Theorem 6. Convolution theorem: Convolution of two integrable functions in the spatial
domain becomes multiplication in the Fourier domain. The reverse holds as well: multiplication
of two integrable functions in the spatial domain becomes convolution in the Fourier domain.
Formally, for f, g ∈ L2(Rd) integrable functions, the following results hold

F(f ∗ g)(ω) = F(f)(ω)F(g)(ω)

and
F(fg)(ω) = F(f)(ω) ∗ F(g)(ω).

This theorem is a key result for the implementation of the Riesz transform.
In this appendix we described results for functions on the continuous domain Rd. Proofs of

the claims in this thesis are also based on the continuous domain. In practice, images are defined
on the discrete compact domain. For this purpose, there exists the discrete Fourier transform
(DFT). All of these properties have their counterparts in the discrete domain.
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F Basics on quadrature filters

Quadrature filters in 1d: Quadrature filters are used to estimate and analyze structural
characteristics of the images such as phase, frequency, or amplitude, see [135] for an overview on
this topic. Since the estimation of these characteristics is intrisically noisy, different quadrature
filters exist. The goal with quadrature filters is to extract localized features. That is why the
analytic signal (Section 4.3.1) which is defined on the whole spatial and frequency domain, is not
used. Alternatively, the analytic signal can be applied on the band-pass filtered version of the
signal which does not alter the phase. This implies that the real part of this type of quadrature
filter has to be an even filter, while the imaginary part is an odd filter. To summarize, the basic
idea behind quadrature filters is to extract the amplitude and phase of the signal for a limited
frequency range using analogous formulas as in Section 4.3.1.
An important example of quadrature filters constructed from the analytic signal is Gabor filters

gx0,ω0
(x) = g(x− x0)e

iω0x.

The Gabor filter is also known as Short Time Fourier Transform (STFT) or windowed Fourier
transform. Here, x0 refers to the point in the time domain, while ω0 is a selected frequency. At
this time-frequency pair (x0, ω0) we aim at measuring local image characteristics. The function
g is called window function and it is usually chosen as a Gaussian filter. In that case, the Gabor
filter corresponds to the Morlet wavelet from Appendix G up to an additive real constant β.
One of the drawbacks is that the Gabor filter has infinite support despite being well-localized4.
Furthermore, since the cosine component does not integrate to 0, it is not invariant to constant
shifts in gray values. Other well-known examples of quadrature filters constructed from the
analytic signal are log-Gabor filters, Gaussian derivative filters, or Cauchy filters, etc.

Alternatively, one can observe that the even (odd) part of Gabor and other filters resembles
the shape of the second (first) order derivative, respectively. These derivatives are often inter-
preted as line (edge) detectors. Hence, in the literature [135] there also exist quadrature filters
based on the criteria for designing optimal edge and line detectors [155]. One example here is
the Deriche filter [156], where the even filter is a line detector, while the odd filter is an edge
detector.

Quadrature filters in higher dimensions: First attempts to design quadrature filters in
higher dimensions (e.g. 2d or 3d) are related to the directional Hilbert transform5 [157] Hv(f)
and straightforward extension of the analytic signal (Section 4.3.1) to 2d as complex function
f+iHv(f). Afterwards, the monogenic signal [71] extended the analytic signal and 1d quadrature
filters to higher dimensions in an isotropic manner. The monogenic signal replaces the scalar-
valued odd filter Hv(f) (as in 1d case) with a vector-valued one (R1(f),R2(f)) based on the
Riesz transform achieving an isotropic extension.

Relation of the filter from Section 8.2.1 to quadrature filters: Our base filter from Sec-
tion 8.2.1 can be seen as (anisotropic) higher dimensional quadrature filter [157] corresponding
to the alternative characterization of quadrature filters as edge/line detectors. This is a conse-
quence of its differential interpretation (Section 5.2). Furthermore, our base filter is invariant to
the constant shifts in the gray values due to zero integral (Lemma 8). However, our filter has
infinite support and is non-local due to the property of scale equivariance.

4Infinite support is a consequence of eiω0x = sin(ω0x) + i cos(ω0x), i.e. due to the periodicity of sine and
cosine functions. Well-localized means that for x s.t. ||x− x0|| is large, the Gabor filter at x is approximately 0.

5Directional Hilbert transform Hv(f) is defined in Section 5.2 for v ∈ R2, ||v|| = 1.
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From the properties of the Riesz transform, our steered base filter can be used to extract sig-
nal characteristics for the signals that are oriented in the same (or close) to the orientation of
the steered base filter. Steering base functions enable handling feature extraction for higher
dimensional signals without a single preferred or dominant orientation.

G Introduction to scattering networks

Scattering networks are based on applying the wavelet transform and modulus non-linearity
in a hierarchy creating a deep feature representation. Features from every level of the hierar-
chy are used to construct a group invariant representation by a local pooling operation on the
group domain. Here, we give an overview of the locally translation invariant scattering network
from [114].

First, the Morlet mother wavelet ψM (x) : R2 → C is defined as an oriented bandpass complex
function

ψM (x) = α(ei⟨x,ξ⟩ − β)e−|x|2/(2σ2).

The parameter ξ ∈ R2, ||ξ||2 = 1 defines the orientation of the wavelet, while σ controls its scale.
Furthermore, β << 1 is chosen such that

∫
ψM (x)dx = 0. The mother wavelet is rotated by

r ∈ SO(2) and scaled (dilated) by 2j , j ∈ Z, to create diverse features:

ψλ(x) = 2−2jψM (2−jr−1x),

for λ = 2−jr.
From now on, let P = {2jr | j ∈ {1, · · · , J}, r ∈ GM} denote the space of all selected scale

and rotation transformations6 of the wavelet ψM . Next, non-linearity is needed to construct a
(non-trivial) translation invariant representation7 due to

∫
ψM (x)dx = 0, see [114] for details.

We select the modulus of the complex number

A(yr + iyi) =
√
y2r + y2i ,

as it is a pointwise nonexpansive non-linearity operator which preserves signal energy. For an
image f ∈ L2(R2), features at depth 1 for rotation and scale λ = 2jr ∈ P are extracted using
the scattering transform operator Uλ : L2(R2) → L2(R2)

Uλf = A(f ∗ ψλ).

The output of this scattering transform is called a scattering coefficient. To create a
hierarchy of scattering coefficients, scattering transforms are applied to the scattering coefficients
from the previous step. We refer to these as higher order scattering coefficients. Generally, for
depth m we apply the scattering transform m times sequentially. This operator is defined by a
sequence p = (λ1, · · · , λm) ∈ Pm of m scales and rotations via

Upf = Uλm · · ·Uλ1
f.

Operators Up for p ∈ transform input image into the feature maps which have the same size
as the input image. Hence, similarly as in Section 8.2.3 pooling operations are needed to achieve

6Here, J denotes the total number of scales to be considered, while GM = {k π
M
, k ∈ {0, 1, · · · ,M − 1}} is a

finite rotation group where M ∈ N controls the discretization of the group. Generally, P is a discrete version of
the more general space of scale and rotation transformations P∗ = {2jr | j ∈ Z, r ∈ SO(2)}.

7For image f , it follows
∫
R2 (f ∗ ψM )(x)dx =

∫
R2 f(y)

( ∫
R2 ψM (x − y)dx

)
dy = 0. Hence, for every f one gets

the trivial translation invariance.
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translation invariance. Based on the choice of the pooling operator one can achieve either global
or local translation invariance [114].

To calculate (global) translation invariant scattering coefficients, a global pooling operator
Sp can be applied

Sp(f) =

∫
Upf(x)dx.

In some applications, it is beneficial to have features invariant with respect to translations
by up to 2j pixels for j ∈ N, where an optimal j can be determined through cross-validation.
This local translation invariance can be achieved by convolution with a Gaussian kernel gσ with
σ = 2j which yields

Sp(f)(x) = (Upf ∗ gσ)(x).
According to scale space theory, the convolution with gσ removes all information on scales smaller
than σ = 2j . Hence, the representation can be downsampled by 2j as local translation invariance
up to 2j pixels is guaranteed.

Finally, scattering coefficients can be written as W0(f) = f ∗ g2j , W1(f) =
(
Sλ(f)

)
λ∈P , and

Wk(f) =
(
Sp(f)

)
p∈Pk . Hence, the locally translation invariant scattering representation can be

written compactly as

ΦK(f) =
(
Wk(f) | k = 0, · · · ,K

)
.

The mapping ΦK is called a scattering network. Scattering networks are claimed to be a
proxy for convolutional neural networks as they use cascades of the same building blocks: convo-
lutional filters, non-linearities, and pooling operators. The main difference is that convolutional
filters in scattering networks are deterministic, i.e. no training procedure is required.

Next, we present two important properties related to signal properties which characterize a
scattering network.

Energy preservation and Lipschitz continuity to small deformations: In [114] it was
shown that scattering networks induce energy preservation in the sense that

||f ||2 =

∞∑
k=0

∑
p,|p|=k

||Sp(f)||2.

Let τ : R2 → R2 be a small deformation displacement field, i.e., ||∇τ ||∞ ≤ 1. Then for Φ∞ =
∪∞
k=0Wk(f), Lτ (f)(x) = f(x+ τ(x)) and under the assumption that g2j , ψM and their first two

derivatives have a decay of O
(
(1 + |x|)−(d+2)

)
, Lipschitz continuity to small deformations τ

holds. That is
||Φ
(
Lτ (f)

)
− Φ(f)|| ≤ C||f || ||∇τ ||∞. (6)

These claims were proven by Mallat in [134].

Lipschitz continuity to small deformations for Riesz feature representation:

The Riesz transform does not satisfy Mallat’s decay assumption [134]. Instead, we derive Lip-
schitz continuity from non-expansiveness using a simple trick. In fact, it is enough to apply a
smoothing operator which regularizes the representation. Formally, let γ : L2(Rd) → L2(Rd) be
a smoothing operator that is Lipschitz continuous to small deformations, i.e. it satisfies equa-
tion (6). Let Φ be an arbitrary representation that is nonexpansive. Then Φ ◦ γ is Lipschitz
continuous to small deformations:

||Φ(γ(f))− Φ
(
γ(Lτ (f))

)
|| ≤ ||γ(f)− γ

(
Lτ (f)

)
|| ≤ C||f || ||∇τ ||∞.
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Hence, a smoothing operator like a convolution with a Gaussian kernel is needed to regularize
the input. The smoothing factor σ should however not be too large in order to not destroy
important structural information.

H Visualization of feature maps from Riesz representation

(a) Input image
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Figure 16: Steered first and second order Riesz transforms applied to a digit from the MNIST Large
scale dataset. White represents a high positive filter response, gray is close to 0, and black is a negative
filter response. Here, we slightly abuse the notation by writing Hϕ rather than Hv for v = (cosϕ, sinϕ).
See Section 8.2.1 for details.
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Figure 17: Riesz feature representation prior to pooling on a digit from the MNIST Large scale dataset.
Top: input image f . Second to fourth row: Riesz representations at depth 1, 2 and 3, respectively. White
corresponds to a high positive filter response, while black denotes a filter response close to 0.

198



(a) Input image ψ 3π
4

(b) |f ∗ ψ0| ψ 3π
4

(c) |f ∗ ψπ
4
| ψ 3π

4
(d) |f ∗ ψπ

2
| ψ 3π

4
(e) |f ∗ ψ 3π

4
|

(f) ||f ∗ ψ0| ∗ ψ0| ψ 3π
4

(g) ||f ∗ ψ0| ∗ ψπ
4
|ψ 3π

4
(h) ||f ∗ ψ0| ∗ ψπ

2
| ψ 3π

4
(i) ||f ∗ ψ0| ∗ ψ 3π

4
|

(j) |||f ∗ ψ0| ∗ ψ0| ∗ ψ0|ψ 3π
4

(k) |||f ∗ ψ0| ∗ ψ0| ∗ ψπ
4

| ψ 3π
4

(l) |||f ∗ ψ0| ∗ ψ0| ∗ ψπ
2

| ψ 3π
4

(m) |||f ∗ ψ0| ∗ ψ0| ∗ ψ 3π
4

|

Figure 18: Riesz feature representation prior to pooling on the aluminum texture from the KTH-
tips dataset. Top: input image f . Second to fourth row: Riesz representations at depth 1, 2 and 3,
respectively. White corresponds to a high positive filter response, while black denotes a filter response
close to 0.
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