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Abstract

Damage diagnosis based on a bank of Kaman filters, ead ore @ndtioned on a spedfic hypothesized
system condtion, is awell recmgnized and paverful diagnaostic toal. This multi-hypothesis approach can be
applied to a wide range of damage cndtions. In this paper, we will focus on the diagnosis of crads in
rotating machinery. The question we aldressis: how to ogimize the multi-hypathesis algorithm with resped
to the uncertainty of the spatial form and locaion d cradks and their resulting dynamic efeds. First, we
formulate ameasure of the reliability of the diagnostic dgorithm, and then we discuss modificaions of the
diagnostic dgorithm for the maximization d the reliability. The reliability of a diagnostic dgorithm is
measured by the amourt of uncertainty consistent with nofailure of the diagnosis. Uncertainty is
guantitatively represented with convex models.
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1. Introduction

The diagnosis of damage in turbo-madhinery is esential in the reliable, safe and econamicd operation d
power plants, turbo-engines, and aher similar equipment. Fault diagnosis is esential for ealy warning of
incipient failure to prevent serious damage or injury, and to enable preventive maintenance or replacement.
Of primary interest is the detedion d damage in the macdinery and the detedion d large transient torsional
loads.

In this paper we ae primarily concerned with developing a procedure for optimizing the diagnosis of turbo-
madhinery with resped to the uncertain spatial form and locaion d cradksin arotor shaft and their dynamic
effeds. In pradice only very limited information is avail able, and for many reasons it is never possbhle to
model the dfeds of a aad in the rotor shaft with complete acarracy. A cradk may develop in a multitude
of different ways, and its geometry will usually only be known after the shaft is cracked completely, a
situation which of course shoud be avoided. Furthermore, most of the time plastic deformations will
develop, which may have severe dfeds concerning the aadk growth and the resulting dynamic behavior.
Therefore, we will use mnvex models to charaderize these uncertainties, rather than probabili stic models,
since convex models require only sparse prior information.
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We formulate ameasure of the reliability of the diagnostic dgorithm, and then we discuss the possble
modifications of the diagnostic dgorithm to maximize the reliability. We measure the reliability of a
diagnostic dgorithm by the amourt of uncertainty consistent with nofailure of the diagnosis. A reliable
algorithm will perform satisfadorily in the presence of grea uncertainty. Such an algorithm is robust with
resped to urcertainty, and hence the name robust reliability. On the other hand, an algorithm has low
reliability when small fluctuations can lead to fail ure of the diagnastic dedsion. In this case the dgorithmis
fragile with respect to uncertainty.

The basic ideas underlying the different methods will be ancisely described. The main contribution is to
demonstrate the feasibility of combining ideas and methods from different fields as for instance multi-
hypothesis diagnosis based on a model of the damage, and robust reliability.

Sedion 2 briefly introduces existing methods for rotor diagnosis. Sedion 3 otlines the mwncept of robust
reliability and convex modeling. Sedion 4 describes the dynamic model of a aadked rotating shaft and
sedion 5 otlines the design of Kalman filters for diagnosing these aadks. Sedion 6 extends dion 4to
represent the dynamic loads of the uncertain cradks. Finally sedion 7combines all the previous dions and
presents the main result of the paper, which is the evaluation d the robust reliability of multi-hypothesis
Kaman filters for diagnosing cracs with urcertain shape in rotors. Sedion 8 describes an example and
section 9 discusses the interpretation of robust reliability in terms of intuitive engineering judgment.

2. Diagnosisof Rotating Machinery

Modern Madinery is boundto fulfill i ncreasing demands concerning durability and safety requirements. In
order to avoid severe damage, powerful toods for the monitoring and dagnosis have to be developed.
Current trends are described e.g. by Willi ams and Davies (1992. The diagnosis of turbomadinery is of
particular relevance, in order to avoid catastrophic damage or irjaag (1977), Muszynska (1992)

Of primary interest is the detedion d crads in rotor shafts. Wauer (1990 gives a concise overview abou
the reseach performed in the aeaof modeling the dynamics of a aaded rotor and detedion procedures. A
cradk in arotor shaft influences the rotor vibrations, especialy the first, sscmndand third harmonic. Besides,
a shifting of the phase occurs. Therefore, a suitable analysis of the measurement signals yields valuable hints
for the detedion d a aadk. But it isimpossble to dagnose the size of the damage or its locaion based on
mere signal analysis.

Increasingly, model-based procedures are developed which aim at closing this gap by establishing an
algorithmic relation ketween the measurements and a suitable model of the system. In this way, the
redundancy between model and measurements can be anployed to determine the size and locaion d a
damage. Many of these todls have been developed in the field of control theory, Frank (1990, Isermann
(1984, Will sky (1976, and can be successully applied to the diagnosis of cradks in rotating systems,
Seibold (19995, Sibod and Weinert (1996. Model-based diagnasis can be performed by a variety of
procedures, which are dassfied into two groups, Frank (1990, Isermann (1984), Will sky (1976: observer-
based procedures, like for instance parity space @proach, bank of observers or filters, innovations tests and
failure sensitive filters, and parameter identificaion pocedures, like for instance Least Squares,
Instrumental Variables, Maximum Likelihoodand Extended Kalman Filter as gate and parameter estimator.
In fact, these two groups are interrelated.

In this paper, the am is to investigate the reliability of such a model-based diagnostic dgorithm for the
special case of localizing cracks in rotor shafts while considering the uncertainties in the model of the crack.



3. Robust Reliability and Convex Sets

The reliability of a system is a measure of its resistance to urcertainties. Uncertainties arise in many
different ways. the medchanicd modd itself may be uncertain, o the loads ading on the system may nat be
completely known or measurable. The uncertain prenomena may be @nstant or varying with time. For
example, it is hardly ever posdble to model every phenomenon that may occur. Furthermore, it may not
always be desirable to work with a large-dimensional model. Rather, ore tries to reduce the model size,
whil e retaining the relevant dynamic efeds. This of course may yield additional uncertainties which have to
be taken into account.

The mncept of robust reliability (as oppased to probabili stic reli ability) used in this paper isthat asystemis
reliableif it can tolerate large anourts of uncertainty withou faili ng, Ben-Haim (1995, 1996, 1997 On the
other hand, it is unreliable if even small deviations from the nominal circumstances can lea to failure. In
analogy, it is possble to formulate a measure for the robustness of a diagnostic dgorithm. A reliable
algorithm will perform satisfadorily in the presence of grea uncertainties. Such an algorithm is robust with
resped to urcetainty, and hence the name robust reliability. On the ntrary, an agorithm has low
reliability if even small fluctuations can lead to fail ure of the diagnaosis. In this case the dgorithm is fragile
with respect to uncertainty.

Robust reliability analysis consists of three compond&da;Haim (1996)

¢ A mechanical model of the system,

o afailure criterion spedfying the condtions which constitute fail ure of the system or of the diagnostic
algorithm,

¢ and an uncertainty model, quantifying the uncertainties to which the system is aubjeded. These
uncertainties may appear in the mechanical model and the loads as well as in the failure criterion.

Clasdcd probability theory relies on the frequency of occurrence of events to model the uncertainty.
However, in many applications there is only limited information avail able. It may not be possble to perform
enough tests and measurements to cover the whole spearum of posdble inpu-output behavior. Furthermore,
therare events may be the most dangerous ones regarding the remaining life time of the system, and relevant
frequency data may be very sparse or ladking. On the contrary, set-theoreticd models of uncertainty describe
how the uncertain events cluster, and the size of the set indicates how much urcertainty is anticipated. A
convex model is a nested family of sets, U(a) for a =0, which expand like aballoon as the uncertainty
parameter grows. Corvex models of uncertainty are dways based on apriori information abou the
uncertain events, but they require lessinformation than probabili stic models. Convex models are discussed
in Ben-Haim (1985, 1994, 1998hdBen-Haim and Elishakoff (1990)

Employing cornvex sets, it is possble to measure the uncertainty with a spedfic uncertainty parameter o,
which may also be cdled the expansion parameter of the convex set, Ben-Haim (1985. A convex set U(a)
will changeits gze acording to the changing of o, whil e the shape is retained, much like aball oon expands
and contrads. The main goa of a robust reiability analysis is to determine how large the uncertainty
parameter. can become before the system can fail.



4. Modeling a Crack in a Rotating Shaft

Numerous concepts for the modeling of cradks in rotating shafts have been developed, Wauer (1990. The
first models were based onthe assumption o a simple Jeffcott-rotor with a breahing crad, and already
incorporated the relevant dynamic dfeds, see eg. Gasch (1976. “Breahing” here means that the aadk will
open and close during the rotation d the shaft, depending on the adual displacements. Later, finite bean
elements with a breahing cradk were developed, which can be gplied to the diagnosis of large turbine
shafts. Theis (1990 has developed such a aadk model which takes into acourt all six degrees of freedom
of the Bernouli beam theory. In most pradicd cases, weight dominance can be assumed, which means that
the vibration amplit udes are small compared to the static defledion die to the weight. The Theis model does
not require weight dominance. But this assumption is advantageous as we will see.

Employing the small amplitude goproximation, the following linea differential equations can be derived,
where the aditional dynamics due to the aadk are modeled as “external crak loads’ Fr ading on the

system,Theis (1990), Seibold and Weinert (1996)
M AG(¢) + D AG(9) + Ko Aq(9) = Fr() +Fy(9), (4.1)

M and D being the massand damping matrices, K, being the stiffnessof the uncradced system, Aq being
the vibrations aroundthe static defledion, ¢ being the angle of rotation, F; being the unbalance ecitation,
Seibold (1995)and Fg being the crack loads.

In Theis (1990, it is described how the alditional compliance due to the aadk and subsequently the vedor

of crak loads Fr can be derived viathe energy release rate based onfradure medanicad considerations. In

order to fadlit ate the gpli cation to model-based damage diagnosis, the aadk loads can be gproximated by
polynomial functionsSeibold (1995)

on O
Fr(a¢)=0y a'P0y(¢) =R@) y($) , (4.2)
=o O

where a is the depth of the cragk, are constant matrices of coefficients independent of apgrahd
X(c]))T =[1 sin¢ sin2¢ ...sink¢ cosp cos2¢ ...coskd] (4.3)

is a function of the angle of rotatigh.



5. Kalman Filter Design for the Diagnosis of Cracks

The Kaman Filter was developed by Kalman (1960 to estimate unknown states of linear systems based on
noisy measurements. Jazwinski (1970 describes how the Kaman Filter can be modified for noninea
systems. This Extended Kalman Filter (EKF) may also be used for a parallel identification o states and
parameters. The EKF requires a representation d the system equations in state space so that a state space
vedor z has to be defined. If mechanicd systems are treaed, it consists of the vedors of displacenent and
velocity g and ¢, and may be extended by the vedor of unknown parameters p for the purpose of

parameter identification:

z' =[qT q" pT] - (5.1)
Let us asaume that we have modeled arotor with a aadk in the shaft acarding to eqg. (4.1), and that we can
describe the vedor of cradk loads Fr acording to (4.2). Based onthis model, an EKF can be designed to

estimate the crack depth, a, based on incomplete measurqr_nentmis case the vectqr = a is a scalar.

The EKF is areaursive dgorithm, so that for the first time step, initial estimates of the state spacevedor
have to be provided. At time step k+1, the estimate of the state spacezyggtis calculated as:

tk+1
Zeyk =2k + [H(Zk Lo p W dt=A 2 +B {Eu (9) +ER(¢)} , (5.2)
tk

where u are the inpus into the system. In ou case, the inpus are the untbelance ecitation F;, and the
crack loadsFg (¢) . Note that the paramet@r=a appears only in the vector of crack lo&gs(¢) .

The covariance matrix of the states is estimated as

* * T
Priyk =Ax Pk A +Qp (5.3)
where
N ) B 6zj z=7
Z=2Zg

At ead time step Kk, the lineaized discrete system matrix AT( and the discrete equivalent of the covariance
meatrix of the system noise Qy have to be cdculated based onthe arrent estimate of the parameter. The

prediction is corrected on the basis of measuren}eknﬁ:

241 = Zgayk tKg, o, {Xk+1 -C Zk+1/k} : (5.5)
_ T T
Pesr = (1-Kg,, ) P (1-Kg,, O +Kgy Pionk Ko, (5.6)
_ T T -1
Korsg = Prsvk € (CPrayk C +Ryua| (5.7)



The differences between model prediction and measurements (see eq. (5.5)), are termed innovations:
Vit =Yg ~ C kv (5.8)

The aadk diagnosis must identify two quantities: the locaion and the dfedive (or “equivaent”) depth of
the aadk. In the multi-hypathesis approach we “tune” ead of a bank of EKFs to a diff erent hypothesized
locaion d the aadk. Usualy, ore can asaume that the measurement noise is normally distributed and
uncorrelated with zero mean. Then, the innovations of the EKFs are time series with the same properties if
measurement and model prediction are @rrespondng. In ather words, if the hypothesized crad location for
a particular EKF is corred, then the innovation sequence will be normally distributed with zero mean and
uncorrelated in time. These properties will nat (usually) had for an EKF where the hypathesized crack
locaion is erroneous. Therefore, a statisticd analysis of the innovations can lead to a locdization d the
damage. The standard deviation is a good measure, because the filter based onthe “best” hypathesis will
yield innovations with the least standard deviat8nwhere

5 =%§ (vi-8)w -9)" . (59)

where f/ is the mean value of the innovations. Of course, there ae many more posshbiliti es for a statisticd
analysisMehra and Peschon (1971)



6. Modeling the Uncertain Crack Loads

Different crads of the same net depth (or effedive aadk areg produce different cradk loads due to their
different cradk-front shapes. This variation o the aad loads is quantified approximately, (to the best of our
knowledge which is very fragmentary, becaise the true aad front shape can oy be determined after the

shaft is completely cradked) by a cmnvex model. Let the uncertain vedor of cradk loads ER consist of a
known part R(a) according to eq. (4.2), and a Panthich accounts for the crack uncertainty:

Fr(@$)=R@y($)+U . (6.1)

Our prior knowledge @ou the aad uncertainties is used to chocse a @nvex mode for U. In the faceof
severe ladk of information we will use avery simple mrnvex model, such as the dli psoid-bound convex
model:

Dy (0ty) :{g: U salz} . (6.2)

Di(aq) is the set of al uncertain load vedors U whose norm does not exceeal o;. The range of
variability of U incresses as the uncetainty parameter o, increases. However, if we have spedral

information available, one might choose afourier-elli psoid-bound model. The temporal variation d the
uncertain crack loads are expressed by a truncated Fourier-series as:

u=vn(@9) . (6.3)
wheren(¢) is a known vector of trigonometric functions:
n®)" =[1 sin¢ sin2¢...sinkd cosdp cos2¢ ...coske] |, (6.4)

andV isamatrix of uncertain Fourier coefficients. The uncertainty in U(¢) is expressed by uncertainty in
the coefficient matri®/. One way is to employ an ellipsoid-bound convex model for the uncertaity in

D,(d5) :{y; IV |2 saZZ}. (6.5)

We note that the uncertainty parameters a4 anda, ead control the “size” of the arrespondng convex
model: as a; increases, the range of variability of U increases. However, the cnvex models D; and D,
are quite different in nature. D, contains cradk-load vedors whaose rate of variation is unbouned, while D,
contains band-limited load vedors only. In ather words, even if a; anda, have the same value, the range
of variation ofU on D; and onD, will differ, as will, for instance, the maximum normQf

In the goproach presented here, convex models are dhasen to describe the uncertainty of the model, because
they fit very well to the type of information available. That does not imply that probabili stic models would
not fit. However, they would require much more information than is available here.



7. Robust Reliability of a Diagnostic Multi-Hypothesis Algorithm

Damage diagnosis based ona bank of Kalman Filters, ead ore condtioned onthe hypaothesis that a cadk
exists at a spedfic locaion as described in sedion 5, is a well recgnized diagnostic tod. The robust
reliability of a diagnaostic dgorithm is measured by the anount of uncertainty consistent with nofailure of
the diagnosis. A reliable algorithm will perform satisfactorily even in the presence of great uncertainty.

The dam of our diagnostic dgorithm is the locdization o a aad in a rotor and the determination o its
“equivalent” or approximate depth. For a robust reliability analysis and a subsequent maximization d the
reliability of our multi-hypothesis algorithm, we need three omporents as explained in sedion 3. The
mechanical model of our rotor may be derived with a finite-element code, with the aadk modeled
acording to eq. (4.2). The uncertainty U of the aad loads is expressed by a convex model acarding to
eg. (6.2 or (6.5). Finaly, we nedal to spedfy a failure criterion for our diagnastic dgorithm. Intuitively,
one would immediately think of two dfferent failure aiteria, ore relating to the uncertain crad shape, and
the other concerning the unknown cradk location. In the following, these two different failure aiteriawill be
discussed in sedions 7.1 and 7.2. The two dfferent uncertainty models (6.2) and (6.5 will both be
employed.

To demonstrate the procedure, let us make an approximation and €(aelsg the linear function

R(@=aP; +Pg . (7.1)

In pradice one usually needs at least a aubic term, so that n=3 in eg. (4.2). If norlinea terms are included,
the maximization of the robust reliability has to be performed numerically.

7.1 Maximizing the Robust Reliability of the Crack Depth Estimate

For the maximization d the robust reiability of the aad depth estimate, we have to define an error
criterion, like for instance “The diagnostic dgorithm fails if the aror in the estimated cradk depth is too
gred”. Let £ denote the aror of the aadk-depth estimate and let € dencte the greaest acceptable eror

of the estimate. Failure of the diagnosis occurs if:
E2ECR - (72)
For the robust reliability analysis with resped to the diagnosis of the adadk, we need to examine the

reaursive estimates a of the aadk depth. Writing only the estimation equation for the aad depth, ore has
one line from the vector relation (5.5):

Bice1 =8+ Kag (Vi = C ks (7.3)

where K, is the bottom row of the Kalman gain matrix K. Taking acaurt of the model prediction (5.2),

eg. (7.3) becomes

a4 =8 tK

| Yior ~C{A 2 +BEY ) +B(R@Y@®) + U ]| - (7.4)

If the estimationis successul, the Kalman gain will converge within certain bound as well as the estimate
a of the crack depth.



7.1.1 Ellipsoid-bound model of uncertainty

Let us first analyze the robust reliability for a simple dli psoid-boundmodel, eg. (6.2). Expressng R(a) by
(7.1), and assuming the Kalman gain and the estimates converge, eq. (7.4) becomes:

a=-_ Gy S2(®), Ss®) (7.5)
Si®) T Si9)  Su(d)
denoting
G=K4CB , (7.6)
$1=GPyy(¢9) , (7.7)
$r=Kyg Y (9) ~Kog C{AZ(0)+BF,(9)} . (7.8)
S3=-GPyy(¢9) - (7.9)

Eq. (7.5 shows how the aad depth estimate varies due to the uncertainty in the aad loads U. The first
term on the right hand side expresses the dfed of uncertain crad variability, whil e the other terms on the
right correspondto the nominally straight cradk-front shape. For the same nominal value of crad depth, a,

the estimated crack depth varies over the range of values ta@@(q}) Q% asU varies orD4(a) .

If thisvariation d the estimateis snall, then the diagnasis is robust since the aad uncertainty only wegly
influences the estimate. On the other hand, if this variation is large, then the diagnosis is fragile to
uncertainty and hence urnreliable. To evaluate the variability of the aadk depth estimate, we maximize (7.5
employing the Cauchy inequality and (6.2):

max a= énom (7-10)

where &, is the nominal estimate (the seaond and third terms on the right of eg. (7.5)) and ||..|, denctes

the Euclidean nam. The second term on the right results from the load urcertainty, and depends on the
uncertainty parametex; .

The robust reliability is the greaest value of the uncertainty parameter, o, consistent with nofailure of the
estimates. Equatingax (&— &,oy) t0 €cr and solving fora 1, we obtain the robust reliability ; :

__ISu(9)]

maX (&—8nom) =€cr 0 G1= q| €c (7.112)
2

When a4 islarge, the diagnosisisrobust with resped to urcertainty. On the other hand, when a4 is small,

the diagnosis fail s even in the presence of minor cradk uncertainties. Note that if the Kalman estimate of the
cradk depth has converged in eg. (7.4), then the robustness a; will still vary with ¢ , because of the angle-

dependency of the vector of trigonometric functiop®,) .



7.1.2 Fourier-bound model of uncertainty

If the fourier-elli psoid-bound model, eq. (6.5, is employed, a different relation between cradk depth
estimate and uncertainty is derived. We employ the following property of the Kronecker product

veo(AXB)=(BT DA )vecx |, (7.12)

Lancaster and Tismenetsky (1985. vedA) is the vedor formed by concaenating the columns of A. Then,
assuming the convergence of the estimate within certain bounds, (7.4) becomes:

4o Sa(®) oy, S200) | Ss(@) (7.13)
Si6) T Si9)  Si(6)
where
s,=(nT@)0g) . (7.14)

Eq. (7.13 shows how the aad depth estimate varies due to the uncertainty in the aadk loads, V, based on
the fourier-boundconvex model D, (a5 ). Now, the aror of the aad depth estimate may be & greé as the

maximum value atained by S4 (¢%l(¢)vecy . We maximize (7.13 employing the Cauchy inequality and
(6.5):

a=amn 15 Gy [0
max a=apsm + —=—1|N DQH : (7.15)
O sy 1= 2

where apqmis the nomina estimate (the second and third terms on the right of eq. (7.13). By equating
max (&— anom) to ecr and solving fora ,, we obtain the robust reliability:

maX(é.—é.nom)=8CR 0 dzz—u ECrR - (716)

At this paint, it has to be stated that only robust reliability parameters derived on the basis of the same
uncertainty model and failure aiterion are diredly comparable. However, examining (7.11) and (7.16), ore

can show that &, and a, only differ by the factor ||HT||2. If we let the fourier-boundmodel approach the
ellipsoid-bound model by allowing to become unity, (7.16) will converge to (7.11).
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7.2 Maximizing the Robust Reliability of the Crack L ocalization

For the diagnosis of the adadk location, a bank of Extended Kalman Filters (EKF) is designed, consisting of
severadl filters, ead oretuned to aspedfic aadk locaion. The structure of this multi-hypathesis algorithmis
aparallel one. In the mntext of reliability, however, the bank of filters can be regarded as a serial network.
That is, the diagnostic dgorithm failsif even ore of the EKFs yields faulty results. Therefore, the reliability
of the bank of EKFs is only as large as the reliability of the “weakest” EKF.

As described in sedion 5,the aad can be locdized based onabank of EKFs by evaluating the innovations
generated by eadh of thesefilters. To demonstrate the robust reliability analysis, let us assume that we have
only one measurement, y, so that the matrix C is a row vedor. For more than ore measurement the
procedure is much the same, sincewe tred the individual innovations separately. For simpli city we consider
only one measurement.

Then, the innovations generated depend on the uncertain crack loads in the following way, based on (5.8):

Vi1 =Yk —d1 - U, (7.17)
where

3= C{A2, +BFy (4) + BR@ Y(®)} (7.18)
and

3,=CB . (7.19)

The dtatisticd analysis is performed for R revolutions of the rotor, assuming m measurements per
revolution. So eq. (7.17) is repeated at mR times (or angles):

O

<
[N
<
[N

<
[y

LOoOoOao

(7.20)

ROOOO
Doopoo
QOOO0OO
OooQood
Doopoo
<1
C

3
py)
3
py)
3
py)

|

:

where Vv, acourts for the uncertain crack loads, and“nom” is the ébreviation for the nominal innovations

(the second and third terms on the right-hand side of eg. (7.17)). The “nomina” innovations result from
measurement and system noise other than the aadk-shape uncertainty. An equation such as (7.20 halds for
ead filter, though we have suppressed the filter index. The mathematica form of v, depends on the

convex model being used, as we will explain later in sedions 7.2.1and 7.2.2for the two dfferent convex
models under consideration.

Eadh filter in the bank is “tuned” to a different cradk location. The filter with the crred hypothesized cradk
locaion will have zero-mean white innovations with low variance The other filters will not be zero-mean
and will tend to have larger variance The aadk locaion is identified by lowest variance The diagnostic
algorithm failsif even ore filter yields innovations with a similar or a smaller variance than the filter based

onthe wrred hypathesis. On the wntrary, “no-failure” of the diagnosis ocaursif the variance sgo”ed of the
filter with the correct hypothesis is the smallest from the bank of filters:

R T
Sgorrect = mimﬁ"!i "2 , (7.21)

where i is the filter index. Analogous to the éove, we mnsider two convex models of uncertainty for the
robust reliability analysis.
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7.2.1 Ellipsoid-bound model of uncertainty

Employing the ellipsoid-bound model of uncertainty (6.2), relation (7.20) becomes:
V=Vpom ~ (L U)T 1T =@11...), 700, (7.22)
Squaring (7.22) yields:

? = 2(3,U) Vo "1 + mR(,U)° (7.23)
For the mrred hypothesis, the seandterm on the right hand side is asymptoticaly zero, because QnomTI

is propartional to the mean innovation. We have asaumed in sedion 5, that for the crreda hypothesis the
innovations are normally distributed and uncorrelated with zero mean.

Maximizing (7.23 as U varies on D4 (0 ;) by employing the method d Lagrange multipliers and dviding by
the number of measurements mR yields the greatest variance of the innovations:

2 _
max,i —

%”gnom,i ”2 + a12 ”:]2”2 : (7.24)

The least variance of the innovations occurs whés orthogonal tal, :

Srznin,i = %”znom,i ||2 . (725)

Eq. (7.2 statesthat the bank of EKFs sicceals in locating the aadk if the filter whose innovations are least
in fad corresponds to the mrred cradk locaion. Thisis what would happen (asymptoticdly) if there were

no crack-shape uncertainty. Let us renumber the filters  that ||§ nom,1||2 is the least and ||§nom,2||2 is the
next greaest value. The bank of filters fails acarding to criterion (7.21), if the aadk-shape uncertainty
causes S;2 to increasse and causes S,2 to dminish, so that the S$;2>S,2. In ather words, (7.21) is
equivalent to the following failure aiterion: the diagnosis fails, if the greatest variance of the crred filter
exceeds théeast variance of the next largest filter:

Smax,l2 2 Smin,22 - (7.26)

Using egs. (7.24) and (7.25), this relation becomes:
1~ 2 1~ 2
ﬁ”ynom,l” +O‘12"92”2 2 ﬁ”ynom,zn : (7.27)

The least value of the uncertainty parameter a4 at which this occurs is the robust reliability of the bank of
filters:

QA

1= Jm_RlngZ” \/”2“0"12"2 - "Ynom,l"2 (7.28)

The denominator in eq. (7.28 is a function d the measurement matrix C. Therefore, with a suitable sensor
deployment, the robust reliability of the crack localization can be maximized.
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7.2.2 Fourier-bound model of uncertainty

Now, we evaluate the robust reliability based onthe fourier-boundconvex model (6.5). Similar to the aove,
taking advantage of the properties of the Kronecker product one can derive

-
0% ¢
S_5 0 : 0
V=V - vecV
Y=Ynom " [J . E — (7.29)
T
Hlrm 0J H
=Vom ~J3 vecV
which defines the matri¥;, while n is defined according to (6.4). Squaring (7.29) yields:
V7= [T pom|” =2 pom " 35 VeV +[d; vecV|” . (7.30)
Let us take a closer look at the second term on the right hand side. First note that
_ mR
Viom J3= ka nom[rlli< Jo, Nz Jdoy N3 Jo ]
k=1
mR
= Z [Vk nomNy, J2: Vk nomN2, 32 Vk nomN3, J2: ] , (7.31)
k=1

where n;, isthe ith element of the trigonametric vedor n at the kth time step. For the first term of n(¢)
according to (6.4), one can derive:

mR mR
ZVk nom N1k = sz nom 1=0 , (7.32)
k=1 k=1

since if the filter-hypothesis is corred, the innovations have zero mean. The other elements of n are

harmonic functions whaose values reaur with ead complete rotation. If we can assume egodicity, i.e. if the
statisticd properties of the innovations do nd depend ontime, then the foll owing halds for the other terms
of n(¢), which "average” out due to the harmonic function and the zero-mean random variables:

mR m R m
kanom Nik =Znij Zv(n_l)m"'jnom ::Zr]ij 0=0 . (733)
k=1 =1 n=1 =1

Now, combining (7.30), (7.32) and (7.33), the variance of the innovations can be approximately written as:

2 _ 1 ~ 2 1 T T
Sy ¥nom|” + ﬁ(vec! J3 QaVeCM) : (7.34)
The maximum variance occurs when vecV isthe @égenvedor of Q3T J3 whose correspondng eigenvalue is
maximal:

1

max =ﬁ"§nom”2 +$G22 max(eig(gsTg3)) : (7.35)
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The minimum variance occurs when vecV is the @genvedor of Q3T J; whose crrespondng eigenvalue is

minimum. This minimum eigenvalue will be zero whagl J, is rank deficient. In any case:

1 - 2 1 o . T
min? = — = [Tram|” *+ — 5% min(eig(257 35)) - (7.36)
~ 2 - 2

We now cdculate the robust reliability as in egs. (7.26-(7.28. Let “ynom,l” and HYnomZH be the least
and next-largest squared innovations. The analog of eq. (7.27) is

- 2 . - 2 o

[Tnoma|” + 02” maxeigds 3g) 2 [Tooma|” +a2® mineigd Is) - (7.37)
The least value ofi, at which this relation holds is the robust reliability:

_ “ynom 2“2 _Hynom 1”2

0, = ’ (7.38)

maxeig(g3Tg3) - mineig(g3Tg3)

14



8. Numerical Example: Reliability of the Crack Depth Estimate with respect to
Sensor Deployment

Let us apply the robust reliability analysis to a simple rotor with a aadked shaft, modeled by eight finite
beam elements. The dynamics underlying this particular example is also dscussed in Seibald (1995, and
Seibold and Weinert (1996)

Therotor is Im long and 18nmin dameter, and modeled with 8 kean elements. A single transversal cradk
of depth 4mmis locaed between the 4th and %h nodes. The shaft rotates with a constant frequency of 15.9
Hz. The first eigenfrequency for bending vibration o the rotor is 25 Hz. Fig.8.1 identifies the dofs of the
finite dement model. We will examine the variation d the reliability of the aad-depth estimate with the
number and pgition d sensors. In this example, we ae referring to the derivationin sedion 7.1.1, bsed on
the ellipsoid-bound model of uncertainty.

X1 Q4 Qg Q12 & > 0 Qo4 028 031
' AN &N &

V'S
015 TQ19 TQ23 TQN
4 ) ¢ )

Q18

X, Qs Jio Y14 G2 O26 O30 032
a2 AN kN kN s AN KN kN kN

“ T% qu Tfha i:fm Tfm TQZs Tng
¢ ¢ ) ¢ ¢ )

X1 X3 $ '
> 2

Figure 8.1: Finite element model of the rotor.

Eq.(7.11) showsthat the robust reliability isafunction d the sensor deployment matrix, C, which appeasin
both the numerator and the denominator (see @s. (7.6) and (7.7)). We will evaluate o, for different choices

of C, in order to compare the reliabilities of these alternative design options.

The different sensor deployments are numbered in the following way: deployment no. 1 wses four
measurements of dofs 3, 5, 27 and 29. Deployments 2-12 ead use these four and ore alditional
measurement. For deployments no. 211 the alditional measured dd is 7, 9, 11, ..., 25 respedively. For
deployment no. 12 the additional measured dof is 16.

Eq.(7.11) shows that the robustnessof the estimate depends on the angle of shaft-rotation, ¢ , at which the
measurement is made. This angle-dependent reliability results from the rather complicaed variation d the
dynamic éfed of the "breahing" cradk. Fig. 8.2is based onfour sensors located nea the suppats of the
rotor, two at ead end, measuring horizontal and verticd displacanents, dd's g3, s, g7, a1dqog, in fig.
8.1. In this example we ae investigating one rotation d the rotor, i.e. 360time steps, and the aad depth
estimate and Kalman gains have converged to within abou 1%. The figure shows the angles at which the
estimate is particularly robust with resped to the aadk-shape uncertainty, at abou 160 degrees and 280
degrees . Note that the dadk opens at 0 degrees, and closes at 180 degrees. Figs. 8.3 and 8.4show the
variation with angle ¢ of the robustness for five sensors: the original four plus an additional sensor
measuring horizontal displacement qq5 (deployment no. 6, and vertica displacement g7 (deployment no.

7) respedively. Note that the maximum robustness does not occur at the same angle of rotation for
deployments 1, 6 and 7.
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Robust Reliability; Deployment no. 1

4.50 i

3.5 i

2.50 i

15 i

0.50 i

0 100 200 300 400
angle of rotation

Figure 8.2: a4 as a function of the anglfe for sensor deployment no. 1.

Robust Reliability; Deployment no. 6

3.5 i

2.5 i

1.5 i

0.5 i

0 100 200 300 400
angle of rotation

Figure 8.3: a4 as a function of the angli for sensor deployment no. 6.
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Robust Reliability; Deployment no. 7

0 100 200 300 400
angle of rotation

Figure 8.4: a4 as a function of the anglfe for sensor deployment no. 7.

From now on we will only consider those angles at which the estimate is maximally robust.

In fig. 8.5, we see the maximal robustness for the 12 dfferent sensor deployments described above.
Deployment 1 is the four-sensor configuration represented in fig. 8.2.Each of the other configurations has
these four plus one alditional sensor. The alditional sensor is moved progressvely from nea the suppat to
the rotor midpant. Deployment 6 is portrayed by fig. 8.3.In deployments 2, 4,6, 8and 10the alditional
sensor measures a harizontal displacement, whilein deployments 3, 5, 7, 9and 1laverticd displacament is
measured by the additional sensor. In deployment 12 the 5th sensor measures a rotation at the rotor midpaint
about the lateral horizontal axigy -

In fig. 8.5, we note awedk tendency for improvement in reliability as the alditional sensor is paositioned
neaer to the midpant, where the displacanents are greaer and the aad-breahing is enhanced. Also, we
note the strong preference for verticd over horizontal measurement. The physicd reason is that only in the
vertical direction, the two extreme states of the crack (fully open and fully closed) can be observed.

Fig. 8.6shows the estimates of the aad depth for the diff erent sensor deployments. The true value is 4 mm.
It isinteresting to nde that deployment 12, i.e. the alding of an additional sensor measuring the rotations at
dof no. 16,yields a rather bad estimate for the aad depth, even though the maximum robust reliability is
relatively large in fig. 8.5.To make sense of this observation, ore must define very predsely what we mean
by a, the robust reliability: it is the greaest value of the uncertainty parameter a such that the estimate of
the aad depth dces nat deviate from the nominal estimate by more than €, egs. (7.2, (7.11). By adding a
sensor, we ae alding both "information” and "noise”, so the estimate will change; it may get better or
worse; it may become more stable with resped to cradk load urcerttainty, it may not. The fad that a is
larger with an additional sensor does not mean that the nominal estimate itself is"corred”. It does mean that
variation around the nominal estimate is low.
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Maximum Values of Robust Reliability
6.5

5.5 i

SR L L L 1 L
0 2 4 6 8 10 12

Deployment no.

Figure 8.5: Maximum values af; for the different sensor deployments.
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Estimated Crack Depth
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Deployment no.

Figure 8.6: Estimated crack depths for the different sensor deployments.
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An important fador which influences the robust reliability a is the Kalman gain, egs. (7.6), (7.1, or in
other words the design of the filter. In fig 8.7, the variation d a over one rotation for deployment 12 and
different designs of the Kalman gain is displayed. It shows the results obtained with the original Kalman
gain design and two new designs based on a increasingly larger covariance matrix R, see @. (5.7). It is
obvious that the fluctuation o the airves deaeases with increasing of R, while the maximum value of
a does nat change much. This means that in this example, the reliability is rather insensitive to the choice of
the Kalman gain, provided that the filter has converged. In ather cases one might observe sensitivity of the

reliability to the filter design, in which case the reliability analysis is a means of choasing between
alternative filters.

How can the reliability of the aad depth estimation ke improved? Firdt, it is very important to pick up
enough samples per rotation, espedally at the agles where the estimate is maximally robust. This £ansto
be avery simple paint, bu it is dill customary e.g. in power plants to store only the maximum amplitude
values, i.e. one sample per rotation. In this way, it is imposdble to get enough measurement information
abou the complicaed cradk dynamics. Then, the design of the Kaman filter needs to be performed

caefully. As has been stated above, the reliability analysis may be enployed for choasing between dff erent

filter designs. Finally, the adition d one sensor will not always yield better results. It might well be
worthwhile to investigate the "best" position for the respective circumstance.

Robust Reliability

400
angle of rotation

Figure 8.7:0; as a function of the angle for additionally measured rotation.
Sensor deployment no. 12 (---) and 2 new calculations with increasing covdiance
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9. Calibration of Robust Reliability

We can compare diff erent algorithm designs with the help o the robust reliability a . For instance, we can
optimize the filter gains, or the number of parallel filters in the multi-hypaothesis filter bank, or the number
and locdion d the sensors. If a is large, the dgorithm is robust with resped to urcertainty, which is
desirable. But, how large is large enowgh? To cdibrate a , we have to establish arelation between a and
the safety of the dgorithm. Of course, this leads in turn to the question: “How safe is safe enough?”. The
answer will always be based onsubjedive preferences. Still, such arelationis quite helpful to make sensible
decisions.

Consider again the maximization o the robust reliability of the aadk-depth estimate. Employing the
elli psoid-boundmodel of uncertainty, we obtained the robust reliability as a function d the measurement
matrix C, egs. (7.6), (7.7) and (7.11):

_|[KegCBPyy

01 =——————ECR (9.1)
[KaCE|

As has already been stated in sedion 8,the reliability can be maximized with a suitable sensor deployment.
For a given matrix B, and a given number of sensors, the optima sensor locaion can be cdculated by
varying C to maximize & . This may lea to the question hav much better our results are if we employ

more sensors. For such adedsion, it will be helpful to consider the severity of the mnsequences of fail ure of
the diagnostic algorithnBen-Haim (1996)

Let us choose three different values for ecrin the falure aiterion o eq. (7.2), correspondng to failure
consequences of increasing severity:

€crl <&cr2 < ECR3 - 9.2)

The most conservative failure aiterion €cgy corresponds to low consequence severity, since failure is

defined as occurring after only a very small error in the estimate. On the other hand, if we choose alarge
€cRr3, We might anticipate cadastrophic consequences as aresult of failure of the diagnosis. In fad, ore can

imagine acontinuum of failure aiteria and dot the robust reliability as a function d &g for one spedfic
sensor deployment C,. Fig. 9.1 schematicaly shows the robust reliability of a particular deployment of
sensors, C,, as a function d the severity of failure, ecr. Let us consider two more posshle sensor
deployments C; and C, and compare their reliabiliti es at medium severity, against deployment C,. We
can seefrom fig. 9.1,that already for a moderate failure aiterion, ceployment C; tolerates an amourt of
uncertainty which C, can tolerate only by all owing high severity of failure. In ather words, deployment C,;
is, subjedively spesing, much more robust than deployment C,. Now consider sensor deployment Cs.
The figure shows that C,, also at medium consequence severity, can only tolerate alevel of uncertainty
which C, tolerates at low severity. ThiS; is “much” less robust tha@, .

Depending on hov much safety we reguire, we can how choaose the gpropriate sensor deployment. If high
safety is needed, it might be worthwhile to choose sensor deploy@erven if it may be more costly.
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Figure 9.1: Robust reliability versus consequence severity:

10. Conclusion

In this paper, robust reliability of multi-hypothesis Kalman Filters concerning crad diagnosis in rotors was
discussed. The question addressed was: how to optimize the multi-hypathesis algorithm with resped to the
uncertainty of the spatial form and location of cracks and the resulting dynamic effects.

We have discussd the use of convex models in the context of a robust reliability anaysis, and we have
explained the design of a Kalman Filter for the diagnaosis of cradks in rotors based onthe aadk model of
Theis (1990. We have formulated a measure of the robust reliability of the diagnostic dgorithm, based on
two dfferent convex models of the uncertain cradk loads depending on dfferent prior knowledge. This
measure is the robust reliability parameter a , which indicates the robustnesswith resped to urcertainties.
We have explained a procedure for modifying the diagnostic dgorithm for maximizing the reliability of the
diagnosis. We have gplied the analysis to the etimation o the depth of a adad, as well as to its
localization. Finally, we have discussed the subjective calibration of the robust reliability parameter
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Abbreviations

EKF Extended Kalman Filter

Nomenclature

q vector of global coordinates

X vector
X matrix
KT transpose
X estimated value of
[ Euclidean norm
vec@) vector formed by concatenating the columng pf
(A O
%A O
12
0o. O
(A, O
(A A A O 0
& 11 12 A1n g %\21 0
vedA) = vedd* 24 2npO O
- 0. o4 O
% 0 MAon O
ml AmnO O O
O 0O
G\ ml O
o 0O
0o 0O
E =
AOB Kronecker product:
[(AnB ApB AnnBO
[l [l
anp='21B A2B . AxBp
N B : O
O
%"mlﬁ Am2B AmnBO
a crack depth
anom nominal crack depth estimate
C measurement matrix
D(a) set-theoretical convex model
] unity matrix
Fr vector of crack loads
Kyg Kalman gain
Kag bottom row of Kalman gain



covariance matrix of measurement noise
standard deviation
set-theoretical convex model

vector of innovations generated by a Kalman Filter

uncertainty parameter

robust reliability

error of crack depth estimate
vector of trigonometric functions
vector of trigonometric functions

angle of rotation
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