
Herausragende 
Masterarbeiten

Autor*in

Studiengang

Masterarbeitstitel
Qualitative Evaluation of N-Way Model Matching
Approaches

Dimitrios Volikakis

Software Engineering for Embedded Systems, M.Eng.



ii

Declaration of Authorship
Ich versichere, dass ich diese Masterarbeit selbstständig und nur unter Verwendung der

angegebenen Quellen und Hilfsmittel angefertigt und die den benutzten Quellen wörtlich
oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Place, date Signature

Athens, 31 July 2023 DIMITRIOS VOLIKAKIS



iii

RHEINLAND-PFÄLZISCHE TECHNISCHE UNIVERSITÄT
KAISERSLAUTERN-LANDAU

Abstract
Software Engineering for Embedded Systems

Master of Engineering

Qualitative Evaluation of N-Way Model Matching Approaches

by Dimitrios Volikakis

In product line engineering tasks, the need for merging models from different prod-
uct variants emerges as the commonly used clone-and-own approach suffers from high
maintenance costs in the long run. By identifying models with a high number of similar-
ities we can merge them to one highly reusable model. This approach will increase the
maintainability, and further expandability of the model.

Already many works have been published aiming to solve this problem with different
N-way model Matching approaches. However, there is lack of practical evidence that the
published theories work as designed in real world cases.

In this work, we will evaluate relevant published approaches and then attempt to
integrate the most promising one in the product line analysis framework VARIOUS from
Fraunhofer IESE. Next, the implemented approach will be evaluated in comparison to the
existing mechanism for model matching that VARIOUS integrates that is called "System
Aligner". The main aspects of our evaluation are:

• Accuracy - Can it accurately find the most similar models?
• Performance - How fast is it?
• Scalability - How well does it scale in large amount of input models?
• Configurability - Can it be adapted easily for different systems?



iv

Contents

Contents iv

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 Background and context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 N-way model matching . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Impact on software engineering . . . . . . . . . . . . . . . . . . . . . 3

1.2 Research questions and objectives . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of the structure of the thesis . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5
2.1 N-way model merging (NwM) . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Range Queries on N input models (RaQuN) . . . . . . . . . . . . . . . . . . . 8
2.3 Formalism-based N-way matching algorithm . . . . . . . . . . . . . . . . . . 10
2.4 Bioinformatics-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Other relevant publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Solution Design and Implementation 16
3.1 Selection of N-way model matching approach . . . . . . . . . . . . . . . . . 16
3.2 Deep dive in selected approach: RaQuN . . . . . . . . . . . . . . . . . . . . . 17
3.3 VARIOUS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Conceptual design of the Framework and its structure . . . . . . . . 22
3.3.2 The System Aligner component and requirements for RaQuN . . . . 24

3.4 RaQuN design and implementation for VARIOUS . . . . . . . . . . . . . . . 26
3.4.1 High-level view of RaQuN in VARIOUS . . . . . . . . . . . . . . . . . 26
3.4.2 RaQuN implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Vectorizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Scorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



v

Aligner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Evaluation 45
4.1 Evaluation criteria and requirements . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Meeting requirements with RaQuN implementation . . . . . . . . . . . . . . 47
4.3 Meeting requirements with System Aligner . . . . . . . . . . . . . . . . . . . 49
4.4 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Conclusion 52
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Bibliography 55



vi

List of Figures

1.1 SPL in comparison to a Single System development [1] . . . . . . . . . . . . 2

2.1 NwM Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 RaQuN vs NwM on large size input models [9] . . . . . . . . . . . . . . . . . 9
2.3 RaQuN Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Formal statements to define similarity metrics for homogeneous models [17] 11
2.5 Comparison operators used in formal statements [17] . . . . . . . . . . . . . 12
2.6 Formalism-based algorithm Time Complexity . . . . . . . . . . . . . . . . . . 12
2.7 Bioinformatics-based algorithm Time Complexity . . . . . . . . . . . . . . . 13

3.1 RaQuN algorithm phases [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Example: Input Models [9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Example: Vector Space with two dimensions [9] . . . . . . . . . . . . . . . . 19
3.4 Conceptual Design of VARIOUS (DIKW vertically - GQM horizontally) [26] 22
3.5 Logical Structure of VARIOUS and the Analyser Component . . . . . . . . . 23
3.6 VARIOUS Database Class Diagram - Models . . . . . . . . . . . . . . . . . . 24
3.7 VARIOUS Database Class Diagram - Scores . . . . . . . . . . . . . . . . . . . 25
3.10 RaQuN Vectorizer - Component Diagram . . . . . . . . . . . . . . . . . . . . 28
3.11 RaQuN Vectorizer - Python help page . . . . . . . . . . . . . . . . . . . . . . 28
3.14 RaQuN Vectorizer - Activity Diagram . . . . . . . . . . . . . . . . . . . . . . 30
3.15 RaQuN Vectorizer - Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.18 RaQuN Scorer - Python help page . . . . . . . . . . . . . . . . . . . . . . . . 32
3.20 RaQuN Scorer - Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . 33
3.21 RaQuN Scorer - Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.26 RaQuN Aligner - Activity Diagram . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 VARIOUS Database Class Diagram - Matches . . . . . . . . . . . . . . . . . . 38
3.9 RaQuN implementation - High Level View . . . . . . . . . . . . . . . . . . . 39
3.12 RaQuN Vectorizer - Snapshot of input_models.json . . . . . . . . . . . . . . 40
3.13 RaQuN Vectorizer - Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . 40
3.16 RaQuN Vectorizer - Snapshot of models_vector.json . . . . . . . . . . . . . 41



vii

3.17 RaQuN Scorer - Component Diagram . . . . . . . . . . . . . . . . . . . . . . 41
3.19 RaQuN Scorer - Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.22 RaQuN Scorer - Snapshot of models_candidates.json . . . . . . . . . . . . 42
3.23 RaQuN Aligner - Component Diagram . . . . . . . . . . . . . . . . . . . . . 43
3.24 RaQuN Aligner - Python help page . . . . . . . . . . . . . . . . . . . . . . . . 43
3.25 RaQuN Aligner - Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.27 RaQuN Aligner - Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.28 RaQuN Aligner - Snapshot of models_matches.json . . . . . . . . . . . . . . 44

4.1 Similarity Score function in evaluation . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Accuracy Measure in evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Vectorization with properties as dimensions . . . . . . . . . . . . . . . . . . . 48
4.4 Execution Time Results Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Matches Quality Results Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Weight metric by Rubin and Chechik . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Domain agnostic shouldMatch formula . . . . . . . . . . . . . . . . . . . . . 53



viii

List of Tables

2.1 NwM algorithm ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 RaQuN algorithm ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Formalism-based algorithm ratings . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 N-way model matching approaches ratings overview . . . . . . . . . . . . . 16

4.1 Evaluation data subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



ix

List of Abbreviations

SPL Software Product Line
RaQuN Range Queries on N input models
NwM N-way model Merging
GQM Goal Question Metric
DIKW Data Information Knowledge Wisdom



1

Chapter 1

Introduction

1.1 Background and context

In today’s fast-paced and competitive software development landscape, there is an always
growing need for software that is not only functional but also well-designed and highly
reusable. This is driven by factors like the increasing complexity of software systems, the
need for faster time-to-market, and the desire for cost-effective solutions. In particular,
Software Product Line (SPL) engineering, which involves developing a family of related
software products using a common set of reusable assets, requires software that is both
modular and flexible. The utilization of reusable assets enables organizations to reduce
development costs and improve time-to-market by reusing proven, high-quality software
components. Figure 1.1 illustrates the payoff of the Product Line Approach comparing to a
Single System development.

However, when developing software product lines, developers often clone existing
software assets and modify them appropriately for the new product in order to cope with
strict deadlines. Following the clone-and-own approach when working with large-scale
software systems makes it difficult to manage the variability of these assets across different
products. In many cases, multiple versions of the same asset may exist, each with variations
in features or functionality.

N-way model matching approaches provide a way to compare and reconcile these
different versions of the same asset, by identifying similarities and merging them into a
coherent whole. Fully or semi-automating this process can be of big help to ensure that
software assets are consistent and coherent across multiple products, reducing development
costs and improving the overall quality of the software system.



Chapter 1. Introduction 2

FIGURE 1.1: SPL in comparison to a Single System development [1]

1.1.1 N-way model matching

N-way Model matching has evolved considerably in recent years because of the increasing
demand for efficient and effective software engineering practices in the industries [2]. The
first works [3]–[5] started appearing in the area of model-driven engineering where the
models are used to represent software systems at various levels of abstraction.

Early approaches [6], [7] in model matching were typically pairwise comparisons of
models which were lacking in scalability for large software systems. Hence, more recent
advances [8]–[11] enabled the comparison of multiple models simultaneously. The term
"N-way" refers to the fact that this technique can be used to compare more than two models
at a time. These N-way model match techniques leverage algorithms from areas such as
graph theory to identify patterns and relationships between different models.

Despite these advances there are still challenges. Efficiency is probably the major one
since when the number of models to be compared increases, the computational complexity
of the matching process grows rapidly. Additionally, the diversity of modeling languages
and tools used in software engineering can be very problematic for model matching. This
is because the models may differ in terms of syntax, semantics and structure making it
difficult to identify accurately the similarities between the models. Finally, the verification
of the matching results in terms of correctness and completeness is another challenge that
needs to be addressed for having an effective and robust matching process.



Chapter 1. Introduction 3

1.1.2 Impact on software engineering

Model matching becomes very useful when it is incorporated in a software product line
process for automatically identifying similar software assets that can be potentially re-
worked before leaving the development phase of a product. By leveraging the similarities
between different models, software engineers can develop reusable assets which are used
across the product line leading to higher quality software with fewer defects. This results
in more efficient and effective solutions that are better aligned with the needs of the
organization and its customers.

In addition, N-way model matching fosters collaboration and communication among
software engineering teams by providing a shared understanding of the software models
being developed for the different products. It helps to reduce misunderstandings and
avoid misuse of models that can result in late corrections impacting the product’s planned
schedule.

The product’s compliance checking with regulatory and industry standards can also
benefit of model matching by verifying that the software components are developed in
accordance with these standards. Predefined standards-based model can be used as golden
references to compare against the software components under development. It would be
of great help for industries such us healthcare, finance, and aerospace which are very strict
in the compliance with standards.

Overall, due to the demand for software systems that are both reusable and adaptable,
N-way model matching is likely to continue to be an important area of research and
development in the field of software engineering, as it can have a significant positive
impact on the quality, reliability and maintainability of the software systems while also
improving collaboration and compliance checking.

1.2 Research questions and objectives

The aim of this thesis is to conduct a qualitative evaluation of N-way model matching
approaches. To achieve this goal we will start by collecting and reviewing existing literature
on N-way model matching approaches in the area of software engineering. Then, based on
the findings from the literature review we will select the most promising approach and
attempt to implement as part of the product line analysis framework called "VARIOUS"
developed by Fraunhofer IESE. The objective of this implementation is to evaluate the
feasibility and practicality of an N-way model matching approach in a real-world scenario.
The results of this evaluation will provide practical evidence of the applicability and
potential benefits of N-way model matching in software engineering. The following
research questions are to be addressed:



Chapter 1. Introduction 4

• RQ1: How well do the existing N-way model matching approaches meet the criteria:
Accuracy, Performance, Scalability, Configurability?

• RQ2: What is the implementation and integration process for an N-way model
matching approach in a software system?

• RQ3: How does the selected N-way model matching algorithm compare to the
existing mechanism of VARIOUS framework?

1.3 Overview of the structure of the thesis

The thesis is structured as follows:

• Related Work:
In this chapter we provide a review of existing N-way model matching approaches
that are published in software engineering field. We discuss their strengths and
weaknesses aiming to select one of them for implementing and evaluating it.

• Solution Design and Implementation:
This chapter focuses on the design and implementation of the selected approach.
We initially justify our choice and then present the VARIOUS platform on which
we integrate the N-way model matching technique. We describe the process of
integrating it, emphasizing on the architecture and implementation.

• Evaluation:
Here we present the results of our evaluation of the implemented approach. We
provide detailed analysis of our findings and compare the applied N-way model
matching approach with the pre-existing model matching approach of VARIOUS
platform.

• Conclusion:
The final chapter summarizes the results of the study including a discussion of the
limitations and directions for future work.



5

Chapter 2

Related Work

In this chapter we review the N-way model matching approaches that currently exist in
academic literature in a chronological order. We aim to find the most promising one for
implementing it in a real-world Product line later. The main search criteria is to find model
matching approaches utilizing algorithms that process N input models simultaneously and
producing model matches as output.

2.1 N-way model merging (NwM)

The first published N-way model matching approach with these characteristics is the
N-way model merging (NwM) proposed by Rubin and Chechik in 2013 [8]. This work is
motivated by the fact that all previous model matching approaches propose a sequential
two-way comparison which may yield suboptimal or even incorrect results because not all
input models are considered at the same time. Hence, NwM proposed an N-way model
merging approach for the first time in literature.

Firstly, the importance of considering multiple models simultaneously is illustrated
with an example where with a pairwise merging approach, a decision made in a certain
iteration can impede reaching the desired result in later iterations. It is shown that the
pairwise approach shows great sensitivity to the order in which the input models are
picked since the matching results are based on limited information rather than the global
picture in each iteration.

After having made the need for N-way model merging clear, the study begins with
the pairwise model merging attempting to refine the compare-match-compose steps of the
merge process for N inputs. Tuples are used instead of pairs for the compare step where a
similarity measure (also referred as weight) is assigned for each one. During the match step
a validity function decides whether a tuple is eligible to be selected. Finally, the compose step
combines the elements of each matched tuples. Given that (a) domain-specific information
is required for the steps compare and compose (i.e. which elements are considered similar



Chapter 2. Related Work 6

and how these elements should be combined) and (b) there are numerous works focusing
on these aspects, the study focused on the match step of the merging process.

The study continues by showing that the match step of the merging process can be re-
duced to the NP-hard problem of weighted set packing [12] whose approximation algorithms
[13], [14] prove to be insufficient in terms of scalability for real-life cases of model merging.
Therefore, a different approach is explored aiming to provide results polynomial in time
for both the number of input models and their size. This is when the NwM algorithm is
presented as a novel model merging algorithm that is able to perform well on large scale
input models processing them simultaneously.

The main idea of the NwM algorithm is based on picking optimal matches from distinct
models and group them incrementally until a maximal set of tuples is produced. More
specifically, in the first iteration the elements of all input models are represented individ-
ually by single-element tuples. Then, they are assigned weights and get matched using
a graph-based match algorithm. The matched tuples are then unified (carrying also the
union of their weights) and used as input to the next iteration of the algorithm which
finally terminates when no more matches can be made on the input tuples. There can
be combinations of tuples that have no similarities and could then be filtered out at the
iteration that this is detected. However, because they may participate in a more desired
combination at a later iteration, it is preferred to keep them in the inputs by assigning
0 weight on them. Before the algorithm proceeds with the unification of tuples, it first
performs a validity check of the new potential unified tuple. If the appended/prepended
tuple causes the existing union of chained elements to be invalid, the match with the new
tuple is dropped. The last phase of each iteration incorporates an optimization of the
constructed chains by checking whether splitting into smaller sub-chains improves the
weight of the result.

The NwM algorithm is evaluated by the authors of the study empirically on two
example cases by comparing its performance with two subset-based algorithms (these
algorithms are based on the pairwise technique only with a larger pool of models). The
algorithms defined utilize Greedy [13] algorithm on subsets of size 3 (Gr3) and 4 (Gr4).
The results show that NwM outperforms the subset-based approaches with regard to the
weight of the found solution, i.e., the similarity degree of the matched models. In numbers,
NwM is able to achieve from 13.5% to 30% improvements compared to Gr3 and Gr4. With
respect to the execution time, NwM is sitting in between of Gr3 and Gr4. Comparing with
Gr3 which is the fastest of the two, NwM is 67% to 77% slower. Hence, the study concludes
that NwM produces results with higher quality and even though its running time is slower,
it is still feasible. The complexity of the NwM algorithm is shown in Figure 2.1.

Lastly, in Table 2.1 we attempt to evaluate the NwM algorithm using ratings in the scale
of low, medium and high for the important characteristics that we are mainly interested



Chapter 2. Related Work 7

NwM Time Complexity

O(n4 ∗ k4)

→ n: the number of input models

→ k: the size of the largest input model

FIGURE 2.1: NwM Time Complexity

(RQ1). The ratings are set arbitrarily based on the evaluation data presented by the authors
of the algorithm and their conclusion. The evaluation is conducted through a comparison
between the proposed approach and the previously predominant method, allowing the
authors to assess the quality characteristics:

• Accuracy: how accurately can it find the most similar models?
• Performance: how much running time it requires?
• Scalability: how does it perform when the number of inputs increases?
• Configurability: how easy it is to adapt it for different applications?

Characteristic Rating Justification

Accuracy high NwM demonstrated a significant improvement in accuracy
of up to 30% comparing to subset-based approaches Gr3
and Gr4.

Performance medium The execution time of NwM is found to be moderate when
compared to subset-based approaches, neither exhibiting the
most exceptional nor the poorest performance. It is proven
to be slower than Gr3 and faster than Gr4.

Scalability low NwM’s performance is negatively impacted when used on
a large number of input models due to the extensive com-
parisons required between model elements. In a specific
experiment NwM exceeded the 12-hour timeout limit while
the subset-based approaches performed in reasonable times.

Configurability N/A NwM does not offer configuration capabilities.

TABLE 2.1: NwM algorithm ratings



Chapter 2. Related Work 8

The N-way model matching approach exhibits performance issues when applied to a
large scale of input models, attributed to the vast number of comparisons between model
elements. Notably, during one of the experiments involving a set of large-scale models,
NwM surpassed the timeout limit of 12 hours, in contrast to the pairwise algorithms.

2.2 Range Queries on N input models (RaQuN)

In 2021, Schultheiß et al. presented RaQuN; a scalable N-way model matching technique
using multidimensional search trees [9]. The motivation of this work is to tackle the
scalability problems that the NwM algorithm had when applying it to models of realistic
size, comprising hundreds of elements (model’s discreet entities with name and properties;
e.g. a class). The models of this size require a big number of comparisons which leads to
performance problems. As an example, given the Runtime Complexity of NwM (Figure
2.1), a set of input data with 100 models, where each model has 25 elements, would result
in approximately 3,906,250,000 comparisons.

The key idea behind RaQuN is to represent the elements of all input models as points in
a multidimensional vector space using a k-dimentional binary search tree [15] for efficiently
finding the nearest neighbors of each element, i.e., the elements which are most similar to a
given element. Using only the nearest neighbors for match candidates, reduces the number
of required comparisons significantly (more than 90%) promising good performance on
big scales without compromising the quality of results.

RaQuN algorithm consists of three phases:

1. Candidate Initialization: In the first phase it converts all elements of all input models to
numerical vector representations and inserts them into a k-dimentional search tree.
The number of dimensions as well as the numerical meaning of each one is up to the
user to define.

2. Candidate Search: In the second phase, where each model element is mapped to a
specific point in the tree’s vector space, RaQuN retrieves the nearest neighbors for
each of the elements creating sets of match candidate pairs. It only considers as valid
neighbor elements the ones that do not belong to the same model as the one under
processing.

3. Matching: In the last phase RaQuN introduces a measure similar to the weight metric
introduced by Rubin and Chechik in NwM algorithm for measuring the similarity of
the match candidates. This similarity function is applied on each candidate adding the
degree to which the two elements are similar. Finally, the algorithm ends with making
tuples of matches by merging the candidate pairs that show sufficient similarity
degree according to a down limit that the user of the algorithm has specified.



Chapter 2. Related Work 9

The main research questions that the authors are called to answer in this work is how
RaQuN performs comparing to NwM with respect to running time and quality of results,
and subsequently how the algorithm scales with growing model sizes. These questions
are answered by using three separate experimental subjects. The first is to use the same
example set of models as used in NwM to provide results from a fair comparison, the
second is model sets generated from Model-Based Software Product Lines and the last one
stems from a software family developed using the clone-and-own approach [16]. Similarly
to NwM evaluation, the quality of results is measured with the weight metric and time
for the performance. The results showed that RaQuN is significantly faster than NwM
on all experimental subjects achieving in parallel the highest weights. With regard to the
scalability the evaluation takes place using a fixed number of input model variants and
increasing their sizes in number of model elements. Both the running time and the quality
of results are measured while increasing the model sizes as it is important that the matching
accuracy does not deteriorate on large scales. As shown in the left plot of Figure 2.2 below,
RaQuN’s running time remains feasible on the large size models in contrast to the NwM.
On the right plot we can observe RaQuN producing a slightly higher precision results
comparing to NwM. Note that the plots also contain data of Pairwise approaches, but these
are considered to be out of scope for this thesis and therefore skipped.

FIGURE 2.2: RaQuN vs NwM on large size input models [9]

The impact of RaQuN’s configurability on the algorithm’s performance is also assessed
by the authors. In fact, the authors measure the running time of RaQuN with different
values of the nearest neighbors k’ to search as described in the second phase: Candidate
Search above. The results showed a linear growth of running time with the increase of k’.
Also while with the heuristic choice of k’=7 RaQuN retrieves enough candidates for good
matches, while still reducing the number of element comparisons by more than 90% for
most experimental subjects. The complexity of the RaQuN algorithm is shown in Figure
2.3.



Chapter 2. Related Work 10

RaQuN Time Complexity

O(n3 ∗ k3)

→ n: the number of input models

→ k: the size of the largest input model

FIGURE 2.3: RaQuN Time Complexity

In Table 2.2 we rate RaQuN algorithm for the characteristics we are interested in:

Characteristic Rating Justification

Accuracy high RaQuN scored the highest weights in the comparison with
NwM and pairwise algorithms across all experimental
datasets.

Performance high RaQuN outperformed NwM on all input model dataset sizes
and proved to be as fast as pairwise algorithms on medium-
sized datasets with hundreds of elements.

Scalability high RaQuN demonstrated favorable scalability for models of
varying sizes, including the largest models in the experi-
mental dataset with over 10000 total elements, and without
compromising the quality of matches.

Configurability medium RaQuN offers a set of key configuration options, including
the definition of vector space dimensions, the number of
neighbors to search for each model element in the vector
space, as well as the similarity scoring function which deter-
mines whether a candidate pair of elements is considered a
match or not.

TABLE 2.2: RaQuN algorithm ratings

2.3 Formalism-based N-way matching algorithm

In 2022, Kasai et al. proposed a formalism to facilitate the similarity criteria definition by
the users, and subsequently they introduced an N-way matching algorithm based on it [11].



Chapter 2. Related Work 11

The main motivation of this work is to provide full control to the users over the criteria
that determine the similarity between models in an N-way model matching approach.

The N-way model matching formalism is inspired by Rouhi and Zamani specification
[17] and its purpose is to specify comparison rules for multiple models which can be either
homogeneous or heterogeneous. Homogeneous models are considered the models that
refer to the same metamodel, while heterogeneous models refer to different metamodels.
With the keyword module the name of the comparison module is defined. Each module
should have a list of metamodels that will be used for comparison, which are defined
with the keyword inputMetaModels followed by nested import keywords to specify the
source URI of the metamodel (e.g. import UML : www.omg.org/UML2/5.0/). Then the
comparison rules are defined with keywords homocomRule and hetecomRule for homoge-
neous and heterogeneous models respectively. Each rule contains fields for defining its
name (rule), the related element of the metamodel (matchHomo, or matchHete) which can
be one for homogeneous and many for heterogeneous; and finally a block with keyword
compareModels that specifies the details of model elements in the comparison process. This
block contains a list of formal statements (homoStatement, or heteStatement) that define
the similarity metrics according to the input metamodels (Figure 2.4). The comparison
operators (compOp and comparisonOp) define logical operators with textual or mathematical
notations (Figure 2.5). The definition of the reference element of the metamodel is specified
with the keyword modelElement which contains the element type and properties.

FIGURE 2.4: Formal statements to define similarity metrics for homogeneous
models [17]

The proposed N-way model matching algorithm that is based on the formalism, receives
a set of input models and produces a list of matched model elements. It iterates through
all input model elements assigning each element in a group (also mentioned as chain)
with similar elements. Each element has to satisfy the formalism-based similarity metrics
defined by the user. Finally, a list of groups is made where each group contains model
elements that satisfy the user’s similarity rules and conform to each other. As the authors
explain, the formalism narrows down the comparison search area, because the algorithm



Chapter 2. Related Work 12

FIGURE 2.5: Comparison operators used in formal statements [17]

only considers the elements that belong to the formalism, while the elements that are
not in the domain of the comparison are ignored. This effectively reduces the number of
comparing operations. The time complexity of the Formalism-based algorithm is presented
in Figure 2.6.

Formalism-based algorithm Time Complexity

O(n ∗ m2)

→ n: the number of input models

→ k: the size of the largest input model

FIGURE 2.6: Formalism-based algorithm Time Complexity

In terms of evaluation, the authors of this work did not present any data. Therefore,
it is hard to assess Accuracy, Performance and Scalability characteristics for our review.
However, the Configurability is considered as the main asset of this approach as the
proposed approach gives the full control of the comparison criteria to the user and hence it
is easy to adjust for the needs of the target software system.

2.4 Bioinformatics-based approach

The VARIOUS framework by IESE, where we plan to implement and integrate the chosen
approach after the thorough review in this chapter, has already a model matching technique
incorporated against which we will evaluate the chosen approach. This technique is based
on the Thesis work of Vasil Tenev for his Bachelor’s degree [10] and the software component
that implements it in VARIOUS framework is called System Aligner.



Chapter 2. Related Work 13

Characteristic Rating Justification

Accuracy N/A No evaluation data available.

Performance N/A No evaluation data available.

Scalability N/A No evaluation data available.

Configurability high With this approach the users can define their own require-
ments for the comparison process of the algorithm at model
element level which makes it highly configurable.

TABLE 2.3: Formalism-based algorithm ratings

The work [10], [18] presents an approach for the simultaneous analysis of software
variants across multiple systems. The algorithms employed in this work are inspired
by bioinformatics, specifically DNA sequence alignment. Similar to how nucleic acid
sequences describe the anatomical and functional characteristics of living organisms, source
code describes the structural features and behavior of software systems.

The study begins with constructing a data model of systems by defining software
systems as directed colored multigraphs. The existing theory of DNA alignment is then
extended to the new data model. Then the author defines formally the problem of optimal
software systems alignment, and explores the mathematical bounds. It is discovered that
the problem is exponential, rendering it impractical for real world cases due to the high
computational cost. Therefore, a heuristic solution with polynomial-time complexity is
sought for the problem. An 8-approximation method for pairwise alignment of software
systems is devised and combined with an iterative variant of the Center Star method by
Gusfield [19]. The resulted algorithm creates a method for variant analysis with time
complexity shown in Figure 2.7.

Bioinformatics-based algorithm Time Complexity

O(n3 ∗ k2 ∗ log(k))

→ n: the number of input models

→ k: the size of the largest input model

FIGURE 2.7: Bioinformatics-based algorithm Time Complexity

The bioinformatics-based approach will not be part of our evaluation in this chapter’s



Chapter 2. Related Work 14

review of existing N-way model matching approaches, as it is the approach that VARIOUS
framework has grounded in its model matching function with the System Aligner com-
ponent. The results of our selected approach will be compared with the ones of System
Aligner.

2.5 Other relevant publications

Apart from the three aforementioned N-way model matching algorithms there are many
publications about model merge refactoring approaches which in essence focus on migrat-
ing a set of variants into an integrated software product line. These works do not fully
relate to the scope of this thesis as they present heuristic approaches rather than algorithms
that can be implemented. However, it is worth citing them as part of this chapter.

• From Imprecise N-Way Model Matching to Precise N-Way Model Merging. [20]

Generally, the N-way model merging techniques are based on three operators (1)
compare, (2) match and (3) merge. The last step requires as input the results of the
N-way model matching which incorporates the compare and match steps. This work
focuses on the merge step proposing a methodology which incrementally applies
as a post-processing step model-refactoring operators, to identify and unify further
similarities among (initially) unmatched model elements.

• Automated N-way Program Merging for Facilitating Family-based Analyses of Variant-rich
Software. [21]

In this work, a methodology named SiMPOSE is proposed, which incorporates
automatic generation of superimpositions of N given program versions and/or
variants (in C language) to facilitate family-based analyses of variant-rich software. It
is based on an N-way model merging technique operating at the level of control-flow
automata (CFA) representations of C programs.

• Identifying and Visualising Commonality and Variability in Model Variants. [22]

A systematic comparison method is presented in this work, namely MoVaC (Model
Variants Comparison), which focuses on the comparison of a set of model variants to
identify commonalities and variabilities in the form of features. The authors based
their second work [23] on MoVaC to build a Model-based Software Product Line by
re-engineering the model variants.

• SYS2VEC: System-to-Vector Latent Space Mappings [24], [25]

In this paper, the SYS2VEC approach is presented, which focuses on mapping product
line variants into a latent vector space by means of machine learning techniques. It



Chapter 2. Related Work 15

exploits the stochastic nature of the machine learning models to decrease the time
taken for pairwise similarity comparison using row vectors in the finite-dimensional
vector space.



16

Chapter 3

Solution Design and Implementation

This chapter centers on the design, implementation, and integration of an N-way model
matching approach as part of the product line analysis framework VARIOUS. Initially,
we describe the selection process of the most promising approach, based on the review
of existing studies presented in Chapter 2, and then provide an in-depth analysis of the
algorithm used in the selected approach. Finally, we discuss the VARIOUS framework,
which serves as the basis for the design and implementation of the N-way model matching
algorithm.

3.1 Selection of N-way model matching approach

In Chapter 2 we did a review of all existing N-way model matching approaches. We
defined the main criteria for our evaluation and rated all approaches accordingly. In Table
3.1 we present an overview with all the ratings of the reviewed approaches. Apparently, the
Bioinformatics-based approach discussed in 2.4 is excluded from the selection process as it
is the one that currently exists in VARIOUS and will act as the counter approach against
which we will put the selected one for comparison.

Characteristic NwM RaQuN Formalism-based

Accuracy high high N/A

Performance medium high N/A

Scalability low high N/A

Configurability N/A medium high

TABLE 3.1: N-way model matching approaches ratings overview



Chapter 3. Solution Design and Implementation 17

After thorough consideration, it has been concluded that the Formalism-based approach,
discussed in 2.3 should not be included in further analysis. Although it has been shown
to have better time complexity when compared to the other candidates, it lacks sufficient
evaluation data to substantiate its actual performance, which is essential for this Thesis in
determining the effectiveness of the approach.

This leaves us with the remaining approaches namely NwM and RaQuN that were
reviewed in 2.1 and 2.2 respectively. The former was the first N-way model matching
approach that paved the way for the development of RaQuN, which addresses the main
scalability issue of NwM. RaQuN provides a high level of Configurability to the user,
allowing the adaptation of the algorithm to any target software system, and the tuning
of the model matches Accuracy at the cost of a linear runtime increase. According to the
evaluation data, RaQuN outperforms NwM in terms of Performance on all test datasets. It
is evident that the Scalability and Configurability of RaQuN make it an appealing approach
for model matching in modern software product lines that typically involve hundreds of
model elements. Therefore, we consider RaQuN as a suitable candidate for further analysis
and integration into the VARIOUS framework.

3.2 Deep dive in selected approach: RaQuN

As mentioned in the preceding chapter’s analysis of the RaQuN approach (2.2), the al-
gorithm comprises three phases. The objective of the first two phases, namely Candidate
Initialization and Candidate Search, is to minimize the number of comparisons needed dur-
ing the last phase: Matching. In Figure 3.1 the algorithm is shown with the three phases
highlighted in colors.

In Candidate Initialization phase, RaQuN collects all input model elements and constructs
a multidimensional binary search tree (or k-d tree, where k is the dimensionality of the
search space) [15] consisting of the model elements’ vector representations as nodes in the
tree. The vectorization of the input model elements is defined by the user of the algorithm.
In essence, the vectors (or dimensions of the vector space) can be any characteristics of the
model elements that the user wishes to base the comparison on in the next phase. A simple
example given by the authors uses as inputs three models, each one having a number of
model elements and each element containing a number of properties as shown in Figure 3.2.
In the example, a two-dimensional vectorization is set, with the first dimension being the
average length of all elements’ property names, and the second the number of properties of
an element. The vectorization is illustrated in Figure 3.3 where the input model elements
are mapped in the vector space. The selection of the dimensions in the vector space is very



Chapter 3. Solution Design and Implementation 18

FIGURE 3.1: RaQuN algorithm phases [9]



Chapter 3. Solution Design and Implementation 19

FIGURE 3.2: Example: Input Models [9]

FIGURE 3.3: Example: Vector Space with two dimensions [9]



Chapter 3. Solution Design and Implementation 20

important for the next phase where each element will be examined individually for finding
its closest neighbors to conduct a set of match candidate pairs.

In the Candidate Search phase, RaQuN uses the k-d tree search function [15] with a
suitable distance metric, such as the Euclidean distance, to retrieve a specified number
of nearest neighbors as defined by the user. For each element and its corresponding
neighbors, RaQuN creates match candidate pairs, forming a set of pairs to pass on to the
subsequent phase. To reduce the number of comparisons, the algorithm considers a match
candidate pair as valid only if the two elements of the pair belong to different models.
It is worth noting that the k-d tree search function also includes the self-element as a
neighbor in the results. Having a closer look at Figure 3.3 we can see two elements, namely
3:AdminAssistant-A and 5:AdminAssistant-B, sharing the same point in the vector space.
In such cases, where multiple elements possess identical vector representation, RaQuN
automatically expands the number of neighboring elements to ensure that all sufficiently
close elements are taken into consideration for the comparison. In the given example, three
neighbors were selected, resulting in the final set of match candidate pairs:

P = ({1, 4}, {2, 4}, {3, 5}, {3, 7}, {5, 7}, {5, 1}, {6, 2}, {6, 8}, {7, 1}, {8, 2}, {8, 4})

The last phase is Matching where RaQuN compares the elements of each match can-
didate pair based on a user-defined similarity function. The objective of this function
is to assess the degree of similarity between the two elements by producing a similar-
ity score. After applying the similarity function, a new reduced set of pairs is created
sorted by their score. The pairs with zero similarity score are excluded. In the provided
example, a simple similarity function is employed which calculates the ratio of shared
properties to all properties. For instance, in the case of the match candidate pair {3, 7},
the function assigns a score of 3

4 , as the model elements 3 and 7 share three properties
(n_AdminAssistant, ex_medicalTeam, calendar) out of the four properties present in their
combined set (n_AdminAssistant, ex_medicalTeam, calendar, procedure). The set created
after applying the similarity function in our example is:

P̂ = ({3, 7} :
3
4

, {2, 4} :
4
6

, {3, 5} :
2
4

, {5, 7} :
2
5

, {7, 1} :
1
8

, {6, 8} :
1

11
)

Next, RaQuN creates the final set of matches which is the output of the algorithm. It
initializes the final set of matches by adding all individual input model elements:

T = ({1}, {2}, {3}, {4}, {5}, {6}, {7}, {8})

This acts as the ground for building the matched elements based on the similarity score



Chapter 3. Solution Design and Implementation 21

calculated earlier. RaQuN then retrieves each match candidate pair from P̂ and decides
whether the two elements will be merged or not into a match tuple depending on a lowest
score criteria that the user defines. For the sake of simplicity, the threshold given in the
provided example is 1

2 , meaning that any candidate pair with score greater or equal to 1
2

should be merged. Starting with the match candidate pair having the higher score in our
example, we see that the score 3

4 satisfies the lowest score criteria, hence RaQuN merges
tuples {3} and {7}:

T = ({1}, {2}, {3, 7}, {4}, {5}, {6}, {8})
Subsequently, the pairs {2, 4}, and {3, 5} also satisfy the score criteria, hence the tuples
including their elements are merged:

T = ({1}, {2, 4}, {3, 5, 7}, {6}, {8})

Lastly, the pairs {5, 7}, {7, 1} and {6, 8} do not pass the lowest score threshold hence the
unmerged elements remain in single tuples in the final result:

T = ({1}, {2, 4}, {3, 5, 7}, {6}, {8})

Upon examining the application of RaQuN in the provided example, it becomes evident
that the algorimth exhibits a notable degree of configurability, confirming the favorable
assessment from the previous chapter’s evaluation. The points of variation offered by the
algorithm are outlined below.

In the Candidate Initialization phase, users have the option to define the dimensions of
the vector space, facilitating the clustering of similar elements within the same region of the
vector space. Increasing the number of dimensions increases the likelihood of clustering
similar elements, however it is important to note that a higher number of dimensions can
adversely affect performance.

Moving to the Candidate Search phase, users have the flexibility to specify the number
of neighboring elements to be retrieved for each element. This parameter directly influences
the number of candidate pairs considered during the matching phase. Additionally, users
can define the distance metric to be used in determining the distance between vector
representations of two elements within the vector space.

In the Matching phase, users can define the similarity function used to evaluate the
quality of a match. Furthermore, they can specify the matching criteria considered by
RaQuN to determine the sufficiency of a score generated by the similarity function.

By offering these configurable options, RaQuN empowers users to adapt the algorithm’s
behavior to their specific needs, enhancing its versatility and applicability in various
contexts.



Chapter 3. Solution Design and Implementation 22

3.3 VARIOUS Framework

When managing a software product line it is important to take into account the financial
implications of the incorporated features. The economics of a feature should be justified
by its value to the potential customers in relation to the cost that it takes for maintenance
and further expansion. To make this assessment, multiple sources are required to extract
the necessary data for processing and analysis. Apart from the thorough understanding
of the product line itself, the customer needs, and the market trends, it is vital to employ
expertise in data analysis and modelling. This can be time-consuming and labour-intensive
process, hence there is a need for an effortless decision support to the product line analyser.

3.3.1 Conceptual design of the Framework and its structure

VARIOUS is an approach developed by IESE [26] that presents a method for analysing
software product lines (SPLs) in order to identify and address inefficiencies resulting
from excessive variability. It combines the Goal-Question-Metric (GQM) approach [27]
with the Data-Information-Question-Wisdom hierarchy (DIKW) [28] to facilitate informed
decision-making. The GQM approach ensures alignment between a company’s business
and engineering strategies, while the DIKW framework enables thorough analysis of data
to extract valuable knowledge and gain a holistic understanding of the costs and customer
value associated with each feature. By leveraging these two approaches, the VARIOUS
method constructs a multimodel knowledge graph that serves as a framework for conduct-
ing data analyses and addressing complex questions related to scoping, maintaining, and
optimizing SPLs.

FIGURE 3.4: Conceptual Design of VARIOUS (DIKW vertically - GQM hori-
zontally) [26]



Chapter 3. Solution Design and Implementation 23

The knowledge graph is constructed based on the existing data models of the SPL.
The construction of the graph involves analyzing all artifacts of the SPL building collec-
tions to determine their similarity. This analysis facilitates the transition from "Data" to
"Information" in the DIKW hierarchy. VARIOUS employes a comprehensive database of
data models and incorporates the System Aligner component to perform the analysis of
these data models. The System Aligner utilizes a similarity scoring function to establish
similarity metrics, which are then used to generate tuples of model matches, resulting in a
knowledge model that captures the variability of the product line. "Knowledge" is the next
phase of DIKW, and its accuracy is important for the decision support VARIOUS aims to
provide to the user.

In this thesis, our focus is on the aforementioned phases of VARIOUS, specifically
the ones implemented by the System Aligner. As discussed in Section 2.4, the System
Aligner implements the bioinformatics-based N-way model matching approach originally
presented by Vasil Tenev in his studies [10], [18]. To address the second research question
(RQ2) of this thesis, we utilize the VARIOUS framework as the foundation for implementing
and integrating RaQuN approach, which would act as an alternative to the System Aligner
component. The ultimate goal is to evaluate the performance and efficiency of these two
approaches by using the model data in the database of VARIOUS.

FIGURE 3.5: Logical Structure of VARIOUS and the Analyser Component

VARIOUS framework consists of a core block called Data Management and several other
blocks that offer the functions to the outside utilizing the core block. Data Management
encompasses the Back End and the Middleware sub-blocks. The Back End contains the
database housing the models while the Middleware serves as an interface between the Back
End and the blocks consuming the model data. Figure 3.5 provides a visual representation



Chapter 3. Solution Design and Implementation 24

of the logical structure of the VARIOUS framework, illustrating the operations available
to users. The block diagram depicts the Analyst as the primary actor, with the green
blocks representing the operations offered by the VARIOUS framework for the Analyst
to utilize. Of particular interest to us is the highlighted block called Analyser where the
System Aligner component resides. The Analyser offers the function Perform Analysis
which conducts the analysis of the model data retrieved from the Back End database. In
the next chapters we discuss how a new component that implements the RaQuN N-way
model matching approach can be integrated in the VARIOUS Analyser.

3.3.2 The System Aligner component and requirements for RaQuN

The database of VARIOUS residing in the Back End block of Data Management, is organized
in Collections of Documents and Edges. The Document Collections contain the models
represented as assets, while the Edge Collections contain the information of how assets are
associated to each other. As depicted in the Class Diagram of Figure 3.6, the model assets
have a field to be uniquely idenfiable: _id, and the edges link two assets with _from and
_to predicates containing the field _type to indicate the type of association between the
assets (e.g. _type = "has").

FIGURE 3.6: VARIOUS Database Class Diagram - Models

The System Aligner component interacts with the database for two main purposes. The
first and foremost is to analyse the model data to measure their similarities. This task is



Chapter 3. Solution Design and Implementation 25

accomplished by the Scoring module which incorporates a Scoring Function to calculate the
similarity score of models deemed as match candidates. As shown in Figure 3.7, the scores
are stored in the database as edges within the Edge Collection. These edges are identified
with _type = "scoring_edge" and include a second field called score that holds the actual
similarity score as an integer, reflecting the degree of similarity between the associated
model assets. The second purpose of System Aligner component’s interaction with the

FIGURE 3.7: VARIOUS Database Class Diagram - Scores

database is to reconcile the model match candidates outputted by the Scoring module, into
a set of model matches. The Aligner module analyses the scores stored in the database
and determines which model assets qualify as valid matches based on their similarity
score. The resulting model match_tuples are stored in the database within the Document
Collection and are associated with edges of _type = "match_tuple_edge" from the Edge
Collection (Figure 3.8).

After examining the role of System Aligner in VARIOUS, and understanding its inter-
action with the database, we can proceed with planning the integration of the RaQuN



Chapter 3. Solution Design and Implementation 26

approach. The implementation of RaQuN should be carefully designed to seamlessly re-
place the System Aligner, without impacting any other components. This entails ensuring
that the interfaces of System Aligner remain intact, and RaQuN is implemented in such
way that the overall behaviour of the Analyser block is preserved.

It is essential to ensure that RaQuN serves the same purposes as the System Aligner,
the model similarity scoring and the model match alignment. Both scoring and match
alignment outputs generated by RaQuN should adhere to a format that is compatible
with the database. VARIOUS utilizes the JSON format for its database interface, which
follows a predefined layout. The same format is used for the input models exported from
the database, hence RaQuN must be capable of handling these data, enabling smooth
compatibility.

3.4 RaQuN design and implementation for VARIOUS

3.4.1 High-level view of RaQuN in VARIOUS

In order to incorporate the RaQuN approach into the VARIOUS Framework, our initial step
is to map the phases of the algorithm onto the modules Scoring and Aligner of the Analyser
block in VARIOUS. As mentioned in Section 3.2, the RaQuN algorithm comprises three
phases: Candidate Initialization, Candidate Search and Matching (refer to Figure 3.1). To begin
this mapping process, we can consider introducing the two modules RaQuN Scorer and
RaQuN Aligner similarly to the existing ones in Analyser. RaQuN Scorer would primarily
handle the first two phases of the algorithm, plus the initial part of the last phase where the
similarity function is applied (Figure 3.1 line 18). The output of RaQuN Scorer would be
the similarity score of the input models, while the RaQuN Aligner module would handle
the remaining part of the algorithm which involves the model match candidates alignment,
generating the final set of model matches tuples.

The RaQuN algorithm relies heavily on transforming the input model data into points
within a k-dimentional vector space, aiming to leverage the efficient search capabilities of
the k-dimensional tree structure [15]. Given the significance of this task and the need to
maintain modularity in the implementation, it is essential to introduce a dedicated software
module for this purpose named RaQun_Vectorizer.

Figure 3.9 illustrates the mapping of the RaQuN algorithm’s phases onto the three
software modules we have discussed. Each module is defined with its respective input
and output data, along with the main activities performed, referencing the corresponding
lines of the RaQuN algorithm (Figure 3.1). Additionally, the integration with the VARIOUS
database through JSON formatted files is also depicted.



Chapter 3. Solution Design and Implementation 27

In the subsequent paragraphs we discuss the implementation aspects associated with
each of the software modules.

3.4.2 RaQuN implementation

The choice of the Python programming language was made for the actual development
of the software modules. Python is renowned for its simplicity and readability due to its
expressive syntax that allows for writing concise and understandable code. Furthermore,
Python comes with built-in integration with JSON that allows efficient handling of data in
this format. Tasks like file parsing, data serialization and deserialization, and file writing
are extremely simplified. This significantly reduces the effort required for interfacing the
database of the VARIOUS framework.

The RaQuN algorithm offers many variation points that allow for tailored implemen-
tation according to the specific requirements of the user. By carefully considering and
making appropriate decisions on these variation points, the accuracy of the resulting model
matches can be significantly enhanced. In the next paragraphs we see all these variation
points exposed in each software module. For the sake of demonstration we have based our
implementation decisions on the example outlined in the publication [9]. Our objective
is to reproduce the result of the exact same model matches as in the example, using the
same set of provided input model data. While some variation points allow for being
set dynamically, others require additional static adjustments. To ensure flexibility and
adaptability, our implementation is focused on code configurability; so that users can easily
alter the variation points to their own needs.

Following the RaQuN work, the implementation of the algorithm in this thesis considers
the model data representation to follow the element-property approach [8]. A model M of size
m is a set of elements{e1, ..., em}. Each model element e ∈ M, comprises a set of properties.
For this running example, the model elements are UML classes, and the properties are the
attributes of these classes.

Vectorizer

The RaQuN Vectorizer serves as the entry point in the implementation of RaQuN within
the VARIOUS framework. Its scope is to convert the input model data, exported from the
database, into an appropriate format as required by the RaQuN algorithm. This involves
transforming each element of the models into a corresponding point in the vector space,
thus creating a vector space representation. The dimensions (or vectors) in this space
are user-defined. In our example-based implementation the vectors chosen are two: the
average length of the properties of each model element, and the number of properties of



Chapter 3. Solution Design and Implementation 28

each model element. Additionally, the user shall provide the input model data from the
VARIOUS database in JSON format, and optionally the directory where the resulted file
will be stored. The depicted Figure 3.10 provides an overview of the overall inputs and
outputs of RaQuN Vectorizer and in Figure 3.11 the Python command-line help page is
shown.

FIGURE 3.10: RaQuN Vectorizer - Component Diagram

> python .\raqun_vectorizer.py -h
usage: raqun_vectorizer.py [-h] -inmodels _INMODELS [-propavglen] [-propnum] [-o _OUTDIR]

The RaQuN Vectorizer component puts the input model elements into a vector space with
dimensions defined by the user.

options:
-h, --help show this help message and exit
-inmodels _INMODELS, --input-models _INMODELS

The absolute path to the .json file with the input model data
-propavglen, --properties-average-length

Add dimension with the average length of the properties of each
model element

-propnum, --properties-number
Add dimension with the number of properties of each model element

-o _OUTDIR, --outdir _OUTDIR
The directory where the generated file will be stored.
If not defined, the current will be used.

FIGURE 3.11: RaQuN Vectorizer - Python help page



Chapter 3. Solution Design and Implementation 29

The input-models refers to the JSON formatted model data from VARIOUS database. It
is a mandatory argument so if not provided an error will be returned. Figure 3.12 depicts
a snapshot of the contents of the input_models.json file. The data is structured as an
array of models where each model entry contains arrays of components and connections.
The components represent the model elements and properties as entities following the
element-property approach mentioned earlier. Each component has a member type to specify
its type as uml-element or uml-element-property and the members _id and name to be
uniquely identifiable. The relationship between model elements and properties is specified
with the array of connections. Each connection has the members _from and _to whose
values are component _id(s) and the member type that indicates has relationship. It is
worth noting here that when RaQuN Vectorizer parses the input models, it determines
as valid relationships only the ones where the _id of _from member corresponds to a
component of type uml-element and the _id of _to member corresponds to a component
of type uml-element-property.

RaQuN Vectorizer is implemented in Python language as a class which offers certain
APIs. These APIs are then used by __main__ block of the Python script in combination
with the arguments passed by the user on run-time. The Class Diagram in Figure 3.13
illustrates the private members and public APIs of the class named ModelVectorizer. The
class constructor requires the input_models.json file to be provided in order to parse
the data and create an internal data structure (models{}) out of it; easy to use for the
subsequent actions. Having created an object of the class, the API add_dimension() is
used to specify which dimensions will be utilized during vectorization. The supported
dimensions (properties average length and number of properties) are pre-defined in the
implementation and are offered as arguments to the user on run-time to select. With the
API vectorize() the actual vectorization takes place that converts the model elements
into points of a vector space. The internal data structure is traversed calculating the vector
values of each model element for the selected dimensions. Each dimension is bound to an
internal function that calculates the vector value of the given model element.

Figure 3.14 summarizes the aforementioned logic of RaQuN Vectorizer showing the
flow of actions on run-time with an Activity Diagram. Firstly, the provided arguments are
used to create an object of the class and add dimensions to it. Then the actual vectorization
happens generating a file with the results at the output directory which is optionally set
by the user. A successful execution of the RaQuN Vectorizer Python script is depicted in
Figure 3.15.



Chapter 3. Solution Design and Implementation 30

FIGURE 3.14: RaQuN Vectorizer - Activity Diagram



Chapter 3. Solution Design and Implementation 31

> python .\raqun_vectorizer.py -inmodels .\input_models.json -propavglen -propnum -o .
The vector json file was generated successfully:
.\models_vector.json

FIGURE 3.15: RaQuN Vectorizer - Execution

The data in the generated file models_vector.json (Figure 3.16) is structured as an
array of points. Each point contains the actual vector values as well as some meta-data
of the corresponding model element which are needed by the consumers of this file. The
meta-data consist of the element’s id and name, the model that the element belongs to,
and its properties. Moreover, for better traceability it contains a timestamp, and the inputs
(input models data and dimensions) that resulted to this file.

Scorer

The next step in the implementation is the integration of RaQuN Scorer, which takes as
input the output generated by RaQuN Vectorizer. The objective of RaQuN Scorer is to
identify potential match candidates for each vectorized model element. This is achieved by
utilzing the k-d tree data structure and employing the algorithm determining the k nearest
neighbors. For each pair of match candidates, RaQuN Scorer assigns a similarity score in
the form of a percentange. The user is prompted to provide two inputs (apart from the
models-vector outputted by RaQuN Vectorizer): the value of k, representing the number
of nearest neighbors to search for each model element, and the scoring function used to
calculate the similarity score. The former is a dynamically supplied integer parameter,
while the latter requires a static implementation for each supported scoring function. The
user can select the desired scoring function by specifying the corresponding argument
in the program. In the current implementation, a simplistic scoring function has been
implemented and made available to the user. This function calculates the similarity score
by computing the ratio of shared properties between a pair of match candidates to the total
number of properties. RaQuN Scorer generates a file containing an array that captures
all candidate pairs, each assigned with a corresponding similarity score. The inputs and
the output of RaQuN Scorer are illustrated in Figure 3.17, while Figure 3.18 showcases the
interface of the Python program used in this context.



Chapter 3. Solution Design and Implementation 32

> python .\raqun_scorer.py -h
usage: raqun_scorer.py [-h] -invector _INVECTOR -knn _KNN -sprop [-o _OUTDIR]

The purpose of the RaQuN Scorer is to find model candidate pairs rated with a score
derived from the scoring function.
It requires as inputs:

- a .json with the set of vectorized models (output of vectorizer.py utility)
- the number of nearest neighbors to use for searching the match candidates
- the scoring (or similarity) function to evaluate the similarity of candidates

It outputs:
- A .json file with the set of model candidate pairs and their relevant similarity score

options:
-h, --help show this help message and exit
-invector _INVECTOR, --input-models-vector _INVECTOR

The absolute path to the .json file with the input models vector
-knn _KNN, --k-nearest-neighbors _KNN

The number ‘k‘ of nearest neighbors to find for each point in the models vector
-sprop, --scoring-shared-properties

Use shared properties as scoring function on the model matching
candidate pairs list

-o _OUTDIR, --outdir _OUTDIR
The directory where the generated file will be stored.
If not defined, the current will be used.

FIGURE 3.18: RaQuN Scorer - Python help page

Following a similar approach to RaQuN Vectorizer, the implementation of RaQuN
Scorer takes the form of a Python class, namely ModelMatchScorer, that provides APIs for
executing the necessary operations of this software module. The class diagram in Figure
3.19 shows both the private members and the public interfaces of the class. Upon instantia-
tion, the class requires the input JSON file, models_vector.json, containing the vectorized
model elements. This data is used to construct two internal parallel lists: point_vctrs,
which holds the point vectors, and point_objs, which stores the corresponding meta-data
for each model element. By having these lists in parallel, we can easily access the data of
each model element using the same index. The point vectors have to be stored separately
in a dedicated list in order to leverage the spatial.KDTree library of the Python package
scipy for creating the k-d tree.

The activity diagram presented in Figure 3.20 provides a visual representation of the
execution flow of the RaQuN Scorer program. The process begins by verifying that the
user has provided the necessary arguments, followed by the creation of an instance of
the ModelMatchScorer class. Subsequently, the get_neighbors() API is employed which
creates the k-d tree from the point vectors list by utilizing the spatial.KDTree library and
using its function query() to find the closest neighbors with the Euclidean distance. The
discovered neighbors are then stored within the meta-data internal list.



Chapter 3. Solution Design and Implementation 33

Note:
It should be noted that there may be multiple model element points sharing the same vector representa-
tion. In such cases, the RaQuN algorithm dictates the automatic adjustment of the number of neighbors
to be searched. This adjustment applies in both cases where multiple neighbor points share the same
vector representation, or when one or more neighbor point have the same vector represantation with the
actual point. The implementation of the get_neighbors() function accounts for this logic.

FIGURE 3.20: RaQuN Scorer - Activity Diagram



Chapter 3. Solution Design and Implementation 34

The subsequent step in the execution flow involves the find_candidate_pairs() func-
tion, which iterates through all model elements, creating pairs with each of their neighbors.
According to the RaQuN algorithm, a pair of model elements is considered a valid can-
didate only if the elements belong to different models. Hence, the function filters out all
pairs belonging to the same models, leaving only the valid candidate pairs. These pairs are
returned as a list.

Then, RaQuN Scorer proceeds to assign scores to each candidate pair using the selected
scoring function (apply_scoring_function_shared_properties()). This function calcu-
lates the similarity score for each candidate pair. The resulting list of scored candidate
pairs is then outputted to a JSON-formatted file (Figure 3.22). Each entry of the candidates
array in the generated file consists of the members from_name, _from, to_name, and _to
indicating the identifier and the name of both model elements contained in the candidate
pair. It is important to note that the terms "from" and "to" are utilized for seamless inte-
gration with the VARIOUS framework which uses them as keywords within the database
infrastructure. However, their semantics should be disregarded, as they do not indicate a
direction but rather a relationship of similarity.

> python .\raqun_scorer.py -invector .\models_vector.json -knn 3 -sprop -o .
The candidates json file was generated successfully:
.\models_candidates.json

FIGURE 3.21: RaQuN Scorer - Execution

Aligner

The implementation concludes with the RaQuN Aligner which is responsible for aligning
the candidate pairs generated by the RaQuN Scorer to produce the final model match
resutls. The RaQuN Aligner takes two essential inputs: the candidate pairs from the
RaQuN Scorer and the comprehensive list of vectorized model elements generated by
the RaQuN Vectorizer. This list serves as an initial baseline from which the alignment
process gradually constructs the matches in the form of tuples. The user is able to influence
the similarity tolerance by specifying a minimum threshold for the similarity score. This
parameter can be dynamically set as an argument to the Python program. Figure 3.23
illustrates the inputs and outputs of RaQuN Aligner, while Figure 3.24 showcases the
interface of the Python program with its help page.



Chapter 3. Solution Design and Implementation 35

The RaQuN Aligner is represented by the Python class ModelMatchAligner, as depicted
in Figure 3.25. This class provides the necessary APIs to perform the alignment oper-
ation and generate the results file. The instantiation of the class requires the input of
both models_vector.json and models_candidates.json whose data are stored in private
arrays (elements[], candidate_pairs[]).

The core functionality of the ModelMatchAligner is implemented in the public function
align_candidates_to_matches(). This function carries out the alignment process and
returns the final matches as a list of tuples. Each tuple may contain one or more model
element IDs. If a tuple consists of only one element ID, it signifies that the respective model
element did not find any similarity with other model elements. The aligmnent process
begins by initializing the list of matches with single-element tuples extracted from the full
list of vectorized elements. It then iterates through the given candidate pairs and merges
their corresponding elements with the appropriate tuples. The user’s input of minimum
score is taken into consideration during this process. If a candidate pair has a score lower
than the specified threshold, it is disregarded and not included in the alignment. The
activity diagram of Figure 3.26 provides a visual representation of the execution flow.



Chapter 3. Solution Design and Implementation 36

FIGURE 3.26: RaQuN Aligner - Activity Diagram



Chapter 3. Solution Design and Implementation 37

The successful execution of the RaQuN Aligner Python program is depicted in Figure
3.27, which demonstrates the outcome of the process. As a result, the program generates
the JSON file models_matches.json containing the final list of match tuples (Figure 3.28).
Each entry within the matches member represents a model match tuple, consisting of the
IDs of the model elements that constitute the match along with the aggregated score of the
involved candidate pairs. The element IDs are defined in the input file with models that is
exported from the VARIOUS database (3.12). Finally, an overall score is added at the end
of the file with the sum of all individual scores.



Chapter 3. Solution Design and Implementation 38

FIGURE 3.8: VARIOUS Database Class Diagram - Matches



Chapter 3. Solution Design and Implementation 39

FIGURE 3.9: RaQuN implementation - High Level View



Chapter 3. Solution Design and Implementation 40

{
"variants": [

{
"_id": "Model_A",
"components": [

{
"_id": "1",
"name": "History",
"type": "uml-element"

},
{

"_id": "2",
"name": "n_History",
"type": "uml-element-property"

},
{

"_id": "3",
"name": "procedure",
"type": "uml-element-property"

},
/* ... */

],

"connections": [
{

"_from":"1",
"_to":"2",
"type":"has"

},
{

"_from":"1",
"_to":"3",
"type":"has"

},
/* ... */

]
},
{

"_id": "Model_B",
"components": [/* ... */],
"connections": [/* ... */]

},
/* ... more models ... */

]
}

FIGURE 3.12: RaQuN Vectorizer - Snapshot of input_models.json

FIGURE 3.13: RaQuN Vectorizer - Class Diagram



Chapter 3. Solution Design and Implementation 41

{
"input": ".\\input_models.json",
"timestamp": "2023-06-19 16:57:53.490360",
"dimensions": [

{
"dimension_id": "

properties_average_name_length",
"position": "0"

},
{

"dimension_id": "number_of_properties",
"position": "1"

}
],
"points": [

{
"element_id": "1",

"model_id": "Model_A",
"element_name": "History",
"properties": [

"n_History",
"procedure",
"patientProfile",
"nurse",
"physician"

],
"vector": [

9.2,
5

]
},
/* ... more points ... */

]
}

FIGURE 3.16: RaQuN Vectorizer - Snapshot of models_vector.json

FIGURE 3.17: RaQuN Scorer - Component Diagram



Chapter 3. Solution Design and Implementation 42

FIGURE 3.19: RaQuN Scorer - Class Diagram

{
"input": "models_vector.json",
"timestamp": "2023-03-26 17:08:13.328548",
"candidates": [

{
"from_name": "Model_A_Physician",
"_from": "7",
"to_name": "Model_B_Physician",
"_to": "17",
"score": 0.6666666666666666

},
{

"from_name": "Model_A_AdminAssistant",
"_from": "13",
"to_name": "Model_B_AdminAssistant",
"_to": "30",
"score": 0.5

},

{
"from_name": "Model_A_AdminAssistant",
"_from": "13",
"to_name": "Model_C_AdminAssistant",
"_to": "34",
"score": 0.75

},
{

"from_name": "Model_B_Ward",
"_from": "23",
"to_name": "Model_C_Unit",
"_to": "39",
"score": 0.09090909090909091

},
/* ... more candidate pairs ... */

]
}

FIGURE 3.22: RaQuN Scorer - Snapshot of models_candidates.json



Chapter 3. Solution Design and Implementation 43

FIGURE 3.23: RaQuN Aligner - Component Diagram

> python .\raqun_aligner.py -h
usage: raqun_aligner.py [-h] -invector _INVECTOR -incandidates _INCANDIDATES -minscore _MINSCORE

[-o _OUTDIR]

The RaQuN Aligner is used to do the aligmnent of the model match candidate pairs
generating a file with the final model match results. The matches are determined
based on the user-defined minimum score limit.

options:
-h, --help show this help message and exit
-invector _INVECTOR, --input-models-vector _INVECTOR

The absolute path to the .json file with the input models vector
-incandidates _INCANDIDATES, --input-models-candidates _INCANDIDATES

The absolute path to the .json file with the input models candidates
-minscore _MINSCORE, --minimum-score _MINSCORE

The minimum score for a model candidate pair to be determined as a match
-o _OUTDIR, --outdir _OUTDIR

The directory where the generated file will be stored.
If not defined, the current will be used.

FIGURE 3.24: RaQuN Aligner - Python help page



Chapter 3. Solution Design and Implementation 44

FIGURE 3.25: RaQuN Aligner - Class Diagram

> python .\raqun_aligner.py -invector .\models_vector.json -incandidates .\models_candidates.json
-minscore 0.5 -o .

The matches json file was generated successfully:
.\models_matches.json

FIGURE 3.27: RaQuN Aligner - Execution

{
"input (elements)": ".\\models_vector.json",
"input (candidates)": ".\\models_candidates.

json",
"timestamp": "2023-07-02 14:05:52.162061",
"matches": [

{
"element_ids": [

"7",
"17"

],
"score": 0.6666666666666666
},
{
"element_ids": [

"13",
"30",
"34"

],
"score": 1.25
},

{
"element_ids": [

"1"
],
"score": 0
},
{
"element_ids": [

"23"
],
"score": 0
},
{
"element_ids": [

"39"
],
"score": 0
}

],
"score": 1.9166666666666665
}

FIGURE 3.28: RaQuN Aligner - Snapshot of models_matches.json



45

Chapter 4

Evaluation

This chapter focuses on addressing the RQ3. The RaQuN implementation discussed in the
previous chapter will be evaluated having as reference the existing N-way model matching
implementation of VARIOUS framework, the System Aligner. From now on, we refer to
both implementations as algorithms.

4.1 Evaluation criteria and requirements

The evaluation criteria for assessing the performance of the algorimths are focused on the
following aspects:

• Efficiency: This criterion evaluates the computational efficiency of the algorithms,
which is measured by the execution time required to process the input data and
generate results.

• Accuracy: This criterion assesses the similarity correctness of the matches generated
by the algorithms.

• Scalability: This criterion measures the performance of the algorithms on large-scale
input data.

To ensure a fair comparison between the algorithms, the following requirements must be
met which are based on the aforementioned evaluation criteria:

• Req.1: Both algorithms should utilize the same dataset of input models.
• Req.2: The similarity function used in the two algorithms should be identical.
• Req.3: The measurement of the execution time and the accuracy of the matches should

be precisely defined.

Regarding Req.1, we will utilize model data obtained from the VARIOUS framework
database. Additionally, the experimental subjects [29] prepared by the authors of RaQuN



Chapter 4. Evaluation 46

for evaluating the algorithm will be used. These datasets provide the model data for each
subject in CSV format. Hence, it is necessary to convert them to a VARIOUS-friendly JSON
format as illustrated in Figure 3.12. The Table 4.1 provides a summary of the data subjects
included in our evaluation. The size of each dataset is determined based on the number of
models and their contents. The column Elements indicate the average number of elements
of each model, and the column Properties the average number of properties per element.

Subject Size Models Elements Properties

Hospitals small 8 27.62 4.84

Warehouses small 16 24.25 3.65

ApoGames medium 20 63.05 19.62

ArgoUML large 7 1752.86 9.05

ShopMngmt very large 10 638.2 59.21

TABLE 4.1: Evaluation data subjects

To fulfill Req.2, the similarity function will be defined as the ratio of shared properties
to all properties (Figure 4.1).

Similarity Score:

spair =
|pi∩pj|
|pi∪pj|

→ spair : the similarity score of elements ei and ej
→ pi : the properties of element ei
→ pj : the properties of element ej

FIGURE 4.1: Similarity Score function in evaluation

Lastly, for the Req.3, the measurement of the execution time will be done starting from
the user’s trigger until the completion of result file generation. It is necessary to ensure
that only the actual CPU time, that the respective process or thread consumes, is measured.
Regarding the accuracy of the matches we will use the Prim’s algorithm [30] modified for
finding the maximum (instead of minimum) spanning tree of the undirected graph created
by all possible pairs of a match tuple. The score per pair represents the weight of the edge



Chapter 4. Evaluation 47

among the elements of the pair. The algorithm finds the subset of edges that form a tree
which includes every vertex (i.e. element) of the match tuple, where the total weight of
all the edges in the tree is maximized. Then we sum the weights (i.e. scores) of the found
edges (i.e. pairs) to calculate the total score of the match tuple (Figure 4.2).

Accuracy Measure:

St = ∑m
i=1 spairi

→ St : the total score of tuple t
→ m : the number of pairs found by Prim algorithm
→ spairi : the score of pair i found by Prim algorithm

FIGURE 4.2: Accuracy Measure in evaluation

4.2 Meeting requirements with RaQuN implementation

The RaQuN implementation, as presented in Chapter 3, successfully satisfies the require-
ment for the similarity score function (Req.2) using the argument scoring-shared-properties
(Figure 3.17, 3.18).

However, it needs some expansion to support the Req.3 for achieving accurate mea-
surements of execution time and matches quality. With regard to the time measurement,
our implementation shall support the execution of all three modules on one run, and
without generating the intermediate JSON files models_vector.json (Figure 3.16) and
models_candidates.json (Figure 3.22) as the writing to a file takes a considerable amount
of time increasing the CPU time significantly. Hence, we made the necessary changes to
facilitate the transferring of data as objects in order to allow the one-off execution with
no intermediate files. The measurement of the accuracy of the resulted matches requires
the realization of Prim algorithm [30] to calculate the final score of each match tuple. The
RaQuN Aligner module was further expanded to support this evaluation of matches.

Moreover, the vectorization of model elements that RaQuN Vectorizer implements is not
suitable enough for the purpose of evaluation. This is because the dimensions it allows for
selecting (Figure 3.10, 3.11) are not representative for measuring how similar (or near in the
vector space) two elements are. Consequently, the implementation of Vectorizer needs to be
adapted for performing the vectorization with a more meaningful selection of dimensions.
RaQuN publication [9] discusses a domain-agnostic approach for selecting dimensions



Chapter 4. Evaluation 48

of the vector space. This approach represents all distinct properties of model elements as
dedicated dimensions in the vector space with range 0, 1K, where K denotes the number
of disctinct properties across all elements. Each element can be represented within this
vector space by assigning a value of 1 to the dimensions corresponding to the properties
it possesses, while dimensions not applicable to the element are set to 0, indicating the
absence of those properties. After incorporating this improved vectorization approach, our
RaQuN implementation enhanced its ability to accurately represent the elements within
the vector space, ensuring a more reliable evaluation process. The resulted generated JSON
file of the reworked RaQuN Vectorizer is depicted in Figure 4.3.

Finally, it is important to note that, for the evaluation, the RaQuN Scorer will be config-
ured to search for three (3) nearest neighbors in order to form the match candidates.

{
"input": ".\\datasets\\input_models.json",
"timestamp": "2023-07-04 11:11:21.972441",
"dimensions": [

{
"dimension_id": "n_History",
"position": "0"

},
{

"dimension_id": "procedure",
"position": "1"

},
{

"dimension_id": "patientProfile",
"position": "2"

},
/* ... more properties-dimensions ... */

],
"points": [

{
"enum": "0",
"element_id": "1",
"model_id": "Model_A",
"element_name": "History",
"properties": [

"n_History",
"procedure",
"patientProfile",

"nurse",
"physician"

],
"vector": [

1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
},
{

"enum": "1",
"element_id": "7",
"model_id": "Model_A",
"element_name": "Physician",
"properties": [

"n_Physician",
"ex_medicalTeam",
"patient",
"ward",
"history"

],
"vector": [

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

]
},
/* ... more points ... */

]
}

FIGURE 4.3: Vectorization with properties as dimensions



Chapter 4. Evaluation 49

4.3 Meeting requirements with System Aligner

The goal of RaQuN implementation, as part of the VARIOUS framework, was to keep Sys-
tem Aligner interfaces intact, in order to enable a smooth integration within the framework.
Hence, there were no significant implementation changes needed for System Aligner as its
implementation was already part of the VARIOUS ecosystem.

However, configuring the System Aligner to meet the evaluation requirements is neces-
sary. Req. 1 is already fulfilled, as the System Aligner is designed to work with datasets in
the specified format (Figure 3.12). To satisfy Req. 2, the specified similarity function needs
to be provided as input to the System Aligner. Lastly, the existing implementation of the
System Aligner ensures compliance with Req. 3, which pertains to the accuracy measure.

4.4 Evaluation results

The results of our evaluation is presented in the following plots. For the execution time
measurements, we used a box plot to visualize the variation in the data over 20 runs (Figure
4.4), and the quality of results was assessed using a bar plot, illustrating the achieved score
levels for each algorithm across different experimental subjects (Figure 4.5). The subjects
in both plots are arranged in order of their size. The experiments were conducted on
a workstation equipped with an Intel(R) Core(TM) i7-10510U processor running at a
frequency of 1.80 GHz.



Chapter 4. Evaluation 50

FIGURE 4.4: Execution Time Results Plot

FIGURE 4.5: Matches Quality Results Plot



Chapter 4. Evaluation 51

The evaluation results of the two algorithms revealed remarkable observations. In
terms of execution time, RaQuN exhibited better performance in datasets with smaller
sizes, such as Hospitals and Warehouses, while System Aligner showcased faster execution
times in larger datasets (ApoGames, ArgoUML, and ShopManagement). Regarding the quality
of results, RaQuN produced more accurate matches in datasets of smaller to medium sizes,
while System Aligner outperformed RaQuN in larger-scale datasets.

The observed execution time results can be explained by considering the theoretical time
complexities of the two algorithms. RaQuN’s time complexity (Figure 2.3) has a greater
growth rate for larger values of k than the Bioinformatics-based algorithm implemented
in System Aligner (2.7), making it less efficient when the size of models increases. More-
over, the choice of implementing the two algorithms in different programming languages
(Python for RaQuN and Java for System Aligner) may have contributed to the differences
in the execution times, as the optimizations could have been uneven. Lastly, RaQuN
implementation was designed aiming at high modularity which inevitably introduces
some overhead on its performance.

Furthermore, the match scores results might have been affected by RaQuN’s configu-
ration for nearest neighbors searching. The evaluated implementation of RaQuN was set
to find only three (3) nearest neighbors, which potentially limited the number of genuine
match candidates that would lead to matches with higher scores. On the other hand,
System Aligner is designed to construct larger match tuples, which could have contributed
to its better performance in datasets with a higher number of elements and properties.



52

Chapter 5

Conclusion

5.1 Summary

In this thesis, we conducted a qualitative evaluation of various N-way model matching
approaches (RQ1). We compared the algorithms based on the accuracy, performance,
scalability and configurability criteria. After careful analysis, we selected the "RaQuN"
algorithm as the most promising candidate to implement within the product-line analysis
framework "VARIOUS" (RQ2). The goal was to compare its efficiency with the existing
mechanism of the framework known as "System Aligner".

The design and implementation of the RaQuN algorithm was grounded on ensuring
seamless alignment with the interfaces of the System Aligner. Furthermore, we placed
great emphasis on maintaining the overall behavior and compatibility between the two
approaches. A key consideration during the development process was modularity, resulting
in the division of the RaQuN implementation into three distinct modules to enhance
reusability and maintainability.

Finally, we evaluated RaQuN and System Aligner having the efficiency, accuracy
and scalability as the key criteria (RQ3). The comparison of the two approaches was
done based on the same input model data and using identical similarity function. The
evaluation provided valuable insights into the performance of RaQuN and System Aligner.
RaQuN performed better in small-sized datasets, while System Aligner was superior
in larger datasets. The observed differences in execution times and matches quality for
diffferent dataset scales can be attributed to various factors, including algorithmic design,
implementation choices, and dataset characteristics.



Chapter 5. Conclusion 53

5.2 Future Work

The RaQuN algorithm shows high configurability exposing variation points for the user
to tailor it to their own needs. In this thesis we mostly focused on the evaluation of the
algorithm hence we implemented the variation points in a simplistic fashion aiming to
have a fair comparison with the System Aligner of VARIOUS.

In the evaluation of the algorithm, the authors of RaQuN utilize the weight metric by
Rubin and Chechik [8] for the similarity function variation point. This assigns a weight
w(t) ∈ [0, 1] to a match depending on the number of common properties and the number
of elements in the match. Given a match t, the weight is calculated with the formula of
Figure 5.1.

w(t) =
∑2≤j≤|t| j2∗np

j
n2∗|π(t)|

→ |t| : the size of the match

→ np
j : the number of properties that occur in exactly j elements of the match

→ π(t) : the set of all distinct properties of all elements in t

FIGURE 5.1: Weight metric by Rubin and Chechik

Moreover, the RaQuN algorithm allows the user to further filter out unwanted matches
by using the so-called shouldMatch function of the algorithm. This is applied on the
matching phase of the algorithm where the match candidate pairs are evaluated before
getting merged to the final match tuples. For our implementation we used the score limit
that can be set by the user as an argument of the RaQuN Aligner module (Figure 3.24).
However, the authors proposed a domain-agnostic metric where two matches t and t′ are
merged if the weight of the merged match w(t∪ t′) is greater than the sum of the individual
match weights (Figure 5.2).

shouldMatch(t, t′, e, e′) := w(t ∪ t′) > w(t) + w(t′)

FIGURE 5.2: Domain agnostic shouldMatch formula

It would be highly beneficial to conduct an investigation into the potential impact
that these two aforementioned variation points could have on the overall accuracy of the



Chapter 5. Conclusion 54

results exhibited by our current RaQuN implementation as well as to re-evaluate RaQuN’s
accuracy with larger number of nearest neighbors searching. Such an exploration would
provide valuable knowledge that can further enhance the effectiveness of our RaQuN
implementation in real-world scenarios.



55

Bibliography

[1] J. D. McGregor, L. M. Northrop, S. Jarrad, and K. Pohl, “Initiating software product
lines,” vol. 19, pp. 24–27, 2002, ISSN: 0740-7459. DOI: 10.1109/ms.2002.1020282.

[2] A. E. Chacón-Luna, A. M. Gutiérrez, J. A. Galindo, and D. Benavides, “Empirical
software product line engineering: A systematic literature review,” Inf. Softw. Technol.,
vol. 128, p. 106 389, 2020. DOI: 10.1016/j.infsof.2020.106389.

[3] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh, “A
manifesto for model merging,” in Proceedings of the 2006 international workshop on
Global integrated model management, ser. GaMMa ’06, Shanghai, China: Association for
Computing Machinery, May 2006, 5–12, ISBN: 1595934103. DOI: 10.1145/1138304.
1138307. [Online]. Available: https://doi.org/10.1145/1138304.1138307.

[4] J. Rubin and M. Chechik, Combining related products into product lines, 2012. DOI:
10.1007/978-3-642-28872-2_20.

[5] F. A. Somogyi and M. Asztalos, “Systematic review of matching techniques used in
model-driven methodologies,” Software and Systems Modeling, vol. 19, no. 3, pp. 693–
720, 2019. DOI: 10.1007/s10270-019-00760-x.

[6] Z. Xing and E. Stroulia, Umldiff, An algorithm for object-oriented design differencing, 2005.
DOI: 10.1145/1101908.1101919.

[7] U. Kelter, J. Wehren, and J. Niere, “A generic difference algorithm for UML mod-
els,” in Software Engineering 2005, Fachtagung des GI-Fachbereichs Softwaretechnik, 8.-
11.3.2005 in Essen, P. Liggesmeyer, K. Pohl, and M. Goedicke, Eds., ser. LNI, vol. P-64,
GI, 2005, pp. 105–116. [Online]. Available: https://dl.gi.de/20.500.12116/28304.

[8] J. Rubin and M. Chechik, “N-way model merging,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013, Saint Pe-
tersburg, Russia: Association for Computing Machinery, Aug. 2013, 301–311, ISBN:
9781450322379. DOI: 10.1145/2491411.2491446. [Online]. Available: https://doi.
org/10.1145/2491411.2491446.

https://doi.org/10.1109/ms.2002.1020282
https://doi.org/10.1016/j.infsof.2020.106389
https://doi.org/10.1145/1138304.1138307
https://doi.org/10.1145/1138304.1138307
https://doi.org/10.1145/1138304.1138307
https://doi.org/10.1007/978-3-642-28872-2_20
https://doi.org/10.1007/s10270-019-00760-x
https://doi.org/10.1145/1101908.1101919
https://dl.gi.de/20.500.12116/28304
https://doi.org/10.1145/2491411.2491446
https://doi.org/10.1145/2491411.2491446
https://doi.org/10.1145/2491411.2491446


Bibliography 56

[9] A. Schultheiß, P. M. Bittner, L. Grunske, T. Thüm, and T. Kehrer, “Scalable n-way
model matching using multi-dimensional search trees,” Fukuoka, Japan: IEEE, 2021,
pp. 1–12, ISBN: 978-1-6654-3496-6. DOI: 10.1109/MODELS50736.2021.00010.

[10] V. L. Tenev, “Directed Coloured Multigraph Alignments for Variant Analysis of
Software Systems,” en, Bachelor Thesis, TU Kaiserslautern, Kaiserslautern, Nov.
2011.

[11] M.-S. Kasaei, M. Sharbaf, and B. Zamani, A rule-based language for configurable n-way
model matching, 2022. DOI: 10.1109/iccke57176.2022.9960014.

[12] E. M. Arkin and R. Hassin, “On local search for weighted k-set packing,” Math. Oper.
Res., vol. 23, no. 3, pp. 640–648, 1998. DOI: 10.1287/moor.23.3.640.

[13] B. Chandra and M. M. Halldórsson, “Greedy local improvement and weighted
set packing approximation,” J. Algorithms, vol. 39, no. 2, pp. 223–240, 2001. DOI:
10.1006/jagm.2000.1155.

[14] P. Berman, “A d/2 approximation for maximum weight independent set in d-claw
free graphs,” in Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm
Theory, Bergen, Norway, July 5-7, 2000, Proceedings, M. M. Halldórsson, Ed., ser. Lecture
Notes in Computer Science, vol. 1851, Springer, 2000, pp. 214–219. DOI: 10.1007/3-
540-44985-X\_{1}{9}. [Online]. Available: https://doi.org/10.1007/3-540-
44985-X_19.

[15] J. L. Bentley, “Multidimensional binary search trees used for associative searching,”
509–517, Sep. 1975. DOI: 10.1145/361002.361007. [Online]. Available: https://doi.
org/10.1145/361002.361007.

[16] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, and K. Czarnecki, An
exploratory study of cloning in industrial software product lines, 2013. DOI: 10.1109/csmr.
2013.13.

[17] A. Rouhi and B. Zamani, “Towards a formal model of patterns and pattern lan-
guages,” vol. 79, pp. 1–16, 2016, ISSN: 0950-5849. DOI: 10.1016/j.infsof.2016.06.
002.

[18] V. L. Tenev and S. Duszynski, Applying bioinformatics in the analysis of software variants,
2012. DOI: 10.1109/icpc.2012.6240499.

[19] D. Gusfield, “Efficient methods for multiple sequence alignment with guaranteed
error bounds,” vol. 55, pp. 141–154, 1993, ISSN: 0092-8240. DOI: 10.1007/bf02460299.

[20] D. Reuling, M. Lochau, and U. Kelter, “From imprecise n-way model matching
to precise n-way model merging.,” J. Object Technol., vol. 18, no. 2, 8:1, 2019, ISSN:
1660-1769. DOI: 10.5381/jot.2019.18.2.a8.

https://doi.org/10.1109/MODELS50736.2021.00010
https://doi.org/10.1109/iccke57176.2022.9960014
https://doi.org/10.1287/moor.23.3.640
https://doi.org/10.1006/jagm.2000.1155
https://doi.org/10.1007/3-540-44985-X\_{1}{9}
https://doi.org/10.1007/3-540-44985-X\_{1}{9}
https://doi.org/10.1007/3-540-44985-X_19
https://doi.org/10.1007/3-540-44985-X_19
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/csmr.2013.13
https://doi.org/10.1109/csmr.2013.13
https://doi.org/10.1016/j.infsof.2016.06.002
https://doi.org/10.1016/j.infsof.2016.06.002
https://doi.org/10.1109/icpc.2012.6240499
https://doi.org/10.1007/bf02460299
https://doi.org/10.5381/jot.2019.18.2.a8


Bibliography 57

[21] D. Reuling, U. Kelter, J. Bürdek, and M. Lochau, “Automated n-way program merg-
ing for facilitating family-based analyses of variant-rich software,” 1–59, Jul. 2019.
DOI: 10.1145/3313789. [Online]. Available: https://doi.org/10.1145/3313789.

[22] J. Martinez, T. Ziadi, J. Klein, and Y. le Traon, Identifying and visualising commonality
and variability in model variants, 2014. DOI: 10.1007/978-3-319-09195-2_8.

[23] J. Martinez, T. Ziadi, T. F. Bissyande, J. Klein, and Y. L. Traon, Automating the extraction
of model-based software product lines from model variants (t), Lincoln, Nebraska, Nov.
2015. DOI: 10.1109/ase.2015.44. [Online]. Available: https://doi.org/10.1109/
ASE.2015.44.

[24] T. M. Bulut, V. L. Tenev, and M. Becker, “Sys2vec: System-to-vector latent space
mappings,” 2021.

[25] T. M. Bulut, “Analysis of digital twin evolution via applyingartificial intelligence
techniques,” M.S. thesis, Technische Universität Kaiserslautern, 2020.

[26] V. L. Tenev and R. Martin, “Multi-Modell-Wissensgraph zur niederschwelligen
datengestützten Entscheidungsunterstützung bei der Identifizierung von unwirtschaftlicher
Variabilität,” Softwaretechnik-Trends, vol. 43, no. 1, 2023.

[27] F. V. Latum, R. V. Solingen, M. Oivo, B. Hoisl, D. Rombach, and G. Ruhe, “Adopting
gqm based measurement in an industrial environment,” vol. 15, pp. 78–86, 1998,
ISSN: 0740-7459. DOI: 10.1109/52.646887.

[28] J. Rowley, “The wisdom hierarchy: Representations of the dikw hierarchy,” vol. 33,
pp. 163–180, 2007, ISSN: 0165-5515. DOI: 10.1177/0165551506070706.

[29] A. Schultheiß, P. M. Bittner, and Timokehrer, Alexanderschultheiss/raqun: Models 2021
- camera-ready, 2021. DOI: 10.5281/ZENODO.5150388. [Online]. Available: https:
//zenodo.org/record/5150388.

[30] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell System
Technical Journal, vol. 36, pp. 1389–1401, 6 1957, ISSN: 0005-8580. DOI: 10.1002/j.1538-
7305.1957.tb01515.x.

https://doi.org/10.1145/3313789
https://doi.org/10.1145/3313789
https://doi.org/10.1007/978-3-319-09195-2_8
https://doi.org/10.1109/ase.2015.44
https://doi.org/10.1109/ASE.2015.44
https://doi.org/10.1109/ASE.2015.44
https://doi.org/10.1109/52.646887
https://doi.org/10.1177/0165551506070706
https://doi.org/10.5281/ZENODO.5150388
https://zenodo.org/record/5150388
https://zenodo.org/record/5150388
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and context
	N-way model matching
	Impact on software engineering

	Research questions and objectives
	Overview of the structure of the thesis

	Related Work
	N-way model merging (NwM)
	Range Queries on N input models (RaQuN)
	Formalism-based N-way matching algorithm
	Bioinformatics-based approach
	Other relevant publications

	Solution Design and Implementation
	Selection of N-way model matching approach
	Deep dive in selected approach: RaQuN
	VARIOUS Framework
	Conceptual design of the Framework and its structure
	The System Aligner component and requirements for RaQuN

	RaQuN design and implementation for VARIOUS
	High-level view of RaQuN in VARIOUS
	RaQuN implementation
	Vectorizer
	Scorer
	Aligner



	Evaluation
	Evaluation criteria and requirements
	Meeting requirements with RaQuN implementation
	Meeting requirements with System Aligner
	Evaluation results

	Conclusion
	Summary
	Future Work

	Bibliography

