
Herausragende
Masterarbeiten

Autor*in

Studiengang

Masterarbeitstitel

 Architecture of safety-critical applications running
 in the public cloud

 Engin Yöyen

Software Engineering for Embedded Systems, M.Eng.

 Rheinland-Pfälzische Technische Universität

Kaiserslautern-Landau

Distance Study Program

Software Engineering for Embedded Systems

Master’s Thesis

Architecture of safety-critical

applications running in the public cloud

Provided by

Engin Yöyen

First supervisor: Prof. Dr.-Ing. Peter Liggesmeyer

Second supervisor: Dr. Rasmus Adler

Declaration

Declaration

Ich versichere, dass ich diese Masterarbeit selbstständig und nur unter Verwendung der

angegebenen Quellen und Hilfsmittel angefertigt und die den benutzten Quellen wörtlich oder

inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Place, date Signature

-------------------------------------- --------------------------------------

Engin Yöyen

Abstract

Abstract

This master thesis presents a collection of architectural design patterns for safety-critical

systems deployed on public cloud infrastructure. The research aims to enhance system

reliability, mitigate risks, and improve overall performance in safety-critical applications. The

study follows a systematic approach, considering multiple safety-critical use cases and

prioritizing factors such as timing constraints and system resilience. The railway signaling

system, particularly the moving block computation, is selected as the most suitable use case due

to its ability to tolerate response delays and re-request computations. The thesis addresses four

research questions concerning the deployment of safety-critical systems to the public cloud,

existing fault-tolerance methods in the cloud, identification of relevant design patterns, and the

applicability of design patterns in various safety-critical systems.

The study identifies and review's fault tolerance methods and cloud failure modes, which serve

as a basis for identifying design patterns. The Structured What-If Technique (SWIFT) is utilized

to analyze prospective hazards and recommend actions, which are then mapped onto design

patterns for wide applicability across different projects. Each design pattern presents a problem

statement, guidelines for implementation, and associated benefits and drawbacks.

The contribution of this thesis lies in the development of a valuable resource for architects and

engineers working on safety-critical systems in the cloud. The design patterns offer practical

solutions and a framework for the design and implementation of robust and secure systems.

Detailed documentation, including context, benefits, drawbacks, and practical examples,

facilitates understanding and adoption.

In conclusion, this thesis contributes to the advancement of safety and reliability in cloud-based

safety-critical systems by providing architectural design patterns. Future research should focus

on integrating security aspects, gathering diverse use cases, and validating the patterns in

practical settings. Continued exploration and refinement of the design patterns will lead to more

robust solutions for meeting the needs and challenges of safety-critical applications in various

contexts.

Table of Contents I

Table of Contents

Table of Contents .. I

Abbreviations ... VI

List of Tables ... VII

List of Figures ... VIII

1 Introduction .. 1

1.1 Background .. 2

1.2 Problem Statement ... 4

1.3 Research Approach .. 5

1.3.1 Research Aim and Objectives .. 6

1.3.2 Research Questions .. 6

1.4 The Significance of the Study .. 7

1.5 Limitations of this Study .. 8

1.6 Thesis Structure .. 8

2 Literature Review ... 9

2.1.1 Scope .. 9

2.1.2 Layout ... 9

2.2 Brief Overview of Embedded Systems and Cloud Computing 10

2.2.1 Brief Overview of Embedded Systems .. 10

2.2.2 Brief Overview of Cloud Computing ... 11

Table of Contents II

2.2.2.1 Availability Zones and Regions ... 13

2.2.2.2 Public, Private and Hybrid Cloud Infrastructure .. 14

2.2.3 Integration of Embedded Systems with Cloud Computing 15

2.3 Dependability ... 18

2.3.1 Dependability Attributes .. 18

2.3.2 Dependability Threats .. 19

2.3.3 Means of Achieving Dependability .. 20

2.3.3.1 Fault Tolerance ... 20

2.3.3.2 Fault Forecasting & Techniques .. 21

2.3.3.3 Structured What If Technique (SWIFT) .. 22

2.4 Cloud Computing Failures ... 22

2.4.1 Cloud Computing: Failure Modes .. 23

2.4.2 Cloud Computing: Data Consistency & Availability ... 24

2.4.3 Cloud Computing: Regional Outage .. 25

2.5 Cloud Computing Fault Tolerance Methods .. 26

2.5.1 Reactive Methods ... 26

2.5.2 Proactive Methods .. 27

2.6 Gap in the Current Research .. 29

2.7 Conclusion .. 30

3 Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data

Collection ... 32

Table of Contents III

3.1 Introduction .. 32

3.2 Use Case Selection ... 33

3.3 What-If Context .. 34

3.4 Identification of SWIFT Guidewords .. 34

3.5 Data Collection and Analysis: Generating What-If Questions 35

3.6 Methodological Limitation ... 37

3.7 Conclusion .. 38

4 Architecture of Safety-Critical Applications Running in the Public Cloud 39

4.1 Use Case – Moving Block Interlocking ... 39

4.1.1 The European Rail Traffic Management System ... 39

4.1.2 What is Moving Block? .. 40

4.1.3 Moving Block Application: Requirements & Constraints 41

4.1.4 Initial setup of Moving Block .. 42

4.1.5 Application Runtime .. 42

4.2 Design Patterns ... 43

4.2.1 Critical Enclave .. 43

4.2.2 Data Segmentation ... 46

4.2.3 Publish–Subscribe Pattern .. 48

4.2.4 Stateless Computation .. 50

4.2.5 Multi-Availability Zone ... 52

4.2.6 Auto-Scaling ... 54

Table of Contents IV

4.2.7 N-Version Programming and Deployment .. 57

4.2.8 API Gateway .. 59

4.2.9 Multi-Region Deployment ... 62

4.2.10 Geo-Replication ... 64

4.2.11 Elastic Workload Segmentation ... 67

4.2.12 Multi Cloud Deployment ... 71

4.2.13 Redundant DNS .. 74

4.3 Essential Practices for Safety-Critical Systems ... 76

4.4 Conclusion .. 78

5 Evaluation of Identified Design Patterns for System Unavailability 79

5.1 System Design: Moving Block Use Case .. 79

5.2 Analyzing System Unavailability with Fault Tree Analysis 80

5.2.1 Technology Selection and SLAs .. 82

5.2.2 Limitation of Relying on SLAs .. 83

5.3 Conclusion .. 83

6 Conclusion .. 84

6.1 Findings .. 84

6.2 Contribution ... 85

6.3 Limitation of This Study .. 86

6.4 Further Research Opportunities ... 87

6.5 Closing Summary ... 87

Table of Contents V

7 References .. 89

8 Appendix .. 95

8.1 SWIFT Guidewords ... 95

8.2 “What if…” / “How could…” Questions ... 98

8.3 Moving Block Fault Tree Analysis .. 101

8.4 Moving Block Fault Tree Analysis Cut-Sets Probability >= 0.01 102

8.5 Moving Block Fault Tree Analysis Cut-Sets Probability >= 0.001 102

Abbreviation VI

Abbreviations

ABS Anti-lock Braking Systems

API Application Programming Interface

AZ Availability Zone

AWS Amazon Web Services

CAP Consistency, Availability, and Partition Tolerance

CI/CD Continuous Integration and Continuous Delivery

CPU Central Processing Unit

DNS Domain Name System

ECU Electronic Control Units

ESC Stability Control

ERTMS European Rail Traffic Management System

FMEA Failure mode and effects analysis

FTA Fault Tree Analysis

GCP Google Cloud Platform

GSM-R Global System for Mobile Communications - Railway

HAZOP Hazard and Operability Study

HTTP(S) Hypertext Transfer Protocol (Secure)

MA Movement Authority

RBC Radio Block Centre

RTT Round Trip Time

SIM Subscriber Identity Module

SLA Service-Level-Agreement

SWIFT The Structured What-if Technique

TCP Transmission Control Protocol

VM Virtual Machines

List of Tables
 VII

List of Tables

Table 1: Reactive fault tolerance methods ... 27

Table 2: Proactive fault tolerance methods .. 28

Table 3: Excerpt of identified SWIFT guidewords. ... 35

Table 4: Excerpt of "what if..." questions .. 37

Table 5: Use-case requirements ... 42

List of Figures VIII

List of Figures

Figure 1: Literature review outline ... 10

Figure 2: Regions and zones - (What Are Azure Regions and Availability Zones?, 2023) 14

Figure 3: Latency vs Distance - (Zen et al., 2022) ... 17

Figure 4: The dependability and security tree (Avizienis et al., 2004). 18

Figure 5: Relationship of fault, error, and failure .. 20

Figure 6: SWIFT process ... 36

Figure 7: Moving Block – movement authority and safety distance. 40

Figure 8: Moving Block: Initial system. .. 42

Figure 9: Critical enclave pattern applied to the use case. ... 46

Figure 10: Data segmentation pattern applied to the use case. .. 48

Figure 11: Publish-subscribe pattern applied to the use case. .. 50

Figure 12: Stateless computation pattern applied to the use case. ... 52

Figure 13: Multi-availability zone pattern applied to the use case. ... 54

Figure 14: Load vs avg. CPU utilization .. 56

Figure 15: Resource count vs avg. CPU utilization ... 56

Figure 16: N-Version programming with voter/orchestrator ... 58

Figure 17: N-version programming pattern applied to the use case. 59

Figure 18: API gateway pattern applied to the use case. ... 61

Figure 19: Multi-region deployment pattern applied to the use case. 64

List of Figures IX

Figure 20: Geo-replication pattern applied to the use case. ... 67

Figure 21: Elastic workload segmentation pattern applied to the use case. 70

Figure 22: Client switching region in elastic workload segmentation. 71

Figure 23: Elastic workload segmentation pattern without global load balancer applied to the

use case. .. 71

Figure 24: Redundant DNS pattern with global load balancer applied to the use case. 76

Figure 25: Redundant DNS pattern each entry assigned to a region applied to the use case. . 76

Figure 26: Composed design patterns applies to the use case. ... 80

Figure 27: Fault tree analysis of moving block system .. 82

Introduction 1

1 Introduction

Core elements that tie together our daily life and the world around us, from medical equipment

to nuclear power plants, are considered safety-critical systems. The failure of these crucial

elements to perform as expected carries the potential for severe consequences, endangering the

well-being of individuals, the environment, or property. Therefore, such systems are considered

as inherently hazardous (Knight, 2002).

Traditionally, but not exclusively, software that manages a safety-critical system is part of the

system, which is deployed and run in close proximity to it, which is also called embedded

systems, because it is an electronic system consisting of a hardware platform and software that

is integrated in a special, well-defined technical environment and that is optimized for its

specific purpose. (Marwedel, 2021). These embedded systems are designed to perform specific

functions in a reliable manner with high efficiency, often controlling physical operations of the

system they are embedded within. Because embedded systems actuate in the physical

environment, they most often have a real-time computing constraint. For instance, airbags in

most modern vehicles are programmed to inflate and deflate during a collision, in such a system,

delay of the operation can cause additional injuries. Embedded systems are also limited with

their processing power, memory, and connectivity.

On the opposite end of the spectrum to embedded systems, public cloud infrastructure has been

trending since the launch of Elastic Compute Cloud (EC2) and Simple Storage Service (S3) by

Amazon Web Services in 2006 (Surbiryala & Rong, 2019). Public cloud infrastructure is a

service in which computing resources are delivered on demand by a third-party provider (e.g.,

Amazon Web Services, Google Cloud Platform, Microsoft Azure). On-demand access to

computational resources makes it invaluable in diverse software development use cases.

The main objective of this research is to identify and evaluate different architectural design

patterns that can be used to effectively address the technical challenges that arise during the

development of safety-critical systems that utilize public cloud technologies, and to bridge the

gap between safety-critical systems and public cloud by providing a comprehensive set of

Introduction 2

design patterns, along with examples of how these patterns can be applied to a selected safety-

critical use-case.

In this chapter, the study will be presented in a structured manner starting with a discussion on

the background and context, followed by the research problem, research aims and objectives,

research questions and the significance of the study. Finally, the chapter concludes by outlining

the limitations of the research.

1.1 Background

A modern vehicle has around 100 Electronic Control Units (ECU), that controls everything

from engine performance to airbag deployment. While some of the functionalities are there to

increase the comfort of the passengers or entertain them (e.g., media player) others are safety-

critical such as Anti-lock Braking Systems (ABS), Electronic Stability Control (ESC), and

collision avoidance systems(Abelein et al., 2012). Heart monitors, insulin pumps, pacemakers,

flight control and navigation systems, fire protection, gas detection systems are all examples of

safety-critical systems that are designed to perform functions that have a direct impact on the

safety and well-being of people and the environment. The potential impact of failure in safety-

critical systems can be catastrophic. While a failure in a medical device such as a pacemaker

can result in serious harm or even death to the patient, failure in a nuclear power plant system

can result in a radioactive leak, which can cause environmental damage and pose a risk to the

health of people living in the surrounding area.

Most of these safety-critical systems are considered complex systems, which consist of multiple

interconnected and independent parts that interact with each other in non-linear and

unpredictable ways, often exhibiting emergent behavior that cannot be easily predicted or

explained by examining the individual parts alone (Bar-Yam, 2002). Interdependencies

between components and their interactions make these systems difficult to design and test. In

other words, the more complex a system is, the higher the likelihood of experiencing failures

or unexpected behavior. Cook argues that all complex systems are inherently and unavoidably

hazardous; however, it is possible to change the frequency of hazard exposure during different

stages of design, development, or maintenance. The fact that these systems are hazardous drives

the creation of defenses against hazards, which characterize these systems. (Cook, 1998) .

Introduction 3

Safety-critical systems are designed with multiple layers of protection and redundancy to ensure

safe and effective operation. The goal is to reduce the risk of failure or malfunction by

implementing necessary measures. However, traditional approaches can be inflexible and

costly, especially when considering the limited resources of embedded systems, including CPU,

memory, and storage, which make it challenging to add new capabilities.

Unlike embedded systems with limited resources, in public cloud infrastructure provides access

to on-demand computation power and storage. This on demand access to computational

resources can be leveraged to extend the capabilities of existing safety-critical systems and

discovering new methods to lower the hazardous risks associated with such systems. For

instance, cloud computing can facilitate communication between vehicles (Vehicle-to-Vehicle)

or infrastructure (Vehicle-to-Infrastructure) to improve safety by providing real-time

information. Vehicles equipped with built-in safety features such as anti-lock braking systems

(ABS) and airbags can receive additional input from the environment to enhance passenger and

pedestrian safety (Wang et al., 2011).

Public cloud infrastructure refers to a service where computation resources are delivered on

demand by a third-party provider (e.g., Amazon Web Services, Google Cloud Platform,

Microsoft Azure). On-demand access to computation power and storage makes it invaluable in

diverse business use cases. In 2021, cloud computing was embraced by a significant 41% of

European union enterprises, with a primary focus on utilizing it for storing files and hosting

emails. Of those enterprises, 73% utilized advanced cloud services for tasks such as hosting

databases, running security software applications, and deploying computing platforms for

application development and testing (Eurostat-Cloud Computing, 2023). Some of the key

factors of the success of public cloud infrastructure are scalability, cost-efficiency, flexibility,

and global reach. However, in the context of safety-critical systems running on public cloud

infrastructure, issues such as communication latency, non-deterministic resource allocation,

lack of standards and design becomes challenges that must be dealt with.

Hence, the main focus of this thesis is to compile a set of design patterns that can be leveraged

by safety-critical systems relying on public cloud technologies. The main argument of the thesis

is not that embedded systems should be rendered irrelevant, but rather that by leveraging the

public cloud infrastructure, it is possible to extend the capabilities of existing safety-critical

Introduction 4

systems, discover new methods to lower the hazardous risks associated with such systems, and

achieve this in a cost-efficient manner.

1.2 Problem Statement

In the context of safety-critical systems, dependability is a fundamental property that refers to

a system's capability to provide its intended functionality in a reliable and consistent manner,

with the aim of ensuring that it does not pose any unacceptable risks to people, the environment,

or property. Therefore, dependability encompasses quality attributes such as availability,

reliability, safety, integrity, confidentiality, and maintainability (Avizienis et al., 2004). All of

these quality attributes are intended to ensure that the system operates correctly under both

normal and abnormal conditions. Although they are primarily mentioned in the context of

safety-critical systems, they are also widely adopted in cloud computing. Therefore, there has

been significant research and documentation on how to leverage these quality attributes

effectively.

In the context of cloud computing, each provider extensively documents various aspects of

these quality attributes, including how to increase service availability and follow best practices

for data security (AWS Well-Architected Framework, 2023; Google Cloud Architecture

Framework, 2023; Microsoft Azure Well-Architected Framework, 2023). Nevertheless, public

cloud infrastructure runs mostly on commodity hardware, so failure is a common characteristic

of the cloud. Although all major cloud providers offer high Service-Level-Agreement (SLA),

they also clearly communicate that failure is common in cloud infrastructure.

Given the possibilities that cloud infrastructure offers, there has been a lot of interest in running

safety-critical systems on the public cloud. However, there are two issues. First, there is not

enough research in the area, as most of the literature focuses on possibilities rather than tangible

theories that can be applied. Second, existing literature at this stage focuses on partial solutions

and is not mature enough to provide extensive guidance on how to integrate safety-critical

embedded systems into existing public cloud infrastructure. According to a systematic review

conducted by Danielsson, Tsog, and Kunnappilly in 2018, less than 5% of the research papers

reviewed between 2009 and 2016 were on real-time cloud architecture. The rest of the papers

focused on topics such as scheduling, response time analysis, tools, etc. (Danielsson et al.,

2018).

Introduction 5

Based on the aforementioned issues, the following problems (P) have been identified:

• P1 – The area of safety-critical systems running on public cloud is relatively new and

currently lacks extensive research. Further exploration in this field can lead to more

practical applications and better understanding of the challenges and opportunities

presented by cloud infrastructure.

• P2 – The current research primarily concentrates on scheduling algorithms to manage

timing constraints, rather than utilizing the available cloud infrastructure.

• P3 – While cloud providers offer enough information to build resilient software, the

resources in the cloud are prone to failures. However, most of the information provided

is targeted towards non-safety-critical applications, leaving a gap in guidance for

building resilient systems in this domain.

The limited number of practical applications for integrating safety-critical systems with cloud

infrastructure can potentially slow down the growth of this area. This is because stakeholders

may be discouraged from investing in the development and deployment of safety-critical

systems on the public cloud without seeing enough real-world examples. Additionally, without

enough scientific work, it is challenging to assess the reliability, safety, and security of safety-

critical systems integrated with cloud infrastructure. This can further undermine stakeholder

confidence in the technology.

Therefore, this thesis will focus on producing a set of design patterns that address failures in

the cloud infrastructure (e.g., hardware, human error, network) and communication with the

cloud (e.g., DNS failures), appropriate data handling, as well as software design to handle those

failures.

1.3 Research Approach

In this section, the research approach will be outlined, which includes the research aim, research

objectives, research questions. The initial stage of the research involves identifying the research

objectives and questions. These objectives and questions have been carefully crafted to address

the problems highlighted in the previous section and to guide the exploration of potential

solutions.

Introduction 6

1.3.1 Research Aim and Objectives

This thesis aims to create a collection of architectural design patterns that can be used by various

safety-critical systems that run on public cloud infrastructure.

In order to achieve this aim, following research objectives are identified:

1. Identify a safety-critical use case and possible failures that might occur while running

on public cloud infrastructure.

2. Investigate the existing design patterns and strategies used to address these challenges.

3. Develop and propose new design patterns.

4. Compare and contrast advantages and disadvantages of design patterns.

5. Evaluate the design pattern in the context of a selected use-case.

1.3.2 Research Questions

The above-mentioned research aim and objective leads to the following research questions

(RQ):

• RQ1: Can all safety-critical systems be deployed to the public cloud?

The latency requirements for different safety-critical cases need to be evaluated to

determine whether it is feasible and advisable to run them on the public cloud. By

separating safety-critical cases based on their latency requirements, we can better

understand which systems may be suitable for public cloud deployment and which may

require alternative deployment options.

• RQ2: What are the existing fault-tolerance methods in the cloud?
The fault-tolerance methods available in the cloud are crucial to maintaining system

availability and reliability in the event of failures. It is essential to understand these

methods and evaluate whether they can be utilized for safety-critical applications. The

cloud environment offers a range of fault-tolerance techniques that can be leveraged to

enhance system resilience, ensuring that critical applications remain operational and

reliable even in the face of failure.

• RQ3: How to identify relevant design-pattern?

Introduction 7

To identify relevant design patterns, it is crucial to have a deep understanding of the

problem space, including the safety-critical use cases and potential failures that may

occur on public cloud infrastructure. To accomplish this, it is necessary to use methods

that can help identify possible failures and design patterns.

• RQ4: Can design pattern be used in various safety-critical systems?

This requires an investigation into the flexibility and scalability of the proposed patterns

and their applicability to different safety-critical domains. By examining the

fundamental principles and key features of the design patterns, it is possible to determine

whether they can be adapted and extended to other safety-critical systems, thus

increasing their utility and value in addressing the challenges of the public cloud

environment.

1.4 The Significance of the Study

By exploring the use of on-demand computation power and storage offered by public cloud

infrastructure, this study aims to provide a set of design patterns that can be used to mitigate

the challenges faced during the development of safety-critical systems with public cloud

technologies. The scalability, cost-efficiency, flexibility, and global reach of public cloud

infrastructure offer promising possibilities for enhancing the capabilities of safety-critical

systems and reducing the risks associated with their operation. As such, this study has

implications for industries and businesses that rely on safety-critical systems, as well as for the

broader public that stands to benefit from improved safety measures.

Moreover, the study will also identify the limitations and challenges associated with the

deployment of safety-critical systems on public cloud infrastructure, as every design pattern

beside benefit will have some drawback or disadvantage. This will help in understanding the

trade-offs between using traditional approaches and public cloud infrastructure for safety-

critical systems.

As a result, this study will contribute to the body of knowledge on designing and architecting

public cloud infrastructure that is resilient, redundant, scalable and fault tolerant.

Introduction 8

1.5 Limitations of this Study

This study has potential limitations, and it is important to acknowledge it while utilizing its

benefits. Hence, there are several areas that will not be explored in this research.

Confidentiality, integrity, and security are important aspects of any system, including those

deployed using public cloud technologies. However, these topics will not be addressed in this

thesis. Specifically, the focus will be on designing and architecting public cloud infrastructure

that is resilient, redundant, scalable, and fault-tolerant, rather than on the security and integrity

of the system.

From a real-time system perspective, scheduling algorithms are crucial factors to consider.

However, it will also not be addressed in this dissertation. Instead, the study will assume that

any type of computation would eventually fail and look for possibilities to recover gracefully

from those failures.

Furthermore, it is important to note that this study will focus on general design patterns rather

than specific technologies or cloud providers. While this approach allows for broader

applicability, it may also limit the depth of analysis and the ability to provide tailored solutions

for individual systems. Therefore, further research and refinement of the design patterns may

be necessary to address specific technologies or cloud providers.

1.6 Thesis Structure

This section provides an overview of the organization of the remaining chapters in the thesis.

Chapter 2 introduces fundamental concepts related to embedded systems, cloud computing,

dependability, and fault-tolerance techniques in the cloud. Chapter 3 outlines the research

methodology, explaining how design patterns were derived using the Structured What If

Technique (SWIFT) methodology from a safety-critical use case. Chapter 4 presents a safety-

critical use case from the railway industry along with corresponding design patterns, providing

detailed explanations of each pattern's problem, solutions, benefits, drawbacks, and

implementation through a use case. In chapter 5, the identified design patterns are evaluated

using Fault Tree Analysis (FTA). Finally, in chapter 6, the study concludes by summarizing the

main research findings and their relation to the research aim and questions.

Literature Review 9

2 Literature Review

The aim of this chapter is to synthesize the existing research and connect it with the research

aim, which is to create a collection of architectural design patterns that can be used by various

safety-critical systems that run on public cloud infrastructure.

2.1.1 Scope

The literature review will cover a variety of topics that are relevant to the development of safety-

critical systems in a cloud computing environment. An overview of embedded systems and

cloud computing will provide a context for the research. The review will also examine the

concept of dependability, fault-forecasting methods and fault tolerance methods for cloud

computing systems will be explored.

Considering the vast amount of existing research, following topics will be outside the scope of

this review:

• Confidentiality, integrity, and security in the context of dependability

• Scheduling algorithms in the context of real-time systems

• In-depth analysis of run-time cloud offerings, such as Virtual Machines (VM),

Containers, Kubernetes, functions, and others

• In-depth analysis of fault-forecasting methods

• Fault-prevention and fault-removal techniques

• A particular cloud technology (e.g., load-balancer) and performance aspect of it

The literature review as well as the thesis will focus on the assumption that, regardless of the

type of computation resources that are used, they will eventually fail. Therefore, the aim is to

improve fault-tolerance.

2.1.2 Layout

The literature review will start by giving a brief overview of embedded systems and cloud

computing, as well as their respective characteristics. Section 2.3 will focus on dependability,

which is one of the most important aspects of embedded systems, cloud computing, and safety-

Literature Review 10

critical systems. The section will introduce the basic taxonomy of dependability and means to

attain dependability, including fault-tolerance and fault-forecasting. In section 2.4, cloud

computing failures and shortcomings of cloud infrastructure will be explained. In section 2.5

will explore fault-tolerance methods for cloud computing systems. In section 2.6, gaps in

current research will be discussed. Finally, the conclusion section will wrap up the literature

review and present the key findings. In the following Figure 1, layout of this chapter has been

visualized.

Figure 1: Literature review outline

2.2 Brief Overview of Embedded Systems and Cloud Computing

2.2.1 Brief Overview of Embedded Systems

An embedded systems is an electronic system that is specifically designed and integrated to

perform a dedicated task in a well-defined technical environment. These systems are crucial for

safety-critical applications, such as medical devices, aerospace systems, and transportation

systems, where reliability and safety are of paramount importance (Marwedel, 2021).

Embedded systems have several unique characteristics that set them apart from other types of

computer systems:

• Real-time operation: Embedded systems often need to function in real-time, which

requires them to respond to inputs and generate outputs within precise time constraints.

Overview • Embedded Systems
• Cloud Computing

Dependability
• Definition and taxonomy
• Means to attain dependability
• Fault tolerance and fault forecasting

Cloud computing
failures

• Failure modes
• Data Consistency & Availability
• Regional Outage

Fault tolerance
methods for cloud
computing systems

• Reactive methods
• Proactive methods

Gap in the current
research &
Conclusion

Literature Review 11

• Limited resources: Due to their limited resources, such as processing power, memory,

and storage, embedded systems demand meticulous design and optimization to

guarantee their proper functionality within the available resources.

• Specialized environment: Embedded systems are often designed to operate in

specialized and harsh environments, such as industrial settings or transportation

systems, which may have specific technical requirements that must be considered

during system design and integration.

• Dedicated function: Embedded systems are created to serve a predetermined function,

which is typically specified during the design phase. This specific design that aims to

perform a particular task, ranging from controlling a washing machine to monitoring a

spacecraft, is also the system's limitation.

• Hardware and software integration: Embedded systems combine hardware and

software components to accomplish their intended function. Typically, the hardware

and software are closely intertwined and developed together to optimize the

performance of the system.

The integration of hardware and software in an embedded system ensures that, it can operate

seamlessly and efficiently within its technical environment, reducing the risk of errors and

failures. Therefore, the optimization of an embedded system for its intended purpose is essential

for achieving high levels of safety and dependability in safety-critical systems(Marwedel,

2021). Dependability is hence a major concern for embedded systems.

2.2.2 Brief Overview of Cloud Computing

The term cloud computing refers to a computing paradigm in which users can access shared

computing resources like servers, storage, and applications over a network, enabling users to

utilize these resources remotely (Mell et al., 2011).

Cloud providers such as Amazon Web Services, Google Cloud Platform and Microsoft Azure

are vendors that offer customers the ability to access and utilize cloud computing resources and

services based on their dynamic demand, following a specific business model(Prodan &

Ostermann, 2009).

Literature Review 12

A cloud infrastructure refers to the combination of hardware and software systems that work

together to enable the fundamental features of cloud computing, which are:

• On-demand self-service: Consumers have the ability to independently provision

computing capabilities as required, without the need for direct human interaction with

each cloud provider.

• Broad network access: Computing capabilities are made available and accessible to

users through the network via standard interfaces.

• Resource pooling: Cloud service providers adopt a multi-tenant model, combining

computing resources to cater to multiple consumers. The provider dynamically allocates

physical and virtual resources based on varying consumer demands. Additionally,

consumers typically have limited control and knowledge of the exact location of the

computing resources provided, except for general regional or geographic information.

• Rapid elasticity: Cloud capabilities can be dynamically scaled up or down based on

demand, allowing for rapid expansion of resources. This scaling process can be

automated, enabling consumers to access computing resources as needed without

worrying about capacity limits. From the consumer's perspective, the availability of

these capabilities can seem limitless, allowing them to provision resources in any

quantity and at any time.

• Measured service: Cloud systems effectively manage and optimize resource usage

with specialized metering mechanisms for different services like storage, processing,

and bandwidth. This enables monitoring, control, and reporting of resource usage,

ensuring transparency for both the service provider and consumer (Mell et al., 2011).

These cloud-infrastructure that is offered by cloud providers serviced in three high level model:

• Infrastructure as a Service (IaaS): Consumers are empowered to provision vital

computing resources like processing, storage, and networks, as well as deploy desired

software, including operating systems and applications. However, it is important to note

that the provider manages and controls the underlying cloud infrastructure, while the

consumer maintains control over operating systems, storage, and deployed applications.

• Platform as a Service (PaaS): Consumers are equipped with the ability to deploy their

own or acquired applications, utilizing supported programming languages, libraries,

Literature Review 13

services, and tools on the cloud infrastructure. However, it is important to note that the

consumer does not have management or control over the underlying cloud

infrastructure, including network, servers, operating systems, or storage. The consumer

retains control solely over the deployed applications and potentially the configuration

settings for the application-hosting environment.

• Software as a Service (SaaS): Consumers are offered the capability to utilize the

provider's applications running on a cloud infrastructure, which can be accessed from

different client devices through a thin client interface (e.g., web browser) or a program

interface. However, it is important to note that Software as a Service (SaaS) is a more

restricted model compared to Infrastructure as a Service (IaaS) since it confines

consumers to using existing services instead of enabling them to deploy their own

applications (Mell et al., 2011; Prodan & Ostermann, 2009).

2.2.2.1 Availability Zones and Regions

Cloud computing resources such as virtual machines, storage, databases, and other services are

hosted in geographical locations. These locations are composed of zones and regions. Each

region (e.g., Germany West Central) is made up of one or more availability zones, which are

distinct physical data centers within a region that are isolated from each other in terms of power,

cooling, and network connectivity. The isolation is engineered to provide redundancy and high

availability. Furthermore, availability zones in each region are interconnected with high-

bandwidth and provide low-latency round-trip (e.g., 2ms). The aim here is redundancy, if one

of the zones fails, the others can still provide access to the same resources, given they are

designed with replication and redundancy to begin with (Global Infrastructure Regions & AZs,

2023; Regions and Zones | Compute Engine Documentation, 2023; What Are Azure Regions

and Availability Zones?, 2023). Figure 2 visualizes the concept of zones and regions.

Literature Review 14

Figure 2: Regions and zones - (What Are Azure Regions and Availability Zones?, 2023)

2.2.2.2 Public, Private and Hybrid Cloud Infrastructure

The definitions introduced in the previous sections refer to public cloud infrastructure, which

is owned and operated by companies like Amazon Web Services (AWS), Microsoft Azure, or

Google Cloud Platform (GCP). On the other hand, private cloud is dedicated to a single

organization and is typically hosted on-premises or in a data center controlled by that

organization. While public cloud infrastructure offers numerous benefits, such as scalability

and cost-effectiveness, these advantages are not fully realized in private cloud infrastructure

due to higher upfront costs and ongoing maintenance expenses associated with infrastructure

ownership and management. However, the challenge lies in managing and maintaining a stable

and scalable system in the same manner as in the public cloud, which requires extensive

knowledge across various fields and highly skilled engineers (Bass et al., 2015).

In recent years, cloud providers have invested significant efforts in developing hybrid cloud

management solutions such as Azure Arc, GCP Anthos, and AWS Outpost. These solutions

provide capabilities for managing and orchestrating resources, workloads, and applications

across hybrid environments, including on-premises data centers. The goal is to achieve

consistency, control, and operational efficiency in managing resources and applications across

diverse and distributed IT environments (Azure Arc – Hybrid and Multi-Cloud Management

and Solution, n.d.; Hybrid Cloud Management with Anthos, n.d.; On Premises Private Cloud -

AWS Outposts - AWS, n.d.).

Literature Review 15

Although this thesis primarily focuses on public cloud infrastructure, it is worth noting that

certain safety-critical systems may not be able to run on public cloud infrastructure due to

regulatory requirements. In such cases, these hybrid cloud management solutions serve as

interesting alternatives, allowing private entities to maintain control over their hardware

infrastructure while leveraging a management layer similar to that of the public cloud. The

regulatory aspects of this issue are briefly addressed in the next section under “Governance and

Security”.

2.2.3 Integration of Embedded Systems with Cloud Computing

Embedded systems are ubiquitous in modern society, powering everything from smart home

devices like thermostats and security cameras to complex machinery like medical devices and

automotive systems. Differences in the type of systems, also means that cloud computing can

be integrated with embedded system in different ways, from simply leveraging cloud for data

storage and analytics to the extend having complete control loops being deployed and executed

in the cloud. The only exception to this integration is in processes that involve sensors and

actuators that sense and control the physical environment (Hallmans et al., 2015).

Hallmans et al., (2015) has identified several 5 major challenges, running embedded systems

on the cloud:

• Timing: Hard real-time systems have strict timing requirements that can be difficult to

meet on a cloud server due to resource sharing and potential interference from other

applications. While less extreme timing requirements may be feasible for cloud

deployments, the challenges of meeting strict timing requirements must be considered.

• Communication: Even though ethernet-based communication allows for cloud-based

applications to communicate with sensors/actuators, using different real-time network

communication protocols poses a challenge that requires embedding data via a gateway

without compromising performance. Adding communication between a local sensor and

a remote cloud system increases the chances of failure if no redundancy is used, and

loss of communication with the cloud must be managed similarly to how

communication bus failures are handled in current systems.

Literature Review 16

• Redundancy/control-/protection-system: Cloud systems used in industry must

provide high availability through redundancy and fast switching between systems. Other

requirements include having different physical instances for control loops and

protective functions, which work together to supervise control actions.

• Governance and security: Moving the control functionality of a power station to a

cloud owned by a third-party organization raises security and governance concerns

related to physical security, human resource security, business continuity, disaster

recovery, identification and access management, encryption, and government

regulations. While similar requirements exist for other industries, the critical

infrastructure status of power stations requires extra caution.

• Safety certification: Certifying safety applications running on the cloud presents

challenges due to concerns about hardware limitations and communication issues for

certified processes, whether and how safety-critical applications running in the public

cloud can be certified has to be clarify.

The timing or scheduling of tasks is indeed one of the biggest challenges of moving control

loops from embedded systems to cloud computing. In fact, there is an argument, that current

cloud computing system, as it may be useful to enterprise computing, it is not fit for safety-

critical systems, because integrated functions cannot guarantee absolute performance as well as

resource use cannot be determined in advance(Jakovljevic et al., 2014).

To give a hypothetical but precise example, let us consider an airbag system in modern vehicles.

These systems are considered safety-critical due to their precise timing requirements. Inflation

of an airbag too early or too late can cause harm to passengers rather than protect them.

Typically, an airbag system needs approximately 20ms to detect a crash and another 20-30ms

to inflate the airbag (Birdsong et al., 2006). The time from the moment of the crash to complete

inflation of the airbag is approximately 50-60ms, depending on the vehicle's velocity. Most of

these 60ms is used by sensing and actuating, hence running a control loop of an airbag in the

cloud would be impossible just by the sheer fact of latency.

The question that arises is whether cloud infrastructure can support safety-critical applications

and what would be the anticipated latency. While numerous factors can affect latency, including

processing power, programming language, computing algorithm, and network setup, the most

Literature Review 17

significant factor in this case is the physical distance from the cloud infrastructure. Figure 3,

displays an analysis of latency in terms of round-trip time (RTT) of major cloud computing

vendors, showing the time it takes for data to travel from one point of origin to various locations.

The analysis is conducted via PingMesh tool using TCP and HTTP(S) protocols. The lowest

RTT value(28ms), in the Middle Eastern region is due to the proximity to Muscat(point-of-

origin), as shown in the figure. The latency analysis reveals that South Africa and Sao Paulo

have higher latencies due to their expected network distance of 7158 and 11650 miles (about

18748.86 km), respectively, resulting in slower access. The network distance to Bahrain and

Dubai is around 17 times less than the intercontinental distance to South Africa and Sao Paulo,

which emphasizes the impact of geographical distance on round trip latency. The authors of the

study argue that latency under 100ms is considered acceptable for normal use cases, but for

time-critical applications, a lower value might be necessary. (Zen et al., 2022).

Figure 3: Latency vs Distance - (Zen et al., 2022)

Given current latency measurements, it should be possible to run some safety-critical systems

that have timing requirements around a couple of seconds on cloud infrastructure. Although at

this stage, none of the cloud providers offer specialized hardware or scheduling algorithms to

deliver timely results, with enough processing power, redundancy, and a well-designed system,

achieving timely delivery should be possible.

Literature Review 18

2.3 Dependability

In the context of safety-critical systems, dependability is a fundamental property that refers to

the system's capability to provide its intended functionality in a reliable, consistent, and timely

manner, with the aim of ensuring that it does not pose any unacceptable risks to people, the

environment, or property.

Dependability, it is defined as “ability to avoid service failures that are more frequent and more

severe than acceptable”(Avizienis et al., 2004). Figure 4, visualizes the taxonomy of

dependability.

Figure 4: The dependability and security tree (Avizienis et al., 2004).

2.3.1 Dependability Attributes

Dependability attributes are characteristic or properties that a dependable system or process

must have to fulfill its intended function. One can utilize these attributes as a structure for

assessing the dependability of a system or process. Dependability encompasses following

quality attributes (Avizienis et al., 2004):

• Availability: System's ability to function correctly and be ready for use when needed.

• Reliability: System's ability to consistently function correctly over time without

interruption or failure.

• Safety: System's ability to prevent harm to users and the environment, by avoiding

catastrophic consequences.

Literature Review 19

• Confidentiality: System's capacity to safeguard sensitive information and prevent

unauthorized disclosure.

• Integrity: System's ability to maintain its intended functionality and data quality, by

preventing improper system alterations.

• Maintainability: System's ability to be easily maintained and repaired, allowing for

modifications or bug fixes without disruption to the system's operation.

2.3.2 Dependability Threats

Threats are defined as events or conditions that can lead to system or process failure or deviation

from the intended behavior. Various sources, including hardware or software defects, human

error, environmental conditions, and malicious attacks, can give rise to these threats. It is crucial

to identify and mitigate them to ensure that a system or process remains dependable and can

execute its intended function.

A fault is a defect or flaw in a system, which may or may not lead to an error or failure. For

example, a coding error or a design flaw in a software system is a fault.

An error occurs when the actual behavior of a system inside its boundary does not match its

intended behavior. This can happen when the system enters an unexpected state due to the

activation of a fault, leading to a discrepancy between what was intended and what actually

happened.

A failure occurs when a system behaves contrary to its intended specifications. A failure

happens when an error is not resolved correctly, either because it was not handled properly, or

the system failed to recover from the error. However, an error does not always result in a failure.

If an error occurs in a system, it may throw an exception. However, the exception can be caught

and managed using fault tolerance techniques to ensure that the system continues to operate as

intended and according to its specification. This means that the system can recover from the

error and continue functioning without causing a failure.

Fault, error, and failure are tightly coupled. The activation of a fault causes an error, which, if

not handled properly, can lead to a failure, and render a system unusable(Avizienis et al., 2004).

Literature Review 20

Figure 5: Relationship of fault, error, and failure

2.3.3 Means of Achieving Dependability

After grasping the fault-error-failure chain that was explained earlier, the focus shifts to

ensuring that a system or process functions as intended without any unexpected failures, errors,

or malfunctions, and improving its dependability. To achieve the attributes of dependability and

security, four means have been developed(Avizienis et al., 2004):

• Fault prevention: A set of techniques used to prevent the occurrence or introduction

of faults into a system.

• Fault tolerance: The ability of a system or component to prevent service failures even

in the presence of faults.

• Fault removal: The process of identifying and eliminating faults to minimize their

quantity and impact in a system.

• Fault forecasting: A proactive approach to predict the current and future occurrence of

faults, along with their potential consequences.

In this thesis, fault forecasting will be used to identify potential failures and derive design

patterns that are fault tolerant.

2.3.3.1 Fault Tolerance

Fault tolerance is a technique used to ensure that a system can continue to operate correctly in

the event of a failure. The goal of fault tolerance is to avoid failures and maintain system

availability and reliability. There are several ways to achieve this:

• Error detection: This involves utilizing different mechanisms, such as redundancy,

checksums, and error-correcting codes, to identify errors within the system.

Redundancy involves duplication of critical components increase reliability or fail-over.

Activation of
Fault

Dormant
Fault

Error
propagationError

Violation
ofsystem

specification
/ No Service

Failure

Literature Review 21

Checksums involves calculating a numerical value from the data to detect errors in data

transmission or storage, and then comparing it to a known value.

• System recovery: This involves taking necessary actions to restore the system to its

normal operation after a failure has occurred. There are different methods including

restarting failed components, switching to backup systems, or initiating a failover to a

redundant system, are used in this process. This process can be either manual or

automatic, depending on the system and the nature of the failure.

Fault tolerance is an essential aspect of system design, particularly in critical systems where

downtime can have severe consequences (Avizienis et al., 2004). Therefore, in section 2.4 cloud

computing failures as well as the fault tolerance techniques that are used in the cloud

infrastructure will be examined in detail.

2.3.3.2 Fault Forecasting & Techniques

Fault forecasting is used ensure a system's dependability by identifying and predicting potential

faults or failures in systems or processes before they occur. Hence, fault forecasting techniques

refer to a set of methodologies and tools that are used to predict potential faults or failures in

systems or processes. Fault forecasting approaches can be categorized into two types: bottom-

up (inductive) approaches, which involve starting with a failure and then identifying related

consequences through inductive reasoning, and top-down (deductive) approaches, which

involve starting with a failure or undesired effect and identifying related causes through

deductive reasoning (Adler, 2019).

There are various techniques, such as Fault Tree Analysis (FTA), Failure mode and effects

analysis (FMEA), Hazard and Operability Study (HAZOP), The Structured What-if Technique

(SWIFT), each of which can be used to systematically identify and analyze potential faults,

failures, and hazards in a system, allowing for effective risk management and the

implementation of appropriate preventive or corrective measures.

Elaborating on each of these methods is beyond the scope of this thesis. As this thesis will use

SWIFT for deriving design patterns from a safety-critical use case, this method will be

explained briefly, and the justification for why this method has been selected will be explained

in the next chapter.

Literature Review 22

2.3.3.3 Structured What If Technique (SWIFT)

The Structured What-If Technique (SWIFT) is a technique for identifying system-level risks

and hazards, which involves structured brainstorming using predefined headings or guidewords

(e.g., timing, human-factors, environment, etc.), combined with prompts beginning with

phrases such as “what if...” or “how could...” to thoroughly examine risks and hazards. It is a

tool that is both simple and effective, and it can be particularly useful when applied early in the

design process and throughout the life cycle of a system. The SWIFT process involves

preparing guidewords, assembling a team, providing background information, defining the

purpose, describing the system, identifying risks and hazards using the SWIFT technique,

assessing the risks, proposing risk control actions, reviewing the process, producing an

overview document, and conducting additional risk assessments if necessary. The method is

used widely in chemical, petrochemical, energy, manufacturing, high‐tech, food processing,

transportation, and healthcare. (Card et al., 2012; Lyon & Popov, 2021).

According to a systematic literature review conducted by Card et al. in 2012 in the healthcare

sector, it was concluded that healthcare workers find SWIFT easy to learn, easy to use, and

credible, as well as less time-consuming than FMEA. Compared to FMEA, producing

overlapping but different results(Card et al., 2012). It is worth mentioning that the authors

acknowledge that the evidence available to them was limited.

2.4 Cloud Computing Failures

Despite cloud providers offering a high level of service availability, failures still occur. The

high availability being offered is for the large segment of the service, but individual hardware

failures, software failures, and configuration failures still take place. Bass et al. (2015) reported

that AWS released data indicating that in a datacenter with approximately 64,000 servers, each

equipped with two disks, an average of more than five servers and 17 disks fail each day. The

authors also mentioned similar numbers in the GCP in a single datacenter, including thousands

of hard disk failures per year, connectivity loss, overheating, router failures, and more (Bass et

al., 2015). In this section, challenges, issues, and fault-tolerance techniques are identified,

which are imperative to run safety-critical applications on cloud infrastructure.

Literature Review 23

2.4.1 Cloud Computing: Failure Modes

As mentioned in the previous section, cloud computing, despite offering high availability, is

susceptible to failures. Mesbahi et al. (2018) investigated possible failure modes and classified

them into six categories, the following list summarizes their findings. Each category also

contains the failure mode, for instance hardware failures are divided between “hardware

component failures” and “network failure” modes:

• Software Failures: Cloud tasks and VM hypervisors may have software faults that

cause system/application failures. Databases can be vulnerable to hardware or software

failures, which can lead to the loss of data.

• Hardware Failures: Computing resources, like storage devices, processing elements,

and memory, can experience hardware failures. Also, network failure can happen during

cloud tasks accessing remote data sources.

• Cloud Management System Failures: Cloud management system uses a combination

of software and technologies to handle cloud environments, manage pools of resources,

monitor and track resource usage, and more. Typical failures here include overflow

failure, timeout failure, missing data resource, and missing computing resource.

• Security Failures: Cloud service failures can be caused by software security breaches,

where attackers gain unauthorized access to customer information through cloud-based

software. Another common reason for security failures is miscalculating the security

requirements for a comprehensive security policy. While some of these failures can be

attributed to the provider, research suggests that the majority of cloud security failures

are caused by their customer.

• Human Operational Faults: The failure is caused by human error during the operation

or configuration of the system, which can impact the cloud system. Misconfiguration of

the network or other underlying systems can also bring down the entire cloud system.

• Environmental Failures: Environmental disasters such as floods, power outages, and

fires can interrupt service provision of a cloud system. They are outside the control of

the service provider and can cause large-scale disruptions. Other issues such as failure

in the air-conditioning system of a cloud datacenter can also lead to service failures

(Mesbahi et al., 2018).

Literature Review 24

All these failure modes can impact the availability and reliability of the systems running on

the public cloud. However, being aware of potential failure modes can help to create guards

against these failures.

2.4.2 Cloud Computing: Data Consistency & Availability

Data storage technologies are one of the most critical parts of any application. There has been

a lot of research and advancement in the field, and cloud providers offer different data storage

technologies tailored to various use cases. Given the possible failures that can occur, data is

constantly replicated. Cloud providers offer geo-replication, which allows data to be written in

one geographical region and eventually read in another region with low latency. However, basic

physical limitations still exist. In other words, although it is much easier to use a database that

has a geo-replication feature, it is important to understand the consistency aspect of it.

In the context of data storage technologies and cloud providers, it is essential to consider the

CAP theorem, which states that consistency, availability, and partition tolerance cannot be

simultaneously achieved in a distributed system(Gilbert & Lynch, 2012). Achieving optimal

geo-replication involves finding the right equilibrium between consistency and availability.

Consistency guarantees that regardless of the node a client connects to, all clients will observe

the same data simultaneously. With geo-replication, achieving strong consistency can be

challenging, especially when dealing with high-latency network connections between data

centers. In some cases, data inconsistency may occur when multiple clients try to access and

update the same data simultaneously. To mitigate this risk, some cloud providers offer options

for configuring the consistency level of geo-replicated data.

In summary, while geo-replication is a convenient feature for accessing data across different

regions with low latency, it is important to consider the consistency aspect of it. Cloud providers

may offer different consistency levels for geo-replicated data, and it is up to the application

developers to choose the appropriate level that balances consistency and availability based on

their specific use case.

Literature Review 25

2.4.3 Cloud Computing: Regional Outage

As it was explained in the section Brief Overview of Cloud Computing, cloud providers offer

regions and zones that provide redundancy mechanisms, if one of the zones fails, the others can

still provide access to the same computing resources and data that has been replicated across

zones. However, in context of safety-critical system this may not be sufficient, hence this

section would argue, why single region design is not appropriate for safety-critical system, and

it would even take a step forward arguing it might even be appropriate to have multi-cloud

strategy.

Within a geographical cloud region, multiple zones exist, with each zone housing one or more

data centers. However, the probability of regional outage or scarce computational resource

occurring in a particular region is still possible. Considering the following cases:

• Human Operational Faults: An outage in cloud computing, as mentioned in section

2.4.1, can occur even when the underlying hardware and software are still functional,

due to other human errors.

• Capacity Issues: Limited available compute resources can limit scalability and have an

impact on the availability of a running system.

• Environmental factors: These factors, such as floods, earthquakes, and cooling system

failures, cannot be foreseen, but there is a possibility that they might happen.

• Cascading Failure: Failure in the cooling system of a single availability zone can

cascade other failures, such as scarcity of resources. For instance, assuming that a single

availability zone suddenly becomes unavailable because of a cooling system failure, the

remaining workload has to be migrated to other zones. However, this strategy assumes

that the remaining zones have enough capacity to take over the workload of the failed

zone.

Hence, the possibility of regional failure is very likely, and therefore a single-region design for

a safety-critical system is not sufficient. Furthermore, if there is a regional outage, this can

trigger the disaster recovery strategy of most cloud consumers. The natural tendency of most

cloud consumers would be to choose the closest geographical region; however, this clustering

can lead to scarce resources in nearby regions. Therefore, a multi-cloud strategy, which will be

explained in depth in chapter 4, should be considered for safety-critical systems.

Literature Review 26

2.5 Cloud Computing Fault Tolerance Methods

In the context of cloud computing, fault tolerance approaches are divided into two primary

categories: reactive and proactive(Agarwal & Sharma, 2015; Amin et al., 2015; Ataallah et al.,

2015; Hosseini & Arani, 2015; Mittal & Agarwal, 2015; Prathiba & Sowvarnica, 2017). There

are multiple methodologies in the literature that have been implemented to achieve fault

tolerance based on these approaches. Although adaptive fault tolerance and machine learning

fault tolerance are suggested techniques as well, proactive, and reactive are the primary fault

tolerance methods.

2.5.1 Reactive Methods

In the context of reactive fault-tolerant techniques, the focus is primarily on restoring the system

to its normal state after a fault occurs. To achieve this, the system state is continuously saved

and used during the recovery process. Replication, checkpointing, and restarting are some of

the fundamental techniques utilized for this purpose.

Algorithm/Technique Description

Checkpoint/Restart This method relies on continuously saving system state, in the event
of failure, the task is resumed from the last persisted
checkpoint(Amin et al., 2015; Ataallah et al., 2015; Hosseini &
Arani, 2015; Mittal & Agarwal, 2015; Mukwevho & Celik, 2021;
Prathiba & Sowvarnica, 2017; Rehman et al., 2022). (Mukwevho
& Celik, 2021; Patra et al., 2013)

Replication This method relies on various components being copied and
deployed simultaneously across different resources, aim is to
increase availability and execution of tasks (Amin et al., 2015;
Ataallah et al., 2015; Hosseini & Arani, 2015; Mittal & Agarwal,
2015; Mukwevho & Celik, 2021; Prathiba & Sowvarnica, 2017;
Rehman et al., 2022).

Job Migration/Task
Re-submission

This method works by migrating/re-submitting the failed task to
either same computation resource or to a different one (Amin et al.,
2015; Ataallah et al., 2015; Hosseini & Arani, 2015; Mittal &
Agarwal, 2015; Mukwevho & Celik, 2021; Patra et al., 2013;
Prathiba & Sowvarnica, 2017; Rehman et al., 2022)

Literature Review 27

Retry This method works by retrying the failed request on the same
resource. Although it is a simple method, it is a very effective
one(Amin et al., 2015; Hosseini & Arani, 2015; Mukwevho &
Celik, 2021; Patra et al., 2013; Prathiba & Sowvarnica, 2017;
Rehman et al., 2022).

Timing Check This method works by components resetting a timer. When a
component or system fails to reset the timer, it is the indication of
a fault(Hosseini & Arani, 2015; Patra et al., 2013) It is also known
as watchdog timer (“Watchdog Timer,” 2023).

N-Version and
Recovery Block

This method works by creating redundant copies of the software in
different ways to reduce the probability of the similar faults in two
or more copies. N-Version programming is based on the idea that
multiple independent teams develop identical software, and these
redundant copies of the software run concurrently. In contrast, the
Recovery Block approach involves creating multiple copies of the
software using different algorithms, and these redundant copies are
not executed concurrently but rather sequentially until acceptance
test is passed(Mukwevho & Celik, 2021).

Rescue Workflow This method works by facilitating the workflow's continuity despite
task failures, until it becomes impossible to continue without
addressing the failed task. The idea behind the method is to persist
the state of failed and succeeded task, and at next execution re-
submit the failed workflow but only attempt to compute the failed
task, saving computation resources(Hernandez & Cole, 2007;
Hosseini & Arani, 2015; Mukwevho & Celik, 2021; Patra et al.,
2013; Prathiba & Sowvarnica, 2017)

Table 1: Reactive fault tolerance methods

2.5.2 Proactive Methods

Proactive fault-tolerant techniques focus on predicting and preventing faults before they occur.

The system is constantly monitored, and failure prediction algorithms are used to assess its

status, enabling necessary actions to be taken to prevent failures. In cloud systems running on

virtualized environments, fault management techniques rely on migration and pause/un-pause

functionality provided by the virtual platform. Key techniques used for proactive fault tolerance

include software rejuvenation, self-healing, and preemptive migration.

Algorithm/Technique Description

Literature Review 28

Load Balancing This method relies on distribution of the workload across
components that perform the same function. It effectively works
together with replication method that was mentioned above. It is
one of the most important methods of fault-tolerance in the context
of the cloud computing(Mukwevho & Celik, 2021; Rehman et al.,
2022).

Preemptive Migration This method relies on a feedback control mechanism to monitor the
state of system components and remove or suspend components
that are likely to fail. By implementing this approach, any adverse
effects on the overall system performance can be effectively
minimized. (Amin et al., 2015; Ataallah et al., 2015; Hosseini &
Arani, 2015; Mukwevho & Celik, 2021; Patra et al., 2013; Prathiba
& Sowvarnica, 2017; Rehman et al., 2022)

Software Rejuvenation This method relies on restoration of the initial state of the software
by simply implementing periodic graceful shutdown and restart of
the component (Amin et al., 2015; Ataallah et al., 2015; Hosseini
& Arani, 2015; Mukwevho & Celik, 2021; Patra et al., 2013;
Prathiba & Sowvarnica, 2017; Rehman et al., 2022)

Self-healing This method relies on feature of the system that enables automatic
detection, diagnosis, and repair of both software and hardware
faults without human intervention(Amin et al., 2015; Hosseini &
Arani, 2015; Mittal & Agarwal, 2015; Mukwevho & Celik, 2021;
Prathiba & Sowvarnica, 2017; Rehman et al., 2022).

SGuard This method relies on saving checkpoint asynchronously while
services are still running, failed services are rolled back to latest
error-free state and recovered. Checkpoints are saved in a
distributed storage, as a result services are replicated. Hence the
method can be used in distributed stream processing engines and
offers better performance and reliability(Amin et al., 2015;
Hosseini & Arani, 2015; Kwon et al., 2008; Mittal & Agarwal,
2015; Mukwevho & Celik, 2021; Patra et al., 2013; Rehman et al.,
2022).

Table 2: Proactive fault tolerance methods

Many methods that were described above can be used in combination to increase availability

and reliability of the system. For instance, a system can be composed of many components;

replication methods can be used to create a copy of deployed software to guard against hardware

failures. The utilization of a load balancer allows for the distribution of computational tasks

across multiple instances of the running software. Furthermore, assuming the system has a

clearly defined interface, the client can use the retry method to re-request a piece of data from

Literature Review 29

the system. Therefore, most of these methods should be seen as complimentary to increase the

availability and reliability of the system.

2.6 Gap in the Current Research

There are several gaps that have been identified in the current research:

• Focus on scheduling algorithms to manage timing constraints, rather than utilizing the

available cloud infrastructure.

• Limited number of practical safety-critical applications running on public cloud.

• Lack of clearly identified methodologies to manage possible failures.

• Overall available research in the area of safety-critical systems running on cloud

infrastructure.

There are naturally many reasons why there is currently such a gap in the existing research. For

instance, cloud providers at this stage may not have any incentive to invest in customized

hardware and scheduling algorithms for safety-critical systems. This lack of interest may be

due to the belief that the added cost and effort of such specialized systems outweigh the benefits,

as simply providing cloud technologies on commodity hardware is still a very profitable

business. Therefore, relying solely on scheduling algorithms as a solution at this stage is not

sufficient. Furthermore, it should be possible to overcome the lack of proper scheduling

algorithms and hardware via redundancy and available extra computation power.

Despite the growing popularity of public cloud infrastructure, it appears that there has not been

enough research focusing on running safety-critical systems in the public cloud environment.

As a result, there is a pressing need for more research and development in this area. By

identifying and addressing the challenges associated with running safety-critical systems on the

public cloud, researchers may be able to unlock the full potential of cloud infrastructure for

critical applications in fields such as healthcare, transportation, and energy.

Overall, there is much work to be done in this area, and the development of new techniques and

technologies will be crucial in ensuring the safety and reliability of critical systems in the public

cloud. By pursuing these research efforts, we can pave the way for a safer, more efficient, and

more cost-effective approach to safety-critical systems in the cloud.

Literature Review 30

2.7 Conclusion

The literature review provides valuable insights into the existing practices and techniques used

in dependability engineering and fault tolerance for safety-critical systems in the public cloud.

It is clear that there are a number of well-established practices that can be applied to this domain,

such as fault forecasting techniques including FMEA, SWIFT, and HAZOP. These techniques

help to identify potential faults and their consequences, which can then inform the design of

more robust and fault-tolerant systems.

Moreover, fault tolerance techniques are also an important consideration for ensuring the

reliability and safety of critical systems in the public cloud. These techniques include hardware

redundancy, software redundancy, checkpointing, and error correction codes. These techniques

can help to detect and recover from faults in hardware, software, or data, and enable systems to

continue to operate even in the presence of faults or failures.

However, while these techniques are important, there are still challenges to overcome when it

comes to ensuring the reliability and safety of critical systems in the public cloud. One of the

main challenges is the reliance on commodity hardware and shared infrastructure, which may

not meet the strict requirements of safety-critical systems. Additionally, scheduling and

hardware optimization have been proposed as solutions, but there is still limited exploration of

other potential strategies.

To address these challenges, further research is needed in several areas. One promising

approach is to explore alternative solutions to scheduling and hardware optimization, such as

leveraging redundancy methods and processing power. This approach could help to ensure that

safety-critical systems with timing requirements of several seconds or more can still be

supported, even without specialized hardware and scheduling algorithms.

Another important area of research is to develop new techniques and technologies to ensure the

safety and reliability of critical systems in the public cloud. This could include the use of

machine learning or other data-driven approaches to predict faults and adapt system behavior

accordingly. Additionally, the impact of shared infrastructure and commodity hardware on

safety-critical systems in public cloud infrastructure must be studied more extensively.

Literature Review 31

Finally, case-studies and simulations can be used to test the effectiveness of different solutions

and strategies for safety-critical systems in the public cloud. This can help to identify areas

where improvements can be made, as well as provide a more detailed understanding of the

trade-offs between different approaches.

Overall, the literature review highlights that there is still much work to be done in ensuring the

safety and reliability of critical systems in the public cloud. However, by pursuing further

research efforts in these areas, we can develop new and more effective strategies for achieving

timely results and ensuring the safety-critical systems that are running on public cloud

infrastructure.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 32

3 Deriving Design Patterns from Use Cases Using the
SWIFT: Methodology and Data Collection

This section describes the purpose and procedure of data collection using the proposed SWIFT-

based methodology for deriving design patterns from a selected use case. The process involved

identifying the use case and relevant input parameters, applying SWIFT to systematically

explore what-if scenarios, and analyzing the results to identify patterns in the system's behavior.

The collected data were used to answer research question, RQ3, and evaluate the proposed

methodology's effectiveness in deriving design patterns from use cases.

3.1 Introduction

Design patterns play a crucial role in designing software by offering reusable solutions to

recurring design challenges encountered during the development process, based on past

experience, thereby enhancing flexibility, reusability, and efficiency in design decision-making

(Gamma et al., 1995). However, identifying and selecting appropriate design patterns heavily

depends on experience, observation, and analysis of the given problem, as there is currently no

standardized method for creating design patterns. Moreover, the problem for which a design

pattern is being considered must be a recurring one in similar systems, as design patterns are

intended to provide reusable solutions that can be applied to subsequent systems.

One approach to addressing this challenge is to derive design patterns from use cases. Use cases

describe system behavior and capture interactions between users and the system. Therefore, the

primary purpose of use cases is to define and document the functional requirements of a

software system. Deriving design patterns from use cases can help ensure that the patterns

closely align with the system's requirements and similar use cases.

In this research, a methodology is proposed for deriving design patterns from use cases using

the Structured What-If Technique (SWIFT). SWIFT methodology which was introduced in

section 2.3.3.3, is a technique for identifying system-level risks and hazards, which involves

structured brainstorming using predefined guidewords. By applying SWIFT to use cases,

patterns in the system's behavior regarding risks or failures can be identified, which can then

be used to derive design patterns.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 33

The proposed methodology involves the following steps:

• Identifying a safety-critical use case based on real-world scenarios.

• Setting up the initial context by running the safety-critical use case on cloud

infrastructure.

• Identifying guide words to be used in SWIFT analysis.

• Applying SWIFT to the use case to systematically explore what-if scenarios.

• Analyzing the results of the SWIFT analysis to identify patterns in the system's

behavior.

• Deriving design patterns from the identified behavior patterns of the system.

The proposed methodology will be applied to a use case to demonstrate its effectiveness in

deriving design patterns. The proposed methodology has the potential to enhance the efficiency

and effectiveness of the design pattern selection process, leading to an improved quality model

for the software product, particularly in terms of reliability, as per ISO/IEC 25010.

3.2 Use Case Selection

For the purpose of deriving design patterns, a number of real-world scenarios have been

examined, such as an autonomous fleet of robots in a warehouse, automated valet parking,

positive train control, and moving block in railway signaling. As a result, moving block in

railway signaling has been selected as the use case for this thesis. Several factors favored this

use case over the others, these are:

• Moving-block software could be treated as a black box because it has few input

parameters and produces precise output values.

• Timing constraints are not very tight, as computation occurs every several seconds,

which can be easily handled by the cloud infrastructure.

• The railway industry has traditionally relied on dedicated and specialized hardware on

the track to grant authority of movement to trains. By moving some of this operation to

the cloud, it is possible to reduce overall equipment, cost, and maintenance effort.

• Necessity to access comprehensive information about all trains at a centralized location.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 34

In summary, a real-world scenario was selected to derive design patterns, resulting in the

selection of the moving block in railway signaling as the use case due to its ability to be treated

as a black box with precise outputs, low timing constraints, and the potential to reduce

equipment, cost, and maintenance through cloud infrastructure. Detailed explanation of the use

case would be presented in the next chapter.

3.3 What-If Context

As risk analysis in a brainstorming session can become complicated due to the large number of

factors involved, it is important to set the context of the analysis to ensure the correct

identification of potential risks. In this study, the context was reduced to:

• Any potential risk associated with cloud infrastructure. Failure modes that were

identified in the literature review were used as bases.

• Hypothetically, it is assumed that all software components of the moving-block system

have been accurately developed, well-tested, and are functioning correctly as intended.

This approach ensures that efforts are focused on identifying design patterns related to safety-

critical systems running on cloud infrastructure, which can be re-used in different use-cases.

3.4 Identification of SWIFT Guidewords

In SWIFT, guidewords refer to a set of words that are used to systematically generate potential

deviations or failures from a given scenario or situation. The purpose of using these guidewords

is to facilitate brainstorming of potential causes and consequences of deviations and to steer the

analysis towards achieving a more holistic understanding of the system under examination

(Card et al., 2012; Lyon & Popov, 2021).

In the context of running safety-critical applications on public cloud, several sources have been

used to identify the guidelines. These are:

• Dependability quality attributes from section 2.3.1 have been used as input.

• Failure modes of cloud computing from section 2.4.1 have been used input.

• Cloud architecture frameworks that are advised by three major cloud providers has been

used as input 2.3.1.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 35

The following Table 3 shows an excerpt of the list of identified SWIFT guidewords. All the

identified guidewords can be referred to in Appendix 8.1

Categories Guidewords Description

Availability • Uptime
• SLA (Service Level

Agreement)
• Load Balancing
• Auto Scaling
• Disaster Recovery

This guideword refers to the ability of the
application to always remain accessible and
functional to users. Potential issues related to
availability include downtime, service
disruptions, and network connectivity issues.

Performance • Resource Utilization
• Application Tuning
• Query Optimization
• Caching
• Indexing

This guideword refers to the speed,
responsiveness, and overall performance of
the application. Potential performance issues
include slow response times, resource
bottlenecks, and inefficient code, algorithm,
or inability to handle large volumes of traffic.

Data-
Consistency

• Replication
• Consensus
• Atomicity
• Isolation
• Durability

This guideword refers to the accuracy and
integrity of data that is stored and accessed
by the application. Potential issues related to
data consistency include data corruption, data
duplication, and inconsistencies between
different data sources.

Table 3: Excerpt of identified SWIFT guidewords.

3.5 Data Collection and Analysis: Generating What-If Questions

Given the use case, context, and guidewords, what-if sessions were conducted. The guidewords

were used in combination with “what-if” and “how-could” prompts to generate questions. This

process was iterative, as applying design patterns changes the system and a new set of questions

may need to be asked to verify whether the system under consideration has any new potential

risks. The following Figure 6 visualizes this process.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 36

Figure 6: SWIFT process

At the beginning, the first system design was intentionally very rudimentary. Components did

not have any redundancy of any sort, and the system was treated as a single black box. The aim

of the process was to start with a rudimentary system to identify all possible design patterns,

without making any assumptions about the system under consideration. After each iteration,

the system would evolve, and the applied design pattern(s) would become the 'initial system

design'.

Based on the context, guidewords, and system under consideration, potential risks were

identified using what-if/how-could questions. For instance:

• What if the compute system running the software goes down unexpectedly?

• What if the system experiences a sudden increase in traffic, causing it to slow down or

crash?

Next, possible recommendations were identified to reduce the potential risks, such as

“introduce redundancy” or “rely on auto-scaling”. The following Table 4 shows an excerpt of

the identified “what if...” questions as well as the recommended actions. All identified questions

can be referred to in Appendix 8.2.

Initial System Design

Based on the guidewords,
generate what-if questions to

identify potential problems
and risks.

Add potential resolution or
recommend action to reduce

potential risk.

Based on the recommended
action, discover potential

design patterns.

Apply design pattern(s) to
the use-case.

The updated use-case
becomes the 'new system

design' for the next iteration.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 37

"What if…" / "How could…"
Questions

Recommended Action Proposed
Design Pattern

What if there is a lack of isolation
between different software
components?

Enforce logical and physical
separation between different parts
of the systems.

Critical Enclave

What if a disaster or service
disruption occurs, impacting the
availability of critical systems or
data?

Implement redundant
infrastructure.

Multi-Region
Deployment,
Geo-Replication

What if the application's response
time is slow or inconsistent?

Implement timeout and retry
mechanism to reduce the
propagation of potential failures.

API Gateway

Table 4: Excerpt of "what if..." questions

Next step was to identify potential design patterns. Design patterns were documented with

context and problem it addresses, solution, benefits, and drawbacks as well as an example. Use

case was utilized to demonstrate an example of the design pattern. In some cases, design pattern

has become part of the new system design. Finally, the new system design was used as an input

to another round of “what if…” session, which started from the start.

3.6 Methodological Limitation

The limitations of this study include the availability and accessibility of use cases that can be

used to derive design patterns. Additionally, the use of deductive reasoning to derive design

patterns may limit the generality of the patterns to specific use cases, although this issue has

been considered throughout this thesis. Furthermore, the SWIFT, being a high-level

investigation tool that can identify hazards without the need for a detailed review of low-level

processes and equipment subcomponents, enables fast iteration of potential risks. Furthermore,

following the completion of the process, a detailed evaluation such as FMEA would be

necessary to ensure that no potential issues have been overlooked.

Deriving Design Patterns from Use Cases Using the SWIFT: Methodology and Data Collection 38

3.7 Conclusion

This chapter presents the methodology adopted for the research. The use of structured what-if

technique will be used to derive design patterns from a use case. The primary data collection

method will be supplemented with a literature review. The data will be analyzed using

deductive reasoning, and the validity and reliability of the study will be ensured. The limitations

of the study have also been identified.

Architecture of Safety-Critical Applications Running in the Public Cloud 39

4 Architecture of Safety-Critical Applications
Running in the Public Cloud

Designing safety-critical systems that can run on public cloud infrastructure is a complex task

that demands a deep understanding of both the system's requirements and the intricacies of

cloud infrastructure, as well as a meticulously planned strategy. In the scope of this thesis, the

aim was to produce a set of design patterns that can be applied to various safety-critical systems.

Therefore, in this section, a use-case will be introduced, and the identified design patterns will

be applied to the use-case iteratively.

4.1 Use Case – Moving Block Interlocking

4.1.1 The European Rail Traffic Management System

The European Rail Traffic Management System (ERTMS) aims to standardize railway

signaling systems across Europe by establishing a system of standards for their management

and interoperation. ERTMS is divided into several levels to address different needs of railways

in Europe:

• ERTMS Level 0: No trackside signaling equipment, apart from Eurobalises used for

level transitions, and the train is controlled entirely by the driver.

• ERTMS Level 1: Trackside signaling equipment communicates with the train to

provide speed and distance information. The train is controlled by the driver, and the

system enforces a safe speed limit.

• ERTMS Level 2: Trackside signaling equipment communicates with an on-board

computer that continuously calculates a safe speed limit for the train. The train is

controlled by the computer.

• ERTMS Level 3: Advanced radio-based train control systems and high level of

automation, with no trackside signaling equipment required. The train is controlled

entirely by the on-board computer, which communicates with a central control system

to ensure safe and efficient train operation.

Architecture of Safety-Critical Applications Running in the Public Cloud 40

Several factors determine which level to use, including the presence of another signaling system

on the line, the use of GSM-R technology, the maximum speed limit of the line, and any planned

capacity upgrades(Abed, 2010).

4.1.2 What is Moving Block?

Moving block refers to a modern railway signaling system that relies on electronic sensors and

software to determine the position of each train, facilitating safe and closer train operations with

reduced distances between them, which leads to more efficient track capacity. Figure 7

visualizes the idea of the moving block, where the safe separation between trains is determined

dynamically based on their actual positions and speeds, resulting in minimal space being

wasted. Moreover, the system continuously adjusts the optimal speeds and braking points by

taking into account the speed of the preceding train, resulting in a smoother operation of the

train's engine and enhanced energy efficiency (Ryan, 2010).

Figure 7: Moving Block – movement authority and safety distance.

A train that is travelling is granted continuous permission to move to the next available section

of the track, with the onboard equipment enforcing the latest stop point and maximum speed.

This safe distance that the train can travel, determined by factors such as the location of other

trains, speed limits, and potential hazards, is known as Movement Authority (MA), which is

essential for safe and efficient train operations. The movement authority is granted by a

computer-based system called Radio Block Centre (RBC), which uses radio communication to

transmit data to and receive data from the trains and trackside equipment (Abed, 2010).

Architecture of Safety-Critical Applications Running in the Public Cloud 41

4.1.3 Moving Block Application: Requirements & Constraints

The aim of the use case is to demonstrate a safety critical system running on cloud

infrastructure. Therefore, to begin with, the following actors have been identified:

• Train(s): The train is the main entity that will be using the train control system. It is

responsible for sending its current position and speed to the Moving block application

and receiving movement authority in return.

• Moving Block Application: The moving block application is a computation system

running on the cloud that will grant movement authority to each train. It will receive the

current position and speed of each train and issue movement authority in return.

• Control Center Application: The control center application is responsible for

providing overall management of the railway network. It will maintain track

information such as zones and maximum speeds per zone, monitor the network, and

require access to the granted movement authority, the current location of each train, and

their speed.

Given the actors, following requirements/constraints have been identified:

ID Requirement

R1 The train control system shall include a computation system running on the cloud,
referred to as the moving block application.

R2 The moving block application shall grant movement authority to each train, only if
track is free.

R3 Granted movement authority shall be persisted in durable storage.

R4 Each train shall be responsible for sending its current position and speed to the moving
block application.

R5 Each train shall receive movement authority in return from the moving block
application via HTTP(S).

R6 The control center application shall maintain track information such as zones and
maximum speeds per zone.

R7 Track and zone information shall be persisted in durable storage.

Architecture of Safety-Critical Applications Running in the Public Cloud 42

R8 The control center application shall require access to the granted movement authority,
the current location of each train, and their speed.

R9 Each train shall be equipped with redundant internet connectivity from different
telecommunication providers, such as dual SIM from different providers, to
communicate with the cloud solution.

Table 5: Use-case requirements

Furthermore, it is assumed that other trackside equipment such as Eurobalises are in place and

functional.

4.1.4 Initial setup of Moving Block

The initial system design is provided to become the basis for applying design patterns that are

identified. Components did not have any redundancy of any sort, and the system was treated as

a single black box. The aim of the process was to start with a rudimentary system to identify all

possible design patterns, without making any assumptions about the system under

consideration. Therefore, it is assumed that the system is deployed to a single availability zone

within a single region, where it connects to the database and the application successfully.

Communication takes places over HTTP(S) protocol.

Figure 8: Moving Block: Initial system.

4.1.5 Application Runtime

Cloud providers offer different ways to deploy and run software applications in the cloud. To

name a few of them:

Architecture of Safety-Critical Applications Running in the Public Cloud 43

A virtual machine (VM) is a software-based emulation of a physical computer, capable of

executing a full-fledged operating system. Virtual machines (VMs) provide a great degree of

versatility and authority, giving you the ability to install and customize any software according

to your needs. However, they also demand more administration and upkeep than other

alternatives (Tischler, 2021).

Kubernetes is a container orchestration system, that streamlines the automation of application

deployment, scaling, and management. Containers offer a streamlined and uniform approach to

bundle and roll out software, facilitating the transfer of applications between various

environments. Kubernetes offers many different features for administering containerized

applications, such as load distribution, automatic scaling, and self-healing (Tischler, 2021).

Serverless functions, commonly referred to as Function-as-a-Service (FaaS), provide the

capability to deploy small code snippets that are triggered by events or requests, relieving the

burden of managing the underlying infrastructure (Tischler, 2021).

Each of these offers has advantages and disadvantages. In the context of this thesis, application

runtime is treated abstractly and is referred to simply as "runtime", since all design patterns can

be applied irrespective of the underlying runtime. However, it should also be noted that a

particular technology may have an impact on the scalability or maintainability of the entire

system.

4.2 Design Patterns

This section presents design patterns in a structured manner, with each pattern including its

context, the problem it addresses, its solution, benefits, drawbacks, and an example. A use case

is also employed to illustrate the design pattern.

Design patterns listed below were identified during SWIFT sessions. For the complete list of

what-if questions, recommended actions, and possible design patterns to address the identified

problems, please refer to Appendix 8.2.

4.2.1 Critical Enclave

Context & Problem

Architecture of Safety-Critical Applications Running in the Public Cloud 44

Complexity and interdependence can arise in complex systems when different concerns or

functionalities are tightly coupled. Without proper separation of concerns, changes or

modifications made to one part of the system can have unintended effects on other parts, leading

to decreased flexibility, maintainability, and scalability of the system. In the context of safety-

critical system, segregating the services based on their criticality level can ensure that any

failures in the non-safety-critical services do not affect the safety-critical services.

Solution

This pattern defines an approach to make a clear boundary of safety-critical system and non-

safety-critical system. Essentially, it is based on a separation-of-concern principle that aims to

separate a complex system into distinct and independent parts, each of which addresses a

specific concern or functionality. Hence, it requires a clear separation of compute, storage, and

networking concerns for safety-critical system and non-safety-critical system. Since most

systems are interdependent and not isolated, if a safety-critical application needs to interact with

a non-safety-critical system, this can be accomplished by establishing a clearly identified

interface and implementing strict rules to prevent any unauthorized access that could render the

safety-critical service unavailable.

Although there are various ways to achieve this, one simple solution is to use the existing tools

provided by cloud providers. Most cloud providers offer ways to organize and manage

resources, such as AWS Accounts, GCP Projects, and Azure Subscriptions, which can be easily

utilized to create the separation of concerns.

Benefits

The benefits of this design pattern are:

• Flexibility: By separating concerns and functionalities in a complex system, it becomes

easier to make changes or modifications to specific parts without affecting other

components. This flexibility allows for more agile development and adaptation to

evolving requirements.

• Maintainability: Clear separation of concerns enables easier maintenance and

troubleshooting. Developers can focus on specific areas without the need to understand

Architecture of Safety-Critical Applications Running in the Public Cloud 45

the entire system, making it simpler to identify and fix issues. This results in improved

system stability and reduces the time required for maintenance tasks.

• Testability: With clear boundaries and well-defined interfaces between components, it

becomes easier to create test cases that cover specific functionalities or interactions.

Testing efforts can be focused on critical areas or components, ensuring comprehensive

coverage, and reducing the risk of overlooking potential issues.

• Isolated Failures: The failure of one subsystem or component does not affect other

components, increasing system resilience.

Issues and Considerations

Following points should be considered for this design pattern:

• Integration Challenges: In situations where safety-critical and non-safety-critical

systems need to interact, establishing and managing a clearly defined interface can pose

integration challenges. Ensuring proper communication and data exchange between the

segregated components requires careful coordination and adherence to strict rules.

Example

In the use case of moving block application, anything that is essential to the system has to be

separated. Control center application needs to be able to alter the track information, such as

zones and speed limit as well as access to current train positions. However, this access can still

be provided either by clearly defined interfaces. Nevertheless, the separation of components

should be the first step to accomplish, enabling easier maintenance and testing of the system.

In the following Figure 9, this has been visualized.

Architecture of Safety-Critical Applications Running in the Public Cloud 46

Figure 9: Critical enclave pattern applied to the use case.

4.2.2 Data Segmentation

Context & Problem

Traditionally, most systems had a single database system where all data that was required for

the operation of the system was persisted in a single storage, irrelevant of their read/write profile

or individual attributes. This approach was consistent, as most systems were developed in

monolithic style of software development, one big application would connect to one big

database. Furthermore, allowing access to the data as well as permission to update the data has

been problematic, as circumventing process execution in the scope of a single application is

rather trivial.

Solution

With the advancement of cloud technologies, DevOps practices, as well as microservice

architecture, the behavior that was described has shifted towards abstracting the database

behind a service interface. This has resulted in the use of databases with different storage

technologies (e.g., NoSQL, relational, graph) for different purposes, as well as clearly defined

boundaries. Hence, this pattern addresses the issue by dividing a larger dataset into smaller,

more specific subsets based on certain criteria or attributes. The goal of data segmentation is to

enable better performance for read/write profiles, as well as to isolate subsets for each use case

that have common characteristics or behaviors (Newman, 2021; Tischler, 2021).

Benefits

The benefits of this design pattern are:

• Performance: Read/write profiles can be optimized for each subset, resulting in

improved database performance.

• Scalability: By isolating subsets with common characteristics or behaviors, data

segmentation enables better scalability for each use case. This means that as the system

grows, the database can be easily scaled up or down to meet changing needs.

Architecture of Safety-Critical Applications Running in the Public Cloud 47

• Maintainability: With clearly defined boundaries for each data subset, maintenance

and updates become easier, as changes made to one subset are less likely to impact other

subsets.

• Security: Access to each subset can be controlled and monitored more easily, reducing

the risk of unauthorized access or data breaches(Newman, 2021).

Issues and Considerations

Following points should be considered for this design pattern:

• Complexity: It requires additional development effort, either to create code for

accessing multiple databases in a single application or to create and manage service

interfaces to access the data.

• Data Consistency: With distributed data, the same information is often copied in

different data stores for different reasons. Data propagation and consistency can become

a challenge to manage.

• Management Overhead: Having an increased number of databases requires

management overhead, such as backup and recovery, monitoring, and maintenance.

Example

In the use case of the moving block application, the dataset can be divided into two subsets: the

track and zones, the first dataset and the granted movement authority, the second dataset. The

control center application creates and updates the track information, so the moving block

application only needs read permission to access the first data set. On the other hand, the moving

block application generates granted movement authorities, so it requires read/write permissions

to the second dataset. The control center application only needs read permission to access the

second dataset. Additionally, the scalability requirements for both subsets are different. The

track information is not updated as often as the movement authority and train position, so

second dataset is a read-heavy dataset. In the following Figure 10, this has been visualized.

Architecture of Safety-Critical Applications Running in the Public Cloud 48

Figure 10: Data segmentation pattern applied to the use case.

4.2.3 Publish–Subscribe Pattern

Context & Problem

Traditional tightly coupled client-server paradigm depends on the fact that the server must be

running for the client to successfully complete its pending operation, and the server cannot

process operations if the client is not running. Furthermore, the client-server paradigm can have

an unintended consequence where clients may overload the server, resulting in failures or

causing delays in more critical processes.

Solution

The publish-subscribe (pub/sub) pattern is often used in event-driven architectures, where a

component publishes a message to a channel without any knowledge of who will receive it, or

whether anyone will receive it. Other components can subscribe to the channel to receive those

messages and take actions that are usually independent of the original message sender. The

fundamental design principle revolves around components communicating with one another

without any awareness of each other's presence or existence. This loosely coupled architecture

allows for independent operation of the components (Malaska & Seidman, 2018).

Benefits

The benefits of this design pattern are:

• Loosely Coupled Architecture: Components communicating with one another without

any awareness of each other's presence or existence.

Architecture of Safety-Critical Applications Running in the Public Cloud 49

• Scalability: New subscribers can be added without affecting the publisher or other

subscribers, allowing for easy expansion.

• Flexibility: The system allows for the seamless addition or removal of components

without causing any impact on the remainder of the system, thereby enabling enhanced

adaptability.

• Isolated Failures: The failure of one component does not affect other components,

increasing system resilience (Malaska & Seidman, 2018).

Issues and Considerations

Following points should be considered for this design pattern:

• Complexity: Introducing a messaging system adds another component to the system,

which can increase its complexity.

• Latency: As pub/sub communication is asynchronous, there may be increased latency

between when a message is published and when it is processed by the subscriber.

• Testing and Debugging: Testing and debugging a pub/sub system may be difficult due

to its complex interactions between multiple components.

Example

In the use case of the moving block application, the control center application requires the

current position and speed of trains on the track. Although this information is available in the

database, direct access by the control center application through regular requests to the database

can cause processing time to be used by the control-center, rather than the actual safety-critical

part of the application which is moving block application. In the context of the system, moving

block application has a higher priority to use and exclusively manage the database to avoid any

possible failure propagating.

The information needed by the control center application can still be delivered via a pub-sub

mechanism. Once the moving block application approves the Movement Authority (MA) and

persists it in the database, it can send the result to the pub/sub system. This results in low

decoupling of the system as well as separation of safety-critical and non-safety-critical systems.

Architecture of Safety-Critical Applications Running in the Public Cloud 50

Furthermore, as every cloud provider provides a messaging middleware, the maintenance of

such a component is relatively low. In the following Figure 11, this has been visualized.

Figure 11: Publish-subscribe pattern applied to the use case.

It is worth to note that, similar decoupling effects can also be achieved using other methods,

such as providing a read-only replica of the database to the control center application. Current

data replication technologies are mature enough to handle such synchronization with minimal

latency.

4.2.4 Stateless Computation

Context & Problem

Distributing a workload among different computational units requires consideration of several

factors such as the complexity of the task, the capabilities of the individual units, and the need

for synchronization and communication between them. When a workload maintains internal

state, it becomes challenging to distribute the workload across multiple servers because the state

must be synchronized across all instances.

Solution

Stateless Computation design patterns dictate that the workload should be designed in a way

that it does not maintain any internal state. To implement this approach, the workload must be

decomposed into smaller units of work, and each unit should be designed to be self-contained

and independent of the others. It is important to explicitly provide inputs for each unit and return

the output explicitly. If the output is required for further computation, it can be stored in an

Architecture of Safety-Critical Applications Running in the Public Cloud 51

external database. Furthermore, the design should ensure that any necessary state information

is passed as an input to the unit instead of being stored within the unit. This approach allows

each server to access the required state when needed, without the need for synchronization or

communication with other servers (Newman, 2021).

Adopting this pattern simplifies the distribution of the workload across multiple servers, and

scaling the workload up or down by adding or removing servers becomes effortless, thereby

enhancing overall performance and efficiency.

Benefits

The benefit of this design pattern is:

• Scalability: As the computation unit does not have any internal state, it can scale up and

down in a very simple manner.

Issues and Considerations

Following point should be considered for this design pattern:

• Communication Overhead: Stateless computation may result in increased network

traffic due to the need to pass state information between services and databases.

Example

In the use case of moving block application, the application can turn into a stateless one by

relying on external storage. Below is the diagram that outlines this idea: the application can be

initialized with no data, and as soon as the request comes in, the required data can be fetched

from the database. Once the operation is completed, the data is persisted, and no information is

kept on the service. In any case, each request can behave as if there was no data, and once the

request is completed, the result can be persisted. In the following Figure 12, this has been

visualized.

Architecture of Safety-Critical Applications Running in the Public Cloud 52

Figure 12: Stateless computation pattern applied to the use case.

4.2.5 Multi-Availability Zone

Context & Problem

Traditionally, applications were developed, deployed, and run in a single on-premises data

center. Redundancy was achieved by running the application on multiple virtual machines

within the same data center. If the data center were to experience an outage or disruption, the

application or service could become unavailable, potentially causing significant harm to the

business. Multiple data centers were utilized for segmentation of work, backup, and for

situations such as disaster recovery.

Solution

An Availability Zone (AZ) is a concept in cloud computing that refers to a physically separate

data center within a geographical region that is designed to provide high availability and fault-

tolerance. Each Availability Zone typically consists of one or more data centers that are

geographically dispersed to reduce the risk of a single point of failure. The Multi-Availability

Zone pattern involves deploying an application or service across multiple AZs within a single

region of a cloud provider's infrastructure. Each AZ is designed to be isolated from failures in

other AZs, which means that if one AZ were to experience an outage or disruption, applications

Architecture of Safety-Critical Applications Running in the Public Cloud 53

and services running in other AZs would remain unaffected. In summary, redundancy is

achieved by replicating an application and data across multiple data centers to protect against

failures (Tischler, 2021).

Benefits

The benefit of this design pattern is:

• Availability: Multi-availability zone ensures high application availability with

redundant infrastructure in multiple locations. If one zone fails, traffic redirects to

another automatically.

Issues and Considerations

Following point should be considered for this design pattern:

• Data Consistency: While the replication of the stateless computation resources is rather

easy, applications must be designed with data consistency in mind, as having multiple

availability zones means data is replicated across multiple data centers, which can

introduce data consistency issues because of latency.

Example

In the use case of moving block application, redundancy and improved availability would be

achieved by deploying the application in different availability zones. Generally, each region

would have at least three different availability zones, hence the advice would be to deploy the

application at least once to each availability zone in a region. As applications would be

independent of each other, the need for a load balancer arises, which is used as an entry point

to distribute the workload across the applications. Furthermore, the same redundancy and

improved availability can be applied to the databases as well. In this case, databases will use an

internal replication mechanism to replicate the data across availability zones. In this example

databases and messaging middleware are considered regional resources. The assumption here

is that these databases and messaging middleware are cloud provider solutions that only need

to be configured, unlike the computational resources, which require explicit design. In the

following Figure 13, this has been visualized.

Architecture of Safety-Critical Applications Running in the Public Cloud 54

Figure 13: Multi-availability zone pattern applied to the use case.

4.2.6 Auto-Scaling

Context & Problem

The traditional approach to scaling applications has been to manually provision and manage

infrastructure resources, which can be time-consuming and error prone. In this approach,

engineers would have to manually provision new instances and resources as demand increased,

and de-provision them as demand decreased. This approach is not only inefficient but can also

lead to underutilization or over-provisioning of resources, which can impact performance and

cost.

Solution

Auto-scaling is a feature in cloud computing that automatically adjusts the allocation of

resources within a cloud environment, adapting to changes in demand. By dynamically scaling

resources up or down, it enhances availability, minimizes costs, ensuring efficient resource

utilization. Scaling resources can be done via different metrics that are collected from the group

of resources such as CPU, memory, or network traffic. Auto-scaling can be used to help ensure

that new instances of applications are launched with the right configuration and settings, while

load balancers can help distribute traffic and requests evenly across different availability zones

Architecture of Safety-Critical Applications Running in the Public Cloud 55

and instances. The auto-scaling feature is used in many different application runtimes, and most

cloud providers offer auto-scaling for virtual machines, functions, or containerized runtime.

Furthermore, in some cases, such as using technologies like Kubernetes, autoscaling is achieved

by scaling both the underlying virtual machines and the workload that runs on Kubernetes.

Therefore, based on the runtime choice, autoscaling is applied at multiple levels.

When it comes to scaling an application, there are two main approaches: horizontal scaling and

vertical scaling. Horizontal scaling involves adding more instances of the application to share

the workload across multiple machines, while vertical scaling involves adding more resources

(such as adding more CPU, memory, or storage) to a single instance of the application. Based

on best practices, it is generally recommended to rely more heavily on horizontal scaling. This

is because horizontal scaling offers better fault tolerance, is easier to scale in response to

changing demand, and is typically more cost-effective compared to vertical scaling (Tischler,

2021).

Benefits

The benefits of this design pattern are:

• Scalability: In case of a demand for computational resources, the system can scale up

and handle the demand, keeping the availability of the system high.

• Reduced Costs: It can help reduce costs by only using the necessary number of

resources, scaling down when demand decreases, as well as the manual effort that

engineers would have otherwise spent on maintaining the system.

Issues and Considerations

Following point should be considered for this design pattern:

• Delay: Auto-scaling may experience some delay depending on the underlying runtime

and number of resources that are required. For example, launching a new virtual

machine can take several minutes, but containerized applications have an advantage as

they tend to auto-scale more quickly. This difference in speed is due to the underlying

technology. However, even containerized applications require virtual machines, as

Kubernetes needs virtual machines as nodes to run the containerized applications.

Architecture of Safety-Critical Applications Running in the Public Cloud 56

Although scaling a specific workload on Kubernetes is faster, if there are insufficient

resources, Kubernetes will also require additional virtual machines to handle auto-

scaling of containerized applications. Essentially facing similar constraints as virtual

machines.

Example

In the use case of moving block application, assuming application is already using stateless

computation design pattern, memory usage of the application would be relatively stable,

however for the calculation of movement authority it would require more CPU power than

memory. In this case, autoscaling can be based on CPU usage, for instance if average CPU

utilization is above 80% application can be scaled out. The new instance of the application,

soon as starts accepting request from the load balancer, the average CPU utilization would go

down. This process is visualized in Figure 14 and 15. In Figure 14 concurrent load of the system

is shown and how the load is impacting average CPU utilization, horizontal line representing

the time. As the concurrent load increases (from t1 to t3), the average CPU utilization also

increases (from 66% to 83%). Once the average CPU utilization of all resources increases the

above the threshold of 80%, new instance of the application is created and made available. At

t4, even though the concurrent load remains the same as t3 (1000 request per second), the

average CPU utilization drops to 62.5%, the reason for this is that new instance of the

application is now present and sharing the workload. This resource increase is visualized in

Figure 15 at t4. At t6, when the concurrent load increases to 1400 request per second, the

average CPU utilization increases to 87.5%, triggering another scale-up to 5 instances. The

same procedure in reverse applies causing system to scale-down.

Figure 14: Load vs avg. CPU utilization

Figure 15: Resource count vs avg. CPU utilization

Architecture of Safety-Critical Applications Running in the Public Cloud 57

4.2.7 N-Version Programming and Deployment

Context & Problem

It is generally accepted that developing 100% fault-free software is impractical. Traditional

software development methods rely on testing and debugging to identify and remove faults, but

this approach has limitations, as testing all possible scenarios and configurations is difficult.

Furthermore, even if the computation itself is correct, it is essential to consider the potential

impact of bit-flip errors occurring in memory. These errors can introduce corruption into the

response, leading to inaccurate or unreliable results. Bit-flip errors can be caused by various

factors, including cosmic radiation, electrical interference, or inherent flaws in memory

modules, potentially compromising the integrity and accuracy of the system's output.

Solution

N-version programming addresses this problem by creating multiple independent versions of

the same software or system, with each version developed by a different team or group of

developers. N-version programming reduces the likelihood that all versions will contain the

same faults by using different algorithms and programming languages. The results produced by

each version are compared, and if they differ, the most commonly occurring result is assumed

to be correct (Mukwevho & Celik, 2021).

To implement this pattern, an orchestration of distributing the same input to different versions

of components, gathering their results, and making a final decision based on a voting

mechanism is required. If the application requires additional information from the database, the

orchestrator should retrieve it before processing begins and distribute the input to different

computational units. This ensures that computations do not access the database at different

times and retrieve inconsistent data. If the computation result needs to be persisted, the

orchestrator should connect to the database and handle the persistence operation. This approach

also has the added benefit that, if one of the requests fails, the orchestrator or voter can handle

the failure gracefully and make another request. In the following Figure 16, this has been

visualized.

Architecture of Safety-Critical Applications Running in the Public Cloud 58

Figure 16: N-Version programming with voter/orchestrator

Benefits

The benefits of this design pattern are:

• Fault Tolerance: Because each version of the software is designed independently, they

are less likely to share the same flaws or vulnerabilities. This can make the software

more resilient to unexpected errors or attacks.

Issues and Considerations

Following points should be considered for this design pattern:

• Development Cost: Creating multiple independent versions of the same software

component can be time-consuming and costly.

• Complexity: Orchestrator introduces a new level of complexity and can become the

bottleneck of the system. Furthermore, each computational unit has to be redundant

independently of other versions, further increasing the complexity.

Example

In the use case of moving block application, the infrastructure view would be as follows:

different versions of the app would be deployed on different availability zones, and the

orchestrator/voter would also be replicated. Once a request arrives, the orchestrator would

mirror the request to different versions of the computational unit, collect the results, perform

the voting procedure, and persist the result in the database, as well as respond to the train.

Essentially stripping all storage access functionality from moving block application and only

Architecture of Safety-Critical Applications Running in the Public Cloud 59

making it responsible for the computation of the movement authority. In the following Figure

17, this has been visualized, for the sake of brevity, a single request flow has been depicted.

Request is routed from the load balancer to an orchestrator, which in the example, it lands on

the Availability Zone 3. Orchestrator makes the request to the closest resources, which are in

the same zone, if one of the requests fails, orchestrator can make a request to the resources in

the other zones. Ensuring that response is collected successfully.

Figure 17: N-version programming pattern applied to the use case.

4.2.8 API Gateway

Context & Problem

Most of the latency in communication between a client and a cloud-based application occurs

during the establishment of the connection and the round-trip of requests between the two. In

the event that a request made by the client fails, the client is required to re-initiate the request,

which naturally nearly doubles the overall response time for a particular request. Similarly,

requests that take too long to complete may cause delays and impact on the overall performance

of the system. In both of these cases, the client is impacted by the potential delay and has the

responsibility to handle errors as well as timeout requests.

Architecture of Safety-Critical Applications Running in the Public Cloud 60

Solution

One potential solution to these challenges is to add time-out and retry logic to each service.

However, this approach can result in duplicated code and make the system more complex.

Alternatively, this logic can be centralized, simplifying the codebase, and making it easier to

manage and maintain. As well as making the overall system much more resilient as the failures

will not propagate to the client. Hence, the API Gateway pattern aggregates common operations

and adds an additional layer of error handling (Newman, 2021).

The API Gateway, which serves as an entry point for all requests coming from external clients

and routes internally to responsible services to handle the request. While the connection from

the client is open to API Gateway, there is another connection opened to the component which

does the actual computation. If the component fails to response in time, or the request fails, API

Gateway can place another request with the aim of getting a timely response. From client

perspective however, there is a single connection and system response timely without failure

(Newman, 2021).

Benefits

The benefits of this design pattern are:

• Fault Tolerance: Timeouts and other system failures are encapsulated by the retry

mechanism that has been implemented, which effectively manages control flow of

requests, ensuring that the system remains stable and performs efficiently.

• Shared Common Responsibilities: As the API Gateway is the central entry point, other

common responsibilities such as authentication/authorization can be handled by this

component, reducing the amount of code required in the remaining parts of the system.

• Rate-limiting: The API Gateway can establish a fine-grained control over the rate at

which requests are allowed, ensuring controlled access to the underlying resources. This

preventive measure helps safeguard against potential abuse or misuse of the system, as

it restricts the number of requests an entity can make within a given time frame by

enforcing sensible limits (Newman, 2021).

Issues and Considerations

Architecture of Safety-Critical Applications Running in the Public Cloud 61

Following point should be considered for this design pattern:

• Single Point of Failure: Due to its central role in the system, it becomes a single

point of failure, hence it has to be designed very carefully.

Example

In the use case of moving block application, the API Gateway would be placed after the central

load balancer, handling all request routing, timeouts, and retries of the requests. Other

responsibilities such as authentication and authorization can also be offloaded, protecting the

rest of the system. In the following Figure 17, this has been visualized, for the sake of brevity,

a single request flow has been depicted. The API Gateway first makes a request to a resource

that is placed in Availability Zone 2. If the request fails or takes too long to respond, the API

Gateway can make another request to a different resource, as depicted in the figure, where the

request is being handled by the resources in Availability Zone 3. All cloud providers offer

similar API Gateway services. Hence, this is the reason why the API Gateway component has

been depicted outside of the Availability Zone. However, it is also very common that existing

solutions do not fulfill all requirements, leading to the need for choosing a custom-developed

API Gateway.

Figure 18: API gateway pattern applied to the use case.

Architecture of Safety-Critical Applications Running in the Public Cloud 62

4.2.9 Multi-Region Deployment

Context & Problem

Cloud providers typically have measures in place to mitigate the impact of regional outages,

such as redundant systems and backup data centers located in different geographic regions.

However, a variety of factors, such as natural disasters, power outages, network failures,

hardware failures, or other unforeseen events can still cause regional outages. Furthermore,

human errors, such as misconfiguration (e.g., accidentally disabling a critical network switch

or firewall, causing all traffic to be blocked), can also cause a regional outage, although there

may not be any physical damage to the data center or its infrastructure. In section 2.4.3, more

information about regional outages has been provided.

Solution

The multi-region deployment pattern suggests deploying the workload in two or more separate

regions to protect against service outages and disruptions in a particular region. Multi-region

architectures distribute the application across multiple geographic regions, allowing users to

access the application from the region closest to them. This improves performance and reduces

latency. Additionally, in the event of a regional outage or disruption, the application can

continue to function in other regions.

While the multi-region deployment pattern may appear similar to the multi-availability zone

pattern, it actually provides an additional layer of redundancy that complements the latter.

Therefore, both patterns are commonly used in conjunction to enhance the availability and

resilience of cloud applications. It is worth noting, however, that the multi-region deployment

pattern can be more challenging to implement compared to the multi-availability zone pattern

(AWS Multi-Region Fundamentals - AWS Whitepaper, 2022; Azure Regions Decision Guide -

Cloud Adoption Framework, 2023).

Benefits

The benefits of this design pattern are:

Architecture of Safety-Critical Applications Running in the Public Cloud 63

• Availability: In the event of an outage or disaster in one region, services in other

regions can still continue to function.

• Performance: It can improve latency for users who are geographically distributed. By

allowing users to access services and resources from the region closest to them, the

design can result in lower latency and faster response times.

Issues and Considerations

Following points should be considered for this design pattern:

• Complexity: A multi-region design can be more complex to implement and manage

compared to a single-region design. Ensuring that resources are properly distributed and

synchronized across multiple regions can require additional infrastructure and

operational resources.

• Cost: A multi-region design can be more expensive to implement and maintain

compared to a single-region design. For instance, additional infrastructure, data transfer

costs, and other expenses are some of the factors that can increase the cost.

• Latency: Although the overall latency of the systems will not be high, there are some

applications where the impact of latency becomes most apparent. This is particularly

true for databases that rely on the ability to efficiently share their commit log among

different nodes or replicas. In such scenarios, any delay in propagating the commit log

updates across regions can result in synchronization issues, data inconsistencies, or even

potential data loss.

Example

In the use case of moving block application, the application would be deployed in at least two

separate regions, with a global load balancer distributing traffic between them. Instead of

traditional round-robin load balancing, which distributes traffic to each server in turn, global

load balancers typically route traffic based on regional proximity or other values, with the goal

of sending clients to the same region for a consistent user experience. While data replication

remains a significant concern for multi-region deployment, there are various methods and

techniques available to address data synchronization. If a regional outage occurs, the multi-

region deployment pattern allows for traffic to be automatically redirected to the remaining

Architecture of Safety-Critical Applications Running in the Public Cloud 64

available region, ensuring the continuity of service. However, it is crucial to consider data

consistency during the design phase, as well as how the system will handle regional outages

and recovery. The ability to seamlessly handle regional outages and maintain uninterrupted

service is a critical aspect of multi-region deployment, especially for safety-critical applications

that cannot afford any downtime. In the following Figure 19, this has been visualized.

Computational elements are replicated across region; however, all computational resources do

connect to Region A for database access. Although same resources do exist in Region B, for

better performance most systems tend to have a single region as primary data storage and

secondary region as backup. In case of regional outage, backup storages would be activated to

continue operation.

Figure 19: Multi-region deployment pattern applied to the use case.

4.2.10 Geo-Replication

Context & Problem

Running a multi-region, highly available system poses a significant challenge: ensuring

continuous data availability and accessibility despite network outages, hardware failures, and

other disruptions. In a multi-region deployment, if one region becomes unavailable, achieving

redundancy in computational power is relatively straightforward, as processes can operate

Architecture of Safety-Critical Applications Running in the Public Cloud 65

independently. However, ensuring redundant data becomes much more difficult due to physical

limitations.

Solution

The geo-replication pattern involves the deliberate choice of an appropriate database

technology that offers robust geo-replication capability to ensure the reliability and resilience.

With geo-replication, the selected database technology ensures that data is replicated and

synchronized across geographically dispersed sites or regions in near real-time. This safeguards

against potential disruptions, such as network outages, hardware failures, or natural disasters,

by ensuring that the system remains operational even in the face of localized incidents. The aim

is to preserve data integrity and minimize the risk of data loss.

Cloud providers offer a diverse range of database technologies, each with its own distinct

methods of implementing geo-replication. These technologies provide organizations with

flexibility in choosing the most suitable option based on their specific requirements and

preferences. Some database technologies employ synchronous replication, where data is

immediately and consistently replicated across multiple regions, ensuring strong data

consistency but potentially introducing additional latency. Other technologies utilize

asynchronous replication, where data is replicated with a slight delay, offering higher scalability

and potentially lower latency for read access in different region but with a trade-off of eventual

consistency.

Benefits

The benefits of this design pattern are:

• Ease of Access: Implementing and managing geo-replicated databases demands a

considerable level of expertise, which may not be readily available. However, cloud

providers possess this expertise and offer geo-replication services typically

accompanied by higher service level agreements (SLAs).

• Data Availability: Data is replicated across multiple geographic locations, enhancing

availability, and reducing the risk of data loss, in case of regional outages, or natural

events.

Architecture of Safety-Critical Applications Running in the Public Cloud 66

• Scalability: By distributing data across multiple regions, it can potentially

accommodate increased workload demands.

Issues and Considerations

Following points should be considered for this design pattern:

• Performance: While geo-replication can improve performance in terms of latency

reduction, it can also introduce performance variability. Factors such as network

congestion, data transfer speeds between regions, and synchronization delays can

impact the overall performance of the replicated system. It is crucial to design the

system in a way to tolerate physical limits of data transmission (Malaska & Seidman,

2018).

• Vendor Lock-in: Since the database used in geo-replication is usually proprietary and

not open-source, it becomes highly improbable to run the same software on a different

cloud provider. This poses a challenge for organizations that opt for a multi-cloud

strategy, as different cloud providers may employ different technologies, making it

difficult to achieve geo-replication across multiple providers.

• Cost: Utilizing geo-replication across multiple regions can incur additional costs for

data transfer, storage, and infrastructure in each region.

Example

In the use case of a moving block application, the application setup would be very similar to a

multi-region deployment, where applications are deployed in at least two separate regions. A

global load balancer would distribute traffic between these regions. Applications in each region

will communicate with the data storage and services located in that particular region. However,

data synchronization will occur between the data storages, replicating data back and forth

between the regions. In Figure 20 below, this has been visualized, with replication depicted by

orange lines. In the diagram, the control center application connects only to a single region. In

the event of a regional outage, the control center must change its connection to an available

region, but data will still be replicated.

Architecture of Safety-Critical Applications Running in the Public Cloud 67

Figure 20: Geo-replication pattern applied to the use case.

4.2.11 Elastic Workload Segmentation

Context & Problem

When implementing a multi-region deployment in an active-active manner with geo-

replication, one of the primary concerns is the difficulty of achieving strong consistency across

all regions. Strong consistency ensures that all replicas of data in different regions are kept

synchronized and up to date. However, achieving this level of consistency poses very hard

challenges (Malaska & Seidman, 2018).

When data is transmitted over long distances between geographically separate regions, certain

inherent limitations arise, resulting in latency within the system. This latency emerges due to

the necessity of replicating and synchronizing data across multiple regions, which consumes

time and impacts overall system performance and responsiveness. Consequently, critical

operations like reading and writing data, as well as real-time interactions with the application,

are affected. The presence of network delays, varying network conditions, and potential

conflicts during data replication further exacerbate the issue, leading to inconsistencies across

different regions (Malaska & Seidman, 2018).

Architecture of Safety-Critical Applications Running in the Public Cloud 68

Solution

In the elastic workload segmentation design pattern, the workload of the system is distributed

among different regions in an elastic manner. This means that requests from the same set of

clients always end up in the same region as long as the region is healthy. If one of the regions

becomes unavailable, all the requests are routed to the remaining healthy region. Data is still

replicated between the regions as the basis of eventual consistency. However, since the same

set of clients always ends up in the same region, there is data locality. In the event of a regional

outage, there is a risk of a small amount of data loss due to the replication method being eventual

consistency.

Cloud providers offer global load balancers that provide various traffic routing methods. These

methods include latency or proximity-based routing, prioritizing services handling requests,

weighted distribution, session affinity, and routing based on HTTP(S) parameters such as host,

path, and headers. If none of these methods suffice, each region can have a unique DNS name

for resolution, although this requires the client to switch destinations on demand. Cloud

provider solutions alleviate the need for custom code development and simplify client-side

implementation since they connect to a single destination.

Benefits

The benefits of this design pattern are:

• Availability: With the workload distributed across multiple regions, the system can

achieve higher availability. In the event of a regional outage, the workload is

automatically shifted to the remaining healthy region, minimizing service disruptions,

and ensuring continuous availability.

• Resilience: The use of a multi-region deployment in an active-active manner enhances

the system's resilience. If one region becomes unavailable, all requests are automatically

routed to the remaining healthy region, ensuring continuity of service.

• Performance: Prioritizing data locality significantly improves user latency by storing

data closer to users or their respective regions. This reduces data retrieval and processing

time, resulting in faster response times and improved system performance. However,

achieving higher availability may require adopting an eventual consistency model.

Architecture of Safety-Critical Applications Running in the Public Cloud 69

Temporary data inconsistencies across regions are resolved over time. Despite this

trade-off, prioritizing data locality greatly enhances user experience by minimizing

latency and enabling quicker access to relevant data (Malaska & Seidman, 2018).

Issues and Considerations

Following points should be considered for this design pattern:

• Consistency: The replication method used in this design pattern is based on eventual

consistency, which means that there might be a delay in synchronizing data between

regions. This introduces the risk of data inconsistencies and a small amount of data loss

during regional outages (Malaska & Seidman, 2018).

• Data Loss Risk: Due to the eventual consistency approach, there is a potential risk of

data loss during regional outages. If a region becomes unavailable before data

replication occurs, any updates or changes made in that region might not be

synchronized with the remaining healthy region, resulting in data loss.

• Complexity: Managing a multi-region deployment and ensuring consistent replication

of data adds complexity to the system architecture. It requires careful configuration,

monitoring, and synchronization mechanisms to maintain data integrity and minimize

the risk of inconsistencies.

Example

In the use case of a moving block application, the application setup would extend the multi-

region deployment model with geo-replication. A global load balancer would distribute traffic

among these regions. However, the distribution of traffic would be based on arbitrary criteria,

such as the track the train is on and the train's location on the track. The addressed issue is that

if two trains are following each other on the same track, they should land on the same region to

avoid any data consistency issues. This is visualized in Figure 21 below, where Client Set A

requests land on Region A (depicted with gray lines), while Client Set B requests land on

Region B (depicted with blue lines).

Architecture of Safety-Critical Applications Running in the Public Cloud 70

Figure 21: Elastic workload segmentation pattern applied to the use case.

Naturally, the assumption here is that a global load balancer can implement such logic.

However, given the use case and available properties of a global load balancer, not all cloud

providers may have such a feature. In such a case, some of the responsibilities can be offloaded

to the client, such as resolving the available regions before the journey starts and

communicating directly with that region. This idea is illustrated in Figure 22, where the client

(Train A) makes an initial request to a Config Server to receive all available region information,

as well as determining the preferred region. Afterwards, it starts operating normally by

connecting to Region A and requesting computation of movement authority. If there is an

outage or for some reason Region A is not reachable, the client tries to communicate with

Region B. This approach is much more flexible because it also allows dynamic changing which

region a client can connect to. For the use case, it is particularly useful as once a train crosses

certain zones on a track, it may make much more sense to communicate with a different region.

The entire system image is depicted in Figure 23.

Architecture of Safety-Critical Applications Running in the Public Cloud 71

Figure 22: Client switching region in elastic workload segmentation.

Figure 23: Elastic workload segmentation pattern without global load balancer applied to the use case.

4.2.12 Multi Cloud Deployment

Context & Problem

While deploying workloads across multiple regions within a single cloud provider can help to

address some of these challenges, it may not be sufficient to meet all the requirements of the

organization. In addition, a single cloud provider outage can cause a significant disruption to

Architecture of Safety-Critical Applications Running in the Public Cloud 72

business operations, potentially resulting in financial losses and damage to the organization's

reputation. In section 2.4.3, the issue of regional outage has been described in detail.

Solution

To overcome these challenges, organizations can embrace a multi-cloud strategy, which entails

distributing workloads across multiple cloud providers. This approach offers several

advantages, including enhanced availability, geographic redundancy, and flexibility. However,

the most significant benefit of utilizing multiple cloud providers is the mitigation of downtime

risks associated with a single provider outage. In this pattern, workloads are deployed to

multiple cloud providers, and requests are intelligently redirected to different providers based

on predetermined criteria. By implementing this approach, organizations can ensure

uninterrupted service delivery, optimize performance, and maintain a robust infrastructure that

can adapt to changing needs and circumstances.

There are two distinct approaches available for implementing this solution. The first approach

involves selecting a global load balancer to distribute the workload across multiple cloud

providers. However, this approach can be quite challenging to achieve due to the requirement

of synchronizing data between the different providers. Alternatively, the second approach

entails partitioning the workload among different cloud providers. In the event of a failure or

outage with one provider, all traffic is then redirected to the available provider. It is important

to note that this approach assumes the presence of effective data synchronization mechanisms

between the various cloud providers (Mulder, 2020).

Benefits

The benefits of this design pattern are:

• Increased Availability: Deploying workloads across multiple cloud providers

improves the overall availability of services. If one cloud provider experiences an

outage, the organization can rely on the other provider(s) to ensure business continuity

and minimize disruptions.

• Flexibility and Vendor Lock-In Avoidance: Deploying workloads across multiple

cloud providers offers flexibility and avoids vendor lock-in (Mulder, 2020).

Architecture of Safety-Critical Applications Running in the Public Cloud 73

Issues and Considerations

Following points should be considered for this design pattern:

• Complexity: Managing multiple cloud providers introduces complexity in terms of

infrastructure, deployments, and operations. It requires expertise in working with

different provider-specific tools, APIs, and configurations.

• Data Portability: Ensuring data portability, particularly replication across multiple

cloud providers, can be highly challenging. Data solutions with built-in geo-replication

capabilities are typically not compatible across different cloud providers. Therefore,

organizations must implement custom data synchronization and replication solutions to

address this issue effectively.

• Application Portability: Different providers may have variations in services, APIs, and

data storage models, requiring organizations to design and develop applications with

portability in mind.

• Interoperability and Integration: Integrating and ensuring interoperability between

different cloud providers can be complex. Organizations may face challenges in

achieving seamless communication and data exchange between workloads deployed

across multiple clouds. Compatibility issues, different networking architectures, and

security configurations must be addressed to ensure smooth operations and data flow.

• Network Complexity and Costs: Deploying workloads across multiple cloud

providers requires robust and reliable network connectivity between the providers.

Organizations must invest in networking solutions, such as VPNs or direct connections,

to establish secure and high-bandwidth connections. This can increase network

complexity and costs associated with data transfer (Mulder, 2020).

Example

In the use case of a moving block application, application setup and structure would be very

similar to elastic workload segmentation. The only difference would be regions would be from

different cloud providers and geo-replication has to be custom develop instead of using cloud

providers solutions.

Architecture of Safety-Critical Applications Running in the Public Cloud 74

4.2.13 Redundant DNS

Context & Problem

DNS providers, just like any other service, can encounter technical issues, network outages,

hardware failures, software glitches, or become the target of cyber-attacks. Failures of DNS

providers can have multiple consequences, including DNS resolution failures, service

disruptions, DNS caching issues resulting in incorrect resolutions, and delays in updating DNS

records. These issues can directly affect the accessibility of destination sites, online services,

and the timely propagation of changes.

Solution

To further mitigate the impact of potential DNS provider failures, organizations can implement

a redundancy strategy by leveraging multiple DNS providers. This approach involves creating

multiple domain names from different DNS providers to ensure failover capabilities. When

resolving host names, the response from the host resolution can be configured in two ways.

Firstly, it can point to a single address, which could be a global load balancer. This load balancer

would then distribute the incoming traffic to the appropriate regions or instances based on

predetermined criteria. This approach ensures that even if one DNS provider fails, the load

balancer can continue to direct traffic to the available resources. Alternatively, the response can

consist of multiple addresses, with each entry pointing to a different region or instance.

In any case, clients are designed to be aware of all the domain names associated with the various

DNS providers. If there is a problem with host name resolution due to the failure of one DNS

provider, clients can seamlessly switch over to the next available domain name and continue

accessing the desired resources.

By implementing this redundancy strategy with multiple DNS providers and configuring the

host resolution responses accordingly, organizations can significantly enhance the resilience

and availability of their systems. Clients can continue to access the services even in the event

of a DNS provider failure, ensuring uninterrupted connectivity.

Benefits

Architecture of Safety-Critical Applications Running in the Public Cloud 75

The benefits of this design pattern are:

• Reliability & Availability: Redundancy in DNS infrastructure ensures that DNS

resolution remains available even if one provider or server becomes unavailable. This

helps maintain the accessibility of destination sites and online services, preventing

potential downtime and ensuring uninterrupted access for users.

Issues and Considerations

Following points should be considered for this design pattern:

• Complexity on Client Side: Clients have to be aware of multiple DNS entries and

switch if one becomes unavailable, the error handling part especially DNS caching

issues and have to be considered.

• Configuration Complexity: Managing multiple DNS providers or deploying

secondary DNS servers adds complexity to the DNS infrastructure configuration. It

requires careful setup, synchronization, and monitoring to ensure consistency and

proper failover mechanisms.

Example

In the use case of a moving block application, each client will have a set of domain names to

which clients can connect. Figure 24 illustrates overall system, with clients are using two

domain names, namely api.railway1.com and api.railway2.com, which are registered and

managed by different providers. The infrastructure view has been simplified. In this example,

clients can use different domain names to connect to same system, hence the global load

balancer handles the distribution of the traffic. Alternatively, each domain name can be

associated with a single region, as depicted in the Figure 25. The most important part is the

error handling that occurs on the client side. When a client encounters a problem with resolving

a DNS or receives an error from the target, the client can switch to the secondary domain name

and retry the operation.

Architecture of Safety-Critical Applications Running in the Public Cloud 76

Figure 24: Redundant DNS pattern with global load balancer applied to the use case.

Figure 25: Redundant DNS pattern each entry assigned to a region applied to the use case.

4.3 Essential Practices for Safety-Critical Systems

While the aforementioned design patterns provide a solid foundation, there is a need for

additional practices to enhance system safety and performance. These supplementary measures

encompass crucial aspects such as observability, monitoring, logging, alerting, and more. The

combined implementation of these practices ensures a comprehensive approach to availability

and reliability of safety-critical systems. Therefore, this section will provide a brief summary

Architecture of Safety-Critical Applications Running in the Public Cloud 77

of these practices to emphasize the importance of utilizing the above design patterns in

conjunction with the following practices.

• Service Health Check: This refers to the process of periodically verifying the health

and availability of a service. It involves performing checks to ensure that the service is

functioning properly and can handle incoming requests. Each service can expose an

endpoint to provide its health. This is particularly important when services depend on

other components, such as databases, as there may be a delay between the service

starting to run and the time it takes to connect to the database. Therefore, the health

check provides essential information that the service is running and operational (Bass

et al., 2015).

• Monitoring: Monitoring involves the continuous observation and measurement of

various system metrics, including the current load of the system, available capacity,

performance, and other indicators, to be able to detect anomalies. The overall goal is to

ensure that the system operates within desired thresholds (Bass et al., 2015).

• Logging: Logging involves capturing and recording important events, actions, and data

within a system, as well as errors and failures. It serves as a valuable source of

information for troubleshooting, debugging, and auditing purposes. The primary

purpose of logs is to identify issues and analyze system behavior (Bass et al., 2015).

• Alerting: Alerting is the practice of sending notifications or alerts when certain

predefined conditions or thresholds are met. It enables timely response to critical events,

anomalies, or errors, allowing engineers to take appropriate actions to mitigate the issues

that are either occurring or about to occur (Bass et al., 2015).

• Continuous Integration and Continuous Delivery (CI/CD): CI/CD is a software

development practice that focuses on automating the process of code integration,

building, and deploying software to different environments, including production. The

aim is to be able to release software in a reliable manner, reducing manual effort and

creating a faster feedback loop. CI/CD includes many automated tests in place for the

release of the software, which increases the quality of the whole system. Furthermore,

CI/CD also helps to roll back the faulty changes that have been deployed quickly,

making the recovery process much easier and faster (Bass et al., 2015).

Architecture of Safety-Critical Applications Running in the Public Cloud 78

• Infrastructure as Code: Infrastructure as code involves defining and managing

infrastructure resources using automation tools and code, with the aim of producing

repeatable provisioning of infrastructure, making it easier to manage, version control,

and reproduce environments (Bass et al., 2015).

• Back-up Procedures: This refers to implementing appropriate backup strategies and

procedures to ensure data integrity and availability, by backing up important data and

systems. It is also important to be able store backups securely and have practices in

place for testing the restoration process (Tischler, 2021)..

• Planned Failovers: This refers to deliberately but in a controlled manner taking part of

the system down, forcing failover procedure. During a controlled failover test, a specific

component, subsystem, or portion of the system (e.g., a region) is intentionally taken

offline. This action triggers the failover process, where either the workload and

associated resources are transferred to a backup or secondary system or incoming traffic

is redirected to redundant system. The purpose of this test is to evaluate whether the

failover mechanisms and restore procedures function as intended and can successfully

handle the transition of operations to mitigate the impact of unplanned downtime and

reduce service interruptions (Tischler, 2021)..

• Collaboration and Quality Control: This refers to implementing a structured review

process for system-impacting changes, such as software modifications, software

deployment, and infrastructure as code updates. The aim is to promote collaboration and

ensure the maintenance of high code quality. By carefully reviewing and approving

changes before deployment, the integrity and reliability of software development

projects are upheld (Tischler, 2021).

4.4 Conclusion

In this chapter, a safety-critical use case has been introduced, utilizing SWIFT, a prospective

hazards analysis method, to identify a set of issues and potential solutions. These solutions have

then been transformed into design patterns that can be reused in other systems. Each design

pattern has been documented with its context, the problem it addresses, the proposed solution,

as well as its benefits, drawbacks, and an example. The use case has been employed to

demonstrate an example of the design pattern. In some cases, the design pattern has become an

integral part of the new system design, evolving with each example.

Evaluation of Identified Design Patterns for System Unavailability 79

5 Evaluation of Identified Design Patterns for System
Unavailability

The evaluation section of this thesis aims to assess the effectiveness of the identified design

patterns for addressing system unavailability in the moving block use case that was introduced

in section 4.1. For this purpose, several of the identified design patterns in section 4.2 will be

used together to create a system design for the moving block use case. Finally, an analysis of

system unavailability using Fault Tree Analysis (FTA) will be conducted based on the

generated system design and the cloud computing failure modes described in 2.4.1.

5.1 System Design: Moving Block Use Case

In this section, some of the identified design patterns are combined to create a system design

for the moving block use case. The selection of the design patterns has been based on a versatile

choice, covering most of the issues that were identified in section 3.5 Data Collection and

Analysis: Generating What-If Questions, while still aiming to keep the system design simple

enough for analysis. All the identified issues and recommended actions can be found in

appendix 8.2. The following nine design patterns that were described in section 4.2 have been

selected for the system design: 4.2.1 Critical Enclave, 4.2.2 Data Segmentation, 4.2.3 Publish–

Subscribe Pattern, 4.2.4 Stateless Computation, 4.2.5 Multi-Availability Zone, 4.2.6 N-Version

Programming and Deployment, 4.2.9 Multi-Region Deployment, 4.2.10 Geo-Replication,

4.2.11 Elastic Workload Segmentation.

The system design, as illustrated in Figure 26, depicts the architecture and components of the

proposed solution. The system is deployed in two regions, with each component being

redundant and deployed at least once across three different availability zones. The system relies

on turn-key solutions provided by the cloud provider, including load balancers, databases, and

messaging middleware. During the initial operation, each train connects to a random region and

receives information about the track and zone details, as well as the geographical computation

region it should connect to during the journey. The connection of each train to the designated

geographical computation region during the journey is visually represented by the orange line

in Figure 26. Once the train receives the information, it can start requesting movement authority

to initiate the journey. During their journey, trains connect to a specific region. This method

Evaluation of Identified Design Patterns for System Unavailability 80

has been chosen to minimize potential data replication issues that may arise. If one of the

regions fails, it is the responsibility of the train to connect to the second available region. As

data is replicated between regions, the overall system can continue to operate even if one of the

regions becomes unavailable.

Figure 26: Composed design patterns applies to the use case.

5.2 Analyzing System Unavailability with Fault Tree Analysis

Fault Tree Analysis (FTA) will be employed in section 5.1 to thoroughly examine the proposed

system design and assess its ability to mitigate system unavailability. However, considering the

extensive range of potential failures in cloud computing, encompassing hardware (such as CPU,

Evaluation of Identified Design Patterns for System Unavailability 81

memory, disk, and network switch), software, cloud management, environmental factors, and

more, it is impractical to account for every individual failure scenario.

To address this challenge, one approach is to abstract failures and treat groups of failures as

single events. This allows us to focus on the overall impact of failure events rather than getting

lost in the specifics of each individual failure. For example, if an application fails to complete

its task due to a hardware issue, whether the failure originated from a disk failure, CPU

malfunction, or any other hardware-related problem becomes irrelevant. What matters is the

higher-level failure that affects the application's performance and availability, as that is what

cloud consumers are primarily concerned with.

Furthermore, cloud service providers often offer Service-Level Agreements (SLAs), which are

contractual agreements defining the expected level of service between providers and customers.

SLAs typically outline various aspects of the service, including availability, uptime, response

time, resolution time, and support hours. Leveraging SLAs can provide a means to estimate

failure probabilities. For instance, if an SLA guarantees a specific uptime percentage for a

virtual machine (VM), it is reasonable to assign a corresponding probability to the event of VM

failure based on the reliability information specified in the SLA. Similar estimation can be

applied to databases, load balancers, and other components by considering their respective

SLAs.

By abstracting events and utilizing SLAs, it becomes feasible to conduct a comprehensive Fault

Tree Analysis (FTA). This approach allows us to capture the broader failure scenarios while

incorporating the probability estimates derived from SLAs. By doing so, we can gain a deeper

understanding of the critical factors contributing to system unavailability and evaluate the

effectiveness of the proposed system design in mitigating these risks.

The Fault Tree Analysis (FTA) is visualized in Figure 27, showing a fault tree diagram of the

moving block system. The diagram represents the logical relationships and dependencies

between events causing system unavailability. The top event in the fault tree diagram is system

becomes unavailable with an estimated probability of 0.016573. This corresponds to a system

SLA of 99.983427%. Considering a daily downtime of 14 seconds, the estimated monthly

downtime for the system is 7 minutes, and 12 seconds. This calculation provides insights into

Evaluation of Identified Design Patterns for System Unavailability 82

system reliability. Further sections will describe the technology selection, potential errors that

covered, deriving failure probabilities from SLAs.

Figure 27: Fault tree analysis of moving block system

The Appendix 8.3 contains the FTA analysis in the form of a table. The cut set analysis

performed in Appendix 8.4 indicates that the total probability exceeds 0.01, while in

Appendix 8.5, the total probability surpasses 0.001.

5.2.1 Technology Selection and SLAs

For the purpose of obtaining realistic estimations and SLAs, Microsoft Azure has been selected

as the cloud provider. Cosmos DB has been chosen for data storage, which offers a 99.999%

SLA and provides geo-replication capabilities. Service Bus has been selected as the messaging

middleware with a 99.9% SLA. Additionally, Load Balancer and Virtual Machines have been

chosen with SLAs of 99.99% each (Service Level Agreement for Microsoft Online Services,

2023).

The SLAs mentioned in the above have specific requirements. For example, the 99.99% SLA

for virtual machines is guaranteed when at least two virtual machines across two availability

zones in the same region have been started. Therefore, in the Fault Tree Analysis (FTA)

diagram, each service is assigned a separate failure probability instead of assigning a single

probability to all virtual machines. Same requirements also apply to the Cosmos DB, meaning

Evaluation of Identified Design Patterns for System Unavailability 83

for SLA of 99.999%, database has to be span in multiple Azure regions with multiple writable

locations (Service Level Agreement for Microsoft Online Services, 2023).

Furthermore, each SLA has an extensive definition that specifies the cases in which downtime

is calculated. For example, in the case of virtual machines, the SLA encompasses not only

hardware failures but also virtual machine connectivity. Similarly, for databases, the SLA

considers not only service uptime but also failed requests, which are counted towards the SLA

calculation.

Given the SLAs failure probability for the FTA is calculated, as follow:

!"#$%&')&*+"+#$#,- = 	100 − 2'&3#4'	256

Finally, the probability is converted to daily possible downtime as follow.

7"#$-	7*89,#:'	 = 2'4*9;<	#9	"	;"-
100 ∗ !"#$%&')&*+"+#$#,-

5.2.2 Limitation of Relying on SLAs

It is important to note that SLAs represent contractual agreements and may not provide the

exact failure probabilities. They can serve as a starting point for estimation, but additional data

and analysis may be required to derive accurate probabilities. Historical data, vendor

documentation, expert judgment, and other sources of information can be used to refine the

probabilities within the fault tree.

5.3 Conclusion

In this chapter, effectiveness of design patterns in addressing system unavailability in the

moving block use case. Fault Tree Analysis (FTA) provided insights into the system's

vulnerability to failures and guided the proposed system design. By abstracting failures and

using SLAs, the evaluation prioritized overall impact and estimated failure probabilities. The

FTA diagram highlighted the logical relationships between failure events, with system

unavailability as the main focus.

Conclusion 84

6 Conclusion

In this final chapter, the study will conclude by summarizing the main research findings in

relation to the research aim and questions. Additionally, it will discuss the significance and

contribution of these findings. The chapter will also acknowledge the limitations of the study

and present potential avenues for future research.

6.1 Findings

This thesis aimed to create a collection of architectural design patterns that can be used by

various safety-critical systems that run on public cloud infrastructure. Furthermore, based on

research aim and objectives following research questions were identified:

• RQ1: Can all safety-critical systems be deployed to the public cloud?

• RQ2: What are the existing fault-tolerance methods in the cloud?

• RQ3: How to identify relevant design-pattern?

• RQ4: Can design pattern be used in various safety-critical systems?

To achieve the research aim of developing architectural design patterns for safety-critical

systems on public cloud infrastructure, a systematic approach was followed. Multiple safety-

critical use cases were considered, and the railway signaling system, specifically the moving

block computation, was chosen as the most suitable use case. The selection of this use case took

into account critical factors such as timing constraints and system resilience. Safety-critical

systems that can tolerate a delay in response and have the capability to re-request computations

were prioritized. In the case of railway systems, trains are equipped with additional safety

features that provide redundancy and mitigate risks. Therefore, even in the event of a total

failure of the cloud system, the potential harm is theoretically minimized. In section 2.2.3, the

aspect of latency was discussed in detail.

Conclusion 85

Number of fault tolerance methods as well as cloud failure modes has been identified and

reviewed, which were further utilized to identify design patterns, these can be found in section

2.4.1 and 2.5.

In order to identify relevant design patterns, a prospective hazards analysis method called

Structured What-If Technique (SWIFT) was utilized. This analysis helped identify various

issues and recommended actions to address them. These recommended actions were then

mapped onto design patterns that could be applied across different projects, ensuring their wide

applicability.

Finally, this thesis argues that these design patterns can be used in various safety-critical

projects. Each pattern presents a clear problem statement and provides guidelines for

implementing a solution, along with the associated benefits and drawbacks.

6.2 Contribution

The resulting collection of design patterns offers a valuable resource for architects and

engineers working on safety-critical systems in the cloud. By leveraging these patterns, they

can enhance system reliability, mitigate risks, and improve overall performance.

The design patterns offer practical solutions to address specific problems and provide a

framework for the design and implementation of robust and secure systems. Additionally, the

documentation of each design pattern with detailed information, including context, benefits,

drawbacks, and practical examples, adds further value by facilitating understanding and

adoption.

The developed collection of design patterns can be readily applied in both research and practical

settings. In research, these patterns serve as a foundation for further exploration and analysis of

safety-critical systems in the cloud. Researchers can investigate the effectiveness of these

patterns, refine them, or develop new patterns based on the established framework. In practice,

architects and engineers can directly apply these design patterns in their projects, adapting them

to specific requirements and leveraging the documented guidance to ensure proper

implementation.

Conclusion 86

Furthermore, the generated what-if questions and guidewords, also provide a valuable starting

point for project teams, facilitating the identification of potential risks and guiding the decision-

making process. Overall, the application of these design patterns contributes to the advancement

of safety and reliability in cloud-based safety-critical systems.

6.3 Limitation of This Study

Furthermore, it is important to acknowledge that this study has focused on a specific scope and

may not encompass all aspects related to the design and implementation of safety-critical

systems on public cloud infrastructure. Confidentiality, integrity, and security are crucial

considerations in any system, including those deployed using cloud technologies. However, due

to the specific focus of this study, these aspects have not been extensively addressed.

Moreover, the limitations of this study extend to the availability and accessibility of use cases

that were used to derive the design patterns. The selection of suitable use cases plays a

significant role in the generalizability and applicability of the patterns. While efforts were made

to consider a range of use cases, it is important to acknowledge that the patterns may be more

applicable to certain contexts and may require adaptation for different scenarios.

Additionally, the use of deductive reasoning in deriving the design patterns introduces a

limitation in terms of their generality. The patterns developed in this study are based on logical

deductions and may not cover all possible variations and edge cases. The patterns should be

considered as a starting point and may require further refinement and customization based on

specific system requirements.

Overall, while this study provides valuable insights and guidelines for designing safety-critical

systems on public cloud infrastructure, it is essential to recognize its limitations and consider

additional factors and considerations specific to individual projects and environments.

Continued research and exploration are encouraged to expand and refine the design patterns,

addressing the diverse needs and challenges of safety-critical applications in various contexts.

Conclusion 87

6.4 Further Research Opportunities

Further research is warranted to address the limitations and extend the findings of this study.

One important direction for future research is to investigate the integration of confidentiality,

integrity, and security aspects into the design patterns for safety-critical systems on public cloud

infrastructure. This would ensure a comprehensive approach that takes into account the

complete range of system requirements and considerations.

Additionally, there is a need to expand the availability and accessibility of use cases for deriving

design patterns. Future research should focus on gathering a diverse set of use cases from

different domains and industries, considering a wide range of safety-critical applications. This

would enhance the generalizability and applicability of the design patterns and provide more

insights into their effectiveness in various contexts.

It is also important to conduct empirical validation and refinement of the design patterns in real-

world scenarios. This would involve implementing the patterns in actual safety-critical systems

deployed on public cloud infrastructure and evaluating their effectiveness in improving system

reliability, availability, and fault tolerance. Such empirical studies would provide valuable

insights into the practical application and performance of the design patterns.

In conclusion, continued research and exploration are essential to overcome the limitations

identified in this study. By addressing the gaps in the current findings and considering

additional factors and considerations specific to individual projects and environments, the

design patterns for safety-critical systems on public cloud infrastructure can be expanded and

refined. This would ultimately contribute to the development of more robust and adaptable

solutions for meeting the diverse needs and challenges of safety-critical applications in various

contexts.

6.5 Closing Summary

In conclusion, this study has developed architectural design patterns for safety-critical systems

on public cloud infrastructure, focusing on availability and reliability. The collection of design

patterns offers practical solutions for architects and engineers. However, limitations include the

exclusion of confidentiality, integrity, and security aspects, the need for more diverse use cases,

Conclusion 88

and the reliance on deductive reasoning. Future research should address these limitations and

further refine the design patterns to meet specific project requirements. Continued exploration

is crucial for enhancing the design patterns and advancing safety in cloud-based safety-critical

systems.

References 89

7 References

Abed, S. K. (2010). European Rail Traffic Management System—An overview. 2010 1st

International Conference on Energy, Power and Control (EPC-IQ), 173–180.

Abelein, U., Lochner, H., Hahn, D., & Straube, S. (2012). Complexity, quality and

robustness—The challenges of tomorrow’s automotive electronics. 2012 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 870–871.

https://doi.org/10.1109/DATE.2012.6176573

Adler, R. (2019). Dependability Engineering (2nd ed.). University of Kaiserslautern.

Agarwal, H., & Sharma, A. (2015). A comprehensive survey of Fault Tolerance techniques in

Cloud Computing. 2015 International Conference on Computing and Network

Communications (CoCoNet), 408–413.

https://doi.org/10.1109/CoCoNet.2015.7411218

Amin, Z., Singh, H., & Sethi, N. (2015). Review on fault tolerance techniques in cloud

computing. International Journal of Computer Applications, 116(18), 11–17.

Ataallah, S. M. A., Nassar, S. M., & Hemayed, E. E. (2015). Fault tolerance in cloud

computing—Survey. 2015 11th International Computer Engineering Conference

(ICENCO), 241–245. https://doi.org/10.1109/ICENCO.2015.7416355

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. IEEE Transactions on Dependable

and Secure Computing, 1(1), 11–33. https://doi.org/10.1109/TDSC.2004.2

AWS Multi-Region Fundamentals—AWS Whitepaper. (2022).

References 90

AWS Well-Architected Framework. (2023, March 28).

https://docs.aws.amazon.com/wellarchitected/latest/framework/welcome.html

Azure regions decision guide—Cloud Adoption Framework. (2023, June 8).

https://learn.microsoft.com/en-us/azure/cloud-adoption-framework/migrate/azure-

best-practices/multiple-regions

Bar-Yam, Y. (2002). General features of complex systems. Encyclopedia of Life Support

Systems (EOLSS), UNESCO, EOLSS Publishers, Oxford, UK, 1.

Bass, L., Weber, I., & Zhu, L. (2015). DevOps: A software architect’s perspective. Addison-

Wesley Professional.

Birdsong, C., Schuster, P., Carlin, J., Kawano, D., Thompson, W., & Kempenaar, J. (2006).

Test methods and results for sensors in a pre-crash detection system. SAE Technical

Paper.

Card, A., Ward, J., & Clarkson, P. (2012). Beyond FMEA: The structured what-if technique

(SWIFT). Journal of Healthcare Risk Management : The Journal of the American

Society for Healthcare Risk Management, 31, 23–29.

https://doi.org/10.1002/jhrm.20101

Cook, R. I. (1998). How complex systems fail. Cognitive Technologies Laboratory,

University of Chicago. Chicago IL, 64–118.

Danielsson, J., Tsog, N., & Kunnappilly, A. (2018). A Systematic Mapping Study on Real-

Time Cloud Services. 2018 IEEE/ACM International Conference on Utility and Cloud

Computing Companion (UCC Companion), 245–251.

References 91

Eurostat-Cloud computing. (2023). Eurostat. https://ec.europa.eu/eurostat/statistics-

explained/SEPDF/cache/37043.pdf

Gamma, E., Helm, R., Johnson, R., Vlissides, J., & Patterns, D. (1995). Elements of Reusable

Object-Oriented Software. Design Patterns.

Gilbert, S., & Lynch, N. (2012). Perspectives on the CAP Theorem. Computer, 45(2), 30–36.

https://doi.org/10.1109/MC.2011.389

Global Infrastructure Regions & AZs. (2023, March 29). Amazon Web Services, Inc.

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Google Cloud Architecture Framework. (2023, March 28).

https://cloud.google.com/architecture/framework

Hallmans, D., Sandström, K., Nolte, T., & Larsson, S. (2015). Challenges and opportunities

when introducing cloud computing into embedded systems. 2015 IEEE 13th

International Conference on Industrial Informatics (INDIN), 454–459.

https://doi.org/10.1109/INDIN.2015.7281777

Hernandez, I., & Cole, M. (2007). Reliable DAG scheduling on grids with rewinding and

migration. 1st International ICST Conference on Networks for Grid Applications.

Hosseini, S. M., & Arani, M. G. (2015). Fault-tolerance techniques in cloud storage: A

survey. International Journal of Database Theory and Application, 8(4), 183–190.

Jakovljevic, M., Insaurralde, C. C., & Ademaj, A. (2014). Embedded cloud computing for

critical systems. 2014 IEEE/AIAA 33rd Digital Avionics Systems Conference (DASC),

4A5-1-4A5-9. https://doi.org/10.1109/DASC.2014.6979465

References 92

Knight, J. C. (2002). Safety critical systems: Challenges and directions. Proceedings of the

24th International Conference on Software Engineering, 547–550.

https://doi.org/10.1145/581339.581406

Kwon, Y., Balazinska, M., & Greenberg, A. (2008). Fault-tolerant stream processing using a

distributed, replicated file system. Proceedings of the VLDB Endowment, 1(1), 574–

585. https://doi.org/10.14778/1453856.1453920

Lyon, B. K., & Popov, G. (2021). “What-if” Analysis Methods. In Risk Assessment: A

Practical Guide to Assessing Operational Risks (pp. 137–151). John Wiley & Sons,

Inc. Hoboken, NJ, USA.

Malaska, T., & Seidman, J. (2018). Foundations for architecting data solutions: Managing

successful data projects. O’Reilly Media.

Marwedel, P. (2021). Embedded System Design: Embedded Systems Foundations of Cyber-

Physical Systems, and the Internet of Things. Springer International Publishing.

https://doi.org/10.1007/978-3-030-60910-8

Mell, P., Grance, T., & others. (2011). The NIST definition of cloud computing.

Mesbahi, M. R., Rahmani, A. M., & Hosseinzadeh, M. (2018). Reliability and high

availability in cloud computing environments: A reference roadmap. Human-Centric

Computing and Information Sciences, 8(1), 20. https://doi.org/10.1186/s13673-018-

0143-8

Microsoft Azure Well-Architected Framework. (2023, March 28).

https://learn.microsoft.com/en-us/azure/well-architected/

References 93

Mittal, D., & Agarwal, N. (2015). A review paper on Fault Tolerance in Cloud Computing.

2015 2nd International Conference on Computing for Sustainable Global

Development (INDIACom), 31–34.

Mukwevho, M. A., & Celik, T. (2021). Toward a Smart Cloud: A Review of Fault-Tolerance

Methods in Cloud Systems. IEEE Transactions on Services Computing, 14(2), 589–

605. https://doi.org/10.1109/TSC.2018.2816644

Mulder, J. (2020). Multi-Cloud Architecture and Governance: Leverage Azure, AWS, GCP,

and VMware vSphere to build effective multi-cloud solutions. Packt Publishing Ltd.

Newman, S. (2021). Building microservices. O’Reilly Media, Inc.

Patra, P. K., Singh, H., & Singh, G. (2013). Fault tolerance techniques and comparative

implementation in cloud computing. International Journal of Computer Applications,

64(14).

Prathiba, S., & Sowvarnica, S. (2017). Survey of failures and fault tolerance in cloud. 2017

2nd International Conference on Computing and Communications Technologies

(ICCCT), 169–172. https://doi.org/10.1109/ICCCT2.2017.7972271

Prodan, R., & Ostermann, S. (2009). A survey and taxonomy of infrastructure as a service and

web hosting cloud providers. 2009 10th IEEE/ACM International Conference on Grid

Computing, 17–25. https://doi.org/10.1109/GRID.2009.5353074

Regions and zones | Compute Engine Documentation. (2023, March 29). Google Cloud.

https://cloud.google.com/compute/docs/regions-zones

References 94

Rehman, A. U., Aguiar, R. L., & Barraca, J. P. (2022). Fault-Tolerance in the Scope of Cloud

Computing. IEEE Access, 10, 63422–63441.

https://doi.org/10.1109/ACCESS.2022.3182211

Ryan, A. (2010). Formal specification of moving block railway interlocking using CASL.

Service Level Agreement for Microsoft Online Services. (2023, June 1).

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fwwlpdocument

search.blob.core.windows.net%2Fprodv2%2FOnlineSvcsConsolidatedSLA(WW)(Eng

lish)(June2023)(CR).docx%3Fsv%3D2020-08-04%26se%3D2123-06-

08T11%3A06%3A23Z%26sr%3Db%26sp%3Dr%26sig%3DCr7UJVzjBJ%252BTpW

IbBdoDQJKe0hKCPdzbsOepuS%252BM%252B%252Fk%253D&wdOrigin=BROW

SELINK

Surbiryala, J., & Rong, C. (2019). Cloud Computing: History and Overview. 2019 IEEE

Cloud Summit, 1–7. https://doi.org/10.1109/CloudSummit47114.2019.00007

Tischler, P. (2021). Building Reliable Services on the Cloud. O’Reilly Media, Inc.

Wang, J., Cho, J., Lee, S., & Ma, T. (2011). Real time services for future cloud computing

enabled vehicle networks. 2011 International Conference on Wireless

Communications and Signal Processing (WCSP), 1–5.

https://doi.org/10.1109/WCSP.2011.6096957

Watchdog timer. (2023). In Wikipedia.

https://en.wikipedia.org/w/index.php?title=Watchdog_timer&oldid=1136797554

 95

What are Azure regions and availability zones? (2023, March 15).

https://learn.microsoft.com/en-us/azure/reliability/availability-zones-overview

Zen, K., Mohanan, S., Tarmizi, S., Annuar, N., & Sama, N. U. (2022). Latency Analysis of

Cloud Infrastructure for Time-Critical IoT Use Cases. 2022 Applied Informatics

International Conference (AiIC), 111–116.

https://doi.org/10.1109/AiIC54368.2022.9914601

8 Appendix

8.1 SWIFT Guidewords

Categories Guidewords Description

Availability • Uptime
• SLA (Service Level

Agreement)
• Load Balancing
• Auto Scaling
• Disaster Recovery

This guideword refers to the ability of the
application to always remain accessible and
functional to users. Potential issues related
to availability include downtime, service
disruptions, and network connectivity
issues.

Performance • Resource Utilization
• Application Tuning
• Query Optimization
• Caching

This guideword refers to the speed,
responsiveness, and overall performance of
the application. Potential performance issues
include slow response times, resource

Appendix 96

• Indexing bottlenecks, and inefficient code, algorithm,
or inability to handle large volumes of
traffic.

Data-
Consistency

• Replication
• Consensus
• Atomicity
• Isolation
• Durability

This guideword refers to the accuracy and
integrity of data that is stored and accessed
by the application. Potential issues related to
data consistency include data corruption,
data duplication, and inconsistencies
between different data sources.

Data Loss • Disaster Recovery
• Redundancy
• Failover
• Backup Frequency
• Backup Retention

This guideword refers to the risk of losing
important data that is stored or processed by
the application. Potential causes of data loss
include hardware failures, software bugs,
user errors, and cyber-attacks.

Latency • Network
Optimization

• Content Delivery
Network (CDN)

• Edge Computing
• Application

Architecture
• Database Design

This guideword refers to the delay between
the user's request and the application's
response. Potential latency issues include
network congestion, server overload, and
inefficient data transfer protocols.

Scalability • Auto Scaling
• Load Balancing
• Resource Utilization
• Horizontal Scaling
• Vertical Scaling

This guideword refers to the ability of the
application to handle increasing volumes of
traffic and data without compromising
performance or stability. Potential
scalability issues include slow response
times, server overloading, and database
capacity limitations.

Backups • Backup Frequency
• Backup Retention
• Backup Validation
• Backup Encryption
• Backup Storage

Location

This guideword refers to the regular creation
and maintenance of backup copies of the
application and its data, which can be used
to recover from data loss or other issues.
Potential issues related to backups include
backup failures, incomplete backups, and
outdated backup data.

Cost • Resource
Optimization

• Cost Analysis
• Instance Type

Selection
• Reserved Instances

This guideword refers to the financial costs
associated with the development,
deployment, and maintenance of the
application. Potential cost issues include
budget overruns, inefficient resource

Appendix 97

• Spot Instances allocation, and unexpected expenses during
development or maintenance.

Security • Encryption
• Access Control
• Vulnerability

Management
• Audit Logging
• Compliance

This guideword refers to the protection of
the application and its data from
unauthorized access, theft, or damage.
Potential security risks include data
breaches, malware infections, and
unauthorized access by hackers or malicious
insiders.

Network
Security

• Firewalls
• Access Control Lists
• VPNs (Virtual

Private Networks)
• DNS (Domain Name

System) Protection
• IDS/IPS (Intrusion

Detection and
Prevention Systems)

This guideword refers to the protection of
the application and its data from network-
based attacks, such as DDoS attacks, man-
in-the-middle attacks, or data interception.
Potential network security issues include
data breaches, service disruptions, and
unauthorized access to sensitive data.

Compliance • Regulatory
Requirements

• Audit Logging
• Access Control
• Data Protection
• Incident Response

This guideword refers to the application's
adherence to relevant industry standards,
regulations, and policies, such as GDPR or
HIPAA. Potential compliance issues include
data privacy violations, regulatory penalties,
and reputational damage.

Cloud service
integration

• API Design
• Interoperability
• Data Transformation
• Protocol

Compatibility
• Dependency

Management

This guideword refers to the ability of the
application to integrate with other cloud
services and platforms, such as storage,
messaging, or analytics services. Potential
issues related to cloud service integration
include incompatible APIs, data security
risks, and performance bottlenecks.

Cloud provider
lock in

• Interoperability
• API Design
• Data Portability
• Service Availability
• Vendor Relationship

Management

This guideword refers to the potential
difficulty of migrating the application to a
different cloud provider or platform.
Potential issues related to cloud provider
lock-in include limited vendor choice,
reduced flexibility, and dependency on
proprietary cloud technologies.

Elasticity • Resource
Provisioning

• Scaling Policies
• Performance Metrics

This guideword refers to the ability of the
application to dynamically provision and de-
provision resources in response to changes
in demand. Potential issues related to

Appendix 98

• Cloud Provider
Limits

• Cost Optimization
• Resource Utilization

elasticity include resource contention,
inefficient resource utilization, and
excessive cloud provider costs.

Multi-tenancy • Isolation
• Tenant Management
• Resource Allocation
• Security
• Performance

This guideword refers to the ability of the
application to serve multiple users or tenants
while maintaining data privacy and security.
Potential issues related to multi-tenancy
include data leakage, unauthorized access to
tenant data, and performance degradation
due to resource contention.

Disaster
recovery

• Business Continuity
• Recovery Point

Objective (RPO)
• Recovery Time

Objective (RTO)
• Backup Validation
• Redundancy
• Disaster Recovery

Plan
• Backup Testing

This guideword refers to the ability of the
application to recover from a catastrophic
event, such as a natural disaster or a cyber-
attack, and restore normal operations as
quickly as possible. Potential issues related
to disaster recovery include incomplete data
backup, insufficient failover capacity, and
inadequate testing of recovery procedures.

8.2 “What if…” / “How could…” Questions

"What if…" / "How
could…" Questions

Recommended Action Proposed Design
Pattern

What if there is a lack of
isolation between different
software components

Enforce logical and physical
separation between different part of
the systems

Critical Enclave

What if resource contention
occurs between components,
leading to performance
degradation or resource
monopolization?

Implement resource allocation and
prioritization mechanisms to ensure
fair sharing of resources among
components.

Critical Enclave,
Publish–
Subscribe Pattern

What if the application
experiences high latency due
to frequent database queries

Utilize caching to optimize the
retrieval of frequently accessed data
and computation results.

Critical Enclave,
Data
Segmentation,

Appendix 99

or resource-intensive
operations?

Separate read/write use-cases, use
read-only replica for reading.

Publish–
Subscribe Pattern

What if the application
experiences scalability
limitations or performance
bottlenecks?

Evaluate and optimize the application
architecture for horizontal scalability
and graceful degradation.
Utilize microservices, containers, or
serverless architectures to enhance
scalability and performance.

Stateless
Computation

What if sudden spikes in user
traffic occur, overwhelming
the application's resources?

Implement auto scaling to dynamically
add more resources (e.g., virtual
machines) based on demand.

Auto-Scaling,
Stateless
Computation

How could software be
updated?

Implement redundant systems and
graceful shutdown.

Stateless
Computation,
Multi-Availability
Zone

What if a hardware or
component failure occurs,
causing service disruption?

Implement redundancy to ensure high
availability.

Multi-Availability
Zone

What if the computer system
running the software system
goes down unexpectedly?

Employ redundant systems and
failover mechanisms as proactive
measures to mitigate downtime and
ensure continuous operation.

Multi-Availability
Zone

What if the application
experiences uneven traffic
distribution, leading to
performance issues?

Implement load balancing mechanisms
to evenly distribute incoming traffic
across multiple instances.

Multi-Availability
Zone

What if a load balancer
becomes a single point of
failure?

Implement redundant load balancers to
ensure high availability / rely on cloud
provider solutions.

Multi-Availability
Zone, Multi-
Region
Deployment

What if a disaster or service
disruption occurs, impacting
the availability of critical
systems or data?

Implement redundant infrastructure Multi-Region
Deployment,
Geo-Replication

What if a natural disaster or
catastrophic event impacts
the availability of cloud
infrastructure?

Establish a geographically separate
secondary setup in a different region
or location.
Replicate critical data and systems to

Multi-Region
Deployment,
Geo-Replication

Appendix 100

the secondary region for quick failover
in case of a disaster.

What if there is a prolonged
outage of the cloud service
due to equipment failure or
infrastructure issues?

Establish the same setup in a different
cloud provider

Multi Cloud
Deployment

What if the application's
resource utilization exceeds
capacity, leading to
performance degradation?

Establish the same setup in a different
cloud provider

Multi-Region
Deployment,
Multi Cloud
Deployment

What if there is a prolonged
interruption to business
operations due to a
catastrophic event?

Replicate critical systems and data in
geographically separate locations.

Multi-Region
Deployment,
Multi Cloud
Deployment

What if the allocated
resources are insufficient to
handle the workload demand?

Implement automated resource
provisioning mechanisms, such as auto
scaling or dynamic resource
allocation, to scale resources up or
down based on workload
requirements.

Multi-Availability
Zone, Multi-
Region
Deployment,
Multi Cloud
Deployment

What if a transaction fails
midway, leading to
inconsistent data state?

Implement retry mechanism to reduce
the propagation of potential failures.

API Gateway

What if the application's
response time is slow or
inconsistent?

Implement timeout and retry
mechanism to reduce the propagation
of potential failures.

API Gateway

What if the system cannot
achieve strong consistency in
a multi-region setup?

Implement workload distribution
between regions. Use eventual
consistency to deal with region
failures.

Elastic Workload
Segmentation,
Geo-Replication

What if the components
deliver a faulty response,
such as bit-flip?

Ensuring the integrity of the data by
adding payload signature. N-Version-
programming to deploy multiple
independent versions of components.

N-Version
Programming and
Deployment

Appendix 101

What if the application's
current infrastructure cannot
handle increased user load?

Implement horizontal scaling. Auto-scaling

What if data consistency or
synchronization issues arise
with horizontally scaled
components?

Implement distributed caching
mechanisms or messaging systems to
ensure data consistency across
horizontally scaled instances.
Consider using distributed databases
or replication strategies to handle data
synchronization.

Geo-Replication

What if DNS services
become unavailable?

Implement redundant DNS servers and
utilize DNS anycast routing to
distribute DNS requests across
multiple locations.

Redundant DNS

8.3 Moving Block Fault Tree Analysis

The suffix R-A, refers to Region A, whereas suffix R-B refers to Region B.

Appendix 102

8.4 Moving Block Fault Tree Analysis Cut-Sets Probability >= 0.01

The suffix R-A, refers to Region A, whereas suffix R-B refers to Region B.

8.5 Moving Block Fault Tree Analysis Cut-Sets Probability >= 0.001

The suffix R-A, refers to Region A, whereas suffix R-B refers to Region B.

