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Summary 

Toxicology, the study of the adverse effects of chemicals and physical agents on living 

organisms, is a critical process in chemical and drug development. The low throughput, high 

costs, limited predictivity and ethical concerns related to traditional animal-based toxicity 

studies render them impractical to assess the growing number and complexity of both existing 

and new compounds and their formulations. These factors together with the increasing 

implementation of more demanding regulations, evidence the current need to develop 

innovative, reliable, cost effective and high throughput toxicological methods. 

The use of metabolomics in vitro presents the powerful combination of a human relevant 

system with a multiparametric approach that allows assessing multiple endpoints in a single 

biological sample. Applying metabolomics in a cell-based system offers an alternative to both, 

the ethical concerns and relevance of animal testing and the restraining nature of single 

endpoint evaluations characteristic of conventional toxicological in vitro assays. However, 

there are still challenges that hamper the expansion of metabolomics beyond a research tool 

to a feasible and implementable technology for toxicology assessment.  

The aim of this dissertation is to advance the applications of in vitro metabolomics in 

toxicology by addressing three major challenges that have limited its widespread 

implementation in the field. In chapter 2 the restrictive high cost and low throughput of in 

vitro metabolomics was addressed through the development, standardization and proof of 

concept of a high throughput targeted LC-MS/MS in vitro metabolomics platform for the 

characterization of hepatotoxicity. In chapter 3, the use of the developed in vitro 

metabolomics system was expanded beyond hazard identification, to its implementation for 

deriving dose- and time response metrics that were shown useful for Point of departure (PoD) 

estimations for human risk assessment. Finally, in chapter 4 in order to increase the reliance 

and confidence of using in vitro metabolomics data for risk assessment, the human relevance 

of the metabolomics in vitro assays was attempted to be improved by the implementation 

and evaluation of in vitro metabolomics in a hiPSCs-derived 3D liver organoid system.  
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The work developed here demonstrates the suitable of in vitro metabolomics for mechanistic-

based hazard identification and risk assessment. By advancing the applications of 

metabolomics in toxicology, this work has significantly contributed to the aim of toxicology of 

the 21st century for a human-relevant non-animal toxicological testing, supporting the 

toxicology task of protecting human health and the environment. 
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Zusammenfassung 

 

Toxikologie, die Untersuchung von schädlichen Effekten von Chemikalien und physikalischen 

Stoffen an lebenden Organismen, ist ein kritischer Schritt in der Entwicklung von Chemikalien 

und Wirkstoffen. Der niedrige Durchsatz, hohe Kosten, die begrenzte Vorhersagekraft, sowie 

ethische Bedenken in Bezug auf traditionelle Tierstudien in der Toxikologie machen es 

schwierig die wachsende Anzahl und Komplexität von vorhandenen und neuen Substanzen 

und deren Formulierungen zu untersuchen. Dies, zusammen mit der zunehmenden 

Umsetzung von anspruchsvollen Vorschriften, belegen den momentanen Bedarf an 

innovativen, verlässlichen sowie kosteneffizienten und high-throughput toxikologischen 

Methoden. 

Die Verwendung von Metabolomics in vitro kombiniert ein humanrelevantes System mit 

einem multiparametrischen Ansatz und erlaubt dadurch das Beurteilen von multiplen 

Endpunkten in einer einzigen biologischen Probe. Die Anwendung von Metabolomics in 

einem zellbasierten System ermöglicht eine Alternative, sowohl was ethische Bedenken als 

auch die Bedeutung von Tierversuchen und die Begrenzung auf einen einzigen Endpunkt als 

Beurteilungsmerkmal von konventionellen Toxikologischen in vitro-Assays, angeht. Jedoch 

gibt es immernoch Herausforderungen, die die Ausweitung von Metabolomics über einen 

Forschungsansatz hinaus zu einer realisierbaren und implementierbaren Technologie für 

toxikologische Bewertungen begrenzen. 

Das Ziel dieser Dissertation war es die Anwendung von Metabolomics in vitro in der 

Toxikologie voranzubringen, indem 3 große Herausforderungen, die die Implementierung 

dieser Technologie behindern, angegangen wurden. In Kapitel 2 wurde die Frage der hohen 

Kosten und des niedrigen Durchsatzes von Metabolomics in vitro adressiert, indem eine 

standardisierte, high-throughput targeted LC-MS/MS Metabolomics in vitro Plattform zur 

Charakterisierung von Hepatoxizität entwickelt und mittels eines Proof of concepts verifiziert 

wurde. In Kapitel 3 wurde die Anwendung des entwickelten in vitro Metabolomics Systems 

über die Gefahrenidentifizierung hinaus weiterentwickelt zu einer Implementierung für die 

Ableitung von Dosis und Zeiteffekten, die sich auch als nützlich für die Abschätzung von Point-
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of-departures (PoD) für die humane Risikobewertung erwiesen haben. Schließlich wurde in 

Kapitel 4 versucht die Humanrelevanz des Metabolomics in vitro Assays zu verbessern, indem 

von hiPSC-abgeleitete 3D Leberorganoidsysteme implementiert und evaluiert wurden, um 

das Vertrauen in Metabolomics in vitro hinsichtlich einer Risikobewertung zu steigern. 

Die hier präsentierte Arbeit stellt eine geeignete Metabolomics in vitro Methode für die 

mechanismusbasierte Gefahrenidentifzierung und Risikobewertung dar. Indem die 

Anwendung von Metabolomics in vitro in der Toxikologie vorangetrieben wurde, hat diese 

Arbeit signifikant zum Ziel der Toxikologie des 21. Jahrhunderts, ein humanrelevantes und 

tierversuchsfreies toxikologisches Testen zu etablieren, beigetragen und unterstützt damit 

auch den Schutz der menschlichen Gesundheit und der Umwelt. 
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Chapter 1: introduction 

 

Toxicology of the 21st century 

 

Toxicology, a discipline that has its origins in the ancient study of poisons, has evolved over 

the years into an applied science that investigates the adverse effects of chemicals and 

physical agents on living organisms (Klaassen and Amdur 2013). Today, the field of toxicology 

aims to protect the human population and the environment mainly through identifying and 

assessing the risk posed by substances of any kind; from natural occurring compounds, 

pharmaceuticals, and pesticides to complex molecules such as polymers, chemical mixtures, 

and minuscule nanoparticles (Greim and Snyder 2018).  

Classical toxicology has largely relied in the use of animal experiments coupled to evaluations 

of observable outcomes, such as clinical signs, histopathological lesions, and clinic-chemical 

data to assess the effects induced by exposures to chemical agents (OECD 1997). In the last 

decades, it became evident that the low throughput and high costs of animal-based toxicity 

studies render them impractical to assess the growing number of individual existing 

compounds, new substances and their formulations in the market (Hartung 2009; Wang et al. 

2020). In addition, different studies demonstrating the limited predictivity of animal models 

to reflect human responses were increasingly reported (Basketter et al. 2004; Gottmann et 

al. 2001; Hartung 2008; Olson et al. 2000). In parallel to the concerns about the relevance of 

animal studies, societal pressure to decrease animal experimentation under the 3R principle 

of Reduce, Refine and Replace animal testing significantly grew stronger (Russell and Burch 

1959). 

In 2006, the European union announced implementation of legislation for the largest safety 

assessment of chemicals in history. The Registration, Evaluation, Authorisation and 

Restriction of Chemicals (REACH) required manufactures and companies importing chemicals 

into the European Union in quantities of one ton or more per year, to provide information on 
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the toxic properties and uses of the substances (REACH EC No. 1907/2006, European 

commission). At the time, it was estimated that data for about 86% of marketed chemicals 

were lacking (Hartung 2009). Filling the data gaps for complying with the REACH regulations 

requirements, would have represented massive animal testing needs (Hartung 2009). 

However, the legislation called for keeping the use of animals as last resort and for the 

integrated use of new methodologies.  

In 2007, the US National Research Council (NRC) published a hallmark report on Toxicity 

testing in the 21st century (National Research Council 2007). This document proposed the 

incorporation of new technical and scientific developments and presented a new vision and 

roadmap for the field, officially initiating a revolution in Toxicology. Since then, the field of 

toxicology has sought to move away from utilizing large animal cohorts and observational 

sciences to the incorporation efficient and human relevant technologies that provide a better 

understanding of the mechanisms of toxicity at a cellular level (National Research Council 

2007). The pressing need for faster, cost effective and more human relevant models, together 

with the ethical and political demands to reduce animal testing, evidenced a broadly 

perceived need for a transformation to continue to ensure the safety of human population, 

the field of toxicology had to change.  

Since the publication of the NRC report in 2007, the vision of toxicity in the 21st century has 

come a long way. Numerous human cell-based methods, high throughput systems, in silico 

models and read across strategies have been incorporated as alternative approaches to in 

vivo animal testing (Krewski et al. 2020b). These New Approach Methodologies (NAMs) have 

majorly expanded the study of toxicity beyond the observation of apical endpoints by 

enabling the study of mechanisms of toxicity. Importantly, NAMs have played a key role in 

the development and implementation of the adverse outcome pathway model (AOP), a 

mechanistic-based framework, in modern toxicology (Mortensen et al. 2021; Vinken 2013). 

The AOP framework identifies a sequence of cellular and molecular key events that lead to an 

adverse effect upon chemical exposure, providing a conceptual basis and a guide for the 

development and implementation of non-animal testing approaches (Fig.1)(Ankley et al. 

2010). This concept has been fundamental for the integration and extrapolation of in vitro 

information generated from different assays and sources (OECD 2016a; OECD 2016b; Rovida 

et al. 2015). 
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Figure 1. The adverse outcome pathway (AOP) framework. Upon contact with the stressor, a molecular 
initiating event (MIE) denotes an interaction between the toxic substance and an organism (e.g., binding of the 
substance to a receptor or protein. This interaction begins the toxicity process. Afterwards, key events (KE) are 
processes that characterize the progression of the toxicity. Early key events can include changes in protein 
production or molecular signaling that occur in individual cells. Later key events can include altered tissue or 
organ function. Links between key events are explained by key event relationships (KER). Adverse outcomes may 
occur at individual or population levels (e.g., disease, impaired development, or impaired reproduction.) 
Adapted from (Edwards et al. 2016). Created with Mindthegraph (https://mindthegraph.com). 

 

 

The establishment of human health guidance values such as reference dose (RfD), derived no-

effect level (DNEL) and the calculation of a safe acceptable daily intake (ADI), is the core aim 

of chemical risk assessment (Greim and Snyder 2018). However, results obtained from in vitro 

tests cannot be directly applied to predict the full biological responses in vivo. Therefore, 

beyond obtaining mechanistic information, that allows to classify whether a substance 

negatively interferes with a particular cellular process (hazard identification), one of the main 

challenges for the successful implementation of in vitro testing, is to first obtain quantitative 

values that reflect to which extend a pathway was perturbated and then to extrapolate these 

values to human relevant concentrations (Bell et al. 2018; Hartung 2018). Thus, one of the 

key aspects of toxicity of the 21st century relies in the use of nonlinear regression models of 

dose-response data as a first step for obtaining quantitative values for the determination of 

human and environmental risks (Andersen and Krewski 2009). The starting point for the 

determination of such values includes the derivation of a point of departure (POD) from dose–

response modelling, which refers to the point on a toxicological dose-response curve 

corresponding to an estimated low effect level or no effect level (Bercu et al. 2016), followed 

https://mindthegraph.com/
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by an In Vitro–In Vivo Extrapolation (IVIVE) analysis to link an in vitro effect concentration 

with its in vivo counterpart (Wilk-Zasadna et al. 2015) (Fig. 2).  

 

Figure 2. The use of physiologically based kinetic (PBPK) modelling to translate in vitro concentrations to in 
vivo doses. In PBPK model, organs important for absorption, distribution, metabolism and excretion (ADME) are 
included. The organs in PBPK can be defined by a differential equation. For deterministic organs for the blood 
concentration profile, such as the gut, liver, and kidney, details of the mechanism are considered to implement 
the model. Additional tissues and organs can be added according to modeling purpose and hypothesis. Modified 
from (Shin et al. 2017). Created with Mindthegraph (https://mindthegraph.com). 

 

The successful transformation of in vitro concentrations into doses expressed in mg/kg body 

weight (bw), as derived in in vivo studies, represents a fundamental step in moving away from 

animal experimentation (Chang et al. 2022). The feasibility of IVIVE models to extrapolate in 

vitro to in vivo concentrations has been demonstrated in various publications (Abdullah et al. 

2016; Louisse et al. 2017; Ning et al. 2019; Shi et al. 2020), yet its effective application highly 

depends on appropriate parameters and well characterized in vitro systems.  

15 years have passed since the vision and strategy for toxicity testing in the 21st century was 

first published. To date, a lot of resources have been dedicated to this vision and significant 

advances have been made in the development of alternative methods (Krewski et al. 2020a). 

However, the consecutive implementation of stringent regulatory frameworks such as REACH 

EC No. 1907/2006, the European Cosmetics Act EC No. 1223/2009, and the recently put in 
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place chemical strategy towards sustainability COM/2022, aiming to ensure human and 

environmental safety of both new and already existing substances, keep challenging 

industries to find reliable, yet cost effective animal free methods to meet the high demand 

for toxicity testing (Crawford et al. 2017; van Dijk et al. 2021) 

Conventional in vitro toxicology: evaluation of single endpoints 

 

In the last decades, In vitro models have been of immense utility in the understanding of 

molecular mechanisms of toxicity and in the development of adverse outcome pathways 

(AOP) (Krewski et al. 2020a; Vinken 2013). However, toxicological in vitro testing has been 

based mainly on monoparametric strategies (one question, one answer) (Dix et al. 2007). 

Thus, once an AOP is defined for evaluating a certain toxicity endpoint, individual cell-based 

and biochemical tests that characterize each of the molecular initiating and key events of a 

pathway should be established. Therefore, with conventional in vitro methods, which are 

based on single endpoints, perturbations in cellular responses cannot be predicted from an 

individual test but instead have to be assessed in a set of several toxicity assays. 

Consequently, an extensive battery of tests, each performed in a different biological replicate, 

is needed to obtain comprehensive mechanistic information as shown in the US EPA’s Tox 

Cast and Tox21 testing battery (ToxCast website: http://epa.gov/ncct/toxcast/). Under these 

programs, data from hundreds of assays for thousands of chemicals have been produced 

based on individual cell-based assays that test for bioactivity upon chemical exposure at 

various cellular levels such as enzymatic activities, receptor activation, cytotoxicity and 

biomarker production (Dix et al. 2007).  

In order to obtain enough information for evaluating specific adverse outcomes using 

conventional in vitro toxicological methods, data from multiple assays and technologies, 

covering different targets per endpoint and per pathway, have to be developed and 

integrated (Rovida et al. 2015). The development, integration and data interpretation 

processes generated from single endpoint in vitro tests are time consuming, tedious and 

rarely straightforward, which highly limits the full characterization of toxicological-related 

events and challenges cell-based models implementation in regulatory risk assessment  

(OECD 2016a).  

http://epa.gov/ncct/toxcast/
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Omics technologies: powerful multiparametric approaches to study toxicity 

 

In the last decades, biological sciences have experienced a revolution driven by the accelerate 

rate of technological advances. Rapidly developing sequencing methods and analytical 

techniques gave rise to the development of what are known as Omics technologies. Omics 

technologies aim at the global characterization and quantification of pools of biological 

molecules that influence the structure, function, and dynamics of an organism (Micheel et al. 

2012). These relatively new approaches offer the advantage of comprehensively measuring 

the profiles of genes (transcriptomics), proteins (proteomics), or small endogenous 

metabolites (metabolomics) within biological matrices like cells,  tissues, blood plasma or 

excreta (Karczewski and Snyder 2018). The systematic screening of genes, proteins and 

metabolites offered by omics techniques has enabled an unprecedent large-scale analysis of 

biological processes in an organism (Venter et al. 2001). (Table 1) 
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Table 1. Comparison of advantages and limitations for different Omics technologies. Adapted from  (Bouhifd 
et al. 2013). 

 

In toxicology, Omics approaches have provided a valuable tool to characterize alterations in 

cells, tissues and organisms following exposures to chemical substances (Mortimer et al. 

2022; Nguyen et al. 2022). Multiparametric Omics techniques offer the simultaneous 

evaluation of numerous parameters, such as multiple pathways, in a single biological sample, 

representing sensitive and comprehensive tools for elucidating the molecular and 

biochemical events underlaying toxicity (García-Cañaveras, Castell, Donato, & Lahoz, 2016). 

The implementation of transcriptomics, proteomics and metabolomics in both in vivo and in 

Transcriptomics/genomics Proteomics Metabolomics

Advantages • High throughput sequencing techniques

allow the cost and time efficient

sequencing of complete genomes

• Important role of proteins in cell 

homeostasis

• Allows the simultaneous measurement

of hundreds of metabolites

• Study of polymorphisms can give insight

into the role of genetics in toxicology

and explain differences in susceptibility

• Quantitative analysis • The omics science considered to be

the closest to the phenotype 

• Gene arrays allow the simultaneous

gene expression analysis of thousands

of genes

• 2D gel electrophoresis is routinely

applied

• MS analysis is sensitive, quantitative and 

detects a high number of metabolites

• Availability of gene arrays with complete 

genomes including the human

• MS-based approaches allow the

identification of proteins 

• Availability of public and commercial 

databases with annotated metabolites

• Sensitive endpoint of toxicity since gene 

expression changes often occur at an early 

stage

• Sensitivity, specificity and low costs of 

protein arrays

• Both in vitro cell cultures and in vivo

tissue and non-invasive blood, urine

applications

• Protein arrays allow the simultaneous 

analysis of thousands of proteins 

• Analysis of protein-protein interactions

• Protein profiling can be performed in 

cells, tissues and non-invasively in body 

fluids (blood plasma, serum)

Limitations • Genome sequencing alone is not enough 

since polymorphisms play an important role

• Complexity and instability of the 

proteome

• In vivo approaches influenced by 

variability factors, e.g. age, gender, diet, 

stress, housing conditions, health status

• Alterations in gene expression do not 

always lead to adverse health effects

• Large number of proteins and possible 

posttranslational modifications

• In vitro approaches are influenced by 

variability factors, e.g. cell culture 

conditions, metabolic competence, media 

formulations, serum additions, treatment 

vehicle

• Gene array analysis can overlook modest 

changes in gene expression

• Limited detection of low abundance 

and highly acidic or basic proteins by 

2D gel electrophoresis

• Quenching and metabolite extraction 

procedures limit the detection of 

metabolites

• Limited reproducibility between genearray 

experiments

• Limited reproducibility between 2D gel 

electrophoresis experiments

• Requires costly NMR or MS technologies

• Gene arrays are semi-quantitative and data 

needs confirmation by quantitative 

techniques

• Not all proteins in a sample can be 

identified

• Complexity of the data analysis and 

interpretation, e.g. metabolic pathways

• Often difficult to translate genomics results 

to in vivo or human toxicity or disease

• Limited availability of antibodies for the 

detection of the large amounts of 

existing proteins

• Genomics often requires proteomics and 

metabolomics follow-up studies
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vitro toxicity studies has greatly contributed to diverse areas of toxicology and risk assessment 

such as the early prediction of toxicological effects (Van Ravenzwaay et al. 2015), analysis of 

compounds modes of action (Garcia-Canaveras et al. 2015; Ramirez et al. 2018a), 

characterization of AOPs (Brockmeier et al. 2017; Vinken 2019), identification of early 

biomarkers of adverse outcomes (Van Ravenzwaay et al. 2007), chemical grouping (Van 

Ravenzwaay et al. 2016), and more recently, in the derivation of points of departure (POD) 

for in vitro to in vivo data extrapolation (Crizer et al. 2021b; Malinowska et al. 2023).  

Following the central concept of molecular biology, in the first step of the genetic information 

flow, DNA is copied into mRNA through the process of transcription. Transcriptomics is the 

Omics technique that deals with the global measurement of gene expression profiles based 

on the determination of mRNAs levels. Alterations in gene expression are the earliest 

quantifiable effects following a chemical exposure (Council 2007). It has been widely 

demonstrated that different substances induce characteristic gene expression patterns that 

can be associated to mechanisms of toxicity and are indicative of adverse health effect as 

evidenced in The Comparative Toxicogenomics Database (CTD; http://ctdbase.org/) which 

integrates the transcriptomics data of 17,100 chemicals, 54,300 genes, 6,100 phenotypes, 

7,270 diseases and 202,000 exposure statements (Davis et al. 2023). From the Omics 

techniques, transcriptomics has been the more extensively used in toxicology. It offers the 

advantage of allowing high throughput and cost-effective evaluations of complete genomes. 

Additionally, mRNA arrays with whole genomes, including the human, are commercially 

available and big amount of toxicity relevant data have been produced using this technology 

(Mortimer et al. 2022). However, mRNA changes may or may not result in a functional 

implication since they are subject to complex homeostasis and feedback mechanisms such as 

post-translational modifications. Thus, alterations in gene expression do not always lead to 

adverse health effects and it is often difficult to readily translate transcriptomics results to in 

vivo toxicological endpoints (Alexander-Dann et al. 2018).  

One step further in the flow of genetic information, mRNAs are translated into proteins. 

Proteins play an important role in cell homeostasis and therefore chemical exposure can 

interfere with critical biological processes through the modification of proteins. Proteomics, 

the large-scale measurement of proteins, has been successfully implemented to identify 

biomarkers of toxicity, evaluate mechanisms of action of multiple substances and detect 
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harmful toxicant-protein interactions such as adducts (Qiao and Wang 2019). As proteins 

pivot between gene transcription and phenotype, proteomics offer a closer perspective of 

toxic effects than transcriptomics (Madeira and Costa 2021). However, the large number and 

high complexity of the biological structures of proteins and their numerous isoforms, 

originating from post-translational modifications, make proteomics a highly technically 

challenging technique, which has limited its applications in toxicology (Doll and Burlingame 

2015).  

Finally, metabolites are the ultimate expression of gene and protein activities to meet the 

physiological demands for growth and survival, including adaptive responses to 

environmental factors such as nutrient availability, xenobiotics, and therapeutic agents (Fiehn 

2002). Metabolomics is known as the systematic measurement of low molecular weight 

endogenous molecules (below 1.5 kDa) such as carbohydrates, amino acids, lipids, and nucleic 

acids. Metabolites intermediate in biochemical pathways assisting the cells to communicate 

messages and transmit signals (Idle and Gonzalez 2007). These molecules represent the end 

products of processes that occur within a cell, and thus can provide an insight into the 

physiological state of an organism, including its genetic makeup and current environmental 

influences. Therefore, while genomics and proteomics try to predict what kind of effect might 

occur, metabolomics offers the answer to what is actually happening (Riekeberg and Powers 

2017)(Fig. 3).  
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Figure 3. Genetic information flow and Omics cascade. According to the central concept of molecular biology, 
DNA (genomics) are transcribed to mRNA (transcriptomics) which in turn are translated to proteins (proteomics), 
whose activities result in the formation of metabolites (metabolomics). The metabolome is the final down- 
stream product of the genome, and therefore metabolomics is regarded as the endpoint of the Omics cascade. 
Created with Biorender (https://www.biorender.com/). 

 

 

Classical toxicology has been based on phenotypical observations from behavior to pathology 

and clinical chemistry evaluations. The metabolome (i.e., the collection of all small 

endogenous molecules in a biological system) represents the interface between the genome 

activity, the organism, and the environment. The combination of the genome and the 

environment makes up the phenotype, in that sense, the metabolome is the best indicator of 

the phenotype, reflecting what is occurring in terms of physiology (Fiehn 2002). 

Consequently, metabolomics is regarded as the omics technology which is closest to classical 

toxicology (Ramirez et al. 2013). 

Metabolomics presents several advantages over other Omics technologies. To enable 

practical applications (e.g., clinical practice), an ideal biomarker should be easy to obtain and 

to evaluate (Van Ravenzwaay et al. 2007). mRNAs and proteins are normally not secreted into 

biofluids. In contrast, metabolites are detectable in biofluids such as urine and blood which 

make it a less invasive method and enables time course analysis (Van Ravenzwaay et al. 2007). 

In addition, genes and proteins can vary among organisms (species dependent), whereas 

https://www.biorender.com/
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metabolites have a fixed chemical structure, regardless of the organism, simplifying the 

extrapolation from experimental models to humans. These factors, together with the 

metabolome to the phenotype and its high sensitivity to external stimuli make metabolomics 

technologies a powerful approach to study toxicity (Ramirez et al. 2013).   

 

Metabolomics: a close-up view into the basic principles  

Although the field of metabolomics is relatively new, the basic concept has existed 

throughout history in various cultures. Ancient civilizations such as the Egyptians and Chinese 

were able to detect metabolic conditions like diabetes from the evaluation of the urine. In the 

year 300 B.C., the Greeks recognized the importance of examining body fluids in order to 

predict diseases (Nagana Gowda and Raftery 2019). In the West, the humoral theory 

dominated the medical thinking for almost two millennia. In this theory, humours existed as 

liquids within the body; a good balance between the humours was essential to retain a 

healthy body, an imbalance could result in disease (Balzer and Eleftheriadis 1991). 

It has been long understood that metabolites can reveal information about the physiological 

status of an organism. However, it was not until the beginning of the 20th century that the 

development of new techniques such as the mass spectrometer, nuclear magnetic resonance 

(NMR) and chromatographic separation, has made possible the identification and 

quantification of metabolites, and therefore, the evolution of metabolomics as a scientific 

discipline (Dunn and Hankemeier 2013).  

A range of analytical technologies have been employed for the large-scale analysis of 

metabolites in different organisms, tissues, fluids, or cells. Today, mass spectrometry coupled 

to different chromatographic separation techniques, such as liquid or gas chromatography 

(LC–MS and GC–MS) are the main tools adopted for metabolic profiling (Alseekh et al. 2021). 

The general workflow for a typical mass spectrometry-based metabolomics experiment 

consists of several steps: (1) sample collection, (2) quenching, (3) metabolite extraction, (4) 

chromatography separation, (5) mass spectrometry identification and (6) data processing for 

analytes identification and statistical analysis (Fig 4).  
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Figure 4. Metabolomics experiment workflow. Metabolomics involves several basic steps: (1) sample collection; 
(2) metabolism quenching (3) metabolite extraction (4) separation on a column (chromatography) such as by GC 
or LC (5) ionization of metabolites and separation by a mass analyzer as ions fly or oscillate based on their mass-
to-charge (m/z) ratio (6) data processing for analytes identification and statistical analysis. Metabolites can be 
identified by a combination of retention time (RT) and MS signature. Modified from (Alseekh et al. 2021). 
Created with Mindthegraph (https://mindthegraph.com). 

 

(1) sample collection:  metabolites can be extracted from a wide range of biological 

matrices such as biofluids, tissues, and cells. Due to the high sensitivity of the 

metabolome, factors such as sampling time, stage of the organism development and 

organ specificity must be considered in order to ensure experimental reproducibility 

(Smith et al. 2020).  

 

(2) Metabolism quenching:  due to the high rate of metabolic turnover in a living 

organism, a critical step in metabolomics experiments is the rapid stopping of any kind 

of chemical or enzymatic reaction that may occur immediately after sample collection, 

since these can alter the original metabolite profile of the organism. This quick 

inactivation of all biochemical and enzymatic activity in organisms is known as 

quenching. Quenching is crucial to obtain a metabolic snapshot reflective of the 

physiological status being evaluated (León et al. 2013). Importantly, any perturbations 

of the existing metabolite levels during harvesting should be avoided. Usually, this 

step is done by snap-freezing the samples in liquid nitrogen (Viant et al. 2019b). 

 

(3) metabolite extraction: to release the metabolites, the cell compartments or their 

protective covering need to be disrupted. Depending on the sample type, membranes 
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are disrupted either physically through the use of beads, homogenizers, laboratory-

grade blenders and ultrasonication, or chemically by the addition of compounds such 

as alcohols or membrane disrupting molecules (Goldberg 2015). After metabolites are 

released from the matrix, organic solvents are added to separate the metabolites from 

other molecules such as proteins and nucleic acids. Depending on the sample type, 

different extraction methods using distinct combinations of organic solvents are used 

(Andresen et al. 2022). Different extraction methods offer various metabolite classes 

selectivity. Therefore, the selected protocols for the metabolite extraction play a 

major role in determining the reach of metabolites that could be detected (Dettmer 

et al. 2011). Fig 5. shows a comparison between protein precipitation, liquid-liquid 

extraction, and solid phase extraction, three of the most used extraction methods for 

metabolomics experiments. 

 

 

Figure 5. Sample extraction methods for metabolomics analysis. Comparison between three of the 
most used extraction methods for metabolomics experiments. Created with Biorender 
(https://www.biorender.com/). 
 
 

(4) chromatography separation: once metabolites are separated from larger molecules 

such as proteins and organic acids, the individual components (metabolites) of the 

resulting mixture are separated via chromatography. Chromatography techniques 

work based on adsorption, a mass transfer process allowing to physically separate the 

different components of a mixture. In every chromatography method, there is a 

contact between two phases; a fixed stationary phase and a mobile phase that flows 

constantly during the analysis. The separation of the components from the mixture is 
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based on the differential partitioning between the mobile and the stationary phase 

and the polarity of the molecules that compose the mixture (Lundanes et al. 2013). 

Two types of chromatography, liquid (LC) and gas (GC) are commonly used in 

metabolomics studies.  

 

In liquid chromatography, the mobile phase is a liquid mixture of organic solvents 

while the stationary phase is a column packed with miniature particles (e.g., silica). 

The sample is forced by a liquid at high pressure (the mobile phase) through the 

column. The components of the sample mixture are separated based on their 

differential interactions with the adsorbent material of the stationary phase particles 

which leads to the separation of the molecules as they flow through the column and 

finally results in different retention times for each molecule (metabolite) of the 

mixture (Bird 1989) (Fig 6). Liquid chromatography is divided mainly in two classes 

based on the polarity of the mobile and stationary phases. In normal phase liquid 

chromatography (NPLC), the stationary phase is more polar than the mobile phase. In 

reversed phase liquid chromatography (RPLC) the stationary phase is made of beads 

of highly hydrophobic aliphatic chains and the mobile phase is a mixture of polar 

organic solvents (Lough and Wainer 1995).  

 

Figure 6. Liquid chromatography principle. In liquid chromatography, the mobile phase is a liquid 
mixture of organic solvents, and the stationary phase is a column packed with particles. The sample is 



Chapter 1: introduction 

19 
 

forced by a liquid through the column. The components of the sample mixture are separated based on 
their differential interactions with the adsorbent material of the stationary phase particles leading to 
the separation of the molecules as they flow through the column resulting in different retention times 
for each analyte of the mixture. Created with Biorender (https://www.biorender.com/). 

 

In gas chromatography (GC), on the other hand, the mobile phase consists of an inert 

gas, usually helium, while the stationary phase is a polymer or liquid embedded in a 

very long thin column. In GC the sample is first vaporized and injected into a column. 

Molecules that have high affinity stick to the wall of the column and migrate more 

slowly while the ones that have lower affinity migrate more quickly (Fig 7). In order to 

be analyzed, the molecules in the sample must be first vaporized through a 

derivatization step. Chemical derivatization processes are complex and not all 

molecules can be volatilized, which represents the main limitation of GC 

chromatography (Littlewood 2013).  

 

 

Figure 7. Gas chromatography. In gas chromatography (GC) the mobile phase consists of an inert gas 
while the stationary phase is a polymer or liquid embedded in a long thin column. The sample is first 
vaporized and injected into a column. Molecules that have high affinity stick to the wall of the column 
and migrate more slowly while the ones that have lower affinity migrate more quickly. A derivatization 
step to volatilize the sample must be done prior GC analysis. Created with Biorender 
(https://www.biorender.com/). 

 

Both, LC and GC chromatographies separate the molecules in a mixture and measure 

their retention times, which is the time it takes to the analyte to pass through the 
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column. Molecules have specific retention times and thus this parameter can be used 

to identify analytes. However, in complex mixtures, different molecules elute form the 

column at the same time, making it necessary to implement further identification 

steps to fully identify individual metabolites (Thomas et al. 2022).    

 

(5) mass spectrometry identification: once the metabolites in the sample are separated 

via chromatography techniques, the next step is to further identify them via mass 

spectrometry (MS). MS is an analytical method that identifies different compounds by 

their unique mass and fragmentation patterns. A mass spectrometer measures mass-

to-charge ratios of ions (De Hoffmann and Stroobant 2007). A general MS process 

starts with an ionization step. Here, the sample is ionized using a beam of electrons 

causing it to split into charged ions. Then, these ions go through a mass analyzer where 

they are separated according to their mass-to-charge ratio by subjecting them to an 

electric or magnetic field using magnets, quadrupoles, or ion traps. The magnetic or 

electric field deflect ions in a different way based on their mass. Finally, there is a 

detector which allows to capture the signal. The final result is a spectrum of the signal 

intensity of the detected ions as a function of the mass-to-charge ratio (Milman 

2015)(Fig 8). Different ionization methods (e.g., electron ionization, electrospray 

ionization, matrix-assisted laser desorption/ionization (MALDI)) and mass analyzers 

(Quadrupole, time of flight (TOF), Orbitrap) have been developed (Pitt 2009). They 

offer different resolutions, sensitivities and throughput and can be selected based on 

the chemical nature and size of molecules that want to be detected and the study type 

(targeted or untargeted) (Viant et al. 2019a).   
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Figure 8. Mass spectrometry. A mass spectrometry process starts with an ionization step where the sample is 
ionized using a beam of electrons causing it to split into charged ions. These ions go through a mass analyzer 
where they are separated according to their mass-to-charge ratio by subjecting them to an electric or magnetic 
field using magnets, quadrupoles, or ion traps. The magnetic or electric field deflect ions in a different way based 
on their mass. A detector allows to capture the signal and a spectrum of the signal intensity of the detected ions 
are obtained as a function of the mass-to-charge ratio. Modified from (Chen et al. 2019). Created with 
Mindthegraph (https://mindthegraph.com). 

 

There are two different routes to conduct metabolomics experiments: the targeted and 

untargeted approach. Untargeted metabolomics aims to thoroughly analyze all the 

measurable analytes in a sample. With this method, large quantities of data, covering a wide 

range of metabolites are produced, offering an unbiased exploratory approach that allows 

unknown molecules in a sample to be discovered. However, the analyte peak annotation is 

highly challenging and thus untargeted analysis often results in limited comprehensive 

metabolite identification (Schrimpe-Rutledge et al. 2016). On the other hand, in targeted 

metabolomics a pre-defined set of metabolites, with known identities, is measured with high 

confidence and accuracy. This type of analysis offers high precision, sensitivity, and 

reproducibility; however, the results are limited to a specific metabolite list impeding the 

identification of new metabolites (Ribbenstedt et al. 2018) (Table 2).  
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Table 2. Target vs untargeted metabolomics approaches.  

 

 

In toxicology, untargeted metabolomics strategies have been shown to be valuable 

hypothesis- generating tools (Crizer et al. 2021b; Malinowska et al. 2023). Monitoring 

thousands of metabolites in a biological matrix after exposure to a compound can provide a 

general understanding of the toxic effect (Di Minno et al. 2021). Targeted metabolomics 

approaches present an improved sensitivity over a smaller set of analytes offering a more 

quantitative method that can be used to distinguish alterations in metabolite concentrations 

and offers a detailed characterization of pathways of interest (Griffiths et al. 2010; Olesti et 

al. 2021; Viant et al. 2019b).  

Finally, metabolites represent a wide universe of molecules; they exhibit a broad range of 

chemical structures and physical properties. In addition, endogenous metabolite 

concentrations present a large dynamic range of abundance (Ruddigkeit et al. 2012). 

Therefore, a single analysis cannot provide coverage of the full range of abundance and 

chemical structures. LC-MS and GC-MS methods are considered complementary, covering a 

different range and metabolites classes. Liquid chromatography (LC), however, offers a 

broader coverage and does not require derivatization steps, which makes it advantageous for 

practical applications (Thomas et al. 2022) (Fig 9). 

Targeted metabolomics Untargeted metabolomics

Hyphotesis-driven Hyphotesis generation

Pre-defined list of metabolites All the metabolites that are measurable

Tuned MS setting Full scan MS

Limited analytes that can be targeted Large quantities of data, covering a wide range of metabolites are produced 

Optimal sensitivity precision and reproducibility High resolution but lower sensitivity

Simpler data interpretation and analysis Challenging metabolite annotation

Analytes ID are known Many unknown analytes are identified

Correlated to reference standards Correlated to database/libraries

No data on new analytes can be obtained Enables discovery of unknown compounds

Semi-quantitative analysis Offers quantitative analysis (requires purified standards)
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Figure 9. Range of sensitivities of metabolomic technologies. At the lower end of sensitivity or lower detection 
limit are NMR technologies, suitable for detection of smaller numbers of known metabolites, while at the higher 
end of sensitivity, LC-MS-based technologies are superior for detection of known as well as unknown 
metabolites. Modified from (Wishart 2011). 

 

In vitro metabolomics to investigate organ toxicity 

 

Metabolomics is widely established as a tool in biomedical research for disease diagnosis, 

biomarker detection and identification of altered metabolic pathways (Ramirez et al. 2013). 

Initial investigations showed that chemicals or diseases that produce a specific form of 

toxicity, generally through a shared mode of action (MoA), cause a subset of common specific 

metabolite changes (Van Ravenzwaay et al. 2007; Van Ravenzwaay et al. 2015). Such a 

common set of consistently regulated metabolites could be used to establish metabolic 

patterns specific for certain toxicities. Metabolite profiling has been successfully 

implemented for over a decade to identify and predict toxicological mechanisms in rodent 

studies (Kamp et al. 2012; Ravenzwaay et al. 2015; Van Ravenzwaay et al. 2014).  
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Importantly, metabolomics-based approaches have been compared side by side to classical 

toxicology (Van Ravenzwaay et al. 2014). After exposing rodents to different herbicides, 

readouts from metabolomics analysis were compared to classical apical endpoints 

observation in animals. This study showed that there was a good agreement between 

affected organs and no observed effect levels (NOAEL) determined by both approaches, 

demonstrating the potential of metabolomics approaches to predict adverse effects in vivo 

(Van Ravenzwaay et al. 2014). 

Multiple studies have evidenced the potential of metabolomics as a promising tool for 

toxicology applications such as identifying and characterizing mechanisms of toxicity (Mattes 

et al. 2014; Van Ravenzwaay et al. 2015), performing biologically based chemical grouping 

and read across by showing mechanistic similarities between new and model substances (Van 

Ravenzwaay et al. 2016), and deriving points of departure (POD) for risk assessment 

(Malinowska et al. 2023). Recently, metabolomics approaches have been used in combination 

with in vitro models to expand the investigation of organ toxicity (Birk et al. 2021; Cuykx et al. 

2018a; García-Cañaveras et al. 2016; Huang et al. 2021; Jeon et al. 2021; Ramirez et al. 2018a). 

The use of metabolomics in vitro presents the powerful combination of a human relevant 

system with a multiparametric approach that allows assessing multiple endpoints in a single 

biological sample. Applying metabolomics in a cell-based system offers an alternative to both, 

the ethical concerns and relevance of animal testing and the restraining nature of single 

endpoint evaluations characteristic of conventional toxicological in vitro assays. Several 

studies with cell lines have successfully used in vitro metabolomics to identify and study 

different modes of action postulating metabolomics as a valuable tool for organ toxicity 

assessment (Birk et al. 2021; Cuykx et al. 2018a; García-Cañaveras et al. 2016; Gerdemann et 

al. 2022; Ramirez et al. 2018a).  

In vitro metabolomics experiments, however, are usually costly, very labor intensive and need 

a large amount of cell material when compared to simple single endpoint in vitro assays 

(Cuykx et al. 2018b; Ramirez-Hincapie et al. 2023). Usually, metabolomics studies require a 

minimum of one million cells per sample and thus, experiments are carried out in relatively 

large containers such as culture flasks, 6- or 12 well-plates. Assays in these types of containers 

are not amenable for automatization, require large quantities of reagents and test compound 
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and demand extensive manual handling which represents elevated costs and highly limits the 

number of compounds and concentrations that can be tested (Cuykx et al. 2018a; García-

Cañaveras et al. 2016; Ramirez et al. 2018b). These factors have critically limited in vitro 

metabolomics throughput and scalability and have prevented the actual implementation of 

this powerful technique in large scale screening analysis, compound development pipelines 

and chemical risk assessment.  

 

Metabolomics technologies in Next Generation Risk Assessment  

 

The aim of regulatory toxicology is to prevent chemical substances and products from 

producing adverse effects on human health and environment. This requires the evaluation of 

the potential harm intrinsic to the substance (hazard assessment), together with the 

evaluation of the human exposure scenario. Hence, chemical risk assessment requires 

knowledge of both, the hazard and exposure (Eisler 2000) (Fig 10). 

Aim 1: the first aim of this dissertation is to increase the in vitro metabolomics 

throughput by developing a cost-effective high throughput 96-well-plate in vitro 

metabolomics platform for hepatotoxicity characterization (Chapter 2).  
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Figure 10. Risk assessment process. A chemical risk-assessment process consists of four general steps: (1) 
hazard identification, (2) dose-response assessment, (3) exposure assessment, and finally combining the 
information from the previous steps for the (4) risk characterization. Created with Mindthegraph 
(https://mindthegraph.com). 

 

The ultimate goal of a risk assessment process is to determine reference values, expressed in 

mg/kg bw, which are safe for humans e.g., tolerable daily intake (TDI), acceptable daily intake 

(ADI), reference dose (RfD) for oral exposures and, reference concentration (RfC) for 

inhalation exposures (Greim and Snyder 2018). Traditionally, animal studies have been used 

to derive reference values by establishing the lowest dose at which an effect is observed via 

the no-observed-adverse-effect level (NOAEL) or lowest-adverse-effect level (LOAEL) 

approach together with the inclusion of several safety factors (usually 10-fold) that aim to 

compensate for uncertainties such as intra- and inter-species differences (Council 2007).  

As previously mentioned, in the current scenario of growing number of compounds and 

rigorous regulations that intend to guarantee a toxic free environment, innovative 

methodological approaches, that do not require the use of animals, are needed to conduct a 

faster and more accurate health and environmental risk assessment. As part of the Toxicology 



Chapter 1: introduction 

27 
 

of the 21st century vision, it was anticipated that PODs for establishing human exposure 

guidelines in future risk assessments will increasingly be based on in vitro high-throughput 

screening (HTS) data (National Research Council 2007). Next generation risk assessment 

(NGRA) has been proposed as an exposure-led, hypothesis-driven alternative approach that 

aims at incorporating non-animal methodologies (NAM´s) including the combination of 

different tools such as in vitro methods, computational analysis, systems biology and, Omics 

technologies for chemical safety decision-making (Pallocca et al. 2022). Yet, interpreting and 

extrapolating data from NAM´S into human relevant values, represents one of the major 

challenges for NGRA implementation (Marx-Stoelting et al. 2023).   

For data generated using NAM´s, the starting point for the determination of reference values 

includes the derivation of a point of departure (POD) from dose–response modelling (Paini et 

al. 2019). The point of departure refers to the point on a dose-response curve, established 

from experimental data, corresponding to an estimated low effect level (e.g., 1% to 10% 

incidence of an effect) (Bercu et al. 2016). Both NOAEL and statistical benchmark dose 

(BMD) can be used as point of departure (POD) to derive human reference values (Filipsson 

et al. 2003). A benchmark response represents a predetermined response level, generally set 

as a 10% increase in a specific adverse endpoint (e.g., number of tumours) for dichotomous 

responses or a 10% increase from controls for continuous responses (e.g., reduction in cell 

viability). The BMD method is statistically more powerful than the NOAEL and therefore is 

internationally recognized as the preferred approach for POD derivation and implemented in 

official Guidance Documents (Davis et al. 2011; EFSA et al. 2022; Filipsson et al. 2003; More 

et al. 2022). 

Due to their multiparametric nature, Omics technologies allow to measure multiple endpoints 

and pathways simultaneously, representing a more informative alternative than traditional in 

vitro studies for PODs. The potential of Omics technologies for determining point of 

departures (PoD) has been highlighted. Initially, mainly data generated from transcriptomics 

studies were used to derive benchmark doses in order to identify concentration at which 

cellular processes were disrupted (Thomas et al. 2007). For in vitro experiments, the term 

“dose” is replaced by “concentration”. Several studies have shown that Benchmark 

concentrations (BMCs) for transcriptional changes obtained from in vitro studies can be 

concordant with BMCs for apical in vivo endpoints, including cancer and organ toxicity 
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assessment (Bourdon-Lacombe et al. 2015; Farmahin et al. 2017; Gwinn et al. 2020; Program 

2018). 

More recently, the implementation of metabolomics data for POD derivation has been 

explored. In two recently published studies, concentration-response analysis derived from 

untargeted in vitro metabolomics were used for benchmark concentration (BMC) modelling. 

These investigations demonstrated that metabolomics derived PODs can be used as sensitive 

and quantitative indicators of liver injury potential (Crizer et al. 2021b; Malinowska et al. 

2023). However, these approaches were based on BMD calculation for single features and 

lack comprehensive metabolite annotations which hampers data interpretation. The lack of 

metabolite identification, characteristic of untargeted methods, challenges the biological 

interpretations of the results hampering the assessment of the relevance and applicability of 

these data in safety assessment.  

 

Liver as one of the main target organs in toxicity studies 

 

Each substance that gets in contact with the organism has the potential to affect different 

organ systems. As the primary organ connecting the intestinal track with the circulatory 

system, almost every substance absorbed by the body passes through the liver, rendering 

liver cells highly exposed to significant concentrations of external chemicals (Klaassen and 

Amdur 2013). Importantly, the liver is the primary site of metabolization and detoxification 

of exogenous compounds. Consequently, due to its particular anatomical location and its 

central role in detoxification, biotransformation and elimination of compounds, the liver is 

one of the most frequent target organs of chemical toxicity (Gu and Manautou 2012).  

A comprehensive understanding of the liver´s complex anatomy and physiology is essential 

to develop suitable alternative methods to detect liver toxicity. Located in the right upper 

quadrant of the abdomen, the liver is the largest internal organ in the body. It is grossly 

Aim 2: the second aim of this dissertation is the implementation of in vitro metabolomics 

to determine dose- and time response metrics to derive a PoD suitable for human risk 

assessment (Chapter 3). 
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divided in the right and left lobe, the right being about six times the size of the left and 

subdivided in the caudate and quadrates lobes (Kiernan 1833) (Fig. 11). Importantly, the liver 

has a double blood supply; through the portal vein, the liver receives all circulation coming 

from the small and large intestine and well as spleen and pancreas. This blood is enriched in 

nutrients and absorbed xenobiotics, but it is low in oxygen. On the other hand, the hepatic 

artery transports oxygen-rich blood from the aorta. The gallbladder, located beneath the liver, 

receives and stores bile produced by the liver through the common hepatic duct and releases 

it through the bile duct in the duodenum where it helps in the digestion of fats (Kiernan 1833).  

 

Figure 11. Gross liver anatomy. a) anterior view, b) posterior view, c) inferior view with zoom into the portal 
triad. Modified from (Dooley et al. 2018).  

At a microscopic scale the liver is divided in hepatic lobules, presenting a characteristic 

hexagonal structure which consist of lines of hepatocytes radiating from the portal vein 

towards the portal triad (comprising the hepatic artery, bile duct and a portal vein) (Fig.12). 

These lines of hepatocytes are separated by vascular channels known as hepatic sinusoids 

(Klaassen and Amdur 2013). The acinus denotes the functional units of the liver and divides it 

by its metabolic zonation: the specific functions of the hepatocytes based on the differential 

oxygen and nutrients supply. The acinus is formed by a diamond-shape space that contains 
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two adjacent central veins and two adjacent portal triads (Fig. 12) and it is divided in three 

zones: zone 1 is closer to the portal triad. Hepatocytes in this zone are near to the entry of 

blood and therefore receive high oxygen supply and are specialized in oxidative functions such 

as gluconeogenesis, ß-oxidation of fatty acids and cholesterol synthesis. Zone 3 is closer to 

the central vein which carries blood rich in nutrients and xenobiotics but is low in oxygen. In 

this zone, functions such as glycolysis, lipogenesis, and cytochrome P450 drug detoxification 

take place. Zone 2 is represented by the intermediate space between zone 1 and 3 (Lamers 

et al. 1989) (Fig. 12).  

 

Figure 12. Microscopic liver anatomy. Liver hepatic lobule (left) and liver acinus (right) denoting metabolic 
zonation. Created with Mindthegraph (https://mindthegraph.com). 

The liver is composed of a wide variety of cell types which can be differentially affected by 

toxicants, making it a challenging organ to study in in vitro systems. Hepatocytes, are the most 

abundant and metabolically active cells, comprising about the 80% of the total cell numbers 

in the liver. They are responsible for key hepatic functions such as glucogenesis, 

glycogenolysis, the production of cholesterol, bile salts and clotting factors. Importantly, 

hepatocytes contain enzymes that are essential for the xenobiotic metabolism, detoxification, 

and inactivation of exogenous chemicals (Mitra and Metcalf 2009). Besides hepatocytes, non-

parenchymal cells also play important roles for hepatic fiction. Some of the major liver non-
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parenchymal cells are cholangiocytes, stellate cells, Kupffer cells and endothelial cells 

(Bouwens et al. 1992). Cholangiocytes are epithelial cells from the bile duct which participate 

in the transport and modification of bile (Tabibian et al. 2013). Hepatic stellate cells store 

vitamin A and play a key role in the formation of scar tissue in response to liver damage via 

the activation of collagen synthesis (Senoo 2004). Kupffer cells are immune cells that act as 

macrophages cleaning the blood of pathogens, these cells are major sources of cytokines and 

can act as antigen presenting cells (Bilzer et al. 2006). Finally, endothelial cells form the wall 

of the blood vessels in the liver and represent a permeable barrier between the bloodstream 

and the parenchyma that facilitates the exchange of molecules such as albumin and lipids and 

play an important role in immunological functions through the secretion of different signal 

molecules such as cytokines (Poisson et al. 2017).   

The liver plays a central role in maintaining the metabolic homeostasis of the body and it has 

been estimated that this organ is involved in performing numerous functions such as 

regulating the metabolism of carbohydrate, lipids, and proteins, the secretion and production 

of bile, which is essential for the absorption of fat and lipophilic nutrients, the storage of 

vitamins, minerals and sugar, the synthesis of important plasma proteins such as albumin and 

globulin and the breakdown of hormones such as insulin (Mitra and Metcalf 2009). One of 

the most prominent physiological functions of the liver is the metabolization of external 

substances. Xenobiotic metabolization consist of a biotransformation process in where 

exogenous compounds are converted into more polar products to facilitate their elimination 

from the body (Klaassen and Amdur 2013). The process of substance metabolism is divided 

into 3 phases. In phase I the compound is made polar by functionalization reactions such as 

oxidation, hydroxylation and reduction reaction so it can be excreted from the body. 

Importantly, the cytochrome P450 enzymes catalyze most of the reactions in the phase I and 

as such, any alteration of these enzymes can modify the detoxification or bioactivation of 

exogenous compounds.  As a result of the phase I metabolism, functional groups are 

introduced forming a polar molecule known as primary metabolite. However, some of these 

intermediate products are highly reactive and harmful molecules that can finally cause liver 

injury. For facilitating the excretion of the chemicals compounds, the formed metabolites 

undergo phase II metabolism reactions where these molecules are coupled with functional 

groups such as acetate, glutathione, and sulfate, resulting in harmless secondary metabolites. 
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Finally, in phase III metabolism, compounds with high molecular weight are excreted via 

specific transporters in the bile while smaller and water-soluble molecules are excreted 

through the kidneys (Almazroo et al. 2017).   

Due to its crucial roles in preserving the body homeostasis and in xenobiotic metabolization, 

damages and losses of liver functions as a consequence of toxicant exposure can result in 

serious detrimental effects in the whole organism (Bischoff et al. 2018). For this reason, the 

early identification of potential hepatotoxins is highly relevant for the pharmaceutical and 

chemical industry representing one of the main causes of safety concerns in preclinical and 

chemical risk assessment studies (Food and Administration 2009; Serrano 2014). In addition, 

liver toxicity has important public health and economic implications; adverse effects on the 

liver represent one of the most frequently reason for discontinuing the development of 

compound candidates (Babai et al. 2021; Waring et al. 2015). In the pharmaceutical industry, 

Drug induced liver toxicity (DILI) represents the leading cause of post approval compound 

withdrawals (Onakpoya et al. 2016).  

In summary, hepatotoxicity represents a major health and economic issue and thus is of 

primary concern in compound development. In the current scenario of highly elevated toxicity 

testing demand, there is a requirement for test systems that reliably detect hepatotoxicity of 

compound candidates while reducing discovery time, cost, and the number of animal 

experiments. The implementation of methods that allows compound prioritization based on 

biological and physiological relevant information would reduce health hazards and improve 

cost efficacies for the industry.  

In vitro models to investigate hepatotoxicity 

 

Animal testing has long been, and still is, the base for risk assessment and is required by 

regulatory authorities for organ toxicity studies (OECD guidelines). Yet, the liver is an organ 

with pronounced species differences in in xenobiotic metabolism particularly regarding the 

expression and enzymatic activities of pharmacokinetics factors such as absorption, 

distribution, metabolism, and excretion of (ADME)(Dalgaard 2015; Lin 1995). In a survey study 

which included input from 12 pharmaceutical companies with data collected from 150 
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compounds, the concordance of hepatotoxicity findings between animal studies and 

observed human toxicity was only 55% (Olson et al. 2000). This type of studies has 

demonstrated that animal models do not accurately characterize the etiology and 

pathogenesis of human liver injury and have evidenced a clear need for predictive models 

which better reflect human liver physiology and function. 

In order to minimize the health risk and financial losses resulting from chemicals and 

pharmaceuticals hepatotoxicity, considerable efforts have been directed to the development 

of human cell-based assays for the early detection and evaluation of liver toxicity (Beger et 

al. 2010; Martínez-Sena et al. 2023; Mirahmad et al. 2022; Schadt et al. 2015; Walker et al. 

2020; Yong et al. 2020).  In vitro models offer major advantages over animal-based studies 

such as a highly controlled experimental conditions in which compounds´ mechanisms of 

action can be studied, the implementation of material from human sources and the possibility 

of being implemented in a high throughput scale (Cuykx et al. 2018b; Pelecha et al. 2021; 

Villeneuve et al. 2019). Through the improved toxicological knowledge offered by in vitro 

methods during early stages of product development, increased efficiencies can be achieved; 

candidate compounds can be selected based on their toxicological profiles optimizing 

resource such as time, test compound and costs and minimizing unnecessary animal 

utilization (Ramirez-Hincapie et al. 2023).  

Different liver models including primary human hepatocytes (PHH), liver slices, immortalized 

cell lines and hepatocyte-like cells have been used in hepatotoxicity assessment. Primary 

human hepatocytes (PHH) are considered the gold standard for in vitro liver studies. They 

exhibit hepatic functions and metabolic activities close to the in vivo situation (Gomez-Lechon 

et al. 2004). However, PHH are difficult to maintain in culture conditions, rapidly losing their 

functionality and viability, limiting their use. In addition, some of the major obstacles for the 

use of PHH are their limited availability (sourced from human liver biopsies) and their high 

inter-donor variability which hampers the reproducibility of the results (Ruoß et al. 2020). In 

contrast, liver slices offer a preserved liver architecture and the presence of different non-

parenchymal cells such as Kupffer, endothelial, and hepatic stellate cells (Palma et al. 2019). 

However, comparable to PHH, liver slices are obtained from human liver tissue extracted from 

surgical procedures, limiting their availability, and exhibiting inter-donor variability. In 
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addition, they also undergo a rapid lost in viability and metabolic capacities (De Graaf et al. 

2010). 

As an alternative to PHH and liver slices, immortalized tumor cell lines have been widely used 

in toxicological studies. Due to its unlimited lifespan, stable phenotype, high availability, 

reproducibility, easy handling, and low cost, immortalized/tumor cell lines such as HepG2 and 

HepaRG have represented a valuable alternative for hepatotoxicity evaluations (Castell et al. 

2006). The HepaRG cell line, is a human progenitor cell line capable of differentiating in biliary-

like and hepatocyte-like cells. This cell line presents the advantages of physiologically relevant 

expression of important xenobiotic metabolizing enzymes particularly from phase II 

metabolism and transporters (Guo et al. 2011; Marion et al. 2010). However, the 

differentiation protocols can introduce variability and appropriate media is needed for 

maintaining a stable phenotype (Ramirez et al. 2018a).  

The HepG2 cell line is the most commonly used and best characterized human hepatic cell 

line, showing many differentiated hepatic functions e.g., synthesis and secretion of plasma 

proteins, cholesterol and TG metabolism, lipoprotein metabolism and transport, bile acid 

synthesis, glycogen synthesis and insulin signaling (Guo et al. 2011; Jennen et al. 2010). These 

factors, together with their high proliferation rate and human origin make them a good option 

for large-scale experiments such as high throughput screenings and compound prioritization 

(aim 1 and 2 ) (Saito et al. 2016). However, the HepG2 limitations are well recognized (Gerets 

et al. 2012); this cell line exhibits limited drug metabolizing and transport capabilities, such as 

substantial low levels of phase I and phase II metabolism enzymes, failing to faithfully  

recapitulate liver physiology and functionality.    

 

The rapid development of protocols for the generation of induced pluripotent stem cells 

(iPSC), have fostered the application of stem cells in pharmacological and toxicological studies 

(Fritsche et al. 2021). iPSC presents several characteristics that make them highly 

Aim 3: the third aim of this dissertation is the application and evaluation of in vitro 

metabolomics using iPSC-derived 3D liver organoid system as a human physiologically 

more relevant alternative for toxicology studies (Chapter 4). 
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advantageous for the development of predictive in vitro systems: they can be obtained from 

any cell type and various donors, making them representative of phenotypic and genetic 

variations in population, they have unlimited availability and can be differentiated in virtually 

any cell type, allowing the development of models that combine hepatocytes with non-

parenchymal cell such as stelleate cells, endothelial cells and Kupffer cells which have been 

shown to play important roles in liver disease (Carberry et al. 2022; Zhang et al. 2021). Even 

though iPSCs are one of the most promising tools for elucidating human development and 

disease and have shown great potential for developing in vitro toxicological systems, they 

require complex culture conditions, present high variability, need extensive differentiation 

protocols and a require a detailed characterization in order to confidently identify mature and 

specific cell types (Suter-Dick et al. 2015).   

Hepatic models were initially implemented in 2D cultures (monolayers). However, it is now 

broadly recognized that 2D cell cultures comprise static monolayers that lack critical 

architectural and biomechanical properties of the native tissue such as cell to cell interactions 

(Langhans, 2018). Thus, in order to overcome the limitations of 2D systems and better 

recapitulate the liver physiology, PHH, cell lines and iPSCs have been assembled in 3D 

structures and organoid models that mimic in vivo tissue and combine hepatocytes with 

various non-parenchymal cells that play important roles in liver functions and hepatotoxicity 

(Underhill and Khetani 2018).  

In the last years, complex in vitro toxicity models (e.g., three-dimensional (3D) organoid 

models, hiPSCs derived systems, organ-on-a-chip platforms) addressing systemic toxicity 

endpoints have been developed (King et al. 2017; Plummer et al. 2019; Richards et al. 2020; 

Shinozawa et al. 2021). Despite the advantage they offer, the limited throughput, complexity, 

and high cost of these sophisticated in vitro models reduce their applicability. Therefore, 

there will always be a tradeoff between the complexity and completeness of an in vitro model 

and the feasibility, efficiency, and throughput (Fig.). What simple assays miss regarding 

physiological similarity they gain from the higher number of replicates, ease of interpretation 

of results, and reproducibility (Rossini and Thomas 2012). Thus, complexity does not always 

translate in better results. 
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In essence, the development and implementation of in vitro toxicological tests mainly rely in 

the scope of the question to be addressed. Different use scenarios require higher degrees of 

sophistication, varying from complex organotypic cultures to closely estimate human 

physiological reactions, to high-throughput tests that require simplicity and robustness to 

perform initial compound screenings (Rossini and Thomas 2012). In all cases the benefits but 

also the limitations of the model must be analyzed carefully and considered in the assessment 

of the obtained data.
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Dissertation aims  

 

The overarching aim of the present work is to advance the applications of in vitro 

metabolomics in toxicology by addressing 3 major challenges that have limited its widespread 

implementation in the field. 1) Due to technical and economical limitations, in vitro 

metabolomics throughput and cost effectiveness has remained low, which has hampered its 

large-scale implementation in compound development and research 2) although in vitro 

metabolomics has been implemented as a research tool for toxicological assessment and 

hazard characterization, the application of metabolomics data for risk assessment in 

regulatory toxicology has been limited up to date. Lastly, 3) in order to increase the reliance 

and confidence of using in vitro metabolomics data for human risk assessment, the third 

challenge is to increase the human relevance of in vitro assays by implementing systems that 

more closely recapitulate the organ physiology and cell composition.   

Therefore, this dissertation seeks to tackle each of the above-mentioned challenges by 3 

corresponding specific aims.  

1) Aim 1: development of a cost-effective high throughput 96-well-plate in vitro 

metabolomics platform for hepatotoxicity characterization (Chapter 2).  

2) Aim 2: implementation of in vitro metabolomics to determine dose- and time 

response metrics to derive PoD for human risk assessment (Chapter 3).  

3) Aim 3: application and evaluation of in vitro metabolomics in a 3D liver organoid 

system as a human physiologically relevant alternative for toxicology studies 

(Chapter 4). 
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Chapter 2 
 

A high-throughput 
metabolomics in vitro platform 
for the characterization of 
hepatotoxicity 
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Preamble  

 

The early mechanistic-based identification of potential hepatotoxins and compound MoA 

screening is a highly relevant issue for the pharmaceutical and chemical industry and 

academia. Recent studies have highlighted the combination of multiparametric Omics 

technologies such as metabolomics and human cell-based in vitro systems as a powerful tool 

for elucidating the molecular and biochemical events underlaying organ toxicity (citation). 

However, current in vitro metabolomics experiments remain expensive, time consuming and 

complex, which has limited its throughput scalability and application as a screening system in 

compound development.  

The following manuscript presents the method development and proof of concept evaluation 

of a highly standardized, 96-well plate targeted LC-MS-based in vitro metabolomics screening 

platform for the identification and classification of liver toxicity MoAs in HepG2 cells. The 

assay presented here, is one of the first approaches that miniaturizes in vitro metabolomics 

methods for high throughput toxicological assessment. Following the OECD guidance 

documents on good in vitro method practices (GIVIMP) (cite) and the Metabolomics 

Reporting Framework (MRF)(Viant et al. 2019a), different parameters of the workflow such 

as cell seeding density, influence of passage number, cytotoxicity testing, sample preparation, 

metabolite extraction, analytical method and data processing were optimized to perform with 

low biomass samples. For the proof of concept, seven compounds with three different known 

hepatotoxicity Modes of action (MoA) were tested in five concentrations to test the 

applicability of the system. Overall, the results showed that, by using the developed system, 

a dose-dependent response of the metabolic effects and a clear differentiation between 

different liver toxicity MoAs can be obtained. Importantly, the metabolomics experiments 

carried out in this investigation led to the identification of metabolite patterns specific for 

each tested MoA. Key metabolites indicative of both, general and mechanistic specific 

hepatotoxicity were identified and discussed.  

Due to the considerable resources reduction and throughput increase achieved with this 

assay, the developed metabolomics in vitro platform allows assessing a broader range of 

concentrations. This factor would enable a more accurate metabolome-based point of 
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departure (PoD), in vitro to in vivo extrapolations (IVIVE) and substance kinetic analysis. This 

method offers a workflow that can be extended to further cell lines and iPSCs for the 

investigation of different organ toxicities and is suitable for a wide range of screening 

applications that demand rapid, cost effective and high throughput analysis. 

The recently developed metabolomics in vitro platform is currently being used by BASF SE for 

the evaluation of hepatotoxicity within the frame of the European Research and Innovation 

project EU-TOX RISK, funded under the European Commission’s Horizon 2020 programme, 

and the German Bundesministerium für Bildung und Forschung (BMBF) funded 

SysBiotopMoving project.  

The following publication was prepared in collaboration with 15 co-authors. The experimental 

work, analysis of the data and the paper writing was done by the author of this dissertation. 

The co-authors were involved in the planning of the experiments, scientific discussion and 

guidance, the bioinformatics data analysis and significantly in the review process of the 

publication.  

Publication I: A high-throughput metabolomics in vitro platform for the 

characterization of hepatotoxicity 

 

Full citation:  

Ramirez-Hincapie S, Birk B, Ternes P, Giri V, Haake V, l Herold M, Zickgraf FM, Verlohner A, 
Huener H, Kamp H, Driemert P, Landsiedel R,3, Richling E, Funk-Weyer D, van Ravenzwaay B 
(2023) A high-throughput metabolomics in vitro platform for the characterization of 
hepatotoxicity. Cell Biology and Toxicology:1-19 doi:10.1007/s10565-023-09809-6. 

 

This project received funds from SysBioTop Moving (BMBF, 161L0243A) and EU-Tox Risk 

(European Union ‘s Horizon 2020 research, No 681002).  
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Suppl Fig 2. PCA and loading plotsthe metabolic profiles of different cell seeding densities and passages before and after 

biomass normalization. a) PCA and b) loading plots of unnormalized metabolic profiles of different cell seeding densities and 

passages (5and7). Normalization for cell number correction was notperformed. c)PCA and c) loading plots of Sample Analyte 

Median (SAM) normalized metabolic profiles of different cell seeding densities and passages and passages (5 and7).  
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Suppl Fig. 3 Cytotoxicity and cell viability range finder for dose selection. Cell viability assay (CellTiter-Glo®) and 
Cytotoxicity assay (CellTox™ Green) n=6.a) Acifluorfen, b) Wy-14643, c) β Naphthoflavone, d) Aroclor 1254, e) 
Pendimethalin, f) Ketoconazole. Values are presented as percentage of vehicle controls for CellTiter-Glo® and as 
percentage of positive control (lysis buffer) for CellTox™ Green. 
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Suppl Fig. 4 Dose response curves for dose selection. Dose response curves were built with the ATP measurement 
(CellTiter-Glo®) in the range finder experiments (see Suppl. Figure 2) and used to derive effective concentration (EC) 
for the metabolomics dose setting. Acifluorfen, b) Wy-14643, c) β-Naphthoflavone, d) Aroclor 1254, e) Pendimethalin, 
f) Ketoconazole. 
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Suppl Fig. 5 Metabolomics experiment cell viability and cytotoxicity testing. Cell viability assays (CellTiter-Glo®) and 
Cytotoxicity assays (CellTox™ Green) n=6 were carried out in parallel with metabolomics experiments in plates handled and 
treated exactly as the ones used for metabolite profiling. a) Acifluorfen, b) Wy-14643, c) β-Naphthoflavone, d) Aroclor 
1254, e) Pendimethalin, f) Ketoconazole. 
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Suppl Fig 6. Enrichment analysis of significantly altered metabolites by ontology class after substance treatment. The 
distribution of the 241measured metabolites across the ontology classes is provided in the column “measured metabolites”. 
The number of metabolite changes are shown for each metabolite ontology class. Numbers yellow represent that a 
treatment caused a significant (p-value<0.05) enrichment in an ontology class. C1 to C5: substance concentrations. 
Acifluorfen, b) Wy-14643, c) β-Naphthoflavone, d) Aroclor 1254, e) Pendimethalin, f) Ketoconazole.  
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Suppl Fig 7. Experimental variability and reproducibility. The variance of every log-transformed metabolite for both pooled 

samples (technical replicates) and control samples was calculated. These variances were back transformed to linear scale, 

yielding a relative standard deviation (RSD). 

Plate RSD-Pool RSD Controls 

Acifluorfen 0.10 0.11 

Aroclor 1254 0.10 0.11 

Ketoconazole 0.09 0.09 

Naphthoflavone 0.10 0.09 

Pendimethalin 0.08 0.11 

Wy-14643 0.10 0.10 

 

Suppl Fig. 8 3D-PCA of metabolic profiles shows a MoA-specific clustering of liver toxicants. PCA of metabolite profiles of 
HepG2 cells treated for 48h with three liver enzyme inducers (pendimethalin, aroclor, β-Naphthoflavone), three peroxisome 
proliferators (bezafibrate, acifluorfen, Wy-14643) and one liver enzyme inhibitor (ketoconazole) allows to discriminate 
between the different mode of actions of these substances. 
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Suppl Fig.9 Metabolome changes induced by peroxisome proliferators. Heatmap of common statistically significantly 

(p<0.05) altered metabolites after bezafibrate, acifluorfen and Wy-14643 treatment. Red represents significantly 

upregulated metabolites and blue represents significantly downregulated metabolites as compared to controls. C3 

equivalent to EC15ATP was used for the analysis. Bezafibrate was used as a positive control in each of the 6 plates of the 

experiment (n=6 per condition). 

  

Metabolite 
Bezafibrate 

Plate 1 
Bezafibrate 

Plate 2 
Bezafibrate 

Plate 3 
Bezafibrate 

Plate 4 
Bezafibrate 

Plate 5 
Bezafibrate 

Plate 6 Wy-14643 Acifluorfen  Metabolite class 

Taurine 0.93 0.92 0.68 0.93 0.90 0.88 0.97 0.61 Amino acids 

5-Hydroxytryptophan 0.85 0.74 0.65 0.84 0.77 0.76 0.85 0.74 Amino acids related 

Creatine 0.80 0.82 0.73 0.78 0.67 0.66 0.85 0.87   

Ketoleucine 0.73 0.72 0.74 0.73 0.77 1.10 0.86 0.80   

N-Acetylaspartate 1.54 1.49 1.66 1.48 1.41 1.25 1.22 1.50   

S-Adenosylhomocysteine 0.92 0.98 0.70 0.93 0.78 0.79 1.03 0.84   

Carnitine 0.72 0.74 0.84 0.72 0.77 0.80 0.99 0.98 
Energy metabolism and 
related 

Glycerol-3-phosphate 0.68 0.43 0.45 0.54 0.44 0.39 0.72 0.90   

Hexanoylcarnitine 0.65 0.54 0.50 0.59 0.59 0.62 0.93 0.70   

Propionylcarnitine 0.66 0.78 0.40 0.58 0.54 0.57 0.97 0.79   

2'-Deoxycytidine 0.37 0.42 0.16 0.27 0.22 0.21 0.75 0.56 Nucleobases and related 

Pantothenic acid 0.68 0.77 0.59 0.72 0.70 0.76 0.74 0.68 
Vitamins. cofactors and 
related 

Triacylglycerol (C34:1.C18:3) 1.57 2.06 2.37 1.58 1.93 2.00 1.01 1.73 Acylglycerols 

Triacylglycerol (C34:2.C18:0) 1.63 1.54 1.78 1.17 1.31 1.39 1.14 2.66   

Triacylglycerol (C34:2.C18:1) 1.40 1.62 1.81 1.26 1.79 1.43 1.01 2.04   

Triacylglycerol (C36:4.C16:0) 1.74 2.34 2.73 1.73 1.97 2.11 1.09 1.86   

Triacylglycerol (C36:4.C18:0) 2.15 2.38 2.26 1.72 1.82 2.28 1.18 2.14   

Choline plasmalogen (C36:4) 0.65 0.80 0.68 0.69 0.73 0.72 1.00 0.75 Glycerophospholipids 

Choline plasmalogen (C36:5) 0.78 0.90 0.80 0.83 0.82 0.79 1.03 0.70   

Phosphatidylcholine (C32:0) 0.82 0.70 0.79 0.88 0.83 0.76 0.81 0.82   

Phosphatidylcholine (C34:1) 0.83 0.75 0.78 0.82 0.82 0.74 0.91 0.81   

Phosphatidylcholine (C34:3) 1.02 1.18 1.17 1.09 1.15 1.04 1.04 1.23   

Phosphatidylcholine (C36:1) 0.86 0.88 0.73 0.84 0.79 0.90 0.96 0.76   

Phosphatidylcholine (C36:2) 0.66 0.71 0.62 0.69 0.71 0.65 0.86 0.78   

Phosphatidylcholine (C36:3) 0.90 1.03 0.84 0.96 0.97 0.89 0.93 0.82   

Phosphatidylcholine (C36:4) 1.00 0.93 0.81 0.98 0.95 0.94 0.98 0.66   

Phosphatidylcholine (C36:5) 0.78 0.81 0.63 0.76 0.72 0.75 0.92 0.71   

Phosphatidylethanolamine 
(C36:3) 0.90 0.87 0.87 0.90 0.87 0.84 0.82 0.86   

Phosphatidylethanolamine 
(C38:3) 0.72 0.70 0.64 0.75 0.68 0.66 0.92 1.05   

Phosphatidylethanolamine 
(C38:5) 0.90 1.00 0.86 0.98 0.87 0.90 0.89 0.82   

  

  



Chapter 2: publication I 

77 

 

Phosphatidylethanolamine 
(C38:6) 0.92 0.91 0.95 1.01 0.98 0.92 0.96 0.91   

Phosphatidylethanolamine 
(C40:7) 0.79 0.81 0.75 0.88 0.82 0.88 0.92 0.68   

Lysophosphatidylcholine (C14:0) 2.27 1.82 2.09 1.97 1.85 1.87 1.51 1.75 Lysoglycerophospholipids 

Lysophosphatidylcholine (C16:0) 1.86 1.92 1.98 2.08 1.93 2.14 1.26 1.17   

Lysophosphatidylcholine (C16:1) 1.95 2.13 2.01 2.17 1.86 1.72 1.06 1.22   

Lysophosphatidylcholine (C20:4) 1.22 1.67 1.47 1.90 1.86 1.44 1.28 0.94   

Lysophosphatidylcholine (C24:0) 1.01 1.18 1.11 1.20 1.21 1.29 1.50 1.25   

Lysophosphatidylcholine (C24:1) 1.10 1.03 1.13 1.26 1.10 1.12 1.20 1.00   

Lysophosphatidylethanolamine 
(C16:0) 2.47 2.37 2.23 2.12 2.10 2.19 1.18 1.67   

Lysophosphatidylethanolamine 
(C18:0) 2.21 2.07 1.76 2.07 1.77 2.04 1.26 1.69   

Lysophosphatidylethanolamine 
(C18:1) 2.45 2.31 1.97 2.19 2.11 2.16 1.12 1.09   

Ceramide (d18:1.C20:0) 0.63 0.66 0.56 0.62 0.64 0.59 0.66 0.74 Sphingolipids 

Ceramide (d18:1.C24:1) 0.80 0.85 0.68 0.66 0.91 0.98 0.92 0.72   

Ceramide (d18:1.C24:2) 0.83 1.08 1.11 0.89 0.90 0.91 0.71 0.68   

Ceramide (d18:2.C24:1) 0.56 0.62 0.68 0.68 0.89 0.63 0.97 0.64   

Sphingomyelin (d32:2) 0.49 0.71 0.69 0.75 0.59 0.78 0.79 0.65   

Sphingomyelin (d33:1) 1.19 1.34 1.15 1.32 1.18 1.20 1.13 0.93   

Sphingomyelin (d34:0) 0.96 1.09 1.25 1.15 1.11 1.11 1.04 1.12   

Sphingomyelin (d35:1) 0.86 0.95 0.86 0.88 0.85 0.92 0.99 0.85   

Sphingomyelin (d36:1) 0.86 0.96 0.86 0.90 0.82 0.84 0.90 0.84   

Sphingomyelin (d36:2) 0.73 0.90 0.90 0.85 0.87 0.88 0.97 0.76   

Sphingomyelin (d37:1) 0.70 0.80 0.79 0.80 0.76 0.80 0.81 0.89   

Sphingomyelin (d38:1) 0.88 0.84 0.85 0.87 0.87 0.91 0.84 0.89   

Sphingomyelin (d38:2) 0.61 0.66 0.64 0.67 0.71 0.66 0.74 0.83   

Sphingomyelin (d39:1) 0.77 0.77 0.83 0.87 0.81 0.86 0.94 1.01   

Sphingomyelin (d40:2) 0.73 0.83 0.81 0.87 0.78 0.84 0.81 0.87   

Sphingomyelin (d41:2) 0.78 0.79 0.82 0.88 0.77 0.80 0.79 0.90   

Sphingomyelin (d42:2) 0.86 0.95 0.81 0.98 0.89 0.91 0.79 0.85   

Phosphocholine 0.78 0.69 0.56 0.69 0.63 0.63 0.91 0.79 Miscellaneous lipids 

 

Suppl Fig. 10 Metabolome changes induced by liver enzyme inducers. Heatmap of common statistically significantly 

(p<0.05) altered metabolites after pendimethalin, aroclor and β-naphthoflavone treatment. Red represents significantly 

upregulated metabolites and blue represents significantly downregulated metabolites as compared to controls. C3 for β-

naphthoflavone and pendimethalin and C2 for aroclor (equivalent to EC15ATP) was used for the analysis (n=6 per condition).   

Metabolite Aroclor 1254  ß-Naphthoflavone Pendimethalin Metabolite class 

Proline 0.54 0.64 0.89 Amino acids 

Tyrosine 1.13 1.14 1.14   

N-Acetylserine 1.07 1.03 1.47 Amino acids related 

Cysteinylglycine 1.52 3.16 1.14   

myo-Inositol-2-phosphate 0.83 0.65 0.76 Carbohydrates and related 

N-Acetylglucosamine 0.92 0.79 0.93   

Carnitine 0.68 0.88 0.76 Energy metabolism and related 

O-Acetylcarnitine 0.81 0.87 1.02   

Propionylcarnitine 0.75 1.03 0.65   

Hexanoylcarnitine 0.68 1.02 0.69   

Pantothenic acid 0.76 0.96 0.78 Vitamins. cofactors and related 

Flavin adenine dinucleotide (FAD) 1.11 1.63 1.14   

Glutathione (GSH) 1.16 2.59 1.12   

Triacylglycerol (C32:1.C16:1) 0.46 0.26 0.58 Acylglycerols 

Triacylglycerol (C30:0.C18:1) 0.72 0.36 0.81   

Triacylglycerol (C32:0.C16:1) 0.58 0.41 0.66   
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Triacylglycerol (C34:1.C16:0) 0.70 0.39 0.79   

Triacylglycerol (C34:2.C18:1) 0.49 0.24 0.44   

Triacylglycerol (C34:2.C18:0) 0.67 0.40 0.87   

Triacylglycerol (C34:1.C18:1) 0.82 0.47 0.71   

Triacylglycerol (C34:0.C18:1) 0.91 0.47 0.96   

Triacylglycerol (C36:3.C18:1) 0.65 0.38 0.78   

Triacylglycerol (C36:2.C18:1) 0.67 0.41 0.49   

Triacylglycerol (C36:1.C18:2) 0.82 0.46 0.83   

Triacylglycerol (C36:1.C18:1) 0.70 0.35 0.65   

Triacylglycerol (C36:1.C18:0) 0.78 0.46 0.86   

Phosphatidylethanolamine (C32:0) 2.54 1.63 3.04 Glycerophospholipids 

Phosphatidylethanolamine (C34:2) 0.76 0.93 0.68   

Phosphatidylethanolamine (C34:1) 1.36 1.38 1.48   

Phosphatidylethanolamine (C34:0) 2.09 1.79 2.78   

Phosphatidylethanolamine (C36:3) 0.83 0.84 0.82   

Phosphatidylethanolamine (C36:1) 1.65 1.81 1.46   

Phosphatidylethanolamine (C36:0) 2.75 2.10 3.98   

Phosphatidylethanolamine (C38:5) 0.84 0.93 0.79   

Phosphatidylethanolamine (C40:7) 0.84 0.79 0.57   

Phosphatidylcholine (C32:0) 2.06 1.16 1.93   

Phosphatidylcholine (C34:3) 0.71 0.60 0.79   

Phosphatidylcholine (C34:2) 0.74 0.77 0.64   

Phosphatidylcholine (C34:0) 1.79 1.39 1.83   

Phosphatidylcholine (C36:4) 1.27 1.08 1.10   

Phosphatidylcholine (C36:3) 0.81 0.87 0.73   

Phosphatidylcholine (C36:2) 0.66 0.80 0.52   

Phosphatidylcholine (C36:1) 1.20 1.21 0.93   

Phosphatidylcholine (C36:0) 2.17 1.62 2.49   

Phosphatidylcholine (C38:6) 1.31 1.09 1.15   

Choline plasmalogen (C36:5) 0.86 0.84 0.68   

Choline plasmalogen (C36:4) 0.78 0.82 0.63   

Lysophosphatidylethanolamine (C16:0) 1.12 1.77 1.81 Lysoglycerophospholipids 

Lysophosphatidylethanolamine (C18:0) 1.26 2.25 2.07   

Lysophosphatidylcholine (C14:0) 1.20 1.48 2.28   

Lysophosphatidylcholine (C16:0) 1.50 2.15 2.37   

Lysophosphatidylcholine (C20:4) 1.34 1.68 2.32   

Lysophosphatidylcholine (C20:1) 1.05 2.23 1.47   

Lysophosphatidylcholine (C20:0) 1.67 2.34 2.37   

Lysophosphatidylcholine (C22:0) 1.76 1.99 3.44   

Lysophosphatidylcholine (C24:1) 2.03 2.34 3.59   

Lysophosphatidylcholine (C24:0) 1.92 2.67 4.49   

Sphingomyelin (d32:1) 0.94 0.84 0.92 Sphingolipids 
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Sphingomyelin (d34:2) 1.22 1.05 1.11   

Sphingomyelin (d35:1) 1.17 1.06 1.07   

Sphingomyelin (d38:2) 0.85 0.94 0.76   

Sphingomyelin (d40:2) 0.98 0.77 0.93   

Sphingomyelin (d41:2) 0.88 0.85 0.79   

Sphingomyelin (d42:2) 0.84 0.74 0.73   

Sphingomyelin (d34:2) 1.35 1.07 1.27   

Ceramide (d18:2.C16:0) 2.15 1.48 2.06   

Ceramide (d18:1.C20:0) 0.97 0.73 0.81   

Ceramide (d18:1.C22:1) 0.75 0.65 0.43   

Ceramide (d16:1.C24:0) 1.58 1.20 1.35   

Ceramide (d18:2.C23:0) 1.29 1.56 1.14   

Ceramide (d17:1.C24:0) 1.42 1.24 1.40   

Ceramide (d18:2.C24:1) 1.18 1.23 1.17   

Ceramide (d18:2.C24:0) 1.91 1.41 1.87   

Ceramide (d18:1.C24:1) 0.75 0.64 0.54   

Isopentenyl pyrophosphate (IPP) 1.37 2.43 2.79 Cholesterol and related 

 

Suppl Fig. 11 Metabolome changes induced by a liver enzyme inhibitor. Heatmap of statistically significantly (p<0.05) 

altered metabolites after ketoconazole treatment. Red represents significantly upregulated metabolites and blue represents 

significantly downregulated metabolites as compared to controls. C3 (equivalent to EC15ATP) was used for the analysis (n=6 

per condition).  

  

Metabolite Ketoconazole Metabolite class 

Threonine 0.85 Amino acids 

Proline 0.79   

Glutamate 0.92   

Taurine 1.32   

Pipecolic acid 0.86 Amino acids related 

N-Acetylserine 0.84   

N-Acetylaspartate 0.69   

S-Adenosylhomocysteine 0.69   

5-Hydroxytryptophan 0.87   

myo-Inositol-2-phosphate 0.50 Carbohydrates and related 

Tetradecanoylcarnitine 2.20 Energy metabolism and related 

Hexadecenoylcarnitine 3.61   

Hexadecanoylcarnitine 1.97   

Octadecenoylcarnitine 3.35   

Carnitine 0.77   

2'-Deoxycytidine 0.76 Nucleobases and related 

Coenzyme Q10 0.65 Vitamins. cofactors and related 

Pyridoxal 0.82   

Pantothenic acid 0.85   
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Glutathione (GSH) 0.90   

Triacylglycerol (C30:0.C18:1) 0.61 Acylglycerols 

Triacylglycerol (C32:0.C16:1) 0.51   

Triacylglycerol (C32:0.C16:0) 0.23   

Triacylglycerol (C34:1.C16:0) 0.44   

Triacylglycerol (C34:0.C16:0) 0.16   

Triacylglycerol (C34:0.C17:0) 0.34   

Triacylglycerol (C34:1.C18:3) 1.33   

Triacylglycerol (C36:4.C16:0) 1.15   

Triacylglycerol (C34:2.C18:1) 1.31   

Triacylglycerol (C34:2.C18:0) 0.68   

Triacylglycerol (C34:1.C18:1) 0.83   

Triacylglycerol (C34:0.C18:1) 0.31   

Triacylglycerol (C34:0.C18:0) 0.14   

Triacylglycerol (C36:3.C18:2) 2.03   

Triacylglycerol (C36:4.C18:0) 1.19   

Triacylglycerol (C36:3.C18:1) 1.57   

Triacylglycerol (C36:2.C18:1) 1.14   

Triacylglycerol (C36:1.C18:1) 0.61   

Triacylglycerol (C36:1.C18:0) 0.27   

Phosphatidylethanolamine (C32:0) 0.86 Glycerophospholipids 

Phosphatidylethanolamine (C34:1) 0.82   

Phosphatidylethanolamine (C34:0) 0.73   

Phosphatidylethanolamine (C36:4) 0.96   

Phosphatidylethanolamine (C36:2) 0.93   

Phosphatidylethanolamine (C36:1) 0.78   

Phosphatidylethanolamine (C36:0) 0.70   

Phosphatidylethanolamine (C38:6) 0.86   

Phosphatidylethanolamine (C38:5) 1.10   

Phosphatidylethanolamine (C38:4) 1.10   

Phosphatidylethanolamine (C38:3) 0.90   

Phosphatidylethanolamine (C40:7) 1.09   

Phosphatidylcholine (C32:0) 0.81   

Phosphatidylcholine (C34:3) 1.19   

Phosphatidylcholine (C34:2) 0.89   

Phosphatidylcholine (C34:1) 0.79   

Phosphatidylcholine (C34:0) 0.81   

Phosphatidylcholine (C36:5) 0.66   

Phosphatidylcholine (C36:4) 0.67   

Phosphatidylcholine (C36:3) 0.89   

Phosphatidylcholine (C36:2) 0.64   

Phosphatidylcholine (C36:1) 0.77   

Phosphatidylcholine (C38:6) 0.74   

Phosphatidylcholine (C38:4) 1.06   

Phosphatidylcholine (C40:8) 1.11   

Phosphatidylcholine (C40:7) 1.16   



Chapter 2: publication I 

81 

 

Phosphatidylcholine (C40:6) 1.10   

Choline plasmalogen (C36:5) 1.44   

Choline plasmalogen (C36:4) 1.23   

Lysophosphatidylethanolamine (C16:0) 0.82 Lysoglycerophospholipids 

Lysophosphatidylethanolamine (C18:0) 1.22   

Lysophosphatidylethanolamine (C20:4) 4.71   

Lysophosphatidylethanolamine (C22:6) 4.79   

Lysophosphatidylcholine (C14:0) 1.21   

Lysophosphatidylcholine (C16:1) 2.67   

Lysophosphatidylcholine (C16:0) 1.96   

Lysophosphatidylcholine (C20:4) 6.43   

Lysophosphatidylcholine (C20:1) 1.07   

Lysophosphatidylcholine (C20:0) 1.34   

Lysophosphatidylcholine (C22:0) 1.53   

Lysophosphatidylcholine (C24:1) 2.21   

Sphingomyelin (d32:2) 1.28 Sphingolipids 

Sphingomyelin (d32:1) 1.49   

Sphingomyelin (d33:1) 1.18   

Sphingomyelin (d34:2) 1.31   

Sphingomyelin (d34:1) 1.40   

Sphingomyelin (d34:0) 2.87   

Sphingomyelin (d35:2) 1.71   

Sphingomyelin (d35:1) 1.86   

Sphingomyelin (d36:3) 1.48   

Sphingomyelin (d36:2) 1.45   

Sphingomyelin (d36:1) 1.62   

Sphingomyelin (d37:1) 1.49   

Sphingomyelin (d38:2) 1.21   

Sphingomyelin (d38:1) 1.42   

Sphingomyelin (d39:1) 1.79   

Sphingomyelin (d40:2) 1.67   

Sphingomyelin (d40:1) 1.85   

Sphingomyelin (d41:2) 1.88   

Sphingomyelin (d41:1) 1.75   

Sphingomyelin (d42:2) 1.83   

Sphingomyelin (d42:1) 1.54   

Sphingomyelin (d34:1) 1.16   

Ceramide (d18:2.C16:0) 0.55   

Ceramide (d18:1.C16:0) 0.74   

Ceramide (d18:2.C18:0) 0.38   

Ceramide (d18:1.C18:0) 0.58   

Ceramide (d18:1.C20:0) 0.38   

Ceramide (d18:1.C21:0) 0.64   

Ceramide (d18:2.C22:0) 0.39   

Ceramide (d16:1.C24:0) 0.48   

Ceramide (d18:1.C22:0) 0.54   
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Ceramide (d18:2.C23:0) 0.49   

Ceramide (d18:1.C23:0) 0.50   

Ceramide (d17:1.C24:0) 0.40   

Ceramide (d18:2.C24:2) 0.36   

Ceramide (d18:2.C24:1) 0.66   

Ceramide (d18:2.C24:0) 0.48   

Ceramide (d18:1.C24:1) 0.70   

Ceramide (d18:1.C24:0) 0.60   

Cholesterylester (C20:2) 0.58 Cholesterol and related 

Isopentenyl pyrophosphate (IPP) 0.50   

Phosphocholine 0.82 Miscellaneous lipids 
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Preamble 

 

The combination of Omics technologies such as metabolomics and in vitro systems offer a 

powerful tool for elucidating the molecular and biochemical events underlying organ toxicity. 

In contrast to traditional in vitro methods, the use of Omics techniques offers the advantage 

of enabling the simultaneous measurement of multiple cellular endpoints and thus, they have 

been proposed as key tools in Next Generation Risk assessment (NGRA). Several studies have 

successfully employed transcriptomics methods for the derivation of points of departure 

(PoD) as the first step to extrapolate in vitro generated data to in vivo, human relevant, 

reference values. The use of metabolomics technologies for PoD derivation has been, 

however, less explored.  

Given the advantages of metabolomics technologies as the closest Omics characterization of 

the phenotype, untargeted metabolomics data have been recently used for PoD estimations 

via benchmark concentration (BMC) modeling, showing the potential of metabolomics as 

sensitive and quantitative tool to investigate liver injury potential. However, the lack of 

comprehensive metabolite identification, characteristic of untargeted metabolomics 

methods, challenged the biological interpretations of the results which might hamper the 

evaluation of the relevance and applicability of these data in safety assessment.  

Targeted metabolomics offers the advantage of providing readily interpretable mechanistic 

information about perturbed biological pathways. In the following manuscript, the previously 

presented high throughput targeted in vitro metabolomics platform (chapter 2) was 

leveraged in order to advance the utility and application of metabolomics data for use in 

human health risk assessment. By exposing HepG2 cells to the antibiotic nitrofurantoin as a 

DILI model compound, data on time-series and dose–response experiments were generated 

to study compound dynamics. The suitability of the system to elucidate metabolic dynamics 

over time and concentration was shown and a mechanistic-anchored approach to derive and 

interpret dose and time response metrics from metabolomics data was provided. A total of 

256 uniquely identified metabolites were measured, annotated, and allocated in 13 different 

metabolite classes. Both PCA and univariate analysis showed clear metabolome-based time 

and concentration response effects. In addition, mechanistic information matched the 
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previously described compounds’ Mode of Action (MoA) and allowed to track the differential 

activation of cellular pathways as potential indicators of early adaptive and hepatotoxic 

responses.  

Importantly, in the following manuscript, metabolomics-based PoD was derived by 

multivariate PCA using the whole set of measured metabolites. In contrast to previously 

proposed BMD method, the new PCA approach proposed here allows using the entire dataset 

to derive PoD that can be mechanistically anchored to established key events.  

The generated results show the suitability of high throughput targeted metabolomics systems 

to investigate mechanisms of hepatoxicity and the feasibility of deriving PoDs that can be 

linked to existing adverse outcome pathways and contribute to the development of new ones. 

The following work was developed within the frame of the SysBiotopMoving project, funded 

by the German Bundesministerium für Bildung und Forschung (BMBF). The publication was 

prepared in collaboration with 12 co-authors. The experimental work, analysis of the data and 

the paper writing was done by the author of this dissertation. The co-authors were involved 

in the planning of the experiments, scientific discussion and guidance, the bioinformatics data 

analysis and significantly in the review process of the publication.  

The generated results show the suitability of high throughput targeted metabolomics system 

to investigate mechanisms of hepatoxicity and the feasibility of deriving PoDs that can be 

linked to existing adverse outcome pathways and contribute to the development of new ones. 
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Hepatotoxicity Mode of Action characterization and Mechanistic-anchored 

Point of Departure Derivation: A Case Study with Nitrofurantoin  
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Abstract  

Omics techniques have been increasingly recognized as promising tools for Next Generation 

Risk Assessment (NGRA). Targeted metabolomics offer the advantage of providing readily 

interpretable mechanistic information about perturbed biological pathways. In this study, a 

high-throughput LC-MS/MS-based broad targeted metabolomics system was applied to study 

nitrofurantoin metabolic dynamics over time and concentration and to provide a mechanistic-

anchored approach for point of departure (PoD) derivation. Upon nitrofurantoin exposure at 

five concentrations (7.5 µM, 15 µM, 20 µM, 30 µM and 120 µM) and four time points (3, 6, 

24 and 48 hours), the intracellular metabolome of HepG2 cells was evaluated. In total, 256 

uniquely identified metabolites were measured, annotated, and allocated in 13 different 

metabolite classes. Principal component analysis (PCA) and univariate statistical analysis 

showed clear metabolome-based time and concentration effects. Mechanistic information 

evidenced the differential activation of cellular pathways indicative of early adaptive and 

hepatotoxic response. At low concentrations, effects were seen mainly in the energy and lipid 

metabolism, in the mid concentration range, the activation of the antioxidant cellular 

response was evidenced by increased levels of glutathione (GSH) and metabolites from the 

de novo GSH synthesis pathway. At the highest concentrations, the depletion of GSH, 

together with alternations reflective of mitochondrial impairments, were indicative of a 

hepatotoxic response. Finally, a metabolomics-based PoD was derived by multivariate PCA 

using the whole set of measured metabolites. This approach allows using the entire dataset 

and derive PoD that can be mechanistically anchored to established key events. Our results 

show the suitability of high throughput targeted metabolomics to investigate mechanisms of 

hepatoxicity and derive point of departures that can be linked to existing adverse outcome 

pathways and contribute to the development of new ones. 

Keywords 
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metabolomics in vitro, high throughput, nitrofurantoin, hepatotoxicity, New Approach 

Methodologies, Next Generation risk assessment, Point of Departure. 

Introduction  

The realization of the vision of “toxicity in the 21st century” has significantly progressed since 

the publication of the NRC report in 2007 (National Research Council 2007). Scientific and 

technical advances of the last decades have fostered the development of numerous cell-

based methods, high throughput systems and in silico models as alternative approaches to in 

vivo animal testing. These New Approach Methodologies (NAMs) have contributed to the 

understanding of mechanisms of toxicity and have played an important role in the 

development of adverse outcome pathways (AOP) (Krewski et al. 2020a; Vinken 2013). While 

the development of these new methods has been instrumental for the evolution of 

toxicology, the number of chemicals in the market for which there are insufficient 

toxicological data are evidencing the pressing need to increase the implementation of NAMs 

in human and environmental risk assessment (Stucki et al. 2022). 

Conventional toxicological in vitro testing relies largely on the evaluation of single endpoints, 

which in most cases is not sufficient for a comprehensive risk assessment and not always 

translates well to the in vivo situation (Ball et al. 2022; Dix et al. 2007). The implementation 

of Omics technologies enable the simultaneous measurement of multiple cellular endpoints, 

providing a multiparametric and comprehensive assessment of different biochemical 

pathways in a single sample (García-Cañaveras et al. 2016). In particular metabolomics, 

described as the systematic study of small endogenous molecules known as metabolites, 

represents the last step in the Omics cascade and as such provides an insight into the current 

physiological state of an organism including biological responses to external factors such as 

xenobiotics and therapeutic agents (Guijas et al. 2018). Thus, metabolomics is the “omics” 

technology that closest represents the phenotype and for this reason has been considered to 

be closer to classical toxicology than other omics techniques (Ramirez et al. 2013).  

Metabolomics approaches have been successfully employed in toxicity assessment for 

identifying mechanisms of toxicity and characterizing key molecular events  (Birk et al. 2021; 

Cuykx et al. 2018a; Kamp et al. 2012; Mattes et al. 2014; Van Ravenzwaay et al. 2007; Van 
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Ravenzwaay et al. 2015). For cell-based metabolomics, however, requirements for large 

biomass quantities have previously restricted the throughput scalability, limiting the testing 

to few concentrations and single (static) time points (Cuykx et al. 2018a; García-Cañaveras et 

al. 2016; Ramirez et al. 2018b). These factors reduce the potential of dose and time-based 

calculation of dose-response metrics, hampering the applicability of in vitro metabolomics 

systems in risk assessment (Olesti et al. 2021). In addition, such information may also 

contribute to discriminate between adaptive and adverse changes.  

Given that the liver is one of the main target organs, early mechanistic-based identification of 

potential hepatotoxins is a highly relevant issue for the pharmaceutical and chemical industry. 

Recently, in vitro liver models have been employed to derive metabolomics-based points of 

departure (PoDs) via benchmark concentration modeling (Crizer et al. 2021b; Malinowska et 

al. 2023).  

We have previously developed and standardized a high throughput, targeted LC-MS-based in 

vitro metabolomics platform for the identification and differentiation of liver toxicity Modes 

of Action (MoAs) in HepG2 cells (Ramirez-Hincapie et al. 2023). Importantly, this assay 

measures a set of pre-identified metabolites representative of main cellular pathways. Due 

to its high throughput nature, a broad range of concentrations, covering key points of the 

dose response curve can be assessed, offering the possibility of studying substance effect 

dynamics and allowing accurate and mechanistic anchored metabolome-based PoD 

estimations. 

The aim of this study was to generate metabolome-based dose-response and time series 

analysis which can be useful to derive dose response metrics from metabolomics data. For 

this aim, we have selected nitrofurantoin as a model compound. Nitrofurantoin is an 

antibiotic employed in clinical practice to treat urinary infections. For humans, nitrofurantoin 

presents a significant drug induced liver injury (DILI) concern, classified as a well-known cause 

of liver injury (Serrano 2014). The activation of cellular oxidative stress response pathways by 

nitrofurantoin has been previously demonstrated (Wijaya et al. 2021). At low doses, 

nitrofurantoin has been shown to activate the endogenous antioxidant machinery by being a 

potent stimulator of intracellular glutathione synthesis (Wijaya et al. 2022), at high 

concentrations however, it has been linked to oxidative stress-related hepatotoxicity (Wang 
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et al. 2008). Because of its characteristic dose-related biological responses nitrofurantoin was 

considered as a suitable compound to assess the applicability of the high throughput targeted 

metabolomics to provide a basis for a mechanistic-grounded PoD determination. 

Materials and Methods  

Cell culture  

HepG2 cells (ECACC, UK, maximum passage number 9) were maintained and grown on 

Dulbecco’s MEM media supplemented with 1 v/v% of penicillin/streptomycin, L-glutamine 

(200 mM, 1% v/v), non-essential amino acids (1% v/v) and 10% FBS (PAN-Biotech, Aidenbach, 

Germany) in 75 cm2 culture flasks (TPP, Switzerland). For cell passaging (~80% confluency) 

media was removed and cells were washed twice with pre-warmed calcium and magnesium 

free Dulbecco’s PBS (PAN-Biotech, Aidenbach, Germany). Trypsin was used for cell 

detachment. A fraction of the cell suspension was then transferred to a new culture vessel. 

For experiments, 15.000 cells per well (passage 5-9) were seeded in 96-well flat-bottom plates 

(TPP, Switzerland) and incubated for 24 h for cell attachment (37 °C and 5% CO2). After 24h, 

culture media were exchanged, and the test substance was added in five concentrations (0.5% 

DMSO) and incubated in a corresponding 96-well-plate per time point for 3, 6, 24 and 48h at 

37 °C and 5% CO2. 72h post seeding, the assay was stopped by quenching all plates with 

isopropanol 80% and freezing at -80°C. See “metabolomics experiments” for more details.  

Test substances  

Nitrofurantoin (≥ 98 %) and bezafibrate (≥ 98 %), used as a positive/quality control in each 

experiment, were purchased from Sigma Aldrich (Buchs, Switzerland). DMSO (+99.8%,) was 

used as a solvent and vehicle control at a final concentration of 0.5% Thermo Fisher (Geel, 

Belgium).   

Cytotoxicity and cell viability testing  

Commercially available cytotoxicity (CellToxTM Green) and ATP content based (CellTiter-Glo®) 

assays (Promega GmbH, Walldorf, Germany) were multiplexed in a single 96 well-plate 

following the manufacturer’s instructions. For positive controls, lysis solution 25X was added 

in wells containing vehicle control treated cells (0.5% DMSO). Fluorescence was measured at 

λex= 485–500 nm/ λem= 520–530 nm in the GloMax®-Multi Detection System (Promega). 
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Luminescence was measured in the GloMax®-Multi Detection System (Promega) and was 

normalized to the values of the vehicle control. Cytotoxicity and ATP cell viability analysis 

were carried out for range finder pre-tests and in parallel with metabolomics experiments in 

plates handled and treated exactly as the ones used for metabolite profiling.  

Range finder experiments for concentrations selection 

Concentration levels for the metabolomics experiments were based on range finder 

experiments. Nitrofurantoin was administered to HepG2 cells in 14 concentrations ranging 

from 0.234 µM to 1.920 µM to following two-fold serial dilutions and incubated for 48h (6 

replicates per concentration). Viability and cytotoxicity tests were performed as described 

previously. Luminescence values resulting from ATP measurement (CellTiter-Glo® assay) were 

used to build dose response curves. Curve fitting and effective concentrations (ECs) values 

were calculated in R using four-parameter Weibull model (W2.4). Calculated EC values were 

rounded to the nearest integer number for dose selection. 

Live-cell imaging  

To monitor cell proliferation, total well confluence was obtained by real time cell imaging 

analysis using IncuCyte S3 device placed in a normal incubator at 37 °C with 5% CO2. Whole-

well scans were taken every 1.5 hours during the duration of the assay and evaluated using 

automated phase-contrast analysis (phase mask).   

Metabolomics experiments 

After 24h of cell attachment, substances were administered in 0.5% DMSO (final 

concentration) to HepG2 cells in 5 concentrations (EC1(ATP), EC115(ATP), EC25(ATP) EC50(ATP), 

EC85(ATP)) in a corresponding 96-well-plate per time point. In order to harvest all plates 

simultaneously, aiming to achieve same final cell number, treatment was applied by reverse 

application. 1) 24 h post seeding (48h substance exposure), 2) 48 h post seeding (24h 

substance exposure), 3) 66 h post seeding (6h substance exposure) and 4) 69 h post seeding 

(3 h substance exposure) Fig 1.  
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Fig.1 Nitrofurantoin administration for metabolomics experiment. 15000 HepG2 cells were seeded per well in 96-well 
plates and incubated for 24h for initial cell attachment. 24h post seeding, nitrofurantoin was administered in 5 
concentrations (EC1(ATP): 7.5µM, EC115(ATP): 15µM, EC25(ATP): 30µM, EC50(ATP): 60µM, EC85(ATP): 120µM) in a corresponding 96-
well-plate per time point by reverse application. After 72h post seeding, the assays were stopped simultaneously by washing 
the wells once with 100µL of 0.9% NaCl followed by snap freezing the plates on liquid nitrogen for 5 secs. Metabolomics 
plates were placed immediately on dry ice and stored at -80°C until LC-MS/ MS analysis while cytotoxicity plates were used 
for ATP content and membrane integrity multiplexed assays.  

 

After 72h post seeding, the assays were stopped simultaneously by washing the wells once 

with 100µL of 0.9% NaCl followed by snap freezing the plates on liquid nitrogen for 5 secs. 

Plates were placed immediately on dry ice and stored at -80°C until LC-MS/ MS analysis.  

For each time point, one 96 well-plate was set up with 6 replicates per concentration, 12 

replicates for vehicle controls (0.5% DMSO), 6 replicates for positive controls (Bezafibrate 

1000µM) and 6 replicates for blank controls (media without cells). Bezafibrate has been 

shown to provide a clear and consistent metabolic response (BASF, unpublished results) that 

is used to confirm the quality of the cell batch used in the analysis. To minimize potential 

evaporation, the outer rows and columns of the plate were omitted and filled with PBS 

instead. Reference samples prepared from lyophilized untreated HepG2 cells were measured 

in parallel throughout the entire analytical process (QC technical replicates). Data from each 

metabolite in each sample were normalized against the median of the same metabolite in all 

reference samples on the same plate to give normalized ratios. Lyophilized HepG2 cells 

reference samples were used to account for variability between plates (inter- and intra-
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instrumental variation) and in concentration series (0%, 25%, 50%, 75%, 100%, 125%, 150%, 

200%) for linearity checks. 

LC-MS/MS metabolomics 

Metabolite profiling of cells was performed directly in the 96-well plate according to a 

standardized protocol described below. 

For quenching and extraction 120 µl of isopropanol 80%, containing internal standards 

(quality control only, not used for normalization) were added to each well of the frozen 

samples plate. Afterwards, plates were shaken for 5 min, 750 rpm at 20°C and placed for 30 

sec in the ultrasonic device. Then, the plates were centrifugated for 10 min, at 5485 g, 15°C. 

2.5 µl of the extract were injected each for reversed-phase and hydrophilic interaction liquid 

chromatography followed by MS/MS detection (AB Sciex QTrap 6500+) using the positive and 

negative ionization mode. For reverse-phase high performance liquid chromatography (RP-

HPLC, Ascentis Express C18, 5cm x 2.1mm, 2.7 µm. Supelco), gradient elution was performed 

with mobile phase A, water/methanol/0.1 M ammonium formate (1:1:0.02, w/w), and B, 

methyl-tert-butylether/2-propanol/methanol/0.1M ammonium formate/formic acid 

(4:2:1:0.07:0.035, w/w) (linear gradients, 0 min 100% A, 0.5 min 75% A, 5.9 min 10% A, 600 

µl/min). HILIC (ZIC-HILIC, 10 cm x 2.1mm, 3.5 µm, Merck) gradient elution was performed with 

mobile phase C, acetonitrile/water (99:1, v/v) with 0.2% (v) acetic acid, and D, 7 mM 

ammonium acetate with 0.2% (v) acetic acid (linear gradients, 0 min 100% C, 5 min 10% C, 

600 µl/min).  

Due to the high sample number, the analysis was performed in batches with each batch 

comprising one 96-well plate. To ensure that the analytical system was suitable for 

measurement, for each analysis batch a solvent (80% isopropanol) and two external standard 

calibration samples (covering 213 lipid and polar metabolites) followed by another solvent 

sample were run at the start of the analysis. The border wells of the 96-well plate were used 

for linearity samples (resulting in 4 replicates per concentration (except 100% with 5 

replicates – the latter samples are used for normalization as described below). This setup 

ensured that data can be compared across analysis batches. Each 96-well plate was analyzed 

row-wise starting from well A1. This way one replicate from each treatment was run followed 

by two linearity samples (in column A and H) before moving to the next treatment replicate.  
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For bioanalytical quality control, the linearity samples were evaluated regarding coverage 

(signal in >80% of linearity samples), linearity (R²>0.64), variability (RSD<0.6 for the 100% 

linearity samples) and blank contribution (blank signal <40% of the 100% linearity samples). 

When a metabolite failed the quality control check, data for this metabolite were excluded 

(Ramirez-Hincapie et al. 2023). 

Metabolomics data analysis 

To correct for small differences in cell numbers within and between different treatment 

groups, data were also normalized to the within sample median, as described in detail by 

(Ramirez et al. 2018). For intracellular metabolomic analysis, the median of each sample was 

calculated across all the 256 measured metabolites. 

To generate metabolic profiles for the different concentrations and time points, 

heteroscedastic t-test (Welch test) was applied to log-transformed normalized metabolite 

data to compare treated groups with their respective controls.  

To investigate the experimental variability, the variance of every log-transformed metabolite 

for both pooled samples (technical replicates) and control samples was calculated. These 

variances were back-transformed to linear scale, yielding a relative standard deviation (RSD) 

using the following formula: 

RSD = 1 − 10−SDlog  

Principal Component Analysis (PCA) analyses were performed using R software environment 

(https://www.r-project.org/)using the ropls package (Thévenot et al. 2015) with log10-

transformed input data and standard scaling. The input data were normalized to the median 

of each metabolite in the control samples on each 96-well plate to compensate for differences 

between plates. 

The binomial distribution enrichment analysis was performed using Excel. For this purpose, 

the number of significant changes (s) at p-value <0.05 were counted per treatment and 

ontology class. The binomial distribution test is used to indicate the probability of a specific 

number of successes (the number of significant changes) occurring from a specific number of 

independent evaluations (total metabolites number in the given ontology class). The resulting 
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p-value for this enrichment is indicated (as category) by color in the tables (grey, light yellow 

or intense yellow).  

Point of departure derivation  

A concentration-dependent response was modeled based on PC1 values obtained from the 

PCAs. PC1 values for each sample were plotted against the test concentration and a 3-

parameter log-logistic model was fitted through the data, using ‘drc’ package (Ritz and 

Streibig 2005). A confidence interval of 95 % was used for the dose-response curve and the 

control variability was described by the 2.5 % and 97.5 % quantiles, which correspond to 95% 

spread of the controls. The PoD marks the concentration at which the confidence interval of 

the curve surpasses the corresponding quantile of the controls, i.e., the curve with its 95% 

confidence interval has crossed the 95% spread of the controls.  

Results and discussion  

 

Range finder pre-test for concentration selection  

Initial range-finding experiments were conducted to guide the concentration selection for the 

metabolomics experiments. After administering increasing concentrations of nitrofurantoin 

following two-fold serial dilutions (from 0.234µM to 1.920µM), cytotoxicity and cell viability 

were assessed in parallel upon 48 h of exposure (Suppl Fig. 1). CellToxGreen, a cell 

impermeable DNA-binding dye which measures membrane integrity was used to identify 

concentrations that caused overt cell death. ATP production, a more sensitive endpoint 

expected to reflect earlier alterations in cellular metabolism, was used to generate a dose 

response curve and derive effective concentration values (EC). Based on ATP content viability 

pretest, five nitrofurantoin concentrations (C1:EC1(ATP), C2; EC15 (ATP), C3:EC25(ATP), C4:EC50 (ATP), 

C5:EC85(ATP)) were selected for the following metabolome experiment (Fig. 2). The 

concentration selection aimed to cover important aspects of the concentration response 

dynamics from no and mild effects to hepatotoxic-related effects. EC1(ATP) was selected to 

evaluate non-toxic but potentially mild metabolic effects, EC15(ATP) and EC25(ATP) was selected 

to obtain a moderate substance effect, however, within a low cytotoxicity range and EC50(ATP) 

and EC85(ATP) were chosen to identify hepatotoxic related metabolite patterns.  
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Fig. 2 Nitrofurantoin concentration selection for metabolomics experiments. ATP values obtained from the viability pre-

test were used to build a dose-response curve. Five concentrations (indicated by the red arrows) were selected. Upper panel; 

dose-response curve. Lower panel; corresponding estimated EC concentrations. ECs were estimated based on the 

computationally fitted ATP dose response curves generated in the range finder experiments upon 48h of exposure. Five test 

concentration levels (indicated by the arrows) were set based on the dose-response curve generated from ATP measurement 

(CellTiterGlo ®) pre-test (Suppl Fig 1). Values were approximated to the nearest integer number.   

 

Experimental cytotoxicity and cell viability of selected test concentrations  

A critical factor of metabolomics experiments is to distinguish substance-specific effects from 

unspecific effects produced by overt cytotoxicity. To experimentally assess the effect of the 

selected test concentrations on both cell viability and cytotoxicity, ATP content (CellTiterGlo) 
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and cell death (CellToxGreen) assays were multiplexed and measured in parallel with the 

metabolomics experiment in plates handled and treated exactly as the ones used for 

metabolomics (Suppl. Fig. 2).   

The estimated ECs calculated in the pre-test from ATP values after 48 hours of exposure 

corresponded closely to the experimentally obtained values in the low (EC1(ATP)) and high 

effect area (EC50(ATP), EC85(ATP)) of the dose response curve. In comparison to the vehicle 

treated cells, the estimated EC15ATP resulted in a mild experimental reduction of ATP (down to 

94%) while the EC25ATP caused a higher-than-anticipated reduction in ATP levels (down 63%), 

suggesting a steep slope in the dose response curve.   

At the three highest concentrations (EC25(ATP), EC50(ATP) and EC85(ATP)) and the last time point 

(48 hours), ATP levels were markedly affected when compared to untreated controls, 

suggesting significant impairments in the cellular energy generation. However, this apparent 

drastic “loss” in viability failed to induce significant cell death measured by means of 

membrane integrity, suggesting a cytostatic rather than a cytotoxic effect of the highest 

nitrofurantoin concentrations. Cell growth was monitored by real time imaging during the 

duration of the assay. After 48h of exposure, the concentrations corresponding to EC25(ATP), 

EC50(ATP) and EC85(ATP) had a clear impact on the cellular growth rate (Suppl. Fig 3), confirming 

the cytostatic effect that resulted in lower cell numbers and consequently produced an 

apparent reduction in viability when compared to untreated cells. These findings point out 

that experimental concentration selection based only on viability markers such as ATP, could 

potentially overestimate the substance cytotoxic effect missing important markers of 

potential adversity and resulting in an incomplete coverage of the substance response effect. 

Our results indicate that including additional parameters such as the parallel assessment of 

two different endpoints in cytotoxicity readouts is important for proper concentration 

selection and data interpretation. 

Metabolomics experiments  

The HepG2 cell line was selected due to its unlimited lifespan, stable phenotype, availability, 

reproducibility, easy handling, and low cost. Although the limited drug metabolizing and 

transport capabilities of HepG2 cells are well acknowledged, a comparable stimulation of de 

novo synthesis of glutathione and gene expression profiles were found in primary human 
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hepatocytes (PHH) and HepG2 when exposed to different nitrofurantoin concentrations 

(Wijaya et al. 2022) indicating the suitability of the HepG2 cells to investigate nitrofurantoin 

dynamics.  

To study the metabolite dynamics upon nitrofurantoin exposure, HepG2 cells were treated 

with five different concentrations (C1:7.5µM, C2:15µM, C3:30µM, C4:60µM, C5:120µM) at 

four time points (3, 6, 24, 48h). A total of 256 unique metabolites was measured of which 181 

were annotated and 75 remained unknown. Annotated metabolites were allocated in 13 

different metabolite classes such as amino acids, carbohydrates, energy metabolism, 

nucleobases, vitamins and cofactors and diverse lipid classes (Suppl. Fig 4).  

Relative standard deviation (RSD) values of the individual metabolites in the control samples 

ranged from 19% (1st quartile) to 39% (3rd quartile) with a median of 28% after control 

normalization (to compensate for differences between plates). The median RSD values of the 

individual metabolites in the control samples on individual plates ranged from 23% to 28%. 

The median RSD values of the individual metabolites in the technical replicates on the 

individual plates were between 9% and 10% (Suppl Fig. 5) The experimental variability of the 

technical (QC samples) and biological (vehicle) controls in our study was thus below the 

recommended threshold of 30% (Viant et al. 2019b).  

Metabolome analysis of Nitrofurantoin-treated cells shows concentration and time 
response effects  

Metabolite profiles of nitrofurantoin-treated cells were first analyzed by PCA. Both 

concentration- and time-dependent responses were observed (Fig.3). After 3h, none of the 

tested concentrations induced a visible effect. At this time point, the levels of intracellular 

nitrofurantoin were below the limit of quantification (data not shown). At the lowest tested 

concentration (C1), significant treatment effects were observed only at the 48h time point 

(Fig. 4A). From the C2 onwards, clear treatment effects were evident after 24h of exposure 

(Fig. 4B, C, D). The strongest effect and highest resolution of concentration and time effects 

was observed at the highest concentration (C5) and latest time point (48h) (Fig. 4E, F). Our 

findings suggest that at low concentrations, nitrofurantoin exposures time below 6h are not 

sufficient to produce an identifiable effect on the metabolome. While at higher 

concentrations effects can be identified at earlier time points. In line with our observations, 
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Malinowska and coworkers evaluated the variability of the HepaRG cellular baseline 

metabolome at different time points, suggesting that a reliable detection of metabolic 

changes upon a toxicant exposure is achieved minimum after 6 h of exposure (Malinowska et 

al. 2022a). 

 

Fig 3. PCA of nitrofurantoin metabolic profiles show time and concentration response effects. PCA analysis of the 
metabolic profiles of HepG2 cells upon nitrofurantoin treatment. Bezafibrate was used as a positive control. C1:7.5 µM, 
C2:15 µM, C3:30 µM, C4:60 µM, C5:120 µM.  
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Fig. 4. PCAs of metabolomics time-response effect for each tested concentration. a) C1: 7.5 µM, b) C2: 15 µM, c) C3: 30 µM 
d) C4: 60 µM) C5: 120 µM and f) metabolic profiles of the five tested concentrations: C1-C2, upon 48 hours of exposure. 

 

Following the PCA evaluation, metabolic profiles of nitrofurantoin-treated cells were 

subjected to univariate statistics to identify changes in individual metabolites. A univariate 

enrichment analysis was carried out to evaluate the number of significantly changed 
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metabolites per ontology class (Suppl. Fig 6). The data revealed dose and time dependency, 

with increasing number of altered metabolites at higher concentrations and later time points.  

These results demonstrate that the high throughput in vitro metabolomics assay presented 

here is able to distinguish the effects at different concentrations and time points and 

therefore is suitable to perform metabolome-based time and dose responses analysis.  

The implementation of tools such the one presented here allows to integrate a temporal 

dimension in the assessment of compound metabolic dynamics. This type of information not 

only provides mechanistic temporal insights but is also valuable for the selection of relevant 

in vitro sampling time points for risk assessment.  

Metabolite dynamics over time and concentrations show differential profiles as potential 
indicators of initial, adaptive, and toxic responses  

Heatmaps of metabolite changes per class were generated in order to assess the metabolic 

dynamics over concentration and time (Suppl Fig. 7). This type of analysis allows the 

identification of key metabolites or metabolite class dynamics useful to follow up on the 

development and progression of a hepatotoxic phenotype. Suppl Fig. 7A shows metabolite 

changes by class over the different exposure times while Suppl Fig. 7B depicts the metabolite 

changes per class as a function of the applied compound concentration.  

Predicting adversity from omics data remains an important limitation for the use of these 

technologies in risk assessment (Olesti et al. 2021). Therefore, the investigation of multiple 

endpoints at various time-points is fundamental to understand the progression of different 

key events along an adverse outcome pathway (AOP). By evaluating consistent metabolite 

changes in low, medium, and high concentrations at different time points, we generated a 

dataset which closely captured the previously reported nitrofurantoin effect evolution and 

allowed to identify differential pathway activation and metabolic markers potentially 

indicative of a transition from adaptive to adverse effects (Table. 1).  
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Response  Low Middle High 
Pathway Metabolite C1 C2 C3 C4 C5 

Glycolysis Glucose-6-phosphate  ↓ ↓ ↓ ↓ ↓ 

TCA cycle Fumarate ↓ ↓ ↓ ↓ ↓ 
  Malate ↓ ↓ ↓ ↓ ↓ 
  N-Acetylaspartate ↓ ↓ ↓ ↓ ↓ 
  Glycerol-3-phosphate ↓ ↓ ↓ ↑ ↑ 

Fatty acid oxidation  O-acetlylcarnitine ↓ ↓ ↓ ↓ ↓ 
  Carnitine ↑   ↓ ↓ ↓ 
  Propionylcarnitine (C3) ↑ ↑ ↑ ↑ ↓ 
  Hexanoylcarnitine (C6) ↑      ↓ 
  Hexanodecanoylcarnitine (C16)   ↑ ↑ ↑ ↑ 
  Tetradecanoylcarnitine (C14)     ↓  ↑ 
  Octadecenoylcarnitine (C18)     ↑ ↑ ↑ 

  3-Hydroxybutyrate ↑ ↑ ↑  ↑ 

Nucleobases Deoxycytidine ↑     ↓ ↓ 
  Guanine ↓       ↑ 

Antioxidants/coenzymes 
Nicotinamide adenine 
dinucleotide (NAD) ↓ ↓ ↓   ↓ 

  Pantothenic acid ↑ ↑   ↓ ↓ 
  Taurine   ↓ ↓ ↓ ↓ 

  Ophthalmic acid   ↓ ↓ ↓ ↓ 
  Coenzyme Q10     ↓ ↓ ↓ 
  Coenzyme Q9        ↓ 

De novo GSH synthesis S-Adenosylhomocysteine ↓ ↓ ↓ ↓ ↓ 
  2-Methylserine ↑ ↑ ↑  ↑ 
  Cysteinylglycine ↑ ↑ ↑  ↓ 
  Glutamine  ↑ ↑ ↑  ↑ 
  Glutamate  ↑ ↑ ↑   ↓ 
  Glutathione (GSH)     ↑ ↑ ↓ 

Lipid metabolism TAG´s ↓ ↓ ↓ ↓ ↑ 
  Phosphatidylcholine ↓ ↓ ↓ ↓↑ ↓↑ 
  Phosphatidylethanolamine ↓ ↓ ↓ ↓ ↓ 
  Lysophospatidylcholine ↑ ↑ ↑ ↑ ↑ 
  Cholesteryl ester   ↑ ↑ ↑ ↑ 
  Sphingomyelins       ↓↑ ↓↑ 
  Ceramides       ↓↑ ↓↑ 

Essential amino acids Arginine ↑ ↑ ↑   ↑ 
  Tryptophan   ↓   ↑ ↑ 
  Phenylalanine     ↑ ↑ ↑ 
  Isoleucine      ↑ ↑ ↑ 
  Leucine      ↑ ↑ ↑ 
  Tyrosine     ↑  ↑ 
  Threonine     ↑  ↑ 
  Proline     ↓ ↓ ↓ 
  Valine     ↑ ↑ ↑ 
  Asparagine        ↑ 

Amino acids related Creatine  ↓ ↓ ↓ ↓ ↓ 
  Proline   ↑ ↓ ↓ ↓ 
  Hydroxytryptophan     ↓ ↓ ↓ 

  Pipecolic acid     ↓   ↑ 



Chapter 3: publication II 

104 

 

 

Table. 1 characteristic metabolite changes of early, adaptive and hepatotoxic nitrofurantoin response. Consistent 

metabolite changes in metabolic profiles of HepG2 cells treated with low (C1: 7.5 µM, C2: 15 µM) middle (C3: 30 µM) and 

high (C4: 60 µM, C5: 120 µM) nitrofurantoin concentrations. Red arrows represent elevated levels and blue arrows represent 

reduced levels. Changes are calculated relative to the controls. Consistent time response changes are depicted; the majority 

of consistent changes were evident upon 24 hours of exposure. In the the highest concentrations, some consistent changes 

were evident already upon 6h of exposure.  

 

Metabolic profile of cells exposed to low concentrations  

Low concentrations (C1 and C2), corresponding to 7.5µM and 15µM, showed no significant 

reduction in viability, as well as no cell death or detrimental effects on the cell growth. 

Metabolic profiles of cells treated with these concentrations exhibited alterations mainly in 

the energy and lipid metabolism as well as in antioxidant molecules as an early response to 

nitrofurantoin exposure. Concentrations of TCA cycle metabolites (fumarate and malate), 

glycolysis intermediates (glucose-6-phosphate) and acetyl-CoA donors (N-acetyl aspartate), 

decreased consistently from the lowest concentrations onwards in a time and dose response 

manner. Pantothenic acid, a precursor to CoA and a part of the anchoring system of the fatty 

acid synthase complex, increased in the lowest concentrations and shifted to an increase in 

the highest (C4-C5). Levels of glycerol-3-phosphate decreased in the lower and middle 

concentrations (C1-C3) but increased in the highest concentration. Changes in metabolites 

from the fatty acid oxidation pathway were as well observed in the low concentrations.  

O-Acetlylcarnitine, the acetylated derivative of carnitine, which facilitates the movement of 

acetyl-CoA into the mitochondrial matrix during fatty acid oxidation was reduced from the C1 

onwards while levels of short and long chain acylcarnitines (propionylcarnitine and 

hexanodecanoylcarnitine), increased consistently from C1-C2 to C4. The observed decreased 

levels of glycolysis and TCA intermediates together with increased concentrations of 

acylcarnitines and the ketone 3-hydroxybutyrate, suggest a shift towards β-oxidation for 

energy production.  

Decreased concentrations of the cofactor nicotinamide adenine dinucleotide (NAD), the 

amino acid taurine and the glutathione analogue ophthalmic acid, indicated the presence of 

reactive oxygen species (ROS). Through its action as an antioxidant, taurine has been shown 
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to play a role in counterbalancing oxidative stress attenuating the development of liver 

steatosis in vitro and in vivo (Murakami et al. 2018). In line with our observations of decreased 

antioxidant molecules, it has been demonstrated that the redox cycling during nitrofurantoin 

metabolization generates different ROS such as superoxide anion, hydrogen peroxide, and 

hydroxyl radicals (Wang et al. 2008). In addition, metabolic profiles of cells treated with the 

lowest nitrofurantoin concentrations, showed that precursors of glutathione such as 

glutamine, glutamate, cysteinylglycine and 2-methylserine started to increase while 

S-adenosylhomocysteine decreased possibly as an early indicator of the stimulation of de 

novo glutathione synthesis as it became evident in the middle concentration (C3).  

Some of the earliest metabolic changes with respect to both concentration and time were 

observed in the lipid metabolism. Decreased levels of triacylglycerols (TAGs) were evident 

already in the lowest concentration (C1) and from an early time point (6 hours onwards). 

Phosphatidylcholine levels were found reduced across the low and mid doses (C1-C3) while 

lysophospatidylcholine concentrations increased in all C1-C5 concentrations.  

Phosphatidylethanolamine levels decreased in all five tested concentrations while 

cholesterylesters showed increased levels from the D2 onwards. Our data evidence that 

nitrofurantoin exerts significant effects on different lipids species even at low concentrations.  

These types of alterations in the lipid metabolism have, so far, not been reported in the 

literature as a direct consequence of nitrofurantoin exposure. These findings add to the 

current knowledge of nitrofurantoin mechanisms and represent an avenue for future 

research.  

Metabolic profile of cells exposed to the middle concentrations:  

The mid concentration (C3), corresponding to 20 µM, caused a moderate effect on ATP 

production and cell growth but failed to induce significant cell death. At this concentration, 

differential changes mainly in metabolites involved in the cellular antioxidant response, the 

de novo glutathione synthesis and amino acids were observed. Levels of coenzyme Q10 

decreased in a concentration and time response manner starting from the middle 

concentration while glutathione (GSH) increased consistently after 24h of exposure to the C3. 

Following the observed GSH dynamics, levels of proline (amino acid synthesized from 

glutamate) started to decrease from the C3 consistently. Metabolite changes in the middle 
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nitrofurantoin concentration are reflective of a higher utilization of antioxidant molecules and 

are in line with the reported stimulation of intracellular GSH synthesis by nitrofurantoin 

(Wijaya et al. 2022).  

Levels of essential amino acids (phenylalanine, isoleucine, leucine, tyrosine, threonine, and 

valine) were significantly increased starting at the C3 concentration onwards resulting in high 

levels in the highest concentrations. High intracellular levels of amino acids suggest a reduced 

amino acid utilization. Reduction of protein synthesis has been reported as a common 

consequence of stress response pathway activation, resulting in increased intracellular amino 

acids concentrations and reduced cell growth to conserve amino acids and energy and 

decrease the cellular protein load as one adaptive measure to overcome stresses (Santiago-

Díaz et al. 2023). Attenuation of protein translation is characteristic of the unfolded protein 

response (UPR) pathway activation. UPR-activating compounds are mostly classified as the 

severe DILI compounds. Nitrofurantoin has been shown to significantly active the UPR 

pathway in HepG2 cells (Wijaya et al. 2021). Importantly, it has been proposed that UPR 

response could represent a key predictor for adverse cellular outcomes for DILI compounds 

(Wijaya et al. 2021).   

Through the activation of adaptive cellular stress response pathways, oxidative stress, and 

endoplasmic reticulum stress (resulting in unfolded proteins) are typically counteracted. 

Reactive metabolites generated from nitrofurantoin metabolization can be inactivated by the 

cellular antioxidant defense system (e.g., GSH). The UPR pathway responds to an 

accumulation of misfolded proteins in the endoplasmic reticulum by restoring the normal 

function via decreasing protein translation, degrading misfolded proteins, and activating the 

signaling pathways that lead to increasing the synthesis of molecular chaperones involved in 

protein folding (Hetz and Papa 2018). Thus, the metabolic profiles at this concentration are 

potentially reflective of an adaptive phenotype. 

Metabolic profile of cells exposed to high concentrations 

The highest tested concentrations, particularly C5 corresponding to 120 µM, showed 

significant impairments on cell growth and ATP production which correlated with the strong 

effect observed in the metabolome. Therefore, metabolites that were differentially altered in 

the profiles of cells treated with the two highest nitrofurantoin concentrations (C4, C5) were 
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used to identify hepatotoxic responses. GSH concentrations were significantly reduced upon 

48h of exposure to the highest concentration (C5). Alongside GSH reduction, levels of its 

precursors glutamate cysteinylglycine and S-adenosylhomocysteine decreased. An excess of 

reactive metabolites, beyond homeostasis, can modify cellular macromolecules leading to 

cellular dysfunction. Intracellular levels of antioxidants have been suggested as important 

regulators of nitrofurantoin-induced cytotoxicity which has been correlated to hepatitis and 

tissue necrosis observations in vivo (Wang et al. 2008). Particularly, GSH plays an important 

role in nitrofurantoin detoxification; nitrofurantoin metabolites have been shown to produce 

a dose-dependent depletion of total cellular glutathione content, likely due to conjugation of 

drug metabolites with GSH (Spielberg and Gordon 1981). Our results indicate that at the 

highest concentration, the capacity of cells to synthesize GSH was compromised, leading to 

the final depletion of GSH rendering the cells vulnerable for ROS damage. 

Glycerol-3-phosphate levels increased in the two highest concentrations. This metabolite is 

involved in transporting reducing equivalents across the mitochondrial membrane via the 

glycerol phosphate shuttle for oxidative phosphorylation (Liu et al. 2021). Metabolites from 

the fatty acid oxidation pathway were also changed in the highest concentrations.  

Long chain acylcarnitines (tetradecanoylcarnitine) switched from reduced levels in in the low 

and mid concentrations, to an upregulation at C5. Propionylcarnitine switched from a 

consistent increase in the lower concentrations to an increase in the highest concentration 

while tetradecanoylcarnitine changed from decreased levels in the C3 to increased levels at 

the C5. Alterations in octadecenoylcarnitine (increase) and hexanoylcarnitine (decrease) were 

uniquely observed at the highest concentrations. Noteworthy, concentrations of TAGs 

switched from consistently lower levels in C1-C4 to highly increased concentrations in C5. 

The high concentrations of glycerol-3-phosphate, long chain acylcarnitines and TAG´s 

together with lower levels of short chain acylcarnitines are reflective of an impairment of the 

mitochondrial activity and fatty acid β-oxidation pathway. In agreement with our findings, it 

has been shown that cell viability decreases significantly at nitrofurantoin concentrations 

higher than 100 μM, accompanied by impaired mitochondrial respiration (Wijaya et al. 2022). 

In our study, an inhibition of β-oxidation in the highest nitrofurantoin concentrations is 

evidenced by reduced free carnitine, and an increase in the fatty acid pool. Free fatty acids 
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can incorporate in lipid species such as TGA and ceramides. In our study, the concentrations 

of both lipid species were highly elevated. Higher levels of TAGs and ceramides are typical 

findings in liver toxicity studies (Beyoglu and Idle 2013). Accumulation of TAGs is the hallmark 

of steatosis while high ceramides levels have been implicated in the impairment of different 

metabolic processes, being considered as lipotoxic species (Kawano and Cohen 2013; Kurz et 

al. 2019).  

Finally, levels of pipecolic acid were increased only at the highest concentration and latest 

time point (48h). Significantly elevated levels of pipecolic acid have been found in plasma of 

patients with chronic liver disease (Fujita et al. 1999).  

In summary, the observed metabolomics alterations matched thoroughly with the 

nitrofurantoin toxicological mechanisms described in literature such as the de novo 

stimulation of GSH synthesis and the activation of oxidative stress and unfolded protein 

response pathways in low and middle concentrations, and the mitochondrial impairment and 

GSH depletion in the high concentrations. Metabolic profiles of cells exposed to low 

concentrations (C1, C2) revealed initial responses in metabolite changes upon nitrofurantoin 

exposure. The middle concentration (C3) reflected changes potentially indicative of an 

adaptive phenotype which progressed into a more severe hepatotoxic metabolic phenotype 

in the highest concentrations (C4, C5).  

Point of departure determination based on metabolomics data  

The establishment of human health reference values is a key outcome of chemical risk 

assessment. For in vitro data, the starting point for the determination of such values includes 

the derivation of a point of departure (POD) from dose–response modelling followed by an In 

Vitro–In Vivo Extrapolation (IVIVE) analysis to link an in vitro effect concentration with its in 

vivo counterpart. The successful application of IVIVE to transform in vitro concentrations into 

doses expressed in mg/kg bw, as derived in in vivo studies has been demonstrated in various 

publications (Abdullah et al. 2016; Louisse et al. 2017; Ning et al. 2019; Shi et al. 2020). This 

approach was also proposed recently by Ball et al, in which a more generalised framework for 

the transition from in vivo to NAM-based approaches was presented (Ball et al. 2022). Due to 

their multiparametric nature, Omics technologies allow to measure multiple endpoints and 

pathways simultaneously, representing a more informative alternative than traditional in 
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vitro studies. Here we explore a PCA-based approach using the complete set of previously 

annotated metabolites to derive a PoD. We selected the 48 hours’ time point since it showed 

the most pronounced concentration response resolution, and such is most conservative. As 

the PC1 accounts for the strongest response in metabolome changes for the different test 

concentrations, PC1 values for each replicate were plotted against the concentration tested. 

Then, a concentration response curve was fitted and the 95 % confidence interval for the 

curve was determined represented by the grey ribbon (Fig.5). To account for the variability of 

the controls, the 2.5 % and 97.5% quantiles were used, covering 95% of the data (dotted line 

in Fig. 5). The PoD was defined as the point where the 95% confidence interval of the curve 

diverges from the corresponding quantile of the controls for the first time. The PoD 

represented the onset of a global change in the metabolome. Above this concentration, early 

changes in the novo GSH synthesis pathway, energy and lipid metabolism become evident 

which increased at higher concentrations. Recent studies have used untargeted 

metabolomics data to derive PoD via benchmark dose (BMD) (Crizer et al. 2021b; Malinowska 

et al. 2023). These approaches have been based on BMD calculation for single features and 

lack comprehensive metabolite annotations which could hamper data interpretation.  Here 

we propose an alternative way on how to derive mechanistic-anchored PoD based on the 

complete set of biological data obtained from metabolomics experiments. Both methods 

provide a biologically based starting point that can be used to transform the PoD 

concentration by means of IVIVE into a reference value in expressed in mg/kg bw for human 

health risk assessment. The advantage of using a broad targeted approach with annotated 

metabolites is that only with this knowledge adverse outcome pathways can be identified and 

that an attempt can be made to discriminate between non adverse (adaptive) responses and 

adverse effects. Differentiation between adverse effects and adaptive responses are a critical 

consideration for the broad implementation of NAM´s and in particular for multiparametric 

Omics data. Recently, ECETOC has published a paper on their workshop about Omics 

threshold on non-adversity with particular emphasis on the determination of PoD (Gant et al. 

2023). 

Adverse responses are considered changes that likely result in impairments of functional 

capacity, impairments of the capacity to compensate for additional stress or increase the 

susceptibility to other influences (Keller et al. 2012). Although it is not the purpose of this 
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paper to derive such a value for nitrofurantoin, we believe that using a PC1 approach, takes 

into account the multiparameter nature of Omics data and is considered more robust than 

single parameter data. However, further research is needed to identify (groups of) 

metabolites that are representative of an adverse effect, so that these can be used to derive 

a PoD for adverse effects and to extrapolate this value into relevant in vivo concentrations for 

risk assessment.  

Recovery studies, for example, can be introduced to further characterize adversity in in vitro 

studies. It is acknowledged that approaches solely based on biological responses will be 

conservative, and as such will not underestimate the characterization of hazard and can be 

used in a tiered approach.   
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Fig 5. Point of departure (PoD) derivation from metabolomics data. a) PoD derivation workflow, b) Nitrofurantoin PoD. 

Global metabolite changes as estimated by principal component analysis (PCA) exhibit exposure concentration dependency. 

For the PoD derivation, a concentration-dependent response was fitted based on PC1 values obtained from the PCAs of 

48 hours nitrofurantoin treated cells at five concentrations. PC1 values for each sample were plotted against the test 

concentration and a 3-parameter log-logistic model was fitted through the data. A confidence interval of 95 % was used for 

the dose-response curve (denoted by the grey ribbon). The spread of controls is marked by the horizontal dashed lines, which 

represent the 2.5 % and 97.5 % quantiles; the mean is represented as horizontal solid line. The point of departure (PoD), 

marked by a vertical solid line, marks the concentration at which the confidence interval of the curve surpasses the 

corresponding quantile of the controls for the first time.  
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Conclusion  

Recent investigations have shown the potential of applying high throughput untargeted 

metabolomics approaches to derive hepatotoxicity-related PoD. However, lack of metabolite 

identification, a characteristic of untargeted methods, challenges the biological 

interpretations of the results hampering the assessment of the relevance and applicability of 

these data in safety assessment. In the present study, we have implemented a high-

throughput targeted metabolomics platform (covering metabolites from relevant biological 

pathways) and showed the suitability of the system to elucidate metabolic dynamics over 

time and concentration to provide a mechanistic-anchored approach to derive and interpret 

dose and time response metrics from metabolomics data. Both PCA and univariate analysis 

evidenced clear metabolome-based time and concentration response effects. Mechanistic 

information allowed to track the differential activation of cellular pathways indicative of early 

adaptive and hepatotoxic response. At low concentrations, effects were seen mainly in the 

energy and lipid metabolism, in the mid concentration the activation of the antioxidant 

cellular response was evidenced by increased levels of GSH and metabolites from the de novo 

GSH synthesis pathway. At the highest concentrations, the depletion of GSH, accumulation of 

essential amino acids, ceramides and pipecolic acid together with alternations reflective of 

mitochondrial impairments, were indicative of a hepatotoxic response. Our results were in 

line with the broad range of reported concentration-dependent effects of nitrofurantoin. In 

addition, effects of nitrofurantoin exposure on the lipid metabolism, which to our knowledge 

have not yet been documented in the literature, were observed. After confirming the 

mechanistic relevance of the data, we proposed an alternative way to derive metabolomics-

based PoD by PCA using the whole set of measured metabolite profiles at each concentration. 

This approach allows to obtain values from the entire dataset and to derive PoDs that can be 

mechanistically anchored to established key events. This study demonstrates a very good 

sensitivity of the high throughput in vitro metabolomics method to explore mechanisms of 

hepatoxicity, and dynamics progression to potential adversity. However, further studies are 

needed in order to define solid parameters for adversity in vitro. Importantly, our work 

proposes a workflow for PoD derivation that offers the possibility of obtaining mechanistic 

information and therefore serves to build trust in implementing metabolomics data in risk 

assessment. Follow up investigations on the integration of these data into in vitro to in vivo 
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extrapolations models (IVIVE) and on the characterization of adaptive vs adverse responses 

are granted. In the absence of clear guidance to discriminate between adaptive/non-adverse 

changes and adverse effects, using initial biological responses is a conservative approach 

which can be used in a tiered system. 

This method can be extended to further cell lines and iPSCs for the investigation of different 

organ toxicities and is suitable for a wide range of next generation risk assessment 

applications such as MoA investigation, read across and PoD derivation that demand rapid, 

cost effective and multiparametric high throughput analysis.   
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Supplementary information  

Suppl Fig. 1 Cytotoxicity and cell viability range finder for dose selection. (a) Cell viability ATP content-based assay 
(CellTiter-Glo®) and (b) membrane impermeable DNA-binding dye-based cytotoxicity assay (CellTox™ Green) n=6. Values 
are presented as percentage of vehicle controls (VC) for CellTiter-Glo® and as percentage of positive control (PC) (lysis 
buffer) for CellTox™ Green. 
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Suppl. Fig.2   Cell viability and cytotoxicity testing in metabolomics experiments. Cell viability ATP content-based assay 
(CellTiter-Glo®) and membrane impermeable DNA-binding dye-based cytotoxicity assay (CellTox™ Green) were carried out 
in parallel with metabolomics experiments in plates handled and treated exactly as the ones used for metabolite profiling. 
n=6. a) 3h, b) 6h, c)24h, d) 48h. Values are presented as percentage of vehicle controls (VC) for CellTiter-Glo® and as 
percentage of positive control (PC) (lysis buffer) for CellTox™ Green. Bezafibrate 1000µM was used as a positive control in 
each experiment. 
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Suppl. Fig .3 Cell confluence during 48h of nitrofurantoin exposure at different concentrations. HepG2 were exposed for 
48h to five different cocentrations of nitrofurantoin (C1:7.5µM, C2:15µM, C3:30µM, C4:60µM, C5:120µM) Cell confluence 
was minitored in realtime during the time of the assay.  VC: vehivle control (0.5% DMSO), bezafibrate 100µM was used as a 
possitive control. n=6. Grey ribbon represents the confidence interval for each curve.  

 

Suppl. Fig 4 Measured metabolite classes. Pie chart of the number of metabolites measured per ontology class. A total of 
256 unique analytes were measured in this study.  
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Suppl. Fig.5 Experimental variability and reproducibility. the variance of every log-transformed metabolite for both 
pooled samples (technical replicates) and control samples was calculated. These variances were back transformed to linear 
scale, yielding a relative standard deviation (RSD). 

 

Time point Pools Controls 

03 h 9.2% 26.3% 

06 h 10.0% 23.5% 

24 h 9.7% 24.6% 

48 h 10.3% 27.8% 

 

Suppl Fig. 6 Enrichment analysis of significantly altered metabolites by ontology class after nitrofurantoin treatment. The 
distribution of the 256 measured metabolites across the ontology classes is provided in the column “# metabolites”. The 
number of metabolite changes are shown for each metabolite ontology class. Numbers yellow represent that a treatment 
caused a significant (p-value<0.05) enrichment in an ontology class. C1 to C5: nitrofurantoin concentrations. a) changes over 
time, b) over concentration. 

a) 
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b) 

 

Suppl Fig. 7 Metabolome changes induced by nitrofurantoin treatment. Heatmap of statistically significantly (p<0.05) 
altered metabolites after nitrofurantoin treatment. Red represents significantly upregulated metabolites and blue 
represents significantly downregulated metabolites as compared to controls. (n=6 per condition). a) individual metabolite 
changes over time, b) individual metabolite changes over concentration. 

a)  

3h 6h 24h 48h C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Metabolite Class # Metabolites

Amino acids 15 9 5 4 10 9 6 0 2 4 5 1 7 7 9 0 11 4 9 15 4 2 11 8 15

Amino acids related 15 8 7 5 13 4 2 2 1 4 6 0 6 6 7 1 10 5 3 7 8 7 11 6 14

Carbohydrates and related 2 1 1 0 2 2 1 0 1 0 1 0 1 2 2 1 2 0 0 0 1 1 2 0 2

Energy metabolism and related 13 10 9 7 8 4 4 4 3 6 9 4 8 8 10 2 5 8 7 12 7 7 10 10 12

Nucleobases and related 4 0 1 3 2 0 0 0 1 0 1 0 1 0 1 0 0 1 1 1 3 0 0 1 3

Vitamins, cofactors and related 8 4 5 2 3 2 1 1 0 1 4 0 4 4 4 0 6 1 2 5 4 3 5 1 6

Acylglycerols 17 3 10 14 13 1 1 8 10 11 7 5 9 8 12 4 15 11 12 16 11 4 12 12 11

Glycerophospholipids 34 19 22 26 28 1 2 1 3 11 1 1 2 5 13 1 11 2 21 29 8 12 24 29 29

Lysoglycerophospholipids 27 15 21 19 24 9 4 1 3 8 0 5 5 4 7 1 14 4 10 13 6 10 13 20 21

Sphingolipids 34 8 16 23 25 2 1 2 2 16 0 1 1 3 17 0 8 5 17 28 2 3 8 20 24

Cholesterol and related 10 7 8 9 2 1 0 0 7 7 0 0 5 1 6 2 10 8 5 10 0 4 7 8 9

Miscellaneous lipids 1 0 0 1 1 0 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 1

Miscellaneous 1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 0 1

Unknown 75 26 36 41 59 10 10 7 15 25 15 9 21 23 40 9 28 22 49 60 28 27 49 50 59

Total # Metabolites 256 110 142 155 191 45 33 27 49 93 49 26 72 72 128 21 121 71 136 198 83 82 154 166 207

48hBezafibrate 3h 6h 24h

Nitrofurantoin C1 Nitrofurantoin C2 Nitrofurantoin C3 Nitrofurantoin C4 Nitrofurantoin C5

3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h

Metabolite Class # Metabolites

Amino acids 15 9 5 4 10 9 5 0 4 6 1 11 2 0 7 4 11 2 7 9 8 4 9 15 15

Amino acids related 15 8 7 5 13 4 6 1 8 2 0 10 7 2 6 5 11 1 6 3 6 4 7 7 14

Carbohydrates and related 2 1 1 0 2 2 1 1 1 1 0 2 1 0 1 0 2 1 2 0 0 0 2 0 2

Energy metabolism and related 13 10 9 7 8 4 9 2 7 4 4 5 7 4 8 8 10 3 8 7 10 6 10 12 12

Nucleobases and related 4 0 1 3 2 0 1 0 3 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 3

Vitamins, cofactors and related 8 4 5 2 3 2 4 0 4 1 0 6 3 1 4 1 5 0 4 2 1 1 4 5 6

Acylglycerols 17 3 10 14 13 1 7 4 11 1 5 15 4 8 9 11 12 10 8 12 12 11 12 16 11

Glycerophospholipids 34 19 22 26 28 1 1 1 8 2 1 11 12 1 2 2 24 3 5 21 29 11 13 29 29

Lysoglycerophospholipids 27 15 21 19 24 9 0 1 6 4 5 14 10 1 5 4 13 3 4 10 20 8 7 13 21

Sphingolipids 34 8 16 23 25 2 0 0 2 1 1 8 3 2 1 5 8 2 3 17 20 16 17 28 24

Cholesterol and related 10 7 8 9 2 1 0 2 0 0 0 10 4 0 5 8 7 7 1 5 8 7 6 10 9

Miscellaneous lipids 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 0 1 0 0 1 1

Miscellaneous 1 0 1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 1

Unknown 75 26 36 41 59 10 15 9 28 10 9 28 27 7 21 22 49 15 23 49 50 25 40 60 59

Total # Metabolites 256 110 142 155 191 45 49 21 83 33 26 121 82 27 72 71 154 49 72 136 166 93 128 198 207

Bezafibrate 
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Time point

Ontology Concentration C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Amino acids Glutamate 0,89 0,94 1,03 1,09 1,37 1,05 1,04 1,21 1,24 1,31 1,01 1,16 1,13 1,22 0,71 1,09 1,09 1,21 1,09 0,52

Amino acids Phenylalanine 0,93 0,86 1,06 0,9 0,99 1,11 0,9 1,26 1,21 1,32 0,95 1,14 1,12 1,25 1,82 1,12 0,99 1,21 1,28 1,98

Amino acids Phenylalanine 1,22 1,37 0,87 1,77 1,08 0,31 1,08 0,44 0,33 0,34 0,93 2,09 1,13 1,26 1,87 1,75 1,37 2,05 1 1,71

Amino acids Tryptophan 0,83 0,94 1,29 0,99 1,06 1,33 1 1,46 1,23 1,33 1,37 0,33 1,17 2,16 3 0,7 0,48 0,74 2,76 3,14

Amino acids Tyrosine 0,78 0,8 1,13 0,92 0,87 1,29 1,02 1,57 1,43 1,3 0,92 1,31 1,05 1,1 1,48 1,13 1,09 1,22 1,03 1,41

Amino acids Arginine 0,68 0,7 1,14 0,85 0,93 1,62 1,01 1,94 1,78 1,57 0,86 2,13 1,02 0,99 1,41 1,75 1,41 1,91 1,02 1,74

Amino acids Asparagine 0,87 0,93 0,96 0,94 0,93 1,12 0,95 1,08 1,12 1,15 0,91 1,16 0,99 1,06 1,23 1,1 1,01 1,13 1,01 1,2

Amino acids Glutamine 0,89 0,89 0,93 0,97 0,86 1,04 0,91 1,09 1,03 1,03 0,95 1,24 0,93 1,11 1,32 1,24 1,05 1,54 1,19 2,27

Amino acids Isoleucine 0,91 0,96 1,03 1,03 1,01 1,06 0,96 1,19 1,24 1,15 0,94 1,17 1,19 1,36 2,01 1,11 0,99 1,23 1,37 2,17

Amino acids Isoleucine 0,86 0,92 1,17 1,08 1,06 1,33 0,98 1,43 1,43 1,35 0,96 0,72 1 1,09 1,43 0,55 0,93 0,72 1,19 2

Amino acids Leucine 0,82 0,85 1,15 1,01 1,01 1,29 0,98 1,42 1,36 1,29 1,09 0,89 1,15 1,48 1,99 1,09 0,9 1,39 1,49 2,4

Amino acids Valine 0,85 0,83 1,19 0,89 0,77 1,13 0,99 1,28 1,46 1,23 1,06 1,43 1,36 1,03 1,66 1,12 1,16 1,49 1,45 2,1

Amino acids Proline 0,91 0,92 0,93 0,91 0,7 1,05 0,93 1,05 0,86 0,77 1,13 1,17 0,93 0,87 0,8 0,94 0,97 0,89 0,7 0,78

Amino acids Threonine 0,89 0,9 0,95 0,95 0,88 1,1 0,95 1,09 1 0,97 0,95 1,13 0,98 1,06 1,13 1,15 0,99 1,27 1,05 1,41

Amino acids Taurine 1,05 1,07 1,05 1,05 1,03 1,04 1 1,01 0,94 0,67 0,97 0,8 0,69 0,62 0,42 0,92 0,85 0,89 0,9 0,5

Amino acids related 2-Methylserine 0,86 0,88 0,9 0,94 0,87 1,13 0,95 1,12 1,04 1,09 1,03 1,27 1,1 1,21 1,29 1,28 1,11 1,38 1,04 1,46

Amino acids related N-Acetylaspartate 1,06 1,05 1,1 1,12 0,84 1,04 1,13 1 0,97 0,64 0,97 0,78 0,57 0,33 0,09 0,82 0,77 0,42 0,24 0,08

Amino acids related N-Acetylserine 0,94 0,96 0,9 0,84 0,91 1,19 1,14 1,23 1,17 0,96 1,11 1,2 1,16 1,03 1 1,24 1,01 0,75 0,74 0,95

Amino acids related N-Phenylacetylglycine 0,9 1,04 1,22 1,06 1,06 1,28 1,03 1,35 1,5 1,1 1,07 1,78 1,05 0,92 0,96 1,55 1,23 1,65 0,84 1,43

Amino acids related Ketoleucine 0,92 0,93 1,22 1,19 1,28 1,24 1,1 1,51 1,56 1,38 1,03 1,52 0,92 1 1,12 1,03 0,93 1,25 0,94 1,16

Amino acids related Methionine sulfoxide 0,83 0,87 1,17 0,97 0,98 1,38 1 1,26 1,54 1,49 0,9 2,16 1,17 1,1 1,54 1,57 1,27 1,78 1,13 1,82

Amino acids related Pipecolic acid 0,98 0,93 0,94 0,99 0,88 1,09 1,49 0,84 0,96 1,04 0,88 0,82 0,92 1,52 2,43

Amino acids related Creatine 0,99 1,03 1,02 1,06 1,21 0,97 1,06 0,98 1 0,8 0,93 0,79 0,67 0,55 0,41 0,96 0,89 0,79 0,64 0,71

Amino acids related Creatinine 0,95 0,95 1,11 1,05 1,08 0,95 0,92 1,21 0,98 0,87 0,93 1,06 0,95 0,9 1 1,05 0,85 1,06 0,86 1,25

Amino acids related Creatinine 0,78 0,85 1,08 1,14 0,87 1,2 0,98 1,44 1,58 1,1 1,02 1,74 1,01 1,04 1 1,63 1,65 2,22 1,18 1,55

Amino acids related Carnosine 0,73 0,83 1,14 0,95 0,91 1,58 0,98 2,21 1,65 1,61 0,82 1,82 1,16 0,86 0,98 2,02 1,57 2,17 1,05 1,6

Amino acids related Cysteinylglycine 0,93 0,98 1,01 1,18 1,17 0,85 1,07 0,93 1,03 1,07 0,98 1,5 1,17 0,99 0,8 2,18 1,7 1,95 0,91 0,42

Amino acids related S-Adenosylhomocysteine 0,82 0,97 0,98 1,08 0,8 1,34 1,35 1,24 1,19 0,74 0,91 0,72 0,88 0,84 0,58 0,72 0,65 0,59 0,62 0,3

Amino acids related Ophthalmic acid 0,92 0,98 1,04 1 1,32 1,17 1,14 1,42 1,43 1,79 1,15 0,96 1,23 1,18 0,81 1,01 0,82 0,82 0,78 0,55

Amino acids related 5-Hydroxytryptophan 1,04 1,03 1,05 1,05 1,02 1,04 1,01 1 1,03 0,96 1,11 1,13 1,03 1,03 0,91 1,05 0,98 1,01 0,8 0,8

Carbohydrates and related Sorbitol 0,71 0,71 1,12 0,83 0,87 1,12 0,88 1,2 1,25 1,19 0,85 1,4 1,08 1,03 1,24 1,13 1,12 1,61 1,17 1,79

Carbohydrates and related Sorbitol 0,63 0,76 1,16 0,8 0,88 1,47 1,04 1,85 1,8 1,39 0,85 1,75 1,14 1,01 1,09 1,31 1,26 1,65 1,17 1,83

Energy metabolism and related Fumarate 1,18 1,09 1,07 0,97 0,46 0,67 0,84 0,5 0,58 0,31 0,74 0,89 0,57 0,42 0,36 0,6 0,59 0,66 0,28 0,59

Energy metabolism and related Malate 0,8 0,78 0,91 0,84 0,19 0,46 0,8 0,38 0,33 0,12 0,66 0,6 0,52 0,33 0,15 0,59 0,62 0,41 0,29 0,12

Energy metabolism and related Carnitine 1,07 1,07 1,11 1,11 0,89 1,08 0,99 0,99 0,96 0,77 1,03 0,99 0,83 0,72 0,43 1,22 0,99 0,92 0,64 0,28

Energy metabolism and related Hexadecanoylcarnitine 1,02 1,11 1,01 0,98 0,9 1,2 1,06 1,17 1,07 1,01 1,07 0,94 0,91 0,97 2,16 1,04 1,18 1,47 2,04 5,24

Energy metabolism and related Hexanoylcarnitine 1,03 1,02 1,17 1,24 1,06 1,3 1,26 1,15 1,19 1,04 1,19 0,94 0,62 1,16 1,27 1,34 1,07 1,05 1,11 0,35

Energy metabolism and related O-Acetylcarnitine 0,57 0,53 0,64 0,63 1,54 0,63 0,64 0,77 0,84 1,34 0,57 0,72 0,59 0,68 0,72 0,9 0,78 0,79 0,76 0,78

Energy metabolism and related Octadecenoylcarnitine 1,43 1,16 1,11 1,06 0,87 1,23 1,24 1,08 1,09 0,83 1,03 0,98 0,91 1,09 1,91 1,17 1,08 1,38 2,44 4,43

Energy metabolism and related Propionylcarnitine 1,03 1,38 1,67 1,8 1,66 1,4 1,88 2,37 2,5 0,64 1,47 2,49 2,81 1,66 0,47 1,33 1,17 1,68 1,64 1,07

Energy metabolism and related Tetradecanoylcarnitine 1,08 1,06 0,88 0,91 0,69 1,06 1,01 0,98 0,89 0,65 1,02 0,86 0,66 0,83 1,14 0,91 0,89 0,72 1,04 1,86

Energy metabolism and related Choline 0,85 0,95 1,15 0,99 1,06 1,19 0,91 1,32 1,39 1,19 0,87 1,69 0,95 0,87 1,26 1,56 1,28 1,98 1,24 1,79

Energy metabolism and related Glucose-6-phosphate 1,01 1,04 0,99 1,21 0,96 0,76 0,98 0,75 0,84 0,66 1,03 0,81 0,87 1,02 0,52 0,56 0,67 0,45 0,62 0,3

Energy metabolism and related Glycerol-3-phosphate 1,11 1,32 0,93 1,35 0,83 0,69 1,06 0,65 0,8 0,69 0,73 0,59 0,99 1,67 2,32 0,64 0,74 0,71 2,29 1,9

Energy metabolism and related 3-Hydroxybutyrate 0,74 0,84 1,3 1,05 1,02 1,55 1,05 1,98 1,95 1,4 1,07 2,14 1,19 1,06 1,18 2,14 1,6 2,26 1,09 1,9

Nucleobases and related Adenosine monophosphate, cyclic (cAMP) 1,05 1,06 1,1 1,29 1,02 0,81 1,01 0,78 0,64 0,7 1,12 0,91 0,86 0,83 0,44 0,85 0,93 0,92 0,99 0,56

Nucleobases and related Guanine 1,16 1,03 1,02 1,45 0,72 0,58 0,66 0,92 0,7 0,66 0,84 1,03 1,42 1,41 1,42 0,64 0,89 0,9 1,29 1,73

Nucleobases and related 2'-Deoxycytidine 1,03 1,04 1,06 1,02 0,81 0,99 1,14 1,02 0,78 0,42 1,11 1,18 0,54 1,6 1,05 1,67 1,23 0,94 0,39 0,33

Nucleobases and related Uridine 0,91 1,38 1,06 0,89 0,81 0,9 0,74 0,88 1,12 0,88 1,09 1,06 0,98 1,04 1,17 0,58 0,79 0,7 0,97 1,16

Vitamins, cofactors and related Pantothenic acid 0,95 0,97 1,08 1,05 0,98 1,1 1,04 1,11 1,11 1,02 1,11 1,16 1,02 0,99 0,8 1,09 0,97 0,98 0,83 0,7

Vitamins, cofactors and related Coenzyme Q10 1,05 0,99 0,84 0,78 0,79 0,96 1,02 0,96 1,03 0,96 1,17 0,93 0,94 0,74 0,53 0,72 0,96 0,61 0,74 0,41

Vitamins, cofactors and related Coenzyme Q9 1,09 1,01 1,13 0,9 1,2 0,89 1,02 1,08 1,03 1,03 1,03 0,74 1,1 1,03 0,82 0,95 1,08 1,14 0,88 0,81

Vitamins, cofactors and related Glutathione (GSH) 0,84 1,01 1,06 1,21 1,11 1,05 1,19 1,2 1,14 1,33 1,28 1,02 1,35 1,73 1,47 0,84 0,86 1 1,24 0,72

Vitamins, cofactors and related Nicotinamide 0,85 0,95 1,21 1,03 1,08 1,27 0,98 1,35 1,35 1,14 0,78 1,36 0,97 0,96 1,22 1,19 1,19 1,64 1,08 2,23

Vitamins, cofactors and related Nicotinamide 0,69 0,74 1,26 0,95 0,87 1,58 0,94 1,99 1,88 1,55 0,93 1,95 1,07 0,86 1,1 1,88 1,52 2,03 0,95 1,48

Vitamins, cofactors and related Nicotinamide adenine dinucleotide (NAD) 1,15 1,06 1,08 1,09 1,03 0,82 0,94 0,92 0,83 0,7 0,95 0,66 0,97 1,1 0,8 0,6 0,69 0,57 0,88 0,65

Vitamins, cofactors and related Thiamine 0,79 0,86 1,14 0,95 1 1,29 0,97 1,57 1,47 1,43 0,93 1,63 1,06 0,96 1,09 1,6 1,31 1,84 0,94 1,39

Acylglycerols Triacylglycerol (C30:0,C18:1) 1,03 0,95 0,86 0,75 0,64 0,94 0,95 0,83 0,83 0,81 0,97 0,67 0,68 0,51 0,45 0,71 0,79 0,52 0,54 0,77

Acylglycerols Triacylglycerol (C32:0,C16:0) 0,95 0,88 0,78 0,74 0,63 0,8 0,81 0,72 0,71 0,59 0,82 0,53 0,51 0,37 0,49 0,78 0,89 0,61 0,58 1,33

Acylglycerols Triacylglycerol (C32:0,C16:1) 0,96 0,99 0,81 0,73 0,58 0,78 0,83 0,72 0,68 0,6 0,81 0,53 0,51 0,36 0,43 0,8 0,85 0,52 0,56 1,49

Acylglycerols Triacylglycerol (C34:0,C16:0) 0,95 0,93 0,77 0,66 0,64 0,85 0,82 0,79 0,75 0,72 0,83 0,62 0,61 0,5 0,69 0,8 0,86 0,76 0,96 2,35

Acylglycerols Triacylglycerol (C34:0,C18:1) 1,03 0,94 0,78 0,69 0,69 0,84 0,85 0,81 0,87 0,85 0,92 0,74 0,72 0,57 0,78 0,7 0,81 0,75 0,95 1,7

Acylglycerols Triacylglycerol (C34:1,C16:0) 0,95 0,92 0,89 0,83 0,73 0,86 0,9 0,81 0,81 0,74 0,87 0,58 0,61 0,45 0,54 0,73 0,81 0,59 0,59 1,06

Acylglycerols Triacylglycerol (C34:1,C18:1) 1 0,97 0,97 0,97 0,94 0,99 0,99 0,96 0,97 0,93 0,95 0,83 0,79 0,73 0,75 0,85 0,87 0,74 0,78 0,95

Acylglycerols Triacylglycerol (C34:1,C18:3) 1,05 0,99 0,93 0,76 0,82 1 1,05 1,02 1,05 1,22 0,97 0,82 1 1,05 1,77 0,71 0,9 1,04 1,79 4,06

Acylglycerols Triacylglycerol (C34:2,C18:0) 0,99 0,97 0,9 0,87 0,83 0,95 0,96 0,91 0,91 0,93 0,91 0,76 0,78 0,72 1,01 0,76 0,91 0,88 1,14 3,01

Acylglycerols Triacylglycerol (C34:2,C18:1) 1,1 0,98 0,88 0,77 0,78 0,9 1 0,9 0,95 1,01 0,88 0,72 0,79 0,67 0,69 0,67 0,76 0,57 0,66 0,88

Acylglycerols Triacylglycerol (C36:1,C18:1) 1 0,96 0,81 0,71 0,69 0,95 0,96 0,89 0,88 0,93 1,09 0,77 0,83 0,67 0,79 0,74 0,83 0,7 0,87 1,22

Acylglycerols Triacylglycerol (C36:1,C18:2) 1 0,93 0,81 0,77 0,74 0,96 0,94 0,96 1,01 1,05 1,02 0,86 0,96 1,01 1,57 0,76 0,89 0,99 1,57 3,58

Acylglycerols Triacylglycerol (C36:2,C18:1) 1,02 1,02 0,98 0,96 0,93 1,02 1,02 1,04 1,02 0,98 0,97 0,8 0,9 0,83 0,83 0,79 0,84 0,78 0,82 0,93

Acylglycerols Triacylglycerol (C36:3,C18:1) 1,16 1,02 0,98 0,8 0,85 0,95 1,06 1,01 1,07 1,16 1,1 0,88 1,05 1,1 1,44 0,67 0,82 0,91 1,29 2,72

Acylglycerols Triacylglycerol (C36:3,C18:2) 1,12 1 0,87 0,72 0,72 0,96 1,1 1,11 1,14 1,2 0,98 0,97 1,13 1,18 1,78 0,7 0,9 1,07 1,73 3,82

Acylglycerols Triacylglycerol (C36:4,C16:0) 1,11 0,98 0,81 0,72 0,71 0,97 1,01 0,98 0,96 1,14 0,93 0,88 0,97 1,05 1,85 0,73 0,98 1,11 2 6,44

Acylglycerols Triacylglycerol (C36:4,C18:0) 1,06 1,03 0,95 0,84 1,06 0,96 0,97 1 0,89 1,04 0,86 0,92 0,9 1,12 2,42 0,97 1,03 1,57 2,96 15,1
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Glycerophospholipids Phosphatidylcholine (C32:0) 1,07 0,99 0,97 0,97 0,88 1,04 0,96 0,98 0,92 0,79 1 0,88 0,89 0,87 0,58 0,96 0,93 0,79 0,66 0,33

Glycerophospholipids Phosphatidylcholine (C34:0) 0,95 0,99 0,95 1 0,94 0,99 0,98 0,94 0,93 0,87 0,97 0,93 0,95 1,04 1 1,07 1,08 1,16 1,22 1,17

Glycerophospholipids Phosphatidylcholine (C34:1) 1 0,98 1 0,98 0,89 1,01 1 0,96 0,98 0,84 1,06 0,96 0,95 0,88 0,63 0,97 0,92 0,76 0,66 0,38

Glycerophospholipids Phosphatidylcholine (C34:2) 0,98 0,99 1,06 1,02 0,85 1,01 1,09 1,06 1,01 0,92 0,95 0,84 0,89 0,83 0,49 0,93 0,9 0,66 0,6 0,31

Glycerophospholipids Phosphatidylcholine (C34:3) 1,08 1,07 1,14 1,08 0,93 0,99 1,05 0,99 1,06 0,88 1,08 0,9 1,08 1,05 0,63 0,95 0,94 0,84 0,73 0,4

Glycerophospholipids Phosphatidylcholine (C36:0) 0,92 0,98 0,98 0,9 0,93 1,04 0,95 0,96 0,96 0,97 1,02 1 0,94 1,06 0,93 1,08 1,08 1,29 1,24 0,97

Glycerophospholipids Phosphatidylcholine (C36:1) 0,96 1,04 1 1,02 0,97 1 1 1,01 0,96 0,91 1 0,91 0,92 0,94 0,81 0,97 0,94 0,89 0,82 0,62

Glycerophospholipids Phosphatidylcholine (C36:2) 0,97 1,08 1,06 1 0,87 1,06 1,06 1,01 0,99 0,89 1,03 0,91 0,88 0,8 0,46 0,88 0,88 0,64 0,53 0,25

Glycerophospholipids Phosphatidylcholine (C36:3) 0,98 1,06 1,05 1,05 0,91 1,03 1,03 1,02 1,02 0,89 0,98 0,86 0,94 0,98 0,78 0,93 0,94 0,84 0,83 0,47

Glycerophospholipids Phosphatidylcholine (C36:4) 1,02 0,95 1,02 1,02 1 0,98 0,97 0,96 0,96 0,96 0,98 0,93 0,95 1,13 1,28 1,04 1,01 1,18 1,49 1,5

Glycerophospholipids Phosphatidylcholine (C36:5) 1,02 1,01 1,05 1,06 1,04 1,02 1,04 1,01 0,93 0,98 0,95 0,93 0,97 1,16 1,11 1,02 1,02 1,13 1,21 0,76

Glycerophospholipids Phosphatidylcholine (C38:4) 0,97 0,97 1,01 1,04 1 1,02 1,02 1 1 1,01 1,02 0,96 1 1,05 1,4 0,99 0,93 1,13 1,55 2,09

Glycerophospholipids Phosphatidylcholine (C38:5) 0,96 0,97 0,99 1,01 1,06 1,04 1,07 1 1,04 1,15 1,03 1 1,11 1,32 1,26 1,01 1 1,2 1,33 1,27

Glycerophospholipids Phosphatidylcholine (C38:6) 1 1,06 1,06 1,01 1,07 1,07 1,03 1,01 1 1 1,06 1 1,02 1,07 0,81 0,95 0,92 0,88 0,72 0,45

Glycerophospholipids Phosphatidylcholine (C40:6) 0,99 1,03 1,1 1,05 1,13 1,07 1,09 1,03 1,18 1,29 1 1,09 1,11 1,33 1,2 1,03 1,03 1,11 1,08 0,9

Glycerophospholipids Phosphatidylcholine (C40:7) 1,04 1,04 1,07 1,08 1,12 1,13 1,11 1,1 1,14 1,19 1,06 1,05 1,07 1,22 0,69 0,92 0,91 0,78 0,62 0,26

Glycerophospholipids Phosphatidylcholine (C40:8) 1,04 1,06 1,09 1,04 1,06 1,03 1,07 1,05 1,14 1,12 1,16 1,05 1,21 1,26 0,86 0,95 0,94 0,99 0,96 0,8

Glycerophospholipids Phosphatidylethanolamine (C32:0) 0,93 0,91 0,96 0,89 0,69 0,9 0,96 0,82 0,85 0,61 0,94 0,85 0,85 0,73 0,42 0,93 0,97 0,8 0,64 0,31

Glycerophospholipids Phosphatidylethanolamine (C34:0) 0,99 0,95 0,87 1 0,79 0,97 0,92 0,86 0,92 0,75 0,96 0,9 0,88 0,87 0,79 1 0,92 1,07 1,07 0,69

Glycerophospholipids Phosphatidylethanolamine (C34:1) 1,01 1,03 1,03 1 0,96 0,98 0,91 0,94 0,94 0,93 1,02 0,94 0,94 0,96 0,64 1,01 0,99 0,84 0,68 0,52

Glycerophospholipids Phosphatidylethanolamine (C34:2) 0,99 1,04 1 1,02 0,98 0,96 1,02 0,92 1,01 0,9 0,98 0,92 0,96 0,88 0,43 0,88 0,8 0,6 0,44 0,26

Glycerophospholipids Phosphatidylethanolamine (C36:0) 0,95 0,99 0,8 0,93 0,82 0,85 0,92 0,69 0,8 0,71 1,03 1,1 1,16 1,06 0,99 1,13 1,31 1,31 1,27 0,94

Glycerophospholipids Phosphatidylethanolamine (C36:1) 0,97 1 0,98 0,99 0,95 1,04 1,02 1,06 1,08 1,02 0,95 0,94 1,04 1,06 0,95 0,97 0,96 1,04 1,03 0,95

Glycerophospholipids Phosphatidylethanolamine (C36:2) 0,99 1,05 1,03 1,04 1 1,05 1,06 0,99 1,03 1,05 1,03 0,97 1,07 1,08 0,71 0,97 0,93 0,84 0,7 0,45

Glycerophospholipids Phosphatidylethanolamine (C36:3) 0,97 0,96 1 1,01 0,94 1,04 0,99 1,03 1,05 0,96 1,03 0,96 1,06 1,1 0,71 0,99 0,93 0,9 0,73 0,4

Glycerophospholipids Phosphatidylethanolamine (C36:4) 1,01 1,06 1,06 1,03 1 0,98 0,97 0,97 0,99 0,94 1 0,96 0,92 0,92 0,75 0,97 0,94 0,88 0,82 0,78

Glycerophospholipids Phosphatidylethanolamine (C38:3) 0,95 0,97 0,99 0,96 0,97 1 0,99 0,98 0,97 0,95 0,95 0,89 0,99 0,95 0,83 0,96 0,97 1,04 0,99 0,84

Glycerophospholipids Phosphatidylethanolamine (C38:4) 0,98 0,98 1 1,01 1,01 1 0,99 0,96 0,98 0,92 1,02 1,05 1,07 1,16 1 1,01 0,97 1,12 1,23 0,94

Glycerophospholipids Phosphatidylethanolamine (C38:5) 0,97 1,07 1,09 1,11 0,97 0,96 1,06 1 1,01 0,95 1,02 0,95 0,96 0,94 0,7 0,98 0,95 0,96 0,88 0,53

Glycerophospholipids Phosphatidylethanolamine (C38:6) 1,04 0,99 1,04 1,05 1 1,06 1,03 1,02 1 0,95 0,94 0,94 0,85 0,86 0,58 0,94 0,89 0,77 0,61 0,32

Glycerophospholipids Phosphatidylethanolamine (C40:6) 0,91 0,99 0,99 0,99 1 1,08 1,01 1 1,03 0,99 1 0,99 0,99 1,04 0,77 1,03 0,98 0,96 0,88 0,5

Glycerophospholipids Phosphatidylethanolamine (C40:7) 1,05 1,04 1,07 1,1 0,95 1,04 1,03 1,03 1 0,9 1,05 0,94 0,98 0,94 0,44 0,97 0,92 0,7 0,55 0,14

Glycerophospholipids Choline plasmalogen (C36:4) 0,95 1 1,11 1,03 1,09 1,07 1,01 1,07 1 1,09 0,93 0,97 1,09 1,28 1,99 1,09 1,17 1,62 2,4 2,77

Glycerophospholipids Choline plasmalogen (C36:5) 1,03 1,03 1,01 1,07 1,08 0,98 1,05 1,05 1,07 1 1,04 1,07 1,1 1,54 2,12 1,22 1,17 1,74 2,6 3,03

Lysoglycerophospholipids Lysophosphatidylcholine (C14:0) 0,96 1,07 1,04 1 0,95 1,15 1,09 1,12 1,19 0,92 0,98 1,03 1 0,71 0,41 0,94 1,03 0,76 0,67 1

Lysoglycerophospholipids Lysophosphatidylcholine (C15:0) 0,75 0,81 0,85 0,82 0,73 1,01 0,86 1,04 1,04 0,88 0,99 1,22 1,1 1,04 0,94 1,09 1,15 1,14 1,79 2,46

Lysoglycerophospholipids Lysophosphatidylcholine (C16:0) 0,88 0,88 1,04 0,98 0,83 0,97 0,94 1,08 0,96 0,87 1,01 1,07 0,94 0,81 0,76 1,09 1,14 1,01 1,27 1,54

Lysoglycerophospholipids Lysophosphatidylcholine (C16:1) 1,09 1,07 1,09 1,08 0,84 1,05 1,08 1,05 1,06 0,82 1,05 1,26 1,08 1,07 0,83 1,16 1,1 1,01 0,68 0,57

Lysoglycerophospholipids Lysophosphatidylcholine (C17:0) 0,87 0,88 0,99 0,88 0,85 0,95 0,8 1,19 1,03 0,94 1,04 1,13 1,03 1 0,94 1,03 1,1 0,96 1,81 2,38

Lysoglycerophospholipids Lysophosphatidylcholine (C18:0) 0,87 0,92 1,05 0,99 0,87 0,99 0,92 1,17 1,06 1,1 1,02 1,16 1,04 1,08 1 1,25 1,32 1,15 2,11 2,84

Lysoglycerophospholipids Lysophosphatidylcholine (C18:0) 0,81 0,87 0,94 0,99 0,88 0,96 0,85 1,2 1,13 1,06 1,04 1,18 1,01 1 0,91 1,14 1,24 1,04 1,86 2,59

Lysoglycerophospholipids Lysophosphatidylcholine (C18:1) 0,89 0,93 1,03 0,97 0,86 1,01 0,95 1,17 1,09 0,87 1,03 1,13 0,99 0,86 0,63 1,03 1,13 0,93 1,15 1,47

Lysoglycerophospholipids Lysophosphatidylcholine (C18:2) 1,07 1,07 0,95 1,14 0,91 1,04 0,91 1,07 1,13 0,84 1,02 1,56 1,11 1,33 1,14 1,27 1,29 1,38 1 0,78

Lysoglycerophospholipids Lysophosphatidylcholine (C18:3) 1,1 1,15 1,12 0,84 0,83 1,26 1,04 1,34 1,23 1,05 1,33 1,07 1,2 1,25 1,01 0,93 1,08 0,9 0,99 1,07

Lysoglycerophospholipids Lysophosphatidylcholine (C19:0) 0,84 0,83 0,91 0,92 0,91 0,96 0,86 1,19 1,02 0,97 1,14 1,01 1,08 0,96 0,94 1,15 1,28 1,12 1,99 2,4

Lysoglycerophospholipids Lysophosphatidylcholine (C20:0) 0,9 0,98 1,09 1,13 0,94 0,99 0,8 1,07 1,03 0,96 1,06 1,05 1,03 0,94 0,93 1,13 1,22 1,14 1,66 1,94

Lysoglycerophospholipids Lysophosphatidylcholine (C20:1) 0,9 0,99 0,99 0,97 0,89 1,01 1,06 1,05 1,1 0,89 1,02 1,06 0,89 0,89 0,55 1 1,02 0,76 0,89 1,05

Lysoglycerophospholipids Lysophosphatidylcholine (C20:2) 0,84 0,81 0,92 0,83 0,8 1,05 1 1,17 1,06 1,03 1,08 1,25 0,99 1,1 0,79 1,15 1,14 1,07 1,14 1,57

Lysoglycerophospholipids Lysophosphatidylcholine (C20:3) 0,89 0,91 0,96 0,82 0,84 1 1,03 1,12 1,14 0,98 1 1,19 1,01 1,11 1,27 1,1 1,1 1,35 1,4 2,34

Lysoglycerophospholipids Lysophosphatidylcholine (C20:4) 0,94 1,18 1,24 1,11 0,91 0,9 0,97 1,01 1,08 1 0,94 1,56 1,33 1,43 2,51 1,21 1,47 1,78 1,73 1,51

Lysoglycerophospholipids Lysophosphatidylcholine (C20:5) 0,96 0,98 0,75 0,84 0,93 0,98 0,86 0,87 0,97 0,83 1,04 1,66 1,77 2,1 1,92 1,48 1,7 1,84 1,92 1,3

Lysoglycerophospholipids Lysophosphatidylcholine (C22:0) 0,91 0,98 1,02 1,04 0,88 1,14 1,05 1,13 1,27 1,07 1,08 1,08 1,15 1,23 1,14 1,25 1,07 1,66 1,51 1,31

Lysoglycerophospholipids Lysophosphatidylcholine (C22:5) 0,73 0,72 0,86 0,8 0,84 0,85 0,76 1,09 0,98 0,84 1,04 1,08 0,96 0,84 1 0,99 1,03 1,26 1,48 2,92

Lysoglycerophospholipids Lysophosphatidylcholine (C22:6) 0,91 0,89 0,99 0,91 0,91 1,02 0,89 1,07 1,08 1 0,96 1,14 1,14 1,06 1,04 1,19 1,21 1,4 1,24 1,98

Lysoglycerophospholipids Lysophosphatidylcholine (C24:0) 1,04 0,95 1,11 1,11 0,99 0,99 0,92 1,08 1,01 0,83 0,81 0,95 0,95 1,09 0,89 1,04 1,05 1,15 1,08 0,61

Lysoglycerophospholipids Lysophosphatidylcholine (C24:1) 0,95 0,95 1,12 0,97 0,87 1,04 1,11 1,05 1,05 0,93 1,02 1,06 1,15 1,06 0,94 0,97 1,01 0,98 0,88 0,4

Lysoglycerophospholipids Lysophosphatidylethanolamine (C16:0) 1,02 1,02 1,03 1,11 0,84 1,04 0,96 0,92 0,86 0,65 0,98 0,73 0,76 0,62 0,35 0,99 0,88 0,6 0,49 0,24

Lysoglycerophospholipids Lysophosphatidylethanolamine (C18:0) 0,95 1 0,95 1,09 0,82 0,95 0,91 0,96 0,9 0,73 1,12 0,89 0,93 0,8 0,62 1,05 1,1 0,98 0,84 0,49

Lysoglycerophospholipids Lysophosphatidylethanolamine (C18:1) 1 0,98 0,96 1,02 0,88 1,04 1,08 1,04 0,99 0,67 1,06 0,93 0,9 0,74 0,35 1,04 1,04 0,65 0,47 0,18

Lysoglycerophospholipids Lysophosphatidylethanolamine (C20:4) 1,07 1,2 1,07 0,99 1,25 0,87 0,99 0,85 1,08 0,68 1,08 1,43 1,19 1,25 1,83 1,42 1,25 1,42 1,06 1,38

Lysoglycerophospholipids Lysophosphatidylethanolamine (C22:6) 1,01 1,02 1,14 0,87 0,9 1 0,98 0,95 1,03 0,83 1,16 1,75 1,31 0,91 0,78 0,91 1,11 1,44 0,89 0,63

Sphingolipids Ceramide (d16:1,C24:0) 0,89 0,86 1,02 0,93 1,23 0,99 0,89 1,11 0,85 1,12 0,77 0,8 0,81 0,96 1,18 1,13 1,14 1,26 0,93 0,89

Sphingolipids Ceramide (d17:1,C24:0) 1,3 1 0,95 1 1,27 0,99 0,93 0,99 1,07 1,52 0,83 0,93 1,03 1,01 1,4 1,03 1,05 1,07 1,01 1,12

Sphingolipids Ceramide (d18:1,C16:0) 1,03 0,99 1,18 1,14 1,3 1,09 0,99 1 1,07 1,36 0,96 0,9 0,93 0,89 1,18 1,16 0,93 0,94 0,87 1,08

Sphingolipids Ceramide (d18:1,C18:0) 0,83 1,07 1 1,05 1,34 0,99 1,18 0,98 1,17 1,17 0,94 0,89 0,82 0,94 1,55 1,19 0,93 1 1,15 2,8

Sphingolipids Ceramide (d18:1,C20:0) 0,97 1,1 1,21 1,15 1,43 0,91 0,85 0,87 1,09 1,49 0,91 0,75 0,81 0,8 1,16 1,13 0,9 0,97 0,8 1,62

Sphingolipids Ceramide (d18:1,C22:0) 0,95 1,03 1,04 1,04 1,13 1,07 1 1,05 1,08 1,47 0,97 0,9 0,94 1 1,5 1,17 1 0,96 0,83 1,33

Sphingolipids Ceramide (d18:1,C23:0) 0,91 0,88 1,01 1 1,05 1 1,08 1,12 0,94 1,16 0,96 1,08 1,03 1,08 1,49 1,14 1,05 1,09 1,1 1,46

Sphingolipids Ceramide (d18:1,C24:0) 0,92 0,99 0,97 1,08 0,95 1,04 0,93 0,93 0,93 0,96 0,97 0,91 0,88 0,84 0,78 1,01 0,96 0,88 0,78 0,62

Sphingolipids Ceramide (d18:1,C24:1) 0,98 1,02 0,99 1,11 1,11 1,06 0,99 1 1,05 1,16 0,95 0,88 0,81 0,76 0,73 1,09 1,04 0,79 0,53 0,6

Sphingolipids Ceramide (d18:2,C16:0) 0,86 1,37 1,27 1,07 1,35 1,04 1,07 1,1 1,16 1,32 0,8 0,96 0,93 1,22 1,66 0,96 1,03 1,05 1,28 1,43

Sphingolipids Ceramide (d18:2,C23:0) 0,85 0,94 1,3 1,05 1,34 0,88 1 1,19 1,3 1,51 1,01 1,09 1,33 1,5 1,99 0,97 0,78 1,05 1,55 1,4

Sphingolipids Ceramide (d18:2,C24:0) 0,89 0,91 1,03 0,98 1,16 1,23 1,11 1,15 1,19 1,27 0,98 0,95 1,14 1,17 1,47 1,17 1,13 1,12 0,97 0,74

Sphingolipids Ceramide (d18:2,C24:1) 1,04 0,98 1,09 1,07 1,44 1,12 1 1,09 1,15 1,53 0,91 1 0,91 1,1 1,26 1 1,04 0,99 0,89 0,76
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Sphingolipids Sphingomyelin (d32:2) 0,95 1,04 1,02 1,04 0,83 0,97 0,96 1,1 0,97 0,98 1,02 1 1,29 1,31 0,85 1,01 1,17 1,04 1,63 1,11

Sphingolipids Sphingomyelin (d33:1) 0,94 0,98 1,01 1,06 0,9 1,04 0,97 0,99 0,99 0,88 1,04 0,99 1,02 1,04 0,81 1 1,01 1,06 1,1 0,92

Sphingolipids Sphingomyelin (d34:0) 0,98 0,98 1,05 0,99 0,87 1,03 1,01 0,97 0,97 0,76 1,11 1,03 1,03 0,9 0,47 1,06 1,07 1,01 0,89 0,43

Sphingolipids Sphingomyelin (d34:1) 0,9 1,02 1,02 1,02 0,92 1,07 0,98 0,93 1 0,86 1,03 0,9 0,99 1,1 0,69 0,95 0,99 0,86 0,84 0,7

Sphingolipids Sphingomyelin (d34:1) 0,91 1,04 0,92 1,09 0,82 0,86 1,09 0,96 0,92 0,79 0,97 0,79 0,81 1,04 0,79 1,04 0,99 0,96 0,71 0,52

Sphingolipids Sphingomyelin (d34:2) 0,96 0,97 1,08 1,11 0,91 0,97 0,92 0,98 0,98 0,92 0,94 0,95 1,03 1,05 0,76 1,01 1,09 0,95 1,27 1,08

Sphingolipids Sphingomyelin (d34:2) 1,01 0,85 1,03 0,99 0,86 0,96 0,89 1 0,96 0,97 1,03 1,05 1,09 1,02 0,81 0,99 1,11 1,02 1,29 1,05

Sphingolipids Sphingomyelin (d35:1) 0,97 0,92 1,03 0,99 0,94 1,04 1,01 1,03 1 0,95 1,02 1,05 1,07 1,11 0,97 1,08 1,04 1,16 1,22 1,04

Sphingolipids Sphingomyelin (d35:2) 0,8 0,97 0,98 1,13 0,98 0,97 0,96 0,99 1,03 0,91 1,1 1,26 1,26 1,34 1,14 1,03 1,15 1,17 1,51 1,67

Sphingolipids Sphingomyelin (d36:1) 1,01 1,02 1,04 1,03 0,94 0,99 1,04 1,05 1,04 0,93 1,06 1,01 0,97 0,99 0,87 0,98 1,01 0,97 0,96 1,17

Sphingolipids Sphingomyelin (d36:2) 0,97 0,98 1,1 0,99 0,93 0,97 1,01 1,09 1,07 0,99 1,02 0,99 1,03 0,98 0,81 1,12 1,12 1,08 1,1 1,2

Sphingolipids Sphingomyelin (d36:3) 1,03 1,01 0,95 0,99 0,89 1 1,04 1,07 1,15 0,95 1,14 1,2 1,28 1,52 0,9 0,98 1 1,01 1,19 1,06

Sphingolipids Sphingomyelin (d37:1) 0,99 0,98 1,06 1,08 0,95 1,07 1,02 1,08 1,05 0,98 1 1,01 1,06 1,07 0,91 0,99 1,04 1,06 1,01 1,18

Sphingolipids Sphingomyelin (d38:1) 0,91 0,98 0,98 0,95 0,91 0,98 0,95 0,97 0,98 0,84 0,94 0,88 0,84 0,89 0,76 1,02 0,95 0,99 0,91 0,98

Sphingolipids Sphingomyelin (d38:2) 0,98 1,01 1,05 1,06 0,99 0,98 0,98 0,96 0,96 0,88 1,03 1 1,03 1,09 0,82 0,97 0,94 0,89 0,86 0,88

Sphingolipids Sphingomyelin (d39:1) 0,98 1,05 1,07 1,03 1 1,02 1,04 1,01 1,03 0,96 1 0,99 1,1 1,14 0,96 1,04 1 1,12 1,29 1,29

Sphingolipids Sphingomyelin (d40:1) 0,91 1,01 1,02 1 0,9 1,03 1 1,01 1,01 0,96 1,07 1,03 1,02 1,1 0,89 1,07 1,03 1,09 1,01 1,12

Sphingolipids Sphingomyelin (d41:1) 1 1,03 1,07 1,07 0,95 1,05 1 1,01 0,9 0,94 1,01 1,06 1,12 1,1 1,01 0,97 1,02 1,12 1,23 1,29

Sphingolipids Sphingomyelin (d41:2) 1,03 1,05 1,09 1,1 0,97 1,03 1,01 1,04 1,08 0,95 1,01 1,04 1,07 1,09 0,88 1 1,01 1,04 1,02 0,9

Sphingolipids Sphingomyelin (d42:1) 1,01 1,03 1,08 1,08 1 1,03 1,05 1,04 1,05 1,01 1,02 0,93 0,94 0,97 0,82 0,97 0,98 1,05 0,91 0,84

Sphingolipids Sphingomyelin (d42:2) 0,94 1,01 1,05 0,99 0,84 1,02 1,04 1,02 1,07 0,87 0,99 0,94 0,96 0,92 0,68 0,93 0,94 0,82 0,74 0,61

Cholesterol and related Cholesterylester (C16:0) 1,08 1,11 0,94 0,73 0,74 1,03 1,06 1,18 1,08 0,86 1,33 2,16 1,42 1,1 1,42 1,22 0,97 1,32 1,57 2,44

Cholesterol and related Cholesterylester (C16:1) 1,13 1 0,64 0,46 0,41 1,03 1,01 1,12 1,12 1,1 1,36 1,99 1,55 1,09 1,43 0,84 0,94 1 1,83 2,7

Cholesterol and related Cholesterylester (C18:0) 1,02 1,06 0,87 0,76 0,65 0,98 1,08 1,21 1,14 1,13 1,21 2,42 1,98 1,5 2,25 1,03 1,19 1,47 2,68 3,48

Cholesterol and related Cholesterylester (C18:1) 1,02 1,05 0,88 0,76 0,77 0,92 1,02 1,03 0,98 0,95 1,36 1,51 1,46 1,3 1,84 0,99 1,16 1,36 1,96 3,36

Cholesterol and related Cholesterylester (C18:2) 1,03 0,9 0,69 0,57 0,56 1,09 0,97 1,22 1,17 1,18 1,33 1,83 1,61 1,03 1,52 1,03 1,21 1,42 2,08 3,38

Cholesterol and related Cholesterylester (C20:1) 1,08 1,02 0,85 0,75 0,65 1,06 1,04 1,03 1,04 1,2 1,23 1,48 1,45 1,33 2,47 0,91 1,02 1,33 2,59 3,54

Cholesterol and related Cholesterylester (C20:3) 1,01 1 0,86 0,73 0,75 1,01 1,02 1,11 1,11 1,1 1,27 1,67 1,46 1,45 3,11 1,32 1,57 3,26 6,32 11,6

Cholesterol and related Cholesterylester (C20:4) 1,08 0,94 0,77 0,5 0,46 1,07 0,97 1,29 1,2 1,21 1,25 1,79 1,38 1,06 1,63 1,33 1,29 1,91 2,99 4,93

Cholesterol and related Cholesterylester (C22:4) 1,22 1,1 0,85 0,81 0,79 1,05 1,06 1,2 1,12 1,22 1,29 1,48 1,65 1,84 4,38 1,13 1,61 2,98 6,57 9,12

Cholesterol and related Isopentenyl pyrophosphate (IPP) 1,25 1,11 0,83 0,93 0,98 0,98 1,2 0,89 0,6 0,76 0,88 0,39 0,73 0,88 0,48 0,49 0,47 0,22 0,7 0,65

Miscellaneous lipids Phosphocholine 1,05 1,14 1,17 1,22 1,15 1,08 1,14 1,15 1,15 1 1,08 0,93 0,9 0,8 0,45 1 0,92 0,73 0,57 0,36

Miscellaneous Biliverdin 0,69 1 1,21 1 0,84 1,12 0,99 1,23 1,21 0,75 0,92 1,5 0,98 0,95 0,42 2,01 1,55 1,93 1,12 0,6

Unknown Unknown lipid (849590045) 0,95 0,94 1,02 1,01 1,05 1,05 1,01 1,05 1,02 0,99 0,96 1 1,02 1,21 1,75 1,12 1,09 1,51 2,04 2,46

Unknown Unknown lipid (849590046) 1,14 1,06 1,12 1,03 1,07 1,05 1 1,06 0,97 1,14 0,87 0,94 0,96 1,13 1,44 0,92 0,92 1,09 1,4 1,89

Unknown Unknown lipid (849590126) 1,05 1 1,03 1,03 0,93 1,04 1,09 1 1,03 0,93 1,1 0,93 1,05 1 0,63 0,96 0,95 0,78 0,7 0,31

Unknown Unknown lipid (849590225) 0,99 1,03 0,91 0,94 0,91 0,96 1,04 1,04 1,01 1,03 1,02 0,85 0,96 0,89 0,87 0,74 0,78 0,71 0,72 0,89

Unknown Unknown lipid (849590423) 0,78 0,78 1 0,94 0,55 1,06 1,17 0,92 0,81 0,54 0,93 0,8 0,63 0,41 0,33 1,06 0,94 0,67 0,51 0,48

Unknown Unknown lipid (849590434) 1,03 1,03 1,02 1,24 1,41 1,03 1,05 1,34 1,1 1,29 0,95 0,88 0,85 0,81 1,13 0,93 0,88 0,78 0,83 0,93

Unknown Unknown lipid (849590435) 1,02 1,13 1,21 1,26 1,57 0,96 1,01 1,08 1,16 1,69 1,03 1,04 1,15 1,38 2,09 1,01 0,86 1,05 1,1 1,45

Unknown Unknown lipid (849590436) 0,93 1,2 0,9 1,2 1,37 1,13 1,03 1,23 1,08 1,38 1 0,96 0,98 0,82 1,04 1,06 0,87 0,82 0,71 1,58

Unknown Unknown lipid (849590437) 0,94 0,85 0,88 0,9 1,07 0,93 1 1,03 0,95 1,1 0,88 0,85 0,81 0,81 1,13 0,97 1,05 0,96 0,79 0,82

Unknown Unknown lipid (849590438) 0,93 0,99 0,99 1,07 1,22 0,99 1,06 1,06 1,03 1,41 0,99 0,97 0,89 1,09 1,52 1,14 1,01 0,93 0,92 1,46

Unknown Unknown lipid (849590439) 0,95 0,86 0,97 1 1,1 0,9 0,95 0,94 0,99 1,04 0,9 0,91 0,85 0,76 0,64 1,1 0,99 0,83 0,56 0,6

Unknown Unknown lipid (849590442) 1,04 0,99 1,24 1,18 1,44 1,12 1,11 1,02 1,33 1,59 1 1,09 1,19 1,6 2,65 1,07 1,07 1,3 1,45 1,46

Unknown Unknown lipid (849590443) 1,19 1,05 0,96 1,21 1,33 0,95 1,07 1,19 1,11 1,52 0,94 1,02 0,75 1,02 1,04 1,28 1 1,02 1,04 1,83

Unknown Unknown lipid (849590444) 0,95 1,12 1,07 1,1 1,39 1,16 0,94 1,1 1,05 1,29 1 0,94 1,06 1,13 1,82 1,06 1,07 1,19 1,33 1,21

Unknown Unknown lipid (849590445) 0,98 1,04 1 1,09 1,14 1,07 1,09 1,15 1,06 1,32 0,91 0,92 1,02 1,12 1,26 1,13 1,08 1,08 1,07 1,36

Unknown Unknown lipid (849590446) 1,03 0,91 1,16 1,09 1,09 0,87 1,06 0,93 1 1,35 0,86 1,05 0,84 0,84 1,03 1,11 0,94 0,83 0,89 1,07

Unknown Unknown lipid (849590448) 1,02 1,03 1,09 1,08 1,33 0,98 1,01 1,04 1,04 1,22 0,94 0,89 1 1,11 1,25 1,06 1,04 1,28 0,94 0,74

Unknown Unknown lipid (849590449) 0,98 1,03 1,03 1,06 1,11 1,01 1 0,99 0,99 1,15 0,95 0,86 0,8 0,76 0,72 1,08 0,91 0,78 0,59 0,53

Unknown Unknown lipid (849590450) 0,9 0,95 0,94 1 0,94 1,01 0,98 1,01 0,9 0,91 0,96 0,93 0,87 0,85 0,78 1,11 0,98 0,99 0,8 0,62

Unknown Unknown lipid (849590451) 0,94 0,85 0,88 0,97 0,92 1,07 1,02 0,92 0,89 0,83 1,22 0,83 0,91 0,88 0,74 1,1 1,08 0,88 0,67 0,48

Unknown Unknown lipid (849590452) 1,12 1,1 1,02 1,12 1,15 1,03 0,98 1,02 0,96 0,9 1 0,87 0,98 0,76 0,25 0,97 0,86 0,68 0,35 0,17

Unknown Unknown lipid (849590454) 1,09 1,02 1,05 1,05 0,89 0,98 1,02 0,9 1 0,86 1,11 1,02 1,01 1,01 0,61 0,93 0,86 0,76 0,77 0,56

Unknown Unknown lipid (849590455) 1,04 1,03 1,05 0,97 1,01 1,06 1,09 0,95 1,04 0,94 1,02 0,93 0,97 0,92 0,71 0,94 0,86 0,84 0,76 0,6

Unknown Unknown lipid (849590456) 0,99 1,09 1,07 1,16 1 1,21 1,14 1,24 1,19 1,08 1,15 1,2 1,25 1,28 0,55 1,09 1,16 1,02 0,76 0,4

Unknown Unknown lipid (849590457) 1,02 0,99 1,11 1,08 0,94 1,03 1,05 0,95 1,08 0,94 0,89 0,81 0,9 0,86 0,29 1,12 1,01 0,75 0,42 0,22

Unknown Unknown lipid (849590458) 1,01 1,15 1,11 1 0,92 1,03 1,12 1 1 0,88 1,01 0,92 0,85 0,77 0,42 0,91 0,89 0,63 0,48 0,24

Unknown Unknown lipid (849590459) 0,95 1 1,02 1,04 0,87 1,01 1,05 0,98 0,97 0,86 1,03 0,84 0,89 0,8 0,43 0,96 0,93 0,63 0,47 0,25

Unknown Unknown lipid (849590460) 1,02 0,99 0,94 1,08 1,01 1,13 1,08 0,9 0,99 1,08 1,07 1,05 1,1 1,43 2,38 1,16 1,27 1,94 2,6 3,44

Unknown Unknown lipid (849590462) 1 1,04 1,04 1,04 0,97 1,03 1,01 1,06 1,05 0,97 1,07 0,98 0,97 1,01 0,74 0,97 0,96 0,84 0,77 0,58

Unknown Unknown lipid (849590463) 0,93 0,95 0,97 0,95 0,88 1,06 1,01 0,96 0,93 0,82 1,06 0,91 0,89 0,84 0,63 0,95 0,91 0,79 0,72 0,45

Unknown Unknown lipid (849590464) 1,02 1,02 1,02 0,99 0,93 1,03 1,02 1,03 1,02 1 1,03 0,94 1,03 1,07 0,9 0,99 0,95 0,98 0,93 0,63

Unknown Unknown lipid (849590465) 1,02 1,05 1,06 1,11 1,18 1,06 1,09 1,07 1,07 1,12 1,07 1 1,13 1,45 0,88 1,19 1,16 1,12 0,72 0,33

Unknown Unknown lipid (849590467) 0,95 0,97 0,94 1,03 1,01 0,97 1 1,01 0,99 0,91 1,1 0,98 1,05 1,1 0,99 1,02 1,05 1,17 1,25 1,12

Unknown Unknown lipid (849590468) 0,98 1,02 1,03 1,1 1,01 1,03 1,06 1,09 1,08 1,01 1,04 0,99 1,09 1,25 1,32 1,01 1,07 1,36 1,84 2

Unknown Unknown lipid (849590469) 0,9 0,97 0,91 0,94 0,9 1,1 1,12 1,03 1,07 1 0,93 0,94 0,85 1,04 0,89 1,07 1,02 1,18 1,3 1,08

Unknown Unknown lipid (849590471) 1 1,09 1,13 0,8 0,76 0,75 0,87 0,66 0,66 0,58 1 1,45 1,26 0,44 0,51 0,45 0,61 0,63 0,93 1,72

Unknown Unknown lipid (849590472) 0,99 1,09 1,07 1,05 1,03 1,03 1,11 1,07 1,1 1,03 1,05 1,07 1,11 1,19 0,85 0,95 0,97 0,84 0,86 0,76

Unknown Unknown lipid (849590473) 1,08 1,09 1,11 1,12 1,05 0,95 0,89 0,94 1 0,89 0,97 0,91 0,98 1,09 1,02 1,03 0,97 1,27 1,41 1,14

Unknown Unknown lipid (849590476) 1,02 1,2 1,07 1,15 0,95 0,99 1,01 1,02 0,93 0,89 1,23 1,62 1,18 0,47 0,41 0,5 0,36 0,28 0,73 1,32

Unknown Unknown lipid (849590477) 0,94 0,93 0,77 0,93 0,83 0,9 0,86 0,98 0,8 0,82 1,03 1,33 1,26 0,56 0,46 0,46 0,56 0,41 0,62 0,75

Unknown Unknown lipid (849590479) 1 1,06 0,84 1,2 1,01 1,1 1,23 1,01 1,15 0,78 1,23 0,98 1,22 0,39 0,49 0,44 0,39 0,63 0,78 0,94

Unknown Unknown lipid (849590480) 0,99 1,01 1,04 1,07 0,99 1,07 1 1,07 0,97 1,01 1,04 0,97 1,01 1,04 0,84 1,01 0,99 1,08 0,97 0,51

Unknown Unknown lipid (849590481) 0,95 1,04 0,99 1,07 0,96 0,97 0,94 0,95 0,99 0,93 0,99 0,89 0,97 0,89 0,63 0,95 0,89 0,83 0,66 0,29
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Unknown Unknown lipid (849590482) 1,1 1,03 0,86 0,83 0,77 0,99 1,02 0,97 0,9 0,94 0,94 0,66 0,75 0,59 0,52 0,75 0,84 0,59 0,59 0,78

Unknown Unknown lipid (849590483) 1,1 1,02 0,95 0,81 0,79 0,9 1 0,89 0,9 0,91 0,91 0,66 0,66 0,56 0,61 0,65 0,81 0,54 0,58 1,18

Unknown Unknown lipid (849590484) 1,01 1 0,9 0,77 0,71 0,97 1 0,93 0,9 0,94 0,83 0,62 0,63 0,52 0,53 0,73 0,8 0,55 0,59 1,11

Unknown Unknown lipid (849590485) 0,95 0,95 0,89 0,85 0,75 0,87 0,91 0,82 0,8 0,72 0,83 0,64 0,56 0,48 0,52 0,71 0,82 0,58 0,53 0,93

Unknown Unknown lipid (849590486) 1,06 1,02 0,93 0,91 0,87 0,91 0,99 0,95 0,89 0,84 0,9 0,66 0,66 0,54 0,58 0,72 0,78 0,62 0,72 1,33

Unknown Unknown lipid (849590487) 0,99 1,08 0,94 1,02 0,98 0,96 0,98 0,92 0,95 0,85 1,1 1,11 0,96 0,48 0,41 0,45 0,39 0,51 0,75 0,79

Unknown Unknown lipid (849590488) 1,04 0,96 1,05 1,11 1,12 1 1,09 1,12 1,09 0,95 1,59 1,91 1,53 0,59 0,57 0,44 0,43 0,31 0,64 0,81

Unknown Unknown lipid (849590489) 0,88 0,81 0,91 0,96 1 0,93 0,87 0,89 0,96 0,85 1,21 1,38 0,86 0,41 0,58 0,43 0,57 0,41 0,74 1,13

Unknown Unknown lipid (849590500) 0,92 1,03 1,02 1,02 0,95 1,11 0,88 1,14 0,95 0,85 0,82 0,95 0,84 0,98 0,98 1,31 0,98 1,38 1,45 2,31

Unknown Unknown lipid (859590013) 0,9 0,97 1,14 0,95 1,02 0,98 0,9 1,13 1,17 1,09 0,86 0,98 0,99 1,26 1,75 1,02 1 1,17 1,31 2,3

Unknown Unknown lipid (859590071) 0,95 0,94 1,01 0,93 0,95 0,91 0,92 1,13 0,99 0,81 0,91 1,07 0,91 0,9 0,86 1,17 1,11 1,21 1,25 1,7

Unknown Unknown polar (869590388) 0,95 0,94 1 1,02 1,21 1,03 1,01 1,14 1,2 1,26 1,02 1,09 1,12 1,13 0,93 1,19 1,09 1,31 1,07 0,93

Unknown Unknown polar (869590390) 0,95 0,99 0,99 0,96 0,71 1,14 1 1,09 1,01 0,87 0,99 1,13 0,89 0,81 0,8 1,08 1,11 1,02 0,77 0,84

Unknown Unknown polar (869590395) 0,88 0,87 0,96 0,94 1 1,04 0,96 1,11 1,09 1,16 0,98 1,27 1,02 1,17 1,25 1,28 1,13 1,43 1,08 1,47

Unknown Unknown polar (869590398) 1,05 1,04 1,04 1,08 1,2 1,07 1,06 1,06 1,06 0,92 0,96 0,91 0,76 0,64 0,49 1 0,92 0,92 0,66 0,79

Unknown Unknown polar (869590400) 0,71 0,85 1,14 0,87 0,91 1,5 0,96 1,81 1,63 1,53 0,86 1,67 1,04 1,02 1,25 2,43 1,82 2,36 0,96 1,33

Unknown Unknown polar (869590402) 0,91 0,96 1,04 1,05 1,4 0,96 1,03 1,16 1,27 1,28 1,01 1,04 1,22 1,13 0,74 1,18 1,13 1,24 1,06 0,63

Unknown Unknown polar (869590406) 0,78 0,86 1,22 1 0,98 1,38 0,98 1,73 1,65 1,63 0,93 1,53 1,12 1,25 1,69 2,02 1,53 2,12 1,12 1,57

Unknown Unknown polar (869590410) 0,87 0,94 1,21 0,98 0,94 1,39 1,08 1,46 1,57 1,6 0,96 1,8 1,62 1,47 1,87 1,39 0,88 1,26 1,11 1,43

Unknown Unknown polar (869590417) 0,99 1,09 1,1 1,09 1,1 0,7 1,17 0,91 0,69 0,73 0,95 2,06 1,34 1,28 1,67 1,68 1,32 2,29 0,96 1,57

Unknown Unknown polar (869590424) 0,71 0,86 1,25 0,94 0,96 1,45 0,94 1,75 1,59 1,52 0,87 1,63 1,12 0,98 1,34 2,28 1,81 2,27 0,97 1,39

Unknown Unknown polar (869590431) 0,67 0,86 1,31 0,89 1,12 1,85 1,17 2,34 2,28 2,05 0,84 2,44 1,21 0,89 1,14 2,16 1,54 2,1 0,96 1,42

Unknown Unknown polar (869590432) 0,68 0,8 1,06 0,83 0,84 1,31 0,98 1,64 1,46 1,45 1,05 0,93 1,44 1,48 1,93 1,16 1,22 2,01 1,46 1,91

Unknown Unknown polar (869590436) 1 1,1 1,2 1,15 1,12 1,21 1,21 1,19 1,19 1,03 1,01 1,01 0,91 0,71 0,42 1,08 0,97 0,76 0,59 0,39

Unknown Unknown polar (869590442) 1,02 1,07 1,09 1,15 1,14 1,11 1,16 1,1 1,09 1,19 1,05 1,04 1,26 1,51 2,18 1,1 1,08 1,55 2,03 4,22

Unknown Unknown polar (869590444) 1,16 1,31 1,35 1,41 1 1,19 1,19 1,16 1,16 0,7 1,21 0,8 1,05 0,72 0,22 1,23 1,16 0,83 0,34 0,1

Unknown Unknown polar (869590448) 1,02 1,26 1,12 1,08 0,81 1,21 1,16 1,24 1,03 0,72 1,12 1,25 0,97 0,74 0,22 1,21 1,06 1,01 0,55 0,48

Unknown Unknown polar (869590452) 0,87 0,94 0,86 0,86 0,8 1,51 1,14 1,07 1,32 1,57 0,84 1,08 1 1,04 0,83 1,01 1,07 1,57 0,84 0,66

Unknown Unknown polar (869590456) 1,01 1,06 1,02 1,12 1,2 1,01 1,05 1,05 1,09 1,37 1,06 0,88 1,05 1,06 0,77 0,76 0,81 0,83 0,97 0,52

Unknown Unknown polar (879590076) 1,04 1,09 1 1,15 0,94 1,01 1 1,02 0,93 0,71 1,02 0,46 0,9 0,82 0,56 0,82 0,93 0,73 0,74 0,63

Unknown Unknown polar (879590422) 1,04 1,78 1,66 1,82 1,1 1,07 1,24 1,13 1,39 1,5 1,5 1,12 1,61 1,66 1,72 0,68 0,76 1,07 1,05 0,7

Unknown Unknown polar (879590425) 1 0,96 0,96 1,02 0,92 1,37 1,04 1,2 1,22 1,01 1,42 0,97 0,91 1,11 0,87 1,01 0,96 0,96 0,82 0,72
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Concentration

Ontology Time point 3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h 3h 6h 24h 48h

Amino acids Glutamate 0,89 1,05 1,01 1,09 0,94 1,04 1,16 1,09 1,03 1,21 1,13 1,21 1,09 1,24 1,22 1,09 1,37 1,31 0,71 0,52

Amino acids Phenylalanine 0,93 1,11 0,95 1,12 0,86 0,9 1,14 0,99 1,06 1,26 1,12 1,21 0,9 1,21 1,25 1,28 0,99 1,32 1,82 1,98

Amino acids Phenylalanine 1,22 0,31 0,93 1,75 1,37 1,08 2,09 1,37 0,87 0,44 1,13 2,05 1,77 0,33 1,26 1 1,08 0,34 1,87 1,71

Amino acids Tryptophan 0,83 1,33 1,37 0,7 0,94 1 0,33 0,48 1,29 1,46 1,17 0,74 0,99 1,23 2,16 2,76 1,06 1,33 3 3,14

Amino acids Tyrosine 0,78 1,29 0,92 1,13 0,8 1,02 1,31 1,09 1,13 1,57 1,05 1,22 0,92 1,43 1,1 1,03 0,87 1,3 1,48 1,41

Amino acids Arginine 0,68 1,62 0,86 1,75 0,7 1,01 2,13 1,41 1,14 1,94 1,02 1,91 0,85 1,78 0,99 1,02 0,93 1,57 1,41 1,74

Amino acids Asparagine 0,87 1,12 0,91 1,1 0,93 0,95 1,16 1,01 0,96 1,08 0,99 1,13 0,94 1,12 1,06 1,01 0,93 1,15 1,23 1,2

Amino acids Glutamine 0,89 1,04 0,95 1,24 0,89 0,91 1,24 1,05 0,93 1,09 0,93 1,54 0,97 1,03 1,11 1,19 0,86 1,03 1,32 2,27

Amino acids Isoleucine 0,91 1,06 0,94 1,11 0,96 0,96 1,17 0,99 1,03 1,19 1,19 1,23 1,03 1,24 1,36 1,37 1,01 1,15 2,01 2,17

Amino acids Isoleucine 0,86 1,33 0,96 0,55 0,92 0,98 0,72 0,93 1,17 1,43 1 0,72 1,08 1,43 1,09 1,19 1,06 1,35 1,43 2

Amino acids Leucine 0,82 1,29 1,09 1,09 0,85 0,98 0,89 0,9 1,15 1,42 1,15 1,39 1,01 1,36 1,48 1,49 1,01 1,29 1,99 2,4

Amino acids Valine 0,85 1,13 1,06 1,12 0,83 0,99 1,43 1,16 1,19 1,28 1,36 1,49 0,89 1,46 1,03 1,45 0,77 1,23 1,66 2,1

Amino acids Proline 0,91 1,05 1,13 0,94 0,92 0,93 1,17 0,97 0,93 1,05 0,93 0,89 0,91 0,86 0,87 0,7 0,7 0,77 0,8 0,78

Amino acids Threonine 0,89 1,1 0,95 1,15 0,9 0,95 1,13 0,99 0,95 1,09 0,98 1,27 0,95 1 1,06 1,05 0,88 0,97 1,13 1,41

Amino acids Taurine 1,05 1,04 0,97 0,92 1,07 1 0,8 0,85 1,05 1,01 0,69 0,89 1,05 0,94 0,62 0,9 1,03 0,67 0,42 0,5

Amino acids related 2-Methylserine 0,86 1,13 1,03 1,28 0,88 0,95 1,27 1,11 0,9 1,12 1,1 1,38 0,94 1,04 1,21 1,04 0,87 1,09 1,29 1,46

Amino acids related N-Acetylaspartate 1,06 1,04 0,97 0,82 1,05 1,13 0,78 0,77 1,1 1 0,57 0,42 1,12 0,97 0,33 0,24 0,84 0,64 0,09 0,08

Amino acids related N-Acetylserine 0,94 1,19 1,11 1,24 0,96 1,14 1,2 1,01 0,9 1,23 1,16 0,75 0,84 1,17 1,03 0,74 0,91 0,96 1 0,95

Amino acids related N-Phenylacetylglycine 0,9 1,28 1,07 1,55 1,04 1,03 1,78 1,23 1,22 1,35 1,05 1,65 1,06 1,5 0,92 0,84 1,06 1,1 0,96 1,43

Amino acids related Ketoleucine 0,92 1,24 1,03 1,03 0,93 1,1 1,52 0,93 1,22 1,51 0,92 1,25 1,19 1,56 1 0,94 1,28 1,38 1,12 1,16

Amino acids related Methionine sulfoxide 0,83 1,38 0,9 1,57 0,87 1 2,16 1,27 1,17 1,26 1,17 1,78 0,97 1,54 1,1 1,13 0,98 1,49 1,54 1,82

Amino acids related Pipecolic acid 0,98 1,09 0,88 0,93 1,49 0,82 0,94 0,84 0,92 0,99 0,96 1,52 0,88 1,04 2,43

Amino acids related Creatine 0,99 0,97 0,93 0,96 1,03 1,06 0,79 0,89 1,02 0,98 0,67 0,79 1,06 1 0,55 0,64 1,21 0,8 0,41 0,71

Amino acids related Creatinine 0,95 0,95 0,93 1,05 0,95 0,92 1,06 0,85 1,11 1,21 0,95 1,06 1,05 0,98 0,9 0,86 1,08 0,87 1 1,25

Amino acids related Creatinine 0,78 1,2 1,02 1,63 0,85 0,98 1,74 1,65 1,08 1,44 1,01 2,22 1,14 1,58 1,04 1,18 0,87 1,1 1 1,55

Amino acids related Carnosine 0,73 1,58 0,82 2,02 0,83 0,98 1,82 1,57 1,14 2,21 1,16 2,17 0,95 1,65 0,86 1,05 0,91 1,61 0,98 1,6

Amino acids related Cysteinylglycine 0,93 0,85 0,98 2,18 0,98 1,07 1,5 1,7 1,01 0,93 1,17 1,95 1,18 1,03 0,99 0,91 1,17 1,07 0,8 0,42

Amino acids related S-Adenosylhomocysteine 0,82 1,34 0,91 0,72 0,97 1,35 0,72 0,65 0,98 1,24 0,88 0,59 1,08 1,19 0,84 0,62 0,8 0,74 0,58 0,3

Amino acids related Ophthalmic acid 0,92 1,17 1,15 1,01 0,98 1,14 0,96 0,82 1,04 1,42 1,23 0,82 1 1,43 1,18 0,78 1,32 1,79 0,81 0,55

Amino acids related 5-Hydroxytryptophan 1,04 1,04 1,11 1,05 1,03 1,01 1,13 0,98 1,05 1 1,03 1,01 1,05 1,03 1,03 0,8 1,02 0,96 0,91 0,8

Carbohydrates and related Sorbitol 0,71 1,12 0,85 1,13 0,71 0,88 1,4 1,12 1,12 1,2 1,08 1,61 0,83 1,25 1,03 1,17 0,87 1,19 1,24 1,79

Carbohydrates and related Sorbitol 0,63 1,47 0,85 1,31 0,76 1,04 1,75 1,26 1,16 1,85 1,14 1,65 0,8 1,8 1,01 1,17 0,88 1,39 1,09 1,83

Energy metabolism and related Fumarate 1,18 0,67 0,74 0,6 1,09 0,84 0,89 0,59 1,07 0,5 0,57 0,66 0,97 0,58 0,42 0,28 0,46 0,31 0,36 0,59

Energy metabolism and related Malate 0,8 0,46 0,66 0,59 0,78 0,8 0,6 0,62 0,91 0,38 0,52 0,41 0,84 0,33 0,33 0,29 0,19 0,12 0,15 0,12

Energy metabolism and related Carnitine 1,07 1,08 1,03 1,22 1,07 0,99 0,99 0,99 1,11 0,99 0,83 0,92 1,11 0,96 0,72 0,64 0,89 0,77 0,43 0,28

Energy metabolism and related Hexadecanoylcarnitine 1,02 1,2 1,07 1,04 1,11 1,06 0,94 1,18 1,01 1,17 0,91 1,47 0,98 1,07 0,97 2,04 0,9 1,01 2,16 5,24

Energy metabolism and related Hexanoylcarnitine 1,03 1,3 1,19 1,34 1,02 1,26 0,94 1,07 1,17 1,15 0,62 1,05 1,24 1,19 1,16 1,11 1,06 1,04 1,27 0,35

Energy metabolism and related O-Acetylcarnitine 0,57 0,63 0,57 0,9 0,53 0,64 0,72 0,78 0,64 0,77 0,59 0,79 0,63 0,84 0,68 0,76 1,54 1,34 0,72 0,78

Energy metabolism and related Octadecenoylcarnitine 1,43 1,23 1,03 1,17 1,16 1,24 0,98 1,08 1,11 1,08 0,91 1,38 1,06 1,09 1,09 2,44 0,87 0,83 1,91 4,43

Energy metabolism and related Propionylcarnitine 1,03 1,4 1,47 1,33 1,38 1,88 2,49 1,17 1,67 2,37 2,81 1,68 1,8 2,5 1,66 1,64 1,66 0,64 0,47 1,07

Energy metabolism and related Tetradecanoylcarnitine 1,08 1,06 1,02 0,91 1,06 1,01 0,86 0,89 0,88 0,98 0,66 0,72 0,91 0,89 0,83 1,04 0,69 0,65 1,14 1,86

Energy metabolism and related Choline 0,85 1,19 0,87 1,56 0,95 0,91 1,69 1,28 1,15 1,32 0,95 1,98 0,99 1,39 0,87 1,24 1,06 1,19 1,26 1,79

Energy metabolism and related Glucose-6-phosphate 1,01 0,76 1,03 0,56 1,04 0,98 0,81 0,67 0,99 0,75 0,87 0,45 1,21 0,84 1,02 0,62 0,96 0,66 0,52 0,3

Energy metabolism and related Glycerol-3-phosphate 1,11 0,69 0,73 0,64 1,32 1,06 0,59 0,74 0,93 0,65 0,99 0,71 1,35 0,8 1,67 2,29 0,83 0,69 2,32 1,9

Energy metabolism and related 3-Hydroxybutyrate 0,74 1,55 1,07 2,14 0,84 1,05 2,14 1,6 1,3 1,98 1,19 2,26 1,05 1,95 1,06 1,09 1,02 1,4 1,18 1,9

Nucleobases and related Adenosine monophosphate, cyclic (cAMP) 1,05 0,81 1,12 0,85 1,06 1,01 0,91 0,93 1,1 0,78 0,86 0,92 1,29 0,64 0,83 0,99 1,02 0,7 0,44 0,56

Nucleobases and related Guanine 1,16 0,58 0,84 0,64 1,03 0,66 1,03 0,89 1,02 0,92 1,42 0,9 1,45 0,7 1,41 1,29 0,72 0,66 1,42 1,73

Nucleobases and related 2'-Deoxycytidine 1,03 0,99 1,11 1,67 1,04 1,14 1,18 1,23 1,06 1,02 0,54 0,94 1,02 0,78 1,6 0,39 0,81 0,42 1,05 0,33

Nucleobases and related Uridine 0,91 0,9 1,09 0,58 1,38 0,74 1,06 0,79 1,06 0,88 0,98 0,7 0,89 1,12 1,04 0,97 0,81 0,88 1,17 1,16

Vitamins, cofactors and related Pantothenic acid 0,95 1,1 1,11 1,09 0,97 1,04 1,16 0,97 1,08 1,11 1,02 0,98 1,05 1,11 0,99 0,83 0,98 1,02 0,8 0,7

Vitamins, cofactors and related Coenzyme Q10 1,05 0,96 1,17 0,72 0,99 1,02 0,93 0,96 0,84 0,96 0,94 0,61 0,78 1,03 0,74 0,74 0,79 0,96 0,53 0,41

Vitamins, cofactors and related Coenzyme Q9 1,09 0,89 1,03 0,95 1,01 1,02 0,74 1,08 1,13 1,08 1,1 1,14 0,9 1,03 1,03 0,88 1,2 1,03 0,82 0,81

Vitamins, cofactors and related Glutathione (GSH) 0,84 1,05 1,28 0,84 1,01 1,19 1,02 0,86 1,06 1,2 1,35 1 1,21 1,14 1,73 1,24 1,11 1,33 1,47 0,72

Vitamins, cofactors and related Nicotinamide 0,85 1,27 0,78 1,19 0,95 0,98 1,36 1,19 1,21 1,35 0,97 1,64 1,03 1,35 0,96 1,08 1,08 1,14 1,22 2,23

Vitamins, cofactors and related Nicotinamide 0,69 1,58 0,93 1,88 0,74 0,94 1,95 1,52 1,26 1,99 1,07 2,03 0,95 1,88 0,86 0,95 0,87 1,55 1,1 1,48

Vitamins, cofactors and related Nicotinamide adenine dinucleotide (NAD) 1,15 0,82 0,95 0,6 1,06 0,94 0,66 0,69 1,08 0,92 0,97 0,57 1,09 0,83 1,1 0,88 1,03 0,7 0,8 0,65

Vitamins, cofactors and related Thiamine 0,79 1,29 0,93 1,6 0,86 0,97 1,63 1,31 1,14 1,57 1,06 1,84 0,95 1,47 0,96 0,94 1 1,43 1,09 1,39

Acylglycerols Triacylglycerol (C30:0,C18:1) 1,03 0,94 0,97 0,71 0,95 0,95 0,67 0,79 0,86 0,83 0,68 0,52 0,75 0,83 0,51 0,54 0,64 0,81 0,45 0,77

Acylglycerols Triacylglycerol (C32:0,C16:0) 0,95 0,8 0,82 0,78 0,88 0,81 0,53 0,89 0,78 0,72 0,51 0,61 0,74 0,71 0,37 0,58 0,63 0,59 0,49 1,33

Acylglycerols Triacylglycerol (C32:0,C16:1) 0,96 0,78 0,81 0,8 0,99 0,83 0,53 0,85 0,81 0,72 0,51 0,52 0,73 0,68 0,36 0,56 0,58 0,6 0,43 1,49

Acylglycerols Triacylglycerol (C34:0,C16:0) 0,95 0,85 0,83 0,8 0,93 0,82 0,62 0,86 0,77 0,79 0,61 0,76 0,66 0,75 0,5 0,96 0,64 0,72 0,69 2,35

Acylglycerols Triacylglycerol (C34:0,C18:1) 1,03 0,84 0,92 0,7 0,94 0,85 0,74 0,81 0,78 0,81 0,72 0,75 0,69 0,87 0,57 0,95 0,69 0,85 0,78 1,7

Acylglycerols Triacylglycerol (C34:1,C16:0) 0,95 0,86 0,87 0,73 0,92 0,9 0,58 0,81 0,89 0,81 0,61 0,59 0,83 0,81 0,45 0,59 0,73 0,74 0,54 1,06

Acylglycerols Triacylglycerol (C34:1,C18:1) 1 0,99 0,95 0,85 0,97 0,99 0,83 0,87 0,97 0,96 0,79 0,74 0,97 0,97 0,73 0,78 0,94 0,93 0,75 0,95

Acylglycerols Triacylglycerol (C34:1,C18:3) 1,05 1 0,97 0,71 0,99 1,05 0,82 0,9 0,93 1,02 1 1,04 0,76 1,05 1,05 1,79 0,82 1,22 1,77 4,06

Acylglycerols Triacylglycerol (C34:2,C18:0) 0,99 0,95 0,91 0,76 0,97 0,96 0,76 0,91 0,9 0,91 0,78 0,88 0,87 0,91 0,72 1,14 0,83 0,93 1,01 3,01

Acylglycerols Triacylglycerol (C34:2,C18:1) 1,1 0,9 0,88 0,67 0,98 1 0,72 0,76 0,88 0,9 0,79 0,57 0,77 0,95 0,67 0,66 0,78 1,01 0,69 0,88

Acylglycerols Triacylglycerol (C36:1,C18:1) 1 0,95 1,09 0,74 0,96 0,96 0,77 0,83 0,81 0,89 0,83 0,7 0,71 0,88 0,67 0,87 0,69 0,93 0,79 1,22

Acylglycerols Triacylglycerol (C36:1,C18:2) 1 0,96 1,02 0,76 0,93 0,94 0,86 0,89 0,81 0,96 0,96 0,99 0,77 1,01 1,01 1,57 0,74 1,05 1,57 3,58

Acylglycerols Triacylglycerol (C36:2,C18:1) 1,02 1,02 0,97 0,79 1,02 1,02 0,8 0,84 0,98 1,04 0,9 0,78 0,96 1,02 0,83 0,82 0,93 0,98 0,83 0,93

Acylglycerols Triacylglycerol (C36:3,C18:1) 1,16 0,95 1,1 0,67 1,02 1,06 0,88 0,82 0,98 1,01 1,05 0,91 0,8 1,07 1,1 1,29 0,85 1,16 1,44 2,72

Acylglycerols Triacylglycerol (C36:3,C18:2) 1,12 0,96 0,98 0,7 1 1,1 0,97 0,9 0,87 1,11 1,13 1,07 0,72 1,14 1,18 1,73 0,72 1,2 1,78 3,82

Acylglycerols Triacylglycerol (C36:4,C16:0) 1,11 0,97 0,93 0,73 0,98 1,01 0,88 0,98 0,81 0,98 0,97 1,11 0,72 0,96 1,05 2 0,71 1,14 1,85 6,44

Acylglycerols Triacylglycerol (C36:4,C18:0) 1,06 0,96 0,86 0,97 1,03 0,97 0,92 1,03 0,95 1 0,9 1,57 0,84 0,89 1,12 2,96 1,06 1,04 2,42 15,1

C4 C5C1 C2  C3 
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Glycerophospholipids Phosphatidylcholine (C32:0) 1,07 1,04 1 0,96 0,99 0,96 0,88 0,93 0,97 0,98 0,89 0,79 0,97 0,92 0,87 0,66 0,88 0,79 0,58 0,33

Glycerophospholipids Phosphatidylcholine (C34:0) 0,95 0,99 0,97 1,07 0,99 0,98 0,93 1,08 0,95 0,94 0,95 1,16 1 0,93 1,04 1,22 0,94 0,87 1 1,17

Glycerophospholipids Phosphatidylcholine (C34:1) 1 1,01 1,06 0,97 0,98 1 0,96 0,92 1 0,96 0,95 0,76 0,98 0,98 0,88 0,66 0,89 0,84 0,63 0,38

Glycerophospholipids Phosphatidylcholine (C34:2) 0,98 1,01 0,95 0,93 0,99 1,09 0,84 0,9 1,06 1,06 0,89 0,66 1,02 1,01 0,83 0,6 0,85 0,92 0,49 0,31

Glycerophospholipids Phosphatidylcholine (C34:3) 1,08 0,99 1,08 0,95 1,07 1,05 0,9 0,94 1,14 0,99 1,08 0,84 1,08 1,06 1,05 0,73 0,93 0,88 0,63 0,4

Glycerophospholipids Phosphatidylcholine (C36:0) 0,92 1,04 1,02 1,08 0,98 0,95 1 1,08 0,98 0,96 0,94 1,29 0,9 0,96 1,06 1,24 0,93 0,97 0,93 0,97

Glycerophospholipids Phosphatidylcholine (C36:1) 0,96 1 1 0,97 1,04 1 0,91 0,94 1 1,01 0,92 0,89 1,02 0,96 0,94 0,82 0,97 0,91 0,81 0,62

Glycerophospholipids Phosphatidylcholine (C36:2) 0,97 1,06 1,03 0,88 1,08 1,06 0,91 0,88 1,06 1,01 0,88 0,64 1 0,99 0,8 0,53 0,87 0,89 0,46 0,25

Glycerophospholipids Phosphatidylcholine (C36:3) 0,98 1,03 0,98 0,93 1,06 1,03 0,86 0,94 1,05 1,02 0,94 0,84 1,05 1,02 0,98 0,83 0,91 0,89 0,78 0,47

Glycerophospholipids Phosphatidylcholine (C36:4) 1,02 0,98 0,98 1,04 0,95 0,97 0,93 1,01 1,02 0,96 0,95 1,18 1,02 0,96 1,13 1,49 1 0,96 1,28 1,5

Glycerophospholipids Phosphatidylcholine (C36:5) 1,02 1,02 0,95 1,02 1,01 1,04 0,93 1,02 1,05 1,01 0,97 1,13 1,06 0,93 1,16 1,21 1,04 0,98 1,11 0,76

Glycerophospholipids Phosphatidylcholine (C38:4) 0,97 1,02 1,02 0,99 0,97 1,02 0,96 0,93 1,01 1 1 1,13 1,04 1 1,05 1,55 1 1,01 1,4 2,09

Glycerophospholipids Phosphatidylcholine (C38:5) 0,96 1,04 1,03 1,01 0,97 1,07 1 1 0,99 1 1,11 1,2 1,01 1,04 1,32 1,33 1,06 1,15 1,26 1,27

Glycerophospholipids Phosphatidylcholine (C38:6) 1 1,07 1,06 0,95 1,06 1,03 1 0,92 1,06 1,01 1,02 0,88 1,01 1 1,07 0,72 1,07 1 0,81 0,45

Glycerophospholipids Phosphatidylcholine (C40:6) 0,99 1,07 1 1,03 1,03 1,09 1,09 1,03 1,1 1,03 1,11 1,11 1,05 1,18 1,33 1,08 1,13 1,29 1,2 0,9

Glycerophospholipids Phosphatidylcholine (C40:7) 1,04 1,13 1,06 0,92 1,04 1,11 1,05 0,91 1,07 1,1 1,07 0,78 1,08 1,14 1,22 0,62 1,12 1,19 0,69 0,26

Glycerophospholipids Phosphatidylcholine (C40:8) 1,04 1,03 1,16 0,95 1,06 1,07 1,05 0,94 1,09 1,05 1,21 0,99 1,04 1,14 1,26 0,96 1,06 1,12 0,86 0,8

Glycerophospholipids Phosphatidylethanolamine (C32:0) 0,93 0,9 0,94 0,93 0,91 0,96 0,85 0,97 0,96 0,82 0,85 0,8 0,89 0,85 0,73 0,64 0,69 0,61 0,42 0,31

Glycerophospholipids Phosphatidylethanolamine (C34:0) 0,99 0,97 0,96 1 0,95 0,92 0,9 0,92 0,87 0,86 0,88 1,07 1 0,92 0,87 1,07 0,79 0,75 0,79 0,69

Glycerophospholipids Phosphatidylethanolamine (C34:1) 1,01 0,98 1,02 1,01 1,03 0,91 0,94 0,99 1,03 0,94 0,94 0,84 1 0,94 0,96 0,68 0,96 0,93 0,64 0,52

Glycerophospholipids Phosphatidylethanolamine (C34:2) 0,99 0,96 0,98 0,88 1,04 1,02 0,92 0,8 1 0,92 0,96 0,6 1,02 1,01 0,88 0,44 0,98 0,9 0,43 0,26

Glycerophospholipids Phosphatidylethanolamine (C36:0) 0,95 0,85 1,03 1,13 0,99 0,92 1,1 1,31 0,8 0,69 1,16 1,31 0,93 0,8 1,06 1,27 0,82 0,71 0,99 0,94

Glycerophospholipids Phosphatidylethanolamine (C36:1) 0,97 1,04 0,95 0,97 1 1,02 0,94 0,96 0,98 1,06 1,04 1,04 0,99 1,08 1,06 1,03 0,95 1,02 0,95 0,95

Glycerophospholipids Phosphatidylethanolamine (C36:2) 0,99 1,05 1,03 0,97 1,05 1,06 0,97 0,93 1,03 0,99 1,07 0,84 1,04 1,03 1,08 0,7 1 1,05 0,71 0,45

Glycerophospholipids Phosphatidylethanolamine (C36:3) 0,97 1,04 1,03 0,99 0,96 0,99 0,96 0,93 1 1,03 1,06 0,9 1,01 1,05 1,1 0,73 0,94 0,96 0,71 0,4

Glycerophospholipids Phosphatidylethanolamine (C36:4) 1,01 0,98 1 0,97 1,06 0,97 0,96 0,94 1,06 0,97 0,92 0,88 1,03 0,99 0,92 0,82 1 0,94 0,75 0,78

Glycerophospholipids Phosphatidylethanolamine (C38:3) 0,95 1 0,95 0,96 0,97 0,99 0,89 0,97 0,99 0,98 0,99 1,04 0,96 0,97 0,95 0,99 0,97 0,95 0,83 0,84

Glycerophospholipids Phosphatidylethanolamine (C38:4) 0,98 1 1,02 1,01 0,98 0,99 1,05 0,97 1 0,96 1,07 1,12 1,01 0,98 1,16 1,23 1,01 0,92 1 0,94

Glycerophospholipids Phosphatidylethanolamine (C38:5) 0,97 0,96 1,02 0,98 1,07 1,06 0,95 0,95 1,09 1 0,96 0,96 1,11 1,01 0,94 0,88 0,97 0,95 0,7 0,53

Glycerophospholipids Phosphatidylethanolamine (C38:6) 1,04 1,06 0,94 0,94 0,99 1,03 0,94 0,89 1,04 1,02 0,85 0,77 1,05 1 0,86 0,61 1 0,95 0,58 0,32

Glycerophospholipids Phosphatidylethanolamine (C40:6) 0,91 1,08 1 1,03 0,99 1,01 0,99 0,98 0,99 1 0,99 0,96 0,99 1,03 1,04 0,88 1 0,99 0,77 0,5

Glycerophospholipids Phosphatidylethanolamine (C40:7) 1,05 1,04 1,05 0,97 1,04 1,03 0,94 0,92 1,07 1,03 0,98 0,7 1,1 1 0,94 0,55 0,95 0,9 0,44 0,14

Glycerophospholipids Choline plasmalogen (C36:4) 0,95 1,07 0,93 1,09 1 1,01 0,97 1,17 1,11 1,07 1,09 1,62 1,03 1 1,28 2,4 1,09 1,09 1,99 2,77

Glycerophospholipids Choline plasmalogen (C36:5) 1,03 0,98 1,04 1,22 1,03 1,05 1,07 1,17 1,01 1,05 1,1 1,74 1,07 1,07 1,54 2,6 1,08 1 2,12 3,03

Lysoglycerophospholipids Lysophosphatidylcholine (C14:0) 0,96 1,15 0,98 0,94 1,07 1,09 1,03 1,03 1,04 1,12 1 0,76 1 1,19 0,71 0,67 0,95 0,92 0,41 1

Lysoglycerophospholipids Lysophosphatidylcholine (C15:0) 0,75 1,01 0,99 1,09 0,81 0,86 1,22 1,15 0,85 1,04 1,1 1,14 0,82 1,04 1,04 1,79 0,73 0,88 0,94 2,46

Lysoglycerophospholipids Lysophosphatidylcholine (C16:0) 0,88 0,97 1,01 1,09 0,88 0,94 1,07 1,14 1,04 1,08 0,94 1,01 0,98 0,96 0,81 1,27 0,83 0,87 0,76 1,54

Lysoglycerophospholipids Lysophosphatidylcholine (C16:1) 1,09 1,05 1,05 1,16 1,07 1,08 1,26 1,1 1,09 1,05 1,08 1,01 1,08 1,06 1,07 0,68 0,84 0,82 0,83 0,57

Lysoglycerophospholipids Lysophosphatidylcholine (C17:0) 0,87 0,95 1,04 1,03 0,88 0,8 1,13 1,1 0,99 1,19 1,03 0,96 0,88 1,03 1 1,81 0,85 0,94 0,94 2,38

Lysoglycerophospholipids Lysophosphatidylcholine (C18:0) 0,87 0,99 1,02 1,25 0,92 0,92 1,16 1,32 1,05 1,17 1,04 1,15 0,99 1,06 1,08 2,11 0,87 1,1 1 2,84

Lysoglycerophospholipids Lysophosphatidylcholine (C18:0) 0,81 0,96 1,04 1,14 0,87 0,85 1,18 1,24 0,94 1,2 1,01 1,04 0,99 1,13 1 1,86 0,88 1,06 0,91 2,59

Lysoglycerophospholipids Lysophosphatidylcholine (C18:1) 0,89 1,01 1,03 1,03 0,93 0,95 1,13 1,13 1,03 1,17 0,99 0,93 0,97 1,09 0,86 1,15 0,86 0,87 0,63 1,47

Lysoglycerophospholipids Lysophosphatidylcholine (C18:2) 1,07 1,04 1,02 1,27 1,07 0,91 1,56 1,29 0,95 1,07 1,11 1,38 1,14 1,13 1,33 1 0,91 0,84 1,14 0,78

Lysoglycerophospholipids Lysophosphatidylcholine (C18:3) 1,1 1,26 1,33 0,93 1,15 1,04 1,07 1,08 1,12 1,34 1,2 0,9 0,84 1,23 1,25 0,99 0,83 1,05 1,01 1,07

Lysoglycerophospholipids Lysophosphatidylcholine (C19:0) 0,84 0,96 1,14 1,15 0,83 0,86 1,01 1,28 0,91 1,19 1,08 1,12 0,92 1,02 0,96 1,99 0,91 0,97 0,94 2,4

Lysoglycerophospholipids Lysophosphatidylcholine (C20:0) 0,9 0,99 1,06 1,13 0,98 0,8 1,05 1,22 1,09 1,07 1,03 1,14 1,13 1,03 0,94 1,66 0,94 0,96 0,93 1,94

Lysoglycerophospholipids Lysophosphatidylcholine (C20:1) 0,9 1,01 1,02 1 0,99 1,06 1,06 1,02 0,99 1,05 0,89 0,76 0,97 1,1 0,89 0,89 0,89 0,89 0,55 1,05

Lysoglycerophospholipids Lysophosphatidylcholine (C20:2) 0,84 1,05 1,08 1,15 0,81 1 1,25 1,14 0,92 1,17 0,99 1,07 0,83 1,06 1,1 1,14 0,8 1,03 0,79 1,57

Lysoglycerophospholipids Lysophosphatidylcholine (C20:3) 0,89 1 1 1,1 0,91 1,03 1,19 1,1 0,96 1,12 1,01 1,35 0,82 1,14 1,11 1,4 0,84 0,98 1,27 2,34

Lysoglycerophospholipids Lysophosphatidylcholine (C20:4) 0,94 0,9 0,94 1,21 1,18 0,97 1,56 1,47 1,24 1,01 1,33 1,78 1,11 1,08 1,43 1,73 0,91 1 2,51 1,51

Lysoglycerophospholipids Lysophosphatidylcholine (C20:5) 0,96 0,98 1,04 1,48 0,98 0,86 1,66 1,7 0,75 0,87 1,77 1,84 0,84 0,97 2,1 1,92 0,93 0,83 1,92 1,3

Lysoglycerophospholipids Lysophosphatidylcholine (C22:0) 0,91 1,14 1,08 1,25 0,98 1,05 1,08 1,07 1,02 1,13 1,15 1,66 1,04 1,27 1,23 1,51 0,88 1,07 1,14 1,31

Lysoglycerophospholipids Lysophosphatidylcholine (C22:5) 0,73 0,85 1,04 0,99 0,72 0,76 1,08 1,03 0,86 1,09 0,96 1,26 0,8 0,98 0,84 1,48 0,84 0,84 1 2,92

Lysoglycerophospholipids Lysophosphatidylcholine (C22:6) 0,91 1,02 0,96 1,19 0,89 0,89 1,14 1,21 0,99 1,07 1,14 1,4 0,91 1,08 1,06 1,24 0,91 1 1,04 1,98

Lysoglycerophospholipids Lysophosphatidylcholine (C24:0) 1,04 0,99 0,81 1,04 0,95 0,92 0,95 1,05 1,11 1,08 0,95 1,15 1,11 1,01 1,09 1,08 0,99 0,83 0,89 0,61

Lysoglycerophospholipids Lysophosphatidylcholine (C24:1) 0,95 1,04 1,02 0,97 0,95 1,11 1,06 1,01 1,12 1,05 1,15 0,98 0,97 1,05 1,06 0,88 0,87 0,93 0,94 0,4

Lysoglycerophospholipids Lysophosphatidylethanolamine (C16:0) 1,02 1,04 0,98 0,99 1,02 0,96 0,73 0,88 1,03 0,92 0,76 0,6 1,11 0,86 0,62 0,49 0,84 0,65 0,35 0,24

Lysoglycerophospholipids Lysophosphatidylethanolamine (C18:0) 0,95 0,95 1,12 1,05 1 0,91 0,89 1,1 0,95 0,96 0,93 0,98 1,09 0,9 0,8 0,84 0,82 0,73 0,62 0,49

Lysoglycerophospholipids Lysophosphatidylethanolamine (C18:1) 1 1,04 1,06 1,04 0,98 1,08 0,93 1,04 0,96 1,04 0,9 0,65 1,02 0,99 0,74 0,47 0,88 0,67 0,35 0,18

Lysoglycerophospholipids Lysophosphatidylethanolamine (C20:4) 1,07 0,87 1,08 1,42 1,2 0,99 1,43 1,25 1,07 0,85 1,19 1,42 0,99 1,08 1,25 1,06 1,25 0,68 1,83 1,38

Lysoglycerophospholipids Lysophosphatidylethanolamine (C22:6) 1,01 1 1,16 0,91 1,02 0,98 1,75 1,11 1,14 0,95 1,31 1,44 0,87 1,03 0,91 0,89 0,9 0,83 0,78 0,63

Sphingolipids Ceramide (d16:1,C24:0) 0,89 0,99 0,77 1,13 0,86 0,89 0,8 1,14 1,02 1,11 0,81 1,26 0,93 0,85 0,96 0,93 1,23 1,12 1,18 0,89

Sphingolipids Ceramide (d17:1,C24:0) 1,3 0,99 0,83 1,03 1 0,93 0,93 1,05 0,95 0,99 1,03 1,07 1 1,07 1,01 1,01 1,27 1,52 1,4 1,12

Sphingolipids Ceramide (d18:1,C16:0) 1,03 1,09 0,96 1,16 0,99 0,99 0,9 0,93 1,18 1 0,93 0,94 1,14 1,07 0,89 0,87 1,3 1,36 1,18 1,08

Sphingolipids Ceramide (d18:1,C18:0) 0,83 0,99 0,94 1,19 1,07 1,18 0,89 0,93 1 0,98 0,82 1 1,05 1,17 0,94 1,15 1,34 1,17 1,55 2,8

Sphingolipids Ceramide (d18:1,C20:0) 0,97 0,91 0,91 1,13 1,1 0,85 0,75 0,9 1,21 0,87 0,81 0,97 1,15 1,09 0,8 0,8 1,43 1,49 1,16 1,62

Sphingolipids Ceramide (d18:1,C22:0) 0,95 1,07 0,97 1,17 1,03 1 0,9 1 1,04 1,05 0,94 0,96 1,04 1,08 1 0,83 1,13 1,47 1,5 1,33

Sphingolipids Ceramide (d18:1,C23:0) 0,91 1 0,96 1,14 0,88 1,08 1,08 1,05 1,01 1,12 1,03 1,09 1 0,94 1,08 1,1 1,05 1,16 1,49 1,46

Sphingolipids Ceramide (d18:1,C24:0) 0,92 1,04 0,97 1,01 0,99 0,93 0,91 0,96 0,97 0,93 0,88 0,88 1,08 0,93 0,84 0,78 0,95 0,96 0,78 0,62

Sphingolipids Ceramide (d18:1,C24:1) 0,98 1,06 0,95 1,09 1,02 0,99 0,88 1,04 0,99 1 0,81 0,79 1,11 1,05 0,76 0,53 1,11 1,16 0,73 0,6

Sphingolipids Ceramide (d18:2,C16:0) 0,86 1,04 0,8 0,96 1,37 1,07 0,96 1,03 1,27 1,1 0,93 1,05 1,07 1,16 1,22 1,28 1,35 1,32 1,66 1,43

Sphingolipids Ceramide (d18:2,C23:0) 0,85 0,88 1,01 0,97 0,94 1 1,09 0,78 1,3 1,19 1,33 1,05 1,05 1,3 1,5 1,55 1,34 1,51 1,99 1,4

Sphingolipids Ceramide (d18:2,C24:0) 0,89 1,23 0,98 1,17 0,91 1,11 0,95 1,13 1,03 1,15 1,14 1,12 0,98 1,19 1,17 0,97 1,16 1,27 1,47 0,74

Sphingolipids Ceramide (d18:2,C24:1) 1,04 1,12 0,91 1 0,98 1 1 1,04 1,09 1,09 0,91 0,99 1,07 1,15 1,1 0,89 1,44 1,53 1,26 0,76
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Sphingolipids Sphingomyelin (d32:2) 0,95 0,97 1,02 1,01 1,04 0,96 1 1,17 1,02 1,1 1,29 1,04 1,04 0,97 1,31 1,63 0,83 0,98 0,85 1,11

Sphingolipids Sphingomyelin (d33:1) 0,94 1,04 1,04 1 0,98 0,97 0,99 1,01 1,01 0,99 1,02 1,06 1,06 0,99 1,04 1,1 0,9 0,88 0,81 0,92

Sphingolipids Sphingomyelin (d34:0) 0,98 1,03 1,11 1,06 0,98 1,01 1,03 1,07 1,05 0,97 1,03 1,01 0,99 0,97 0,9 0,89 0,87 0,76 0,47 0,43

Sphingolipids Sphingomyelin (d34:1) 0,9 1,07 1,03 0,95 1,02 0,98 0,9 0,99 1,02 0,93 0,99 0,86 1,02 1 1,1 0,84 0,92 0,86 0,69 0,7

Sphingolipids Sphingomyelin (d34:1) 0,91 0,86 0,97 1,04 1,04 1,09 0,79 0,99 0,92 0,96 0,81 0,96 1,09 0,92 1,04 0,71 0,82 0,79 0,79 0,52

Sphingolipids Sphingomyelin (d34:2) 0,96 0,97 0,94 1,01 0,97 0,92 0,95 1,09 1,08 0,98 1,03 0,95 1,11 0,98 1,05 1,27 0,91 0,92 0,76 1,08

Sphingolipids Sphingomyelin (d34:2) 1,01 0,96 1,03 0,99 0,85 0,89 1,05 1,11 1,03 1 1,09 1,02 0,99 0,96 1,02 1,29 0,86 0,97 0,81 1,05

Sphingolipids Sphingomyelin (d35:1) 0,97 1,04 1,02 1,08 0,92 1,01 1,05 1,04 1,03 1,03 1,07 1,16 0,99 1 1,11 1,22 0,94 0,95 0,97 1,04

Sphingolipids Sphingomyelin (d35:2) 0,8 0,97 1,1 1,03 0,97 0,96 1,26 1,15 0,98 0,99 1,26 1,17 1,13 1,03 1,34 1,51 0,98 0,91 1,14 1,67

Sphingolipids Sphingomyelin (d36:1) 1,01 0,99 1,06 0,98 1,02 1,04 1,01 1,01 1,04 1,05 0,97 0,97 1,03 1,04 0,99 0,96 0,94 0,93 0,87 1,17

Sphingolipids Sphingomyelin (d36:2) 0,97 0,97 1,02 1,12 0,98 1,01 0,99 1,12 1,1 1,09 1,03 1,08 0,99 1,07 0,98 1,1 0,93 0,99 0,81 1,2

Sphingolipids Sphingomyelin (d36:3) 1,03 1 1,14 0,98 1,01 1,04 1,2 1 0,95 1,07 1,28 1,01 0,99 1,15 1,52 1,19 0,89 0,95 0,9 1,06

Sphingolipids Sphingomyelin (d37:1) 0,99 1,07 1 0,99 0,98 1,02 1,01 1,04 1,06 1,08 1,06 1,06 1,08 1,05 1,07 1,01 0,95 0,98 0,91 1,18

Sphingolipids Sphingomyelin (d38:1) 0,91 0,98 0,94 1,02 0,98 0,95 0,88 0,95 0,98 0,97 0,84 0,99 0,95 0,98 0,89 0,91 0,91 0,84 0,76 0,98

Sphingolipids Sphingomyelin (d38:2) 0,98 0,98 1,03 0,97 1,01 0,98 1 0,94 1,05 0,96 1,03 0,89 1,06 0,96 1,09 0,86 0,99 0,88 0,82 0,88

Sphingolipids Sphingomyelin (d39:1) 0,98 1,02 1 1,04 1,05 1,04 0,99 1 1,07 1,01 1,1 1,12 1,03 1,03 1,14 1,29 1 0,96 0,96 1,29

Sphingolipids Sphingomyelin (d40:1) 0,91 1,03 1,07 1,07 1,01 1 1,03 1,03 1,02 1,01 1,02 1,09 1 1,01 1,1 1,01 0,9 0,96 0,89 1,12

Sphingolipids Sphingomyelin (d41:1) 1 1,05 1,01 0,97 1,03 1 1,06 1,02 1,07 1,01 1,12 1,12 1,07 0,9 1,1 1,23 0,95 0,94 1,01 1,29

Sphingolipids Sphingomyelin (d41:2) 1,03 1,03 1,01 1 1,05 1,01 1,04 1,01 1,09 1,04 1,07 1,04 1,1 1,08 1,09 1,02 0,97 0,95 0,88 0,9

Sphingolipids Sphingomyelin (d42:1) 1,01 1,03 1,02 0,97 1,03 1,05 0,93 0,98 1,08 1,04 0,94 1,05 1,08 1,05 0,97 0,91 1 1,01 0,82 0,84

Sphingolipids Sphingomyelin (d42:2) 0,94 1,02 0,99 0,93 1,01 1,04 0,94 0,94 1,05 1,02 0,96 0,82 0,99 1,07 0,92 0,74 0,84 0,87 0,68 0,61

Cholesterol and related Cholesterylester (C16:0) 1,08 1,03 1,33 1,22 1,11 1,06 2,16 0,97 0,94 1,18 1,42 1,32 0,73 1,08 1,1 1,57 0,74 0,86 1,42 2,44

Cholesterol and related Cholesterylester (C16:1) 1,13 1,03 1,36 0,84 1 1,01 1,99 0,94 0,64 1,12 1,55 1 0,46 1,12 1,09 1,83 0,41 1,1 1,43 2,7

Cholesterol and related Cholesterylester (C18:0) 1,02 0,98 1,21 1,03 1,06 1,08 2,42 1,19 0,87 1,21 1,98 1,47 0,76 1,14 1,5 2,68 0,65 1,13 2,25 3,48

Cholesterol and related Cholesterylester (C18:1) 1,02 0,92 1,36 0,99 1,05 1,02 1,51 1,16 0,88 1,03 1,46 1,36 0,76 0,98 1,3 1,96 0,77 0,95 1,84 3,36

Cholesterol and related Cholesterylester (C18:2) 1,03 1,09 1,33 1,03 0,9 0,97 1,83 1,21 0,69 1,22 1,61 1,42 0,57 1,17 1,03 2,08 0,56 1,18 1,52 3,38

Cholesterol and related Cholesterylester (C20:1) 1,08 1,06 1,23 0,91 1,02 1,04 1,48 1,02 0,85 1,03 1,45 1,33 0,75 1,04 1,33 2,59 0,65 1,2 2,47 3,54

Cholesterol and related Cholesterylester (C20:3) 1,01 1,01 1,27 1,32 1 1,02 1,67 1,57 0,86 1,11 1,46 3,26 0,73 1,11 1,45 6,32 0,75 1,1 3,11 11,6

Cholesterol and related Cholesterylester (C20:4) 1,08 1,07 1,25 1,33 0,94 0,97 1,79 1,29 0,77 1,29 1,38 1,91 0,5 1,2 1,06 2,99 0,46 1,21 1,63 4,93

Cholesterol and related Cholesterylester (C22:4) 1,22 1,05 1,29 1,13 1,1 1,06 1,48 1,61 0,85 1,2 1,65 2,98 0,81 1,12 1,84 6,57 0,79 1,22 4,38 9,12

Cholesterol and related Isopentenyl pyrophosphate (IPP) 1,25 0,98 0,88 0,49 1,11 1,2 0,39 0,47 0,83 0,89 0,73 0,22 0,93 0,6 0,88 0,7 0,98 0,76 0,48 0,65

Miscellaneous lipids Phosphocholine 1,05 1,08 1,08 1 1,14 1,14 0,93 0,92 1,17 1,15 0,9 0,73 1,22 1,15 0,8 0,57 1,15 1 0,45 0,36

Miscellaneous Biliverdin 0,69 1,12 0,92 2,01 1 0,99 1,5 1,55 1,21 1,23 0,98 1,93 1 1,21 0,95 1,12 0,84 0,75 0,42 0,6

Unknown Unknown lipid (849590045) 0,95 1,05 0,96 1,12 0,94 1,01 1 1,09 1,02 1,05 1,02 1,51 1,01 1,02 1,21 2,04 1,05 0,99 1,75 2,46

Unknown Unknown lipid (849590046) 1,14 1,05 0,87 0,92 1,06 1 0,94 0,92 1,12 1,06 0,96 1,09 1,03 0,97 1,13 1,4 1,07 1,14 1,44 1,89

Unknown Unknown lipid (849590126) 1,05 1,04 1,1 0,96 1 1,09 0,93 0,95 1,03 1 1,05 0,78 1,03 1,03 1 0,7 0,93 0,93 0,63 0,31

Unknown Unknown lipid (849590225) 0,99 0,96 1,02 0,74 1,03 1,04 0,85 0,78 0,91 1,04 0,96 0,71 0,94 1,01 0,89 0,72 0,91 1,03 0,87 0,89

Unknown Unknown lipid (849590423) 0,78 1,06 0,93 1,06 0,78 1,17 0,8 0,94 1 0,92 0,63 0,67 0,94 0,81 0,41 0,51 0,55 0,54 0,33 0,48

Unknown Unknown lipid (849590434) 1,03 1,03 0,95 0,93 1,03 1,05 0,88 0,88 1,02 1,34 0,85 0,78 1,24 1,1 0,81 0,83 1,41 1,29 1,13 0,93

Unknown Unknown lipid (849590435) 1,02 0,96 1,03 1,01 1,13 1,01 1,04 0,86 1,21 1,08 1,15 1,05 1,26 1,16 1,38 1,1 1,57 1,69 2,09 1,45

Unknown Unknown lipid (849590436) 0,93 1,13 1 1,06 1,2 1,03 0,96 0,87 0,9 1,23 0,98 0,82 1,2 1,08 0,82 0,71 1,37 1,38 1,04 1,58

Unknown Unknown lipid (849590437) 0,94 0,93 0,88 0,97 0,85 1 0,85 1,05 0,88 1,03 0,81 0,96 0,9 0,95 0,81 0,79 1,07 1,1 1,13 0,82

Unknown Unknown lipid (849590438) 0,93 0,99 0,99 1,14 0,99 1,06 0,97 1,01 0,99 1,06 0,89 0,93 1,07 1,03 1,09 0,92 1,22 1,41 1,52 1,46

Unknown Unknown lipid (849590439) 0,95 0,9 0,9 1,1 0,86 0,95 0,91 0,99 0,97 0,94 0,85 0,83 1 0,99 0,76 0,56 1,1 1,04 0,64 0,6

Unknown Unknown lipid (849590442) 1,04 1,12 1 1,07 0,99 1,11 1,09 1,07 1,24 1,02 1,19 1,3 1,18 1,33 1,6 1,45 1,44 1,59 2,65 1,46

Unknown Unknown lipid (849590443) 1,19 0,95 0,94 1,28 1,05 1,07 1,02 1 0,96 1,19 0,75 1,02 1,21 1,11 1,02 1,04 1,33 1,52 1,04 1,83

Unknown Unknown lipid (849590444) 0,95 1,16 1 1,06 1,12 0,94 0,94 1,07 1,07 1,1 1,06 1,19 1,1 1,05 1,13 1,33 1,39 1,29 1,82 1,21

Unknown Unknown lipid (849590445) 0,98 1,07 0,91 1,13 1,04 1,09 0,92 1,08 1 1,15 1,02 1,08 1,09 1,06 1,12 1,07 1,14 1,32 1,26 1,36

Unknown Unknown lipid (849590446) 1,03 0,87 0,86 1,11 0,91 1,06 1,05 0,94 1,16 0,93 0,84 0,83 1,09 1 0,84 0,89 1,09 1,35 1,03 1,07

Unknown Unknown lipid (849590448) 1,02 0,98 0,94 1,06 1,03 1,01 0,89 1,04 1,09 1,04 1 1,28 1,08 1,04 1,11 0,94 1,33 1,22 1,25 0,74

Unknown Unknown lipid (849590449) 0,98 1,01 0,95 1,08 1,03 1 0,86 0,91 1,03 0,99 0,8 0,78 1,06 0,99 0,76 0,59 1,11 1,15 0,72 0,53

Unknown Unknown lipid (849590450) 0,9 1,01 0,96 1,11 0,95 0,98 0,93 0,98 0,94 1,01 0,87 0,99 1 0,9 0,85 0,8 0,94 0,91 0,78 0,62

Unknown Unknown lipid (849590451) 0,94 1,07 1,22 1,1 0,85 1,02 0,83 1,08 0,88 0,92 0,91 0,88 0,97 0,89 0,88 0,67 0,92 0,83 0,74 0,48

Unknown Unknown lipid (849590452) 1,12 1,03 1 0,97 1,1 0,98 0,87 0,86 1,02 1,02 0,98 0,68 1,12 0,96 0,76 0,35 1,15 0,9 0,25 0,17

Unknown Unknown lipid (849590454) 1,09 0,98 1,11 0,93 1,02 1,02 1,02 0,86 1,05 0,9 1,01 0,76 1,05 1 1,01 0,77 0,89 0,86 0,61 0,56

Unknown Unknown lipid (849590455) 1,04 1,06 1,02 0,94 1,03 1,09 0,93 0,86 1,05 0,95 0,97 0,84 0,97 1,04 0,92 0,76 1,01 0,94 0,71 0,6

Unknown Unknown lipid (849590456) 0,99 1,21 1,15 1,09 1,09 1,14 1,2 1,16 1,07 1,24 1,25 1,02 1,16 1,19 1,28 0,76 1 1,08 0,55 0,4

Unknown Unknown lipid (849590457) 1,02 1,03 0,89 1,12 0,99 1,05 0,81 1,01 1,11 0,95 0,9 0,75 1,08 1,08 0,86 0,42 0,94 0,94 0,29 0,22

Unknown Unknown lipid (849590458) 1,01 1,03 1,01 0,91 1,15 1,12 0,92 0,89 1,11 1 0,85 0,63 1 1 0,77 0,48 0,92 0,88 0,42 0,24

Unknown Unknown lipid (849590459) 0,95 1,01 1,03 0,96 1 1,05 0,84 0,93 1,02 0,98 0,89 0,63 1,04 0,97 0,8 0,47 0,87 0,86 0,43 0,25

Unknown Unknown lipid (849590460) 1,02 1,13 1,07 1,16 0,99 1,08 1,05 1,27 0,94 0,9 1,1 1,94 1,08 0,99 1,43 2,6 1,01 1,08 2,38 3,44

Unknown Unknown lipid (849590462) 1 1,03 1,07 0,97 1,04 1,01 0,98 0,96 1,04 1,06 0,97 0,84 1,04 1,05 1,01 0,77 0,97 0,97 0,74 0,58

Unknown Unknown lipid (849590463) 0,93 1,06 1,06 0,95 0,95 1,01 0,91 0,91 0,97 0,96 0,89 0,79 0,95 0,93 0,84 0,72 0,88 0,82 0,63 0,45

Unknown Unknown lipid (849590464) 1,02 1,03 1,03 0,99 1,02 1,02 0,94 0,95 1,02 1,03 1,03 0,98 0,99 1,02 1,07 0,93 0,93 1 0,9 0,63

Unknown Unknown lipid (849590465) 1,02 1,06 1,07 1,19 1,05 1,09 1 1,16 1,06 1,07 1,13 1,12 1,11 1,07 1,45 0,72 1,18 1,12 0,88 0,33

Unknown Unknown lipid (849590467) 0,95 0,97 1,1 1,02 0,97 1 0,98 1,05 0,94 1,01 1,05 1,17 1,03 0,99 1,1 1,25 1,01 0,91 0,99 1,12

Unknown Unknown lipid (849590468) 0,98 1,03 1,04 1,01 1,02 1,06 0,99 1,07 1,03 1,09 1,09 1,36 1,1 1,08 1,25 1,84 1,01 1,01 1,32 2

Unknown Unknown lipid (849590469) 0,9 1,1 0,93 1,07 0,97 1,12 0,94 1,02 0,91 1,03 0,85 1,18 0,94 1,07 1,04 1,3 0,9 1 0,89 1,08

Unknown Unknown lipid (849590471) 1 0,75 1 0,45 1,09 0,87 1,45 0,61 1,13 0,66 1,26 0,63 0,8 0,66 0,44 0,93 0,76 0,58 0,51 1,72

Unknown Unknown lipid (849590472) 0,99 1,03 1,05 0,95 1,09 1,11 1,07 0,97 1,07 1,07 1,11 0,84 1,05 1,1 1,19 0,86 1,03 1,03 0,85 0,76

Unknown Unknown lipid (849590473) 1,08 0,95 0,97 1,03 1,09 0,89 0,91 0,97 1,11 0,94 0,98 1,27 1,12 1 1,09 1,41 1,05 0,89 1,02 1,14

Unknown Unknown lipid (849590476) 1,02 0,99 1,23 0,5 1,2 1,01 1,62 0,36 1,07 1,02 1,18 0,28 1,15 0,93 0,47 0,73 0,95 0,89 0,41 1,32

Unknown Unknown lipid (849590477) 0,94 0,9 1,03 0,46 0,93 0,86 1,33 0,56 0,77 0,98 1,26 0,41 0,93 0,8 0,56 0,62 0,83 0,82 0,46 0,75

Unknown Unknown lipid (849590479) 1 1,1 1,23 0,44 1,06 1,23 0,98 0,39 0,84 1,01 1,22 0,63 1,2 1,15 0,39 0,78 1,01 0,78 0,49 0,94

Unknown Unknown lipid (849590480) 0,99 1,07 1,04 1,01 1,01 1 0,97 0,99 1,04 1,07 1,01 1,08 1,07 0,97 1,04 0,97 0,99 1,01 0,84 0,51

Unknown Unknown lipid (849590481) 0,95 0,97 0,99 0,95 1,04 0,94 0,89 0,89 0,99 0,95 0,97 0,83 1,07 0,99 0,89 0,66 0,96 0,93 0,63 0,29
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Unknown Unknown lipid (849590482) 1,1 0,99 0,94 0,75 1,03 1,02 0,66 0,84 0,86 0,97 0,75 0,59 0,83 0,9 0,59 0,59 0,77 0,94 0,52 0,78

Unknown Unknown lipid (849590483) 1,1 0,9 0,91 0,65 1,02 1 0,66 0,81 0,95 0,89 0,66 0,54 0,81 0,9 0,56 0,58 0,79 0,91 0,61 1,18

Unknown Unknown lipid (849590484) 1,01 0,97 0,83 0,73 1 1 0,62 0,8 0,9 0,93 0,63 0,55 0,77 0,9 0,52 0,59 0,71 0,94 0,53 1,11

Unknown Unknown lipid (849590485) 0,95 0,87 0,83 0,71 0,95 0,91 0,64 0,82 0,89 0,82 0,56 0,58 0,85 0,8 0,48 0,53 0,75 0,72 0,52 0,93

Unknown Unknown lipid (849590486) 1,06 0,91 0,9 0,72 1,02 0,99 0,66 0,78 0,93 0,95 0,66 0,62 0,91 0,89 0,54 0,72 0,87 0,84 0,58 1,33

Unknown Unknown lipid (849590487) 0,99 0,96 1,1 0,45 1,08 0,98 1,11 0,39 0,94 0,92 0,96 0,51 1,02 0,95 0,48 0,75 0,98 0,85 0,41 0,79

Unknown Unknown lipid (849590488) 1,04 1 1,59 0,44 0,96 1,09 1,91 0,43 1,05 1,12 1,53 0,31 1,11 1,09 0,59 0,64 1,12 0,95 0,57 0,81

Unknown Unknown lipid (849590489) 0,88 0,93 1,21 0,43 0,81 0,87 1,38 0,57 0,91 0,89 0,86 0,41 0,96 0,96 0,41 0,74 1 0,85 0,58 1,13

Unknown Unknown lipid (849590500) 0,92 1,11 0,82 1,31 1,03 0,88 0,95 0,98 1,02 1,14 0,84 1,38 1,02 0,95 0,98 1,45 0,95 0,85 0,98 2,31

Unknown Unknown lipid (859590013) 0,9 0,98 0,86 1,02 0,97 0,9 0,98 1 1,14 1,13 0,99 1,17 0,95 1,17 1,26 1,31 1,02 1,09 1,75 2,3

Unknown Unknown lipid (859590071) 0,95 0,91 0,91 1,17 0,94 0,92 1,07 1,11 1,01 1,13 0,91 1,21 0,93 0,99 0,9 1,25 0,95 0,81 0,86 1,7

Unknown Unknown polar (869590388) 0,95 1,03 1,02 1,19 0,94 1,01 1,09 1,09 1 1,14 1,12 1,31 1,02 1,2 1,13 1,07 1,21 1,26 0,93 0,93

Unknown Unknown polar (869590390) 0,95 1,14 0,99 1,08 0,99 1 1,13 1,11 0,99 1,09 0,89 1,02 0,96 1,01 0,81 0,77 0,71 0,87 0,8 0,84

Unknown Unknown polar (869590395) 0,88 1,04 0,98 1,28 0,87 0,96 1,27 1,13 0,96 1,11 1,02 1,43 0,94 1,09 1,17 1,08 1 1,16 1,25 1,47

Unknown Unknown polar (869590398) 1,05 1,07 0,96 1 1,04 1,06 0,91 0,92 1,04 1,06 0,76 0,92 1,08 1,06 0,64 0,66 1,2 0,92 0,49 0,79

Unknown Unknown polar (869590400) 0,71 1,5 0,86 2,43 0,85 0,96 1,67 1,82 1,14 1,81 1,04 2,36 0,87 1,63 1,02 0,96 0,91 1,53 1,25 1,33

Unknown Unknown polar (869590402) 0,91 0,96 1,01 1,18 0,96 1,03 1,04 1,13 1,04 1,16 1,22 1,24 1,05 1,27 1,13 1,06 1,4 1,28 0,74 0,63

Unknown Unknown polar (869590406) 0,78 1,38 0,93 2,02 0,86 0,98 1,53 1,53 1,22 1,73 1,12 2,12 1 1,65 1,25 1,12 0,98 1,63 1,69 1,57

Unknown Unknown polar (869590410) 0,87 1,39 0,96 1,39 0,94 1,08 1,8 0,88 1,21 1,46 1,62 1,26 0,98 1,57 1,47 1,11 0,94 1,6 1,87 1,43

Unknown Unknown polar (869590417) 0,99 0,7 0,95 1,68 1,09 1,17 2,06 1,32 1,1 0,91 1,34 2,29 1,09 0,69 1,28 0,96 1,1 0,73 1,67 1,57

Unknown Unknown polar (869590424) 0,71 1,45 0,87 2,28 0,86 0,94 1,63 1,81 1,25 1,75 1,12 2,27 0,94 1,59 0,98 0,97 0,96 1,52 1,34 1,39

Unknown Unknown polar (869590431) 0,67 1,85 0,84 2,16 0,86 1,17 2,44 1,54 1,31 2,34 1,21 2,1 0,89 2,28 0,89 0,96 1,12 2,05 1,14 1,42

Unknown Unknown polar (869590432) 0,68 1,31 1,05 1,16 0,8 0,98 0,93 1,22 1,06 1,64 1,44 2,01 0,83 1,46 1,48 1,46 0,84 1,45 1,93 1,91

Unknown Unknown polar (869590436) 1 1,21 1,01 1,08 1,1 1,21 1,01 0,97 1,2 1,19 0,91 0,76 1,15 1,19 0,71 0,59 1,12 1,03 0,42 0,39

Unknown Unknown polar (869590442) 1,02 1,11 1,05 1,1 1,07 1,16 1,04 1,08 1,09 1,1 1,26 1,55 1,15 1,09 1,51 2,03 1,14 1,19 2,18 4,22

Unknown Unknown polar (869590444) 1,16 1,19 1,21 1,23 1,31 1,19 0,8 1,16 1,35 1,16 1,05 0,83 1,41 1,16 0,72 0,34 1 0,7 0,22 0,1

Unknown Unknown polar (869590448) 1,02 1,21 1,12 1,21 1,26 1,16 1,25 1,06 1,12 1,24 0,97 1,01 1,08 1,03 0,74 0,55 0,81 0,72 0,22 0,48

Unknown Unknown polar (869590452) 0,87 1,51 0,84 1,01 0,94 1,14 1,08 1,07 0,86 1,07 1 1,57 0,86 1,32 1,04 0,84 0,8 1,57 0,83 0,66

Unknown Unknown polar (869590456) 1,01 1,01 1,06 0,76 1,06 1,05 0,88 0,81 1,02 1,05 1,05 0,83 1,12 1,09 1,06 0,97 1,2 1,37 0,77 0,52

Unknown Unknown polar (879590076) 1,04 1,01 1,02 0,82 1,09 1 0,46 0,93 1 1,02 0,9 0,73 1,15 0,93 0,82 0,74 0,94 0,71 0,56 0,63

Unknown Unknown polar (879590422) 1,04 1,07 1,5 0,68 1,78 1,24 1,12 0,76 1,66 1,13 1,61 1,07 1,82 1,39 1,66 1,05 1,1 1,5 1,72 0,7

Unknown Unknown polar (879590425) 1 1,37 1,42 1,01 0,96 1,04 0,97 0,96 0,96 1,2 0,91 0,96 1,02 1,22 1,11 0,82 0,92 1,01 0,87 0,72

Increase Decrease

p < 0.01 p < 0.01

0.01 ≤ p < 0.05 0.01 ≤ p < 0.05

0.05 ≤ p < 0.10 0.05 ≤ p < 0.10
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Preamble 

 

In the last years, there has been a continued interest in the use of human induced pluripotent 

stem cells (hiPSC)-derived organoids for fundamental research, elucidation of disease 

progression, and utility for translational research development. In particular, human in vitro 

derived liver organoids and liver microphysiological systems (MPS) have the potential to guide 

in a paradigm shift in all aspects of chemical and drug development. Due to the unique role 

the liver plays in metabolic elimination of xenobiotics, evaluating hepatotoxicity of potential 

chemicals and drugs is of particular importance. Current toxicology and screening studies 

often utilize human cell culture models such as HepG2s and/or pre-clinical animal studies but 

they frequently do not faithfully recapitulate human in vivo liver metabolism. The ‘gold 

standard’ model utilizing primary human hepatocytes recapitulates human metabolism more 

accurately but suffers from scarce availability of samples, limited supply from a consistent 

donor, and a very limited lifespan alongside a high cost. Thus, there is a need for leveraging 

modern biological multiplexed measurements on improved human derived liver models that 

better recapitulate human physiology and sensitivity to hepatotoxicants for elucidating drug 

and chemical toxicology. 

In this manuscript, a combined team of academic (Massachusetts institute of technology, 

MIT) and industry (BASF) scientists developed genetically engineered human induced 

pluripotent stem cells (hiPSCs) to form 3-dimensional, self-organized liver organoids, 

characterized them, and utilized them for toxicometabolomic studies.  

In order to increase the physiological relevance of metabolomics data, the aim of this work 

was to test the applicability of the developed hiPSCs liver organoid for studying toxicological 

Mechanisms of Action (MoA). Specifically, by utilizing the tools and design principles of 

synthetic biology, scientists from the MIT genetically engineered hiPSC cells by delivering a 

small synthetic gene network (containing the transcription factor GATA6) into the cells that 

enabled controlled ectopic expression of a master cell fate regulator, Gata6, in a 

heterogenous distribution within a 3-D initial spheroid. The initial single population of hiPSCs 

proliferated and underwent a symmetry breaking operation that resulted in bifurcation into 
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mesoderm and endoderm lineages that were characterized in this paper via single cell RNA 

sequencing. This population enabled co-development and 3-D emergence of hepatocytes and 

non-parenchymal cells including stellate, cholangiocytes, Kupffer and additional 

haematopoietic cells. The resulting liver organoid after 30 days of maturation produced urea 

and albumin at physiological equivalent levels when normalized for hepatocyte composition 

(Ballmer et al. 1990; Rudman et al. 1973). To illustrate the utility of the in vitro liver MPS in 

toxicological studies, the model compound bezafibrate, a well-known PPARa agonist, was 

administered, and metabolic and transcriptomic shifts within the organoid model were 

measured. Analysis of the bezafibrate effects for 48-hours on the organoids produced a 

metabolome profile of 314 measured metabolites, of which 80% were altered due to 

treatment. Guided by the metabolome profile analysis, 30 genes that were relevant to the 

altered metabolite profile were identified and found 21 of these to be changed. The observed 

metabolic and gene expression changes due to bezafibrate included alterations in the 

metabolism of lipids, cholesterol, energy, and amino acids. The class of effects are also similar 

to beta oxidation of fatty acids, in agreement with reported in vivo bezafibrate 

pharmacological effects. These metabolic results are in concordance with those observed in 

human patient-derived serum. Multi-Omics approaches provide useful insights into the flow 

of biological information at multiple levels and thus can assist in a more comprehensive 

understanding of mechanisms underlying toxicological effects (Subramanian et al. 2020). In 

particular, by leveraging transcriptomics together with metabolomics results, the organoid 

model elucidates potential mechanism of actions for drug development immediately relevant 

to human models.  

In sum, the development of the 3D hiPSC liver organoid represents a more physiologically 

relevant system for the administration and elucidation of mechanisms of action for potential 

hepatotoxicity of chemical entities. Importantly, the utility but also diverse challenges (e.g., 

reproducibility) of 3-D liver MPS to be incorporated into drug and chemical developmental 

pipelines were shown. The further development and standardization of liver organoids such 

as the one presented in this manuscript and more generally 3D in vitro MPS will help address 

the observed differences between pre-clinical and clinical models and human responses. 

Combining metabolomics and transcriptomics on standardized and well characterized 
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microphysiological systems will potentially enable studies that establish human toxicity via 

mechanism of action with improved relevance and higher throughput than animal studies.  

 

The following publication was prepared in cooperation with 12 co-authors. Under a BASF 

funded collaboration with the Massachusetts institute of technology, MIT, in Boston. Scientist 

from the MIT conducted the experimental work concerning the development and 

characterization of the organoids and exposure to the test substance. Frozen substance-

treated organoids were delivered to Germany for the metabolomics analysis at BASF 

Metabolome solutions, Berlin. The author of this dissertation took part in the project 

management, definition of the study protocols and the overall project planning. In addition, 

the author analyzed the metabolomics data and wrote the paper (together with MIT). The co-

authors were involved in the bioinformatics data analysis, planning of the experiments, 

scientific discussions, and guidance, and significantly in the review process of the publication.  

 

Publication III: Mechanistic toxicometabolomics studies of a model PPARα 

agonist on human pluripotent stem cell-derived liver organoids 

 

Status of the manuscript: first round of revisions submitted to Nature Scientific reports. 
Submission ID. SREP-22-01564A. 

 

Authors: 

Sabina Ramirez-Hincapie1, #, Deepak Mishra2, #, Barbara Birk1, Volker Haake3, Michael Herold3, 

Erez Pery2, Jose Vargas-Asencio2, Shiva Razavi2, Patrick Fortuna2, Nevin M. Summers2, Rupert 

Konradi4, Bennard van Ravenzwaay1, *, Ron Weiss2* 

1: BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany 

2: Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of 

Technology, Cambridge, MA, USA 

3: BASF Metabolome Solutions GmbH 



Chapter 4: publication III 

134 

 

4: BASF Corporation, Northeast Research Alliance (NORA), Cambridge, USA 

#: These authors contributed equally 

*: Corresponding authors 

 

Abstract 

Toxicology assessment of drug and chemical developmental pipeline candidates in cell culture 

models and preclinical animal studies do not faithfully recapitulate human in vivo liver 

metabolism. Human-derived in vitro 3-dimensional liver microphysiological systems (MPS) 

that enable emergent tissue formation of multiple cell types and structural elements may 

constitute a more physiologically relevant model system. Here, we employ genetically 

engineered human induced pluripotent stem cells (hiPSCs) to form 3-dimensional, self-

organized human liver organoids for conducting toxicometabolomics studies. We 

characterized the bifurcation of a single population of hiPSCS into mesoderm and endoderm 

lineages, imaged underlying cell types and structures, and measured urea and albumin 

production at physiological levels in a day 30 organoid. Next, we administered bezafibrate, a 

model peroxisome proliferator-activated receptor-alpha (PPARα) agonist. We analyzed the 

intracellular concentrations of bezafibrate and a metabolome spectrum of 314 metabolites, 

of which 80% were altered by treatment. We also measured gene expression changes for 30 

genes possibly relevant to the altered metabolites and found 21 of these to be changed. The 

observed metabolic and gene expression changes within our organoids due to bezafibrate 

treatment were concentration dependent and included metabolism of lipids, cholesterol, 

energy, and amino acids as well as beta oxidation of fatty acids, in agreement with reported 

in vivo bezafibrate pharmacological effects. We demonstrated that liver MPS such as ours 

may serve as a physiologically relevant tool to understand mechanisms of action and evaluate 

hepatotoxicity of chemical entities. We anticipate that chemical treatment and metabolome 

analysis of 3D liver MPS will become a valuable tool in assessing toxicology within chemical 

and pharmaceutical development pipelines. 

Introduction 
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Toxicology, the study of the adverse effects of chemicals or physical agents on living 

organisms, is a critical process in chemical and drug development. Conventionally, toxicity 

testing has relied on proxies including immortalized cell lines from humans or animals and 

successively larger animal models coupled with experimental observational measurements. 

However, there remains open questions in the concordance between pre-clinical toxicity 

findings and predictive human toxicity1–5. Moreover, intrapopulation variation within humans 

further confounds pre-clinical toxicity findings6. Concurrently, the role of toxicology in 

maintaining human health and safety in the production of materials for consumers has led to 

a complex world-wide set of regulatory requirements1–3. A systematic analysis of toxicology 

integrating current limitations, consumer safety, and regulatory requirements proposed a 

radical overhaul1,2. This new toxicology system for testing adverse effects of chemicals on 

humans and the environment relies on technical advances in in vitro models and ‘omics’ 

technologies4,7.   

In in vivo toxicology, plasma metabolite profiling has been successfully used for over a decade 

to identify toxicological mechanisms in rodent studies8,9. At BASF, a large in vivo 

metabolomics database has been established for the identification and prediction of the 

mode of action of chemicals and pharmaceuticals10. The advent of omics technologies 

(genomics, transcriptomics, proteomics and metabolomics) has enabled comprehensive 

analysis of biological processes in an organism, allowing detailed characterization of pathways 

of toxicity (PoT) and identification of potential biomarkers for elucidating molecular 

mechanisms underlaying toxicity11–13. However, in vivo animal models have limitations due to 

the fact that observed metabolic byproducts and identified modes of action are not always 

predictive for humans4. The use of in vitro models that augment and eventually replace in vivo 

studies is the next crucial step in toxicometabolomics research.  

In vitro models are typically based on human-derived cells and offer the possibility of gaining 

improved understanding of human-specific mechanisms underlaying toxicity and pathways 

that lead to adverse outcomes14. As the liver is the major organ for endogenous and 

xenobiotics metabolism, it has the largest influence on compound induced changes in the 

metabolome and thus is the main target for toxicity in preclinical and chemical safety studies. 

Liver toxicity is a major cause of failure in new pharmaceutical development and post-market 

withdrawal6,15. Failure of drugs during their clinical development due to hepatotoxicity arises 
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as a result of poor translation of pre-clinical in vitro 2-dimensional cell cultures to phased 

trials16. Primary human hepatocytes (PHH) in culture are considered the best available model 

for xenobiotic metabolism and cytotoxicity studies17. However, scarce availability of fresh 

human liver samples, lack of consistent supply from the same donor, the limited lifespan, and 

cost limit their use18 . Thus, the use of immortalized cell lines, such as HepG2, has been of 

immense utility, offering the advantages of unlimited number of cell divisions, robustness, 

high reproducibility, simple handling and rapidly availability. Metabolomics approaches have 

been increasingly used in the assessment of hepatotoxicity in vitro with such cell lines8,13,19. 

For example, we have previously described the development of a LC-MS, GC-MS 

metabolomics in vitro method (MIV) for identifying mode of action of liver toxicants in HepG2 

cells20. However, HepG2 is a hepatoma cell line with reduced expression of drug metabolizing 

enzymes and transporters, lower production of important hepatic markers such as urea and 

albumin, and limited human metabolic capacity compared to PHH21,22. Moreover, in vitro 2-

dimensional cultures of PHH or HepG2 comprise static monolayers that lack critical 

architectural and biomechanical properties of the native tissue and other cell to cell 

interactions23. Development of in vitro models that can better recapitulate human physiology 

and sensitivity to hepatotoxicants in combination with -omics technologies offer a powerful 

system to expand the investigation of organ toxicity24,25.  

To overcome the limitations of 2D systems, there has been considerable advancement in 

human microphysiological systems (MPS). These systems expand beyond traditional 2D 

sandwich cultures and usually include multi-cellular environments incorporated within a 

biopolymer or tissue-derived matrix, 3D structure, media flow, and/or use of primary or stem 

cell derived cells6,26. Organoids, 3D multicellular in vitro stem-cell-derived constructs that 

mimic in vivo tissue are one type of MPS. Development of organoids across many organ types 

including heart, kidney, gut, brain, and liver has fostered a paradigm shift in elucidating 

human development and disease 27–31. Typically, organoids rely on sequential administration 

and orchestration of external factors and cues to human-induced pluripotent stem cells 

(hiPSC) cultures and may include multi-culture growth and assembly. However, these batch 

approaches suffer from challenges in spatial-temporal guidance of multilineage 

differentiation as well as optimal media formulations that support diverse cell types32,33. 

Utilizing tools of synthetic biology, cellular differentiation and organoid production has been 
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significantly improved by introduction of synthetic gene networks into engineered hiPSCs34,35. 

These engineered iPSC lines enable controllable but non-uniform cell-type specific expression 

of cell fate regulators to achieve symmetry breaking that guides development of diverse cell 

types, to create emergent architectural features, and increase cellular maturation34–38. 

Previously, we engineered 2D hiPSC-derived self-organized liver tissues via heterogeneous 

overexpression of transcription factor GATA637. These emergent liver tissues comprise a 

variety of co-developed cell types including hepatocytes, endothelial, cholangiocytes, Kupffer, 

hepatic stellate, and additional haematopoietic cells arranged in liver bud-like and vascular 

structures.  

In this paper, we extended our 2D hiPSC-derived liver tissues into 3D organoids and assessed 

if they could serve as an in vitro model system for metabolomics-based assessment and 

mechanistic investigation of hepatotoxicity. Optimization and investigation of hiPSC-Gata6 

differentiation in 3D revealed formation of vascularized liver organoids comprising ~70% 

hepatocytes as well as endothelial, stellate, Kupffer, cholangiocytes, and additional cell types 

within 30-days. These organoids are capable of urea and albumin production comparable to 

adult human physiological levels. To test our 3D liver organoid as a suitable in vitro model 

system for metabolomics-based toxicological studies, we introduce the hypolipidemic agent 

bezafibrate, a United States Federal Drug Administration (FDA) approved compound. An 

important reason for choosing to study bezafibrate is the difference between observed 

effects in animal models and those observed in patients. In particular, bezafibrate 

administration to rodents results in a marked proliferation of hepatic peroxisomes via the 

activation of the peroxisome proliferator-activated receptor alpha (PPARα)39 and if exposed 

chronically, leads to  PPARα-induced liver hyperplasia and hepatocarcinoma40,41. In patients 

following bezafibrate dosing, PPARα activation is observed but peroxisome proliferation is 

marginal and liver diseases have not been observed42,43. The extensively characterized mode 

of action, the interspecies differences in the toxicological profiles and the high expression 

levels of PPARα in the human liver made bezafibrate a good candidate to test our system.   

In the work presented in this paper, we identified multiple metabolic pathways sensitive to 

bezafibrate treatment and recapitulated bezafibrate’s expected mode of action within the 

Gata6 liver organoid using a combination of transcriptomics and metabolomics. Within our 

metabolome spectrum of 314 metabolites, 80% were altered by treatment, particularly 
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within pathways involved in lipid metabolism, energy, and amino acid synthesis. A qPCR 

screen of 30 genes relevant to the altered metabolites revealed that 21 of these were either 

up- or down- regulated within our organoids. Our studies set forth the utility of engineered 

hiPSC-derived liver organoids as an in vitro model for further toxicological studies.  

Results 

Formation and characterization of 3D self-organized liver organoids from engineered hiPSC-

Gata6 cell populations 

The hiPSC-Gata6 line was engineered by integration of a small gene network delivered by 

lentivirus37.  The network enables administration of doxycycline (Dox) to control ectopic 

expression of Gata6-encoding transgenes. Due to the heterogeneity of lentiviral transduction, 

cells receive different copy numbers of the gene network and exhibit a wide range of GATA6 

protein expression levels in response to the same level of Dox. It has been shown that 

heterogeneity of GATA6 expression enables co-development of multiple liver-associated cell 

types37,38. The polyclonal population of hiPSC-Gata6 cells is induced with Dox for 5 days in 

pluripotency supporting medium before removal of Dox and subsequent culturing in basal 

medium (Fig. 1A).    

To generate 3D organoids, we utilized Corning ultra-low attachment U-bottom 96-well plates 

with a single organoid seeded per well. To determine the optimal seeding density of hiPSC-

Gata6 cells at day zero required to form and proliferate as spheroids initially, we varied the 

number of starting cells across two orders of magnitude ranging from 468 to 30,000 cells and 

monitored organoid growth via brightfield microscopy until day 33 (Supplemental Fig. 1). We 

concurrently assayed urea and albumin production at day 25 and day 26 respectively to 

evaluate differentiation and development of hepatocytes within our organoids (Supplemental 

Fig. 2). We found that seeding 15,000 iPSC-Gata6 cells per well at day zero produced spherical 

organoids that were viable at day 30, not physically constrained within a well, and produced 

urea and albumin at physiologically relevant levels. For organoids seeded with fewer cells, 

organoid growth was slower or in some cases stalled yielding lower production of urea and 

albumin. For all subsequent iPSC-Gata6 organoid experiments, 15,000 cells were seeded at 

day zero. 
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To elucidate differentiation trajectories and establishment of cell lineages necessary for co-

development of hepatocytes, endothelial cells, and other liver associated cell types within 3D 

organoids, we performed single cell RNA sequencing (scRNAseq) (Fig. 1B). Organoids were 

grown for nine days, and single-cell suspensions of developing organoids were generated at 

days 0, 3, 5, and 8 days for scRNAseq. Processing of scRNA-seq data is described in full within 

the methods and follows standard analysis techniques44–47. Briefly, the entire data set was 

filtered and normalized with highly-variable genes extracted before downstream dimension 

reduction (UMAP) and Leiden clustering. Examination of enriched genes within each cluster 

enabled identification of intermediate differentiated cell lineages. Further identification of 

intermediate populations and cell-types were enabled by comparing gene expression in  

observed clusters to a hepatic cell atlas48. Analysis of our scRNAseq results revealed cellular 

clusters corresponding to two primary lineage trajectories, the first from iPSCs to endoderm 

and downstream cell types and the second from iPSCs to mesoderm and downstream cell 

types (Supplemental Fig. 3). In the former case, we observed developmental states for fetal 

hepatocytes that differentiated from hiPSC (NANOG+) to primitive endoderm (GATA6+ 

SOX17+) to hepatic lineages (HNF4a+). In the latter case, we observed development of 

endothelial and non-parenchymal liver cells that differentiated from hiPSC (NANOG+) to 

mesoendoderm (TBXT+) to endoderm (HAND+) to hemangioblasts (COL3A1).  

To understand emergence of structural elements arising from co-development and co-

differentiation of hepatic-progenitor cells, endothelial-progenitor cells, and other non-

parenchymal cell populations, we seeded iPSC-Gata6 wells and performed immunostaining 

of endothelial-progenitor cells (CD34+) and hepatic-progenitor cells (HNF4+) within organoids 

at days 5, 8, and 30 followed by analysis via confocal microscopy. Development of initial 

endothelial-progenitor and hepatic-progenitor populations in days 5-8 were observed in 

concurrence with the scRNAseq datasets. Moreover, by day 30, formation of CD34+ emergent 

tube-like structures were observed throughout the hepatocyte clusters and organoid (Fig. 1C, 

Supplemental Fig. 4, Supplemental Movies 1-2).  
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Figure 13. hiPSC-Gata6 liver organoid development. A) Genetic network encoding doxycycline (DOX) inducible Gata6 

delivered into iPSC via lentivirus infection to form hiPSC-Gata6 cell line. hiPSC-Gata6 are seeded at 15,000 cells/well and 

grown in pluripotent media with DOX for 5 days prior to transfer to APEL2 media. B) Schematic of cell fates generated via 

ectopic Gata6 expression (left) and corresponding populations identified with scRNAseq of dissociated organoids (right). C) 

Immunostaining micrographs of hiPSC-Gata6 liver organoids. At Day 5 and 8, endothelial cells stained for CD34 (green) and 

hepatic cells for HNF4a (red) from a single confocal slice. Day 30 is a 3D projection of several confocal slices and also includes 

staining for cell nuclei using DAPI (blue).  

 

To further probe cellular composition of organoids, we performed immunostaining of intact 

organoids (Supplemental Fig. 5) as well as dissociated representative organoids into single-

cell suspensions, performed immunostaining, and analyzed the cells via flow cytometry. 

Within our 3D day 30 organoids, approximately 80% of all cells identified within our liver 

organoids were reflective of the three most common cell types found in healthy adult human 

livers: hepatocytes (HNF4+), Stellate cells (Desmin+), and endothelial cells (CD34+) (Fig. 2A)49. 
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These population ratios developed temporally as individual cells underwent differentiation 

and proliferation (Supplemental Fig. 6). Our prior studies within 2-dimensional liver organoids 

identified additional cell-types present (e.g., Kupffer cells, cholangiocytes)37 and 

comprehensive follow-up studies are underway on these 3D organoids.  

As a proxy for hepatocyte activity, we non-destructively measured urea production at days 

14, 19, 21, 25, and 30 and albumin production at days 15 and 30 for intact organoids (Figs. 

2B, 2C). These measurements revealed that at day 30, organoids comprised on average 

73,000 total cells of which 68% were hepatocytes capable of producing urea and albumin 

levels of 65 and 50 micrograms/day/106 hepatocytes respectively, levels comparable to those 

found in healthy adult livers (56-159 µg urea/106 hepatocytes/day and 37-105 µg albumin/106 

hepatocytes/day) 50,51. Furthermore, we further characterized intact day 30 liver organoids 

with respect to alpha-1-fetoprotein expression, bulk RNA qPCR, and cytochrome P450 activity 

to gauge hepatocyte maturation (Supplemental Figs. 7-9). The 3D liver organoids do have a 

pulse of AFP expression comparable to that seen in human development and microsomes 

generated from intact liver organoids have cytochrome P450 enzymatic turnovers 

comparable to commercially sourced microsomes. Examining differences in gene expression 

and elucidating subtle differences in compound bioavailability for intact organoids and 

microsomes as well as a comparison of adult liver development mapping (20 years) to 3D 

organoid developmental time (30 days) represent avenues for additional follow-up studies. 
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Figure 2. Composition and hepatocyte function of Day 30 organoids. a) Immunostaining of dissociated organoids for cellular 

composition. b-c) Hepatocyte function measured within whole organoids by proxy of urea and albumin production. b) Urea 

production measured via BioAssay Systems QuantiChrom Urea Assay Kit. c) Albumin production measured via Bethyl Albumin 

ELISA Kit. For a, n=6 biological replicates and error bars represent standard deviation. For b and c, n=8 biological replicates 

and error bars represent standard deviation. 

 

Determination of appropriate bezafibrate dosage on hiPSC-Gata6 organoids  

Following characterization of the 3D hiPSC-Gata6 organoids, we sought to employ our 

organoids in toxicometabolomic studies utilizing bezafibrate, a model agonist of PPARα. 

Bezafibrate was administered from 0 to 2.0 millimolar final concentration in dimethyl 

sulfoxide (DMSO) to day 28 organoids for 48 hours before measuring cytotoxicity and viability 

of the bulk organoid. In particular, we sought to select a bezafibrate dosage that has a strong 

effect, but also has both minimal cytotoxicity and less than a 10% reduction of viability due 

to treatment (Fig. 3). We observed a viability of 93.5% and cytotoxicity of 2.6% for 0.5 mM 

bezafibrate dosing and utilized this concentration for all subsequent experiments.  
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Figure 3. Cytotoxicity testing for dose selection. a) Cytotoxicity assay (CellTox Green) measured on whole organoids. b) Cell 

viability assay (CellTiter-Glo) measured on whole organoids. For a and b, n=6 biological replicates and error bars represent 

standard deviation. 

 

Metabolomic measurement and analysis for bezafibrate treatment of 3D hiPSC-Gata6 

organoids 

To perform toxicometabolomics studies on our liver organoids, day 28 organoids were treated 

with 0.5mM bezafibrate in 0.5% DMSO in APEL2 media or with 0.5% DMSO in APEL2 media 

as a negative control for 48 hours with a media refresh at 24 hours. Organoids were 

subsequently harvested. An organoid subset was dissociated and immunostained for 

composition as previously described, a second subset of organoids were processed for bulk 

RNA extraction, and the remainder weighed and flash frozen as described in detail within the 

methods. For bezafibrate treated versus untreated organoids, total number and composition 

of cells within a single organoid did not change and flow cytometry characteristics related to 

size including forward, and side-scatter also did not change (data not shown). A slight increase 

in weights for treated versus untreated groups was observed (Supplemental Table. 5). Further 

investigation is needed to deduce the exact mechanism of this weight increase (e.g., 
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hypertrophia, hyperplasia, increase of extracellular space). Hepatomegaly reflects a classical 

response to fibrates treatment in rodents, however, this effect appears not to occur upon 

bezafibrate administration in humans 52,53. 

Following shipment of frozen organoids, intracellular metabolites were extracted for 

semiquantitative targeted metabolite profiling via LC-MS/MS. The entire analysis covered 2 

separate mass spectrometry batched runs with a total of 192 organoids. Each batch 

comprised 60 untreated (controls) and 36 treated organoids. Organoids were pooled into 

groups of 6 to satisfy the minimum biomass needed for metabolomics analysis resulting in 10 

control pools and 6 treated pool per batch. One treated pool from the first batch and 3 treated 

pools of the second batch did not pass the instrument-level data quality control process and 

were excluded from the analysis.  

To confirm and quantify substance uptake by the organoids, the intracellular concentrations 

of bezafibrate were determined via mass-spectometry. The results indicated the presence of 

bezafibrate in the organoids with concentrations of 2.20 µg ± 0.13 in batch 1 and 12.88 µg ± 

1.88 in batch 2. These values indicate that although the same nominal concentration was 

applied, there was approximately a 6-fold difference in the intracellular bezafibrate 

concentrations between the two batches. Based on intracellular compound concentrations, 

experimental treatment pools are referred hereafter as low (LC) and high (HC) concentration.  

The principal component analysis (PCA) of the metabolic profiles showed a clear treatment 

effect. This was evidenced by separation of the untreated and bezafibrate-treated organoids 

correlating with the first principal component, accounting for 63% of the variability. 

Noteworthy, the strength of the treatment effect on the metabolome correlated with the 

intracellular concentrations of bezafibrate. The magnitude of the distance between the 

controls and each data point along PC1 reflects increased bezafibrate levels. Metabolic 

profiles corresponding to the LC group were closer to the controls than metabolic profiles of 

the HC group, evidencing a concentration response effect based on intracellular compound 

levels. A minor inter-experiment variability was observed in the second principal component 

(explaining 11% of the total variance) (Fig. 4).  In addition to the treatment compound, a total 

of 314 unique analytes were measured of which 217 were annotated and 97 remained 
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unknown. The full metabolite profile can be found in the supplementary section 

(Supplementary Table 12). 

 

Figure 4. PCA analysis of the metabolic profiles of bezafibrate treated 3D hiPSC-Gata6 organoids. The organoids were 

treated for 48h with bezafibrate at 500µM. The analysis is based on log10-transformed metabolite ratios. Each point 

represents a sample of 6 pooled organoids. Two independent batches were analyzed. The numbers in the squares represent 

the measured intracellular bezafibrate concentration per sample. LC; low intracellular bezafibrate concentrations HC; high 

bezafibrate concentrations.  

 

Transcriptomics and metabolomics analysis of bezafibrate treated organoids reveal PPARα-

associated pathway activation 

Bezafibrate is a well-known PPARα agonist widely used as a hypolipidemic agent to lower 

serum triglycerides and cholesterol levels54. PPARα acts as a central regulator of hepatic lipid 

metabolism, modulating the transcription of fatty acid transporters and fatty acid β-oxidation 

enzymes55,56. More recently, it has been demonstrated that PPARα also influences glucose, 

lipoprotein, cholesterol and amino acid metabolism and plays a role in inflammation and 

cellular redox state57. Bezafibrate treatment for 48 hours on day 28 hiPSC-Gata6 organoids 
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showed transcriptome (Fig. 5) and metabolome (Table 1, Supplementary Tables 4-12) effects 

on both PPARα and the main known PPARα associated signalling pathways (Fig. 6). 

Importantly, these effects exhibited a concentration response behaviour correlated with the 

detected intracellular bezafibrate levels; both, transcriptome and metabolome changes were 

more pronounced in the HC group.  

Table 3. Enrichment analysis of significantly altered metabolites by ontology class after bezafibrate treatment. The 

distribution of the 314 metabolites across the ontology classes is provided in the column “measured metabolites”.  The 

number of metabolite changes are shown for each metabolite ontology class). All metabolite classes except for 

“miscellaneous” exhibited a significant enrichment in the ontology class (p-value<0.05). LC; low intracellular bezafibrate 

concentrations HC; high bezafibrate concentrations. 

Ontology name 
Measured 

metabolites 

LC HC 

Altered 
metabolites 

% Altered 
metabolites 

Altered 
metabolites 

% Altered 
metabolites 

Vitamins, cofactors and related 18 14 77.8 12 66.7 

Acylglycerols 24 19 79.2 20 83.3 

Amino acids 14 12 85.7 14 100.0 

Amino acids related 15 11 73.3 15 100.0 

Carbohydrates and related 3 3 100.0 3 100.0 

Cholesterol and related 14 13 92.9 11 78.6 

Energy metabolism and related 13 7 53.9 7 53.85 

Glycerophospholipids 34 33 97.1 31 91.2 

Lysoglycerophospholipids 29 23 79.3 19 65.5 

Miscellaneous 2 2 100.0 2 100.0 

Nucleobases and related 7 7 100.0 7 100.0 

Signal substances and related 4 2 50.0 3 75.0 

Sphingolipids 40 37 92.5 37 92.5 

Unknown 97 70 72.2 77 79.38 

Total 314 253 80.6 258 82.17 

 

Following treatment with bezafibrate, we observed increased expression of the PPARα gene 

(Fig. 5). In the LC group the PPARα gene was 1.25-fold upregulated and in the HC group it was 

2.35-fold upregulated (**). Next, we investigated downstream signalling pathways implicated 
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in PPARα activation starting with lipid metabolism. Briefly, after treatment, a general 

decrease of triglycerides (TGs) together with an increase in the expression of Lipoprotein 

lipase (LPL) gene, which encodes for the enzyme that Hydrolyzes TGs was observed. 

Bezafibrate treated organoids also exhibited increased concentrations and increase gene 

expression of metabolites and enzymes belonging to fatty acid shuttling, β-oxidation and 

Acetyl-CoA synthesis pathways. Different sphingolipids were also affected after treatment; a 

general increase in sphingomyelins was observed while the levels of ceramides decreased 

significantly. At the transcriptome level, an upregulation of gene expression of different 

enzymes involved in sphingolipid synthesis was detected. Additionally, glycerophospholipids 

such as various phosphatidylcholines and phosphatidylethanolamines were generally 

downregulated in comparison to controls.  

 

 

Figure 5. qPCR Transcriptomics of hiPSC-Gata6 organoids following dosage. a) Relative gene expression was calculated via 

modified Pfaffl equation using mean of 7 housekeeping genes for denominator and using efficiency as 2 for all samples. Fold-

change calculated for treated organoids versus untreated organoids. For DMSO treatment, n = 6 biological replicates and for 

bezafibrate treatments, n = 3 biological replicates. Error bars represent standard deviation. Running an unpaired t-tests 

between untreated organoids and each treatment independently for genes yielded p-values. Low concentration: 

SMPD2:0.000335 ***, ABCA1:0.001232 **, APOA1:0.001979 **, CYP27A1:0.002412 **, PDK4:0.000319 ***. High 

concentration: PPARa:0.001106 **, LPL:0.000030 ****, CPT1A/B/C:0.001292 **, ACSL1:0.001145 **, PANK1/2/3:0.001065 

**, SMPD2:0.000032 ****, SPTSSA:0.009239 **, SPTSSB:0.00781 **, APOA2:0.001492 **, ABCA1:0.000717 ***, 

APOA1:0.000521 ***, CYP7A1:0.001152 **, CYP27A1:0.000288 ***, PFKL:0.000069 ****, PDK4:0.000971 ***. 

 

Metabolites associated with cholesterol metabolism were also highly affected after exposure 

to bezafibrate with a profound increase in the levels of cholesteryl esters. qPCR analysis 

showed an upregulation of the expression of apolipoproteins (APO1, APO2) and Cholesterol 

Efflux Regulatory protein (ABCA1) and a downregulation of 3-hydroxy-3-methylglutaryl-
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coenzyme (HMGR) gene. No significant changes were observed in the expression of the sterol 

regulatory element binding proteins (SREBPs) gene. Increased concentrations of metabolites 

of the bile acid metabolism were detected together with decrease expression of CYP7A1 and 

CYP27 which are two key enzymes of bile acid synthesis. Energy metabolism was also altered 

by bezafibrate treatment, resulting in elevated levels of glucose and carbohydrates in treated 

organoids as well as glycolysis intermediates. At transcriptome level, gene expression of 

glycolytic enzymes such as phosphofructokinase (PFK), aldolase (ALDO) and pyruvate 

dehydrogenase kinase isoform 4 (PDK4) was upregulated. Furthermore, our results indicated 

a general increase in the levels of amino acids and a decrease in the concentration of 

antioxidants molecules.   
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Figure 6. Overview of altered PPARα target genes and related metabolites upon bezafibrate exposure of hiPSC-Gata6 

organoids. qPCR and metabolomics analysis were performed after 48h Bezafibrate treatment. Solid black lines indicate direct 

PPARα target genes and dashed black lines indicate indirect PPARα targets. Red arrows indicate upregulation and blue arrows 

indicate downregulation following bezafibrate treatment. 
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Discussion  

PPARα acts as a central regulator of lipid metabolism, modulating transcription of fatty acid 

transporters and fatty acid β-oxidation enzymes55. After bezafibrate exposure, our 

transcriptomic and metabolomic analysis revealed clear intracellular concentration-response 

changes in pathways spanning lipid metabolism, beta oxidation of fatty acids, cholesterol 

metabolism, energy metabolism, amino acids and antioxidants. Critically, the present work 

demonstrates the importance of determining intracellular concentration of the test 

substance as a good in vitro practice58. Although we applied the same nominal concentrations 

of bezafibrate in the experimental batches, the intracellular compound concentrations were 

markedly different, deviating by approximately 6-fold (Fig. 4). The differences in intracellular 

organoid compound concentration correlated extraordinarily well, in a dose-response 

manner, with the observed biological response reflected in the magnitude of the metabolite’s 

changes. This highlights a major and unique advantage of metabolomics, specifically the 

ability to measure both the biological response and the intracellular concentration of the test 

substance in the same sample at the same time. 

Our findings demonstrate that bezafibrate activates the PPARα pathways within our liver 

organoids (Fig. 6) particularly for the HC group. Moreover, the biochemical consequences of 

this activation correlate very well with the findings of our metabolome investigation (Fig. 5, 

Table 1). Overall, our results provide clear evidence that the 3D liver organoid system, in 

combination with transcriptomics and metabolomics, is capable of detecting human relevant 

changes associated with the mode of action of the reference compound. In this respect, our 

metabolome is in concordance with metabolic datasets collected from HepG2 cells, rat 

plasma, and human plasma following bezafibrate administration in some classes of 

metabolites10,20,43. Additional studies are needed to elucidate differences and similarities in 

exact chemical species among HepG2, rat, and human plasma compared to our hiPSC liver 

MPS alongside a suitable method for comparing disparate sources of data. Moreover, 

inclusion of transcriptomics of the genes tested here in HepG2, rat, and human specimens 

will bolster effective comparisons. In the discussion that follows the altered pathways are 

analyzed in the context of PPARα activation.  
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The expression of genes involved in mitochondrial and extramitochondrial fatty acid 

oxidation is largely regulated by PPARα activity55. PPARα is one of the key transcription 

factors taking part in regulation of ketone body metabolism61. PPARα knockout mice fail to 

activate hepatic fatty acid oxidation and ketogenesis during fasting, indicating that PPARα 

activation is necessary for initiating the ketogenic transcriptional program62. Analysis of the 

metabolome revealed higher levels of carnitines and derivates (O-acetylcarnitine and 

propionylcarnitine) in both low (LC) and high bezafibrate concentrations groups (HC) 

(Supplemental Table 4), indicating higher mobilization of fatty acids. Carnitine helps mobilize 

long-chain fatty acids into the mitochondria via the carnitine shuttle. Fatty acids are first 

conjugated to carnitine by carnitine-palmitoyl transferase I (CPT1), a direct target of PPARα, 

that catalyzes the first and rate-limiting step of the carnitine shuttle pathway56,59,60. After 

treatment, increased levels of the ketone body 3-hydroxybutyrate were observed as well in 

both groups (Supplemental Table 4). After bezafibrate treatment, transcriptomics analysis 

showed 1.35 and 1.74-fold (**) upregulation of carnitine-palmitoyl transferase 1 (CPT1A/B/C) 

genes in the LC and HC groups respectively, a finding corroborating metabolic measurements.  

PPARα activation enhances hepatic fatty acid transport and catabolism inducing 

triacylglycerol hydrolysis by upregulation of lipoprotein lipase (LPL), leading to reduction of 

serum and liver triglyceride levels53. In this study we observed LPL expression in the LC/HC 

batches to be 1.24 and 1.88-fold (****) upregulated respectively. Consistent with our data 

and the in vivo pharmacological effect of bezafibrate, the metabolome experiments revealed 

a significant decrease in triglycerides concentrations in both LC and HC groups (Supplemental 

Table 4).  

At the metabolome level, treated organoids showed tremendously high concentrations of the 

Acetyl-CoA derivates N-Acetyl-Aspartate (NAA) and pantothenic acid (Supplemental Table. 4) 

implicating an Acetyl-CoA metabolism response. In agreement with metabolic analysis, 

several genes that code for Acetyl-CoA metabolism-related enzymes were upregulated: Acyl-

CoA synthetase (ACSL1) (1.76 and 2.48-fold (**) respectively for LC and HC), N-acetyl 

aspartate synthetase (NAT8L) (1.18 and 1.24-fold respectively for LC and HC) and 

Pantothenate Kinases (PANK1/2/3) (1.13 and 1.96-fold (**) respectively for LC and HC). NAA 

has been shown to participate as an acetyl-CoA donor for lipid biosynthesis in the liver63. 

Pantothenic acid is an essential nutrient required to synthesize Coenzyme A (CoA). Of note, 
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an increase of pantothenic acid is a classical observation in metabolic patterns of rodents 

treated with PPARα agonists64. Together, these results suggest that excess acetyl-CoA caused 

directly by upregulation of ACS and indirectly by high rates of fatty acid oxidation in the 

organoids resulted in increased synthesis of acetyl-coA precursors.  

PPARα activation is involved in regulation of the first and rate limiting step in sphingolipid 

biosynthesis within the liver by directly increasing gene expression of palmitoyltransferase 

(SPT) as well as regulating palmitoyl-CoA levels55,65. At the transcriptional level, we observed 

up-regulation of both SPT gene subunits A and B (SPTSSA and SPTSSB). For SPTSSA, 1.25 and 

1.79-fold (**) respectively for LC and HC and for SPTSSB, 1.32 and 1.82-fold (**) respectively 

for LC and HC. In addition to de novo synthesis, ceramides are also generated by hydrolysis of 

sphingomyelin by the action of two sphingomyelinase (SMase) enzymes, SMPD1 and SMPD2. 

For the LC group we detected a 1.34-fold upregulation of SMPD1 and a 3.01-fold (***) 

upregulation of SMPD2. In the HC group, the upregulation for SMPD1 was 1.28-fold and for 

SMPD2 was 5.60-fold (****). These transcriptional measurements contrast with the 

decreased metabolic measurements of ceramides found after bezafibrate treatment 

(Supplemental Table 5) suggesting that there are different mechanisms/enzymes involved in 

ceramides generation which are negatively affected by PPARα activation. Two different types 

of sphingomyelinases (neutral and lipid) have been described66. The precise cellular function 

of each of these SMases in sphingomyelin turnover is not yet well understood. Previous 

studies have indicated that PPARα activation interferes negatively with the neutral SMase 

pathway in primary Human Macrophages67. Interestingly, PPAR activation inhibited the 

activity of neutral sphingomyelinase and increased the activity of acid sphingomyelinase in 

the myocardium of mice treated with a PPAR alpha agonist68. This results points towards a 

differential regulation of the SMases by PPARα which might be a possible explanation to our 

observations. 

Additionally, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) levels were also 

significantly altered after bezafibrate treatment (Supplemental Tables 6, 7). PC and PE are the 

most abundant phospholipids in mammalian cell membranes. The role of phospholipids in 

regulating lipid and energy metabolism has been widely demonstrated69. It has been reported 

that PPARα is required to maintain phospholipid homeostasis during energy deprivation70. 
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However, the exact mechanism of PPARα regulation in different classes of phospholipids is 

not well understood and informs future studies.  

The liver is the principal site for maintenance of cholesterol homeostasis. Growing evidence 

indicates a key role of PPARα in the regulation of cholesterol synthesis and bile acid 

metabolism71–73. Highly increased concentrations of intracellular cholesteryl esters together 

with higher levels of free cholesterol were found in the bezafibrate treated organoids 

(Supplemental Table 8). To determine the cause, we examined genes within pathways for 

cholesterol synthesis, incorporation, and export. We measured 3-hydroxy-3-methylglutaryl-

coenzyme (HMGR), the rate limiting enzyme in de novo cholesterol synthesis as well as sterol 

regulatory element binding proteins (SREBPs), genes involved in regulating cholesterol 

metabolism. Treatment resulted in no significant changes in expression in LC and HC groups. 

The cholesterol pool obtained from de novo synthesis in hepatocytes can be esterified to 

cholesteryl esters and incorporated into lipoproteins, which are then secreted into the 

bloodstream for transport74. The two most abundant proteins of the high-density lipoprotein 

particles (HDL) are apolipoprotein A-1 (APOA1) and apolipoprotein A-II (APOA2) and they 

attach to cell membranes and promote excretion of cholesterol. Once outside the cell, 

cholesterol binds to apolipoproteins to form HDL. We observed a 1.70 and 2.07-fold 

upregulation respectively for LC and HC groups in apolipoprotein A-I (APOA1) and a 1.50 and 

2.50-fold upregulation respectively for LC and HC groups in apolipoprotein A-II (APOA2). 

Subsequently, we measured expression of the gene that codes for Cholesterol Efflux 

Regulatory protein (ABCA1), a primary exporter within the cellular lipid removal pathway. 

Bezafibrate treatment yielded a 1.95 and 2.22-fold upregulation of ABCA1 in LC and HC groups 

respectively.  

Together, the analysis shows that neither expression of genes involved in cholesterol 

synthesis increased nor did expression of apolipoproteins and cholesterol transport protein 

decline.  Therefore, it is possible that activation of PPARα by bezafibrate treatment led to an 

accumulation of cholesterol and cholesteryl esters in our organoids. Then, due to a lack of a 

fully mature bile duct and vascular system, these metabolites could not be excreted and 

consequently accumulated in the organoids as cholesteryl esters, resulting in highly increased 

concentrations of these metabolites detected after bezafibrate treatment. Another avenue 

congruent with our liver organoids being excrement limited is that bezafibrate and fibrates 
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have been reported to reduce bile acid synthesis, a major pathway of cholesterol elimination. 

In agreement with previous studies73, PPARα activation in our organoids resulted in 

downregulation of the mRNA levels of two important enzymes of bile acid synthesis: 

cholesterol 7alpha hydroxylase (CYP7A1) (1.7-fold in low concentration, 3.33-fold (**) in high 

concentration), the rate limiting step, and Sterol 27-Hydroxylase (CYP27) (2.0-fold (**) in low 

concentration, 3.62-fold (***) in high concentration). Higher levels of taurine were observed 

after treatment, potentially reflecting an accumulation of this amino acid caused by reduced 

synthesis of primary bile acids in the bezafibrate treated organoids (Supplemental Table. 8). 

PPARα activation has been shown to directly alter glycolysis and glucose utilization in the liver 

through production of pyruvate dehydrogenase kinase isoform 4 (PDK4)75. Pdk4 inactivates 

pyruvate dehydrogenase, limiting carbon flux through glycolysis76. At the metabolome level, 

higher concentrations of glucose and sorbitol suggest lower carbohydrate utilization. 

Increased metabolic levels of fructose 1,6 diphosphate were also observed. Following 

bezafibrate treatment, gene expression levels of phosphofructokinase (PFK) and PDK4, 

enzymes that participate in glycolysis, were upregulated by 3.83-fold and 2.94-fold 

respectively. While expression of Glycerol-3-Phosphate Dehydrogenase (GPD1/2) was 

minimally downregulated in treated organoids, concentrations of glycerol-3-phosphate 

appeared lower (Supplemental Table. 9). GPD1/2 serves as a major link between 

carbohydrate metabolism and lipid metabolism by participating in the conversion of glycerol 

to glucose. 

Besides its role in lipid metabolism, PPARα influences expression of different genes implicated 

in amino acid metabolism77,78. In our study, concentrations of 86% (LC group) and 100% (HC 

group) of all measured amino acids (AA) were significantly increased after bezafibrate 

treatment (Supplemental Table 10). These results are in line with previous evidence of higher 

plasma and hepatic AA levels in rodents treated with PPARα agonists79. It has been shown 

that PPARα activation suppresses expression of numerous genes participating in AA 

catabolism, leading to an overall decrease in amino acid degradation. These observations are 

supported by evidence of enhanced AA catabolism in PPARα-null mice. Impaired β-oxidation 

leads to a compensatory increase in amino acid catabolism and urea synthesis in liver of 

PPARα-null mice, but not in their wild-type counterparts80. In order to preserve body proteins 

and maintain nitrogen balance, PPARα regulates protein metabolic homeostasis by down 
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regulating liver amino acid catabolism and utilizing fatty acids as the main energy source78. 

After PPARα induction through bezafibrate, the overall elevated AA levels in our 3D hiPSC-

Gata6 organoids suggest an AA accumulation possibly resulting from a reduction of their 

breakdown rates. Quantifying expression levels of proteins responsible for AA breakdown 

represent future studies to test this hypothesis.   

The metabolomics analysis revealed lower levels of alpha- and gamma-Tocopherol (vitamin E 

isoforms), beta-carotene, glutathione (GSH) and Coenzymes Q7, Q9 and Q10 (Supplemetal 

Table 11). Since redox activity is a fundamental part of oxidative metabolism, changes in 

PPARα signaling lead to alterations of the cellular redox state81. These changes suggest a 

higher utilization of antioxidant molecules in bezafibrate treated organoids. These 

observations might not be transcriptionally directly connected to PPARα activation but rather 

reflect the physiological response to increased lipid oxidation in order to counteract oxidative 

stress and maintain redox balance. 

Conclusion  

Nearly a quarter of the 21th century has passed and still society relies largely on animal 

studies for regulatory decision making. This indicates that new approaches to the “toxicology 

in the 21st century” goal set out by the US national academy of sciences is needed. We believe 

that this requires an approach which includes the incorporation of new biological techniques 

and more predictive models that bridge animal to human pre-clinical information alongside 

an overhaul of regulatory requirements 1.2 7. One emerging technology in evaluating 

chemical toxicity is the incorporation of in vitro MPS models combined with biological -omic 

measurements to establish mechanism of action. Here, we presented a method for building 

3-dimensional multicellular liver organoids from engineered human induced pluripotent stem 

cells. Our organoids support emergence of a diversity of cell types found in the liver, structural 

self-assembly of vasculature and other elements, and functionally produce physiologically 

relevant levels of albumin and urea. Following administration to our organoids of bezafibrate, 

a model FDA-approved compound that acts as a PPARα agonist, we were able to measure 

altered metabolomic and transcriptomic profiles. The altered metabolites fell broadly into 

classes that are consistent with bezafibrate acting as a PPARα agonist. Analysis via qPCR of 

pathways that were considered responsible for the change in metabolic profile enabled more 
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comprehensive understanding of bezafibrate treatment within the 3D organoid and 

elucidated areas where results within rodent, cellular, and patient samples could be 

reconciled.  

Importantly, although the same nominal concentrations of bezafibrate were applied in the 

two experimental batches, the intracellular compound concentrations were markedly 

different, a phenomenon similar to those seen in patient-to-patient variability. The observed 

biological responses directly correlated to the magnitude of the metabolites fold changes. 

The metabolic response to bezafibrate was qualitative comparable in the two batches with 

common altered metabolites in the same direction (up- or down- regulated). However, the 

magnitude of the fold changes in the high concentration group (HC), which exhibited about a 

6-fold higher intracellular bezafibrate concentration in comparison with the low 

concentration group, were notably higher. The reasons of this differences in concentrations 

are not clear and require further examination. It evidences, however, the importance of 

measuring the intracellular concentrations of the test compounds in in vitro assays and 

highlights a major advantage of integrating metabolomics technologies in in vitro studies. 

Integrated systems and methods such as ours and more generally 3D in vitro MPS will help 

address the observed differences between pre-clinical and clinical models and human 

deployment. Incorporation of metabolomics and transcriptomics on MPS will enable studies 

that establish human toxicity via mechanism of action at a lower cost and higher throughput 

than animal studies. The in vitro model presented here provides an in depth understanding 

of human relevant pathways in toxicology and is a potential game changes to achieve the 

goals of toxicology in the 21st century, i.e. reducing animal use, while providing human 

relevant data for risk assessment.  

Alongside the progress we have demonstrated here utilizing liver MPS for toxicology, there 

are additional opportunities for liver MPS in chemical and pharmaceutical development. 

Further studies may map extracellular to intracellular concentration profiles in vitro to 

clinically relevant in vivo concentrations needed for drug effects. Moreover, development of 

varying 3D MPS by utilizing iPSCs differing in age, sex, race, disease-state, and other factors 

may enable study of variation in chemical toxicology across a range of organs within the 

human population. Advanced 3D MPS systems may include burgeoning technologies such as 
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gene editing, trans-gene expression, or even viral infection to reflect disease aspects of a 

target patient population that may change the liver – for example, drug susceptibility 

interaction that impacts safety and toxicity profiles. The usage of liver MPS as well as other 

organ MPS will become invaluable tools in assessing toxicology, mode of action, and dosing 

for candidates in chemical and pharmaceutical development pipelines.  

 

Materials and Methods: 

Cell culture 

The PGP1 hiPSCs were a kind gift from George Church (Harvard University, USA) and can be 

obtained from Coriell (NJ, USA). The hiPSC-GATA6 model was generated as previously 

described in Guye et al, 2016. hiPSC-GATA6 cells were cultivated under sterile conditions in 

mTeSR Plus (Stem Cell Technologies, Vancouver) changed daily in a humified incubator at 37C 

and 5% CO2. Tissue culture plates were coated for 1 hour at room temperature with BD ES-

qualified Matrigel (BD Biosciences) diluted according to the manufacturer’s instructions in ice 

cold DMEM/F-12 with 15mM HEPES medium (Stem Cell Technologies, Vancouver). Routine 

passaging was performed by incubating hiPSC colonies for 5 minutes in Accutase (Sigma) at 

37C, collecting the suspension and adding 5mL DMEM/F-12 medium containing 10 

micromolar Y-27632 (Tocris Biosciences, UK) solubilized in cell-grade DMSO (Sigma-Aldrich), 

centrifuging at 500 rpm for 3 minutes and resuspended in mTeSR Plus supplemented with 10 

micromolar Y-27632 for counting.  

 

Organoid culture 

For differentiation experiments, hiPSC-GATA6 cells were seeded at 15,000 cells (unless noted) 

in mTeSR Plus supplemented with 10 micromolar Y-27632 and 1000 ng/mL doxycycline 

(Sigma-Aldrich) solubilized in cell-grade DMSO into a 96-well ultra-low attachment round-

bottom plate (Corning, Corning, NY, USA) and centrifuged at 300 x g for 5 minutes at room 

temperature before incubation at 37oC supplemented with 5% CO2. At 16 hours, the medium 

was changed to mTeSR Plus supplemented with 1000 ng/mL doxycycline and replaced daily 
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for 5 days. Subsequently, a non-pluripotency supporting medium, APEL2, (Stem Cell 

Technologies, Vancouver) was used to grow the cells and replaced daily from day 5 to day 10, 

every two days from day 10 to day 20, and every three days from day 20 to day 30. APEL2 

contains human serum albumin. Therefore, when assaying for human albumin, organoids 

were switched to daily feedings with William’s medum E prior to sampling for measurement. 

 

Urea measurement, albumin and AFP Enzyme-linked Immunosorbent Assays (ELISA) 

A colorimetric urea assay (Cell Biolabs, San Diego, CA, USA) was performed according to the 

manufacturer’s instructions. The cell supernatant was assessed at multiple dilutions to 

optimize detection. Samples were assayed for human albumin via commercially available 

ELISA kits (Bethyl Labs, Montgomery, TX, USA) according to manufacturer’s instruction. 

Sample dilutions were optimized to attain detection in the linear range of the standard curves 

for each individual assay.  

 

Organoid Harvest for Downstream Dissociation into Single Cells for scRNAseq or 

Immunostaining  

Plates containing organoids were centrifuged at 200 x g for 10 seconds. Media was 

disregarded and organoids were washed with 100 microliters of 1x PBS (Sigma-Aldrich) 

followed by 200 x g for 10 second centrifugation twice and supernatant discarded.  

For dissociation of organoids into single cells for staining, these organoids were incubated in 

50 microliters 2.5% trypsin (Corning) supplemented with 10 mM EDTA (Sigma-Aldrich) for 2 

minutes. Well contents were transferred to 1.7 mL tubes and 500 microliters PBS was added 

to tubes and centrifuged at 300 x g for 4 minutes. Supernatant was aspirated and 50 

microliters of Collagenase 4 (STEMCELL Technologies) was added prior to suspension being 

mechanically agitated by 15 strokes with a P-1000 and 15 strokes with a P-200. Suspension 

was incubated for 10 minutes prior to mechanical agitation by 30 strokes with a P-200. 750 

microliters PBS was added prior to centrifugation at 300 x g for 4 minutes. Supernatant was 

aspirated and cells were resuspended in 50 microliters before being passed through a 40-
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micron strainer into a 2.0 mL tube. Cells were washed with 200 microliter PBS and centrifuged 

at 300 x g for 4 minutes with supernatant discarded before counting.  

 

Cell suspension Immunofluorescence 

Single cells were fixed in 100uL 4% fixation Buffer (BioLegend, USA) for 5 minutes prior to 

repeating 200 microliter PBS and centrifugation as before. Cells within tubes were blocked 

and permeabilized in 100 microliters of 10% normal donkey serum (Abcam, USA) and 0.1% 

Triton X-100 in PBS (block/perm buffer) for 30 minutes at room temperature. Primary 

antibodies were diluted 1:500 in block/perm buffer and incubated for 30 minutes at room 

temperature prior to centrifugation and supernatant discarded. Cells were washed with 3 

rounds PBS with incubation for 2 minutes and centriguation with supernatant discarded. 

Secondary antibodies were diluted 1:500 in block/perm buffer and incubated for 30 minutes 

at room temperature prior to centrifugation and supernatant discarded. Cells were washed 

for 3 rounds as previously described before passed through a 40-micron strainer and flow 

cytometry using a BD LSRFortessa Custom (BD Biosciences). 

 

Whole-organoid Immunofluorescence 

Individual organoids were fixed within well for 20 minutes in 200 microliters 4% fixation buffer 

(BioLegend, USA) at room temperature with 5rpm gentle orbital shaking to prevent adhesion 

to plate. Wells were then washed three times with 200 microliters of 1x PBS followed by 20 

minutes of incubation with 0.2% Triton X-100 in PBS. Subsequently, the wells were washed 

three times in 250 microliters PBS for 5 minutes prior to blocking with 250 microliters of 4% 

normal donkey serum (Abcam, USA) in PBS. Incubation with primary antibodies were 

performed for 1 hour at room temperature in 4% normal donkey serum in PBS followed by 

three washes in 250 microliters PBS for 5 minutes. Primary antibodies were anti-HNF4-alpha 

(ab41898 Abcam, USA), anti-desmin (ab32362 Abcam, USA), anti-CEBPA (af7094 R&D, USA), 

anti-CD31 (3528 and 77699 Cell Signaling Technologies, USA), and anti-CD34 (ab81289 

Abcam, USA). Incubation of secondary antibodies (all appropriate anti-goat/rabbit/mouse 
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and AlexaFluor choices from Thermo Fisher Scientific, USA) were performed for 1 hour at 

room temperature in 4% normal donkey serum in PBS followed by three washes in 250 

microliters PBS for 5 minutes. Organoids were transferred to 4% normal donkey serum 

blocked glass bottomed 96-well plates containing 200uL PBS. Confocal images were taken 

using a Leica TCS SP5 II 405UV confocal microscope (Leica Microsystems, Bannockburn, IL).  

Bezafibrate Administration to Organoids 

Bezafibrate (Sigma-Aldrich) was solubilized in 100% cell-grade DMSO (Sigma-Aldrich) to make 

a 100mM stock, followed by a 1:10 dilution into APEL2 media to form a 10mM working 

solution in 10% DMSO, followed by a 1:20 dilution into APEL2 media to form a 0.5mM solution 

in 0.5% DMSO and APEL2 for administration. Bezafibrate media solutions were made fresh 

daily and administered on day 28 and refreshed on day 29 prior to organoid harvest on Day 

30. For applications other than 0.5mM in 0.5% DMSO, working solutions were made by 

changing stock solution formulation and 200-fold dilution to maintain 0.5% DMSO. 

 

Cytotoxicity testing  

Bezafibrate media solutions at indicated concentrations were applied to day 28 iPSC-Gata6 

organoids and refreshed on day 29. Cellular toxicity and cellular viability were measured via 

commericially available fluorescent cytotoxicity (CellTox Green) and luminescent cell viability 

(CellTiter-Glo) kits (Promega Corporation, Madison, Wisconsin, USA).  

 

Organoid Harvest for Metabolomics analysis 

Plates containing organoids were centrifuged at 200 x g for 10 seconds. 100 microliters of 

supernatant per well was collected and the remainder discarded. Organoids were washed 

with 100 microliters of freshly prepared 0.9% NaCl (w/v) (Sigma-Aldrich) in autoclaved sterile 

water pre-heated to 37°C. Organoids were centrifuged at 200 x g for 10 seconds and 

supernatant discarded. This wash was repeated once more before being fully aspirated. 

Organoids were transferred to pre-weighed 1.7mL Safe-Lock tubes (Eppendorf) in 6-organoid 
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pools unless otherwise stated in the main text and weighed again. Open tubes were flash 

frozen in liquid nitrogen, placed on dry-ice for approximately 1 minute, and then closed 

before storage and dispatch at -80°C from MIT to BASF Metabolome solutions GmbH in Berlin.  

 

Metabolite profiling  

Mass spectrometry-based metabolite profiling was performed according to a standardized 

protocol described below. 

Organoid samples were subjected to a freeze-drying process before extraction. The product 

temperature and the vapor pressure at the beginning of the freeze-drying process were -40°C 

and 0.120 mbar respectively changing to +30°C and 0.01 mbar during the total run-time of 42 

h. Each sample was extracted as a whole with 240 µL of 80% isopropanol containing internal 

standards. Samples were processed, after addition of one 3 mm stainless steel ball to each 

sample, with a ball mill (Bead Ruptor Biolab, 3 cycles of 30 sec. each at 3.1 m/s). After 

centrifugation (13000 rpm, 10min at 20°C), 50 µL of each sample were transferred into an 

analysis vial, diluted with 200 µL of the extraction solution and mixed after closing the vials. 

100 µL of each sample were transferred into a new vial for analysis. 

2,5 µl of the extract were injected each for reversed-phase and hydrophilic interaction liquid 

chromatography (ZIC-HILIC, 2.1 x 10mm, 3.5 µm, Supelco) followed by MS/MS detection (AB 

Sciex QTrap 6500+) using the positive and negative ionization mode. For reverse-phase high 

performance liquid chromatography (RP-HPLC, Ascentis Express C18, 5cm x 2.1mm, 2,7µm 

Supelco), gradient elution was performed with mobile phase A, water/methanol/0.1 M 

ammonium formate (1:1:0.02, w/w), and B, methyl-tert-butylether/2-

propanol/methanol/0.1M ammonium formate/formic acid (4:2:1:0.07:0.035, w/w) (linear 

gradients, 0 min 100% A, 0.5 min 75% A, 5.9 min 10% A, 600 µl/min). HILIC gradient elution 

was performed with mobile phase C, acetonitrile/water (99:1, v/v) with 0.2% (v) acetic acid, 

and D, 7 mM ammonium acetate with 0.2% (v) acetic acid (linear gradients, 0 min 100% C, 5 

min 10% C, 600 µl/min). 



Chapter 4: publication III 

162 

 

When a metabolite failed in our internal quality control (linearity, variability, and pool 

contribution thresholds) for a particular group, data for the corresponding group and 

metabolite were excluded (For detailed information refer to Viant et al, 2019 82). This resulted 

in a few missing values in the dataset. In broad metabolite profiling, large numbers of 

metabolites are measured. They are characterized by their polarity (lipid vs polar), mass-

charge-ratio (m/z ratio) and retention time in the chromatographic system used. While the 

combination of these parameters enables reproducible evaluation of metabolites, the exact 

chemical identity of a peak is not always known since the obtained mass typically leaves 

several options. To clearly confirm the identity of a metabolite, it was spiked in samples during 

method development. As many metabolites are not commercially available, fragmentation 

patterns and library matching were used to the determine the most likely identity of those 

metabolites. The corresponding metabolites were then marked as “plausible”. There are still 

several metabolites remaining for which the available information was insufficient to provide 

a clear call on metabolite identity. In these cases, the metabolites were listed as “unknown” 

together with the phase they were found in as well as the analyte-identifier for differentiation 

of different unknowns. 

All of the samples were analyzed at once in a randomized analytical sequence design to avoid 

artificial results with respect to analytical shifts. Data were normalized to the median of 

reference samples which were derived from a pool formed from aliquots of untreated 

samples to account for inter- and intra-instrumental variation if more than one analysis batch 

are compared. 

For the measuring of bezafibrate intracellular concentrations, one calibration per analysis 

batch was included by spiking pooled extracts from organoids without bezafibrate treatment 

prior to analysis with bezafibrate amounts representing 0.96, 4.8, 19.2, 144 and 480 ng per 

sample from 6 organoids. Larger amounts have been extrapolated up to 3 µg per 6 organoids 

sample. The calculated bezafibrate concentrations were normalized to cell numbers using 

within sample metabolite median (see section below “Metabolome data analysis”).  

 

Metabolomics data analysis 
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Pooled reference samples derived from aliquots of all separate dedicated control samples 

were measured in parallel throughout the entire analytical process. Data were normalized 

against the median in the pool reference samples to give pool-normalized ratios (performed 

for each sample per metabolite). This compensated for inter- and intra-instrumental 

variation. To correct for differences in cell numbers within and between different treatment 

groups, the data were also normalized to the within sample median, as described in detail by 

Ramirez et al, 2018 20. For the intracellular metabolomic analysis of the organoids used here, 

the median of each sample was calculated across all the 314 measured metabolites. 

To generate metabolic profiles for the different treatments, the heteroscedastic t-test (Welch 

test) was applied to the log-transformed normalized (see above) metabolite data to compare 

treated groups with their respective controls. Results from these analyses were visualized in 

colored tables. The red-blue tables show the fold-change per metabolite and treatment group 

compared to the control. Here, the cell color and shading, as well as the font color, in the 

table cell indicates the direction and significance (p-value category) of change. 

The entire study covered 2 separate experimental runs with a total of 30 biological samples. 

The first run had 10 controls and 6 bezafibrate samples, the second 10 controls and 4 

bezafibrate samples (2 bezafibrate samples did not pass the quality control). The binomial 

distribution enrichment analysis was performed using Excel. For this purpose, the number of 

significant changes (s) at p-value<0.05 were counted per treatment and ontology class. The 

binomial distribution test is used to indicate the probability of a specific number of successes 

(here the number of significant changes) occurring from a specific number x of independent 

evaluations (here x metabolites in the given ontology class). The resulting p-value for this 

enrichment is indicated (as category) by cell color in the tables (grey, light yellow or intense 

yellow).  

The p-values, t-values and ratios of corresponding group medians versus controls were 

collected as the metabolic profiles.  

The Principal Component Analysis (PCA) analysis was performed using RStudio Version 

1.4.1103 (RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, 
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MA URL http://www.rstudio.com/). Input data for PCA were log10-transformed. Analysis was 

conducted using the ropls package (Thevenot2015) with the default settings. 

 

RNA Extraction and qRT-PCR 

Frozen organoids were thawed in lysis buffer. RNA extractions were performed using 

commercially available Monarch RNA extraction and purification kits (New England Biolabs, 

Ipswich, MA, USA) according to manufacturer’s instructions for whole tissue assays. cDNA 

was synthesized using ProtoScript II First Strand cDNA Kits (New England Biolabs). qRT-PCR 

was performed using PrimeTime qPCR Probes (Integrated DNA Technologies, Coralville, IA, 

USA) and PrimeTime Gene Expression Master Mix (Integrated DNA Technologies) with probes 

used in Supplemental Table 1. Relative gene expression was calculated via modified Pfaffl 

equation using arithmetic mean of 7-housekeeping genes (HPRT1, B2m, GUSB, ACTB, POLR2A, 

RPLP0, PPIA), an efficiency of 2.0, and reported as fold-change between treated samples and 

untreated controls. 

 

scRNAseq 

Liver organoids were made into single cell suspensions as described above. Suspensions were 

washed in PBS supplemented in 0.04% BSA twice before live cell counting performed. Cell 

suspensions were produced to 1000 cells / microliter and provided to the MIT BioMicroCenter 

for SeqWell-based single cell barcoding83. cDNA library was prepared by MIT BioMicroCenter 

staff and sequenced using an Illumina NextSeq500. Read processing was performed as 

described in Gierahn et al, 2017. Reads were aligned using STAR84 to a synthetic genome 

composed of reference genome GRCh38.84 plus a synthetic chromosome that included the 

GATA6 inducible system (Fig. 1A)37. Standard scanpy-based workflows were used to filter cells 

based on mitochondrial RNA content, gene and read counts and to perform normalization, 

scaling, and clustering of the cells85. A detailed Python workflow is available as part of the 

supplemental code.  



Chapter 4: publication III 

165 

 

References: 

1. Hartung, T. Toxicology for the twenty-first century. Nat. 2009 4607252 460, 208–212 
(2009). 

2. Krewski, D. et al. Toxicity testing in the 21st century: a vision and a strategy. J. Toxicol. 
Environ. Health. B. Crit. Rev. 13, 51–138 (2010). 

3. Adeleye, Y. et al. Implementing Toxicity Testing in the 21st Century (TT21C): Making 
safety decisions using toxicity pathways, and progress in a prototype risk assessment. 
Toxicology 332, 102–111 (2015). 

4. Hartung, T. Perspectives on In Vitro to In Vivo Extrapolations. Appl. Vitr. Toxicol. 4, 
305–316 (2018). 

5. Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and in 
animals. Regul. Toxicol. Pharmacol. 32, 56–67 (2000). 

6. Baudy, A. R. et al. Liver microphysiological systems development guidelines for safety 
risk assessment in the pharmaceutical industry. Lab Chip 20, 215–225 (2020). 

7. Tralau, T. et al. Regulatory toxicology in the twenty-first century: challenges, 
perspectives and possible solutions. Arch. Toxicol. 2015 896 89, 823–850 (2015). 

8. Mattes, W. et al. Detection of hepatotoxicity potential with metabolite profiling 
(metabolomics) of rat plasma. 230, 467–478 (2014). 

9. van Ravenzwaay, B. et al. The sensitivity of metabolomics versus classical regulatory 
toxicology from a NOAEL perspective. Toxicol. Lett. 227, 20–28 (2014). 

10. Kamp, H. et al. Application of in vivo metabolomics to preclinical/toxicological 
studies: case study on phenytoin-induced systemic toxicity. 
http://dx.doi.org/10.4155/bio.12.214 4, 2291–2301 (2012). 

11. Brockmeier, E. K. et al. The Role of Omics in the Application of Adverse Outcome 
Pathways for Chemical Risk Assessment. Toxicol. Sci. 158, 252–262 (2017). 

12. van Ravenzwaay, B. et al. The use of metabolomics for the discovery of new 
biomarkers of effect. Toxicol. Lett. 172, 21–28 (2007). 

13. García-Cañaveras, J. C., Castell, J. V., Donato, M. T. & Lahoz, A. A metabolomics cell-
based approach for anticipating and investigating drug-induced liver injury. Sci. Rep. 
6, (2016). 

14. Vinken, M. The adverse outcome pathway concept: a pragmatic tool in toxicology. 
Toxicology 312, 158–165 (2013). 

15. Onakpoya, I. J., Heneghan, C. J. & Aronson, J. K. Post-marketing withdrawal of 462 
medicinal products because of adverse drug reactions: a systematic review of the 
world literature. BMC Med. 14, (2016). 

16. Waring, M. J. et al. An analysis of the attrition of drug candidates from four major 
pharmaceutical companies. Nat. Rev. Drug Discov. 2015 147 14, 475–486 (2015). 

17. Guillouzo, A. et al. The human hepatoma HepaRG cells: a highly differentiated model 
for studies of liver metabolism and toxicity of xenobiotics. Chem. Biol. Interact. 168, 
66–73 (2007). 

18. Gerets, H. H. J. et al. Characterization of primary human hepatocytes, HepG2 cells, 
and HepaRG cells at the mRNA level and CYP activity in response to inducers and their 
predictivity for the detection of human hepatotoxins. Cell Biol. Toxicol. 28, 69 (2012). 

19. Yong, H. Y. et al. Early detection of metabolic changes in drug-induced steatosis using 
metabolomics approaches. RSC Adv. 10, 41047–41057 (2020). 

20. Ramirez, T. et al. Prediction of liver toxicity and mode of action using metabolomics in 



Chapter 4: publication III 

166 

 

vitro in HepG2 cells. Arch. Toxicol. 92, 893–906 (2018). 
21. Guo, L. et al. Similarities and differences in the expression of drug-metabolizing 

enzymes between human hepatic cell lines and primary human hepatocytes. Drug 
Metab. Dispos. 39, 528–38 (2011). 

22. Kammerer, S. & Küpper, J.-H. Human hepatocyte systems for in vitro toxicology 
analysis. J. Cell. Biotechnol. 3, 85–93 (2018). 

23. Langhans, S. A. Three-Dimensional in Vitro Cell Culture Models in Drug Discovery and 
Drug Repositioning. Front. Pharmacol. 9, 6 (2018). 

24. Birk, B. et al. Use of in vitro metabolomics in NRK cells to help predicting 
nephrotoxicity and differentiating the MoA of nephrotoxicants. Toxicol. Lett. 353, 43–
59 (2021). 

25. Kohonen, P. et al. A transcriptomics data-driven gene space accurately predicts liver 
cytopathology and drug-induced liver injury. Nat. Commun. 2017 81 8, 1–15 (2017). 

26. Underhill, G. H. & Khetani, S. R. Bioengineered Liver Models for Drug Testing and Cell 
Differentiation Studies. Cell. Mol. Gastroenterol. Hepatol. 5, 426 (2018). 

27. Clevers, H. Modeling Development and Disease with Organoids. Cell 165, 1586–1597 
(2016). 

28. King, S. M. et al. 3D Proximal Tubule Tissues Recapitulate Key Aspects of Renal 
Physiology to Enable Nephrotoxicity Testing. Front. Physiol. 8, (2017). 

29. Plummer, S. et al. A Human iPSC-derived 3D platform using primary brain cancer cells 
to study drug development and personalized medicine. Sci. Rep. 9, (2019). 

30. Richards, D. J. et al. Human cardiac organoids for the modelling of myocardial 
infarction and drug cardiotoxicity. Nat. Biomed. Eng. 4, 446–462 (2020). 

31. Shinozawa, T. et al. High-Fidelity Drug-Induced Liver Injury Screen Using Human 
Pluripotent Stem Cell-Derived Organoids. Gastroenterology 160, 831–846 (2021). 

32. de Souza, N. Organoids. Nat. Methods 15, 23–23 (2018). 
33. Aydin, O. et al. Principles for the design of multicellular engineered living systems. 

APL Bioeng. 6, 010903 (2022). 
34. Ho, C. & Morsut, L. Novel synthetic biology approaches for developmental systems. 

Stem Cell Reports 16, 1051 (2021). 
35. Teague, B. P., Guye, P. & Weiss, R. Synthetic Morphogenesis. Cold Spring Harb. 

Perspect. Biol. 8, (2016). 
36. Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular 

density and embedded vascular channels. Sci. Adv. 5, (2019). 
37. Guye, P. et al. Genetically engineering self-organization of human pluripotent stem 

cells into a liver bud-like tissue using Gata6. Nat. Commun. 2016 71 7, 1–12 (2016). 
38. Velazquez, J. J. et al. Gene Regulatory Network Analysis and Engineering Directs 

Development and Vascularization of Multilineage Human Liver Organoids. Cell Syst. 
12, 41-55.e11 (2021). 

39. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor 
superfamily by peroxisome proliferators. Nat. 1990 3476294 347, 645–650 (1990). 

40. Hays, T. et al. Role of peroxisome proliferator-activated receptor-alpha (PPARalpha) 
in bezafibrate-induced hepatocarcinogenesis and cholestasis. Carcinogenesis 26, 219–
227 (2005). 

41. Reddy, J. K., Azarnoff, D. L. & Hignite, C. E. Hypolipidaemic hepatic peroxisome 
proliferators form a novel class of chemical carcinogens. Nat. 1980 2835745 283, 
397–398 (1980). 



Chapter 4: publication III 

167 

 

42. Hoivik, D. J. et al. Fibrates induce hepatic peroxisome and mitochondrial proliferation 
without overt evidence of cellular proliferation and oxidative stress in cynomolgus 
monkeys. Carcinogenesis 25, 1757–1769 (2004). 

43. Takafumi, W. et al. Species differences in the effects of bezafibrate, a hypolipidemic 
agent, on hepatic peroxisome-associated enzymes. Biochem. Pharmacol. 38, 367–371 
(1989). 

44. Hie, B. et al. Computational Methods for Single-Cell RNA Sequencing. Annu. Rev. 
Biomed. Data Sci. 27 (2020) doi:10.1146/annurev-biodatasci-012220. 

45. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression 
data analysis. Genome Biol. 19, 1–5 (2018). 

46. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction. (2018) doi:10.48550/arxiv.1802.03426. 

47. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-
connected communities. Sci. Reports 2019 91 9, 1–12 (2019). 

48. Guilliams, M. et al. Spatial proteogenomics reveals distinct and evolutionarily 
conserved hepatic macrophage niches. Cell 185, 379-396.e38 (2022). 

49. Ding, C. et al. A Cell-type-resolved Liver Proteome. Mol. Cell. Proteomics 15, 3190 
(2016). 

50. Rudman, D. et al. Maximal rates of excretion and synthesis of urea in normal and 
cirrhotic subjects. J. Clin. Invest. 52, 2241–2249 (1973). 

51. Ballmer, P. E. et al. Measurement of albumin synthesis in humans: a new approach 
employing stable isotopes. Am. J. Physiol. 259, (1990). 

52. Monk, J. P. & Todd, P. A. Bezafibrate. A review of its pharmacodynamic and 
pharmacokinetic properties, and therapeutic use in hyperlipidaemia. Drugs 33, 539–
76 (1987). 

53. Nakajima, T. et al. Bezafibrate at clinically relevant doses decreases serum/liver 
triglycerides via down-regulation of sterol regulatory element-binding protein-1c in 
mice: a novel peroxisome proliferator-activated receptor alpha-independent 
mechanism. Mol. Pharmacol. 75, 782–792 (2009). 

54. Goldenberg, I., Benderly, M. & Goldbourt, U. Update on the use of fibrates: focus on 
bezafibrate. Vasc. Health Risk Manag. 4, 131–141 (2008). 

55. Aoyama, T. et al. Altered constitutive expression of fatty acid-metabolizing enzymes 
in mice lacking the peroxisome proliferator-activated receptor alpha (PPARalpha). J. 
Biol. Chem. 273, 5678–5684 (1998). 

56. Song, S. et al. Peroxisome proliferator activated receptor alpha (PPARalpha) and PPAR 
gamma coactivator (PGC-1alpha) induce carnitine palmitoyltransferase IA (CPT-1A) 
via independent gene elements. Mol. Cell. Endocrinol. 325, 54–63 (2010). 

57. Bougarne, N. et al. Molecular Actions of PPARα in Lipid Metabolism and 
Inflammation. Endocr. Rev. 39, 760–802 (2018). 

58. Guidance Document on Good In Vitro Method Practices (GIVIMP). (OECD, 2018). 
doi:10.1787/9789264304796-en. 

59. Barrero, M. J., Camarero, N., Marrero, P. F. & Haro, D. Control of human carnitine 
palmitoyltransferase II gene transcription by peroxisome proliferator-activated 
receptor through a partially conserved peroxisome proliferator-responsive element. 
Biochem. J. 369, 721 (2003). 

60. Gutgesell, A. et al. Downregulation of peroxisome proliferator-activated receptor 
alpha and its coactivators in liver and skeletal muscle mediates the metabolic 



Chapter 4: publication III 

168 

 

adaptations during lactation in mice. J. Mol. Endocrinol. 43, 241–250 (2009). 
61. Grabacka, M., Pierzchalska, M., Dean, M. & Reiss, K. Regulation of Ketone Body 

Metabolism and the Role of PPARα. Int. J. Mol. Sci. 17, (2016). 
62. Kersten, S. et al. Peroxisome proliferator-activated receptor alpha mediates the 

adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999). 
63. Mehta, V. & Namboodiri, M. A. A. N-acetylaspartate as an acetyl source in the 

nervous system. Brain Res. Mol. Brain Res. 31, 151–157 (1995). 
64. van Ravenzwaay, B. et al. The individual and combined metabolite profiles 

(metabolomics) of dibutylphthalate and di(2-ethylhexyl)phthalate following a 28-day 
dietary exposure in rats. Toxicol. Lett. 198, 159–170 (2010). 

65. Wang, Y., Nakajima, T., Gonzalez, F. J. & Tanaka, N. PPARs as Metabolic Regulators in 
the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 21, (2020). 

66. Clarke, C.J. & Hannun, Y.A.Neutral sphingomyelinases and nSMase2: bridging the 
gaps. Biochim Biophys Acta 1758(12), 1893-901 (2006). 

67. Chinetti, G., Lestavel, S., Fruchart, J-C., Clavey, V., & Staels, B. Peroxisome 
proliferator-activated receptor alpha reduces cholesterol esterification in 
macrophages. Circ. Res. 92(2), 212-7 (2003). 

68. Baranowski, M., Zabielski, P., Blachnio, A., & Gorski, J. Effect of exercise duration on 
ceramide metabolism in the rat heart. Acta Physiol (Oxf.) 192(4), 519-29 (2008). 

69. van der Veen, J. N. et al. The critical role of phosphatidylcholine and 
phosphatidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta 
- Biomembr. 1859, 1558–1572 (2017). 

70. Lee, S. S. T. et al. Requirement of PPARalpha in maintaining phospholipid and 
triacylglycerol homeostasis during energy deprivation. J. Lipid Res. 45, 2025–2037 
(2004). 

71. Fernández-Alvarez, A. et al. Human SREBP1c expression in liver is directly regulated 
by peroxisome proliferator-activated receptor alpha (PPARalpha). J. Biol. Chem. 286, 
21466–21477 (2011). 

72. Li, F., Patterson, A. D., Krausz, K. W., Tanaka, N. & Gonzalez, F. J. Metabolomics 
reveals an essential role for peroxisome proliferator-activated receptor α in bile acid 
homeostasis. J. Lipid Res. 53, 1625–1635 (2012). 

73. Post, S. M. et al. Fibrates Suppress Bile Acid Synthesis via Peroxisome Proliferator–
Activated Receptor-α–Mediated Downregulation of Cholesterol 7α-Hydroxylase and 
Sterol 27-Hydroxylase Expression. Arterioscler. Thromb. Vasc. Biol. 21, 1840–1845 
(2001). 

74. Trapani, L., Segatto, M. & Pallottini, V. Regulation and deregulation of cholesterol 
homeostasis: The liver as a metabolic ‘power station’. World J. Hepatol. 4, 184–190 
(2012). 

75. Motojima, K. & Seto, K. Fibrates and statins rapidly and synergistically induce 
pyruvate dehydrogenase kinase 4 mRNA in the liver and muscles of mice. Biol. Pharm. 
Bull. 26, 954–958 (2003). 

76. Sugden, M. C. & Holness, M. J. Therapeutic potential of the mammalian pyruvate 
dehydrogenase kinases in the prevention of hyperglycaemia. Curr. Drug Targets. 
Immune. Endocr. Metabol. Disord. 2, 151–165 (2002). 

77. Contreras, A. V. et al. PPARα via HNF4α regulates the expression of genes encoding 
hepatic amino acid catabolizing enzymes to maintain metabolic homeostasis. Genes 
Nutr. 10, 1–16 (2015). 



Chapter 4: publication III 

169 

 

78. KERSTEN, S. et al. The peroxisome proliferator-activated receptor alpha regulates 
amino acid metabolism. FASEB J. 15, 1971–1978 (2001). 

79. Sheikh, K. et al. Beyond lipids, pharmacological PPARalpha activation has important 
effects on amino acid metabolism as studied in the rat. Am. J. Physiol. Endocrinol. 
Metab. 292, (2007). 

80. Makowski, L. et al. Metabolic profiling of PPARalpha-/- mice reveals defects in 
carnitine and amino acid homeostasis that are partially reversed by oral carnitine 
supplementation. FASEB J. 23, 586–604 (2009). 

81. Nakajima, T. et al. Effect of bezafibrate on hepatic oxidative stress: comparison 
between conventional experimental doses and clinically-relevant doses in mice. 
Redox Rep. 15, 123–130 (2010). 

82. Viant, M. R. et al. Use cases, best practice and reporting standards for metabolomics 
in regulatory toxicology. Nat. Commun. 10, 3041 (2019). 

83. Gierahn, T. M. et al. Seq-Well: portable, low-cost RNA sequencing of single cells at 
high throughput. Nat. Methods 2017 144 14, 395–398 (2017). 

84. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15 
(2013). 

85. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: Large-scale single-cell gene expression 
data analysis. Genome Biol. 19, 1–5 (2018). 

 
 

Acknowledgements: 

We thank Dr. Saskia Sperber (BASF SE) for initiating the project, and Dr. Varun Giri (BASF SE) 

for the bioinformatics support. We thank Dr. Andreas Baudy (Merck & Co) and Jose Lebron 

(Merck & Co) for productive experimental conversations. We thank the Koch/MIT Bio-Micro 

Center for assistance in single-cell RNA sequencing. Funding: The project was funded by BASF 

Corporate Research Funding (BASF-CP and BASF-KTC Alternative Toxicological Methods), the 

US National Institutes of Health R01 Grant for Programmed Differentiation (1R01EB025256), 

the Department of Defense / Advanced Manufacturing Research Institute (T0060). Author 

Contributions: BB, NMS, RK, BvR, RW proposed the project. BB, NMS, RK, BVR, RW funded 

the project. DM, EP, PF developed and analyzed 3D organoids. JVA designed, conducted and 

analyzed scRNAseq data. DM, EP, JVA, PF performed immunostaining.  DM, EP, JVA, SR, PF 

designed urea and albumin assays for 3D organoids. EP, DM, SRH, BB, BVR, RW designed the 

toxicology experiments. DM performed toxicology studies, organoid growth, drug 

administration, harvest, and cryo-freezing. VH, MH performed and graded MS experiments. 

SRH, VH, MH, BB, BVR analyzed MS experiments. DM performed qPCR and analyzed 

transcriptomic experiments. DM, SRH generated all figures. DM, RW, SRH, BVR, BB wrote the 

manuscript. Data and materials availability: The scRNAseq dataset generated and analyzed 

during the current study is available in the NCBI Gene Expression Omnibus repository, 

Accession Number  

GSE20959 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE209597).  

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE209597


Chapter 4: publication III 

170 

 

The scRNAseq analysis code is available as a supplemental file on the journal website. All 

additional data requests should be directed to Ron Weiss (rweiss@mit.edu). Competing 

Interests: RW, DM, EP have disclosed a patent application on hiPSC-Gata6 organoids. BASF 

might use some of the presented technologies to register products in the future. The 

remaining authors do not have any competing interests. 

 

 

 

 

 

  



Chapter 4: publication III 

171 

 

Supplementary information 

Supplemental Figure 1. hiPSC-Gata6 liver organoids formation dependency on initial seeding density. Brightfield 

microscopy of hiPSC-Gata6 organoids seeded at indicated cells/well and grown in pluripotent media with DOX for 5 days 

prior to transfer to APEL2 media and grown to Day 33. 
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Supplemental Figure 2 Hepatocyte function of Day 25 and Day 26 organoids of varying initial seeding. Hepatocyte function 

measured within whole organoids by proxy of urea and albumin production. Urea production measured via BioAssay Systems 

QuantiChrom Urea Assay Kit. Albumin production measured via Bethyl Albumin ELISA Kit, n = 3 organoids and error bars 

represent standard deviation. 

Supplemental Figure 3: scRNAseq clustering of iPSC-Gata6 organoids. a) Clustering of scRNAseq data from D0, D3, D5, and 

D9 dissociated organoids revealed distinct populations and two separate lineages. B) The lineage pathway towards fetal 

hepatocytes follows genes corresponding to iPSCs (NANOG) to primitive endoderm (GATA6, SOX17) to hepatic lineages 

including fetal hepatocytes (HNF4a). c) The lineage pathway towards other cell types follows genes corresponding to iPSCs 

(NANOG), mesoendoderm (TBXT), mesoderm (HAND1), to hemangioblasts (COL3A1). 
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Supplemental Figure 4: Immunostaining of 3D liver organoid structural elements. Immunostaining micrographs of hiPSC-

Gata6 liver organoids. Left: endothelial cells stained for CD34 (green) and hepatic cells for CEBPa (red) with cell nuclei using 

Hoechst (blue) within a projection of multiple confocal slices. See Supplemental Movie 1. Right: hepatic lineage cells stained 

for FOXA2 (green) with cell nuclei using Hoechst (blue) within a projection of multiple confocal slices. See Supplemental 

Movie 2. 

 

Supplemental Figure 5: Immunostaining of 3D liver organoid cell types. Immunostaining micrographs of hiPSC-Gata6 liver 

organoid at day 30. Endothelial cells stained for CD34 (red), hepatic cells for CEBPa (yellow), and putative Stellate cells for 

Desmin (green) within a single confocal slice. 

 

Supplemental Figure 6: Composition of organoids during development from Day 15 to Day 30.  Immunostaining of 

dissociated organoids for cellular composition. N=3 biological replicates and error bars represent standard deviation. See 

250µm 250µm 

250m  
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Figure 2A. 

  

 
Supplemental Figure 7: Alpha-1-fetoprotein expression within developing 3D liver organoid. AFP production measured via 

Thermo Fisher Scientific AFP ELISA kit. N = 3 biological replicates and error bars represent standard deviation. Nominal AFP 

production in healthy adult human livers is <2000 pg secreted into blood serum. 
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Supplemental Figure 8: A selection of ADME gene expression within developing 3D liver organoid. Heat map of absolute 

gene expression measured for 32 core genes pertaining to ADME function during development of RNA from 3D liver organoid 

model (n = 3 biological replicates) compared to commercially available primary human hepatocyte RNA (ZenBio RNAmi-L10, 

n = 3 healthy donors with BMI between 25 and 30). 
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Supplemental Figure 9. Cytochrome P450 activity in 3D liver organoid and liver microsomes. Luminescent p450-Glo 

(Promega, USA) assays performed on whole organoid, prepared microsomes from whole organoids or using a commercial 

kit (ab206995, Abcam, USA), and commercial microsomes (Corning, USA). Reported values are normalized using subsequent 

CellTiter-Glo Luminescent Cell Viability Assay (Promega, USA) for organoids and using Pierce BCA Protein Assay Kit for 

microsomes. For CYP1A1 and CYP1A2 assays, organoids were incubated for 24 hours with omeprazole and for CYP2C9 and 

CYP3A4 assays, organoids were incubated for 24 hours with rifampicin. Mean of n = 6 biological replicates are reported as 

sample luminescence over untreated organoid luminescence. Microsomes are normalized to expected protein content of 

hepatocytes within D30 organoid. 
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Supplemental Table 1: qPCR Probes obtained from IDT. 

NCBI 

Gene 

Symbol 

IDT Assay ID 

Probes Ref Seq # Transcripts Hit 

Exon 

Locati

on 

ABCA1 

Hs.PT.58.2745242

9 NM_005502 NM_005502 3 - 4 

ACAT1 

Hs.PT.56a.232658

04 NM_000019 NM_000019 5 - 6 

ACSL1 Hs.PT.58.2755666 NM_001995 NM_001995 7 - 10 

ACTB 

Hs.PT.39a.222148

47 NM_001101 NM_001101 1 - 2 

ALDOA 

Hs.PT.56a.392317

20.g 

NM_0012431

77 

NM_184043,NM_184041,NM_001243177,NM_001127617,

NM_000034 4 - 5 

APOA1 

Hs.PT.56a.245501

8.g NM_000039 NM_000039 2 - 3 

APOA2 

Hs.PT.56a.192402

98.g NM_001643 NM_001643 2 - 3 

B2M 

Hs.PT.39a.222148

45 NM_004048 NM_004048 2 - 3 

CPT1A Hs.PT.58.2799026 

NM_0010318

47 NM_001876,NM_001031847 16 - 17 

CYP27

A1 

Hs.PT.58.2254512

5 NM_000784 NM_000784 1 - 2 

CYP7A

1 

Hs.PT.58.2140822

1 NM_000780 NM_000780 3 - 4 

GPD1 Hs.PT.58.4554819 

NM_0012571

99 NM_005276,NM_001257199 7 - 8 

GUSB 

Hs.PT.58v.277375

38 NM_000181 NM_000181 10 - 11 

HPRT1 

Hs.PT.58v.456215

72 NM_000194 NM_000194 8 - 9 

LPL 

Hs.PT.58.4579291

3 NM_000237 NM_000237 5 - 6 

NAT8L 

Hs.PT.58.3906155

3 NM_178557 XM_003403774,NM_178557 2 - 3 

PANK1 Hs.PT.58.2284965 NM_138316 NM_148978,NM_148977,NM_138316 3 - 4 
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PCK2 

Hs.PT.58.1943936

9 NM_004563 NM_004563,NM_001018073 2 - 3 

PDK4 

Hs.PT.58.2821279

3 NM_002612 NM_002612 2 - 3 

PFKL 

Hs.PT.58.2111400

1 NM_002626 NR_024108,NM_002626 5 - 6 

POLR2

A 

Hs.PT.39a.196395

31 NM_000937 NM_000937 1 - 2 

PPIA 

Hs.PT.39a.222148

51 NM_021130 NM_021130 4 - 5 

RPLP0 

Hs.PT.39a.222148

24 NM_001002 NM_001002 2 - 3 

SMPD1 Hs.PT.58.4500199 NM_000543 NM_001007593,NM_000543 2 - 3 

SMPD2 

Hs.PT.58.2042672

2.g NM_003080 NM_003080 1 - 3 

SPTSSA 

Hs.PT.58.2836818

3 NM_138288 NM_138288 1 - 2 

SPTSSB Hs.PT.58.1412060 

NM_0010401

00 NM_001040100 1 - 3 

UCP1 

Hs.PT.58.3915700

6 NM_021833 NM_021833 5 - 6 
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Supplemental Table 2. hiPSC-Gata6 organoids weights upon bezafibrate treatment. After bezafibrate treatment, treated 

and control organoids were weighted. The ratio of treated vs control organoids weights was calculated based on the 

median of the controls. The p-values were calculated by Welch-t-test. Two independent experimental batches were 

evaluated LC; low intracellular bezafibrate concentrations HC; high bezafibrate concentrations. 

LC 

Control Weight (mg) Treated sample Weight (mg) 

1 22.00 1 29,00 

3 21.00 2 29,00 

4 23.00 3 29,00 

5 28.00 4 26,00 

6 30,00 5 26,00 

7 20,00    

8 23,00    

9 33,00    

10 21,00    

Average 24,9 Average 27,8 

SD 4,25 SD 1,47 

Ratio treated vs control    1,22 

p-value   0,10 

HC 

Control Weight (mg) Treated sample Weight (mg) 

1 26,00 1 28,00 

2 20,00 2 32,00 

3 36,00 3 26,00 

4 22,00   

5 33,00    

6 17,00    

7 29,00    

8 29,00    

9 22,00    

10 29,00    

Average 26,3 Average 28,67 

SD 5,69 SD 2,49 

Ratio treated vs control    1,07 

p-value   0,23 
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Supplemental Table 3. Bezafibrate intracellular concentrations. Absolute Bezafibrate intracellular concentrations were 

measured per sample (6-pooled organoids) and normalized to cell numbers using within sample analyte median (SAM). 

Two independent experiments were carried out (Exp1 and Exp 2).  

 

 

 

 

 

 

 

 

 

Supplemental Table 4. Metabolite changes in TAGs, fatty acid oxidation and Acetyl-CoA pathways upon bezafibrate 

treatment. Statistically significantly increased and decreased values of metabolite changes after bezafibrate treatment. 

Changes are expressed as a relative value compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers 

in red boxes are significantly increased and those in blue boxes significantly decreased metabolite value changes compared 

to the controls. The intensity of the color corresponds to the magnitude of the fold change. 

Metabolite name LC HC 

"Triacylglycerol (C30:0,C18:2)" 0,33 0,15 

"Triacylglycerol (C32:0,C16:1)" 1,33 2,47 

"Triacylglycerol (C34:0,C16:0)" 0,84 0,60 

"Triacylglycerol (C34:0,C18:1)" 0,75 0,22 

"Triacylglycerol (C34:1,C16:0)" 0,67 0,30 

"Triacylglycerol (C34:1,C18:1)" 0,33 0,10 

"Triacylglycerol (C34:1,C18:3)" 0,19 0,07 

"Triacylglycerol (C34:2,C18:0)" 0,35 0,10 

"Triacylglycerol (C34:2,C18:1)" 0,24 0,05 

"Triacylglycerol (C36:1,C18:0)" 0,68 0,29 

"Triacylglycerol (C36:1,C18:1)" 0,46 0,13 

"Triacylglycerol (C36:1,C18:2)" 0,19 0,04 

"Triacylglycerol (C36:2,C18:1)" 0,37 0,10 

"Triacylglycerol (C36:3,C18:1)" 0,24 0,06 

"Triacylglycerol (C36:3,C18:2)" 0,38 0,05 

"Triacylglycerol (C36:3,C18:3)" 0,29 0,05 

"Triacylglycerol (C36:4,C16:0)" 0,20 0,04 

"Triacylglycerol (C36:4,C18:0)" 0,19 0,05 

"Triacylglycerol (C36:4,C18:2)" 0,50 0,07 

3-Hydroxybutyrate 1,89 1,40 

Carnitine 1,33 2,05 

O-Acetylcarnitine 1,27 1,95 

Propionylcarnitine 5,17 18,44 

LC 

Sample Bezafibrate (µg) SAM Corrected Bezafibrate (µg) 

1 2.84 1.28 2.21 

2 2.47 1.10 2.24 

3 2.15 0.99 2.18 

4 2.17 1.10 1.97 

5 2.02 0.84 2.40 

Average      2.20 µg 

SD     0.14 µg 

HC 

Sample Bezafibrate (µg) SAM Corrected bezafibrate (µg) 

1 2.51 0.225 11.12 

5 2.44 0.172 14.20 

3 2.39 0.179 13.33 

Average     12.88 µg 

SD     1.3 µg  
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N-Acetylaspartate 20,28 119,80 

Pantothenic acid 16,39 28,57 

 

Supplemental Table 5. Metabolite changes in ceramides and sphingomyelin upon bezafibrate treatment. Statistically 

significantly increased and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a 

relative value compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly 

increased and those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity 

of the color corresponds to the magnitude of the fold change 

Metabolite name LC HC 

"Ceramide (d16:1,C24:0)" 0,26 0,25 

"Ceramide (d17:1,C24:0)" 0,35 0,26 

"Ceramide (d18:1,C16:0)" 0,31 0,17 

"Ceramide (d18:1,C18:0)" 0,17 0,11 

"Ceramide (d18:1,C20:0)" 0,15 0,08 

"Ceramide (d18:1,C21:0)" 0,25 0,19 

"Ceramide (d18:1,C22:0)" 0,14 0,10 

"Ceramide (d18:1,C22:1)" 0,28 0,15 

"Ceramide (d18:1,C23:0)" 0,17 0,09 

"Ceramide (d18:1,C24:0)" 0,20 0,11 

"Ceramide (d18:1,C24:1)" 0,10 0,07 

"Ceramide (d18:1,C24:2)" 0,13 0,05 

"Ceramide (d18:2,C16:0)" 0,54 0,25 

"Ceramide (d18:2,C18:0)" 0,32 0,13 

"Ceramide (d18:2,C22:0)" 0,13 0,11 

"Ceramide (d18:2,C23:0)" 0,18 0,11 

"Ceramide (d18:2,C24:0)" 0,16 0,19 

"Ceramide (d18:2,C24:1)" 0,26 0,15 

"Ceramide (d18:2,C24:2)" 0,24 0,11 

Sphingomyelin (d32:1) 4,48 3,89 

Sphingomyelin (d32:2) 7,10 7,07 

Sphingomyelin (d33:1) 5,78 3,55 

Sphingomyelin (d34:0) 3,50 2,14 

Sphingomyelin (d34:1) 4,29 1,57 

Sphingomyelin (d34:2) 13,00 7,20 

Sphingomyelin (d35:1) 4,94 2,80 

Sphingomyelin (d35:2) 9,42 7,05 

Sphingomyelin (d36:1) 1,92 1,07 

Sphingomyelin (d36:2) 7,40 3,67 

Sphingomyelin (d36:3) 2,49 1,87 

Sphingomyelin (d37:1) 7,50 3,55 

Sphingomyelin (d38:1) 0,71 0,33 

Sphingomyelin (d38:2) 1,68 1,09 

Sphingomyelin (d39:1) 4,76 1,91 

Sphingomyelin (d40:2) 2,43 1,68 

Sphingomyelin (d41:1) 0,76 0,41 

Sphingomyelin (d41:2) 3,42 1,30 
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Supplemental Table 6. Metabolite changes in Phospholipid metabolism upon bezafibrate treatment. Statistically 

significantly increased and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a 

relative value compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly 

increased and those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity 

of the color corresponds to the magnitude of the fold change. 

Metabolite name LC HC 

Phosphatidylcholine (C32:0) 2,39 1,39 

Phosphatidylcholine (C34:0) 3,18 1,76 

Phosphatidylcholine (C34:1) 0,93 0,40 

Phosphatidylcholine (C34:2) 0,20 0,09 

Phosphatidylcholine (C34:3) 0,28 0,10 

Phosphatidylcholine (C36:0) 1,99 1,38 

Phosphatidylcholine (C36:1) 1,69 1,03 

Phosphatidylcholine (C36:2) 0,39 0,26 

Phosphatidylcholine (C36:3) 0,31 0,13 

Phosphatidylcholine (C36:4) 0,21 0,10 

Phosphatidylcholine (C36:5) 0,16 0,07 

Phosphatidylcholine (C38:4) 0,59 0,38 

Phosphatidylcholine (C38:5) 0,67 0,31 

Phosphatidylcholine (C38:6) 0,21 0,13 

Phosphatidylcholine (C40:6) 0,68 0,39 

Phosphatidylcholine (C40:7) 0,49 0,20 

Phosphatidylcholine (C40:8) 0,29 0,12 

Lysophosphatidylcholine (C14:0) 2,60 4,99 

Lysophosphatidylcholine (C16:0) 0,34 0,46 

Lysophosphatidylcholine (C16:1) 2,06 4,32 

Lysophosphatidylcholine (C17:0) 0,45 0,46 

Lysophosphatidylcholine (C18:0) 0,31 0,36 

Lysophosphatidylcholine (C18:1) 0,75 1,15 

Lysophosphatidylcholine (C18:2) 0,14 0,25 

Lysophosphatidylcholine (C18:3) 0,32 0,45 

Lysophosphatidylcholine (C19:0) 1,48 2,19 

Lysophosphatidylcholine (C20:0) 1,00 1,55 

Lysophosphatidylcholine (C20:1) 2,22 2,15 

Lysophosphatidylcholine (C20:3) 0,35 0,68 

Lysophosphatidylcholine (C20:4) 0,16 0,36 

Lysophosphatidylcholine (C20:5) 0,32 0,28 

Lysophosphatidylcholine (C22:0) 3,11 4,56 

Lysophosphatidylcholine (C22:4) 1,83 3,33 

Lysophosphatidylcholine (C22:5) 1,10 1,44 

Lysophosphatidylcholine (C22:6) 0,35 0,45 

Lysophosphatidylcholine (C24:0) 2,70 6,86 

Lysophosphatidylcholine (C24:1) 4,69 7,65 
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Supplemental Table 7. Metabolite changes in Phosphoethanolamine metabolism upon bezafibrate treatment. Statistically 

significantly increased and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a 

relative value compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly 

increased and those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity 

of the color corresponds to the magnitude of the fold change. 

Metabolite name LC HC 

Phosphatidylethanolamine (C32:0) 1,37 0,61 

Phosphatidylethanolamine (C34:0) 0,66 0,42 

Phosphatidylethanolamine (C34:1) 0,83 0,37 

Phosphatidylethanolamine (C34:2) 0,28 0,05 

Phosphatidylethanolamine (C36:0) 0,27 0,19 

Phosphatidylethanolamine (C36:1) 0,45 0,21 

Phosphatidylethanolamine (C36:2) 0,17 0,06 

Phosphatidylethanolamine (C36:3) 0,23 0,05 

Phosphatidylethanolamine (C36:4) 0,23 0,03 

Phosphatidylethanolamine (C38:3) 0,19 0,03 

Phosphatidylethanolamine (C38:4) 0,16 0,05 

Phosphatidylethanolamine (C38:5) 0,26 0,08 

Phosphatidylethanolamine (C38:6) 0,12 0,02 

Phosphatidylethanolamine (C40:6) 0,15 0,05 

Phosphatidylethanolamine (C40:7) 0,22 0,05 

Lysophosphatidylethanolamine (C16:0) 0,10 0,26 

Lysophosphatidylethanolamine (C18:0) 0,07 0,14 

Lysophosphatidylethanolamine (C18:1) 0,28 0,76 

Lysophosphatidylethanolamine (C18:2) 0,32 0,38 

Lysophosphatidylethanolamine (C20:4) 0,63 0,97 

Lysophosphatidylethanolamine (C22:5) 1,82 2,06 

Lysophosphatidylethanolamine (C22:6) 0,28 0,42 

 

Supplemental Table 8. Metabolite changes in cholesterol metabolism upon bezafibrate treatment. Statistically significantly 

increased and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a relative value 

compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly increased and 

those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity of the color 

corresponds to the magnitude of the fold change. 

 

Metabolite name LC HC 

"Cholesterol, free" 2,00 1,60 

Cholesterylester (C16:0) 30,63 42,70 

Cholesterylester (C16:1) 12,76 61,46 

Cholesterylester (C18:0) 25,24 50,16 

Cholesterylester (C18:1) 26,99 16,39 

Cholesterylester (C18:2) 10,26 4,52 

Cholesterylester (C18:3) 18,34 7,78 

Cholesterylester (C20:1) 10,80 14,76 

Cholesterylester (C20:4) 41,97 16,74 

Cholesterylester (C20:5) 89,78 14,91 
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Cholesterylester (C22:4) 12,14 15,39 

Cholesterylester (C22:5) 54,85 29,96 

Taurine 2,50 13,96 

 

 

Supplemental Table 9. Metabolite changes in carbohydrate metabolism upon bezafibrate treatment. Statistically 

significantly increased and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a 

relative value compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly 

increased and those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity 

of the color corresponds to the magnitude of the fold change. 

 

Metabolite name LC HC 

Glucose 1,57 4,08 

Sorbitol 6,24 13,11 

"Fructose-1,6-diphosphate" 4,26 12,11 

Glycerol-3-phosphate 0,39 0,76 

 

 

Supplemental Table 10. Metabolite changes in amino acids upon bezafibrate treatment. Statistically significantly increased 

and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a relative value 

compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly increased and 

those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity of the color 

corresponds to the magnitude of the fold change. 

Metabolite name LC HC 

Arginine 8,36 20,72 

Asparagine 1,78 4,44 

Glutamate 1,00 2,32 

Glutamine 1,76 3,49 

Isoleucine 2,46 5,34 

Leucine 3,14 7,08 

Methionine 3,10 6,10 

Phenylalanine 4,48 7,37 

Proline 7,46 11,40 

Taurine 2,50 13,96 

Threonine 6,22 13,04 

Tryptophan 8,64 8,47 

Tyrosine 5,98 9,84 

Valine 4,14 6,96 
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Supplemental Table 11. Metabolite changes in antioxidants upon bezafibrate treatment. Statistically significantly increased 

and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a relative value 

compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly increased and 

those in blue boxes significantly decreased metabolite value changes compared to the controls. The intensity of the color 

corresponds to the magnitude of the fold change. 

 

Metabolite name LC HC 

beta-Carotene 0,24 0,16 

Coenzyme Q10 0,18 0,07 

Coenzyme Q7 0,59 0,37 

Coenzyme Q9 0,12 0,16 

gamma-Tocopherol 0,43 0,55 

Glutathione (GSH) 0,47 0,65 
 

Supplemental Table 12. Full metabolic profile of bezafibrate-treated hiPSC-Gata6 organoids.  Statistically significantly 

increased and decreased values of metabolite changes after bezafibrate treatment. Changes are expressed as a relative value 

compared to controls by means of fold-change (Welch t test; p < 0.05). Numbers in red boxes are significantly increased and 

those in blue boxes significantly decreased metabolites changes. The intensity of the color corresponds to the magnitude of 

the fold change. 

Ontology name  Metabolite name LC HC 

Acylglycerols  "Triacylglycerol (C30:0,C18:1)" 1,06 0,42 

Acylglycerols  "Triacylglycerol (C30:0,C18:2)" 0,33 0,15 

Acylglycerols  "Triacylglycerol (C32:0,C16:0)" 1,09 1,15 

Acylglycerols  "Triacylglycerol (C32:0,C16:1)" 1,33 2,47 

Acylglycerols  "Triacylglycerol (C32:1,C16:1)" 0,86 2,29 

Acylglycerols  "Triacylglycerol (C34:0,C18:0)" 0,75 1,15 

Acylglycerols  "Triacylglycerol (C34:0,C18:1)" 0,75 0,22 

Acylglycerols  "Triacylglycerol (C34:1,C16:0)" 0,67 0,30 

Acylglycerols  "Triacylglycerol (C34:1,C18:1)" 0,33 0,10 

Acylglycerols  "Triacylglycerol (C34:1,C18:3)" 0,19 0,07 

Acylglycerols  "Triacylglycerol (C34:2,C18:0)" 0,35 0,10 

Acylglycerols  "Triacylglycerol (C34:2,C18:1)" 0,24 0,05 

Acylglycerols  "Triacylglycerol (C36:0,C18:0)" 0,96 2,55 

Acylglycerols  "Triacylglycerol (C36:1,C18:0)" 0,68 0,29 

Acylglycerols  "Triacylglycerol (C36:1,C18:1)" 0,46 0,13 

Acylglycerols  "Triacylglycerol (C36:1,C18:2)" 0,19 0,04 

Acylglycerols  "Triacylglycerol (C36:2,C18:1)" 0,37 0,10 

Acylglycerols  "Triacylglycerol (C36:3,C18:1)" 0,24 0,06 

Acylglycerols  "Triacylglycerol (C36:3,C18:2)" 0,38 0,05 

Acylglycerols  "Triacylglycerol (C36:3,C18:3)" 0,29 0,05 

Acylglycerols  "Triacylglycerol (C36:4,C16:0)" 0,20 0,04 

Acylglycerols  "Triacylglycerol (C36:4,C18:0)" 0,19 0,05 



Chapter 4: publication III 

186 

 

Acylglycerols  "Triacylglycerol (C36:4,C18:2)" 0,50 0,07 

Amino acids  Arginine 8,36 20,72 

Amino acids  Asparagine 1,78 4,44 

Amino acids  Glutamate 1,00 2,32 

Amino acids  Glutamine 1,76 3,49 

Amino acids  Isoleucine 2,46 5,34 

Amino acids  Leucine 3,14 7,08 

Amino acids  Methionine 3,10 6,10 

Amino acids  Phenylalanine 4,48 7,37 

Amino acids  Proline 7,46 11,40 

Amino acids  Taurine 2,50 13,96 

Amino acids  Threonine 6,22 13,04 

Amino acids  Tryptophan 8,64 8,47 

Amino acids  Tyrosine 5,98 9,84 

Amino acids  Valine 4,14 6,96 

Amino acids related  1-Methylhistidine 0,64 6,73 

Amino acids related  2-Methylserine 4,21 8,18 

Amino acids related  Carnosine 19,75 165,42 

Amino acids related  Creatine 1,29 5,04 

Amino acids related  Ketoleucine 11,34 26,56 

Amino acids related  Kynurenic acid 0,97 13,91 

Amino acids related  Kynurenine 1,14 2,87 

Amino acids related  N-Acetylaspartate 20,28 119,80 

Amino acids related  N-Acetylhistidine 0,85 1,83 

Amino acids related  N-Acetylleucine 0,93 9,61 

Amino acids related  N-Acetylserine 7,03 157,02 

Amino acids related  N-Phenylacetylglycine 2,30 28,39 

Amino acids related  Ophthalmic acid 0,31 0,40 

Amino acids related  Pipecolic acid 1,56 8,17 

Amino acids related  S-Adenosylhomocysteine 0,43 0,34 

Carbohydrates and related  Glucose 1,57 4,08 

Carbohydrates and related  N-Acetylglucosamine 2,49 25,88 

Carbohydrates and related  Sorbitol 6,24 13,11 

Cholesterol and related  "Cholesterol, free" 2,00 1,60 

Cholesterol and related  Cholesterylester (C16:0) 30,63 42,70 

Cholesterol and related  Cholesterylester (C16:1) 12,76 61,46 

Cholesterol and related  Cholesterylester (C18:0) 25,24 50,16 

Cholesterol and related  Cholesterylester (C18:1) 26,99 16,39 

Cholesterol and related  Cholesterylester (C18:2) 10,26 4,52 

Cholesterol and related  Cholesterylester (C18:3) 18,34 7,78 

Cholesterol and related  Cholesterylester (C20:1) 10,80 14,76 

Cholesterol and related  Cholesterylester (C20:4) 41,97 16,74 

Cholesterol and related  Cholesterylester (C20:5) 89,78 14,91 

Cholesterol and related  Cholesterylester (C22:4) 12,14 15,39 

Cholesterol and related  Cholesterylester (C22:5) 54,85 29,96 

Cholesterol and related  Cholic acid 1,14 1,71 
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Cholesterol and related  Isopentenyl pyrophosphate (IPP) 0,39 0,81 

Energy metabolism and related  "Fructose-1,6-diphosphate" 4,26 12,11 

Energy metabolism and related  3-Hydroxybutyrate 1,89 1,40 

Energy metabolism and related  Carnitine 1,33 2,05 

Energy metabolism and related  Choline 1,73 2,53 

Energy metabolism and related  Glucose-6-phosphate 0,64 0,70 

Energy metabolism and related  Glycerol-3-phosphate 0,39 0,76 

Energy metabolism and related  Hexadecenoylcarnitine 0,84 4,04 

Energy metabolism and related  O-Acetylcarnitine 1,27 1,95 

Energy metabolism and related  Octadecanoylcarnitine 0,60 0,64 

Energy metabolism and related  Octadecenoylcarnitine 0,78 0,35 

Energy metabolism and related  Propionylcarnitine 5,17 18,44 

Energy metabolism and related  Ribulose-5-phosphate 0,98 1,33 

Energy metabolism and related  Tetradecanoylcarnitine 0,93 1,39 

Glycerophospholipids  Choline plasmalogen (C36:4) 1,74 0,84 

Glycerophospholipids  Choline plasmalogen (C36:5) 2,28 1,27 

Glycerophospholipids  Phosphatidylcholine (C32:0) 2,39 1,39 

Glycerophospholipids  Phosphatidylcholine (C34:0) 3,18 1,76 

Glycerophospholipids  Phosphatidylcholine (C34:1) 0,93 0,40 

Glycerophospholipids  Phosphatidylcholine (C34:2) 0,20 0,09 

Glycerophospholipids  Phosphatidylcholine (C34:3) 0,28 0,10 

Glycerophospholipids  Phosphatidylcholine (C36:0) 1,99 1,38 

Glycerophospholipids  Phosphatidylcholine (C36:1) 1,69 1,03 

Glycerophospholipids  Phosphatidylcholine (C36:2) 0,39 0,26 

Glycerophospholipids  Phosphatidylcholine (C36:3) 0,31 0,13 

Glycerophospholipids  Phosphatidylcholine (C36:4) 0,21 0,10 

Glycerophospholipids  Phosphatidylcholine (C36:5) 0,16 0,07 

Glycerophospholipids  Phosphatidylcholine (C38:4) 0,59 0,38 

Glycerophospholipids  Phosphatidylcholine (C38:5) 0,67 0,31 

Glycerophospholipids  Phosphatidylcholine (C38:6) 0,21 0,13 

Glycerophospholipids  Phosphatidylcholine (C40:6) 0,68 0,39 

Glycerophospholipids  Phosphatidylcholine (C40:7) 0,49 0,20 

Glycerophospholipids  Phosphatidylcholine (C40:8) 0,29 0,12 

Glycerophospholipids  Phosphatidylethanolamine (C32:0) 1,37 0,61 

Glycerophospholipids  Phosphatidylethanolamine (C34:0) 0,66 0,42 

Glycerophospholipids  Phosphatidylethanolamine (C34:1) 0,83 0,37 

Glycerophospholipids  Phosphatidylethanolamine (C34:2) 0,28 0,05 

Glycerophospholipids  Phosphatidylethanolamine (C36:0) 0,27 0,19 

Glycerophospholipids  Phosphatidylethanolamine (C36:1) 0,45 0,21 

Glycerophospholipids  Phosphatidylethanolamine (C36:2) 0,17 0,06 

Glycerophospholipids  Phosphatidylethanolamine (C36:3) 0,23 0,05 

Glycerophospholipids  Phosphatidylethanolamine (C36:4) 0,23 0,03 

Glycerophospholipids  Phosphatidylethanolamine (C38:3) 0,19 0,03 

Glycerophospholipids  Phosphatidylethanolamine (C38:4) 0,16 0,05 

Glycerophospholipids  Phosphatidylethanolamine (C38:5) 0,26 0,08 

Glycerophospholipids  Phosphatidylethanolamine (C38:6) 0,12 0,02 
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Glycerophospholipids  Phosphatidylethanolamine (C40:6) 0,15 0,05 

Glycerophospholipids  Phosphatidylethanolamine (C40:7) 0,22 0,05 

Lysoglycerophospholipids  Lysophosphatidylcholine (C14:0) 2,60 4,99 

Lysoglycerophospholipids  Lysophosphatidylcholine (C15:0) 0,66 1,32 

Lysoglycerophospholipids  Lysophosphatidylcholine (C16:0) 0,34 0,46 

Lysoglycerophospholipids  Lysophosphatidylcholine (C16:1) 2,06 4,32 

Lysoglycerophospholipids  Lysophosphatidylcholine (C17:0) 0,45 0,46 

Lysoglycerophospholipids  Lysophosphatidylcholine (C18:0) 0,31 0,36 

Lysoglycerophospholipids  Lysophosphatidylcholine (C18:1) 0,75 1,15 

Lysoglycerophospholipids  Lysophosphatidylcholine (C18:2) 0,14 0,25 

Lysoglycerophospholipids  Lysophosphatidylcholine (C18:3) 0,32 0,45 

Lysoglycerophospholipids  Lysophosphatidylcholine (C19:0) 1,48 2,19 

Lysoglycerophospholipids  Lysophosphatidylcholine (C20:0) 1,00 1,55 

Lysoglycerophospholipids  Lysophosphatidylcholine (C20:1) 2,22 2,15 

Lysoglycerophospholipids  Lysophosphatidylcholine (C20:2) 0,76 1,20 

Lysoglycerophospholipids  Lysophosphatidylcholine (C20:3) 0,35 0,68 

Lysoglycerophospholipids  Lysophosphatidylcholine (C20:4) 0,16 0,36 

Lysoglycerophospholipids  Lysophosphatidylcholine (C20:5) 0,32 0,28 

Lysoglycerophospholipids  Lysophosphatidylcholine (C22:0) 3,11 4,56 

Lysoglycerophospholipids  Lysophosphatidylcholine (C22:4) 1,83 3,33 

Lysoglycerophospholipids  Lysophosphatidylcholine (C22:5) 1,10 1,44 

Lysoglycerophospholipids  Lysophosphatidylcholine (C22:6) 0,35 0,45 

Lysoglycerophospholipids  Lysophosphatidylcholine (C24:0) 2,70 6,86 

Lysoglycerophospholipids  Lysophosphatidylcholine (C24:1) 4,69 7,65 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C16:0) 0,10 0,26 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C18:0) 0,07 0,14 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C18:1) 0,28 0,76 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C18:2) 0,32 0,38 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C20:4) 0,63 0,97 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C22:5) 1,82 2,06 

Lysoglycerophospholipids  Lysophosphatidylethanolamine (C22:6) 0,28 0,42 

Miscellaneous  Biliverdin 10,22 5,07 

Miscellaneous  Lycopene 0,56 0,06 

Nucleobases and related  1-Methyladenosine 2,11 40,95 

Nucleobases and related  5-Methylcytidine 4,34 2304,14 

Nucleobases and related  7-Methylguanine 3,17 14,87 

Nucleobases and related  Allantoin 10,92 112,12 

Nucleobases and related  Thymine 2,99 27,11 

Nucleobases and related  Uric acid 5,37 4,57 

Nucleobases and related  Uridine 0,53 0,24 

Signal substances and related  "N,N-Dimethylarginine (ADMA)" 3,79 29,27 

Signal substances and related  5-Hydroxytryptophan 13,71 38,07 

Signal substances and related  Acetylcholine 0,62 1,19 

Signal substances and related  Metanephrine 1,19 5,23 

Sphingolipids  "Ceramide (d16:1,C24:0)" 0,26 0,25 

Sphingolipids  "Ceramide (d17:1,C24:0)" 0,35 0,26 
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Sphingolipids  "Ceramide (d18:1,C16:0)" 0,31 0,17 

Sphingolipids  "Ceramide (d18:1,C18:0)" 0,17 0,11 

Sphingolipids  "Ceramide (d18:1,C20:0)" 0,15 0,08 

Sphingolipids  "Ceramide (d18:1,C21:0)" 0,25 0,19 

Sphingolipids  "Ceramide (d18:1,C22:0)" 0,14 0,10 

Sphingolipids  "Ceramide (d18:1,C22:1)" 0,28 0,15 

Sphingolipids  "Ceramide (d18:1,C23:0)" 0,17 0,09 

Sphingolipids  "Ceramide (d18:1,C24:0)" 0,20 0,11 

Sphingolipids  "Ceramide (d18:1,C24:1)" 0,10 0,07 

Sphingolipids  "Ceramide (d18:1,C24:2)" 0,13 0,05 

Sphingolipids  "Ceramide (d18:2,C16:0)" 0,54 0,25 

Sphingolipids  "Ceramide (d18:2,C18:0)" 0,32 0,13 

Sphingolipids  "Ceramide (d18:2,C22:0)" 0,13 0,11 

Sphingolipids  "Ceramide (d18:2,C23:0)" 0,18 0,11 

Sphingolipids  "Ceramide (d18:2,C24:0)" 0,16 0,19 

Sphingolipids  "Ceramide (d18:2,C24:1)" 0,26 0,15 

Sphingolipids  "Ceramide (d18:2,C24:2)" 0,24 0,11 

Sphingolipids  Sphingomyelin (d32:1) 4,48 3,89 

Sphingolipids  Sphingomyelin (d32:2) 7,10 7,07 

Sphingolipids  Sphingomyelin (d33:1) 5,78 3,55 

Sphingolipids  Sphingomyelin (d34:0) 3,50 2,14 

Sphingolipids  Sphingomyelin (d34:1) 4,29 1,57 

Sphingolipids  Sphingomyelin (d34:2) 13,00 7,20 

Sphingolipids  Sphingomyelin (d35:1) 4,94 2,80 

Sphingolipids  Sphingomyelin (d35:2) 9,42 7,05 

Sphingolipids  Sphingomyelin (d36:1) 1,92 1,07 

Sphingolipids  Sphingomyelin (d36:2) 7,40 3,67 

Sphingolipids  Sphingomyelin (d36:3) 2,49 1,87 

Sphingolipids  Sphingomyelin (d37:1) 7,50 3,55 

Sphingolipids  Sphingomyelin (d38:1) 0,71 0,33 

Sphingolipids  Sphingomyelin (d38:2) 1,68 1,09 

Sphingolipids  Sphingomyelin (d39:1) 4,76 1,91 

Sphingolipids  Sphingomyelin (d40:1) 1,04 0,57 

Sphingolipids  Sphingomyelin (d40:2) 2,43 1,68 

Sphingolipids  Sphingomyelin (d41:1) 0,76 0,41 

Sphingolipids  Sphingomyelin (d41:2) 3,42 1,30 

Sphingolipids  Sphingomyelin (d42:1) 0,99 0,46 

Sphingolipids  Sphingomyelin (d42:2) 1,60 0,84 

Unknown  Unknown lipid (849590045) 2,37 1,06 

Unknown  Unknown lipid (849590046) 0,63 0,30 

Unknown  Unknown lipid (849590126) 0,62 0,22 

Unknown  Unknown lipid (849590171) 11,16 5,71 

Unknown  Unknown lipid (849590204) 0,22 0,06 

Unknown  Unknown lipid (849590225) 0,30 0,07 

Unknown  Unknown lipid (849590328) 2,11 2,05 

Unknown  Unknown lipid (849590409) 1,09 0,80 
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Unknown  Unknown lipid (849590412) 0,76 0,74 

Unknown  Unknown lipid (849590414) 0,66 3,02 

Unknown  Unknown lipid (849590417) 1,02 0,40 

Unknown  Unknown lipid (849590422) 0,56 0,13 

Unknown  Unknown lipid (849590423) 0,48 1,27 

Unknown  Unknown lipid (849590425) 0,67 0,31 

Unknown  Unknown lipid (849590430) 0,51 0,54 

Unknown  Unknown lipid (849590431) 0,55 0,17 

Unknown  Unknown lipid (849590432) 0,45 0,20 

Unknown  Unknown lipid (849590434) 0,23 0,09 

Unknown  Unknown lipid (849590435) 0,12 0,12 

Unknown  Unknown lipid (849590436) 0,26 0,30 

Unknown  Unknown lipid (849590437) 0,36 0,25 

Unknown  Unknown lipid (849590438) 0,17 0,10 

Unknown  Unknown lipid (849590439) 0,12 0,13 

Unknown  Unknown lipid (849590441) 0,57 2,44 

Unknown  Unknown lipid (849590442) 0,25 0,15 

Unknown  Unknown lipid (849590443) 0,30 0,27 

Unknown  Unknown lipid (849590444) 0,41 0,28 

Unknown  Unknown lipid (849590445) 0,18 0,08 

Unknown  Unknown lipid (849590446) 0,20 0,09 

Unknown  Unknown lipid (849590448) 0,24 0,16 

Unknown  Unknown lipid (849590449) 0,13 0,10 

Unknown  Unknown lipid (849590450) 0,20 0,10 

Unknown  Unknown lipid (849590451) 0,21 0,24 

Unknown  Unknown lipid (849590452) 0,12 0,15 

Unknown  Unknown lipid (849590454) 4,18 1,38 

Unknown  Unknown lipid (849590455) 11,55 8,55 

Unknown  Unknown lipid (849590456) 1,04 0,60 

Unknown  Unknown lipid (849590457) 1,12 0,82 

Unknown  Unknown lipid (849590458) 4,92 3,43 

Unknown  Unknown lipid (849590459) 5,48 3,57 

Unknown  Unknown lipid (849590462) 23,36 17,78 

Unknown  Unknown lipid (849590463) 0,94 0,39 

Unknown  Unknown lipid (849590464) 2,01 1,48 

Unknown  Unknown lipid (849590465) 0,24 0,10 

Unknown  Unknown lipid (849590466) 1,92 1,20 

Unknown  Unknown lipid (849590467) 0,19 0,06 

Unknown  Unknown lipid (849590468) 0,60 0,33 

Unknown  Unknown lipid (849590469) 0,34 0,11 

Unknown  Unknown lipid (849590470) 3,20 1,51 

Unknown  Unknown lipid (849590472) 3,23 2,16 

Unknown  Unknown lipid (849590473) 0,74 0,36 

Unknown  Unknown lipid (849590474) 1,01 1,02 

Unknown  Unknown lipid (849590475) 1,28 1,14 

Unknown  Unknown lipid (849590476) 2,66 4,25 
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Unknown  Unknown lipid (849590478) 2,18 1,83 

Unknown  Unknown lipid (849590479) 1,88 2,08 

Unknown  Unknown lipid (849590480) 4,44 3,13 

Unknown  Unknown lipid (849590481) 5,36 3,81 

Unknown  Unknown lipid (849590482) 0,98 0,30 

Unknown  Unknown lipid (849590483) 0,46 0,11 

Unknown  Unknown lipid (849590484) 1,38 0,71 

Unknown  Unknown lipid (849590485) 0,64 0,22 

Unknown  Unknown lipid (849590486) 1,04 0,66 

Unknown  Unknown lipid (849590487) 2,70 1,29 

Unknown  Unknown lipid (849590488) 2,98 0,94 

Unknown  Unknown lipid (849590489) 2,97 2,05 

Unknown  Unknown lipid (849590490) 1,39 0,56 

Unknown  Unknown lipid (849590491) 0,14 0,08 

Unknown  Unknown lipid (849590499) 0,20 0,09 

Unknown  Unknown lipid (849590500) 1,01 1,82 

Unknown  Unknown lipid (849590502) 1,60 0,68 

Unknown  Unknown lipid (859590013) 4,07 6,30 

Unknown  Unknown lipid (859590071) 0,27 0,27 

Unknown  Unknown polar (869590388) 1,36 7,54 

Unknown  Unknown polar (869590390) 3,60 8,92 

Unknown  Unknown polar (869590395) 1,09 3,32 

Unknown  Unknown polar (869590398) 1,05 6,18 

Unknown  Unknown polar (869590400) 4,78 8,99 

Unknown  Unknown polar (869590402) 0,63 2,07 

Unknown  Unknown polar (869590406) 5,91 7,56 

Unknown  Unknown polar (869590417) 4,43 17,60 

Unknown  Unknown polar (869590419) 6,93 288,21 

Unknown  Unknown polar (869590424) 5,05 9,05 

Unknown  Unknown polar (869590431) 84,37 222,75 

Unknown  Unknown polar (869590432) 7,39 11,25 

Unknown  Unknown polar (869590442) 1,36 4,32 

Unknown  Unknown polar (869590444) 2,56 27,36 

Unknown  Unknown polar (869590452) 0,71 0,85 

Unknown  Unknown polar (869590453) 0,89 0,30 

Unknown  Unknown polar (869590456) 5,04 10,43 

Unknown  Unknown polar (869590459) 1,06 1,11 

Unknown  Unknown polar (879590072) 2,46 7,18 

Unknown  Unknown polar (879590074) 14,27 171,27 

Unknown  Unknown polar (879590076) 1,01 0,79 

Unknown  Unknown polar (879590407) 1,37 1,64 

Unknown  Unknown polar (879590422) 0,88 3,95 

Unknown  Unknown polar (879590425) 0,80 0,54 

Vitamins, cofactors and related  "5,6,7,8-Tetrahydrobiopterin" 5,16 18,33 

Vitamins, cofactors and related 
 "Nicotinamide adenine dinucleotide phosphate, 

reduced (NADPH)" 2,09 2,37 
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Vitamins, cofactors and related 
 "Nicotinamide adenine dinucleotide, reduced 

(NADH)" 0,25 0,04 

Vitamins, cofactors and related  alpha-Tocopherol 0,35 0,13 

Vitamins, cofactors and related  beta-Carotene 0,24 0,16 

Vitamins, cofactors and related  Coenzyme Q10 0,18 0,07 

Vitamins, cofactors and related  Coenzyme Q7 0,59 0,37 

Vitamins, cofactors and related  Coenzyme Q9 0,12 0,16 

Vitamins, cofactors and related  Folic acid 8,23 11,33 

Vitamins, cofactors and related  gamma-Tocopherol 0,43 0,55 

Vitamins, cofactors and related  Glutathione (GSH) 0,47 0,65 

Vitamins, cofactors and related  Glutathione disulfide (GSSG) 1,12 0,86 

Vitamins, cofactors and related  Nicotinamide 7,59 12,45 

Vitamins, cofactors and related 
 Nicotinamide adenine dinucleotide phosphate 

(NADP) 1,15 1,76 

Vitamins, cofactors and related  Pantothenic acid 16,39 28,57 

Vitamins, cofactors and related  Pyridoxal 3,42 5,95 

Vitamins, cofactors and related  Pyridoxamine 1,42 1,82 

Vitamins, cofactors and related  Thiamine 9,54 15,09 
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Chapter 5: final discussion, outlook 

and conclusions 

 

Toxicology has its origins in the millenary practice of exploring the use of poisons. Over the 

time, industrialization brought about the mass manufacturing and commercialization of 

numerous chemicals which resulted in the further development of the toxicology field into 

the study of the adverse effects of chemicals and physical agents on living organisms (Klaassen 

and Amdur 2013). Nowadays, toxicology has been commissioned with the major task of 

providing relevant data for the protection of the human population and environment by 

evaluating potential risks posed by any commercialized substance (Greim and Snyder 2018). 

Consequently, toxicological studies are not only a mandatory but also a decisive step in 

chemical and drug developmental pipelines (OECD 1997).  

The low throughput, high costs, limited predictivity and ethical concerns related to traditional 

animal-based toxicity studies evidenced a need for a fundamental change in toxicology. In 

2007, a vision and roadmap for toxicity testing in the 21st century was proposed by the US 

National institute of science (National Research Council 2007). This vision called for the 

modernization of the field of toxicology through the implementation of recent technological 

advances and the development of human-centered in vitro methods, in silico models and high 

throughput systems that allow to expand the understanding of cellular and molecular 

mechanisms that lead to adverse effects. The progress since then is remarkable; numerous 

alternative methods, currently addressed as “New Approach methodologies” (NAMS), 

comprising in vitro cell based, in silico computational models and Omics technologies, have 

been developed, validated, and incorporated in toxicity assessment (Hartung 2019; Krewski 

et al. 2020b; Leist et al. 2012; Prior et al. 2019). However, the increasing number and 

complexity of  compounds (e.g., formulations, nanomaterials, polymers) and their 

formulations together with the increasing implementation of more demanding regulations, 

indicate the current need to develop innovative, reliable, cost effective and high throughput 

methods that can be incorporated not only in hazard identification and characterization, 
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which has been and continues to be the main use of NAMs, but also to advance its use in 

regulatory safety assessment (Ball et al. 2022).A strategy for integrating NAMs-generated 

data into safety decision-making, known as next generation risk assessment (NGRA), has been 

proposed (EPA 2014). NGRA is defined as an exposure-led, hypothesis driven risk assessment 

approach that integrates in silico and in vitro approaches with the aim of preventing potential 

harms.  This strategy is meant to be conducted in a tiered and iterative approach, starting 

from a thoroughly evaluation of all the available data, followed by the implementation of 

relevant methodologies and testing strategies (Dent et al. 2021). Specific examples showing 

the successful application of NAMs to meet regulatory requirements have been recently 

presented (Stucki et al. 2022). 

Multiparametric Omics technologies offer the advantage over conventional in vitro testing of 

the simultaneous measurement of multiple endpoints, delivering a comprehensive picture of 

an organism response upon a substance exposure (Mortimer et al. 2022; Nguyen et al. 2022). 

In particular, metabolomics represents the last step of the Omics cascade, measuring 

downstream molecular events closer to the organism phenotype (Fiehn 2002). The use of this 

technique has been successfully explored for toxicity assessment showing immense potential 

in diverse applications such as hazard (or adverse outcome) identification (Kamp et al. 2012; 

Kleinstreuer et al. 2011; Mattes et al. 2014; Van Ravenzwaay et al. 2015), chemical grouping 

to inform biologically based read-across of toxicity  (Jacques et al. 2021; Van Ravenzwaay et 

al. 2016) and identifying metabolic points-of-departure (Crizer et al. 2021a; Malinowska et al. 

2023). However, there are still challenges that hamper the expansion of metabolomics 

beyond a research tool to a feasible and implementable technology for toxicology assessment 

in industrial settings.  

The aim of this dissertation was to tackle three of the major challenges for the 

implementation of metabolomics in order to advance its widespread application in toxicology.  

The first challenge addressed in this work was the restrictive high cost and low throughput of 

in vitro metabolomics. In chapter 2, the development and proof of concept of a technical 

feasible and economically effective targeted LC-MS/MS in vitro metabolomics platform for 

the characterization of hepatotoxicity was presented. In this work, the reduction of biomass 

quantity was a critical step to increase the throughput and consequently different key 

parameters of an in vitro test such as cell seeding density, passage number, cytotoxicity 
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testing, sample preparation, metabolite extraction, analytical method, and data processing 

were optimized and standardized to perform with low biomass samples in 96-well plate 

format using the liver hepatocarcinoma HepG2 cell line. The system was tested with 7 

substances exhibiting previously known MoAs. The results showed dose responses of the 

metabolic effects, differentiation between liver toxicity MoAs and the identification of 

markers indicative of general liver toxicity as well as specific metabolite patterns for each 

MoA. 

Noteworthy, this approach was one of the first high throughput in vitro metabolomics 

methods to be developed for the identification of potential toxicities and MoA, opening the 

possibility of using this technique in the chemical and pharmaceutical industry to screen large 

numbers of compounds in a cost effective and high throughput manner. Identifying MoA 

during early stages of compound development represents important economical, public 

health and animal welfare implications (Meigs et al. 2018). Timely terminating the 

development of a compound with a non-favorable toxicological profile represents immense 

time and resources savings (“fail early fail cheap”) and could prevent unwanted health effects 

(Krystal et al. 2019). In addition, understanding the MoA as a base to perform compound 

prioritization, direct more targeted studies and to assess human relevance (Ball et al. 2022; 

Olesti et al. 2021). The use of MoA classification for read-across approaches provides an 

important opportunity to the reduction of animal testing and accelerate the data generation 

of already commercialized compounds that lack toxicological information (Hartung 2009). 

These factors are critical for reaching the goal of the EU's chemicals strategy for sustainability 

towards a toxic-free environment (chemical strategy towards sustainability COM/2022).   

The system presented in chapter 2 is readily implementable and is currently in use by BASF 

SE in the context of the European (EU-TOX RISK) and German (SysBioTopMoving, BMBF) 

funded projects.  

The proof of concept for this assay was performed with seven substances, representative of 

three different liver toxicity MoAs. Even though consistent patterns of metabolite changes 

per MoA were identified, they were built based on only three compounds per MoA and in the 

case of liver enzyme inhibition, only one compound was used (ketoconazole). Therefore, 

these patterns need to be further validated and refined by testing more substances 
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representatives of each of the tested MoA. The next step would be to expand the number of 

tested compounds and diversify the MoAs in order to create and validate different patterns. 

Generated metabolomics patterns can be stored in a database which would allow to compare 

toxicological profiles for MoA classification and prediction. Thus, following the metabolome 

testing of a new compound, statistical techniques such as a PCA or a hierarchical clustering 

analysis can be used to compare the metabolome profile with that of a reference compound 

in order to identify the probable MoA. This type of database would also offer the possibility 

of biological-based read across analysis (Van Ravenzwaay et al. 2016). For the last 15 years, 

such an in vivo plasma-based metabolomics database for toxicological MoAs identification 

and prediction has been developed by BASF SE (MetaMapTox®)(Van Ravenzwaay et al. 2015). 

Building a large database with the presented 96-well plate in vitro system would be much 

faster and would represent significantly lower costs. This system can be automated by the 

use of robots, which would grant the parallel and rapid testing of numerous compounds, 

resulting in a large dataset with increased power of prediction. 

This study was carried out by a targeted metabolomics method, which allows to measure a 

pre-defined set of metabolites with high confidence and accuracy and therefore less features 

are identified in comparison with untargeted metabolomics methods, in which thousands of 

features, covering a broad range of metabolites are detected. Untargeted metabolomics 

allows to obtain an extensive overview of the test compound´s effect on the organism serving 

as a hypothesis-generating tool. Yet, analyte annotation is a tedious and challenging process 

which hampers the detailed mechanistic interpretation of the effects (Olesti et al. 2021). In 

this dissertation, through a targeted approach, 220 to 260 metabolites were identified with 

high confidence by their analytical parameters: polarity (lipid vs polar), MRM transition (m/z 

ratios), and retention time. Measuring analytes with previously known identity offered readily 

mechanistically interpretable data that served to understand the effect of the compound in 

the system and thus was key for establishing confidence in the use of metabolomics 

technologies in toxicology. However, the combination of both strategies represents a 

powerful approach that can be used for both, the identification and extensive 

characterization of mechanisms of toxicity. An initial untargeted analysis can be performed 

to gain a global overview that can be expanded by a following targeted approach directed to 
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obtain more detailed and quantitative information of more specific pathways of interests 

(Garcia-Calvo et al. 2020).  

One of the critical factors that allowed to achieve lowering the costs of this assay was the 

selection of LC-MS/MS as the unique chromatography-mass spectrometry technique. 

Previous developments were based on the combination of both GC-MS and LC-MS techniques 

in order to achieve a broad metabolite coverage of different compound classes (Ramirez et 

al. 2018b). Recent advances in next generation LC-MS technologies, have broaden its 

coverage allowing to detect a wide range of molecule classes(Danne-Rasche et al. 2018; 

Dubuis et al. 2018; Malinowska et al. 2022b; Walvekar et al. 2018). By performing exclusively 

LC-MS chromatography (HILIC for polar metabolites and RP optimized for lipid species), the 

sample extraction was facilitated, only one sample aliquot was needed, which reduces the 

necessary amount of initial biomass, and eliminated the need for compound derivatization 

characteristic of GC approaches (Littlewood 2013). These factors enabled the assembly of a 

high throughput, relatively simple to perform, and cost-effective system. However, lipid 

metabolites accounted for 75% of the total measured features, indicating that the detection 

of polar metabolites was limited. Polar metabolites such as those in central carbon 

metabolism, play an important role in normal growth and development and are fundamental 

components of metabolic pathways essential for survival (Noor et al. 2010). Thus, changes in 

polar metabolites could be important indicatives of adverse outcomes. Therefore, even 

though a good MoA separation by means of PCA was achieved, the future inclusion of 

different metabolites that currently lack representation would expand the mechanistic 

understanding offered by the system.  

In 2021, funded by the European Chemicals Agency, a large systematic review of multiple 

toxicological resources was conducted, generating a list of 722 metabolite biomarkers that 

have toxicological relevance (called MTox700+)(Sostare et al. 2022). It was suggested that the 

metabolomics community should attempt to measure as many of the MTox700+ metabolites 

as possible, to identify them confidently, and report their relative quantitative changes in 

response to chemical exposure, as this will increase the metabolic knowledge associated with 

the panel and increase its ability to predict downstream biological effects (Sostare et al. 2022). 

The MTox700+ list can serve as a future guide to expand the metabolite coverage in the 96-

well plate in vitro metabolomics system presented in this dissertation. More specifically, the 
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method could potentially be improved by optimizing the HILIC protocol as shown by 

(Gerdemann et al. 2022), by adding pre-column derivatization steps (Walvekar et al. 2018) or 

by implementing an additional method for energy metabolism metabolites (Balcke et al. 

2011). However, it is important to mention that additional sample preparations and the need 

of different aliquots would increase the experimental time and cost.  

The limited measurement of polar metabolites and the lack of unique identifiers for different 

lipid species in public databases (e.g., KEGG database) (Kanehisa 2002), hampered the 

application of a representative pathway analysis pointing out the substantial 

underrepresentation of lipid species in public repositories.  

Importantly, there are two factors that can cause differences in metabolite levels in in vitro 

metabolomics assays; the first factor is related to variations in the cell numbers in each 

sample and the second one originates from an actual treatment-related metabolic effect. 

Therefore, in order to account for differences in cell numbers obtained during harvesting, the 

normalization procedure is a critical step in cell-based assays(Cuykx et al. 2018b). This is 

specially challenging for miniaturized metabolomics studies where sample perturbations and 

biomass loses must be avoided. In the presented LC-MS in vitro metabolomics assay, a 

statistical normalization to the median of all covered metabolites values for each sample was 

applied. The Sample Analyte Median (SAM) normalization strategy presents the advantage of 

not requiring additional experiments. Additionally, the median can be determined in the 

measured sample rather than a sister culture as is typically done in in vitro metabolomics 

studies, where protein quantification is measured in a parallel plate (Cuykx et al. 2018b). 

However, the SAM normalization assumes that around 50% of the total measured 

metabolites are unchanged and therefore, the median of all analytes would only be 

influenced by differences in the cell numbers. This strategy performs well at subtoxic ranges 

where the effect on the metabolome is relatively mild, however, at higher concentrations 

(e.g., EC50 and EC85) where more than 50% of the metabolites are expected to change in some 

degree, this strategy might not be able to fully compensate for the cell number differences. 

In these concentrations, due to the very high signal density caused by the strong substance 

effect on the metabolome, the SAM normalization process assumes a higher cell number, 

resulting in a higher correction factor that attenuates the effect outcome. In these cases, 
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normalization to the cell confluence, monitored by real-time imaging analysis can be 

implemented in order to fully correct for differences arising from cell numbers.  

Even though it poses some limitations, the SAM normalization procedure offers practical 

advantages and was found suitable for reducing the variability due to differences in the cell 

number even in the high tested concentrations (chapter 2).  In order to test the suitability of 

the SAM normalization for the developed in vitro metabolomics platform, the effect of 

applying a biomass-normalization procedure was tested in an experiment performed with 

different cell seeding densities (Chapter 2, Suppl. Fig. 2). After applying SAM correction, the 

variability explained in the PC1, corresponding to differences in cell numbers, was reduced to 

almost half (from 83.5% in the unnormalized PCA to 48% after normalization). In addition, 

after normalization the major contributor for the variability in the PC1 was the group 

corresponding to 5,000 seeded cells. As shown in the manuscript Fig 1b, these cells showed a 

drastically reduced cell growth and therefore this group is expected to be physiologically 

different than the cells from higher cell seeding densities.  These results suggest that after 

normalization, biological differences originating from the cell-growth are the drivers for 

separation in the PCA and are not compensated by solely the cell-number normalization.  

However, the PCA loadings of the unnormalized data are skewed, evidencing a systematic 

effect in the PCA, most likely due the differences on the cell numbers. After SAM 

normalization, the loading plots show a spread of the data points, suggesting that the 

normalization procedure was able to eliminate the systematic quantitative effect and the 

quality of the data was improved. Therefore, acknowledging the limitations of the procedure, 

the SAM normalization offered practical advantages and showed to correct (to some extent) 

the differences caused by cell numbers and importantly it was useful for reducing the 

variability of the data due to differences in cell number even in the high tested concentration. 

Current strategies, including the improvement of the SAM normalization and the inclusion of 

cell confluence data for the normalization procedure are being evaluated by the BASF´s 

metabolome research group.   

One of the main limitations of this assay is the use of an immortalized cell line such as HepG2. 

This human cell line has been widely used for toxicity studies since it is easy to handle, readily 

available and highly reproducible. Importantly, it retains differentiated hepatic functions such 

as the synthesis and secretion of plasma proteins, cholesterol and TG metabolism, lipoprotein 
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metabolism and transport, bile acid synthesis, glycogen synthesis insulin signaling and 

important pathways such as the ones related to cell cycle regulation and apoptosis are also 

present (Guo et al. 2011; Jennen et al. 2010). However, the HepG2 cell line expresses low 

levels of phase I and phase II metabolism enzymes (Gerets et al. 2012; Hart et al. 2010). Thus, 

compounds requiring metabolic activation to exert its MoA like acetaminophen (CYP2E1)(Lee 

et al. 1996) or nitro benzodiazepines (CYP3A4) (Mizuno et al. 2009) may not be accurately 

detected by this assay, due to the low expression of these enzymes in HepG2 cells (Ramirez 

et al. 2018b). This limitation can be overcome by genetically modifying HepG2 cells for 

expressing cytochrome P450 enzymes. In addition, the HepG2 presents lower expression of 

different nuclear receptors (Tolosa et al. 2016). Therefore, compounds like phenobarbital, 

which acts via activation of CAR and PXR receptors, might not display the complete 

toxicological profile compared to the in vivo situation. Different strategies to manipulate the 

gene expression of multiple CYPs enzymes and transporter in HepG2 cells have been 

described and could be applied to the presented platform to expand its applicability domain 

(Kwon et al. 2014; Negoro et al. 2022; Xuan et al. 2016). Acknowledging their metabolic 

limitations, the HepG2 cell lines still represents a valid alternative for initial compound high 

throughput screening and, as it was shown with this work, is a suitable model for early stages 

of hepatotoxicity characterization. In the future, preserving the same experimental workflow, 

HepG2 cells can be replaced by metabolically competent cells such as HepaRG cells or hiPSCs.   

Liver toxicity is a leading systemic toxicity of drugs and chemicals demanding more human-

relevant, high throughput, cost effective in vitro solutions (Onakpoya et al. 2016). Therefore, 

this dissertation focused on the development of assays for hepatotoxicity testing. However, 

the workflow described here can be implemented with different cell types, including hiPSCs 

to screen for different organ toxicities. 

Metabolomics in vitro has been implemented as a research tool for toxicological assessment 

and hazard characterization, however, the application of metabolomics data in regulatory 

toxicology for risk assessment has been limited to date. Related to the high number of low 

volume chemicals that still need to be tested under REACH, there are indications that 

regulatory frameworks may open up to consider NAMs such as omics techniques data in risk 

assessment (Ball et al. 2022; Westmoreland et al. 2022). Due to low throughput and cost 

limitations, metabolomics in vitro assays are usually done only in few concentrations, 
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hindering the calculation of meaningful dose response metrics and consequently limiting the 

applicability of in vitro systems in risk assessment (Olesti et al. 2021). By escalating the 

throughput, the developed 96-well-plate LC-MS/MS-based in vitro metabolomics system 

allowed to test five different concentrations, covering key points of the dose response curve 

from very mild effects to overt toxicity, opening the possibility to derive important metrics, 

such as point of departure, essential for extrapolating in vitro results for human risk 

assessment.  

The second aim of this dissertation was to expand the use of in vitro metabolomics beyond 

simply hazard identification, to its implementation for deriving dose- and time response 

metrics that could be used for PoD estimations for human risk assessment. Therefore, in 

chapter 3, the developed LC-MS/MS-based in vitro metabolomics assay was employed to 

study metabolic dose- and time-response dynamics of the antibiotic nitrofurantoin. In this 

study, a mechanistic-anchored approach to derive and interpret dose and time response 

metrics from metabolomics data was proposed.  

It has been shown that the activation of cellular stress response exhibits unique temporal- 

and concentration-dependent patterns for different hepatotoxic model compounds (Wijaya 

et al. 2021). In chapter 3, the effect of each tested of the five tested nitrofurantoin 

concentration was evaluated at four different time points. The mechanistic information 

offered by the assay allowed to track the differential activation of cellular pathways as 

potential indicators of early adaptive and hepatotoxic responses. This is particularly important 

since one of the major challenges of implementing NAM´s in risk assessment has been and 

still is, the differentiation of adaptive changes from adverse effects (Olesti et al. 2021). The 

intrinsic sensitivity of Omics techniques to capture even subtle changes, has posed a major 

challenge to define adversity. At what point do biological changes become so severe to 

produce an adverse outcome? Answering this often involves the investigation of multiple 

endpoints at multiple time-points to understand the progression of different key events along 

an AOP (Buesen et al. 2017). Therefore, the high throughput nature of the developed in vitro 

metabolomics assay, leveraged here to explore the concentration response and the temporal 

dimension opens the possibility, as shown in chapter 3, of using of this type of data for 

understanding the transition from adaptive to adverse effects and for a more quantitative 

applications of metabolomics in risk assessment. Noteworthy, further analyses are required 
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to clearly define adversity in terms of Omics techniques. Recently, ECETOC has published a 

paper on their workshop about Omics threshold on non-adversity with particular emphasis 

on the determination of PoD (Gant et al. 2023). 

For molecular POD determination, there is no current consensus on best practices. Global 

metabolite changes as estimated by principal component analysis (PCA) exhibit exposure 

concentration dependency as shown in chapter 2 and 3. Therefore, after confirming the 

mechanistic relevance of the data, an alternative way to derive metabolomics-based PoD by 

PCA using the whole set of measured metabolite profiles was proposed. The use of 

metabolomics for deriving PoD has recently started to be explored mainly with untargeted 

metabolomics data through the use of benchmark dosing applied to single metabolic features 

(Crizer et al. 2021b; Malinowska et al. 2023). The PCA-based approach proposed in this 

dissertation, presents several advantages over the previously proposed methodologies in the 

literature. First, instead of single features, it allows to obtain values from the entire dataset. 

In addition, targeted metabolomics approaches allow to derive PoDs that can be 

mechanistically anchored to established key events and adverse outcome pathways can be 

identified. Finally, this information can help in the distinction between non adverse (adaptive) 

responses and adverse effects. The variation in the PC1 was mainly driven by the different 

tested concentrations, particularly the highest applied concentration, which was in the 

cytotoxic range and as such is likely to represent an element of adversity. Therefore, 

investigating a set of metabolites that could be predictive for adversity grant further 

investigations.  In addition, the dimensions of the PCA are potentially driven by differential 

effects (e.g. MoA related, toxicity, adversity), thus analysis directed to decipher the nature of 

the effects in the main principal components such as PC1, PC2 and PC3 can help to further 

understand the transition between adaptive and toxic responses.  

In the PoD derivation approach proposed in chapter 3, a 95% confidence interval of the 

control samples variability was selected for defining the PoD. A 90% confidence interval has 

been frequently employed in the literature for the definition of a benchmark concentration. 

A benchmark response of 10% is the approach currently being used in standard toxicology 

dose–response analyses(Johnson et al. 2014). Since Omics technologies are highly sensitive, 

in this work, a 95% threshold was selected to provide a conservative PoD. Future studies that 

perform a systematic comparison of different cut-off values (e.g., 90%, 95%) with a bigger set 
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of test substances are needed to clearly define the most suitable approach for PoD derivation 

using metabolomics data.  

Deriving PoDs from in vitro dose response data is the first step to obtain reference values for 

human risk assessment. Therefore, in order to evaluate the relevance of the data obtained 

here, the calculated PoD value need to be further transformed by means of in vitro to in vivo 

extrapolation (IVIVE) models (Wilk-Zasadna et al. 2015). For this, substance specific data on 

the pharmacokinetics parameters absorption, distribution, metabolism, and excretion 

(ADME), such as hepatic clearance and protein binding, derived from experiments or 

prediction models are needed. In addition, kinetic data and physicochemical properties of the 

test substance need to be integrated as input parameters for the so-called reverse-dosimetry 

by Physiologically Based Toxicokinetic (PBTK) Modelling where the ADME characteristics of 

the target organism are included to finally predict tissue and plasma concentrations for the 

toxicological endpoint of interest (Louisse et al. 2017). Then, integrating the PBTK derived 

tissue or plasma concentration and the in vitro derived dose response analysis, the 

corresponding in vivo dose-response curves that are required for risk assessment can be 

calculated (Algharably et al. 2022). This analysis would be the next necessary step in order to 

evaluate the predictivity and accuracy of the method to describe reference values expressed 

in mg/kg bw. In addition, the study presented in chapter 3 was carried out with nitrofurantoin 

as a single model compound, in order to validate the proposed strategy, more substances 

need to be tested and evaluated.  

Due to the high sensitivity of the method, using initial biological responses for risk assessment 

is a conservative approach which will not underestimate the characterization of hazard and 

can be used in a tiered approach. This tiered approach can start with the generation of 

concentration response metrics from Omics data in order to explore the perturbed pathways 

and potency of the compound. Based on the obtained information, more targeted in vitro 

methods can be further performed (Fang et al. 2020).    

Importantly, the work presented in chapter 3 proposes a new workflow for PoD derivation 

that offers the possibility of integrating the global metabolic changes while obtaining 

mechanistic information that can be linked to AOPs and offer some insights into potential 

adversity. These factors serve to build trust in implementing metabolomics data in risk 



Chapter 5. Final discussion, outlook and conclusions 

204 

 

assessment. In addition, data generated by sampling dynamic metabolomics across large 

sample cohorts with this assay, could significantly improve the data basis (e.g., on substance 

dynamics and kinetics) for computational models intended to be used for toxicological 

predictions. Moreover, evaluating different time points not only provides mechanistic 

temporal insights but is also valuable for the selection of relevant in vitro sampling time points 

for risk assessment. 

Finally, the development of in vitro models that can better recapitulate human physiology 

and sensitivity to hepatotoxicants in combination with -omics technologies offer a powerful 

system to expand the investigation of organ toxicity. Therefore, in order to increase the 

applicability of the in vitro metabolomics data for more advanced studies (e.g., last stages of 

compound development), the third aim of this dissertation was to increase the human 

relevance of in vitro assays by implementing a system that more closely recapitulate the liver 

physiology and cell composition. In chapter 4, the application and evaluation of in vitro 

metabolomics in a hiPSCs-derived 3D liver organoid system was presented. The liver organoid 

was characterized by single cell RNA sequencing (scRNAseq), and immunostaining showing 

that approximately 80% of all cells identified were reflective of the three most common cell 

types found in human livers: hepatocytes, Stellate cells and endothelial cells. Furthermore, 

the hepatocytes were capable of producing urea and albumin at physiological equivalent 

levels when normalized for hepatocyte composition (Ballmer et al. 1990; Rudman et al. 1973).  

The liver organoids were as well characterized with respect to alpha-1-fetoprotein expression 

(AFP), bulk RNA qPCR, and cytochrome P450 activity to estimate hepatocyte maturation. The 

AFP expression was comparable to the expression levels found in human development and 

microsomes generated from intact liver organoids showed a cytochrome P450 enzymatic 

turnovers comparable to commercially sourced microsomes. However, it is well known that 

hepatocytes derived from stem cells are generally fetal in their phenotype (Suter-Dick et al. 

2015). Further studies to explore differences in ADME-related gene expression and 

compound bioavailability in the liver organoids in comparison to primary hepatocytes or 

human microsomes are still needed to estimate the full physiological similarity to mature 

human livers. As future step, different cytokines, growth factors and targeted mRNA 

expression can be used to enhance the complete maturation of the hiPSCs in the organoids 

(work in progress by the MIT scientists).  
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Following the characterization of the 3D hiPSCs-derived organoids, their suitability for 

toxicometabolomics studies was tested using bezafibrate as a model compound. Bezafibrate 

is a PPARα agonist that has served as an internal quality control for the metabolomics studies 

at BASF SE. This compound exerts a pronounced metabolome effect and presents a well 

characterized MoA which exhibit species differences in humans and rodents (Reddy et al. 

1980; Takafumi et al. 1989). Intracellular metabolites were extracted for semiquantitative 

targeted metabolite profiling via LC-MS/MS. Metabolomics and qPCR analysis on target genes 

showed clear metabolite and transcriptional changes consistent with the in vivo described 

bezafibrate MoA (Issemann and Green 1990).  

Intracellular concentration-response changes were observed in lipid metabolism, beta 

oxidation of fatty acids, cholesterol metabolism, energy metabolism, amino acids and 

antioxidants. Here, we combined metabolite measurement with targeted gene expression 

analysis to better characterize the affected pathways and gain a comprehensive 

understanding of the effect of bezafibrate on the treated organoids. Analysis via qPCR of 

pathways that were considered responsible for the change in metabolic profile enabled more 

comprehensive understanding of bezafibrate treatment within the 3D organoid. Therefore, 

multi-Omics approaches can provide useful insights into the flow of biological information at 

multiple levels and thus can assist in unraveling the mechanisms underlying the toxicological 

effect (Subramanian et al. 2020).  

In order to test the experimental and organoids reproducibility, the metabolomics 

experiments were carried out in two different batches comprising a total of 192 tested 

organoids. In addition to the intracellular metabolome, to confirm and quantify substance 

uptake by the organoids, the intracellular concentrations of bezafibrate were determined as 

well via mass-spectrometry. Although the same nominal concentration was applied, there 

was approximately a 6-fold difference in the intracellular bezafibrate concentrations between 

the two batches. Importantly, the observed biological responses directly correlated to the 

magnitude of the metabolites fold changes. Although these differences in intra-organoid 

bezafibrate concentrations were far from desirable, these results show the importance of 

measuring the intracellular concentrations of the test compounds in in vitro assays as a good 

practice. Obtaining estimations of whether the test compound reached the cells and in which 

quantity, is key for the correct interpretation of the results. Integrating metabolomics 
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technologies in in vitro studies offers the advantage of incorporating intracellular compound 

concentrations measurements without the need for additional experiments. Recent reports 

have highlighted the importance of extrapolating from the in vitro measured intracellular 

concentration and not from the nominal concentration to the tissue/organ concentration to 

come up with an appropriate QIVIVE for the relevant adverse effects (Algharably et al. 2022). 

These observations evidence the advantage of metabolomics experiments for extrapolating 

in vitro concentrations to in vivo values useful for risk assessment. 

The exact reason of the observed differences in intracellular compound concentrations were 

not clear and require further examination. However, it evidences a batch-to-batch variation 

pointing towards a current limitation in the reproducibility of the organoids. Therefore, for 

the industrial use of these organoids efforts are required towards their standardization in 

order to ensure reproducible results.  

One of the major disadvantages of 3D cultures is the limited perfusion. When vascularization 

is lacking, oxygen, nutrients and the compound to be tested have a limited flow into the 

interior of the organoid generating an anoxic environment that results in differences with an 

in vivo organ. In the presented 3D hiPSCs-derived organoids, the formation of vascular-like 

structures was observed. Future studies should be directed in order to fully characterize and 

further enhance the organoid vascularization.  

Overall, the results provided in chapter 4 evidence that the tested 3D liver organoid system, 

in combination with transcriptomics and metabolomics, is capable of detecting human 

relevant changes associated with the mode of action of bezafibrate. For industrial screening 

purposes the system is not yet completely developed and further work on characterization, 

standardization, thorough validation and further in vitro to in vivo comparison is required 

before the system can be readily established. However, feasibility evaluations with 

microphysiological systems such as the one presented here, are highly valuable to identify 

areas of potential improvement, helping to move forward the establishment of this systems 

beyond basic research to applied industrial settings. The further development of this type of 

organoids, opens the possibility of implementing a physiologically relevant tool to understand 

mechanisms of action and evaluate hepatotoxicity. Combining these systems with 
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metabolomics and transcriptomics analysis, represents a valuable tool for the advanced 

toxicological studies within chemical and pharmaceutical development pipelines. 

In summary, this dissertation has addressed three of the major challenges for the 

implementation of in vitro metabolomics in toxicology. In chapter 2, a highly standardized, 

high throughput in vitro metabolomics platform was developed and tested. Then, chapter 3 

covered the application of the developed assay for substance dynamics over concentration 

and time and an alternative to calculate PoD for risk assessment was proposed. Finally, in 

chapter 4, a hiPSCs-derived liver organoid was developed and tested for its suitability in 

toxicometabolomics studies.  

By advancing the applications of metabolomics in toxicology, this work has significantly 

contributed to the aim of toxicology of the 21st century for a human-relevant non-animal 

toxicological testing, supporting the toxicology endeavor of protecting human health and the 

environment. Consequently, the results developed in this dissertation ultimately contribute 

to the collective goal of granting that future generations, not only of humans, but also of all 

leaving species can benefit from a toxic free environment.
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Appendix  

List of abbreviations 

 

 

 
AA Amino acid 

ABCA1 ATP-binding cassette transporter  

ACAT1 acetyl-CoA acetyltransferase  

ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 

ACTB Actin Beta 

ADI acceptable daily intake  

ADMA N, N-Dimethylarginine  
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ADME absorption, distribution, metabolism, and excretion  

AFP alpha-1-fetoprotein  

ALDO aldolase 

AOP adverse outcome pathway 

APOA1 Apolipoprotein A1 

APOA2 Apolipoprotein A2 

ATP Adenosine triphosphate 

BCA Bicinchoninic acid assay 

BMBF Bundesministerium für Bildung und Forschung 

BMC Benchmark concentrations 

BMD Benchmark dose 

BMI Body mass index 

BSA Bovines Serumalbumin 

CAR chimeric antigen receptor 

CD31 cluster of differentiation 31  

CD34 cluster of differentiation 34  

CEBP CCAAT-enhancer-binding proteins 

CEBPA CCAAT/enhancer-binding protein alpha 

CHOP DNA damage-inducible transcript 3 

CO2 Carbon dioxide 

COL3A1 Type III Collagen alpha-1 chain 

CPT1 Carnitine palmitoyltransferase I 

CPT1A Carnitine palmitoyltransferase I A 

CYP Cytochromes P450 

DAPI 4′,6-Diamidino-2-phenylindole 

DILI Drug-Induced Liver Injury 
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DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

DNEL Derived no-effect level 

DOX Doxycycline 

EC Effective concentration 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme-linked Immunosorbent Assay 

FAD Flavin adenine dinucleotide 

FBS Fetal bovine serum 

FOXA2 Forkhead box protein A2 

GATA6 Transcription factor GATA-6 

GC Gas chromatography  

GIVIMP Good in vitro method practices  

GPD1 Glycerol-3-Phosphate Dehydrogenase  

GSH Glutathione 

GSSG Glutathione disulfide 

GUSB β-Glucuronidase 

HMGR 3-hydroxy-3-methylglutaryl-coenzyme 

HNF4 Hepatocyte Nuclear Factor 4 

HPLC High-performance liquid chromatography  

HPRT1 Hypoxanthine-guanine phosphoribosyltransferase 

HT High throughput 

HTS High throughput screening 

IDT Integrated DNA Technologies 

IVIVE In Vitro–In Vivo Extrapolation  
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KE Key events 

KEGG Kyoto Encyclopedia of Genes and Genomes 

KER Key event relationships  

LC Liquid chromatography 

LOAEL Lowest Observed Adverse Effect Level 

LPL Lipoprotein lipase 

MALDI Matrix Assisted Laser Desorption/Ionization 

MIE Molecular initiating event  

MIV Metabolomics in vitro  

MPS Microphysiological systems  

MRF Metabolomics Reporting Framework 

MRM Multiple Reaction Monitoring 

MS Mass spectometry 

NAA N-Acetyl-Aspartate 

NAD Nicotinamide adenine dinucleotide oxidized 

NADH Nicotinamide adenine dinucleotide reduced 

NADP Nicotinamide adenine dinucleotide phosphate oxidized 

NADPH Nicotinamide adenine dinucleotide phosphate reduced 

NAM New Approach methodologies 

NANOG Homeobox protein NANOG 

NAT8L N-Acetyltransferase 8 Like 

NGRA Next generation risk assessment 

NMR Nuclear magnetic resonance  

NOAEL No-Observed-Adverse-Effect Level 

NORA Northeast Research Alliance  

NPLC Normal phase liquid chromatography 
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NRC National Research Council  

OECD The Organisation for Economic Co-operation and Development  

PANK1 Pantothenate Kinase 1 

PBS Phosphate-buffered saline 

PBTK Physiologically Based Toxicokinetic Modell 

PCA Principal Component Analysis  

PCK2 Phosphoenolpyruvate Carboxykinase 2 

PCR Polymerase chain reaction 

PDK4 Pyruvate dehydrogenase lipoamide kinase isozyme 4, 

PE Phosphatidylethanolamine 

PFK Phosphofructokinase 

PFKL 6-phosphofructokinase, liver type 

PHH Primary human hepatocytes  

POD Point of departure 

POLR2A DNA-directed RNA polymerase II subunit  

PPAR Peroxisome proliferator-activated receptors 

PPIA Peptidylprolyl isomerase A 

PXR Pregnane X receptor 

QC Quality control 

QIVIVE Quantitative in Vitro to in Vivo Extrapolation 

REACH 
The Regulation on the registration, evaluation, authorisation and restriction of 
chemicals 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RP Reverse phase 

RPLC Reverse phase liquid chromatography 
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RSD Relative standard deviation 

SAM Sample Analyte median  

SD Standard deviation 

SM Sphingomyelinase 

SMPD1 Sphingomyelinase 1 

SMPD2 Sphingomyelinase 2 

SOX17 SRY-Box Transcription Factor 17 

SPTSSA Palmitoyltransferase subunit A 

SPTSSB Palmitoyltransferase subunit B 

SREBP Sterol regulatory element-binding proteins 

SREBP1 Sterol regulatory element-binding protein 1 

TAG Triacylglycerols 

TBXT T-Box Transcription Factor T 

TDI Tolerable daily intake 

TG Triglyceride  

TOF Time of flight 

UCP1 Thermogenin 

UMAP Uniform Manifold Approximation and Projection 

UPR Unfolded protein response  
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Curriculum Vitae  

 

Education  

 

03/2020 – 05/2023    Doctoral candidate 

BASF SE, Ludwigshafen am Rhein & Rheinland-
Pfälzische Technische Universität 
Kaiserslautern-Landau 

Supervision by Prof. Dr. Elke Richling, Prof.Dr. 
Bennard van Ravenzwaay & Dr. Barbara Birk  

Topic: “Advancing the Implementation of In 
Vitro Metabolomics in Toxicology” 

08/2017 – 01/2018    Master-Thesis intern   

      BASF SE, Ludwigshafen am Rhein  

Supervision by Prof.Dr. Bennard van 
Ravenzwaay & Dr. Christina Behr 

Topic: "Influence of Lincosamides Antibiotics on 
the Gut Microbiome. An Inter-omics Approach" 

Final mark: 100%, awarded honors. Scientific 
publication. 

06/2013 – 11/2018 Diploma in Biology with emphasis in Molecular 
Biology 

Universidad EAFIT. Medellin Colombia 

Final mark 96% 

Graduated with highest honours. Awarded best 
academic performance honor.   

01/2018 – 05/2018    Academic exchange, Concordia University 

      Concordia University. Montreal, Canada  

      Mark 88% 
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01/2016 – 05/2016    Academic exchange, Concordia University 

      Concordia University. Montreal, Canada 

      Mark: 92% 

01/1999 – 12/2012    Elementary, Middle, and High School 

      Colegio Jesus María. Medellin, Colombia  

Academic excellence award from the 8th grade 
to the last year of High school 

Work experience 

 

03/2019 – 12/2012    Research assistant, Molecular Biology lab 

      Universidad EAFIT. Medellin, Colombia  

07/2018 –11/2018    Biochemistry teaching assistant 

      Universidad EAFIT. Medellin, Colombia 

07/2016 –11/2016   Genetics and Molecular Biology teaching  

Assistant 

Universidad EAFIT. Medellin, Colombia 

01/2015 –11/2015    Microbiology research assistant 

Universidad EAFIT. Medellin, Colombia 

  

             

Selected courses 

 

06/2022 – 07/2022   Science Communication in the post COVID-19  

   University of Geneva summer school 

   Geneva, Switzerland 
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04/2022     The future of Science communication 2.0 

   Brussels, Belgium 

04/2022   Basic principles of Toxicology  

   Advanced training for “Fachtoxikologe/in GT” 

03/2021   BB3R Spring School 

on alternative test methods to animal 
experimentation.  

Freie Universität Berlin (online) 

Selected achievements 

 

12/2018     Best academic performance of the 2018   

graduating class 

Medellin, Colombia 

12/2018      Honors awarded  

"Influence Of lincosamides Antibiotics on the 
Gut Microbiome: An Inter-omics Approach" 

Medellin, Colombia  

06/2018     The Emerging Leaders in the Americas Program 

Scholarship 

Providing outstanding students from Latin 
America and the Caribbean with exchange 
opportunities for study or research in Canada 

Jan 2015 — Nov 2017    Research grants  

      Medellin, Colombia 

In silico determination of the relevance of 
mutual exclusivity and cooccurrence patterns in 
cancer driver genes (2017); Isolation and 
characterization of lactic acid bacteria that 
exhibit antagonistic activity against pathogenic 
microorganisms (2015).  
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Scientific presentations 

01/2022      European Society of Toxicology In Vitro 2022  

Congress 

Poster presentations. (1) Liver metabolomics in 
vitro– a miniaturized screening approach to 
predict the mode of action of liver toxicants in 
HepG2 cells. (2) Implementing an in vitro 
metabolomics screening method to study liver 
toxicants in HepG2 cells. A case study with 
Nitrofurantoin. 

01/2021-2022-2023    Liver Toxicity module, Universität Koblenz  

Landau 

Landau, Germany 

Guest lecturer. Ecotoxicology Master’s Degree 

03/2022      German Pharm-Tox Summit 2022  

Oral presentation  

Miniaturization of in vitro liver metabolomics– a 
screening approach to predict the mode of 
action of liver toxicants in HepG2 cells. 

03/2022     Society of Toxicology (SOT) 2022 congress  

Poster presentation  

Liver metabolomics in vitro– a screening 
approach to predict the mode of action of liver 
toxicants in HepG2 cells. 

09/2021     EUROTOX  2021 

Poster presentation  

Miniaturization of in vitro liver metabolomics– a 
screening approach to predict the Mode of 
Action of liver toxicants in HepG2 cells. 

08/2021      The World Congress on Alternatives and  

Animal Use in the Life Sciences 2021 
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Poster presentation  

Miniaturizing liver metabolomics in vitro – a 
new screening approach to generate metabolic 
fingerprint in HepG2 cells. 

03/2021     German Pharm-Tox Summit 2021 

Poster presentations (1) Programmable iPSCs-
derived 3DLiver Organoids as a Novel in vitro 
Model for Toxicology Studies by Metabolomic 
Phenotyping. (2) Influence of pregnancy and 
non-fasting conditions on the plasma 
metabolome in a rat prenatal toxicity control 
study. 
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