
dissertation

T I M E F R A M E : A N O V E L F R A M E W O R K F O R
I N T E R P R E TA B L E A N D P R I VA C Y- P R E S E RV I N G D E E P

L E A R N I N G F O R T I M E S E R I E S A N A LY S I S

Thesis approved by the
Department of Computer Science

of the RPTU Kaiserslautern-Landau
for the award of the Doctoral Degree

doctor of engineering

(dr .-ing .)

to

Dominique Mercier

Date of the viva: 2023-09-20

Dean: Prof. Dr. Christoph Garth

Reviewers:
Prof. Dr. Prof. h.c. Andreas Dengel

Prof. Dr. Sebastian Vollmer

DE-386

Dominique Mercier: TimeFrame: A Novel Framework for Interpretable and Privacy-
Preserving Deep Learning for Time Series Analysis

supervisors:
Prof. Dr. Prof. h.c. Andreas Dengel
Dr. Sheraz Ahmed

contact information:

mercier@rhrk.uni-kl.de

mailto:mercier@rhrk.uni-kl.de

E X E C U T I V E S U M M A RY

During our daily lives, we are confronted with vast amounts of data, the
processing of which can dramatically influence our lives, both positively and
negatively. The enormous amount of data (images, texts, tables, and time series),
its variety and possible applications are not always obvious. Due to advancements
in the internet of things (IoT), there exist billions of sensors that produce time
series which can be found everywhere, whether in medicine, the financial sector
or the agricultural economy. This incredible amount of time series data has
many hidden features which are useful for industry as well as for daily use,
e.g. improving the cancer prediction can save real human lives. Recently, several
deep learning methods have been proposed for analyzing this time series data.
However, due to their black box nature, their applicability is limited in critical
sectors like medicine, finance, and communication. In addition, it is now a
compulsion as per artificial intelligence (AI) Act and per General Data Protection
Regulation (GDPR) to protect any sensitive data and provide explanations in
safety-critical domains. To enable use of DNNs in a broader domain scope,
this thesis presents a framework for privacy-preserved and interpretable time
series analysis. TimeFrame consists of four main components, namely, post-hoc
interpretability, intrinsic interpretability, direct privacy, and indirect privacy.

Interpretability is indispensable to avoid damaging people or the infrastructure.
In the past years, the development mostly focused on image data, which
prevented the full potential of DNNs in time series processing from being
exploited. To overcome this limitation, TimeFrame introduces five (Time to
Focus, TSViz, TimeREISE, TSInsight, Data Lens) novel post-hoc and two (PatchX,
P2ExNet) novel intrinsic interpretability components. TimeFrame addresses
multiple perspectives such as attribution, compression, visualization, influence,
prototyping, and hierarchical splitting. Compared to existing methods, the
components show better explanations, robustness, and scalability. Another crucial
factor is the privacy when dealing with sensitive data and deep learning. In this
context, TimeFrame introduces two (PPML, PPML x XAI) components for direct
and one (From Private to Public) component for indirect privacy. These components
benchmark privacy approaches, their effect on interpretability, and the synthetic
generation of data to overcome privacy concerns.

TimeFrame offers a large set of interpretability and privacy components that
can be combined and consider numerous different aspects. Furthermore, the
novel approaches have shown to consistently outperform twenty existing state-
of-the-art methods across up to 20 different datasets. To guarantee the fairness,
various metrics were used including performance change, Sensitivity, Infidelity,
Continuity, runtime, model dependency, compression rate, and others. This broad
set of metrics makes it possible to provide guidelines for a more appropriate use
of existing state-of-the-art approaches as well as the novel components included
in TimeFrame.

A C K N O W L E D G M E N T S

I would like to thank everyone who supported me during this Ph.D. thesis. Their
support helped me a lot to write this thesis.

Firstly, I would like to thank Prof. Dr. Prof.h.c. Andreas Dengel for Supervisors

the opportunity to write this thesis. He gave me feedback during various
Ph.D. colloquiums and provided me with hints towards interesting directions.
Furthermore, I would like to thank Dr. Sheraz Ahmed for his continuous support
and feedback. We had many fruitful discussions that led to several papers.

I would like to thank my colleagues, the DFKI members and the students DFKI

who worked together with me to create this thesis. My special thanks to Shoaib
Siddiqui and Adriano Lucieri who actively supported me during this thesis.
Both supported me with their ideas and worked together with me to solve
various research questions. Next, I would like to thank Tahseen Raza Rizvi for
the discussions and collaborations not only limited to the time series domain
but also in the domain of natural language. Furthermore, thanks to the students
that explored interesting topics and research questions during the seminars and
projects I supervised.

Further thanks to the people who supported me with administrative stuff. Here Further Thanks

I would like to thank Brigitte Selzer, Thomas Kieninger, Stefan Agne, Nicolai
Schwindt and Markus Junker.

— Thank you all, Dominique

L I S T O F P U B L I C AT I O N S A S PA RT O F T H I S T H E S I S

Parts of the research and material (including figures, tables, algorithms and text
passages) in this thesis have already been published in:

[1] D. Mercier, S. A. Siddiqui, M. Munir, A. Dengel, and S. Ahmed. “Tsviz:
Demystification of deep learning models for time-series analysis.” In: IEEE
Access 7 (2019), pp. 67027–67040.

[2] D. Mercier, S. A. Siddiqui, A. Dengel, and S. Ahmed. “Interpreting deep
models through the lens of data.” In: 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2020, pp. 1–8.

[3] D. Mercier, A. Dengel, and S. Ahmed. “P2exnet: Patch-based prototype
explanation network.” In: International Conference on Neural Information
Processing. Springer. 2020, pp. 318–330.

[4] D. Mercier, S. A. Siddiqui, A. Dengel, and S. Ahmed. “TSInsight: A Local-
Global Attribution Framework for Interpretability in Time Series Data.” In:
Sensors 21.21 (2021), p. 7373.

[5] D. Mercier, A. Dengel, and S. Ahmed. “PatchX: Explaining Deep Models
by Intelligible Pattern Patches for Time-series Classification.” In: 2021
International Joint Conference on Neural Networks (IJCNN). IEEE. 2021, pp. 1–
8.

[6] D. Mercier, A. Lucieri, M. Munir, A. Dengel, and A. Sheraz. “Evaluating
Privacy-Preserving Machine Learning in Critical Infrastructures: A Case
Study on Time-Series Classification.” In: IEEE Transactions on Industrial
Informatics (2021).

[7] D. Mercier., J. Bhatt., A. Dengel., and S. Ahmed. “Time to Focus: A
Comprehensive Benchmark using Time Series Attribution Methods.” In:
Proceedings of the 14th International Conference on Agents and Artificial
Intelligence - Volume 2: ICAART, INSTICC. SciTePress, 2022, pp. 562–573.
doi: 10.5220/0010904400003116.

[8] D. Mercier, A. Dengel, and S. Ahmed. “TimeREISE: Time Series
Randomized Evolving Input Sample Explanation.” In: Sensors 22.11 (2022).
doi: 10.3390/s22114084.

[9] D. Mercier, S. Saifullah, A. Lucieri, A. Dengel, and S. Ahmed. “Privacy
Meets Explainability: A Comprehensive Impact Benchmark.” In: arXiv
preprint arXiv:2211.04110 (2022).

[10] D. Mercier, A. Lucieri, M. Munir, A. Dengel, and S. Ahmed. “PPML-TSA:
A modular privacy-preserving time series classification framework.” In:
Software Impacts (2022), p. 100286.

[11] D. Mercier, A. Dengel, S. Ahmed, et al. “From Private to Public:
Benchmarking GANs in the Context of Private Time Series Classification.”
In: arXiv preprint arXiv:2303.15916v2 (2023).

https://doi.org/10.5220/0010904400003116
https://doi.org/10.3390/s22114084

C O N T E N T S

List of Publications as Part of this Thesis vii
List of Tables xiv
List of Figures xv
Acronyms xviii
URI Prefixes (CURIEs) xx

i Preamble
1 Introduction 3

1.1 Motivation . 3

1.2 Research Questions & Goals . 5

1.3 Contributions . 6

1.3.1 Post-hoc Interpretability . 6

1.3.2 Intrinsic Interpretability . 8

1.3.3 Direct Privacy Preservation . 9

1.3.4 Indirect Privacy Preservation 9

1.4 Overview . 10

2 Background 11

2.1 Performance & Computational Aspects of AI 11

2.2 Challenges for Deep Learning in the Real-world 12

2.3 Explainable Artificial Intelligence . 13

2.4 Privacy-preserving Artificial Intelligence 15

2.5 Delimitation from other Modalities . 16

2.5.1 Image Domain . 16

2.5.2 Natural Language . 17

3 Related Work 19

3.1 State-of-the-art Interpretability Methods 19

3.1.1 Post-hoc . 19

3.1.2 Intrinsic . 24

3.2 State-of-the-art Privacy-preserving Methods 25

3.2.1 Attack Mechanisms . 25

3.2.2 Defense Mechanisms . 27

3.2.3 Synthetic Data Generation . 29

4 TimeFrame: Interpretable and Privacy-Preserving Deep Learning 31

4.1 Need of the System . 31

4.2 Components of the Proposed Framework 32

4.2.1 Interpretability Components 32

4.2.2 Privacy Components . 33

4.2.3 Interaction of Components . 33

ii Post-hoc Interpretability
5 Time to Focus: Benchmarking State-of-the-art Attribution Approaches 39

5.1 Datasets . 39

x contents

5.2 Experiment & Results . 39

5.2.1 Impact on the Accuracy . 41

5.2.2 Prediction Agreement . 43

5.2.3 Infidelity & Sensitivity . 45

5.2.4 Runtime . 46

5.2.5 Attribution Correlation . 48

5.2.6 Dependency on Model Parameter 49

5.2.7 Visual Attribution Comparison 53

5.2.8 Continuity . 53

5.3 Discussion . 53

5.4 Conclusion . 56

6 TimeREISE: A Novel Time Series Attribution Approach 57

6.1 Method . 57

6.1.1 Mathematical Formulation . 59

6.1.2 Theoretical Correctness . 59

6.1.3 Theoretical Runtime . 59

6.1.4 Theoretical Implementation . 60

6.2 Datasets . 61

6.3 Experiments & Results . 61

6.3.1 Baseline Accuracy . 62

6.3.2 Sanity Check . 64

6.3.3 Runtime Analysis . 65

6.3.4 Insertion & Deletion . 66

6.3.5 Infidelity & Sensitivity . 69

6.3.6 Attribution Continuity . 71

6.3.7 Visualization . 71

6.4 Discussion . 73

6.5 Conclusion . 75

7 TSViz: A Novel Gradient-based Visualization Framework 77

7.1 Datasets . 77

7.1.1 Regression . 78

7.1.2 Classification . 78

7.2 Method & Experiments . 78

7.2.1 Backpropagation . 78

7.2.2 Influence Computation . 80

7.2.3 Filter Clustering . 83

7.2.4 Inverse Optimization . 84

7.2.5 Adversarial Examples . 87

7.2.6 Network Pruning . 89

7.2.7 Properties . 90

7.2.8 Implementation . 91

7.3 Discussion . 94

7.4 Conclusion . 95

8 TSInsight: A Novel Time Series Compression Approach 97

8.1 Method . 97

8.1.1 Pretrained Classifier . 97

8.1.2 Autoencoder . 98

contents xi

8.1.3 Formulation by Palacio et al. 99

8.1.4 TSInsight: The Proposed Formulation 99

8.2 Datasets . 102

8.3 Experiments & Results . 102

8.3.1 Impact on Accuracy . 103

8.3.2 Suppression Comparison . 104

8.3.3 Loss Landscape . 105

8.3.4 Autoencoder’s Jacobian Spectrum Analysis 107

8.4 Discussion . 107

8.5 Conclusion . 110

9 Data Lens: Benchmarking of State-of-the-art Influence Functions 113

9.1 Datasets . 113

9.2 Experiments & Results . 113

9.2.1 Mislabel Correction Approaches 114

9.2.2 Mislabel Correction Performance 114

9.2.3 Influence of Inspection Ratio 116

9.2.4 Analyzing Score of Correction 117

9.2.5 Identification Differences - Sample Ranking 119

9.2.6 Combining Correction Approaches 121

9.2.7 Additional Time Consumption 121

9.2.8 Detailed Sample Analysis . 121

9.2.9 Model Accuracy Comparison 125

9.3 Discussion . 127

9.4 Conclusion . 127

iii Intrinsic Interpretability
10 PatchX: A Novel Level-wise Classification Approach 133

10.1 Method . 133

10.1.1 Data Transformation (Step 1) 133

10.1.2 Fine-grained Classification (Step 2) 134

10.1.3 Metadata Extraction (Step 3) 135

10.1.4 Sample Classification (Step 4) 136

10.2 Datasets . 136

10.3 Experiments & Results . 136

10.3.1 Accuracy Comparison . 137

10.3.2 Computation Time Analysis 139

10.3.3 Hyperparameter Selection . 139

10.3.4 Local & Global Patch-based Explanations 141

10.3.5 Global Patch Confidence . 142

10.3.6 Class Boundary Evaluation . 143

10.3.7 Comparison with State-of-the-art Approaches 145

10.4 Conclusion . 146

11 P2ExNet: A Novel Patch-based Prototype Network Architecture 147

11.1 Method . 147

11.1.1 Architecture . 147

11.1.2 Mathematical Background . 148

11.1.3 Training Process . 150

xii contents

11.2 Datasets . 150

11.3 Experiments & Results . 150

11.3.1 P2ExNet: Instance-based Evaluation 151

11.3.2 P2ExNet: Evaluation as a Classifier 152

11.3.3 P2ExNet: Sanity Check . 153

11.3.4 Comparison with Existing Prototype-based Approaches . . . 154

11.4 Conclusion . 155

iv Direct Privacy
12 PPML: Benchmarking State-of-the-art Privacy-preserving Approaches 161

12.1 Datasets . 161

12.2 Experiments & Results . 161

12.2.1 Performance Benchmark . 162

12.2.2 Architecture Comparison . 165

12.2.3 Differential Privacy: Hyperparameter Evaluation 165

12.2.4 Federated Ensemble: Ensemble Size Evaluation 168

12.2.5 Differential Privacy in a Federated Setting 169

12.2.6 Secret Sharing Runtime Evaluation 170

12.2.7 Encrypted Inference Evaluation 171

12.3 Discussion . 172

12.4 Conclusion . 173

13 PPML x XAI: Interaction Privacy-preserving Approaches and XAI 175

13.1 Datasets . 175

13.2 Experiments & Results . 175

13.2.1 Experiment Setup . 176

13.2.2 Impact on Model Performance 178

13.2.3 General Impact on Explainability (Qualitative) 178

13.2.4 General Impact on Explainability (Quantitative) 180

13.2.5 Impact of Noise on Different Settings 182

13.3 Discussion . 183

13.4 Conclusion . 185

v Indirect Privacy
14 From private to Public: Benchmarking Generative Privacy 191

14.1 Datasets . 191

14.2 Experiments & Results . 191

14.2.1 Accuracy Comparison of DP, DPWGAN, and GSWGAN . . . 191

14.2.2 Finding the Best Stopping Criteria for GSWGAN 193

14.2.3 Impact of Architecture on GSWGAN 195

14.2.4 Impact of Noise Multiplier on Privacy-preserving Approaches196

14.2.5 T-SNE Visualization of Generated Data 197

14.2.6 Dataset Visualization - Private vs Generated (Public) Data . . 199

14.2.7 Dataset Analysis - Computing the distance between samples 203

14.3 Discussion . 204

14.4 Conclusion . 205

contents xiii

vi Summary
15 Conclusion 209

15.1 Post-hoc Interpretability . 209

15.1.1 TimeREISE . 210

15.1.2 TSViz . 210

15.1.3 TSInsight . 211

15.1.4 Data Lens . 211

15.2 Intrinsic Interpretability . 212

15.2.1 PatchX . 212

15.2.2 P2ExNet . 213

15.3 Direct Privacy . 213

15.3.1 PPML . 213

15.3.2 PPML x XAI . 214

15.4 Indirect Privacy . 214

15.4.1 From Private to Public . 214

16 Future Work 217

Bibliography 219

Index 233

Academic Curriculum Vitæ: Dominique Mercier 235

L I S T O F TA B L E S

Table 5.1 Time to Focus: UEA & UCR Datasets 40

Table 5.2 Time to Focus: AlexNet architecture 40

Table 5.3 Time to Focus: Accuracy datasets 41

Table 5.4 Time to Focus: Agreement study 44

Table 5.5 Time to Focus: Infidelity . 45

Table 5.6 Time to Focus: Sensitivity . 46

Table 5.7 Time to Focus: Continuity . 54

Table 5.8 Time to Focus: Overall ranking 55

Table 6.1 TimeREISE: Datasets . 62

Table 6.2 TimeREISE: Baseline accuracy 63

Table 6.3 TimeREISE: Insertion & deletion 68

Table 6.4 TimeREISE: Infidelity . 69

Table 6.5 TimeREISE: Sensitivity . 70

Table 6.6 TimeREISE: Continuity . 72

Table 7.1 TSViz: Regression & classification datasets 78

Table 7.2 TSViz: Faithfulness test . 90

Table 8.1 TSInsight: Used datasets . 102

Table 8.2 TSInsight: Accuracy comparison 104

Table 9.1 Data Lens: Used datasets . 114

Table 9.2 Data Lens: Detected mislabels 115

Table 9.3 Data Lens: Combined approaches 120

Table 10.1 PatchX: Datasets . 136

Table 10.2 PachtX: Accuracy comparison 138

Table 10.3 PatchX: Time consumption . 139

Table 10.4 PatchX: Hyperparameter analysis 140

Table 10.5 PatchX: Data transformation 141

Table 11.1 P2ExNet: Datasets . 150

Table 11.2 P2ExNet: Accuracy trade-off 152

Table 11.3 P2ExNet: Sanity check . 153

Table 11.4 P2ExNet: Closeness of prototypes 154

Table 12.1 PPML: Used datasets . 162

Table 12.2 PPML: Performance benchmark 164

Table 12.3 PPML: Architecture comparison 166

Table 12.4 PPML: Differential & federated ensemble. 170

Table 12.5 PPML: Runtime evaluation 171

Table 12.6 PPML: Encrypted inference 171

Table 13.1 PPML x XAI: Datasets . 176

Table 13.2 PPML x XAI: Performance results 177

Table 14.1 From Private to Public: UEA & UCR Datasets 192

Table 14.2 From Private to Public: Accuracy Comparison 193

Table 14.3 From Private to Public: Stopping criteria 195

Table 14.4 From Private to Public: Architecture impact 196

Table 14.5 From Private to Public: Architecture search 196

Table 14.6 From Private to Public: Noise impact 198

Table 16.1 Summary: Proposed approaches 218

L I S T O F F I G U R E S

Figure 3.1 Related Work: Artificial Intelligence (AI) perspectives 20

Figure 3.2 Related work: Privacy attack mechanisms 26

Figure 3.3 Related work: Privacy defense mechanisms 27

Figure 4.1 Framework: Interpretability and Privacy Components 32

Figure 5.1 Time to Focus: Insertion & deletion 42

Figure 5.2 Time to Focus: Runtime . 47

Figure 5.3 Time to Focus: Correlation . 48

Figure 5.4 Time to Focus: Model dependency 49

Figure 5.5 Time to Focus: Layer dependency 51

Figure 5.6 Time to Focus: Visual comparison 52

Figure 6.1 TimeREISE: Mask creation & attribution 58

Figure 6.2 TimeREISE: InceptionTime architecture 63

Figure 6.3 TimeREISE: Sanity check visualization 64

Figure 6.4 TimeREISE: Sanity check correlation 64

Figure 6.5 TimeREISE: Runtime evaluation 100 samples 65

Figure 6.6 TimeREISE: Runtime single sample 66

Figure 6.7 TimeREISE: Insertion & deletion 66

Figure 6.8 TimeREISE: Critical difference sensitivity 71

Figure 6.9 TimeREISE: Critical difference continuity 72

Figure 6.10 TimeREISE: Attribution maps 73

Figure 6.11 TimeREISE: Explainable character attribution 74

Figure 7.1 TSViz: Input importance . 81

Figure 7.2 TSViz: Filter importance . 82

Figure 7.3 TSViz: Clustering silhouette 85

Figure 7.4 TSViz: Cluster grid . 85

Figure 7.5 TSViz: Inverse optimization classification 86

Figure 7.6 TSViz: Inverse optimization regression 87

Figure 7.7 TSViz: Adversarial example classification 88

Figure 7.8 TSViz: Adversarial example regression 88

Figure 7.9 TSViz: Representative neuron importance 89

Figure 7.10 TSViz: Pruning performance 89

Figure 7.11 TSViz: Start screen . 92

Figure 7.12 TSViz: Percentile filter . 92

Figure 7.13 TSViz: Virtual reality . 93

Figure 7.14 TSViz: Dashboard . 93

Figure 8.1 TSInsight: Workflow of the system 98

Figure 8.2 TSInsight: Comparison of autoencoder outputs 100

Figure 8.3 TSInsight: Suppression results (1/2) 106

Figure 8.4 TSInsight: Suppression results (2/2) 107

Figure 8.5 TSInsight: State-of-the-art comparison 108

Figure 8.6 TSInsight: Loss landscape . 109

Figure 8.7 TSInsight: Autoencoder spectrum 109

Figure 8.8 TSInsight: Generic architecture 110

Figure 9.1 Data Lens: Correction ratios 116

Figure 9.2 Data Lens: Normalized impact distribution 117

Figure 9.3 Data Lens: Sample ranking 118

Figure 9.4 Data Lens: Identification differences 119

Figure 9.5 Data Lens: Time consumption 122

Figure 9.6 Data Lens: Detailed sample analysis 123

Figure 9.7 Data Lens: Sample overview 124

Figure 9.8 Data Lens: Approach specific detection 125

Figure 9.9 Data Lens: Accuracy comparison corrected 126

Figure 9.10 Data Lens: Accuracy comparison deletion 126

Figure 10.1 PatchX: Workflow . 134

Figure 10.2 PatchX: Patch classification 141

Figure 10.3 PatchX: Explanation Overlay 142

Figure 10.4 PatchX: FordA sequence explanation 142

Figure 10.5 PatchX: Patch confidence . 143

Figure 10.6 PatchX: Class smoothing . 144

Figure 10.7 PatchX: Mislabel explanation 145

Figure 10.8 PatchX: State-of-the-art comparison 145

Figure 11.1 P2ExNet: Inference workflow 148

Figure 11.2 P2ExNet: Adiac dataset explanations 151

Figure 11.3 P2ExNet: Character dataset explanation 151

Figure 11.4 P2ExNet: Class distribution character dataset 151

Figure 11.5 P2ExNet: Prototype substitution 152

Figure 11.6 P2ExNet: Prototype comparison 154

Figure 11.7 P2ExNet: Prototype latent space comparison 154

Figure 11.8 P2ExNet: State-of-the-art comparison 155

Figure 12.1 PPML: Overview of evaluated approaches 163

Figure 12.2 PPML: Differential privacy hyperparameter 167

Figure 12.3 PPML: Differential privacy parameter impact 168

Figure 12.4 PPML: Federated ensemble 169

Figure 13.1 PPML x XAI: Visual attribution inspection 179

Figure 13.2 PPML x XAI: Pearson correlation 180

Figure 13.3 PPML x XAI: Continuity . 181

Figure 13.4 PPML x XAI: Area over Perturbation Curve 181

Figure 13.5 PPML x XAI: Infidelity . 182

Figure 13.6 PPML x XAI: Sensitivity . 182

Figure 13.7 PPML x XAI: Impact of noise (Attribution) 183

Figure 13.8 PPML x XAI: Impact of (Datasets) 183

Figure 14.1 From Private to Public: T-SNE (1/2) 199

Figure 14.2 From Private to Public: T-SNE (2/2) 200

Figure 14.3 From Private to Public: Dataset Visualization (1/2) 201

Figure 14.4 From Private to Public: Dataset visualization (2/2) 202

Figure 14.5 From Private to Public: Dataset distances (1/2) 203

Figure 14.6 From Private to Public: Dataset distances (2/2) 205

A C R O N Y M S

AI Artificial Intelligence

AOPC Area Over the Perturbation Curve

API Application Programming Interface

AUC Area Under the Curve

CDD Critical Difference Diagram

CNN Convolutional Neural Network

DL Deep Learning

DP Differential Privacy

DPFL Differnetial Private Federated Learning

DTW Dynamic Time Warping

FCN Fully Connected Network

FDN Fully Dense Network

FE Federated Ensemble

FGSM Fast Gradient Sign Method

FID Frechet Inception Distance

FL Federated Learning

GAN Generative Adversarial Network

GDPR General Data Protection Regulation

HE Homomorphic Encryption

IS Inception Score

LSTM Long Short Term Memory

ML Machine Learning

MSE Mean Squared Error

PPML Privacy-Preserving Machine Learning

ReLU Rectified Linear Unit

RDP Renyi Differential Privacy

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMC Secure Multi-party Computation

SVM Support Vector Machine

TEE Trusted Execution Environment

TS Time Series

TSA Time Series Analysis

VAE Variational AutoEncoder

WAE Wasserstein Variational Autoencoder

WGAN Wasserstein Generative Adversarial Model

XAI Explainable Artificial Intelligence

U R I P R E F I X E S (C U R I E S)

Syn. Anomaly Detection Dataset: https://bit.ly/2UNk0Lo

UEA and UCR Datasets: https://www.timeseriesclassification.com/

UCI Datasets: https://archive.ics.uci.edu/ml/index.php

GitHub Source Codes: https://github.com/DominiqueMercier/

TSViz Dashboard: https://tsviz.kl.dfki.de/

https://bit.ly/2UNk0Lo
https://www.timeseriesclassification.com/
https://archive.ics.uci.edu/ml/index.php
https://github.com/DominiqueMercier/
https://tsviz.kl.dfki.de/

Part I

P R E A M B L E

1
I N T R O D U C T I O N

1.1 motivation

Time Series (TS) occurs in all areas of our lives and can have crucial impact e.g.
monitoring the health, finances or other critical domains. The amount of time
series that is created every day presents us with the unfeasible task of analyzing
them. This importance of time series data is emphasized by the field of data
mining, which also accentuates the immense amount of time series and their
relevance [32, 43, 154]. Although the number of publicly available time series TS are

everywhere and
have a crucial
impact on our
lives.

data [27, 132], and approaches [8] are increasing continuously, the main focus
of the research community is on image data. One reason for this trend is that,
in theory, any ordered data can be considered as a time series problem [23, 71]
leading to the impressive amount of available time series data.

Due to the large amounts of data, the field of artificial intelligence has shown
a growing interest in both research and industry [4]. Nowadays, deep learning
models are at the forefront of technology in a range of different domains including
image classification [67], object detection [48], speech recognition [24], text
recognition [13], translation systems [150] and image captioning [61]. Not only AI is used in

almost every
domain and
produces
outstanding
performances
across various
tasks.

the outstanding scaleability of these methods but also their superior performance
led to the fact that they are very prominent in almost all application fields. While
the use of neural networks solved the scalability problems and additionally made
it possible to let the networks themselves decide which features are relevant.

However, this attention led to the discovery of crucial limitations and
weaknesses when dealing with artificial intelligence. Resource management,
efficiency, data security, and interpretability have become increasingly important.
While in numerous instances it is enough to get the correct prediction from a Deep learning

methods lack
interpretability,
which is crucial
in domains like
healthcare.

model, there are also areas where an explanation is indispensable. Especially in
safety-critical, medical and economic areas, it is unthinkable to accept a decision
without any explanation as stated by Bibal et al. [12].

Especially, the lack of interpretable decisions [82, 125] has introduced significant
limitations in domains like business, finance, natural disaster management,
healthcare, self-driving cars, industry 4.0 and counter-terrorism where reasons for
reaching a particular decision are as important as the prediction [64]. According
to Perc et al. [108], these limitations mainly originate from the social and the
juristic domain. Relatively quickly, it has become clear that Explainable Artificial
Intelligence (XAI) is a crucial topic due to legal restrictions. According to Explainable

artificial
intelligence
enables the use
of deep learning
in various
domains and
makes it
possible to
improve
state-of-the-art.

Karliuk [60] it was legally stipulated that neuronal networks, for example, may
not be used in all areas of life as their interpretability and ethical problems are
not solved yet. It was found that several aspects are relevant for the application
of neural networks in the economy [109] including data protection, efficiency, and
interpretability. All those aspects play a pivotal role in the deployment of neural
networks. Specifically, the interpretability is necessary to take responsibility [12].

4 introduction

While the issue of interpretability has been addressed early on in other
modalities, only a few approaches exist for Time Series Analysis (TSA) [122]. More
important, according to Zhang and Zhu [160], the majority of these approaches are
based on image analysis since the visual criteria and concepts are more intuitive
for humans. Concepts such as color or the meaning of different objects are well-
defined and explainable. Similarly, the sequence of words and their meaning
are clearly defined. However, this is not the case for time series, the interaction
between the channels, the length of the time series and the abstract values makes
it almost impossible to understand all this data. These circumstances require
explanatory methods specifically adapted or developed in the context of time
series. In addition, these methods need to be evaluated cautiously as in theInterpretability

methods require
a lot of attention

to be evaluated
and, depending

on the data,
their complexity

increases
drastically.

past it was shown that some of the existing interpretability methods produce
different or wrong explanations. E.g. in the image domain, they serve as edge
detectors highlighting sharp color changes within the data. Adebayo et al. showed
for the image domain, existing interpretability methods work independent of
the network parameters [3]. Similar findings have been discovered by Tomsett
et al. [144]. This makes it even more important to carefully evaluate such methods
on time series data to validate their correctness. A wrong explanation can be
even worse than no explanation, as it provides the intuition that something was
understood, although it is not the case.

Another indispensable aspect of the application of neural networks on time
series is the security of data. Privacy treats and the challenge of protecting
sensitive data has been of high interest and led to comprehensive work
highlighting both existing treats and possible solutions [118]. Besides the attacks
during training or after the release of the model, Al-Rubaie and Chang showed
that it is insecure to process private data using neural networks. While on the one
hand, interpretability is important according to the European regulations [114],
it is also necessary to protect the private data. E.g. from a legal point of view, it
is impossible to use patient data without protection. To enable the use of neural
networks in safety-critical areas, it is therefore necessary to protect them from
unintentional interference. As a model always stores information about the data itPrivacy is one

of the most
important

aspects when
dealing and

requires
additional

efforts.

has been trained on, it is possible to retrieve sensitive data without even accessing
the data directly. Some attack methods allow reconstructing or deanonymize data
using only an already trained model. To solve this problem, privacy-preserving
methods are necessary. Despite the variety of developed approaches, reviews of
Privacy-Preserving Machine Learning (PPML) methods usually focus on the image
domain [58, 140] while the specific applicability of methods on time series data is
usually left unattended. Liu et al. provided a broad summary of different existing
attack and defense methods, which further highlights how important that aspect
is [79]. Although there exist methods that provide a secure way to process the
data, it is not straightforward to apply these privacy-preserving methods as they
can significantly lower the performance of the models.

More importantly, these methods have implications for interpretability
techniques. However, it is necessary for a network to have both interpretability
and privacy-protecting aspects so that it can be used in all domains in which time
series exist. Exactly this is the goal of this work, both interpretability and privacy-
preserving methods and their interaction have been analyzed. In particular, the

1.2 research questions & goals 5

area of time series analysis has been considered, as this area has usually receives
less attention, although the relevance and immense availability of time series data
offer an inexhaustible amount of information. Different interpretability methods It is crucial to

proper evaluate
interpretability
methods and
privacy
approaches used
in the time
series domain.

have been evaluated and a set of novel approaches has been presented. In the PPML

domain, the applicability to time series and the compatibility with interpretability
methods has been evaluated. Both areas present solutions that provide explainable
and privacy-protecting networks for time series analysis. The alternative solutions
are packed together to a framework that provides interpretable and private
processing methods for time series to enable the broader use of neural networks.

1.2 research questions & goals

Based on the previously mentioned aspects, the following research questions and
goals have been extracted and addressed in this work:

1. Question: Would it be possible to retroactively incorporate an
interpretability component to pre-existing high performing time series
models? Would it be possible to improve state-of-the-art post-hoc
interpretability methods for time series analysis and measure their
performance appropriately?
Goal: Most of the existing methods are developed and evaluated on
image and text modalities. To understand the current state of existing
interpretability approaches, it is important to thoroughly evaluate them on
a large set of time series datasets and with different metrics. Especially, the
choice of the metric can have a crucial impact on the performance of the
interpretability method. The search and comparison of evaluation metrics is
therefore one important part when judging the methods properly that does
not result in biases towards a group of methods. Throughout a benchmark of
the sate-of-the-art methods, novel approaches were developed. These post-
hoc approaches are aligned with the time series domain and experience of
the user to provide better explanations.

2. Question: Would it be possible to design deep neural networks in a way
that they are interpretable by design? How well do they perform compared
to neural networks that are not modified?
Goal: Almost no work has been done concerning neural networks for time
series that are interpretable by design. Therefore, it is highly important
that approaches that cover intrinsic interpretability are designed for time
series tasks. Two very prominent aspects that are considered in this work
are prototypes and patches. For both, novel methods for time series models
were designed to fill the lack with such methods for the time series domain.

3. Question: What is the impact of privacy-preserving methods for time series
analysis concerning their performance and limitations? What are the trade-
offs, and does it have requirements on the dataset or model used for the
analysis?
Goal: An evaluation of the most prominent privacy-preserving methods
is required to understand their applicability in the context of time series.

6 introduction

This requires a definition of relevant metrics that covers aspects such
as resource management and performance. Furthermore, it is important
to provide an evaluation of the limitations in model architecture and
evaluate the feasibility of privacy approaches. The benchmarking of privacy
requires three important aspects: Performance drop, runtime increase, and
limitations.

4. Question: How does privacy affect interpretability when neural networks
are used in the context of time series? Are there limitations, and would it be
possible to have both private and interpretable networks? Does the privacy
change the explanation and lead to a misunderstanding?
Goal: An extensive study was conducted to analyze the impact of privacy
on interpretability. Furthermore, an evaluation was conducted to show if
generated data can resolve the privacy constrains. Therefore, it is possible
to train the model on synthetic data to remove the limitations of privacy.
Using such a model enables its use without privacy approaches on top of
the model or during the training process.

1.3 contributions

This thesis made several contributions both in the context of interpretable time
series analysis and privacy preserved. Below, the different benchmarks and novel
approaches are briefly explained. Detailed information about the technical aspects
and their evaluation can be found in the corresponding chapters.

1.3.1 Post-hoc Interpretability

The comprehensive benchmark of existing widely used attribution methods
as post-hoc interpretability methods is the first contribution of this work.
Furthermore, after understanding the limitations, a novel better performing
attribution method was proposed. Ultimately, a visualization framework was
developed to align the explanation of attribution methods with the user
experience. Especially, for the visualization, it is important to show compressed
representations, which led to a further contribution to how to compress the data to
only cover relevant features. With that, the question of data relevance was solved
in a benchmark of influence functions.

1.3.1.1 Contribution 1: Time to Focus

The use of attribution methods in the time series domain is very common,
however, there is no real benchmark on how they perform on time series
datasets. Therefore, a comprehensive benchmark that uncovers the performance
of twelve state-of-the-art attribution methods and eight metrics across five
datasets was conducted. E.g. it is known that some attribution methods perform
well independent of the model or that some metrics highly favor the results
towards a given group of metrics. Concerning appropriate metrics usage, the
thesis does not only cover an evaluation of the approaches, but further provides

1.3 contributions 7

guidelines on when to use which approach and provides detailed information
about possible applications for the different methods. The resulting guidelines can
be used to apply attribution methods more properly and explore their limitations
to come up with novel approaches that align better to the time series modalities.

1.3.1.2 Contribution 2: TimeREISE

TimeREISE is a novel attribution method that outperforms five existing state-
of-the-art approaches on 17 time series datasets, as benchmarks have clearly
highlighted the need for an approach that considers time series characteristics,
such as the dependency between features. While in the image domain this
dependency is fixed, it varies for time series datasets e.g. RGB channels are
well-defined however the correlation between different sensors in the time series
domain changes for each dataset. Furthermore, locality is a characteristic that
is not given in the time series domain. Events that happen much earlier can
have effects on late events. TimeREISE covers all the characteristics, i.e., locality,
granularity, smoothness, complexity, and runtime.

1.3.1.3 Contribution 3: TSViz

TSViz is a visualization framework that can be applied to different network
structures and attribution methods. Its need originates from the complex
representation that time series data can have. In the image domain it is
straightforward to visualize heatmaps, however, this does not work in the time
series domain when the number of channels and time steps is not limited.
Furthermore, it is important to consider the level of experience of the user.
To overcome this, TSViz covers a service that analyzed a time series network
concerning the attribution and further provides information about the network
structure, similar filters within the network, importance of the input signal and
network filters. All this information is aligned to the level of experience of the
user to oppose only the information that is suitable for the end-user. Ultimately,
the approach enables experienced users to tune the model, leading to a validation
of their understanding and a better performing model using the insights and
conclusions drawn thanks to the proposed approach.

1.3.1.4 Contribution 4: TSInsight

TSInsight is a novel framework that provides an input compression based on the
network’s needs. Specifically, the input is compressed in regions that are not
used by the classifier to predict the class, whereas the data points used for the
prediction are preserved. A good visualization is not only aligned to the user
level, but further focuses only on important parts. The network defines which
data is needed for the inference, and the remaining data is suppressed in a way
that does not bias the performance of the model. To achieve this compression, a
novel loss was proposed that is used to train an autoencoder to create compressed
input for the trained classifier model. The evaluation has shown that this approach
significantly outperforms the existing methods across eight datasets and preserves
a high performance if the compressed input is used instead of the original input.

8 introduction

1.3.1.5 Contribution 5: Data Lens

Data lens provides an opportunity to identify samples which are favorable and
those which are causing negative effects on the model. A detailed evaluation is
made in this context, where three influence functions were compared. The goal
of these functions is to detect which samples are related to each other, e.g. are
harmful or helpful for the prediction process. To do so, mathematical estimations
are used which do not require the retraining of the model. The benchmark across
three datasets has shown that simple methods like the loss perform on par
with the complex influence functions concerning misclassified samples and their
harmful effect on the model.

1.3.2 Intrinsic Interpretability

Intrinsic methods are the counterpart to post-hoc methods, as they are directly
integrated into the model architecture. Two very prominent approaches are the
use of prototypes and patches. Both techniques are used in the image domain.
However, they cannot be transferred to the time series domain without any
adjustments. The contributions of this section include two novel approaches for
the time series domain that have shown to outperform existing implementations
of prototype and patch-based approaches.

1.3.2.1 Contribution 6: PatchX

PatchX is a novel two-step patch-based approach. Based on the idea that
prototypes are specific for classes, a novel approach was proposed that divides
the sample into patches and learns how class-specific a patch is. The individual
patches are then classified, and moreover, an overall prediction is computed. This
goes hand in hand with the principle of divide and conquer. A large problem is
divided into smaller ones that are more interpretable. In addition, a visualization
was proposed to show the parts of the sample that align to a specific class.
Therefore, it is possible to have a better understanding which parts are relevant
for which class. PatchX was evaluated on five datasets and compared to two state-
of-the-art approaches.

1.3.2.2 Contribution 7: P2ExNet

P2ExNet is a novel approach that provides prototypes of the input signal to
explain the decision. These are then used to explain the decision of the network
based on similarities. The use of prototypes originates from the human behavior
to compare new things to already seen things. Comparing this to a simple
sample, the principle is to learn e.g. the prototype of wheels and other parts
of a car and then explain the classification with these prototypes. Therefore, a
novel architecture as well as a training process have been proposed. The P2ExNet
has shown to learn understandable prototypes and outperforms two existing
prototype or patch-based approaches. P2ExNet was evaluated on eight datasets.

1.3 contributions 9

1.3.3 Direct Privacy Preservation

Direct privacy preservation requires a privacy mechanism to protect sensitive data
against an attacker. There exist several approaches that incorporate this during
the training of a model. However, these approaches are not benchmarked on time
series data. Furthermore, their impact on interpretability methods is not evaluated.
Both aspects are addressed by the below listed contributions.

1.3.3.1 Contribution 8: PPML

This thesis provides an in-depth analysis of the use of preserving privacy methods
(federated learning, differential privacy, and encryption) and their impact on
the model performance. The aim was to uncover the model of deep learning-
based models in the presence of privacy constraints. The application of privacy
mechanisms such as differential privacy, federated learning and encryption is very
common in deep learning. These approaches introduce noise, average values or
encrypt values to protect the model during the training and inference. While
hey are intensively benchmarked in the image domain, this was not the case
for the time series domain. The contribution in this field is a benchmark of
their applicability and on time series models. The benchmark across 16 datasets
provides insights in the performance drops, runtime increases, hyperparameter
tuning to achieve good results and the combination of these approaches. One
highlight is the combination of differential privacy and federated learning to
increase the privacy further.

1.3.3.2 Contribution 9: PPML x XAI

The contribution of this part is a comprehensive evaluation of attribution
methods when using private models. Privacy can change the outcome of the
attribution methods, which results in biases and misunderstanding. Throughout
the benchmark across five datasets, the impact of the privacy has been shown.
The results have indicated that the interpretability significantly suffers when
differential privacy is used.

1.3.4 Indirect Privacy Preservation

A solution for privacy constrains can be the use of synthetic data. One
contribution was mare in this topic field to highlight how data generation can
be used to overcome privacy constrains and apply interpretability.

1.3.4.1 Contribution 10: From private to public

Generative models are models that generate data that looks similar to the
original data. It is possible to use these to create data from sensitive data and
use the generated data without constrains. Therefore, it is required that the
data generated does not expose sensitive information. As part of this thesis, a
benchmark across nine datasets has been made to train a generative model in
a private manner. The generated data can then be used as a classifier without

10 introduction

the need of additional privacy approaches and therefore does not harm the
interpretability. The results indicate that the aligned approach works well across
different time series datasets.

1.4 overview

The rest of this work is structured as following. Part i with Chapter 2 which
covers background relevant to understanding the thesis. Chapter 3 is divided into
a section that covers related work from the interpretability domain (Section 3.1)
and a section for the privacy domain (Section 3.2). After that, Chapter 4 provides
details about TimeFrame the framework built on top of the proposed methods and
existing approaches.

Part ii presents a set of benchmarks and components related to post-
hoc interpretability. Chapter 5 provides a comprehensive benchmark of
existing state-of-the-art attribution methods. Chapter 6 introduces TimeREISE
a novel attribution methods, Chapter 7 proposes TSViz as a visualization and
optimization framework for time series networks, Chapter 8 proposes TSInsight
as a compression framework, and Chapter 9 benchmarks influence functions.

Next, Part iii addresses the intrinsic interpretability perspective. Two methods
inspired by the image domain are presented in this context to enable the use of
intrinsic interpretable time series analysis. In Chapter 10 a divide and conquer
approach, and in Chapter 11 a prototype-based approach, are presented.

Part iv focuses on direct privacy and evaluates the impact of these approaches
on attribution methods. Therefore, Chapter 12 presents a comprehensive
benchmark of direct privacy methods, addressing their advantages and
drawbacks. In addition, the interaction between privacy and interpretability is
analyzed in Chapter 13.

To complete the privacy perspective, Part v evaluates the use of indirect privacy.
Specifically, a generative approach applied to time series data is evaluated in
Chapter 14.

Finally, Part vi discusses and summarizes this work. Chapter 15 discusses the
components and provides a conclusion of the results achieved during this work.
Furthermore, Chapter 16 provides some ideas about possible limitations and
extensions to overcome those.

2
B A C K G R O U N D

This work addresses the topic of interpretable and privacy-protecting neural
networks for the analysis of time series. To answer the research questions and
provide solutions in the best possible manner, it is necessary to have background
knowledge in the following four areas: artificial intelligence, interpretability,
privacy protection, and time series analysis. The following explains the necessary
topics and lists the relevant terms.

2.1 performance & computational aspects of ai

Artificial Intelligence (AI) has become increasingly important lately. This increase
in relevance is primarily due to numerous possible areas of application and
outstanding results [99]. Although Deep Learning (DL) was founded in 1955, it has
not been used extensively due to the traditional approaches and the data scarcity.
In the modern world, DL is one of the most present and actively researched areas
due to the changes in data availability, understanding, and computer hardware.
’Big data’, the availability of large amounts of data, was one important step toward
the era of DL. Schermann [126] described big data as an exponential growing field
concerning the available data and therefore requires fast and scalable processing.

As AI offers great variability concerning the processing of data, it was evident
that this research field will gain more attention over time. Generally, classification
approaches can be divided into two groups. The first group includes traditional
Machine Learning (ML) methods. These are often referred to as white-box
approaches. They include support vector machines, decision trees, and multi-
layer perceptrons. All these approaches try to separate the data based on different
criteria. Especially the decision trees are very explainable. The same holds for
the support vector machine, where a separation line divides the data. For more
information about these approaches, the reader is referred to Das et al. [26].
However, for most of these approaches, it is necessary to define features in a
pre-processing as good as possible. This leads to the question of which features
should be used. While this can be easily done with tabular data, it becomes more
challenging with time series. Labrinidis and Jagadish stated in their work that
most of the data is not in a suitable format and requires an expensive processing
to extract the relevant data [70]. Especially, with the amount of available data that
is not in a format ready to analyze, this imposes the question of better solutions
that can handle the amount and quality of data in a more appropriate way.

One possibility to avoid this problem is the use of representation-based
learning techniques such as neural networks, which learn a feature representation
independently. Bengio et al. [11] stated that representation learning is a new
perspective and offers the great opportunity to process the data faster without
knowledge about it. Especially, in domains that are complex such as signal
processing, the extraction of features is important but challenging at the same

12 background

time. The released formulation of representation-based learning to not require
extracted features makes it possible to process such data in a more appropriate
way. Another advantage of these methods, especially neural networks, is that they
scale very well with large amounts of data. While on small datasets the traditional
machine learning shows a superior performance, this is not the case for large
amounts of data [50, 148]. Gonzalez-Carvajal and Garrido-Merchan [50] showed
that for text classification, the traditional metrics and approaches perform well on
small data but are significantly outperformed by deep learning approaches when
the data gets larger. Wang et al. compared traditional learning approaches such as
Support Vector Machine (SVM) against neural networks and stated that the latter
are superior concerning the performance and scaleability. These networks have
produced outstanding results in different areas such as the image analysis, text
and time series processing. One example of their rise has been shown by Chen et
al. [19] in the medical domain. Specifically, in large-scale setups, neural networks
have proven to profit from the amount of data and reach superior performances
due to the opportunity to train them in a distributed manner. The benefits of the
distributed approach are mentioned in the work of Dean et al. [28]. Furthermore,
the distributed learning is well suited concerning the increasing availability of
data and the development of faster and more efficient graphics processors, leading
to more complex networks.

2.2 challenges for deep learning in the real-world

Even though deep learning is outstanding in terms of performance and
computational aspects, its applicability in real-world use cases is limited by
different challenges. Neural networks benefit enormously from large amounts
of data, but these are not always available and even when they are, the data is
not always complete. As mentioned by Raghunathan [112] this problem is very
present in the healthcare domain. Therefore, it may be necessary to use machine
learning approaches to repair the data, e.g. using neural networks as proposed by
Gosh and Kristensson [47]. In contrast to the neural network approach, Sudkamp
and Hammell [135] presented a rule-based method to complete the data using
interpolation. However, it can also happen that the necessary data sets are not
available, which means that traditional machine learning approaches retain their
importance or data must be generated.

Another important aspect is the user’s trust in the software. Lim et al. [77] stated
in their paper that building trust is crucial for the success and applicability of
deep learning in the medical domain. Concerning the trust, traditional approaches
have an advantage over deep neural networks, as they are explainable by
design. Depending on the domain, the trust of the user in the decision plays
a secondary role or is necessary. In safety-critical areas, the trust of the user is
necessary to clarify the question of liability. Besides the user trust, Bibal et al. [12]
mentioned that there are legal restrictions concerning the interpretability related
to the responsibility and accountability when of neural networks are considered.
In safety-critical areas that require an explanation, neural networks can fulfill
an assisting task. However, the necessary trust needs to be established using
interpretability methods.

2.3 explainable artificial intelligence 13

Another source of trust is related to the secure processing of data, which
plays a major role, especially in the medical field [114]. It is therefore of utmost
importance that the data is not passed on to third parties. However, since modern
data is huge, it may well be the case that the neural networks are not trained
directly at the respective institution. In these cases, the secure transmission of the
data gets important as described by Gochhayat et al. [49] and the problem of data
leakage through the model parameter needs to be addressed.

2.3 explainable artificial intelligence

XAI attempts to explain algorithms in such a manner that their areas of application
can be enlarged. One reason for this additional effort is the problematic from
a legal and user perspective to making decisions without having a rationale
for them. Bibal et al. [12] mentioned that depending on the domain, the
regulations are stricter. For example, when public authorities are involved, the
legal restrictions require much more interpretability compared to private firms.
The same holds for fully automated systems that do not have a human in the loop.
According to the authors, the interpretability requirements can be divided into
two categories. The first category covers cases without public authorities involved
and is mainly based on the General Data Protection Regulation (GDPR) [114].
Therefore, it is required to provide information about the involved logic, decision
criteria, and parameters. For use cases that involve public authorities, an
administrative and adjudicative decision explanation is required. The category
without public authorities requires explaining the motivation behind a decision,
and the second category involving public authorities requires being able to
explain all factual and legal grounds of the decision. For detailed information
on the legal restrictions, the reader is referred to Bibal et al. [12]. Even though the
regulations are more recent, researchers have been working on finding regularities
and explanations for neural networks since 1990. E.g. Fagen et al. [33] proposed a
system in 1980 for a medical task that involved the need for explanations.

To achieve accepted solutions for neural networks, different perspectives and
interpretability approaches evolved. The methodologies reach from post-hoc
analysis to intrinsic algorithms that directly incorporate interpretability into the
reasoning process. A good overview of such methods is provided by Dovsilovic et
al. [31]. However, an optimal solution has not yet been found and the evaluation
of the individual approaches is not standardized.

Previously mentioned papers also provide evidence that most of the approaches
are used and developed in image processing [127]. Their use in time series
processing is largely unexplored or questionable and only rarely evaluated. One
work that addressed this problem for a subset of interpretability methods is the
paper written by Schlegel et al. [127]. Schlegel et al. provided a high-level analysis
of attribution methods for time series analysis. Their findings have shown that
some methods are not well suited for the characteristics of time series. However,
more detailed analysis is needed to better understand the effects of modality,
especially since the results indicate that methods are not consistent across model
architectures.

14 background

Besides the heatmaps, which depend on the gradient and perturbation, another
approach is the identification of concepts within the data. Especially in the image
domain, the identification of concepts has achieved more attention in the last years.
E.g. Yeh et al. [156] recently proposed a new concept-based explanation method.
As shown in their paper, the benefit of concept-based explanation compared to the
traditional heatmaps is that the concepts describe well-defined shapes or objects.
This makes it possible to provide very sharp explanations in the image domain.
The downside is that these concepts need to be defined and largely depend on the
domain. This limits the applicability of concept-based approaches to domains that
provide a meaningful definition of the used concepts. Precisely speaking, the use
of concepts in areas outside of image analysis is difficult, which also illustrates
that interpretability methods are closely related to their domain.

One other direction is prototype-based explanation, in which the similarity
to prototypes provides evidence for or against a class. Li et al. [74] proposed
a network architecture based on prototypes and similarity. The prototype-based
approaches mainly profit from their intrinsic explainable design. Similar to human
reasoning, the comparison of new data to old known data based on similar
measurements helps to generate trust. However, the field of prototype-based
explanation, has to deal with the performance drop as the introduced decision-
making process shows limitations compared to deep learning approaches that
only use post-hoc explanations. On the other hand, these approaches achieve
a higher level of interpretability when ranked according to the legal restriction
levels mentioned by Bibal et al. [12]. One major benefit is that prototypes can
be defined for the time series domain, making it possible to adopt this kind of
interpretability approach.

Although many approaches and perspectives are present in different domains,
there is one major remaining concern. The question of how good an explanation
actually is. The difference of perspectives addressed by the methods is a major
obstacle, but also the individual application scenario affects the comparability.
E.g. Warnecke et al. compared attribution based across several modalities [149]
using different measurements. However, while it is straightforward to compare
methods within the same category of interpretability method, this gets more
complicated when a comparison between categories is needed. Furthermore, some
interpretability methods are favored by some metrics as they share the same
underlying concept, and therefore a benchmark based on the combination of
a method and the metric is not fair. One example is Infidelity and Sensitivity
proposed by Yeh et al. [155]. Both metrics are based on perturbations, making it
easier for perturbation-based approaches to achieve better results. Another hurdle
is the interpretability usage itself, as it is difficult to compare a post-hoc and
an intrinsic method. For example, it is possible to compare attribution methods,
but intrinsic approaches are less so. Furthermore, the absence of annotated
data limits the interpretability of the influence in the prediction and subjective
evaluation criteria. This is especially problematic in time series analysis, as
subjective evaluation can end up in cherry-picking the best examples or those
that strengthen a specific explanation.

Finally, terms such as explainability and interpretability are often not clearly
differentiated. Therefore, it is required to define the terminology, as Palacio et

2.4 privacy-preserving artificial intelligence 15

al. [106] have done. In their paper, they defined a theoretical framework and
the terms to enable a better comparison of interpretability methods. This is
especially helpful when the interpretability methods are quite different in terms
of their category or application filed. Furthermore, the terms interpretability
and explainability are actively interchanged in most existing work. One crucial
point mentioned by Palacio et al. is that the model explanation is provided and
then interpreted. That means that interpretability is the second step that further
depends on the knowledge of the observer, whereas the explanation is not affected
by the human.

2.4 privacy-preserving artificial intelligence

The main goal of the privacy-preserving research area is to protect models from
unwanted attackers. This is not necessary in cases where the data is not sensitive,
but it is essential otherwise. In addition to the legal aspects mentioned in [114],
it is also necessary to establish trust in the process, since a loss of data can be
expensive for a user.

With the rise of neural networks, new attack methods have been discovered.
For example, it is possible to reconstruct parts of the data set, which in the
case of sensitive data leads to dramatic consequences. Rahman et al. [113]
presented the membership attack as one such approach that manipulates the
model. They highlighted to which extent it is possible to extract information
from an unprotected network. Their analysis indicated that a large amount of
information can be reconstructed, and privacy protection is an important field.
A second approach is the model inversion attack. Fredrikson [41] showed the
capabilities of this approach. The goal of this attack is to recreate the model based
on specific queries. It is important to mention that a model always includes data
of the dataset, as the parameters are trained using backpropagation. Therefore,
stealing a model also provides sensitive information about the dataset and enables
the reconstruction of the data. For further attacking mechanism, the reader is
referred to the work of Liu et al. [79]. In their paper, they described the different
attacking mechanisms. However, it is important to mention that attacks can
happen during both the training and the testing stage. Another comprehensive
survey paper was written by Mireshghallah et al. [94]. Similar to the previously
mentioned work, the authors elaborated the perspectives of attacks. They further
shaded light on the direct information exposure related to the data center and
clouds involved in the process.

To limit the indirect information expose, it is mandatory to introduce privacy
assuring mechanisms, as presented by Zhu et al. [163]. An important aspect
raised in their paper are the properties that need to be fulfilled to come
up with a successful safe approach. However, the application of a privacy-
preserving techniques may lead to stability and performance issues which needs
to be addressed. On the other hand, a certain performance loss is expected
as the privacy-preserving methods mostly use noise or reduce the dataset size
with a distributed learning to achieve the privacy. Both approaches, intuitively,
contribute negative to the stability of the network.

16 background

One of the most successful approaches is the use of differential privacy. Abadi
et al. [1] showed that this technique for deep learning can provide private models
that do not expose the data during the inference or other stages. Throughout the
training of a differential private model, the gradients that flow through the model
are clipped and noise is introduced. This noise produces a variance or uncertainty
which leads to a model that cannot expose the precise training data. However, as
this approach introduces noise to the training process, it reduces the performance
of the model.

Another approach to get rid of the noise problem is the use of data from
different sources. Hao et al. [53] presented the successful application of federated
learning with a twofold effect. First, because of the different data sources and
possible variances, the model can achieve a better generalization and second, due
to the aggregation of the gradients the data-specific information gets lost. The
latter one results in privacy, as it is not possible to reverse the aggregation process
to get information about the individual data.

A third approach that can potentially be combined with previously mentioned
techniques is encryption. Fang et al. [34] presented the use of homomorphic
encryption in a federated setup. The benefit of the encryption is that no noise
is required to achieve a private behavior as encrypted data is saved. However,
this comes at the cost of computation resources. Fully encrypted networks and
encrypted training suffer from large overhead and are in some cases unfeasible.

2.5 delimitation from other modalities

To understand the need of this work, it is important to consider the difference
between the modalities. Most of the above-mentioned work is aligned to work
with image or textual data. However, this does not mean that these approaches
work on time series. Below, some data characteristics are given and discussed,
providing information about the extent to which it is possible to transfer
approaches from one domain to another.

2.5.1 Image Domain

As most of the work is designed to work with image data, it is pivotal to
understand whether this work can be applied to time series or not. In the case
of attribution methods, such as those evaluated by Nielsen et al. [101] for image
data, it is possible to use most of them on the time series. However, when the
number of channels or time steps increases, it gets problematic to use heatmaps.
In the image domain except for domain-specific images, the number of channels
is fixed to either one or three. Additionally, the interaction between the channels is
defined as they always have the information related to the color encoding. This is
a major difference compared to the time series, where the channels mainly relate
to sensors. These sensors can have different meanings and maybe interact with
each other. Ultimately, their number is not limited, and it is important to show
only relevant information. Another problem is the definition of concepts within
the time series domain. Concepts, as used by Yeh et al. [156], they are obviously

2.5 delimitation from other modalities 17

defined for the image domain but not for the time series domain. This is mainly
because a human is as opposed to a lot of visual data. A third difference is the
impact of noise. Noisy explanations in the image domain are less problematic
compared to the time series ones. The reason originates from the concepts defined
in the image domain. Intuitively, a human can handle noisy attribution maps on
images better compared to the time series domain. The last characteristic that
is not shared between the image and time series data is localization. While it is
common that objects close to each other are related in the image domain, this is
not true for the time series. In the time series domain, it can be the case that values
in the early time steps do not affect their neighbors, but a relation to time steps
far later exists.

2.5.2 Natural Language

The second modality is the textual domain, for which the heatmap creation works
fine. E.g. LIME proposed by Ribeiro et al. [115] is an attribution approach that
uses a surrogate model to highlight important parts in the data. An adaption of
this approach is available and usable in the time series domain. Concerning the
concept definition, the natural language domain offers a defined set of rules and
the individual terms can be categorized. For example, it is possible to categorize
them by their sentiment. To do so, embeddings are trained as described by Li
and Yang [76]. Embeddings define the relation between the different terms and
therefore help to cluster or group similar meanings. This makes it possible to
extract concepts for the natural language domain which are understandable to a
human. Furthermore, noise in the natural language domain is similar to the image
domain and less problematic, as the meaning of each token is known by a human.
Finally, in case of the localization, the natural language domain shares a similar
behavior with the time series to some extent.

3
R E L AT E D W O R K

This chapter provides detailed insights on the existing state of research, both in
the context of interpretable and privacy preserved time series analysis. Section 3.1
explains the different perspectives and existing methods that can be used in this
field to address the interpretability of artificial intelligence approaches. Section 3.2
provides the related work concerning privacy methods, their advantages and
limitations. In the remainder of this paper, these related works are assumed to
be known.

3.1 state-of-the-art interpretability methods

Interpretable approaches can be classified into two main categories [25], which
are post-hoc and intrinsic. Post-hoc techniques aim to interpret the decisions and
actions of a model without modifying the model itself, hence the term ’post-hoc’.
On the other hand, intrinsic techniques focus on designing models in a way that
allows for insights into their decision-making process at the design time. There
are additional characteristics to further divide both categories, such as their scope,
and methodology. The scope addresses whether the method points out a single
instance or provides explanations based on the complete dataset. While a global
behavior may sound better, the instance-based explanations are directly related
to the sample and usually provide more details. Finally, the methodology can be
divided into the perturbation- and gradient-based methods. An overview of the
categories is given in Figure 3.1.

It has to be mentioned that among the existing work there is no superior
approach, as each method faces limitations regarding the quality, subjectivity [78],
the audience, and the domain usage. Since this paper only discusses approaches
applicable to time series, the reader is referred to the individual original papers
or the review by Rojat et al. [117] for further details.

3.1.1 Post-hoc

The largest category of post-hoc covers attribution methods. These techniques
are mainly instance-based and produce maps that highlight the parts relevant
to the decision. Over time, these methods became more complex to overcome
some of their limitations and can be divided into gradient- or perturbation-based.
Gradient-based methods need access to the internal parameters of the models,
so that gradient propagation can be used to interpret the model’s decision. In
contrast to that, perturbation-based approaches are less model dependent and do
not need access to the gradients. Perturbation-based methods slightly change the
input to create an importance ranking. However, that is one of their weaknesses,
as the fidelity of these models is lower. In contrast to that, the gradient-based

20 related work

Figure 3.1: Shows the different interpretability perspectives and the characteristics.
Reprinted from [25].

approaches require specific model architectures as they are applied directly
to the model parameters to generate an explanation. Besides the attribution
methods, influence functions and compression mechanisms can be used as post-
hoc methods to analyze the data and prediction. They explain the input data
in a way that provides insights into the dataset. Below are the advantages and
disadvantages of different post-hoc methods.

Simonyan et al. [133] proposed the Saliency as an interpretability method
based on gradients in 2013. This method uses the backward pass to compute
the gradients of a trained network. The gradients provide the information in
which direction the parameter needs to be adjusted to increase the confidence
of the model for a certain input. While the gradients were mainly used during
the training process, Simonyan showed that they can be used to generate a map
that explains the model decision. One advantage of their methods is that there is
no bias from a perturbation, and therefore the produced heatmap only includes
the actual behavior of the network. However, the map is likely to be noisy as it is
based on the gradients, making it difficult to understand the map depending on
the dataset. Although Saliency is known to not produce the best results, it is often
used as a baseline approach to highlight the feasibility as it does not require any
hyperparameter.

In 2014 Guided-backpropagation was introduced by Springenberg et al. [134]. This
method is works to some extent similar to the Saliency, however, the way the
backward pass is handled differs. In this approach, the values below zero are not
propagated and are set to zero. This removes negatively influencing features from
the heatmap and focuses only on those that contribute positively to the attribution
and the prediction. Focusing only on positively influencing data produces a less
dense representation of the attribution map. However, it also provides a false
impression that the negative values might be of relevance for the prediction.

As an improvement of Saliency, Input X Gradient was proposed by Shrikuma et
al. [131]. To improve the Saliency the authors proposed to multiply the gradients
with the input. The main motivation behind their approach origins from the

3.1 state-of-the-art interpretability methods 21

noisy attribution maps created by the Saliency. Using the input and gradients in
conjunction ensures that the noise of the gradients gets reduced as it is multiplied
by the input. Therefore, a feature that is not really present in the input but has
a high gradient will be less attributed compared to one with the same gradient
but a higher input value. One problem with this method is that the gradient
function considers one small step and might look entirely different after a few
steps. However, this drawback applies to all gradient-based methods.

Another prominent method to produce heatmaps is the Integrated Gradients
approach proposed by Sundararajan et al. [136]. This method is based on the
gradients but requires multiple calls. The idea is to compute a path from a so-
called baseline to the actual sample using the integral. Therefore, a single or
multiple baselines can be used. The authors suggested that the baseline in the
imaging modality can be an image containing only zeros. In the time series
domain, the same baseline can be used if the time series is normalized with a
mean of zero. According to the authors, the main improvements of their methods
are that the implementation invariance and sensitivity are given. They defined the
implementation invariance such that two networks that produce the same outputs
should have the same attribution maps independent of their implementation.
Sensitivity states that when a feature changes output, the feature should have
a value greater than zero. In addition, the subtraction of the baseline gradient
serves as a smoothing algorithm for the attribution maps. However, it is crucial
to understand the baseline of the data, as this may result in an entirely different
explanation.

Ribeiro et al. [115] proposed LIME in the year 2016. This approach uses a
surrogate model to compute the impact of perturbations in the input and their
effect on the output. Based on neighborhood samples, the surrogate model learns
to mimic the behavior of the original model. This makes it possible to produce
smoother attribution maps. However, the drawback is that the surrogate model as
it is interpretable and less complex might not be able to cover all the decisions of
the black-box classifier. In addition, it requires a certain number of samples to be
trained on, and depending on this amount, its quality might be worse. Although
this trade-off between fidelity and interpretability is problematic, the results and
applicability of LIME are good. Especially, as it is applicable to other models that
do not use a backward pass, such as support vector machines and decision trees.

The idea of Shapley Values originates from the game theory, but is a well-known
concept for the interpretability of neural networks. Castro et al. [15] published
their work to efficiently compute Shapley Values. The computation of these values
is based on the idea of perturbing the values and adding them sequentially to the
baseline to inspect the impact on the output. Another variant is to add the features
independently to get better information about their individual impact on the
prediction. This procedure can also be extended using masks to not add a single
feature as its impact might not be well represented or insignificant. However,
the mask definition and the number of randomly performed perturbations used
in this process can distort the attribution. Ultimately, computing every possible
combination of features is not feasible as the runtime to do so would be unfeasible
depending on the data.

22 related work

Lundberg and Lee [80] proposed an approach to estimate the previously
mentioned Shapley Values in 2017. While the Shapley Values provided valuable
results, Lundenberg et al. correctly identified that it is required to compute them
more efficiently to enable a larger number of samples and produce more stable
attribution maps. Therefore, they used LIME [115] as a surrogate model and set
the loss function and weighting kernel accordingly. In most cases, the surrogate
model, as it is a white-box model, is much smaller than the model it describes.
Based, on the correctness of the LIME model, the predictions are equivalent to
the original model, and therefore it is possible to query this model instead of the
original model for the shapely values.

Another approach to efficiently compute the Shapley Values was mentioned in
a paper written by Lundenberg et al. [80]. The idea was to compute the values
using DeepLift proposed by Shrikumar et al. [131]. Therefore, the attributions are
computed based on the DeepLift algorithm and averaged across the baselines to
estimate the Shapley Values. DeepLift decomposes the contribution of each feature
concerning the output. Therefore, it uses a reference activation of each neuron and
compares the actual value to the reference to compute a difference, which then
highlights the impact. While the motivation of this approach is the same, this
version is applied directly to the model and does not involve a surrogate model
that potentially can lead to wrong attributions. However, this version has more
limitations concerning the architecture, as not all layers are suitable.

Feature Ablation in contrast to the Shapley Values is a more straightforward
approach that requires less computation power. Zeiler and Fergus [159] proposed
this approach to compute the impact on the output when a feature is removed.
While it is possible to sequentially remove a single data point, it is often beneficial
to use a feature mask and remove multiple features at the same time because of
possible feature interactions. To remove the features, Feature Ablation replaces the
value with a defined baseline value. Usually, the quality of the attribution depends
on the correct baseline. Furthermore, as it uses forward passes, a sufficient but
feasible number of these is required.

Feature Occlusion [159] is very similar to the Feature Ablation as it replaces
the values using a similar principle. The difference is that while the Feature
Ablation removes individual features, the Feature Occlusion uses a sliding window
to replace every contiguous region. This results in smoother maps as the impact
of the adjacent data points is considered. However, this also reduces the fidelity,
as adjacent points can produce wrong importance values due to the windowed
approach. Usually, the Feature Ablation and the Feature Occlusion produce very
similar maps.

Feature Permutation [159] is the third approach proposed by Zeiler and Fergus.
This technique differs from the previous two as it does not remove the features,
but perturbs them. This has the advantage that the sample cannot drop out
of the distribution, which can be the case for the previous two approaches.
However, the approach suffers from the same computational difficulties as the
other perturbation-based approaches, as the number of forward passes need to
be sufficient. In addition, the correct perturbation is required as otherwise, the
attribution might not be correct. A common approach is to perturb the values by
a given percentage or add random noise on top of the features.

3.1 state-of-the-art interpretability methods 23

One major drawback of the Feature Occlusion comes from the definition of the
window size. In real-world cases, it is not possible to know the perfect window
size and features that can interact with each other. To overcome both problems,
Petsiuk et al. [110] proposed RISE. The authors use a set of masks that define
areas to occlude and compute the prediction for the input multiplied by the mask
that occludes parts of the data. The prediction scores are then used to serve as
weight scores for the attribution, which is achieved by the multiplication of the
occlusion masks with the prediction scores. One major difference compared to the
Occlusion approach is that the set of masks is created randomly on a down scaled
input shape. In a second step, these masks are upscaled, resulting in patches
instead of individual values that are occluded. Throughout the experiments, the
authors have shown that the performance of this approach is superior to the
simple occlusion, but it consumes more resources as the number of masks and
forward passes increases with the data shape.

Dynamic Masks proposed by Crabbe and Van der Schar [22] is a very recently
proposed time series related attribution method. The approach is based on the
famous excremental perturbation masks proposed by Fong et al. [39]. The idea is
to learn a perturbation map by optimization, and in addition relax the importance
of binary values. Although this might come up with lower fidelity, it lowers
the cognitive effort to understand an attribution map in the time series context
significantly. However, the drawback of their approach is that the number of
masks and the target density of the mask needs to be defined. Defining the
number of relevant features beforehand might not be suitable in a real-case
scenario. Furthermore, the maps show significant differences when the target
ratio of important features is not set correctly. Theoretically, it is possible to test
different values, but that is computationally costly.

Ko and Liang [66] proposed an approach to weighting dataset samples and
their effect on the actual classifier. This approach helps to understand which
samples are the reason for a classifier to support or decline a decision. The
novelty comes from the fact that using the Influence Functions is not required to
retrain the model to understand how each sample affected the parameter. To do
so, the authors proposed to use the gradients and the hessian product vectors.
Furthermore, this approach can be used to debug datasets as it reveals the samples
that are mislabeled. However, concerning interpretability, the most important fact
is that using the values it is possible to get insights about the concepts or relevant
features the model learned as these are represented with higher influence.

Another approach that weights the samples and produces scores to show their
impact was proposed by Yeh et al. [157]. The Representer Point was presented as
an improvement of the Influence Functions approach based on the preactivation
prediction. The preactivation is decomposed into a linear combination that
captures the impact of each data point. Thus, as mentioned previously, it is
possible to debug and explain the decisions of the network. Although this is done
post-hoc, it differs from the post-hoc method in the way the explanation is given
and mainly addresses the debugging of the model and dataset.

The compression of the input to see its effect is rarely studied, although it
comes with several advantages. Palacio et al. [105] proposed an approach to see
what the network requires to predict the input. Their approach first trains an

24 related work

autoencoder based on the dataset used to train of the classifier, and then attaches
it to the trained classifier. While the classifier is not modified, the autoencoder
is fine-tuned in a way that it compresses the data as much as possible and
only reconstructs the data required for the classifier to achieve the best possible
prediction. One of the benefits of this approach is that the compressed input only
contains data relevant to the task, which lowers the cognitive effort, in addition,
it removes possible confusing parts from the data. However, this method requires
training the autoencoder and model, which might be time and resource intense.

3.1.2 Intrinsic

Intrinsic methods are designed in a way that accepts a trade-off in accuracy, but
therefore provides white-box decisions compared to the black-box predictions of
traditional neural networks. One commonly used intrinsic approach is to create
prototypes, as this technique is closely related to human thinking. The comparison
between new and already known prototypes is intuitive and efficient. In the
second category of approaches, the divide and conquer principle is applied: To
explain the overall prediction, the sample is divided into smaller parts, resulting
in a better understanding of individual influence.

Using prototypes to understand the decision process is a principle that is related
to human thinking. Especially, in the image domain, it is straightforward to define
prototypes for objects that share some properties. The resulting explanation is
intuitive for a human and provides trust. Li et al. [74] proposed such a network
architecture. They used a prototype layer to learn artificial prototypes, which are
then used to compute the similarity between the input and themselves. To learn
a proper prototype, only the latent representation of the input is given to the
prototype layer. The prototypes are then learned to use the same latent dimension.
A decoder is used to transform them back to the input dimension for inspection.
Finally, a head using a fully connected layer is used to produce the final output
based on the prototypes. Throughout their analysis, Li et al. have shown that
the accuracy drops only by a few percent, but the model is interpretable without
the need for a post-hoc interpretability method. However, it has to be mentioned
that their approach requires hyperparameter tuning of the different loss terms
to ensure interpretability. Another prototype-based approach was presented by
Gee et al. [45]. They adopted the idea of the previously mentioned approach to
the time series. This enabled them to produce global prototypes for sequences. In
addition to domain changes, they included a so-called diversity score that ensures
that the learned prototypes differ, as otherwise the prototypes could look similar
due to dataset biases such as the distribution.

The work of Chen et al. [17] extended the idea of using prototypes. In their
work, the prototypes were not learned as global representatives, but served as
prototypes for specific parts of the input. This makes it possible to cover concepts
that are shared across the classes and further improves the interpretability as
a prototype consists of a single patch of the data instead of the whole data.
Another benefit of this prototype approach is that it learns the concepts without
the need for additional annotations. In their work, they have shown that the
network architecture only shows minor changes in accuracy. As their approach

3.2 state-of-the-art privacy-preserving methods 25

does not use an autoencoder network to project back the prototypes, they push the
prototypes towards existing samples in the dataset and use the most similar one as
a representative patch for the prototype. Another work that demonstrated that the
processing of data with patches can be an efficient way to produce interpretable
results was written by Hou et al. [55]. The idea behind the patchwise approach in
their case originated from the large data, as the images are huge and processing
them requires large resources. Furthermore, the features that affect the prediction
are local, and using a divide and conquer strategy helps to locate them. To achieve
this, the authors suggested splitting the data into patches and training a network
on these patches in a way that the network learns to classify the patches and
does not consider patches that are class-independent. In a second step, they use a
classifier to compute the overall label of the input.

3.2 state-of-the-art privacy-preserving methods

Privacy-Preserving Machine Learning (PPML) aims to preserve data privacy, but
comes with some drawbacks in terms of XAI [103] and computational costs. The
field of privacy-preserving methods covers plenty of different perspectives that
address several security aspects. However, the below-mentioned work is limited
to those that address the model of security and does not cover all privacy factors
mentioned by Liu et al. [79] such as a secure connection and storage. Therefore, it
is relevant to identify the correct defense mechanism for every attack to protect the
data [20]. According to Mireshghallah et al. [94], the privacy can be divided into
direct threats related to the previously mentioned data connection and storage
security and the indirect threats. Indirect threats are those that are inferred based
on the model and can be avoided with privacy-preserving models. Direct treats
are not related to the deep learning. For further information not covered in this
work, the reader is referred to the work of Zhang et al. [161] which presents a
wide variety of existing privacy methods or Tanuwidjaja et al. [141]. As this work
focuses on the model security, direct attack aspects are not included.

3.2.1 Attack Mechanisms

According to Mireshghallah et al. [94], it is possible to identify up to five different
attack categories during the inference stage. However, it is worth noting that
it is also possible to attack the model during training through data injection,
corruption, or modification. Below, the different indirect attack perspectives are
listed and shown in Figure 3.2.

The membership attack tries to infer data based on multiple queries. Shokri et
al. [130] proposed this attack mechanism. The target is to get information on
whether a specific sample is in the original training data or not. This can be
achieved with queries through the trained model. Therefore, the attack trains a
model that identifies the membership of samples based on the confidence of the
target model. Furthermore, it is possible to combine this attack with a model
inversion to not only get information about the membership, but further mimic
the model.

26 related work

Figure 3.2: Shows the different attacking mechanisms applicable to deep learning models.
Reprinted from [94].

Another approach is the model inversion attack proposed by Fredrikson et
al. [42]. The goal of this attack is to create a model that is similar to the target
model. To do so, the previously mentioned membership attack can be used
to identify candidate samples used to train the new model. Using statistical
measurements, it is possible to weight different attributes and samples to get
a model that is close to the target model. While this attack is best suited for
black-box attacks, it is also possible to attack white-box models. Furthermore,
Fredrikson et al. [41] explained the process to reconstruct the samples with the
model inversion attack.

Going one step further, it is possible to reconstruct the model architecture using
attacking mechanisms. Yan et al. [152] proposed a mechanism to infer the model
architecture. To do so, they use different mathematical formulations and query
the target model. Based on the confidence scores they obtain from the model, the
proposed approach can precisely, determine the used hyperparameters such as
channel, the filter number, and filter size.

Carlini et al. [14] proposed an approach to extract dataset patterns as they are
memorized by the network and not protected by default. Furthermore, the authors
defined mathematical formulas to measure the degree of memorization and data
exposure.

3.2 state-of-the-art privacy-preserving methods 27

Figure 3.3: Shows the different defense mechanisms applicable to deep learning models.
Reprinted from [94].

3.2.2 Defense Mechanisms

To prevent attackers from stealing information, it is required to protect the
model, as it includes valuable information about the data. In general, as stated
by Mireshghallah et al. [94] it is possible to differ between privacy-preserving
and privacy-enhancing mechanisms. The first group tries to prevent the model
from memorizing and exposing data. The second group can be used to enhance
the privacy further. E.g. splitting the data and computing the average over
the data removes some properties that are sample specific. Privacy-enhancing
methods are not mandatory designed for privacy. Within the privacy-preserving
approaches it can be differentiated between those that aggregate data, training
and inference protection. The different categories of defense mechanisms are
shown in Figure 3.3.

Among the data aggregation mechanisms, the anonymization [30] is one of
the most commonly used approaches. While it is intuitive to anonymize data
by deleting or changing attributes, there are advanced approaches such as the
K-anonymity proposed by Sweeney et al. [137]. This approach ensures that the
sample is similar to at least k-1 neighbors concerning a given attribute.

Another method is the Differential Privacy (DP) which in addition provides
training and inference protection. DP is one of the most used and widespread
solutions to tackle privacy restrictions in the context of deep learning. In 2016,
Abadi et al. published their work on this topic [1]. The authors proposed an

28 related work

efficient way to compute the gradients of a network using differential privacy. The
proposed differential Stochastic Gradient Descent (SGD) clips the gradients during
the training to introduce privacy. After the gradient clipping, noise is added to
the gradients to further improve the privacy. This procedure ensures that less
private information is leaked during the training process. Other DP methods aim
at perturbing the input [44], output or optimization objective [16] of the model.

Furthermore, Abadi et al. [1] mentioned the epsilon privacy as a budget for
the training process to track the information leaked through the network. In
addition, Renyi Differential Privacy (RDP) was proposed by Zhu and Wang [164] as
a privacy budget calculation for advanced sampling strategies. Renyi Differential
Privacy (RDP) precisely computes the privacy for the Poisson sampling without
replacement and is computationally efficient.

Another very famous approach among the differential private methods is PATE
proposed by Papernot et al. [107]. PATE describes a framework with a teacher and
a student network. A private teacher network is trained and then predicts queries
on public data. The public data and teacher predictions are then used to train a
student network. The idea is that the teacher can have the information about the
private data, whereas the student does not see the private data.

Federated learning initially was invented to enable distributed training
involving multiple parties, and therefore it is a privacy enhancing method [153].
McMahan et al. [81] proposed an approach to enable the training using an
averaging approach. To set up the federated technique, a copy of the model
which is held globally is distributed to each participant. Next, a specific number
of iterations using the data is executed locally, and the gradients are forwarded to
the global model. However, before the gradients are applied to the global model,
they are averaged across the different parties. By design, the averaging introduces
privacy, as individual private information gets discarded during the average
step if enough participants are available. The authors specifically mentioned that
unbalanced datasets, the number of clients, and communication stability play an
important role in success.

Homomorphic Encryption (HE) is a privacy preserving training and inference
algorithm. It can be applied to the data and the model depending on the
use case. In 2014 Yi et al. [158] proposed HE. This kind of encryption enables
specific mathematical operations to work on the encrypted data. For example,
it is theoretically possible to compute gradients using the encrypted values.
However, since homomorphic encryption involves a high computational cost,
various strategies have been developed to apply the encryption. Aono et al. [6]
proposed an approach that encrypts the weights for the update on the local
model in a federated scenario and uses encrypted weights on the global model
to preserve privacy. This approach shows a successful combination of encryption
and federated learning. According to Naehrig et al. [100], although recently many
approaches including encryption evolved, it is still questionable if the application
is feasible in real case scenarios due to the disadvantages.

Secure Multi-party Computation (SMC) is a hardware software solution used
to create a safe computation during the training and inference stage. One of the
possible solutions to achieve this is the SecureNN framework proposed by Wagh
et al. [147] which splits into secret parts that are uploaded to different servers. All

3.2 state-of-the-art privacy-preserving methods 29

the splits need to be available to train the model. For detailed information about
the hardware setup and the corresponding protocols, the reader is referred to the
paper of Wagh et al. [147].

For completeness, Trusted Execution Environments (TEEs) proposed by Sabt et
al. [120] are mentioned. TEE describes a specific hardware solution to ensure a
secure data processing and is part of the privacy enhancing category.

3.2.3 Synthetic Data Generation

In contrast to the previously mentioned privacy approaches that are applied
directly to the data to perform the target task, the data generation offers new
perspectives. Initially, the idea is not correlated to the private domain. E.g. Pu et
al. [111] proposed one of the most promising network architectures to generate
data and the corresponding labels, namely the Variational AutoEncoder (VAE).
VAEs are a modified version of the traditional autoencoders to generate data
and preserve specific properties of the latent space. The motivation behind such
approaches is that data scarcity can be reduced if synthetic data that looks similar
to real data can be produced.

Besides the autoencoder-based approach, the so-called Generative Adversarial
Network (GAN) was proposed by Goodfellow [51] in 2014 and has proven to be
one of the best approaches to generate data. The proposed network architecture
consists of a generator and a discriminator. The generator produces samples based
on a vector within the latent space, and the discriminator tries to identify whether
a presented sample is synthetic or not. During the optimization, both parties try
to fool each other. Both the autoencoders and generative models can produce
data and over the years many modifications of these networks originated, e.g.
the Wasserstein Variational Autoencoder (WAE) proposed by Tolstikhin et al. [143].
This modification uses a different loss that results in a better representation of the
latent space and the samples projected into that space.

Based on the generative models, Xie et al. [151] proposed a differential private
version of the Generative Adversarial Network (GAN) that uses the Differential
Privacy (DP) algorithm. The resulting generator can then be used to generate
data that can be used without the privacy restrictions, making it possible to
apply existing deep learning structures to the synthetic data and transfer the
results to the private data. Recently, Chen et al. [18] further investigated in the
same direction and came up with an approach that protects only the generator.
They found that this leads to better results as the discriminator gets stronger. In
addition, removing the privacy constraints from the discriminator does not lower
the privacy, as this part of the network is not shared with anyone and is discarded
after the training is finished.

4
T I M E F R A M E : I N T E R P R E TA B L E A N D P R I VA C Y- P R E S E RV I N G
D E E P L E A R N I N G

This chapter provides detailed insights about TimeFrame, the framework proposed
in this thesis. First, the need for the system is addressed in Section 4.1 and next,
the main parts of the system consist of are introduced, including their importance
for the actual use of the proposed framework. Detailed information about the
components can be found in Part ii to Part v

4.1 need of the system

GDPR [114] and AI act defines and regulates the development and deployment of
AI systems in the EU. This includes guidelines for ethical and trustworthy AI. In
addition, it requires having human oversight in the development and use of these
systems by transparency and privacy. On the other hand, deep neural networks
have recently achieved super human performance in several areas. However, these
models are not conforming to AI act and GDPR and neither transparent nor privacy
preserved. This becomes even more critical to the models which are developed
to deal with time series data. The regulation defines several rules that need to
be fulfilled by a system to allow the use in certain domains. This regulation is
one of the major challenges that needs to be addressed as it is crucial to extend
the use of neural networks which perform well on a variety of data. With the
fulfillment of the GDPR, the use of neural networks in safety-critical domains such
as healthcare and finance can be permitted. As it is already known that neural
networks are one of the top competitors when it comes to performance, this can
have a huge impact e.g. assisting doctors can improve the health system. As a
step towards such an improvement, the proposed framework addresses the rules
included in the GDPR and aligns them with the processing of time series using
deep neural networks. Although there already exist several methods that are
applied in research to different classification problems, there is no real framework
that offers a comprehensive set of tools for time series analysis. Furthermore,
as mentioned in previous chapters, most of the research focused on the image
domain, which makes it even more challenging to come up with a solution that
addresses the constraints raised by the GDPR to use deep learning in the time
series domain.

Besides the capabilities of the system to combine interpretability and privacy,
it also offers the possibility to understand the interaction of those aspects. This
aspect was not evaluated so far for time series, but it is crucial to have a framework
that makes it possible to identify the biases that occur if the two properties are
combined. It is possible to explore the interaction of the two contrary goals, or to
use components that isolate the two properties in a way that no interaction biases
the results. Ultimately, this provides a solution to use private but explainable
classifiers for the time series analysis. However, to come up with such a flexible

32 timeframe : interpretable and privacy-preserving deep learning

Figure 4.1: Shows the TimeFrame framework and its components. The framework offers
a large set of existing and novel interpretability and privacy methods that can
be used to create a GDPR conformed neural network.

framework that can be used with different architecture, and data, and yield good
performance while still conforming the GDPR rules requires a separation of the
challenges into fundamental parts which are explained in Section 4.2

4.2 components of the proposed framework

The whole system can be divided into two parts. These parts are interpretability
and privacy. A system that is used in the real-world requires both of them,
however, their goals are contrary. Interpretability tries to reveal as much as
possible, while privacy tries to hide everything. The following subsections cover
each of the parts individually, and a third subsection covers their interaction and
how they are combined to come up as one system that is capable of dealing with
sensitive data.

4.2.1 Interpretability Components

The interpretability component is one of the main parts, as it is crucial to
understand the decisions made by a network. Furthermore, as per GDPR and AI act
guidelines, accountability is an important part. However, it is not possible to hold
accountable without interpretability. The framework provides a wide variety of
components which can be used to comply with deep neural network-based time
series analysis systems with the regulations. To enable existing highly performing
models to comply with the regulations, the framework is well-equipped with
several post-hoc methods that work on a trained neural network. Concerning

4.2 components of the proposed framework 33

the post-hoc methods, there are 12 state-of-the-art methods and four novel
components. The benefit of those is that they do not depend on the network
architecture, making them very versatile. Two different perspectives are addressed.
First, the relevance of the input features and their contribution to the output
can be visualized. Second, the suppression of input data reduces the amount
of data seen by the network and relevant to the task. Similarly, the framework
also offers two novel intrinsic methods, which can be used to design interpretable
time series analysis systems. These intrinsic methods offer a better explanation
according to the GDPR as the reasoning itself is explainable, but their drawback
is the architecture dependence. The details of these components are discussed in
Part ii and Part iii. One of them is based on prototypes and the other method
uses the divide and conquer principle. The reasoning using prototypes is closely
related to human thinking, as humans try to extract concepts and compare them to
already known ones. Similarly, if a human faces a complex problem, one approach
is to break it down into smaller subtasks which are done by the second component.
This results in a hierarchical solution that is easier to understand.

4.2.2 Privacy Components

In addition, the framework offers a set of privacy preserving methods as even if a
network is interpretable, it is not possible to use it in a safety-critical environment
as long as it is not privacy-preserving. Deep neural networks by default expose a
lot of data, as mentioned in the previous part. It is possible to mimic the network,
reconstruct input data, and poison those networks. None of these behaviors is
acceptable if sensitive data is processed. However, introducing privacy always
lowers the performance, which might be problematic in some cases. The proposed
framework, therefore, has two categories of privacy that are addressed. First, the
direct privacy in which the privacy mechanisms are applied to the classification
network, and second the indirect privacy in which the sensitive data is never
exposed to the classification network. The first component consists of four
different direct privacy methods to modify the training and inference process.
However, using the direct privacy approaches changes the explanation of the
model. To overcome this problem, it is possible to apply indirect privacy. The
second component offers two methods to create a private generative model. The
data created using this model can then be used without any restriction. This has
several benefits, such as a larger amount of data, no privacy on the classifier, and
more generalized models.

4.2.3 Interaction of Components

In Figure 4.1 the framework is visualized. Based on a problem and the
corresponding data as a basis, the two main aspects are interpretability and
privacy. Depending upon the nature of the problem, and the state of the system,
the framework provides a wide range of options to select the most suitable
combination. For each subcategory, components are provided that can be selected.
E.g. It is possible to build an interpretable system using TimeREISE as the

34 timeframe : interpretable and privacy-preserving deep learning

interpretability method. If in addition the GSWGAN [18] as a privacy component
is used, then the system results in a classifier that approaches the interpretability
and privacy constraints of the GDPR.

It is also possible to use multiple methods to understand their agreement or
disagreement, which can be of interest. Therefore, the proposed methodologies
within the post-hoc category can be used in parallel or in conjunction, depending
on the need. Combining post-hoc and intrinsic methods is possible, although it
does not increase the interpretability, as the intrinsic methods are explainable
by design. The same holds for the privacy component, while it is possible to
combine federated learning and differential privacy within the direct privacy
category, it does not make sense to apply a direct approach to the classifier of
the indirect privacy category. Ultimately, the performance is important although,
it has no impact on GDPR compliance. However, it is an important aspect
when the components are selected, e.g. post-hoc methods do not lower the
performance whereas intrinsic methods do. Intuitively, all privacy methods lower
the performance, and depending on the data, the selection of a good combination
of methods is crucial.

Part II

P O S T- H O C I N T E R P R E TA B I L I T Y

post-hoc interpretability 3737

Post-hoc interpretability is a widely used category of interpretability methods.
However, most times the approaches have been evaluated in the image domain
and their performance in the time series domain is untested. This makes it difficult
to use them in a real-world context, as it is unknown whether their explanation is
correct and interpretable. To address these issues, several different aspects were
evaluated.

First, a comprehensive benchmark for attribution methods is presented.
As one of the first attribution benchmarks in this domain, it shows the
characteristics of the existing well-known attribution maps and further highlights
the limitations and possible adoptions. Based on this evaluation, two novel
techniques are proposed. TimeREISE and TSViz are two novel approaches that
produce attribution maps for the time series domain. While TimeREISE covers
the perturbation-based perspective, TSViz uses a gradient-based approach. In
addition, for TSViz a complete service including a front-end was developed.

Second, TsInsight as a novel compression method was developed. The
compression-based approach reduces the input data to the minimum required
by the network. The core idea of this approach is to discard the cognitive intense
parts that are not used by the classifier and expose only the parts relevant for the
network in a shape similar to the original input.

Third, a benchmark for influence functions was conducted. The analysis
highlights to which extent it is possible to infer information about the dataset
and model biases. Therefore, the impact of each data sample on the prediction is
evaluated.

5
T I M E T O F O C U S : B E N C H M A R K I N G S TAT E - O F - T H E - A RT
AT T R I B U T I O N A P P R O A C H E S

Post-hoc interpretability is very rarely evaluated in the context of time series.
This section addresses the lack of comprehensive benchmarks for the group
of attribution methods. The experiments are centered around aspects such
as the applicability and effectiveness of attribution methods in time series
analysis. Furthermore, they cover the strengths and weaknesses of these methods.
Specifically, a runtime analysis highlights the limitations for real-time use cases.

The presented experiments involve gradient-based and perturbation-based
attribution methods. A detailed analysis indicated that perturbation-based
approaches are superior concerning the Sensitivity and occlusion game. These
methods tend to produce explanations with higher Continuity. Contrarily, the
gradient-based techniques are superb in runtime and Infidelity. In addition, a
validation of the parameter dependence of the methods, feasible application
domains, and individual characteristics is attached. The findings accentuate that
choosing the best suited attribution method strongly depends on use case.

5.1 datasets

For the experiments, a subset of the datasets from UEA & UCR [9] repositories
was used. The selected datasets cover different aspects such as a variance in the
number of channels, sequence length, classes, and task. The tasks include point
anomaly and sequence anomaly classification. Furthermore, the datasets cover
traditional sequence classification not related to atypical behavior. These datasets
correspond to different critical domains that require interpretability and privacy.
In addition, to the UEA & UCR datasets, the point anomaly dataset proposed
by Mercier et al. [91] was included. This dataset is unique compared to the
others because a perturbation on single points can change the complete prediction.
Table 5.1 lists the different datasets used to evaluate the attribution methods.

5.2 experiment & results

In this subsection, different aspects of the above-mentioned methods are
presented. The attribution techniques were not optimized to ensure fairness
between approaches because fine-tuning requires assumptions about the data
set. The experiments cover the following aspects: Impact on the accuracy,
Infidelity [155], Sensitivity [155], runtime, the correlation between the methods,

This chapter is an adapted version of the work presented in: D. Mercier. et al. “Time to Focus:
A Comprehensive Benchmark using Time Series Attribution Methods.” In: Proceedings of the 14th
International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, INSTICC. SciTePress,
2022, pp. 562–573. doi: 10.5220/0010904400003116.

https://doi.org/10.5220/0010904400003116

40 time to focus : benchmarking state-of-the-art attribution approaches

Table 5.1: Shows the used UEA & UCR Datasets related to critical infrastructures.

Domain & Dataset Train Test Steps Channels Classes

Communications
UWaveGestureLibraryAll 896 3,582 945 1 8
Critical manufacturing
Anomaly [91] 35,000 15,000 50 3 2
FordA 3,601 1,320 500 1 2
Public health
ECG5000 500 4,500 140 1 5
FaceDetection 5,890 3,524 62 144 2
Telecommunications
CharacterTrajectories 1,422 1,436 182 3 20

Table 5.2: Shows the AlexNet [67] architecture used in this paper. Dropout layers are
excluded from the table. The padding of every layer was set to ’same’. The
variables ’c’, ’w’, and ’r’ depend on the input channels, width, and the number
of classes of the used dataset.

Name Type In Out Size Stride

conv_1 Conv, ReLu, Batch c 96 11 4
pool_1 MaxPool 96 96 3 2
conv_2 Conv, ReLu, Batch 96 256 5 1
pool_2 MaxPool 256 256 3 2
conv_3 Conv, Relu, Batch 256 384 3 1
conv_4 Conv, Relu, Batch 384 384 1 1
conv_5 Conv, Relu, Batch 384 256 1 1
pool_2 MaxPool 256 256 3 2
dense_1 Dense, ReLu w * 256 4,096
dense_2 Dense, ReLu 4,096 4,096
dense_3 Dense 4,096 r

and impact of label and model parameter randomization. In existing work such
as [3, 56, 101] these measurements are judged as significant.

In general, all experiments were executed for the previously mentioned datasets.
However, identical results were removed due to the low number of insights they
provide to the reader. The pre-processing of the data covered a standardization
to achieve a mean of zero and a standard deviation. AlexNet [67] was modified
to work with one dimensional data and trained using an SGD optimizer and a
learning rate of 0.01 to evaluate the different attribution techniques. In Table 5.2
the network structure of the AlexNet is shown. All networks were trained for
a maximum of 100 epochs, and the learning rate was halved after a plateau.

5.2 experiment & results 41

Table 5.3: Evaluation of the test data using the original split provided by the datasets.
Subset covers the performance of on 100 samples that were used for the
remaining experiments due to the computational limitations. Values show the
weighted F1 scores and provide evidence that the sets are similar.

Dataset Test Set [%] 100 Samples Set [%]

Anomaly 98.01 94.64
CharacterTrajectories 99.30 100.00
ECG5000 93.52 89.07
FaceDetection 59.56 70.97
FordA 92.04 94.00
UWaveGestureLibraryAll 93.18 98.02

In the particular case of label permutation, the labels of the training data were
randomized.

Due to the immense computational effort, a set of 100 test samples was selected
to evaluate all methods. In Table 5.3 the weighted F1 scores are shown. The
differences between the original data and the subsets are less than 5%. Only the
FaceDetection dataset shows a difference of 19%.

5.2.1 Impact on the Accuracy

To evaluate the performance of the attribution methods, the drop in accuracy
under the addition and occlusion of the data points was inspected. To occlude the
data, the points were set to zero, as this is the mean of the data corresponding to
the baseline. Respectively, the start point was zero when adding points stepwise.
Figure 5.1 shows that most of the methods were able to correctly identify the
most influential data points. Intuitively, data points that had a higher impact
on accuracy should be ranked better. The top row shows the accuracy increase,
adding the most significant points stepwise. The bottom row shows the behavior
of adding the insignificant data points first. Ultimately, reading each plot starting
from 100 to 0 percent results in excluding the least important ones for the
top row and the most important ones for the bottom row. The experiments
highlight that for most datasets, namely Anomaly, CharacterTrajectories, ECG5000,
and UWaveGestureLibraryAll, a few data points were enough to recover the
accuracy. Surprisingly, adding unimportant data points using LIME, Saliency,
and Dynamask resulted in higher accuracy values for the ECG5000, FordA,
and UWaveGestureLibraryAll datasets. Saliency has shown to suffer from the
noisy backpropagation, while the drawbacks of LIME and Dynamask are their
hyperparameters.

4
2

t
i
m

e
t

o
f

o
c

u
s:

b
e

n
c

h
m

a
r

k
i
n

g
s

t
a

t
e-

o
f-

t
h

e-
a

r
t

a
t

t
r

i
b

u
t

i
o

n
a

p
p

r
o

a
c

h
e

s

Figure 5.1: Shows the impact when adding points to the baseline signal based on the attribution scores (Top: most important points, bottom: least
important points). The values show the weighted F1 scores.

5.2 experiment & results 43

5.2.2 Prediction Agreement

In addition to the accuracy drops, the agreement with the original data was
computed. Therefore, in Table 5.4 the percentage of data required to produce a
similar prediction as with the original sample is shown. To do so, data points
were included stepwise based on their importance. Initially, all data samples
started with zeros. In every step, the next most important data point was
added. The results indicate that the required data for an agreement of 90%
of the predictions was in most cases reached with far less than 50% of the
data. The results further show that the perturbation-based approaches overall
performed better. In addition, the required amount of data highly differed based
on the dataset. Intuitively, Dynamask did not perform well on this task, as
it provides only a binary decision on whether a feature is significant or not.
Besides Dynamask, Saliency and KernelShap showed a worse performance too. On
the other side, the Feature Ablation, Feature Permutation, Guided-backpropagation,
and ShapleyValueSampling approaches showed superior performance to the other
methods using the data suggested being important by those methods resulting in
a much earlier agreement of the prediction.

4
4

t
i
m

e
t

o
f

o
c

u
s:

b
e

n
c

h
m

a
r

k
i
n

g
s

t
a

t
e-

o
f-

t
h

e-
a

r
t

a
t

t
r

i
b

u
t

i
o

n
a

p
p

r
o

a
c

h
e

s

Table 5.4: Evaluation of how many data points are required to reach a specific agreement between the original and modified input. All numbers are
in percentage. Lower values are better as fewer data was needed to restore the ground truth predictions. The numbers in each cell show the
percentage of data points added to the baseline to achieve the required agreement concerning the prediction. Perturbation-based approaches
show a significantly better performance.

Method Anomaly CharacterTraj ECG5000 FaceDetection FordA UWaveGesture
Req. Agreement in [%] 90 95 100 90 95 100 90 95 100 90 95 100 90 95 100 90 95 100
Gradient-based
GradientShap [80] 1 44 97 15 18 32 15 20 75 60 71 98 69 77 96 12 38 100
GuidedBackprop. [134] 1 76 98 17 27 45 13 14 83 2 2 5 33 61 98 11 16 100
InputXGradient [131] 1 51 92 16 21 29 18 24 42 26 36 55 69 81 98 12 38 100
IntegratedGradients [136] 1 3 99 12 15 31 11 18 38 63 81 97 70 79 98 12 39 100
Saliency [133] 1 76 97 34 41 48 32 37 75 48 51 54 88 93 100 20 53 100
Perturbation-based
Dynamask [22] 1 5 100 55 72 92 18 31 100 100 100 100 50 71 100 61 74 98
FeatureAblation [159] 1 2 48 15 20 28 6 9 60 25 30 35 44 52 82 26 55 99
FeaturePermutation [38] 1 2 48 15 20 28 6 9 60 25 30 35 44 52 82 26 55 99
Occlusion [159] 1 3 83 19 20 29 9 15 46 16 47 87 43 55 96 33 68 100
Miscellaneous
KernelShap [80] 1 58 100 15 22 43 8 15 84 70 84 99 90 94 98 16 34 100
LIME [115] 1 90 100 15 17 49 8 17 75 49 52 81 79 86 99 13 17 100
ShapleyValueSampling [96] 1 30 51 12 13 30 10 18 71 68 90 93 65 79 97 9 15 100

5.2 experiment & results 45

Table 5.5: Computed values show the average Infidelity (lower is better) over the 100

sample subsets. Results show differences between the different methods when
applied to time series data. No category shows a superior performance,
although the gradient-based approaches were slightly better.

Method Anomaly CharacterTraj. ECG5000 FaceDetection FordA UWaveGesture

Gradient-based
GradientShap 2.3803 1.1408 0.7897 0.0014 1.3734 11.4717
GuidedBackprop 2.4057 1.1665 0.8060 0.0014 1.3782 11.6886
InputXGradient 2.3056 1.1475 0.8135 0.0014 1.3854 11.5830
IntegratedGradients 2.3594 1.2064 0.8260 0.0013 1.3537 11.3763
Saliency 2.3788 1.0921 0.8174 0.0014 1.3636 11.7546
Perturbation-based
Dynamask 2.4382 1.2650 0.8271 0.0013 1.3806 11.6034
FeatureAblation 2.3859 1.1513 0.8459 0.0014 1.3869 11.5511
FeaturePermutation 2.4015 1.1654 0.7949 0.0014 1.3991 11.5112
Occlusion 2.3430 1.2078 0.8107 0.0014 1.3752 11.3569
Miscellaneous
KernelShap 2.4115 1.1802 0.8288 0.0014 1.3785 11.6568
LIME 2.4259 1.1584 0.8040 0.0014 1.3732 11.6323
ShapleyValueSampling 2.3352 1.1671 0.8153 0.0014 1.3745 11.4625

5.2.3 Infidelity & Sensitivity

The Infidelity [155] provides information about the change concerning the
predictor function when perturbations to the input are applied. The metric derives
from the completeness property of well-known attribution methods and is used to
evaluate the quality of an attribution method. Table 5.5 shows the Infidelity mean
error using 100 perturbed samples for each approach. A lower Infidelity value
corresponds to a better attribution. The results indicate that the tested methods do
differ by a large margin of less than 7.2% on average, and in addition, the Infidelity
values strongly depend on the dataset. Neither the gradient-based approaches
nor the perturbation-based were superior. The mean increase between the worst
performing and the best method was 7.2%. During the experiments, the highest
increase was measured for the CharacterTrajectories dataset (15.8%) and the lowest
for the FordA dataset (3.4%).

Further, the Sensitivity [155] of the methods for a single sample was compared.
Computationally, the Sensitivity is much more expensive but provides a good
idea about the change in the attribution when the input is perturbed. Using the
Sensitivity, the robustness against the methods concerning noise was evaluated.
Table 5.6 shows the Sensitivity for all methods. The results show that Dynamask
had a Sensitivity of zero, as Dynamask intentionally forces the importance values
to be either one or zero. Although this is a benefit concerning the Sensitivity,
it results in a drawback when ranking the features as shown in the accuracy
drop experiment. In addition, perturbation-based approaches have shown 30.9%
better results on average concerning their Sensitivity across all datasets. The
most significant difference between the attribution methods (42.1%) occurred
using the FordA dataset, while the lowest scores (26.1%) were observed using
the CharacterTrajectories dataset. Besides, the impressive performance of Dynamask,

46 time to focus : benchmarking state-of-the-art attribution approaches

Table 5.6: Computed values show the Sensitivity (lower is better) of a sample. Results
show larger values for LIME and Shap-based approaches. Overall, the
performance of the perturbation-based techniques was superior.

Method Anomaly CharacterTraj. ECG5000 FaceDetection FordA UWaveGesture

Gradient-based
GradientShap 0.9364 0.6610 0.9149 0.9764 1.0369 1.0347
GuidedBackprop 0.1324 0.1531 0.0562 0.1339 0.0398 0.2057
InputXGradient 0.1890 0.1017 0.0709 0.0952 0.0924 0.1927
IntegratedGradients 0.1166 0.1144 0.0458 0.0419 0.0906 0.2086
Saliency 0.1902 0.1126 0.1841 0.0995 0.0762 0.2220
Perturbation-based
Dynamask 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
FeatureAblation 0.0414 0.0360 0.0350 0.0581 0.0463 0.0444
FeaturePermutation 0.0414 0.0360 0.0350 0.0581 0.0463 0.0444
Occlusion 0.0645 0.0167 0.0305 0.0506 0.0254 0.0352
Miscellaneous
KernelShap 1.0908 0.9405 0.2162 0.9248 0.8876 1.0283
LIME 0.8221 0.4986 0.1408 1.5613 0.6974 0.6378
ShapleyValueSampling 0.9132 0.3917 0.1852 0.5938 0.5536 0.3458

the Occlusion, Feature Ablation, and Feature Permutation showed robustness against
permutations.

5.2.4 Runtime

The runtime and resource consumption are important. Although the availability
of resources increases, they are not unlimited. Depending on the throughput of
the approach, real-time interpretability can be possible. For mobile devices, the
computation capacity is limited, and low resource dependencies are beneficial. To
compare the methods in terms of their computational effort, execution time for
a single sample of each dataset was computed. Figure 5.2 shows that especially
the simple gradient-based methods like Saliency, Integrated Gradients, and Input
X Gradient showed a low computation time. On the other side, methods like
KernelShap and ShapleyValueSampling showed increased time consumption. During
the analysis, the default values suggested in the corresponding papers of the
methods were used. In the case of the FaceDetection dataset, the computational
overhead of the Feature Ablation, Feature Permutation, and Occlusion increased
significantly as they strongly depend on the number of features. The FaceDetection
dataset needed 41 times longer than the Anomaly dataset. Overall, the computation
time of the FaceDeteciton dataset was four times longer than the aggregated
computation of all others. The characteristics of the FaceDetection dataset favors
methods that are independent of the number of features. The high number
of channels and time steps when every data feature gets evaluated separately
increases up to an unacceptable point. In addition, it has to be mentioned that
only 100 iterations instead of the default 1,000 for each optimization of Dynamask
were used to lower the computation times.

5.
2

e
x

p
e

r
i
m

e
n

t
&

r
e

s
u

l
t

s
4

7

Figure 5.2: Shows the time spent to compute the attribution of a single sample. Note that some bars are not visible due to their fast computation time
compared to the other methods, and the time of Dynamask is lowered by parameter optimization due to the otherwise unsuitable time
consumption. Hardware: Quad-Core Intel Xeon processor, Nvidia GeForce GTX 1080 Ti, and 64 GB memory.

48 time to focus : benchmarking state-of-the-art attribution approaches

(a) CharacterTrajectories

(b) FordA

(c) FaceDetection

Figure 5.3: Shows the average correlation/similarity of over 100 attributions. The ten
percent most important features were selected for the Jaccard Similarity. The
method names are shortened using only the capital characters (Dynamask,
Feature Ablation, Feature Permutation, Gradient Shap, Guided Backpropagation,
Input X Gradients, Kernel Shap, Lime, Occlusion, Saliency, Shapley Value Sampling).
KernelShap showed a significantly lower correlation to other methods
compared to all others. Feature Ablation and Feature Permutation showed a high
correlation.

The results strongly suggest that this does not change the overall behavior of
Dynamask but lowered the computational time by a factor of ten. Using the default
1,000 iterations would not be suitable in any case, as the computation time would
increase by a factor of ten.

5.2.5 Attribution Correlation

Another aspect is the correlation of the different attribution maps. Therefore,
different correlation measurements were used, namely the Pearson

5.2 experiment & results 49

Figure 5.4: Shows the Spearman Correlation (rank correlation) of the attribution methods
evaluated on the same model architecture using randomized training labels
using the CharacterTrajectories dataset. The method names are shortened using
only the capital characters (Dynamask, Feature Ablation, Feature Permutation,
Gradient Shap, Guided Backpropagation, Input X Gradients, Kernel Shap, Lime,
Occlusion, Saliency, Shapley Value Sampling). Dynamask, KernelShap, and Saliency
showed a significantly lower dataset dependence.

Correlation [10], Spearman Correlation [98] and Jaccard Similarity [102].
The Pearson Correlation measures the correlation between two series concerning
their values. Spearman Correlation is a ranked measurement that compares the
ranks for each of the features. Finally, the Jaccard Similarity is used as a set-based
measurement. During this experiment, the similarity of the attributions computed
over the 100 test sample subsets was evaluated. Ultimately, only the important
points matter concerning a correct attribution. To consider that, percentile subsets
of the important features were selected for the Jaccard Similarity to understand
the agreement of the methods concerning those features.

Figure 5.3 shows the results for the correlation and similarity. Overall, each
metric shows a similar behavior. Feature Ablation (FA) and Feature Permutation (FP)
were very similar. In addition, the Dynamask (D) approach and KernelShap (KS)
were different from any of the others. For Dynamask this can be explained with
the binary decision whether a feature is significant or not. Intuitively, this should
result in a high similarity for the Jaccard Similarity. However, this is not the case
as the attribution of Dynamask has an internal smoothing which includes less
important features to preserve a continuous mask. Furthermore, LIME (L) and
KernelShap (KS) were less similar to the other approaches.

5.2.6 Dependency on Model Parameter

Attribution methods should depend on the model parameter and the labels of the
data. Therefore, the impact of label permutation and parameter randomization
of the model was evaluated. This section only shows the results using the
CharacterTrajectories dataset, as the results on the other datasets are similar.

The idea of the label permutation is that attribution methods should depend
heavily on the labels. High values of correlation emphasize that the attribution
depends on the data characteristics rather than the concept learned by the model.

50 time to focus : benchmarking state-of-the-art attribution approaches

The models were trained similar to the baseline model on the same training
data but permuted the labels. This permutation results in a model that does not
generalize well but learns to replicate the training set. In addition, this approach
does not require the validation dataset. Intuitively, the train accuracies of those
models are good. Nevertheless, they fail on the test set. Precisely speaking, these
models show no label dependence. Figure 5.4 highlights that the correlation drops
to values between 0.05 and 0.2. Based on the overall low correlation, the attribution
methods highly depend on the labels rather than dataset characteristics.

In addition to the label permutation, layers of a correctly trained network
were systematically randomized to understand the dependency concerning the
model parameters. To comprehend the impact of the layers, each layer was
randomized independently. Further, the model was randomized starting from
the bottom to the top and vice-versa. The results in Figure 5.5 show all three
approaches. Interestingly, the correlation of Guided-backpropagation stayed high
when randomizing the top layers but significantly dropped when randomizing
the bottom layers. Randomizing the upper layers, the correlation of Guided-
backpropagation was close to the original attribution map, whereas the correlation
of the other methods dropped by 0.5 or more. That suggests that this method
highly depends on the first few layers. In addition, the results show that for all
attribution techniques, a single randomized layer was enough to get an attribution
that was no longer related to the original map, which is a desired property. The
top-to-bottom randomization further shows that except for the Dynamsk approach,
the correlation continuously got smaller when more layers were randomized.
Finally, the bottom-to-top randomization highlights that the first layer of the
network was enough to produce attribution maps that were not related to the
original.

5.2 experiment & results 51

Figure 5.5: Shows the Spearman Correlation of the attribution methods evaluated on the
trained model and randomized layer weights using the CharacterTrajectories
dataset. Weights were either randomized for each layer independently, from
top to the bottom layer, or vice versa. Only layers with trainable parameters
(convolutional, batch norm, dense) were included when counting the number
of randomized layers. The method names are shortened using only the
capital characters (Dynamask, Feature Ablation, Feature Permutation, Gradient
Shap, Guided Backpropagation, Input X Gradients, Kernel Shap, Lime, Occlusion,
Saliency, Shapley Value Sampling). Guided-backpropagation showed significant
correlations when only the upper layers were randomized. The correlation
of all other methods dropped significantly.

5
2

t
i
m

e
t

o
f

o
c

u
s:

b
e

n
c

h
m

a
r

k
i
n

g
s

t
a

t
e-

o
f-

t
h

e-
a

r
t

a
t

t
r

i
b

u
t

i
o

n
a

p
p

r
o

a
c

h
e

s

Figure 5.6: Shows all attributions for a selected anomaly sample. The important part is the peak of the sample. ’Ri’, ’Rb’, ’Rt’, ’D’, and ’B’ correspond to
the independent, bottom to top, top to bottom randomization, label randomization, and original attribution map. Only convolutional, batch
norm, and dense layers are counted. Changing the data labels during training significantly lowered the performance of all approaches except
Integrated Gradients for the Anomaly dataset. Overall, randomizing lower layers resulted in much more noise compared to randomization in
the upper layers.

5.3 discussion 53

5.2.7 Visual Attribution Comparison

Figure 5.6 shows all computed attribution maps for a reference sample. Due
to interpretability reasons, an anomalous instance of the anomaly dataset was
selected. The example in the top-left corner contains a single anomaly in one
channel that is important for the classification. The rest of the figure shows
the different attribution maps and the impact of randomization on the methods.
The figure shows the robustness towards randomized parameters. In the second
column, the Integrated Gradients approach was able to find the peak. This column
corresponds to a model trained on randomized labels. Therefore, the model
used in column two was not generalized and only learned to map the training
data. Columns three to seven show a model randomization starting from the
bottom layers. The results indicate that some methods still performed well when
only one or three layers starting from the bottom were randomized, whereas
other attribution methods directly collapsed. Columns eight to twelve show the
independent layer randomization. Except for Dynamask, the attribution techniques
were able to deal with handling the layer randomization in the upper layer
of the network quite well, whereas all attribution methods collapsed when
the lower layers were randomized. Columns thirteen to seventeen show the
randomization starting from the top of the network. Most attribution methods
were able to recover from the randomization for a high number of randomized
layers. Overall, the randomization of the lower layers changed the attribution
much more concerning the noise. Interestingly, changes in the upper layers did
not affect the attribution methods that much.

5.2.8 Continuity

One aspect that is missed out most times is attribution continuity. In the image
domain, the use of superpixels solves this problem. However, in the time series
domain, it is not that easy. Most of the attribution methods do not consider
groups of values. Table 5.7 shows the evaluation of the Continuity. The Continuity
calculates the absolute difference between the attribution value of a point t and
t + 1 for each time step and each channel. Using the mean across a sample
provides a value that indicates how continuous the explanation is. Lower values
correspond to an explanation that does not contain many switches from important
to not relevant features. This metric was computed over the 100 attributed samples
for each dataset. The results indicate that the perturbation-based approaches
favor continuous explanations. Gradient-based methods overall showed the worst
performance. One reason for this is the noisy gradients used to compute the
attribution maps.

5.3 discussion

A summary and discussion in a detailed manner are offered to provide on
choosing an attribution method. The different aspects and application scenarios
are described below. First, it has to be mentioned that every attribution method

54 time to focus : benchmarking state-of-the-art attribution approaches

Table 5.7: Computed values show the mean continuity of the attribution maps. Lower
values correspond to continuous maps. Continuity was calculated by shifting
the attribution map, subtracting if from the original one, taking the absolute
values, and computing the mean. Lower values are better. Perturbation-based
methods showed to outperform gradient-based regarding the continuity on
almost all datasets. Specifically, Dynamask and Occlusion showed to perform
well across all datasets.

Method Anomaly CharacterTraj. ECG5000 FaceDetection FordA UWaveGesture

Gradient-based
GradientShap 0.0947 0.0368 0.0616 0.0613 0.0813 0.0543
GuidedBackprop 0.1201 0.0537 0.0913 0.0957 0.0801 0.0526
InputXGradient 0.0801 0.0390 0.0508 0.0620 0.0855 0.0537
IntegratedGradients 0.0864 0.0369 0.0609 0.0632 0.0858 0.0508
Saliency 0.1176 0.0748 0.1439 0.1170 0.1229 0.0842
Perturbation-based
Dynamask 0.0282 0.0014 0.0252 0.0107 0.0159 0.0015
FeatureAblation 0.0784 0.0395 0.0584 0.0624 0.0815 0.0601
FeaturePermutation 0.0784 0.0395 0.0584 0.0624 0.0815 0.0601
Occlusion 0.0623 0.0183 0.0419 0.0367 0.0535 0.0284
Miscellaneous
KernelShap 0.1423 0.1086 0.0641 0.1671 0.1973 0.1795
LIME 0.1122 0.0496 0.0498 0.0010 0.0883 0.0928
ShapleyValueSampling 0.0773 0.0365 0.0505 0.0583 0.0885 0.0713

has shown satisfying results. However, the choice of an attribution method should
depend on the required characteristics. The overall results are presented in
Table 5.8. The results highlight that choosing an attribution method can be crucial,
as mentioned by Vermeire et al. [145].

Starting with the accuracy drop, the evaluation shows to which extent the
methods rank the most and least significant features based on the impact on
the accuracy. Most of the methods were able to show high-quality results across
all datasets. However, specifically, the perturbation-based was able to perform
slightly better than the other methods on some datasets. Saliency and Dynamask
showed some weaknesses on datasets, such as the CharacterTrajectories and FordA.
Both methods require further adjustments and knowledge about the data to
achieve good results. One example is the ratio of significant points for the
Dynamask approach to select the correct number of features.

Concerning Infidelity and Sensitivity, every method performed well. The results
indicate that gradient-based methods obtained the best Infidelity scores. This
was the opposite for the Sensitivity. Especially, GradientShap, Input X Gradient,
and Saliency were robust against significant perturbations in the input space
(Infidelity). On the other side, the Dynamask, Feature Permutation, and Occlusion
have shown good robustness concerning changes in the attribution when small
perturbations to the input were applied (Sensitivity). Using attribution methods
with low Sensitivity values in cases where adversarial attacks can occur is
suggested.

The runtime aspect gets critical when the use case requires near real-time
explanations. In addition, the results indicate that the dataset characteristics are
relevant. The findings show that approaches based on the sequence length and

5.3 discussion 55

Table 5.8: Overall results regarding the different aspects evaluated in this paper. A =
Accuracy Impact / Agreement, I = Infidelity, S = Sensitivity, R = Runtime, Ld =
Label dependency, Md = Model Parameter Dependency, C = Continuity.

Method A I S R Ld Md C
Gradient-based
GradientShap ⊕ ⊕
GuidedBackprop ⊕ ⊕ ⊖
InputXGradient ⊕ ⊕
IntegratedGradients ⊕ ⊕
Saliency ⊖ ⊕ ⊕ ⊕
Perturbation-based
Dynamask ⊖ ⊕ ⊖ ⊕ ⊕
FeatureAblation ⊕ ⊕ ⊖
FeaturePermutation ⊕ ⊕ ⊖
Occlusion ⊕ ⊕ ⊖ ⊕
Miscellaneous
KernelShap ⊖ ⊖ ⊕
LIME ⊕ ⊕ ⊕ ⊕
ShapleyValueSampling ⊕ ⊖ ⊕

number of channels suffer from very high runtimes for single samples. However,
if the time consumption is not of interest, this aspect is not relevant. Furthermore,
gradient-based methods are less dependent on the dataset characteristics and
very suitable when time matters. Contrarily, besides Dynamask and LIME, the
perturbation-based approaches suffer from several features. In the case of LIME,
the number of samples required to populate the space to train the surrogate
model increases with a higher number of features. Dynamask needs an additional
training phase, which requires multiple epochs. Based on the computational times,
the use of ShapelyValueSampling and KernelShap in real-time scenarios is nearly
impossible. For completeness, it has to be mentioned that it is possible to tweak
hyperparameters.

The label permutation and layer randomization provided insights concerning
the role of the model parameters during the attribution computation. Intuitively,
all methods have shown a high dependency on the labels of the data. Training
a model with randomized targets has shown that the attributions depend on the
labels, as they should. Concerning the model parameters, the results show that
randomizing any layer results in changes in the attribution maps. Besides Guided-
backpropagation, attribution maps significantly changed after any modification
and specifically LIME collapsed completely. This collapse emphasizes that LIME
directly depends on the model, and Guided-backpropagation relies more on data.

Finally, Continuity plays a pivotal role in human understanding, as it is
beneficial to have continuous attribution maps. Imagine there is a significant
frame with many important but some less important features. It might be superior
to mark the whole window as important, although this covers some insignificant

56 time to focus : benchmarking state-of-the-art attribution approaches

features. In the time series domain, the context matters, and continuous
attribution maps are easier to understand. The results show that Dynamask,
LIME, Occlusion, and ShapleyValueSampling were superior in their Continuity.
Intuitively, the attribution maps produced by gradient-based techniques look
noisy, whereas permutation-based look smoother. Dynamask includes a loss term
that ensures a smoother attribution map. Also, LIME and ShapleyValueSampling
produce smoother maps. The results suggest using a perturbation-based approach
if a human inspection is relevant.

5.4 conclusion

A comprehensive evaluation of a large set of state-of-the-art attribution methods
applicable to time series was performed. The results indicate that most
attribution methods can identify significant features without prior knowledge
about the data. Perturbation-based approaches have shown a slightly superior
performance in the data occlusion game. In addition, the results were validated
by measuring the agreement of the methods using different correlation and
similarity measurements. Except for Dynamask and KernelShap, the correlation
between the attribution methods showed high values. Further experiments were
conducted to highlight the high dependence of the attribution methods on
the model and the target labels. Only Guided-backpropagation has shown lower
reliance on the top layers of the network. Concerning Infidelity, the gradient-
based attribution methods show a superior performance. The perturbation-based
attribution methods are superb concerning Sensitivity and Continuity, which is
an important aspect when it comes to human interpretability. Furthermore, the
results indicate that the choice of an attribution method depends on the target
scenario, and different aspects like runtime, accuracy, Continuity, and noise are
indispensable.

6
T I M E R E I S E : A N O V E L T I M E S E R I E S AT T R I B U T I O N
A P P R O A C H

Based on attribution method benchmarks, it is evident that while there exist
many different attribution methods, none of these approaches is aligned to the
characteristics of time series. Most of these interpretability methods align to
the imaging modality intentionally. In this section, TimeREISE, a model agnostic
attribution method that shows success in the context of time series classification,
is introduced. The method applies perturbations to the input and considers
different attribution map characteristics, such as the granularity and density of an
attribution map. The approach demonstrates superior performance compared to
existing methods concerning different well established measurements. Especially,
TimeREISE scales well with an increasing number of channels and time steps and
has no architecture restrictions.

6.1 method

TimeREISE is a novel, a post-hoc interpretability method applicable to any
classification network. The approach was inspired by Petsiuk et al. [110]. They
presented a random perturbation-based approach for the image domain used as
a baseline to build TimeREISE. Similar to RISE [110] masks are generated, applied
to the input, and the output confidence is measured using the classification
scores. However, there are several adaptations in the native RISE [110] to enhance
the approach and successfully apply it to time series data. Besides the simple
normalization based on the occurrences of each data point, TimeREISE extends
this to create masks that evaluate the different channels. Therefore, the masks
cover the time and channel dimension. This makes it possible to evaluate different
combinations of channel and time steps. The second main addition applied is
the summation over different probabilities. RISE [110] uses a fixed probability
of occluded points to create the masks, resulting in a fixed density. In contrast
to that, TimeREISE uses masks of different densities and combines them in an
additive manner, which removes the assumption of the number of relevant data
points. Finally, the granularity is introduced as a parameter to analyze different
sizes of patterns.

Figure 6.1 shows the overall workflow of TimeREISE. M denotes a set of masks
with different window sizes. For example, M1.x can have a smaller window size
related to finer granularity. M3.x can have a larger window size for coarse patterns.
The same holds for the density. In Figure 6.1a the mask generation is shown.

This chapter is an adapted version of the work presented in: D. Mercier, A. Dengel, and S. Ahmed.
“TimeREISE: Time Series Randomized Evolving Input Sample Explanation.” In: Sensors 22.11 (2022).
doi: 10.3390/s22114084.

https://doi.org/10.3390/s22114084

5
8

t
i
m

e
r

e
i
s

e:
a

n
o

v
e

l
t

i
m

e
s

e
r

i
e

s
a

t
t

r
i
b

u
t

i
o

n
a

p
p

r
o

a
c

h

(a) Mask creation (b) Attribution step applied to each individual sample. Uses the existing masks from the mask creation step.

Figure 6.1: Shows the two steps required to use TimeREISE. (a) shows the generation based on a set of different granularity and densities. The granularity
defines the number of slices and the density of the number of perturbed slices within a mask. (b) shows a set of masks (M1.1 to M3.x) applied
to the input using an exchangeable perturbation function. The masked input is passed to a classifier and the classification score is multiplied
(*) by the masks and normalized by the number of feature occurrences.

6.1 method 59

The process to create the masks can be done once for the dataset as it only
depends on the number of time steps, channels and the provided set of granularity
and densities. The process shown in Figure 6.1b needs to be executed for each
sample.

6.1.1 Mathematical Formulation

TimeREISE extends the native mathematical formulation presented by Petsiuk et
al. [110] utilizing the different channels. TimeREISE generates masks with the
shape s ′ = (c, t ′) instead of s ′′ = (1, t ′) where t ′ refers to the down sampled time
axis and c to the channels. This enhances TimeREISE to apply masks that occlude
different time steps t ′ across all channels c within a mask s ′ instead of using
the same time steps t ′ across all channels c as it is the case for s ′′. Furthermore,
Monte Carlo Sampling is performed across a set of densities P and granularity
G to enhance the masks to consider several density values p. Similarly, the use
of several granularity values g regularizes the size of the occluded patches. This
changes the set of masks as shown in Equation 6.1.

M = {M
p,g
0 , . . .Mp,g

N | p ∈ P∧ g ∈ G} (6.1)

Finally, denote S as the weighted sum of the scores produced by the network
and the random masks M similar to Petsiuk et al. but normalize each feature as
shown in Equation 6.2.

S =

C∑
c=0

T∑
t=0

Sc,t∑N
m=0Mc,t,n

(6.2)

6.1.2 Theoretical Correctness

Concerning sanity checks mentioned by Adebayo et al. [3], the correctness of the
approach is crucial, and it should mainly depend on the learned behavior rather
than highlighting dataset-specific features. Adebayo et al. showed that in the
image domain, the methods may produce edge detectors. However, this mainly
holds for gradient-based methods. TimeREISE does not suffer from this, as it only
depends on the logits produced by the network prediction. The complete process
only depends on the forward pass of the network and has no access to any internal
parameters.

6.1.3 Theoretical Runtime

For the runtime evaluation, initialization and attribution are considered as two
separate processes. Equation 6.3 shows the runtime to create the set of masks for
a given set of density probabilities P, granularity G and the number of masks N

defined for each combination of pi and gi. β is defined as the constant time to
create the given map. In addition, P and G are independent of the data shape and
therefore do not increase and can be considered as constant factors, leading to a
runtime of Θ(N).

60 timereise : a novel time series attribution approach

Algorithm 1 Mask generation (Initialization).

1: Define: s as input shape, P as a set of probabilities, G as a set of granularities
for time steps, N number of masks and M as a list of masks.

2: for p = 1, . . . ,P do
3: for g = 1, . . . ,G do
4: for i = 1, . . . ,N do
5: s ′ = downscale(s,g)
6: m = uniform(s ′) < p

7: m = upscale(m, s)
8: m = crop(m, s)
9: Append m to M

10: end for
11: end for
12: end for
13: S = S×M

N

14: S =
S−min(S)

max(S−min(S))

tinit = P ∗G ∗N ∗β → tinit = Θ(P ∗G ∗N) → tinit = Θ(N) (6.3)

Equation 6.4 shows the linear runtime of the attribution step. γ is defined as the
constant time to apply the perturbation and δ as the constant time the classifier
requires to forward pass the sample. Similar to the initialization step, P and G are
assumed as constants, resulting in a runtime of Θ(N).

tapply = P ∗G ∗N ∗ γ ∗ δ → tapply = Θ(N) (6.4)

As the runtime can heavily depend on the implementation and the used
hardware, a theoretical analysis offers a much more accurate analysis. It is
important to mention that gradient-based methods such as Guided-backpropagation
are superior concerning their runtime, as they only depend on the backward pass.

Perturbation-based methods require multiple forward passes. For
Occlusion [159] and Feature Ablation [159] the number depends on the window
size. Using the same window size for a longer sequence results in more forward
passes.

As described above, the runtime of TimeREISE mainly depends on the number
of masks used to compute the attribution map. This number can vary based on the
time series, granularity and density. Using hyperparameter tuning, it is possible
to find the minimal number of required masks to produce a map that shows only
insignificant changes.

6.1.4 Theoretical Implementation

The implementation of TimeREISE can be divided into two parts, similar to the
RISE [110] implementation. In the first stage shown in Algorithm 1, a set of
masks suited for the input shape gets generated once per dataset. Therefore, every
combination of probabilities P and granularity G is generated. The probability

6.2 datasets 61

Algorithm 2 Mask application (Attribution).

1: Define: x as input, θ as classifier, σ as perturbation function, S as list of scores
and N as feature occurrences across all masks M.

2: for m = 1, . . . ,M do
3: xmi

= σ(x,mi)

4: y ′ = θ(xmi
)

5: Append y ′ to S

6: end for
7: S = ST×M

N

8: S =
S−min(S)

max(S−min(S))

refers to a threshold used to determine the density of the mask. Granularity
refers to the amount of data considered in a single slice. The down sampling
and up sampling is performed along the time axis. Uniform refers to a uniform
distribution with the given shape s ′. An additional cropping step is performed to
preserve the original shape, s.

Algorithm 2 performs the actual attribution. A predefined perturbation method
σ is applied to the input x using every mask mi and is passed to the classifier θ.
As default perturbation, the method uses the simple elementwise multiplication
of the input x and the mask mi. This results in a list of scores stored in S. Next, the
matrix product of ST and the masks M is computed, and each point is normalized
by the number of occurrences N in the set M. Finally, the map is normalized to
values between zero and one.

6.2 datasets

Multiple datasets from the well known UEA & UCR repository [9] were used
to perform the experiments. The selection of datasets was based on a sufficient
number of samples and the dataset modalities such as the number of time steps,
channels, and classes. Furthermore, the list of datasets was extended using the
Anomaly dataset proposed by Mercier et al. [91]. This synthetic dataset served as
an interpretable baseline as the point anomalies in this dataset are mathematically
defined, and therefore the ground truth attribution is available. Table 6.1 lists the
datasets and their characteristics.

6.3 experiments & results

Following the generic experiment setup is described for the experiments
concerning the insertion and deletion, Infidelity, Sensitivity analysis. In addition,
the experiments cover a sanity check to validate the correctness of the approach
and a runtime analysis to evaluate the dependency on the dataset properties such
as channels and time steps.

62 timereise : a novel time series attribution approach

Table 6.1: Shows the datasets related to critical infrastructures and their different
characteristics.

Domain & Dataset Train Test Steps Channels Classes

Critical Manufacturing
Anomaly (synthetic data) [91] 50,000 10,000 50 3 2
ElectricDevices 8,926 7,711 96 1 7
FordA 3,601 1,320 500 1 2
Food and Agriculture
Crop 7,200 16,800 46 1 24
Strawberry 613 370 235 1 2
Public Health
ECG5000 500 4,500 140 1 5
FaceDetection 5,890 3,524 62 144 2
MedicalImages 381 760 99 1 10
NonInvasiveFetalECG 1,800 1,965 750 1 42
PhalangesOutlinesCorrect 1,800 858 80 1 2
Communications
CharacterTrajectories 1,422 1,436 182 3 20
HandOutlines 1,000 370 2,709 1 2
UWaveGestureLibraryAll 896 3,582 945 1 8
Wafer 1,000 6,164 152 1 2
Transportation Systems
AsphaltPavementType 1,055 1,056 1,543 1 3
AsphaltRegularity 751 751 4,201 1 2
MelbournePedestrian 1,194 2,439 24 1 10

6.3.1 Baseline Accuracy

During the experiments, InceptionTime [35] was used, as it was the state-of-the-
art model at that time. The network architecture consists of multiple inception
blocks followed by a global average pooling and a fully connected layer. Each
inception block consists of multiple convolutional layers and a max-pooling.
Furthermore, the network uses residual connections between the input and the
different inception blocks. It is based on the Inception-v4 [138] architecture but
specifically aligned to the time series domain and has shown to achieve good
performances across time series classification datasets while being very robust.
Figure 6.2 shows the architecture of IncpetionTime.

The network was trained using a learning rate scheduler to reduce the learning
rate on plateaus and early stopping to prevent overfitting. As an optimizer, SGD

was applied with an initial learning rate of 0.01 and a maximum of 100 epochs.
The experiments indicate that every model converged in less than 100 epochs. As
some datasets are huge, and the computation of measures such as the Sensitivity

6.3 experiments & results 63

Figure 6.2: Shows the general architecture of InceptionTime proposed by Fawaz et al. [35].
Reprinted from [35].

Table 6.2: Shows the performance of IncpetionTime on the complete and sub-sampled
dataset. The results indicate that the subset accuracy was equal to the complete
test set accuracy. Numbers are given in percentage.

Dataset
Test Data 100 Samples

Macro F1 Micro F1 Acc. Macro F1 Micro F1 Acc.

Anomaly 97.69 98.71 98.72 96.99 97.97 98.00
AsphaltPavementType 91.69 92.44 92.42 89.05 89.91 90.00
AsphaltRegularity 100.00 100.00 100.00 100.00 100.00 100.00
CharacterTrajectories 99.40 99.44 99.44 100.00 100.00 100.00
Crop 71.89 71.89 72.81 70.58 72.28 74.00
ECG5000 56.11 93.52 94.36 60.45 94.12 95.00
ElectricDevices 62.86 69.35 70.56 67.09 76.02 79.00
FaceDetection 66.34 66.34 66.37 67.79 67.90 68.00
FordA 94.92 94.92 94.92 92.94 92.99 93.00
HandOutlines 94.64 95.10 95.14 93.99 94.93 95.00
MedicalImages 72.27 74.61 74.74 70.86 74.79 75.00
MelbournePedestrian 94.22 94.24 94.22 96.35 95.95 96.00
NonInvasiveFetalECG 94.00 94.30 94.25 84.24 92.40 92.00
PhalangesOutlinesCorrect 81.42 82.54 82.75 88.49 88.98 89.00
Strawberry 95.54 95.93 95.95 96.72 96.99 97.00
UWaveGestureLibraryAll 91.65 91.67 91.74 85.25 86.96 87.00
Wafer 99.54 99.82 99.82 100.00 100.00 100.00

Average 86.13 89.11 89.31 85.93 89.54 89.88

is computationally expensive, a set of 100 test samples is used to perform the
attribution. In addition, the base accuracy scores for the whole datasets and the
subsets are provided in Table 6.2.

64 timereise : a novel time series attribution approach

Figure 6.3: Shows the attribution map of a CharacterTrajectories sample. Top-X: top-down
randomization of X layers, Bottom-X: bottom-up randomization of X layers.
Random-X: randomized layer/block X. Top-0 refers to the original attribution
map. The results provide evidence that TimeREISE method strongly depends
on the model parameters.

Figure 6.4: Shows the correlation between the maps with randomized layers and the
original attribution map. Refers to the attribution maps shown in Figure 6.3.
Changes to the network resulted in a lower correlation of the attribution map
compared to the original map for TimeREISE.

6.3.2 Sanity Check

In addition to the theoretical explanation of the correctness, a sanity check was
conducted. Therefore, a sample of the CharacterTrajectories dataset was used,
and the attribution map for different states of the model was computed. In
Figure 6.3 the different attribution maps are shown. The first column always
shows the original attribution map. Going from left to right increases the number
of randomized layers for the top-down and bottom-up approaches. The first
row refers to the bottom-up approach in which the layers were sequentially
randomized starting from the first convolutional block in the first inception block
up to the last dense layer. Respectively, the second row shows the top-down
approach where the dense layer was randomized first and the first convolutional
block of the first inception block last. The third row covers the independent
randomization of a single layer in the case of ‘Random-9’ as it refers to the last
dense layer and single block for the other cases. Across all setups, it is visible that
randomizing the layer weights resulted in significant changes in the attribution
map.

In Figure 6.4 the Spearman and Pearson Correlation between the original
and randomized attribution map is given. The Spearman Correlation was used,
as it is a rank-based approach. The color of the individual points shows the
correctness of the prediction using the manipulated network. It is visible that

6.3 experiments & results 65

Figure 6.5: Shows the runtime on the different datasets for 100 attribution maps.
TimeREISE shows a stable runtime across all datasets. For datasets with long
sequences, the runtime of the other approaches increases.

the correlation of the attribution maps with the correct prediction is higher than
for others. This shows that TimeREISE successfully depends on the prediction of
the network. Furthermore, the figure shows that for the top-down randomization,
the correlation drops by a large value. Similarly, the bottom-up randomization
showed an increasing drop in correlation. However, randomizing a single layer
or block resulted in higher correlation values, except for the randomization of
the last dense layer. This can be explained by the structure of InceptionTime, as
it is very robust concerning the randomization of a single block. This is further
validated by the correct predictions within this setup.

6.3.3 Runtime Analysis

Figure 6.5 shows the runtimes for the experiments executed on 100 samples.
The results show that methods that directly depend on a window size, such
as Feature Ablation [159] and Occlusion [159], required much longer processing
for the datasets that had numerous features. In particular, the run times for the
four data sets with the highest number of channels and time steps illustrate this
behavior. To reduce the processing time, it is possible to select a larger window.
However, this requires knowledge about the dataset and the size of the pattern
within the dataset. Guided-backpropagation [134] and Integrated Gradients [136] were
excluded as they do not depend on such properties of the datasets. LIME [115]
and TimeREISE mainly depend on the number of samples and masks defined for
each of the approaches. The experiments show that in both cases, the runtime of
both was constant for the parameters that were selected. However, as mentioned,
it would be possible to fine-tune the parameters.

In addition to the real datasets, Figure 6.6 shows the increase based on the
number of time steps and channels. The runtime of the Feature Ablation and
Occlusion increased based on the time steps and the channels, whereas the
processing time of LIME and TimeREISE only slightly increased as the forward
passes requires more time. However, this holds for the gradient-based methods
and the backpropagation too. The difference is that the number of backward
passes required in those methods is limited, whereas the number of forward
passes for LIME and TimeREISE is higher. It has to be mentioned that the number

66 timereise : a novel time series attribution approach

Figure 6.6: Shows the runtime on synthetic data with different number of time steps
and channels. Integrated Gradients and Guided-backpropagation were excluded.
The runtime of Feature Ablation and Occlusion increases dramatically with the
longer sequences. TimeREISE and LIME show a stable runtime.

(a) Deletion of important data points

(b) Insertion of important data points

Figure 6.7: Critical difference diagram showing the average rank of each attribution
method across all datasets. The ranking is based on the AUC using accuracy.
Perturbation-based approaches achieve better results on the deletion and
insertion test. TimeREISE shows a superior performance for both tests.

might vary depending on the implementation and hardware. However, they
provide insights into the expected behavior when changing the dataset.

6.3.4 Insertion & Deletion

Fong and Vedaldi [40] used the insertion and deletion metric to explain the
significant values of an attribution method. The intuition behind the metric is
that the prediction of a classifier changes if the cause gets removed or added.
In the case of the deletion, the points starting with the most important one are
removed from the input, and the prediction is computed. Large drops suggest
that the feature was significant for the prediction. In the case of the deletion, lower
Area Under the Curves (AUCs) suggest that the method is superior in spotting
important parts of the input. For the insertion, higher AUCs are superior. Large
increases in this setup correspond to adding important data points relevant to the
prediction.

6.3 experiments & results 67

Figure 6.7 shows the critical difference diagrams of every attribution method.
These were calculated using the AUC scores. In Figure 6.7a TimeREISE shows
an outstanding performance compared to the other state-of-the-art methods
regarding the deletion of significant data. Another important finding is that
methods which utilize a window, such as Feature Ablation and Occlusion showed
better performances concerning the deletion compared to methods that directly
depend on the gradients, such as Guided-backpropagation and Integrated Gradients.
However, Figure 6.7b highlights that the results were the same for the insertion
task. One reason for its outcome is the smoothing applied to approaches that use
a defined window. Gradient-based methods provide noisy and spiking attribution
maps.

6
8

t
i
m

e
r

e
i
s

e:
a

n
o

v
e

l
t

i
m

e
s

e
r

i
e

s
a

t
t

r
i
b

u
t

i
o

n
a

p
p

r
o

a
c

h

Table 6.3: Sequential deletion of the most important points from the original input signal. Respectively, sequential insertion of the most important points
starts with a sample consisting of mean values. Lower AUC scores are better for deletion. Higher AUC scores are better for insertion. AUC was
calculated using classification accuracy. TimeREISE outperformed any other method. The best results are highlighted in bold.

Dataset
FeatureAblation [38] GuidedBackprop [136] IntegratedGrad. [134] LIME [115] Occlusion [159] TimeREISE

del ins del ins del ins del ins del ins del ins

Anomaly 0.7731 0.9737 0.7791 0.9597 0.7786 0.9624 0.7783 0.9473 0.7714 0.9739 0.7631 0.9867
AsphaltPavementType 0.4073 0.8819 0.3930 0.8944 0.3940 0.8935 0.4622 0.8623 0.4171 0.8726 0.4135 0.8641
AsphaltRegularity 0.5857 0.9954 0.5785 0.9960 0.5817 0.9964 0.6843 0.9871 0.5901 0.9929 0.5927 0.9833
CharacterTrajectories 0.0856 0.8563 0.0807 0.8701 0.1091 0.8580 0.0785 0.8543 0.0878 0.8609 0.0401 0.8809
Crop 0.0998 0.3780 0.1402 0.3026 0.1404 0.2652 0.1096 0.3198 0.1583 0.3170 0.0628 0.5065
ECG5000 0.2104 0.8771 0.1876 0.8782 0.1208 0.8792 0.1294 0.8846 0.1176 0.8796 0.1015 0.9060
ElectricDevices 0.3086 0.5393 0.3616 0.5718 0.3178 0.5244 0.3338 0.4971 0.3524 0.5914 0.2726 0.6957
FaceDetection 0.5165 0.6760 0.2462 0.8065 0.5116 0.6660 0.6019 0.6308 0.5281 0.6691 0.0080 0.9968
FordA 0.4729 0.7816 0.4829 0.8207 0.4793 0.6834 0.4803 0.6731 0.4751 0.8493 0.3859 0.9436
HandOutlines 0.3125 0.3630 0.3137 0.3289 0.3127 0.3432 0.3153 0.3201 0.3107 0.3911 0.3485 0.3607
MedicalImages 0.1840 0.5884 0.1588 0.5645 0.1953 0.4518 0.1736 0.5622 0.1569 0.5883 0.1229 0.7125
MelbournePedestrian 0.1579 0.5967 0.2071 0.5579 0.2733 0.4579 0.1767 0.6013 0.2363 0.4763 0.0979 0.6538
NonInvasiveFetalECG 0.0424 0.1488 0.0454 0.0654 0.0405 0.0868 0.0462 0.0816 0.0422 0.2503 0.0894 0.4333
PhalangesOutlinesCorrect 0.4033 0.5072 0.4058 0.4347 0.4056 0.4437 0.4038 0.4288 0.4034 0.5616 0.2919 0.6171
Strawberry 0.5827 0.7179 0.6141 0.7100 0.6428 0.7179 0.6397 0.7087 0.5958 0.7761 0.3882 0.7909
UWaveGestureLibraryAll 0.1840 0.4243 0.1353 0.5260 0.1285 0.1452 0.1226 0.1782 0.1743 0.4669 0.0973 0.5379
Wafer 0.2740 0.7684 0.3441 0.8574 0.2603 0.8061 0.2324 0.8613 0.2642 0.7932 0.2002 0.8976

Average 0.3295 0.6514 0.3220 0.6556 0.3348 0.5989 0.3393 0.6117 0.3342 0.6653 0.2516 0.7510

6.3 experiments & results 69

Table 6.4: Lower Infidelity values correspond to better performance. The method names
are shortened by taking only the initial character (Feature Ablation, Guided-
backpropagation, Integrated Gradients, LIME, Occlusion, TimeREISE). There are
only insignificant differences between the methods. The best results are
highlighted in bold.

Dataset F [38] G [136] I [134] L [115] O [159] T (Ours)

Anomaly 0.0233 0.0193 0.0158 0.0184 0.0222 0.0230
AsphaltPavementType 0.2126 0.2126 0.2126 0.2127 0.2126 0.2124
AsphaltRegularity 0.0045 0.0046 0.0046 0.0046 0.0045 0.0045
CharacterTrajectories 0.1399 0.1397 0.1399 0.1399 0.1399 0.1396
Crop 0.2967 0.3081 0.3055 0.2966 0.3143 0.3032
ECG5000 0.0273 0.0272 0.0257 0.0210 0.0236 0.0242
ElectricDevices 18.0869 18.1047 18.1130 18.1042 18.0854 18.1070
FaceDetection 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
FordA 0.0118 0.0118 0.0116 0.0116 0.0118 0.0118
HandOutlines 1.6914 1.7015 1.6932 1.6928 1.6938 1.6920
MedicalImages 0.2492 0.2492 0.2472 0.2486 0.2490 0.2482
MelbournePedestrian 1.2324 1.2833 1.3745 1.1959 1.3319 1.2301
NonInvasiveFetalECG 51.7361 51.7288 51.7252 51.7228 51.7413 51.7072
PhalangesOutlinesCorrect 0.4394 0.4285 0.4360 0.4413 0.4403 0.4405
Strawberry 0.4865 0.4783 0.4863 0.4849 0.4811 0.4851
UWaveGestureLibraryAll 4.9995 4.9983 4.9922 4.9996 4.9992 4.9968
Wafer 0.0355 0.0356 0.0355 0.0356 0.0355 0.0352

Average 4.6867 4.6901 4.6952 4.6842 4.6933 4.6859

Table 6.3 shows the different results of the deletion and insertion for every
individual dataset. Furthermore, the table provides the average scores achieved
by the methods. TimeREISE showed a superior behavior in both the average
deletion and insertion score. The method achieves the best (lowest) score for
13 datasets and an average of 0.2516. The second-best approach concerning the
average AUC score was Guided-backpropagation with a score of 0.3220 and two times
the best performance. In addition, TimeREISE showed the best average score for
the insertion, with 14 best scores. Guided-backpropagation achieved twice the best
score in the insertion task. However, the average score of TimeREISE was 0.7510

compared to the second best of 0.6653 for the Occlusion.

6.3.5 Infidelity & Sensitivity

The Infidelity and Sensitivity proposed by Yeh et al. [155] cover significant and
insignificant changes applied to the attribution and the input. The intuition
behind Infidelity is that a significant perturbation of the attribution map leads
to a change in the prediction. Similarly, the Sensitivity is calculated using an
insignificant change in the input sample. The Sensitivity requires recomputing
the attribution maps. For both Infidelity and Sensitivity, lower values are better.
For Infidelity, 1,000 perturbations were computed for each of the 100 samples and

70 timereise : a novel time series attribution approach

Table 6.5: Lower Sensitivity values correspond to better performance. The method names
are shortened by taking only the initial character (Feature Ablation, Guided-
backpropagation, Integrated Gradients, LIME, Occlusion, TimeREISE). Perturbation-
based approaches show a superior performance. TimeREISE showed the best
performance across most of the datasets. The best results are highlighted in
bold.

Dataset F [38] G [136] I [134] L [115] O [159] T (Ours)

Anomaly 0.0574 0.0747 0.1470 0.2591 0.0664 0.0522
AsphaltPavementType 0.0292 0.2864 0.0358 0.4259 0.0274 0.0705
AsphaltRegularity 0.0288 0.2797 0.0567 0.3664 0.0274 0.0028
CharacterTrajectories 0.0199 0.0547 0.0705 0.1353 0.0174 0.0076
Crop 0.0808 0.1060 0.1702 0.1786 0.1307 0.0411
ECG5000 0.0301 0.0772 0.1218 0.1811 0.0248 0.0111
ElectricDevices 0.2069 0.2608 0.6129 0.2622 0.1949 0.1696
FaceDetection 0.0180 0.0204 0.0136 0.4722 0.0144 0.0048
FordA 0.0231 0.0384 0.0708 0.1690 0.0155 0.0147
HandOutlines 0.0952 0.1545 0.1203 0.1249 0.0743 0.1175
MedicalImages 0.0428 0.0680 0.1483 0.1754 0.0395 0.0406
MelbournePedestrian 0.1667 0.1363 0.1684 0.2514 0.2176 0.0472
NonInvasiveFetalECG 0.1142 0.1043 0.1543 0.1564 0.0869 0.1570
PhalangesOutlinesCorrect 0.0415 0.1442 0.1562 0.1212 0.0390 0.0574
Strawberry 0.0486 0.0966 0.0506 0.1267 0.0515 0.0698
UWaveGestureLibraryAll 0.0569 0.0535 0.2341 0.1778 0.0373 0.0381
Wafer 0.0252 0.0368 0.1299 0.1250 0.0141 0.0051

Average 0.0638 0.1172 0.1448 0.2182 0.0635 0.0533

computed the averaged Infidelity value. In addition, 10 perturbations for each of
the samples were used to compute their Sensitivity.

Starting with Infidelity, the results shown in Table 6.4 emphasized that there
is no significant difference between the different methods. Overall, the average
scores differed only by 0.011, which is an insignificant difference. Across all
datasets, the methods performed similarly, and it is impossible to create a critical
difference diagram as the null hypothesis did hold. Interestingly, the Infidelity
scores for the ElectricDevices and PhalangesOutlinesCorrect dataset were much
larger compared to the other datasets.

The Sensitivity experiments are shown in Table 6.5. The results of these
experiments show a significant difference between the methods. The best result
was achieved by TimeREISE, with a score of 0.0533. The worst result was achieved
by LIME, with a score of 0.2182, which was about four times larger than the score
of TimeREISE. The overall finding was that the perturbation-based approaches
are superior in the case of Sensitivity compared to the gradient-based or others.
This is the case as the gradient-based methods result in noisy attribution maps,
whereas the perturbation-based come up with smoothed maps based on a
window of multiple features. This smoothing increases the robustness against
minor changes in the input.

6.3 experiments & results 71

Figure 6.8: Shows critical difference diagram highlighting the average sensitivity rank
of each attribution method across all datasets. The ranking is based
on the average Sensitivity. Perturbation-based approaches show superior
performance. The horizontal bars show the groups that can be concluded
based on the rank of the methods. They clearly highlight the high and low
performing sets.

In Figure 6.8 the critical difference diagram across all datasets is shown.
It highlights the superior performance of the perturbation-based approaches
compared to the other approaches. In addition, it highlights that TimeREISE was
only slightly above the Occlusion method.

6.3.6 Attribution Continuity

Furthermore, the Continuity proposed by Abdul et al. [2] was calculated.
Continuity is a measurement that bridges correctness and visual interpretability.
The Continuity for each feature was calculated as presented in Equation 6.5 and
took the mean for the overall evaluation between the methods. Lower values are
better regarding the cognitive load, but might conflict with the exact correctness
of the feature importance.

C =

C∑
c=0

T−1∑
t=0

| Sc,t − Sc,t+1 | (6.5)

Table 6.6 shows the average Continuity of the attribution methods. Similar to
the Sensitivity, smaller values are better. Interestingly, the performance of the
attribution methods was very similar to the Sensitivity. Again TimeREISE showed
superior performance with a score of 0.0267 compared to Occlusion as the second-
best approach with a score of 0.0565. The reason for the superior performance is
the smooth mask design. The masks of TimeREISE are created on a down scaled
sample, and then they are upscaled using interpolation to the original input size,
which results in smoother masks.

Figure 6.9 shows the corresponding critical difference diagram, which looks
similar to the diagram for the Sensitivity. This is intuitive that the Sensitivity and
the continuity definition have an overlap.

6.3.7 Visualization

The visualization presents some interpretable attribution maps. The results
highlight that TimeREISE produces smoother attribution maps while preserving
the similar shape compared to the other attribution methods. TimeREISE makes

72 timereise : a novel time series attribution approach

Table 6.6: Lower continuity values correspond to better performance. The method names
are shortened by taking only the initial character (Feature Ablation, Guided-
backpropagation, Integrated Gradients, LIME, Occlusion, TimeREISE). TimeREISE
showed a superior performance across all datasets. The best results are
highlighted in bold.

Dataset F [38] G [136] I [134] L [115] O [159] T (Ours)

Anomaly 0.1163 0.1444 0.1309 0.1390 0.0908 0.0473
AsphaltPavementType 0.0792 0.0977 0.0770 0.0765 0.0450 0.0015
AsphaltRegularity 0.0582 0.0703 0.0485 0.0525 0.0334 0.0008
CharacterTrajectories 0.0264 0.0324 0.0368 0.0619 0.0243 0.0134
Crop 0.1282 0.1655 0.1952 0.1741 0.0985 0.0618
ECG5000 0.0682 0.1000 0.1004 0.0844 0.0505 0.0296
ElectricDevices 0.2016 0.1840 0.1984 0.1950 0.0884 0.0350
FaceDetection 0.0690 0.0745 0.0613 0.0331 0.0373 0.0161
FordA 0.0770 0.0819 0.0959 0.1530 0.0576 0.0083
HandOutlines 0.0123 0.0183 0.0258 0.1501 0.0106 0.0015
MedicalImages 0.0923 0.1043 0.1259 0.1076 0.0602 0.0371
MelbournePedestrian 0.1804 0.1844 0.2217 0.1881 0.1264 0.1052
NonInvasiveFetalECG 0.0224 0.0650 0.0753 0.1603 0.0197 0.0043
PhalangesOutlinesCorrect 0.1066 0.1187 0.1525 0.1416 0.0715 0.0496
Strawberry 0.0720 0.0679 0.0785 0.1447 0.0676 0.0159
UWaveGestureLibraryAll 0.0216 0.0557 0.0816 0.1629 0.0226 0.0038
Wafer 0.0924 0.0957 0.1418 0.1222 0.0557 0.0232

Average 0.0838 0.0977 0.1087 0.1263 0.0565 0.0267

Figure 6.9: Critical difference diagram showing the average continuity rank of each
attribution method across all datasets. The ranking is based on the average
Continuity. Perturbation-based approaches show superior performance. The
horizontal bars show the groups that can be concluded based on the rank of
the methods. They clearly highlight the low performing set.

a good compromise between the visual appearance, which is strongly influenced
by Continuity and noise, and the correctness of the feature importance values.

In Figure 6.10 an attribution map of every technique is shown. The first
Figure 6.10a shows an anomalous sample of the Anomaly dataset. The anomaly
is represented by the peak in the green signal. All methods successfully identified
the peak as the most important part. However, the Occlusion and TimeREISE
highlighted that the neighborhood points of the peak are important. Whereas the
intuition first suggests that only the peak should be highlighted, this is not correct,

6.4 discussion 73

(a) Anomaly detection dataset sample. Anomalies are defined as point anomalies represented by
peaks.

(b) ECG5000 data sample. Classification task that depends on a single channel.

Figure 6.10: Shows the attribution maps for a single sample. First row: original sample,
second row: attribution, third row: histogram of the attribution. Low
values in the histogram relate to a good separation between relevant and
irrelevant features. (a) shows an anomalous sample in which the green peak
corresponds to the anomalous signal part. Overall, the attributions look
similar, except that TimeREISE is smoother compared to the other methods.

as changing the neighborhood points will influence the peak. Furthermore, it is
visible that the attribution map provided by TimeREISE is very smooth compared
to the other attributions.

In Figure 6.10b an attribution map for the ECG5000 dataset is shown. The results
of all methods look similar to a certain degree. However, except for TimeREISE,
the last part of the sequence was identified as features with some importance. In
addition, the attribution maps included some noise. Specifically, the first negative
peak in the signal was captured by the Integrated Gradients and LIME to be an
important part. This was not the case for the remaining methods, and changing
this part or the last part showed only a minor effect on the prediction.

Figure 6.11 shows the results of the attribution applied to an interpretable
character trajectory sample. The Figure presents the time series sample and its
back transformation to two-dimensional space. Furthermore, the attribution maps
given in the second row showed the smoothness of TimeREISE. One finding was
that the horizontal and vertical movement were rated as more important by most
methods, and that the majority of important points occur within the first 100

time steps. Interestingly, Guided-backpropagation showed in a surprisingly high
relevance for the force. Feature Ablation and Occlusion showed low importance
for both the vertical movement and the pressure.

6.4 discussion

This subsection discusses the results to gain a better impression of the relevance
and possible applications of TimeREISE. Furthermore, the advantages and

74 timereise : a novel time series attribution approach

Figure 6.11: First row: time series of the sample ’m’ and 2D transformation, second row:
attribution, Subsequent rows: importance of horizontal, vertical, force values.
TimeREISE provides a smooth attribution map and assigns importance to the
force channel. Besides TimeREISE, only Guided-backpropagation highlighted
the importance of the force channel.

drawbacks of the existing methods are mentioned. To summarize the experiments,
the datasets are grouped below based on their properties described in Table 6.1.
Data sets with less than 1,000 training samples are referred to as small data sets.
Furthermore, a distinction is made between univariate and multivariate data sets,
as well as between binary and multi-class data sets. A final characteristic is the
sequence length, which is considered a long sequence if it exceeds 500.

During the sanity checks, TimeREISE has shown a strong dependency on the
model parameters. This dependency is an indication that the method does not
represent dataset characteristics, but visualizes the points considered relevant
by the model. The sanity check showed strong robustness to single layer
manipulation and a large drop-off in attribution map correlation when layers were
manipulated sequentially.

The runtime analysis also showed that TimeREISE scales are better compared
to other perturbation-based approaches like Occlusion. Specifically, the long
sequences and multivariate datasets resulted in a dramatic increase in the runtime
for perturbation-based methods and LIME. It is worth mentioning that the
gradient-based methods are always superior to the other methods in terms of
runtime, since they require only one backward pass. However, TimeREISE has
shown superior behavior compared to the remaining methods, specifically when
long sequences or high channel numbers occur. For short sequences, the runtime
of TimeREISE was nearly constant. In addition, it is possible to precisely adapt
the runtime of TimeREISE to the use case by incorporating knowledge about the
data set. One example is the detection of point anomalies, where a low density is
sufficient.

The results of the deletion and insertion test provided evidence that the
attribution maps are relevant for the prediction. Especially in the deletion test,
TimeREISE showed excellent results, which directly lead to performance drops
when important features were removed. Besides two long sequence datasets,
TimeREISE has shown superior performance across all dataset categories. In
general, the performance of window-based approaches was good in the insertion

6.5 conclusion 75

test, since they do not depend on gradients. The detection of a peak is an example
of a use case where the insertion test gives a false picture. Methods that use the
gradients showed lower importance at the time steps adjacent to the peak, while
this was not the case with TimeREISE.

In addition, TimeREISE shows excellent results for Infidelity and Sensitivity.
TimeREISE has shown the best Sensitivity values across all datasets. Concerning
Infidelity, TimeREISE achieved the second-best overall performance. The best
scores were achieved in long sequences. It has to be mentioned that LIME
was slightly better in the overall Infidelity, however, TimeREISE achieved
more individual best scores for the datasets. Due to the mask-based design,
TimeREISE has high robustness in case of insignificant changes in the input.
This is also because the attribution masks created by TimeREISE have a high
Continuity, which contributes to the interpretability. Despite this Continuity, the
attribution masks were shown to withstand the sanity check and thus offer
a good compromise between explanatory power and correctness. Finally, the
visualizations of the different attribution methods shows that TimeREISE provides
less noisy explanations. TimeREISE was able to show the best Continuity values
across all datasets.

In summary, TimeREISE has proven to be an outstanding method for time series
analysis in terms of correctness, runtime and interpretability. In addition, the
customization of the hyperparameters allows easy adaptation to different aspects
of use. In contrast to existing perturbation-based methods, TimeREISE can be
applied without knowing the size of the relevant pattern within the data, making
it more effective in cases where the solution to the question of which parts are
relevant is not known.

6.5 conclusion

The experiments indicated that the proposed attribution method TimeREISE can
achieve excellent performance concerning most of the evaluated metrics across
all selected datasets. The method outperforms other state-of-the-art attribution
methods concerning the Continuity, Sensitivity, and insertion and deletion metrics.
Specifically, in the deletion test, a superb performance was shown. Furthermore,
the experiments demonstrated that the method produces smooth attribution maps
that require less effort to interpret. Concerning Infidelity, the approach was on
par with the state-of-the-art methods. Further, the theoretical runtime evaluation
shows that the method has a better scaling compared to methods that directly
depend on the number of features and is applicable to any classifier. Another
positive aspect is that the method does not depend on noisy gradients or internal
classifier variables. Ultimately, the sanity checks highlight the dependency on
the model parameters and the robustness. Concerning the runtime, the method
showed superior results compared to the perturbation-based methods when
the dataset covers long sequences or multiple channels. For short univariate
sequences, the runtime was nearly constant and only slightly above the runtime of
the other perturbation-based methods. Compared to the gradient-based methods,
the runtime of TimeREISE and any other perturbation-based method were inferior.

7
T S V I Z : A N O V E L G R A D I E N T- B A S E D V I S U A L I Z AT I O N
F R A M E W O R K

Using attribution maps to visualize the impact of data points has proven to be
successful. However, visualization in the domain of time series is significantly
challenging and little or no concentration has been devoted to the development of
visualization tools. While it is straightforward to show the impact of the input
using an attribution mask the in-depth analysis of a network including each
neuron, the interaction between them and possible optimization requires a far
more advanced visualization.

In this section, a novel component, namely TSViz, for the demystification of
convolutional deep learning models for time series analysis is presented. The
framework is based on one of the previously analyzed Saliency method. To
propose a complete system, the following functionalities were implemented and
evaluated:

• Input relevance: Shows the importance of the input based on the output.

• Filter importance: Shows the importance of every neuron based on the
output.

• Network clustering: Partitions the network based on activation similarity.

• Network pruning: Optimizes the network by removing redundancy or less
important neurons.

• Input optimization: Maximizes the output by input modifications to explain
the source of variation.

• Impact of noise: Use Fast Gradient Sign Method (FGSM) [52] and
iterative FGSM [69]) to understand the impact of adversarial noise.

• Three dimensional visualization: Enables interactive network exploration.

7.1 datasets

To evaluate the effectiveness and correctness of the proposed visualization
framework, two different time series datasets were used. Following the regression
and the classification, datasets and task-specific characteristics are described. In
addition, the dataset statistics are shown in Table 7.1.

This chapter is an adapted version of the work presented in: D. Mercier et al. “Tsviz: Demystification
of deep learning models for time-series analysis.” In: IEEE Access 7 (2019), pp. 67027–67040.

78 tsviz : a novel gradient-based visualization framework

Table 7.1: Used regression and classification dataset.

Dataset Train Test Steps Channels Classes

Internet Traffic 13,900 4,150 50 2 -
Anomaly 50,000 10,000 50 3 2

7.1.1 Regression

The goal of the regression task is to predict the next time step based on the
previous information. As a dataset to evaluate this, the Internet Traffic [21] dataset
for time series forecasting was used. In contrast to the classification, this requires
some modifications to the network, in particular the loss function needs to be
adjusted for the regression case.

7.1.2 Classification

For the time series classification task, a novel dataset was proposed. This dataset
covers the task of anomaly detection and is referred as Anomaly dataset 1.The
dataset consists of 60,000 sequences of 50 time steps each, where each time
step contains values for pressure, temperature and torque. Significant peaks
were randomly introduced in the dataset, and sequences containing such point
anomalies were marked as anomalous. The pressure signal does not contain any
anomaly and serves as an irrelevant signal concerning its value for an explanation.
The dataset is split into 50,000 training and 10,000 test sequences.

7.2 method & experiments

TSViz provides the possibility of interpreting any convolutional network from
several dimensions, at different levels of abstraction. This includes the global
picture like the types and ordering of different layers present in the network,
and their corresponding number of filters, moving to more detailed information
like parts of the input that each filter is responding to as well as their importance.
Furthermore, filter grouping where filters which are exhibiting similar behavior
are clustered together is possible. TSViz also uncovers other hidden aspects of the
network based on inverse optimization and adversarial examples.

7.2.1 Backpropagation

TSViz is based on the principle of backpropagation proposed by Rumelhart et
al. [119]. The backpropagation algorithm provides an efficient way to compute
the influence of a tensor w.r.t. to another tensor. This capability is leveraged to
compute influences for uncovering the deep learning black-box by computing the
influence of the input on the current filter, which is the input saliency map.

1 Dataset available at: https://bit.ly/2UNk0Lo

https://bit.ly/2UNk0Lo

7.2 method & experiments 79

Training of a neural network is achieved by reducing the loss function L :

R × R 7→ R+ (L : RC × RC 7→ R+ in case of multi-class classification where
C denotes the number of classes). The loss function captures the discrepancy
between the network’s prediction and the desired output. As the network output
is calculated based on the weights and biases of the different neurons involved,
these weights and biases are adapted during the learning process to reduce the
loss function. This computation of the optimal direction can be obtained by
calculating the partial derivatives of the loss function regarding any weight W

or bias b as ∂L/∂W and ∂L/∂b.
The learning process can be decomposed into several steps, which include:

1. Feed-forward passes through the network,

2. Backpropagation to the output layer,

3. Backpropagation to the hidden layers,

4. Updating network parameters using an optimizer like SGD

In the forward pass through the network, the output of all the hidden neurons
is computed, which is then used for the computation of the final network output
and loss. This evaluation is based on the randomly initialized weights. Based
on the computed output, the final loss function is evaluated. The networks in
deep learning are mostly composed of both convolutional and dense layers.
Rectified Linear Unit (ReLU) or some variant of it is commonly used as the
non-linearity/activation function. The activation for the dense and convolutional
layers is presented in Equation 7.7 and Equation 7.9 respectively. al

j denotes the
activation of the jth neuron in the lth layer (for dense layers) while al

ji denotes
the activation of the jth neuron in the lth layer at the ith input location (for
convolutional layers). k is defined as ⌊FilterSize/2⌋ for convolutional layers, while
|zl−1
j | denotes the number of neurons in the previous layer l− 1.

zlj =

|zl−1
j |∑

k=1

Wl
jka

l−1
k + bl

j (7.6) al
j = max

(
zlj, 0

)
(7.7)

zlji =

k∑
−k

Wl
jka

l−1
i−k + bl

j (7.8) al
ji = max

(
zlji, 0

)
(7.9)

The error is back propagated to the initial layers, and the gradient regarding the
network parameters is computed (weights and biases). The error δ of jth neuron
at the output layer L is presented in Equation 7.11.

δLj =
∂L

∂aL
j

∂aL
j

∂zLj
(7.10) δLj =

∂L

∂aL
j

max ′ (zLj , 0
)

(7.11)

δlj =
((

Wl
ij

)T
δl+1
j

)
⊙max ′ (zlj, 0)

(7.12)
max ′(x, 0) =

1, if x > 0

0, otherwise
(7.13)

Once the gradient of the loss w.r.t. in the output layer is computed, the error
is back propagated to all neurons in the hidden layers using Equation 7.12. The
gradient of ReLU is one where the value of input x exceeds zero and remains zero

80 tsviz : a novel gradient-based visualization framework

otherwise, as mentioned in Equation 7.13. Similarly, the max-pooling layer has a
gradient equal to one wherever the maximum quantity occurs and remains zero
otherwise. The rate of change of loss L w.r.t. the bias and weights in the lth layer
is given in Equation 7.14 and Equation 7.15 respectively.

∂L

∂bl
j

= δlj (7.14)
∂L

∂Wl
jk

= al−1
k δlj (7.15)

After computation of the gradients, the network parameters (weights and
biases) are updated in the negative gradient direction, as this is the optimal
direction for maximum reduction in the loss.

7.2.2 Influence Computation

TSViz contributes to the interpretability of deep learning models designed
specifically for time series analysis tasks at different levels of abstraction. The
first and one of the most intuitive explanations for any model is based on the
influence of the input on the final prediction. Consequently, this influence can also
be computed for the intermediate states of the network (both in the forward and
the backward direction). There are two different influences that can be computed
based on any particular filter in the network. The first influence stems from the
fact that the input has an impact on the output of the particular filter, while the
second influence is of the filter itself on the final output.

7.2.2.1 Input Influence

The first influence originates from the input. This information provides important
insights regarding the data points in the input that the network is actually
responding to for computation of its output. The information regarding the parts
of the input which were responsible for a particular prediction is considered
a viable explanation in many scenarios, including domains like self-driving
cars [63], finance [68] and medical imaging [165].

This value can be obtained by computing the gradient of the current layer l

w.r.t. the input layer. The absolute value of the gradient is used, as the magnitude
is of relevance irrespective of direction. The input is denoted as a0, therefore, this
influence of the input can be computed using Equation 7.18.

δlj =
∂al

∂z1j

∂z1j

∂a0
j

(7.16) δ0j =
∂al

∂a0
j

(7.17)

Idinput = |δ0| (7.18)

To be able to visualize and compare the saliency of the different filters, the
absolute values of the influences are taken using the min-max scaling presented
in Equation 7.19.

Iinput =

Iinput − min
j

I
j
input

max
j

I
j
input − min

j
I
j
input

(7.19)

Figure 7.1a visualizes a sample of an anomalous input in the Anomaly dataset.
Figure 7.1b equips the raw filter output with the saliency information to provide

7.2 method & experiments 81

(a) Input (b) Input with importance

Figure 7.1: A particular anomalous example provided to the network from the anomaly
dataset. The left figure (a) visualizes the raw input, while the figure on the
right (b) equips the raw signal with the saliency information.

a direct interpretation of its utility. It is evident from the figure that the
network focused on sudden peaks present in the input to mark the sequence
as anomalous. This saliency is computed using Equation 7.18 after applying min-
max normalization.

7.2.2.2 Filter Importance

Another interesting influence originates from the output, which can be leveraged
to compute the filter’s influence. This information about filter importance
provides hints regarding the filters that were most influential for a particular
prediction. Interestingly, many of the filters in the network contribute nothing
to a particular prediction. This information is complementary to the information
regarding parts of the input that were responsible for a particular prediction.

To obtain this influence, the gradient of the output layer L w.r.t. the current
layer l is computed. This provides a pointwise estimate about how each value
impacts the output activation aL. In this case, again, both positive and negative
influences are equally important. As the overall influence of a particular filter is
of interest. Therefore, pointwise influence estimates can be reduced to a single
value by computing the Manhattan or 1-norm of the influence vector. Computing
the 1-norm of the influence vector retains the information encapsulated in the
vector, by taking the sum of the absolute influences of each of its components,
which provides a good estimate regarding the overall importance of the filter.
Equation 7.21 provides the mathematical formulation of the influence of layer l

on the final output aL.

δlj =
∂aL

∂al
j

∂al
j

∂zlj
(7.20)

Iloutput =
∑
j

|δlj | (7.21)

Figure 7.2a visualizes the third convolutional layer of the network trained on
the Internet Traffic dataset. Figure 7.2b enhances the filter view by including the

82 tsviz : a novel gradient-based visualization framework

(a) Filters (b) Filters with importance and
saliency

(c) Filters with importance,
saliency and clusters

Figure 7.2: Filters of the third convolutional layer of the network trained on the Internet
Traffic dataset where the first the raw filters (a) are visualized, followed
by additional information regarding the filter importance and saliency
information (b), finally adding the information regarding the filter cluster (c).

filter importance information computed using Equation 7.21 after applying the
min-max normalization along with the input saliency information.

Proposition 1 (Zero influence). For extremely confident predictions (with probability
of either zero or one) in case of classification, the influence dies off.

Proof. Let x ∈ RD be the input and ŷ ∈ R (ŷ ∈ RC in case of multi-class
classification where C denotes the number of classes) be the prediction by the
system. For binary classification, the output probability is usually obtained by the
application of sigmoid activation, while in the case of multi-class classification,
the output probability is obtained by the application of the softmax activation
function. This activation function can be considered as the last layer L in the
network. The gradient of the sigmoid and the softmax activation function w.r.t. to
its input is presented in Equation 7.22 and Equation 7.23 respectively.

δL = ŷ(1− ŷ) (7.22) δLj =

{
ŷi(1− ŷi), if i = j

ŷi(−ŷj), otherwise
(7.23)

In the case of extremely confident predictions, the system makes binary
predictions where the probability either goes to zero or one i.e. ŷ ∈ {0, 1} (ŷ ∈
{0, 1}C in case of multi-class classification where C denotes the number of classes).
Therefore, during backpropagation, the gradient dies off due to multiplication by
zero as highlighted in Equation 7.22 and Equation 7.23 (either the first term or the
second term goes to zero due to presence of saturated values). This results in no
gradient to previous layers for the computation of the filter influence or saliency
for that matter.

A rudimentary way to overcome the problem of obtaining no influence
values (Proposition 1) is to employ temperature augmented softmax in multi-
class classification settings by using T > 1 as the temperature (Equation 7.24).
The temperature T also negatively impacts the gradient, perturbing the actual
influence. Therefore, the value of T should be kept close to one to make sure
that the overconfident predictions are avoided along with a minor impact on the
computed influences.

7.2 method & experiments 83

ŷi =
exp(zLi /T)∑
j exp(zLj /T)

(7.24)

A preferable way to avoid these overconfident predictions is to add activity
regularization on the final activation where the network penalizes large activation
values, thus avoiding extremely confident predictions. This formulation extends
to both binary and multi-class classification settings. Therefore, the updated
optimization problem can be written as:

W∗ = arg min
W

1

|X|

∑
(x,y)∈X×Y

L(ϕ(x;W),y) + λ∥W∥22 +β∥zL∥22 (7.25)

zL is denoted as the activation value of the last layer and W = {Wl,bl}
L
l=1

encapsulates all the parameters of the network. It is important to note that
this formulation requires tuning of yet another hyperparameter, i.e. β to
achieve reasonable performance while simultaneously avoiding overconfident
predictions.

7.2.3 Filter Clustering

Deep networks are great at exploiting redundancy [29], and therefore, it is
important to get a measure of the diversity in the network. To capture this
diversity, a filter clustering was performed. This clustering phase helps to discover
the distinct types of filters present in the network as a notion of the diversity
it attained during training. The filters are clustered based on their activation
pattern, i.e. filters with similar activating patterns are essentially capturing the
same concept. This clustering is also helpful in reducing the information overload
for the user in the visualization phase, where only the most salient filters from
each cluster can be visualized.

As only the similarity between the activation pattern rather than the actual
magnitude and the shifting of the activation pattern (e.g. invariance to the
activation at the start or at the end of the peak) is of interest, first the activations
of the different filters in a particular layer are aligned. Since the network contains
only one dimensional signals (each filter outputs a one dimensional activation
vector), therefore, to compute the similarities between the filters, a technique
which is very common in the time series analysis community for alignment called
as Dynamic Time Warping (DTW) [123] is leveraged.

Each filter is encoded via its activation vector a ∈ Rd where d denotes the
dimensionality of the activation. First, the algorithm creates a distance matrix
between the every two activation vectors, am ∈ Rd and an ∈ Rd. The distance
matrix is called DTW where DTW[i, j] gives the distance between the activation
vectors a1:im and a1:jn with the best alignment. The DTW matrix can be effectively
computed by a consistent application of Equation. 7.26 where Euclidean distance
has been employed as the distance metric D(i, j).

84 tsviz : a novel gradient-based visualization framework

DTW[i, j] = D(ai
m, aj

n) + min(

 DTW[i− 1, j]
DTW[i, j− 1]

DTW[i− 1, j− 1]

) (7.26)

D(ai
m, aj

n) = ∥ai
m − aj

n∥22 (7.27)

Once the DTW matrix is computed, DTW[d,d] can be used as a measure of
the minimum possible distance to align the two activation vectors where d is the
dimensionality of the activation vectors. Therefore, the distance is used to cluster
the activation vectors together.

When it comes to clustering, K-Means appears to be the most common choice
for any problem. However, K-Means operates with Euclidean distance as the
distance metric. Switching to DTW as a distance metric with K-Means results
in either unreliable results or even convergence issues. Therefore, a hierarchical
(agglomerative) clustering is performed using DTW where clusters which are the
closest in terms of distance are combined to yield a new cluster during every
iteration of the algorithm until all the data points are combined into one cluster.
There are different possible linkage methods that can be employed to compute
the distance between the clusters. In this case, the complete linkage is used to
compute the distance between clusters. Complete linkage finds the maximum
possible distance dCL ∈ R between the two clusters G and H using pairs of points
i and j from G and H respectively, such that the distance dij ∈ R between the
selected points is maximum. This is highlighted in Equation 7.28.

dCL(G,H) = max
i∈G, j∈H

dij (7.28)

The system builds a dense hierarchy of clusters. Since it has a dense hierarchy,
the user can navigate the hierarchy, slicing the y-axis at different points to obtain
a different number of clusters. The silhouette score for each possible number of
clusters is computed, and then the initial number of clusters is selected to be at the
point where the maximum silhouette score is obtained. This process is illustrated
in Figure 7.3.

Figure 7.2c provides a depiction of equipping the filters with cluster
information trained on the Internet Traffic dataset. This clustering strategy was
also tested on the Anomaly dataset and visualized the resulting clusters in a grid
view for clarity. This visualization is presented in Figure 7.4. It can be seen that the
silhouette method did a reasonable job in selecting the initial number of clusters.

7.2.4 Inverse Optimization

An understanding of the input parts deemed most important for a particular
prediction is of tremendous value. This information is partially highlighted by
computing the input influence. However, this input influence is not very stable.
Therefore, the inverse optimization-based framework is used to discover the main
sources of variation learned by the network in the input space. The approach
starts from a random input and modifies the signal until the desired output is
achieved.

7.2 method & experiments 85

Figure 7.3: Silhouette plot for deciding the initial number of clusters for the second
convolutional layer on the Anomaly dataset.

Figure 7.4: Grid view of all the filters equipped with the cluster information (second
convolutional layer of the network trained on the Anomaly dataset). Different
shades represent different clusters.

86 tsviz : a novel gradient-based visualization framework

(a) Start (8.34% conf) (b) End (99.88% conf)

Figure 7.5: Application of the inverse optimization framework for the classification use
case. The left figure (a) demonstrates the random starting position which was
classified as non-anomalous with a probability of 91.66% while the figure on
the right (b) highlights the final series obtained after optimization which was
classified as anomalous with a probability of 99.88%.

During training, the loss is used to minimize the discrepancy between the
prediction ŷ ∈ R and the ground truth y ∈ R, where both x ∈ RD and y ∈ R

are fixed (y ∈ RC, ŷ ∈ RC in case of multiclass classification where C denotes the
number of classes). The optimization problem to discover the optimal parameters
of the network W∗ can be written as:

W∗ = arg min
W

1

|X|

∑
(x,y)∈X×Y

L(ϕ(x;W),y) (7.29)

ϕ is defined as the mapping from the input space x ∈ RD to the label space
ŷ ∈ R (ŷ ∈ RC in case of multiclass classification) parameterized by the network
weights W = {Wl,bl}

L
l=1. Once the network is trained, i.e. it has W∗, the problem

can be inverted to discover the input x̂ ∈ RD which produces the same output as a
particular time series. This helps in the discovery of the main sources of variation
learned by the network. The following optimization problem can be expressed
as Equation 7.30. This problem is solved iteratively using gradient descent, as
indicated in Equation 7.31.

x̂∗ = arg min
x̂ ∈ RD

L(ϕ(x̂;W∗),y) (7.30) x̂∗t+1 = x̂∗t −α
∂L(ϕ(x̂;W∗),y)

∂x̂∗t
(7.31)

This optimization problem can be efficiently solved again using the
backpropagation algorithm. Initially, x̂∗0 ∼ N(0, I) is sampled from a standard
normal distribution. Since the input is initialized randomly from a normal
distribution, the initial time series looks distorted. This initialization is visualized
in Figure 7.5a for the classification use case. Upon passing this randomly
initialized series to the trained anomaly detection model, it marked the sequence
as non-anomalous (8.34% probability for the sequence belonging to the anomalous
class). Next, this sequence is optimized as mentioned in Equation 7.31 using
gradient descent. The final sequence obtained after optimizing the input for 1,000

iterations (t = 1, 000) with α = 0.01 is visualized in Figure 7.5b. Since the original
dataset contained point anomalies, the network introduced point anomalies in

7.2 method & experiments 87

(a) Start (Forecasted value: -0.49923) (b) End (Forecasted value: -0.95739)

Figure 7.6: Application of the inverse optimization framework for the regression use case.
The left figure (a) demonstrates the random starting position which resulted
in a forecasted value of -0.49923 while the figure on the right (b) highlights the
final series obtained after optimization which resulted in a forecasted value of
-0.95739.

the initial time series to convert the non-anomalous sequence to an anomalous
one, with a probability of 99.88%. It is interesting to note that since none point
anomalies were introduced in the pressure signal, during inverse optimization,
the network also left the pressure signal intact with only minor changes.

Similar tests were performed on the Internet Traffic dataset (time series
forecasting). The seemingly unimportant channel containing the first-order
derivative based on the saliency map was the main factor that the network
nudged to obtain the same output as the time series visualized in Figure 7.6a.
The inversely optimized series is visualized in Figure 7.6b. The last time step in
the original signal (internet traffic) indicates the forecasted value.

7.2.5 Adversarial Examples

Deep learning models have been discovered to be highly prone to adversarial
noise [52]. This problem has been very well-studied in prior literature, specifically
for image-based classification networks [59]. The experiments below were
conducted using Fast Gradient Sign Method (FGSM) [69] (iterative variant of
FGSM [52]) attack on the studied time series.

In situations where the network is not highly susceptible to adversarial
noise, this optimization step can help answer a more interesting question,
regarding the network’s interpretation of parts of the input that with very
minor perturbation can bring maximal change to the output. This highlights the
network’s understanding of the input parts that were mainly responsible for a
particular prediction.

The FGSM attack performs a single step of optimization to obtain an adversarial
example. The adversarial example is denoted as xadv ∈ RD. The FGSM

optimization problem can be represented as:

xadv = x + ϵ sign(
∂L(ϕ(x;W∗),y)

∂x
) (7.32)

The iterative FGSM, instead of solving a single step of optimization, performs
iterative refinement of adversarial noise, therefore significantly boosting the
chances of producing a successful adversarial example. This optimization problem
can be written as:

88 tsviz : a novel gradient-based visualization framework

(a) Input (95.76% conf) (b) Adversarial output (35.55% conf)

Figure 7.7: Discovered adversarial examples for the classification use case. The left image
(a) highlights the input which was classified as anomalous with a probability
of 95.76% while the figure on the right (b) indicates the discovered adversarial
example which was classified as non-anomalous with a probability of 64.45%.

(a) Input (Forecasted value: -0.97946) (b) Adversarial output (Forecasted value: -
0.27947)

Figure 7.8: Discovered adversarial examples for the regression use case. The left image
(a) highlights the input which resulted in a forecasted value of -0.97946 while
the figure on the right (b) indicates the discovered adversarial example which
resulted in a forecasted value of -0.27947.

xadv
t+1 = Clipx,ϵ

{
xadv

t +α sign(
∂L(ϕ(xadv

t ;W∗),y)
∂xadv

t
)

}
(7.33)

Clipx,ϵ bounds the magnitude of the perturbation to be within [−ϵ, ϵ] from the
original example x. The value of the original example x is used to initialize the
initial adversarial example xadv

0 .
Figure 7.7a visualizes an original anomalous sequence present in the Anomaly

dataset. The network successfully marked the sequence as anomalous with
a probability of 95.76%. Next the iterative FGSM attack is performed using
Equation 7.33, with α = 0.0001, ϵ = 0.1 and t = 1, 000. The inverse optimized
sequence was predicted to be non-anomalous (35.55% probability of it being
an anomalous sequence) which is visualized in Figure 7.7b. Consistent with the
understanding of the anomaly present in the network, the network reduced the
magnitude of the main peak, which was mainly responsible for the anomalous
prediction. It is interesting to note that only a slight reduction was required to flip
the label, which is indicative of the network’s susceptibility to adversarial noise.

The Adversarial impact on the time series regression task was much more
profound. The seemingly non-important first-order turned out to be the main

7.2 method & experiments 89

(a) 1st convolutional layer (b) 2nd convolutional layer

Figure 7.9: Min, mean, and max filter importance computed over the entire dataset for the
first and second convolutional layer on the Internet Traffic dataset.

(a) 1st convolutional layer (b) 2nd convolutional layer (c) 3rd convolutional layer

Figure 7.10: Test set performance of the network after pruning the specified number of
filters from the first, second and the third convolutional layer on the Internet
Traffic dataset.

reason for the network’s vulnerability. The network mainly altered its prediction
due to a significant change in the first-order derivative rather than the original
signal. Figure 7.8 highlights this case. The same parameters were used, i.e.
α = 0.0001, ϵ = 0.1 and t = 1, 000. Again, the last time step in the original
signal (internet traffic) indicates the predicted value.

7.2.6 Network Pruning

As a sanity check for the utility of the information contained in the computed
influences, pruning of the network was performed based on these computed
influences. The filters were pruned based on their influence. The filters with
the least influence are pruned first, followed by filters with maximum influence.
Since the network should be pruned based on this information, it is important
to average this influence value over the entire training set. Therefore, the final
influence w.r.t. the output can be written as:

Iloutput =
1

|X|

∑
x∈X

Iloutput(x) (7.34)

90 tsviz : a novel gradient-based visualization framework

Table 7.2: Influence faithfulness test for the Internet Traffic dataset. Shows the Mean
Squared Error (MSE) and its increase.

Layer Influence MSE Increase (MSE)

Default - 0.001608 0.000%
1st Conv Min 0.001609 0.049%
1st Conv Max 0.005172 221.608%
2nd Conv Min 0.001608 0.000%
2nd Conv Max 0.007728 380.553%
3rd Conv Min 0.001608 0.000%
3rd Conv Max 0.130290 8002.298%

The minimum, maximum as well as mean importance of every filter of the first
two convolutional layers computed over the entire training set of the Internet Traffic
dataset are visualized in Figure 7.9. Figure 7.10 visualizes the results of pruning
based on these influences. The pruning starts with the least influential filter until
only one filter is left. It is important to note that the network was fine-tuned for
10 epochs after the pruning step to adjust the network weights to compensate for
the missing filter.

Table 7.2 provides results regarding faithfulness of the computed influences
where the corresponding most and least influential filter of a particular layer
without any fine-tuning were pruned. For the sole purpose of pruning to
accelerate inference and reduce model size, the reader is referred to more
sophisticated techniques dedicated to pruning relying on second-order gradient
information w.r.t. the loss [97, 142].

7.2.7 Properties

The three major desirable properties for any interpretability method are
faithfulness, stability and explicitness / intelligibility [82]. The following is an
analysis of the TSViz framework based on these three properties.

7.2.7.1 Explicitness/Intelligibility

Explicitness or intelligibility captures the notion of interpretability of the
explanations provided by the system. Both the input and the output modalities
are well understood by the humans, but the intermediate representations are
not. Therefore, these intermediate representations are interpreted in terms of
their influence on input and output. Since both the input and the output
space are interpretable for humans, this makes the interpretability of the TSViz
influence tracing algorithm easy. Adversarial examples and inverse optimization
also operate in the input space, making them intelligible.

7.2 method & experiments 91

7.2.7.2 Faithfulness

Faithfulness captures the notion of the reliability of the computed relevance. True
relevance is subjective and can vary from task to task. The influence of noise can
be considered relevant in some cases, but might be counterproductive to consider
in others [5]. As a sanity check, which is common in literature, filters can be
removed from the network to assess their impact on the final performance [82].

For the regression network trained on Internet Traffic dataset, the most and the
least influential filters from the first convolutional layer were removed to assess
their impact on the final loss. As per expectation, pruning the most influential
filter had a strong impact on the final performance as compared to pruning the
least important filter.

Figure 7.9 provides a depiction of the filter importance (minimum, maximum
and mean importance) computed over the entire training set of the Internet
Traffic dataset. This mean importance was used to remove the most and the
least important filter from each of the three convolutional layers on the network.
Table 7.2 summarizes the results for the faithfulness experiment. It is evident
from the results that removing the most important filter from a layer had a very
significant impact on the performance as compared to pruning the least important
filter. Since the weights of the corresponding filter are set to zero, therefore, as
the layer ascend hierarchy, the impact of pruning a particular filter was more
profound (since it had a direct influence on the result). Pruning also reduces
the expected value of the output, resulting in a significantly deviated prediction.
These results advocate that the computed influence was indeed faithful.

7.2.7.3 Stability

Since the first-order gradient is used to trace the influence due to its direct
interpretation for humans, this results in unstable explanations due to noise.
Interpretability, therefore, sometimes leads to the wrong conclusion regarding
the smoothness of the decision boundary, which is not the case in reality [52].
Most interpretability methods suffer from this inherent weakness due to reliance
on first-order gradients [5]. Employing second-order methods can resolve the
stability issue, but will make it significantly difficult for humans to comprehend
the gained knowledge.

7.2.8 Implementation

In this work, a novel three-dimensional framework for visualization and
demystification of any deep learning model for time series analysis was
developed. The user interface communicates with the back-end, which is exposed
as a RESTful Application Programming Interface (API). This decouples the model
from the visualization aspect. Even though the focus of this work is on time series
data, the system is generally applicable to any deep learning model, as it is only
dependent on the effective computation of the gradients.

The first view in the visualization presents the user with an overview of the
network. This gives the user a chance to get acquainted with the model in question.

92 tsviz : a novel gradient-based visualization framework

Figure 7.11: Network overview screen for the regression use case

Figure 7.12: Application of the percentile filter on the detailed view (Second level)

A sample visualization of the first screen is presented in Fig. 7.11. The second
level provides an overview of the most influential/important filters in each layer,
leveraging the influence computation framework. The third view enhances the
presented information by clustering the relevant filters together to gain insights
regarding the diversity in the network. The second and third views are equally
applicable to adversarial examples and inverse optimization outputs, as they only
affect the inputs of the model.

There is usually a high interest in visualizing the most important filters from
the network, since they are indicative of the most important parts of the network
leveraged for prediction. Therefore, a percentile view was integrated where the
user can select the percentile of filters to be viewed based on their importance.
This significantly helps in reducing the amount of information presented to the
user. Fig. 7.12 provides an example application of the percentile filter onto the
second level view of the network in the tool. Another possible way to reduce
information overload for the user is to visualize the most salient filters from each
cluster.

7.2.8.1 Virtual Reality

Besides the initial implementation, a virtual reality version that further supports
gestures to navigate through the network was developed. Figure 7.13 shows
the three different views for the virtual reality framework. The main view in
Figure 7.13a shows the complete network in a closed way. The color encodes the
layer type and the width, the number of filters. The user can use a specific gesture
to open the layer view shown in Figure 7.13b. The layer view shows the different

7.2 method & experiments 93

(a) Main view (b) Layer view (c) Filter view

Figure 7.13: Virtual reality version of the TSViz implementation that supports gestures to
move between the filters and layers.

(a) Main page

(b) Pruning page

Figure 7.14: Web-based dashboard for TSViz. Designed in a way that considers user
interests and knowledge. From top to down, the experience level required
to understand the data increases.

filters, the cluster and the importance of each of those filters. Furthermore, it is
possible to focus on a single filter, as shown in Figure 7.13c. This provides the
capabilities to have a detailed look at the activation of that filter. Similar to that, it
is possible to look at the input and see the input importance.

94 tsviz : a novel gradient-based visualization framework

7.2.8.2 Dashboard

Finally, a dashboard version of the framework was created2. Figure 7.14 shows
the two frames it consists of. The main page shown in Figure 7.14a is divided into
three different levels of experience based on the user.

• Level 1 (1st & 2nd row): Shows the input signal and prediction. Furthermore,
the input signal importance and the channel importance are shown. This
helps to understand which points and input channels were relevant for the
prediction. The channel importance is calculated by adding the importance
of the points within a channel.

• Level 2 (3rd row): Shows the network structure and the clustering of the
filters with their importance. This level provides an initial understanding of
the network and can be used to optimize the architecture by pruning.

• Level 3 (4th row): Shows the individual statistics for a selected filter. The
user can get information about the input relevance for that individual filter,
its activation and its importance and cluster.

It is also possible to switch to the pruning page shown in Figure 7.14b which
enables the selection of filters based on their importance. Furthermore, it is
possible to select individual filters for each layer and perform a pruning. As
soon as the fine-tuning after the pruning step is finished, the dashboard presents
updates to the pruned network, and it is possible to interpret and optimize this
network further.

7.3 discussion

The visualization enabled a detailed inspection of the network, which highlighted
many different aspects of the network’s learning employed in this study.

• Most of the filters in the network were useless, i.e. they contributed nothing
to the final prediction for that particular input.

• Many of the filters had very similar activation patterns in the network which
were assigned to the same filter cluster. This highlighted the aspect of the
lack of diversity in the trained network.

• Despite the improvement in performance with the addition of the first-order
derivative of the original signal, most of the filters strongly attended to the
original signal as compared to the first-order derivative in the time series
forecasting task.

• The network mostly focused on the temperature and torque for detecting
the anomalies as no anomalies were introduced in any synthetic anomalies
in the pressure signal in the time series classification task.

2 Available at: https://tsviz.kl.dfki.de/

https://tsviz.kl.dfki.de/

7.4 conclusion 95

Another finding was that there is no perfect way for the interpretability of these
models. Therefore, the model is inspected from many different angles to come up
with a range of different explanations.

7.4 conclusion

TSViz is a novel framework for interpretability of deep learning-based time
series analysis models. The framework enabled an understanding of the model
as a parametric function. The different views available within the framework
enabled in-depth exploration of the network. These different views include filter
importance, filter input saliency map, filter clusters, inverse optimization and
adversarial examples. The significance of the computed filter importance was
evaluated by pruning filters from the network according to their importance. As
there is no one right way to visualize and understand the network, therefore,
TSViz uncovers all these different aspects to aid human understanding. This
exploration will help in the understanding of the network itself, as well as enable
new improvements within the architecture with insights gained by uncovering the
different aspects of the trained model.

8
T S I N S I G H T: A N O V E L T I M E S E R I E S C O M P R E S S I O N
A P P R O A C H

In this section, the problem of interpretability is approached in a novel way by
proposing TSInsight, where an autoencoder is attached to the classifier with a
sparsity inducing norm on its output and fine-tune it based on the gradients from
the classifier and a reconstruction penalty. TSInsight learns to preserve features
that are important for prediction by the classifier and suppresses those that are
irrelevant, i.e. serves as a feature attribution method to boost interpretability. In
contrast to most other attribution frameworks, TSInsight is capable of generating
both instance-based and model-based explanations. The evaluation results show
that TSInsight naturally achieves output space contraction.

8.1 method

The overview of the proposed methodology is presented in Figure 8.1. As the
purpose of TSInsight is to explain the predictions of a pretrained model, a vanilla
autoencoder is trained on the desired dataset as the first step (indicated as step
1 in the figure). Once the autoencoder is trained, it is attached on top of the
pretrained classifier to obtain a combined model. Then the autoencoder is fine-
tuned within the combined model using the gradients from the classifier using a
specific loss function to highlight the causal/correlated points (indicated as step 2

in the figure). Finally, the attributions are computed from the trained autoencoder
(step 3) followed by the sanity check using the suppression test (step 4).

8.1.1 Pretrained Classifier

A classifier (Φ : X 7→ Y) is a map from the input space X to the output space Y.
TSInishgt requires such a classifier that is trained using standard regularized risk
minimization on the given dataset. The training objective can be written as:

W∗ = arg min
W

1

|X|

∑
(x,y)∈X×Y

L
(
Φ(x;W∗),y

)
+ λ∥W∥22 (8.35)

Φ defines the mapping from the input space X to the output space Y, while L

corresponds to the classification loss (assumed to be cross-entropy in this work).
Furthermore, ∥.∥p represents the Lp norm. Specific instances of Lp norm that are
used within this paper are L1 and L2 norm. L1 norm is computed by summing
up the absolute values of the given vector (∥x∥1 =

∑d
i=1|xi|). Similarly, L2 norm

is computed by taking the square root of the sum of squared values of the given

This chapter is an adapted version of the work presented in: D. Mercier et al. “TSInsight: A Local-
Global Attribution Framework for Interpretability in Time Series Data.” In: Sensors 21.21 (2021),
p. 7373.

98 tsinsight : a novel time series compression approach

Figure 8.1: Shows the workflow and the performed checks related to the sanity.

vector (∥x∥2 =
√∑d

i=1 x2i). The objective also includes a regularization term ∥W∥22
with an associated hyperparameter λ to define the relative importance of the
classification objective and the simplicity of the hypothesis class. W∗ denotes the
final set of parameters obtained after optimization.

8.1.2 Autoencoder

An autoencoder (D ◦ E : X 7→ X) is a neural network where the defined objective
is to reconstruct the provided input by embedding it into an arbitrary feature
space F, therefore, is a mapping from the input space X to the input space itself
X after passing it through the feature space F. The autoencoder is usually trained
through MSE as the loss function. The optimization problem for an autoencoder
is:

8.1 method 99

(W∗
E,W∗

D) = arg min
WE,WD

1

|X|

∑
x∈X

∥x −D
(
E(x;WE);WD

)
∥22

+ λ
(
∥WE∥22 + ∥WD∥22

)
(8.36)

E defines the encoder with parameters WE while D defines the decoder with
parameters WD. Similar to the case of the classifier, the autoencoder is trained
using regularized risk minimization on a particular dataset.

8.1.3 Formulation by Palacio et al.

TSInsight is based on the work of Palacio et al. (2018) [105]. They presented
an approach for discovering the preference the network had for the input by
attaching the autoencoder on top of the classifier. The autoencoder was fine-tuned
using the gradients from the classifier. The new optimization problem for fine-
tuning the autoencoder is:

(W
′
E,W

′
D) = arg min

W∗
E,W∗

D

1

|X|

∑
(x,y)∈X×Y

L

(
Φ
(
D
(
E(x;W∗

E);W
∗
D

)
;W∗

)
,y

)
+ λ

(
∥W∗

E∥22 + ∥W∗
D∥22

)
(8.37)

W∗
E and W∗

D are initialized from the autoencoder weights obtained after solving
the optimization problem specified in Equation 8.36 while W∗ is obtained by
solving the optimization problem specified in Equation 8.35. This formulation
is slightly different from the one proposed by Palacio et al. where they only fine-
tuned the decoder part of the autoencoder, the proposed approach updates both
the encoder and the decoder as it is a much natural formulation as compared
to only fine-tuning the decoder. This complete fine-tuning is significantly more
important once advanced formulations are used, since it is beneficial if the
network also adapts the encoding to better focus on important features. Fine-
tuning only the decoder will change the output without the network learning to
compress the signal itself.

8.1.4 TSInsight: The Proposed Formulation

In contrast to the findings of Palacio et al. [105] for the image domain, directly
optimizing the objective defined in Equation 8.37 for time series yields no
interesting insights into the input preferred by the network. Figure 8.2c presents
an example from the forest cover dataset. Even though the network was able
to reconstruct the anomaly present in the dataset, this resulted in a loss of
spatial information. Therefore, instead of optimizing this raw objective, the
objective is modified by adding the sparsity inducing norm to the output of the
autoencoder. Inducing sparsity on the autoencoder’s output forces the network to
only reproduce relevant regions of the input to the classifier, since the autoencoder
is optimized using the gradients from the classifier. The use of this sparsity

100 tsinsight : a novel time series compression approach

Figure 8.2: Comparison of different autoencoder outputs (a) Original input, (b)
Reconstruction from the vanilla autoencoder, (c) Palacio et al. [105] (d)
Autoencoder fine-tuned with sparsity, and (e) TSInsight.

inducing norm stems from the motivation to obtain the most sparse attribution
that retains the prediction. A trivial solution for obtaining attributions is just to
predict the whole sequence to be causal/correlated with the prediction if that
would have not been the case. However, the attribution obtained in this case would
not be useful. Therefore, for human understanding, attributing the prediction to
the smallest region possible is important. This has been termed as the complexity
of the explanation in the past [115], and the proposed sparsity-based framework
focuses on finding the explanation with the least complexity.

However, just optimizing for sparsity introduces misalignment between the
reconstruction and the input, as visualized in Figure 8.2d. To ensure alignment
between the two sequences, a reconstruction loss was additionally introduced
into the final objective. Therefore, the proposed TSInsight optimization objective
is:

(W
′
E,W

′
D) = arg min

W∗
E,W∗

D

1

|X|

∑
(x,y)∈X×Y

[
L

(
Φ
(
D
(
E(x;W∗

E);W
∗
D

)
;W∗

)
,y

)

+ γ
(
∥x −D

(
E(x;W∗

E);W
∗
D

)
∥22

)
+β

(
∥D

(
E(x;W∗

E);W
∗
D

)
∥1

)]
+ λ

(
∥W∗

E∥22 + ∥W∗
D∥22

)
(8.38)

L represents the classification loss function which is cross-entropy in this case,
Φ denotes the classifier with pretrained weights W∗, while E and D denotes the
encoder and decoder respectively with corresponding pretrained weights W∗

E and
W∗

D. Two new hyperparameters, γ and β are introduced in this context. γ controls
the autoencoder’s focus on reconstruction of the input. β on the other hand,
controls the sparsity enforced on the output of the autoencoder. After training

8.1 method 101

the autoencoder with the TSInsight objective function, the output is both sparse
and aligned with the input, as evident from Figure 8.2e.

The aforementioned hyperparameters play an essential role for TSInsight to
provide useful insights into the model’s behavior. Performing grid search to
determine this value is not possible as large values of β results in models
which are more interpretable, but inferior in terms of performance, therefore,
presenting a trade-off between performance and interpretability which is difficult
to quantify. Although during the experiments manual tuning of hyperparameters
was superior, this work investigated into the employment of feature importance
measures [91, 146] for the automated selection of these hyperparameters (β and
γ). The simplest candidate for this importance measure is the saliency:

I(x) =
∂aL

∂x
(8.39)

L denotes the number of layers in the classifier, and aL denotes the activations
of the last layer in the classifier. This saliency-based importance computation is
only based on the classifier. Once the feature importance values are computed,
they are scaled in the range of [0, 1] as shown in Equation 8.40 to serve as
the corresponding reconstruction weight i.e. γ (Equation 8.41). The inverted
importance values then serve as the corresponding sparsity weight, i.e. β as
highlighted in Equation 8.42.

I(x) =
I(x) − min

j
I(x)j

max
j

I(x)j − min
j

I(x)j
(8.40)

γ∗(x) = I(x) (8.41) β∗(x) = 1.0− I(x) (8.42)
Therefore, the objective imposing sparsity on the classifier can be written as:

γ
(
∥x −D

(
E(x;W∗

E);W
∗
D

)
∥22

)
+β

(
∥D

(
E(x;W∗

E);W
∗
D

)
∥1

)
⇒

C× ∥D
(
E(x;W∗

E);W
∗
D

)
⊙β∗(x)∥1

+ ∥
(

x −D
(
E(x;W∗

E);W
∗
D

))
⊙ γ∗(x)∥22 (8.43)

⊙ corresponds to Hadamard (elementwise) product, evading the need to
manually tune the hyperparameters (β and γ). In contrast to the instance-based
value of β, the average saliency value is used in the experiments. This ensures
that the activations are not sufficiently penalized to significantly impact the
performance of the classifier. Due to the low relative magnitude of the sparsity
term, it was scaled by a constant factor C. Although a new hyperparameter C has
been introduced instead of the two old hyperparameters (β and γ), the value of
C can be easily fixed based on the relative contribution of the two terms. C = 10

was used in all the experiments.

102 tsinsight : a novel time series compression approach

Table 8.1: Shows the dataset characteristics.
Dataset Train Validation Test Steps Channel Classes

Syn. Anomaly Detection [91] 45,000 5,000 10,000 50 3 2
Electric Devices 6,244 2,682 7,711 50 3 7
Character Trajectories 1,383 606 869 206 3 20
FordA 2,520 1,081 1,320 500 1 2
Forest Cover [139] 107,110 45,906 65,580 50 10 2
ECG Thorax 1,244 556 1,965 750 1 42
WESAD [128] 5,929 846 1,697 700 8 3
UWave Gesture 624 272 3,582 946 1 8

8.2 datasets

Several different time series datasets were used in this study. The summary of
these datasets is available in Table 8.1. Besides the Synthetic Anomaly Detection [91]
dataset, all datasets were taken from UEA & UCR repository [9].

The Forest Cover dataset [139] has been adapted from the UCI repository1 for
the classification of forest cover type from cartographic variables. The dataset
has been transformed into an anomaly detection dataset by selecting only 10

quantitative attributes out of a total of 54. Instances from the second class were
considered to be normal, while instances from the fourth class were considered to
be anomalous. The ratio of the anomalies to normal data points is 0.9%. Since
only two classes were considered, the rest of them were discarded. WESAD
dataset [128] is a classification dataset introduced by Bosch for person’s affective
state classification with three different classes, namely, neutral, amusement and
stress.

8.3 experiments & results

This subsection will cover the evaluation to establish the utility of TSInsight in
comparison to others commonly used attribution techniques.

A commonly used metric to compare model attributions in visual modalities
is via the pointing game or suppression test [39]. The suppression test attempts
to quantify the quality of the attribution by just preserving parts of the input
that are considered to be important by the method. This suppressed input is then
passed to the classifier. If the selected points are indeed causal/correlated to the
prediction generated by the classifier, no evident effect on the prediction should
be observed.

TSInsight was compared against a range of commonly employed attribution
techniques. Each attribution method provided an estimate of the features’
importance, which was used to suppress the signal. In all the cases, the absolute
magnitude of the corresponding feature attribution method was used to preserve
the most important input features. For all the methods computing class-specific

1 UCI repository: https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php

8.3 experiments & results 103

activations maps, the class with the maximum predicted score was used as the
target. The descriptions of the methods are provided below:

• None: None refers to the absence of any importance measure.

• Random: Random points from the input are suppressed in this case.

• Input Magnitude: The absolute magnitude of the input is treated to be a
proxy for the features’ importance.

• Occlusion sensitivity: Over different input channels and positions and mask
the corresponding input features with a filter size of three and compute the
difference in the confidence score of the predicted class was computed.

• TSInsight: For TSInsight the absolute magnitude of the output from the
autoencoder of TSInsight was treated as features’ importance.

• Palacio et al.: Similar to TSInsight, the absolute magnitude of the
autoencoder’s output was used as the features’ importance [105].

• Gradient: The absolute value of the raw gradient of the classifier w.r.t. to all
the classes was used as the features’ importance [68].

• Gradient X Input: The Hadamard (element wise) product between the
gradient and the input was computed, and its absolute magnitude was used
as the features’ importance [136].

• Integrated Gradients: The absolute value of the integrated gradient with 100

discrete steps between the input and the baseline (which was zero in this
case) was used as the features’ importance [136].

• SmoothGrad: The absolute value of the smoothed gradient was computed
by using 100 different random noise vectors sampled from a Gaussian
distribution with zero mean, and a variance of 2/(maxjxj −minjxj) where
x was the input.

• Guided-backpropagation: The absolute value of the gradient provided by
Guided-backpropagation [134] was used.

• GradCAM: The absolute value of gradient-based class activation map
(GradCAM) [129] was used as the feature importance measure. Since
GradCAM visualizes a class activation map, only the predicted class was
used for visualization.

• Guided GradCAM: Guided GradCAM [129] is a guided variant of GradCAM.
The absolute value of the Guided GradCAM output was used.

8.3.1 Impact on Accuracy

The results obtained with the proposed formulation were highly intelligible for
the datasets employed in this study. TSInsight produced a sparse representation of

104 tsinsight : a novel time series compression approach

Table 8.2: Results for the different datasets in terms of accuracy for both the classifier and
TSInsight.

Dataset Model γ β Acc. [%] Diff. [%]

Synthetic Anomaly Raw classifier - - 98.01
Detection TSInsight 1.0 0.001 98.13 +0.12
WESAD Raw classifier - - 99.94

TSInsight 2.0 0.00001 99.76 -0.18
Character Trajectories Raw classifier - - 97.01

TSInsight 0.25 0.0001 97.24 +0.23
FordA Raw classifier - - 91.74

TSInsight 2.0 0.0001 93.26 +1.52
Forest Cover Raw classifier - - 95.79

TSInsight 4.0 0.0001 96.26 +0.47
Electric Devices Raw classifier - - 65.14

TSInsight 4.0 0.0001 65.74 +0.60
ECG Thorax Raw classifier - - 86.01

TSInsight 0.1 0.0001 84.07 -1.94
UWave Gesture Raw classifier - - 91.76

TSInsight 4.0 0.0005 92.29 +0.53

the input, focusing only on the salient regions. In addition to interpretability, with
a careful tuning of the hyperparameters, TSInsight outperformed the pretrained
classifier in terms of accuracy for most of the cases, which is evident from Table 8.2.
However, it is important to note that TSInsight is not designed for performance,
but rather for interpretability. Therefore, it is expected that the performance will
drop in numerous instances depending on the amount of sparsity enforced.

8.3.2 Suppression Comparison

As described before, the performance of different attribution techniques is
compared using the input suppression test. Since the input suppression test
attempts to suppress an input signal which is not deemed to be important by
the attribution, a good attribution method should result in a negligible loss in
performance when suppressing the input, specifically when considering some
inputs points to be suppressed. The results with different amount of suppression
are visualized in Figure 8.3 and Figure 8.4 which are computed based on five
random runs.

Since the datasets were picked to maximize diversity in terms of the features,
there is no single method which can perfectly generalize to all the datasets. It is
evident from the figure that TSInsight significantly superseded other methods
on four out of eight datasets which include Character Trajectories, ECG Thorax,
FordA, and Synthetic Anomaly Detection dataset. Occlusion sensitivity served as
one of the strongest baselines throughout the different datasets as it directly

8.3 experiments & results 105

captures the influence of the feature by explicitly masking the input, which is itself
quite similar to the suppression test. It is interesting to note that in cases where
TSInsight was unable to retain high accuracy after suppression, almost all the
pure gradient-based methods struggled. As Guided-backpropagation overrides the
backpropagation phase, it is not considered as a pure gradient-based method [3]
which makes it superior in terms of performance as compared to other methods
when the gradient is misleading.

It is also interesting to note that for the WESAD dataset, none of the most
competing methods was in the top list due to the extremely different nature of
the dataset. TSInsight turned out to be the most competitive saliency estimator on
average in comparison to all other attribution techniques tested.

To qualitatively assess the attribution provided by TSInsight, an anomalous
example from the Synthetic Anomaly Detection dataset is visualized in Figure 8.5
along with the attributions from all the commonly employed attribution
techniques. Since there were only a few relevant discriminative points in the case
of Forest Cover and the Synthetic Anomaly Detection datasets, TSInsight suppressed
most of the input, making the decision directly interpretable. This highlights the
fact that alongside the numbers, TSInsight was also able to produce the most
plausible explanations.

8.3.3 Loss Landscape

The loss landscape was analyzed to assess the impact of stacking the autoencoder
on top of the original network on the overall optimization problem. The
experiment follows the scheme suggested by Li et al. [73] where first filter
normalization was performed using the norm of the filters. This allows the
network to be scale invariant. Then it was sampled into two random directions
(δ and η) and a linear combination of these directions was used to identify the
loss landscape. The values of the classifier in the combined model were kept
intact, since those parameters are treated as fixed. The function representing the
manifold can be written as:

f(α,β) = L(θ∗ +αδ+βη) ∀α,β ∈ {−1.0,−0.95, ..., 0.95, 1.0} (8.44)

It was iterated over different values of α and β from -1 to +1 with a fixed step
size. Once the loss function was evaluated for all the values of α and β (4,000

different combinations), the resulting function was plotted as a three-dimensional
surface. This loss landscape for the model trained on forest cover dataset is
visualized in Figure 8.6. The surface at the bottom (mostly in blue) signifies
the loss landscape for the classifier. The landscape is nearly convex around the
local minima found during the optimization. The surface on the top is from the
model coupled with the autoencoder. It can be seen that the loss landscape has a
kink at the optimal position but remains flat otherwise with a significantly higher
loss value. This indicates that the problem of optimizing the autoencoder using
gradients from the classifier is a significantly harder one to solve. This is consistent
with the observation where the network failed to converge in numerous instances.

106 tsinsight : a novel time series compression approach

(a) WESAD (b) Character Trajectories

(c) ECG Thorax (d) Electric Devices

(e) FordA (f) Forest Cover

Figure 8.3: Suppression results (1/2) against numerous baseline methods computed using
five random runs.

8.4 discussion 107

(a) UWave Gesture (b) Synthetic Anomaly

Figure 8.4: Suppression results (2/2) against numerous baseline methods computed using
five random runs.

Similar observations have been made by Palacio et al. [105] where they failed to
fine-tune the complete autoencoder, resorting to only fine-tuning of the decoder
to make the problem tractable. The results were very similar when tested on other
datasets.

8.3.4 Autoencoder’s Jacobian Spectrum Analysis

Figure 8.7 visualizes the histogram of singular values of the average Jacobian on
test set of the Forest Cover dataset. The spectra of the formulation from Palacio
et al. [105] and TSInsight were compared. It is evident from the figure that most
of the singular values for TSInsight were close to zero, indicating a contraction
being induced in those directions. This is similar to the contraction induced in
contractive autoencoders [116] without explicitly regularizing the Jacobian of the
encoder.

8.4 discussion

TSInsight is compatible with any base model. The method was tested with two
prominent architectural choices in time series data, i.e. Convolutional Neural
Network (CNN) and Long Short Term Memory (LSTM). The results highlight that
TSInsight was capable of extracting the salient regions of the input regardless of
the underlying architecture. It is interesting to note that since LSTM uses memory
cells to remember past states, the last point was found to be the most salient.
For CNN on the other hand, the network had access to the complete information,
resulting in equal distribution of the saliency. A visual example is presented in
Figure 8.8.

108 tsinsight : a novel time series compression approach

Figure 8.5: Output from different attribution methods as well as the input after
suppressing all the points except the top 5% highlighted by the corresponding
attribution method on an anomalous example from the Synthetic Anomaly
Detection dataset (best viewed digitally). All methods were able to correctly
identify the anomalous spike given the simplicity of this dataset. However,
qualitative differences exist between different methods.

Below some of the interesting properties that TSInsight achieves out-of-the-box
which includes output space contraction, its generic applicability and model-
based (global) explanations are discussed:

• Adversarial Robustness: Since TSInsight induces a contraction in the input
space, this also resulted in slight gains in terms of adversarial robustness.
However, these gains were not consistent over many datasets and strong
adversaries, therefore, omitted for clarity here. In depth evaluation of
adversarial robustness of TSInsight can be an interesting future direction.

• Model-based vs Instance-based Explanations Since TSInsight poses the
attribution problem itself as an optimization objective, the data based on

8.4 discussion 109

Figure 8.6: Loss landscape where the bottom surface indicates the manifold for the
classifier while the surface on the top indicates the manifold for the
autoencoder attached to the classifier.

Figure 8.7: Spectrum analysis of the autoencoder’s average Jacobian computed over the
entire test set of the Forest Cover dataset. The sharp decrease in the spectrum for
TSInsight suggests that the network was successful in inducing a contraction
of the input space.

110 tsinsight : a novel time series compression approach

Figure 8.8: Autoencoder training with different base models: (a) Raw signal (b) TSInsight
attribution for Convolutional Neural Network (CNN) (c) TSInsight attribution
for Long Short Term Memory (LSTM).

which this optimization problem is solved defines the explanation scope.
If the optimization problem is solved for the complete dataset, this tunes
the autoencoder to be a generic feature extractor, enabling extraction
of model/dataset level insights using the attribution. In contrary, if the
optimization problem is solved for a particular input, the autoencoder
discovers an instance’s attribution. This is contrary to most other attribution
techniques, which are only instance-specific.

8.5 conclusion

This section presented a novel method to discover the salient features of the input
for the prediction by using the global context. With the obtained results, it is
evident that the features highlighted by TSInsight are intelligible as well as reliable
at the same time. In addition to interpretability, TSInsight also offers off-the-shelf
properties which are desirable in a wide range of problems. Interpretability is
essential in many domains, and this method opens up a new research direction
for interpretability of deep models for time series analysis. One major limitation
of the current approach is the difficulty in tuning the hyperparameters (γ and

8.5 conclusion 111

β) which offers a good compromise between the final accuracy of the classifier
and the interpretability of the model. It is non-trivial to define a simple scoring
measure, since interpretability itself is a subjective attribute.

9
D ATA L E N S : B E N C H M A R K I N G O F S TAT E - O F - T H E - A RT
I N F L U E N C E F U N C T I O N S

Most work covers instance- and compression-based attribution, however, the
identification of input data points relevant for the classifier has recently spurred
the interest of researchers for both interpretability and dataset debugging. E.g.
analyzing mislabels is a valuable task to understand how well influence functions
work and detect dataset biases that affect the model in its reasoning process. Also,
the analysis of results provides insights concerning the generalization capabilities
of the classifiers. The experiments in this section show the use of Influence
Functions and Representer Point as two approaches for dataset debugging and
interpretability.

9.1 datasets

Subjectivity and cherry-picking are two major challenges for explainability
methods. To provide evidence for the methods and prove the correctness of
the experiments, it is important to conduct experiments using different datasets.
Therefore, three different publicly available datasets were used including point
anomaly, sequence anomaly, and a classification task. Precisely, the Character
Trajectories and FordB dataset from the UEA & UCR Time Series Classification
Repository [9] and the Synthetic Anomaly Detection dataset from [91] were used.
The dataset characteristics are shown in Table 9.1. Furthermore, these datasets
cover both binary and multi-class classification tasks and come with different
sequence lengths and a different number of channels to achieve the largest
possible variation of properties.

9.2 experiments & results

Different experiments were conducted to shed light on several aspects concerning
debugging rates, accuracy, time consumption, and interpretability. Besides a
random selection used as a baseline and the network loss representing a
direct measure, two well-known network interpretability methods that claim to
improve mislabel correction namely the Influence Functions [66] and the Representer
Point [157] were used. Finally, a comparison of the advantages and drawbacks of
the used methods is presented. To create the datasets for the debugging, some
labels were flipped within the dataset.

This chapter is an adapted version of the work presented in: D. Mercier et al. “Interpreting deep
models through the lens of data.” In: 2020 International Joint Conference on Neural Networks (IJCNN).
IEEE. 2020, pp. 1–8.

114 data lens : benchmarking of state-of-the-art influence functions

Table 9.1: Used Datasets and characteristics.

Dataset Train Val Test Steps Channels Classes

Syn. Anomaly Detection [91] 45,000 5,000 10,000 50 3 2
Character Trajectories 1,383 606 869 206 3 20
FordB 2,520 1,091 810 500 1 2

9.2.1 Mislabel Correction Approaches

To understand the debugging priority, the ranking mechanisms excluding the
Random and Loss approach are explained as they are intuitive. Firstly, the Influence
Functions [66] were used to provide negative and positive values to highlight
harmful and helpful samples. Therefore, the most harmful, most helpful, and
most influencing samples can be inspected. In addition, the influence scores
were computed for each class individually (classwise) or over the complete set.
Secondly, the representer values [157] were used that only provide information
about inhibitory (low) and excitatory (high) samples.

9.2.2 Mislabel Correction Performance

Although the process of finding possible mislabeled data can be automated, it is
essential to achieve good accuracy when searching for mislabels as they have to be
validated manually. Table 9.2 shows the correction ratio assuming that a subset of
the data selected according to a ranking of the corresponding debugging approach
is inspected manually. The best correction rates are highlighted, showing that
with the increasing amount of mislabeled data, the model performance decreases
up to a point where the model cannot learn the concept anymore and collapses.
Intuitively, a model that does not learn the concept should be rather meaningless
for the approaches that try to cover the debugging task, as they operate directly
on the model using the learned concept.

Surprisingly, by looking at the second last column, the Loss approach achieved
excellent correction accuracies, except for the two models that did not learn the
concept correctly. One would expect that the more complex methods, using the
model to draw detailed conclusions, outperform the Loss as they have additional
access to more complex computations. Therefore, these results emphasize the
use of the training loss for mislabel correction. Against the expectations, the
Influence Functions outperformed the Loss, Representer, and Random method when
the model was unable to learn the concept, indicating that the influence-based
approach does not strongly rely on that. Overall, the Loss seems to be a suitable
approach concerning the correction ratio, but the best correction accuracy does
not necessarily lead to the best performance. The mislabels can have more or less
impact, and it is mandatory to focus on those with the most impact.

9.
2

e
x

p
e

r
i
m

e
n

t
s

&
r

e
s

u
l

t
s

1
1

5

Table 9.2: Detected mislabeled in percentage sorted by different datasets, dataset qualities (percentage of mislabeled data), and inspection (percentage
of inspected data).

Dataset Model Acc. Mislabeled Inspected
Detected Mislabels

Influence-based [66] Representer theorem [157]
Loss Random

classwise low classwise high classwise absolute low high absolute low high

Anomaly

98.48 10
10 14.34 82.60 84.37 12.48 82.65 79.57 11.74 10.40 94.11 9.40
25 14.54 84.74 97.34 13.17 85.88 97.25 26.20 24.65 99.25 24.80
50 14.74 85.25 97.54 13.45 86.54 98.00 50.71 49.28 99.60 49.91

98.33 25
10 15.92 35.25 34.44 5.82 30.52 22.76 11.04 9.72 39.29 4.54
25 16.06 83.39 90.04 5.98 86.84 81.42 25.40 25.13 96.89 13.06
50 16.32 83.68 99.45 6.27 93.72 93.93 50.60 49.39 99.42 37.04

16.97 50
10 16.53 3.35 3.35 3.20 16.71 3.35 9.87 9.86 3.35 10.13
25 41.55 8.30 8.30 8.28 41.68 8.30 24.94 24.78 8.30 25.25
50 83.06 16.93 16.93 16.93 83.06 16.93 50.08 49.91 16.93 50.02

Character

94.75 10
10 33.33 33.33 81.15 29.71 40.57 52.17 2.17 38.40 87.68 8.69
25 35.50 57.24 97.10 33.33 61.59 86.95 6.52 57.97 97.82 23.91
50 36.95 63.04 100.00 33.33 66.66 96.37 19.56 80.43 99.27 57.97

89.73 25
10 30.14 14.20 33.33 28.69 13.04 19.13 9.85 7.85 39.42 8.98
25 39.13 35.36 70.72 37.97 34.78 44.05 26.66 20.00 95.36 27.24
50 46.08 53.91 98.26 43.47 56.52 83.76 53.62 46.37 100.00 52.17

88.39 50
10 19.97 0.57 11.57 19.97 0.14 8.24 11.43 6.94 19.97 10.56
25 49.63 1.44 29.66 49.49 1.59 16.06 28.94 19.82 49.63 25.03
50 91.17 8.82 57.88 89.86 10.13 35.89 56.00 43.99 95.80 49.92

FordB

66.61 10
10 45.66 9.44 29.13 45.66 9.05 30.31 6.29 9.44 70.86 11.41
25 48.03 40.94 64.96 48.03 40.55 57.87 17.71 26.77 92.51 25.19
50 48.42 51.57 99.60 48.42 51.57 99.60 46.85 53.14 99.21 48.42

59.83 25
10 19.49 27.98 19.81 18.86 28.93 28.93 9.90 7.23 38.52 9.43
25 35.53 46.38 51.41 33.01 46.38 58.17 22.64 22.48 75.31 22.95
50 47.32 52.67 93.86 46.22 53.77 78.93 49.05 50.78 95.44 49.84

49.78 50
10 5.34 14.15 14.15 14.15 5.34 14.15 10.22 9.11 13.60 9.74
25 18.94 30.42 30.42 30.50 19.10 30.50 25.39 24.92 29.71 25.23
50 48.50 51.41 50.70 51.41 48.50 50.70 50.07 49.84 51.33 49.84

116 data lens : benchmarking of state-of-the-art influence functions

(a) Anomaly dataset (Quality: 10% mislabeled) (b) Anomaly dataset (Quality: 25% mislabeled)

(c) Character dataset (Quality: 10% mislabeled) (d) Character dataset (Quality: 25% mislabeled)

Figure 9.1: Different correction accuracies for multiple inspection ratios with a fixed
dataset quality.

9.2.3 Influence of Inspection Ratio

Furthermore, the impact of the inspection rate was analyzed, and it was found
that the gain of a higher inspection rate heavily decreases after a certain point
as shown in Figure 9.1. The horizontal axis provides the ratio of inspected data
after ranking the samples according to the corresponding debugging approach,
and the vertical axis shows the accuracy of corrected mislabels. In Figure 9.1a
at 10% inspected data, the correction accuracy should be equal to 0.1 for the
random correction and should increase linearly. Both figures do not show all
measurements, but rather visualize the most successful approaches. The scores in
Figure 9.1a provide information about the saddle point for the different methods.
Also, for the two measurements considering inspecting the most helpful samples,
the overall accuracy of the mislabel correction is much lower compared to the
other selected methods. Furthermore, the Loss outperformed the other methods
at any inspection rate.

In general, Figure 9.1b refines the previous results on a different dataset
quality. It has to be mentioned that the Loss keeps the superior performance. An
evaluation of the 50% mislabeled dataset could not provide meaningful results
because the concept was not learned correctly by the model. For a complete
analysis and to avoid that the previous finding is related to the properties of the
Anomaly dataset, the same figures were created for the Character dataset because
of the diversity of the data and the classification task. In addition, Figure 9.1
shows the correction accuracies for the Character trajectory datasets, which reflects
that the behavior for the approaches was similar to the results presented for the
anomaly dataset.

9.2 experiments & results 117

Figure 9.2: Normalized distribution of the different correction approaches for the
Synthetic Anomaly Detection dataset (Quality: 10% mislabeled.

9.2.4 Analyzing Score of Correction

To understand the performance differences, a more detailed look into the
distribution and the computed values is mandatory. In Figure 9.2 the distribution
of these values has shown that for some methods the distribution highlights the
two classes. E.g. the loss-based values showed a clear separation of the correct
labels and the mislabels. In contrast to that, the representer values did not separate
the data in such a manner. The same holds for the absolute influence values.
Besides those two methods, all other methods provided an excellent separation of
the data in the distribution plot. Although these plots of the distribution provided
a rough understanding of the values, more detailed inspection is provided in the
following paragraph.

To better align the findings of the distribution plot, the scores are visualized for
each sample in the Anomaly datasets (Quality: 10% mislabeled) in Figure 9.3. The
right column shows the sorted scores which were used for the experiments and
provides a better overview of the separation of the labels.

Figure 9.3a shows the scores for the classwise measurement in an unsorted (left)
and sorted (right) manner, indicating that selecting the lowest or highest scores
can lead to a good mislabel correction. The high values correspond to the helpful
whereas the low are harmful samples, and it is possible to improve the quality of
those. Figure 9.3b shows the absolute values of this measurement, and therefore it

118 data lens : benchmarking of state-of-the-art influence functions

(a) classwise

(b) classwise_absolute

(c) influence

(d) influence_absolute

(e) loss

(f) representer

Figure 9.3: Left column shows the unsorted scores for one of the Synthetic Anomaly
Detection datasets (Quality: 10% mislabeled).

is not possible to differentiate between helpful and harmful, resulting in a single
influence value indicating only the importance concerning the classification.

The approaches shown in Figure 9.3c and Figure 9.3d do not compute the
influence separate for each class. This can change the scores for some samples.
Especially, if samples are more important for a specific class, this measurement
does not capture this property.

9.2 experiments & results 119

Figure 9.4: First 100 samples of the Anomaly dataset (Quality: 10% mislabeled). Dots
indicate detected and crosses undetected mislabels.

In Figure 9.3e an almost perfect separation provided by the Loss is shown.
The loss value for the mislabels is very high compared to the correct-labeled
samples, and selecting the samples with a high loss indicates to be an excellent
measurement when the learned concept is meaningful.

Finally, Figure 9.3f shows the representer values. The plot on the left side maybe
lead to the conclusion that the mislabels have lower scores but inspecting the
sorted values proves that this is not the case.

9.2.5 Identification Differences - Sample Ranking

Although it was shown that some methods separate the data better, it was decided
to have a more detailed look at the samples that are not detected and the samples
that are only detected by a specific method because not every sample has the
same weight towards the classification accuracy. This is especially of interest when
it comes to the classification performance rather than the correction accuracy. In
theory, it is a good practice to aim for the highest mislabel correction rate, but
this does not mandatory result in the best possible classifier. Therefore, a more
detailed inspection of the different detected samples followed by an accuracy
evaluation can provide a better understanding of the results as this could favor
the Influence Functions [66] and Representer Point [157] performances.

As shown in Figure 9.4 the approaches detect different mislabels and a
combination of the approaches could provide better correction results. For
example, the Representer Point only detected two out of the 13 mislabels, but one of
these was not detected by any other methods. Especially, the Loss which detected
11 out of the 13 shown label flips was unable to detect this sample.

1
2

0
d

a
t

a
l

e
n

s:
b

e
n

c
h

m
a

r
k

i
n

g
o

f
s

t
a

t
e-

o
f-

t
h

e-
a

r
t

i
n

f
l

u
e

n
c

e
f

u
n

c
t

i
o

n
s

Table 9.3: Detected mislabels for the best combinations. The first row of each setup highlights the best performance without any combination, and the
following the best combined approaches. Numbers are given in percentage.

Dataset Mislabeled Inspected Corrected
Influence-based [66] Representer theorem [157]

Loss
classwise low classwise high classwise absolute low high absolute low high

Anomaly

10 10

94.11 - - - - - - - - X
94.25 X - - - - - - - X
94.22 - - - X - - - - X
94.11 - - - - - - X X X

25 25

96.89 - - - - - - - - X
96.94 X - - - X - - - X
96.89 - - - X X - - - X
96.89 - - - - - - X X X

50 50

83.06 - - - - X - - - -
83.06 - - - - X - - - X
83.06 - - - - X - - X -
83.06 X - - - - - - - X

Character

10 10

87.68 - - - - - - - - X
89.85 X - - - - - - - X
89.85 - - X - - X - X X
88.40 - - - X - - - - X

25 25

95.36 - - - - - - - - X
96.81 X - - - - - - - X
96.23 - - - X - - - - X
95.36 - - - - - - X X X

50 50

95.80 - - - - - - - - X
96.52 X - - - - - - - X
96.09 X X - - - - - - X
95.80 - - - - - - X X X

9.2 experiments & results 121

9.2.6 Combining Correction Approaches

Concerning previous findings, a combination of the approaches could lead to
even better results. To combine the methods, the ranking scores are normalized to
make it possible to compare them linearly. Although this combination approach
is simple, the results show the capabilities of a combination.

Table 9.3 presents the results for some selected combinations. The results refine
the findings that the Loss, as a baseline, was excellent, and only in the case where
the model did not learn the concept, the Loss was significantly worse than the
other approaches. Also, this indicates that the combined methods can reach a very
stable performance for the 50% mislabeled Synthetic Anomaly detection dataset. The
results for the Character Trajectories dataset were similar to those of the Synthetic
Anomaly Detection dataset. Besides, the combinations with the Loss perform well
even for the 50% mislabel due to the correctly learned concept.

Furthermore, these experiments emphasized that a combination can improve
the correction accuracy and improve the robustness compared to the use of a
single measurement. Nevertheless, drawbacks exist, addressing the computational
effort and the robustness. Some methods were not as reliable as the results of the
Loss and using them can decrease the performance as well.

9.2.7 Additional Time Consumption

In contrast to the Loss, the other approaches need additional computation time.
The training loss can be collected during the evaluation process without a
significant slowdown. The Influence Functions approach [66] needs an already
trained model, and the execution of this method is extremely time-consuming.
Especially, the computation of the classwise measurement requires a lot of time.
The same holds for the Representer Point method [157]. This method needs
additional training to learn the representation to compute the representer value
based on the pre softmax activations. In contrast to the Influence Functions, this
additional training is class independent and depends on representation size.

The time consumption is visualized in Figure 9.5 and the Loss is excluded. As
for the other approaches, the Representer Point has very low computational extra
time. The computational effort for the influence strongly depends on the dataset
size. Also, the computational effort for the classwise measurement suffers from
the number of different classes. A comparison of the datasets showed that for the
Anomaly and FordB dataset, the computation time for the classwise measurement
increased about 40% for the FordB dataset and 50% for the Synthetic Anomaly
Detection dataset as both have two classes. The Character Trajectories dataset has 20

classes, and therefore the increase in additional time is much higher.

9.2.8 Detailed Sample Analysis

There are two important questions during the dataset debugging: Why are some
samples harder to identify compared to the majority of samples? How do these
samples look like and do they provide any information concerning the learned

122 data lens : benchmarking of state-of-the-art influence functions

Figure 9.5: Additional computation time excluding any measurement that can be done
during the evaluation process.

concept? Answering these questions or inspecting these samples can help to
interpret the model. According to the previous findings, not all samples are
similarly easy to find. This experiment covers the difficulty and properties of the
samples. It has to be highlighted, that the results are visualized for the Synthetic
Anomaly Detection dataset due to the easier interpretability of the problem but
could be visualized for the other datasets as well.

In Figure 9.6 three samples of the previously mentioned slice for the loss-
based approach are shown. These samples were selected to emphasize the specific
properties of the approach. The label shows the correct label, whereas one
corresponds to the anomaly and zero to the non-anomalous class. Therefore, all
samples are classified as anomalies within the ground truth. Only the last sample
(second row) was found by inspecting 10% of the data, as this includes the ranks
31,500 to 35,000 for the training dataset. The rank reflects the position in the
dataset sorted according to a specific measurement, e.g. Loss. Furthermore, the
second example (first row, right) was close to the threshold, and increasing the
amount of inspected data to 12% would be sufficient to find this mislabel. Finally,
for the first example (first row, left), there is an ambiguity concerning its ground
truth label as it could either be a true mislabel or the model was unable to capture
the precise concept of point anomaly concerning the less dominant peak.

According to the dataset creation process, the sample had the correct
ground truth label, highlighting that when it comes to the interpretation and
explainability of the model, this sample shows that the concept was not precisely

9.2 experiments & results 123

Figure 9.6: All samples are anomalies within the ground truth, but their labels were
flipped during the training. Only sample 100 was successfully identified as
mislabel by the loss-based approach.

learned. With this information, it is possible to include samples related to the
missing concept parts or weight these kinds of samples to adjust the learned
concept to cover the complete task.

This means, that based on the ranking, it is possible to understand the learned
concept and the dataset quality. Both can help to provide an understanding of
the model to improve it. Also, the corresponding influence score ranked the
ambiguous sample at position 25,556. This information states that the sample was
not relevant to the classifier. This assumption was further validated by Figure 9.3
where the influence of the sample is zero. Therefore, it was not helping or harming
the classifier’s performance. The same result was given by the classwise influence
score which had rank 23,197 and following the same procedure showed that this
sample did not contribute much to the classifier. Finally, to provide the complete
information for that sample, the score for the Representer Point which ranked the
sample at rank 4,079 was checked and refined the assumption as well.

Using the information above, it is now possible to understand the mislabel, as
this sample was not relevant for the classifier. To adjust the classifier to detect
peaks like that, it is mandatory to increase the importance of these kinds of
samples.

After the first conclusions based on the ambiguous sample, further experiments
were conducted in this direction. Therefore, Figure 9.7 provides information about
the importance of the samples with the highest and lowest scores. Starting with
Figure 9.7a the two samples with the lowest loss are shown. These samples
visualize two pretty good samples for the anomaly detection task. Their loss
highlights the learned concept. In contrast to that, Figure 9.7b shows the samples
with the highest loss. Important for these two samples is that they were mislabeled.

124 data lens : benchmarking of state-of-the-art influence functions

(a) Samples with the lowest loss (labeled as no
anomaly and anomaly)

(b) Samples with the highest loss (both
mislabeled as anomalies)

(c) Harmful samples with negative influence
value (both mislabeled as no anomalies)

(d) Helpful samples with positive influence
value (both labeled as anomalies)

(e) Samples with low absolute influence value,
low impact (both labeled as no anomalies)

(f) Samples with the lowest absolute
representer value (both labeled as no
anomalies)

(g) Samples with the highest absolute
representer value (labeled as anomaly and
no anomaly)

Figure 9.7: Shows different selected samples and their scores based on the used approach.

Both had the anomaly label and, as the figure shows, they should be classified as
no anomaly samples. Therefore, their high loss showed that the model correctly
learned the concept of anomaly detection.

Furthermore, Figure 9.7d shows the positive and Figure 9.7c the negative
influencing samples. Figure 9.7e provides information about the least influencing
samples. The negative influencing plots showed that the classifier worked
correctly as both are mislabeled samples and the positive influencing and neutral
ones were correctly labeled. Finally, Figure 9.7f shows the samples with a low
representer value and Figure 9.7g the ones with high values. These samples did
not include any mislabel. The combination of these insights again emphasizes that
including the data and additional debugging methods, it is possible to not only
detect the mislabeled samples but further show that the concept of the classifier
was learned correctly.

As mentioned early on, the approaches detect different samples. Figure 9.8
shows some samples that were found either by the Loss or the Influence

9.2 experiments & results 125

(a) Mislabels found by loss

(b) Mislabels found by influence

Figure 9.8: Shows mislabeled samples that are only found either by the loss or influence
approach.

Functions [66]. For example, the Loss provides be best mislabel correction rate
if the model had a vague understanding of the problem, but it did not rank the
samples according to their influence. Therefore, it could be that a significant lower
mislabel correction accuracy results in superior classification accuracy. Contrary,
the influence-based method provides information on how helpful and harmful
the samples are but did not maximize the mislabel correction accuracy.

9.2.9 Model Accuracy Comparison

To complete the comparison of the methods, the change in the accuracy is
represented for some representative experiments for the Synthetic Anomaly
Detection dataset. In Figure 9.9 it is shown that the accuracy over ten runs for
the 10% mislabeled dataset and the 20% mislabeled dataset is much better for
some approaches and that the variance between the runs is minimal concerning
the data quality.

Another aspect that is related to the previous analysis is the deletion of a
subset based on the measurements. The suggested samples are deleted from the
dataset instead of the manual correction, which needs time and additional effort.
Therefore, the deletion of samples can be executed without human inspection
and if the measurement is good, it should remove mislabeled data as well as
other samples that harm the performance of the classifier. This results in a smaller
dataset with improved data quality.

Figure 9.10 shows the performances for the mislabel correction compared to
the deletion without inspection. In Figure 9.10a the deletion performed better
for the ’classwise absolute’ influence computation removing the most influencing

126 data lens : benchmarking of state-of-the-art influence functions

Figure 9.9: Accuracies of the different models for the Synthetic Anomaly Detection dataset
(Quality 10% and 20% mislabeled) for the correction task.

(a) Accuracies for 10% deletion data.

(b) Accuracies for 25% deletion data.

Figure 9.10: Accuracies of the different models for anomaly dataset (Quality: 10% and
20% mislabeled) for the deletion task.

samples. Further, the scores for the influence computation [66] show that the
deletion of samples with low scores improved the accuracy and the deletion

9.3 discussion 127

of samples with high scores decreased the accuracy, reflecting the influence
score concerning its definition of helpful and harmful samples. For the Loss, the
accuracy dropped if the samples were deleted. This is especially the case because
for the loss-based procedure the correction accuracy is excellent and the deletion
of the samples just shrinks the data. The results have shown that except for the
Loss the accuracies dropped compared to the mislabeled dataset. If a manual
inspection is not a valid solution, the deletion of the samples based on the scores
did not improve the quality of the data either.

9.3 discussion

When it comes to a stable, robust, and effective method to debug mislabels,
the loss-based approach outperformed the other methods in accuracy and time
consumption significantly. The only drawback is that there is no information
about the influence of the detected samples, as this approach is not used for
interpretability. The Influence Functions have shown to achieve nearly comparable
results. Especially, when using the absolute values to check both the harmful and
helpful samples, the correction rate was stable, providing additional influence
information. The only drawback is the additional time, especially when the
classwise evaluation is used. The Representer Point was outperformed by a large
margin, making it not possible to compare it to the superior methods.

9.4 conclusion

A comprehensive evaluation concerning the topic of automatic mislabel detection
and correction was performed. Therefore, multiple experiments were examined
and the performance of two well known existing methods in the domain of
model interpretability was evaluated. In contrast to the expectations, the loss-
based method handled the mislabel detection task better even though it is a
direct measurement and the two already existing methods provide a much more
profound understanding of the model. Also, it was shown that a combination of
the methods can be more robust and lead to even better results. Furthermore,
it has to be mentioned that the dataset debugging is only a subtask of the
Influence Functions and Representer Point. Therefore, results were presented that
help to interpret the model from a data-based perspective and used different
measurements to provide an overview of the models’ behavior. The most
important samples for the model concerning the different approaches were
identified. Finally, it was found that the deletion of the suggested mislabeled data
did not work better than keeping the mislabeled data.

Part III

I N T R I N S I C I N T E R P R E TA B I L I T Y

intrinsic interpretability 131131

Intrinsic interpretability is less explored by the research community compared
to the previous discussed post-hoc interpretability. However, that does not mean
that this perspective is less important, as intrinsic interpretable networks provide
a direct source of explanation. As they directly affect the reasoning process,
they operate on a higher level of interpretability according to the GDPR. Similar
to the post-hoc methods, most of the work for intrinsic approaches originates
from the image domain and was designed to work well with the concepts
and characteristics they provide. In this chapter, novel work related to intrinsic
interpretability is presented.

First, an approach that divides the data and produces results on different levels
is presented. The core idea of this approach is that dividing the problem into
sub problems lowers the complexity and introduces some sort of explanation. E.g.
information such as a small parts of the data belong to a class whereas other parts
are irrelevant can be of high interest as it points out which parts are considered
by the network.

The second part of this chapter introduces a novel prototype-based approach
based on similarity. This approach is aligned with the time series characteristics
and infers based on the similarity of data patches and representative prototypes.
The prototypes are artificially learned during the training process and belong to
small representative data pieces.

10
PAT C H X : A N O V E L L E V E L - W I S E C L A S S I F I C AT I O N
A P P R O A C H

Cognitive load plays an important role when it comes to interpretability of
data. It is known that the visual analysis of complete time series comes with an
extensive cognitive overload, as it is difficult to perceive and leads to confusion.
Therefore, dividing the problem into smaller subtasks can help to reduce the effort
required to understand the explanation. This idea is used to come up with a novel
approach, namely PatchX. PatchX performs a fine-grained patch classification
using deep learning methods, followed by overall sample classification with a
traditional machine learning classifier to understand the fine-grained patches
and their interaction. The modular design allows exchanging the network and
the classifier based on the needs. PatchX shows quantitatively and qualitatively
superiority to its counterparts, with an increased interpretability.

10.1 method

The proposed method is a hybrid approach using a neural network and a
traditional machine learning approach to infer on the patch and the sample
level. The architecture is modular and both the network and the classifier can
be exchanged. The approach works with automatically created metadata for the
patches extracted during the processing. Below, detailed information about the
automatic label creation, required data transformation steps, the classification
process, and the mathematical background is provided. The processing of a
sample is divided into four steps shown in Figure 10.1.

10.1.1 Data Transformation (Step 1)

The initial processing step transforms the sample into patches used for further
processing. To do so, a set of patch sizes and strides is passed to the framework
that is used to define the boundaries. This set can include guesses, as the
framework automatically handles the relevance of the provided sets. During the
data transformation, every patch gets the label of its corresponding sample. An
important aspect is that the transformation preserves the length of the data, which
enables the use of different patch sizes within the same network. To do so, the data
not related to the patch is set to zero, and an additional channel highlighting the
true length of the patch is created.

x
p
i = transform(xi,p, s, l) (10.45)

This chapter is an adapted version of the work presented in: D. Mercier, A. Dengel, and S. Ahmed.
“PatchX: Explaining Deep Models by Intelligible Pattern Patches for Time-series Classification.” In:
2021 International Joint Conference on Neural Networks (IJCNN). IEEE. 2021, pp. 1–8.

134 patchx : a novel level-wise classification approach

Figure 10.1: Shows the workflow of PatchX. PatchX only requires the time series to
produce a fine-grained and an overall prediction.

X̂ =
{
x
p
i | i ∈ N∧ p ∈ N ∧ p ∗ s <| xi |

}
(10.46)

Let xpi denote the transformed sample for the p-th patch of the i-th sample in
X. Equation 10.45 shows the required parameters to compute x

p
i using the index

p of the patch, s as the given stride, and l as the patch size. In Equation 10.46,
the computation of X̂ the set of all patches over each sample is shown. The
transformed data X̂ consisting of the different patches for each sample and the
label yi corresponding to the xi is used to create x

p
i .

Due to simplicity reasons, it is assumed that only a single pair of s and l is used.
However, the equations do not change dramatically as only the number of patches
per sample increases, and a transformation for each setup is applied.

10.1.2 Fine-grained Classification (Step 2)

In the second step, the patch data is used to train a deep neural network to
perform a fine-grained classification on the patch level. Although the dataset
contains only the overall labels, it is possible to learn a patch-based behavior. The
minimization of the network loss focuses on the samples that are class-specific.
Therefore, the softmax prediction shows uncertainty for the patches that appear in
different classes. This uncertainty highlights that the patches are not class-specific
and shared between classes, serving as a confidence score.

H =

C∑
c=1

−yi,c ∗ log(Φc(x
p
i)) (10.47)

L =
1

| N | ∗ | P |
∗

N∑
i

P∑
p

H(xpi ,yi) (10.48)

10.1 method 135

Equation 10.47 shows the cross-entropy for a single patch. In Equation 10.48, the
loss over all samples is visualized. Therefore, P is denoted as the set of patches
per sample and N as dataset size, corresponding to the size before splitting the
data into patches. Furthermore, the patch classification network is denoted as Φ

and C as the classes.
Discussion: Piece wise processed data is not available most time and its manual

annotation is not suitable. Therefore, assigning the sample label to a patch
introduces the question whether it is correct or not. In general, each patch can
be classified as part of one of the following categories [62]:

• The pattern occurs only in a single class. In this case, the label is correct,
and the classification of the patch will result in a very high value for the
assigned class. This pattern is referred as a class-specific pattern.

• The pattern occurs in multiple classes. The network prediction for these
samples will have medium values for some classes. These patterns are
referred to as shared patterns.

• The pattern is not related to the label. These patches are actual mislabels,
but due to the minority of this case, the loss minimization can handle them.

10.1.3 Metadata Extraction (Step 3)

The softmax prediction given by the fine-grained classification is then used to
create a suitable representation for the sample classification. Therefore, a vector
with the shape of the different classes is initialized. This vector is filled with the
softmax values, using only the maximum value of each patch prediction and
adding it to the corresponding class index. The vector is time-independent but
represents the presence of different classes within the sample.

x̃ci =

P∑
p

{
max(Φ(xpi)) | argmax(Φ(xpi)) = c

}
(10.49)

x̃i = {x̃ci | c ∈ C} (10.50)

Equation 10.49 shows the computation of the entry x̃ci . x̃i is denoted as the
feature vector used to compute xi. The values of each x̃ci are represented by
the sum of the values corresponding to the class c of the patches for that c was
predicted. Equation 10.50 shows x̃i as a set of x̃ci computed for each class c in | C |

the set of classes.
Discussion: The drop of the temporal component during the metadata

extraction can be explained with the previous patch prediction. The patch
prediction is executed in a manner that takes care of the temporal component
and inherently encodes the temporal component. This makes it possible to simply
add the values to the corresponding class. Separating the class vector to preserve
the patch sequence or the use of the complete metadata resulted in no information
gain.

136 patchx : a novel level-wise classification approach

Table 10.1: The different datasets and their parameters.

Dataset Train Val Test Steps Channels Classes

Anomaly [91] 35,000 15,000 10,000 50 3 2
CharacterTrajectories 1,383 606 869 206 3 20
DailyAndSportActivities 22,344 9,576 13,680 60 45 19
ElectricDevices 6,244 2,682 7,711 96 1 7
FordA 2,520 1,081 1,320 500 1 2

10.1.4 Sample Classification (Step 4)

The last step is the classification based on the prepared metadata using a
traditional ML algorithm. It was decided to use a support vector machine and
random forest classifier as these had the best performance during the experiments.
However, it is possible to replace them with any other classifier, e.g. a dense layer,
nearest neighbor, or majority/occurrence voting.

y ′ = {Ψ(x̃i) | i ∈ N} (10.51)

In Equation 10.51 the final predictions are computed using the x̃ as a feature
vector created for each xi of the dataset.

10.2 datasets

A set of five publicly available time series datasets was used to show that the
proposed approach works without a restriction to a specific dataset. Precisely, four
datasets from the UEA & UCR Time Series Classification Repository [9], and a
point anomaly dataset proposed in [91] were used. These datasets were selected to
emphasize broad applicability and possible limitations. In Table 10.1 the different
parameters of each dataset are shown.

10.3 experiments & results

A high-quality interpretable network architecture requires not only good accuracy,
but further requires a suitable explanation and broad applicability. Therefore,
several experiments were performed including a comparison of non-interpretable,
and interpretable approaches, and different accuracy evaluations.

A convolutional network was used consisting of four conv-pool blocks and a
fully connected layer on top of the four blocks. Each conv-pool block contains a
1d convolutional layer using Rectified Linear Unit (ReLU) activation and a 1d max-
pool layer. On top of the last max-pool layer, a dense layer with ReLU activation and
the final classification layer using a softmax activation were used. It was decided
to test the approach using a Convolutional Neural Network (CNN) structure, but
other architectures such as Recurrent Neural Networks (RNNs) are possible too.
During training, a maximum of 50 epochs was set with a batch size of 32 and a
learning rate schedule and early stopping callback.

10.3 experiments & results 137

10.3.1 Accuracy Comparison

A comprehensive accuracy evaluation over different classification approaches
was performed to compare their performances and scaleability. Besides, the
approaches were divided into non-interpretable deep learning, and interpretable
methods. Furthermore, within the class of interpretable approaches, traditional
machine learning algorithms and the proposed interpretable hybrid approach
were differentiated. Finally, a feature extraction preprocessing step was included
for some methods to evaluate the impact of extracted features against raw data
usage. The different approaches and performances are shown in Table 10.2.

Although deep learning is known to perform well, the results of traditional
machine learning including a feature extraction step have shown superior
performance. However, this feature extraction approach limits the approaches
significantly. E.g. for the DailyAndSportActivities dataset, the time consumption
and memory usage scale poor, making it impossible to use the feature extraction
for larger datasets. Besides, the feature extraction assumes that the numerical
features of interest are already known and does not learn others directly from the
data.

Excluding the limited feature extraction approaches, deep learning
outperformed the traditional approaches in almost every task. Compared to
the traditional approaches, the deep learning algorithms did not suffer from the
increased dataset size, and CNNs have shown to be able to work with the raw data
and produce high accuracy results. However, the results are not interpretable
without additional efforts.

The results show that PatchX is a good compromise as its accuracy was only
slightly lower compared to the deep learning approach, but it scales very well
and produces explainable results. Furthermore, the computation time of the
hybrid approach was only slightly higher than the computation of the black-box
approach.

1
3

8
p

a
t

c
h

x:
a

n
o

v
e

l
l

e
v

e
l-

w
i
s

e
c

l
a

s
s

i
f

i
c

a
t

i
o

n
a

p
p

r
o

a
c

h

Table 10.2: Shows the accuracy comparison. Feature approaches include a feature extraction pre-processing. The Trivial approach covers a
majority/occurrence voting after the fine-grained classification. Numbers are given in percentage. Bold numbers are the best scalable
approach excluding feature-based due to their limitations concerning the required previous knowledge and feature selection.

Dataset

Scalable Not scalable

Black-box
Interpretable

PatchX Traditional approaches
CNN CNN + SVM CNN + RF CNN + Trivial SVM RF SVM feature RF feature

Anomaly 98.70 98.41 97.25 98.23 97.74 96.34 99.08 99.99
CharacterTrajectories 96.55 95.17 94.13 82.74 98.62 98.16 92.98 98.16
DailyAndSportActivites 99.74 99.82 99.88 99.79 98.54 99.60 - -
ElectricDevices 67.31 69.29 68.56 60.68 60.69 65.21 24.23 69.46
FordA 88.71 90.08 82.42 88.48 83.33 74.92 92.88 100.00

10.3 experiments & results 139

Table 10.3: Shows the time consumption results. T denotes the training time in seconds.
I denotes the inference time. Used hardware: Intel Xeon (Quad Core), Nvidia
GTX 1080 Ti, 64 GB memory.

Dataset Mode PatchX Black-box SVM SVM Feature

Anomaly
T 168.5 45.3 1,290.0 3,006.5
I 2.6 0.6 33.7 260.3

CharacterTrajectories
T 69.9 6.7 0.8 132.2
I 1.4 0.2 0.5 45.2

DailyAndSportActivities
T 220.9 32.1 511.8 -
I 5.8 1.2 504.5 -

ElectricDevices
T 83.2 7.4 9.3 161.9
I 4.8 0.6 5.8 12.1

FordA
T 159.2 10.5 5.9 293.0
I 3.0 0.2 2.0 100.8

10.3.2 Computation Time Analysis

Below, the experiments to evaluate the time consumption of the different
approaches are discussed. In Figure 10.3 the results are shown for the complete
training procedure and the testing using the test datasets. The results have
indicated that the approaches that use the feature extraction scale pretty bad.
Conversely, the deep learning-based methods scale pretty well. Furthermore,
PatchX was slower than the traditional approach when the dataset was small, but
scales significantly better when the dataset size increased.

t =
∑
d∈D

 S∑
j=0

(⌈
lsample

sj

⌉)
∗ tnet + thead

 (10.52)

Equation 10.52 shows the time it takes to train or perform predictions using the
proposed approach. First, denote tnet and thead as the time it takes to process
an input using the network or the head, respectively. The head corresponds to
the sample classifier, whereas the net to the network architecture used for the
patch classification. D denotes the dataset, lsample the number of time steps a
sample has, and S denotes the set strides. In a traditional deep neural network,
the inner sum is equal to one. However, the computation for the thead is not
directly comparable due to the different number of features. Usually, this number
depends on the network architecture and the input space, however, for PatchX it
depends on the number of patches per sample and classes.

10.3.3 Hyperparameter Selection

To produce interpretable results, a careful hyperparameter selection is important.
Therefore, PatchX requires two types of parameters.

140 patchx : a novel level-wise classification approach

Table 10.4: Shows the performance comparison using different parameter sets. ’S’ denotes
the stride between the patches, and ’L’ denotes the length of each patch.
Numbers are given in accuracy percentage.

Dataset
PatchX

S 5 L 10 S 10 L 20 S 5,10 L 10,20

Anomaly 98.27 98.14 98.29
CharacterTrajectories 94.82 95.17 94.36
DailyAndSportActivites 99.66 99.74 99.82
ElectricDevices 65.78 69.06 69.29
FordA 51.59 89.17 87.20

10.3.3.1 Patch Creation Parameters

The first category includes the parameters that directly influence the patches.
Precisely, stride and length are used to define the patches. As in any other use
case, the stride defines the gap between the patches of the same sample, and the
length the length of the data. Using PatchX it is possible to use multiple strides and
lengths resulting in a larger dataset and different levels of explanation.

In Table 10.4 the impact of the different setups is shown. Therefore, the stride is
defined to be half of the length to produce an overlap of the samples and used an
SVM classifier for the sample classification. The results show that for all datasets
except the FordA the small patch length was able to capture the pattern required
to classify the samples. However, using the increased patch size, the approach was
able to recover the network for the FordA dataset.

The results highlight how crucial the parameter selection is for interpretation
and accuracy. Intuitively, smaller patch sizes are related to basic patterns and
larger patch sizes cover complex patterns [37, 75]. Furthermore, the experiment
has shown that the use of multiple parameter setups including the not working
setup for the FordA data resulted in high accuracy values as the approach
automatically takes care of setups that are irrelevant for the sample classification.

10.3.3.2 Patch transformation parameters

Considering the variable length of the patches within the experiment settings
requires an advanced transformation. Three parameters are required to handle
the transformation. Although it is possible to have different combinations of these
parameters, only a limited set is valid:

1. Zero is used to set the data not included in the patch to zero. As the model
has a fixed input size, it is mandatory to maintain the sample size for all
patch sizes.

2. Attach indicates the data related to the patch using an additional channel.

3. Notemp removes the time component and shifts the patch to the beginning
of the sample. This requires the use of Zero to indicate the end of the patch.

10.3 experiments & results 141

Table 10.5: Evaluation of data transformation. Patch classification on the Anomaly dataset.
The first row shows an invalid run, as this setup performed a sample
classification. Numbers are given in percentage.

Setup
Train Acc. Val Acc. Test Acc.

zero attach notemp

False True False 100.0 98.54 98.41
True False False 98.50 98.29 98.01
True True False 98.59 98.57 98.27
True False True 98.30 98.04 98.04
True True True 98.61 98.40 98.27

Figure 10.2: Classification of a sample. Blue: No anomaly. Orange: anomaly. Middle:
Highlighted no anomaly part is classified. Left: Classification using Zero.
Right: Classification not using Zero.

Table 10.5 shows different possible combinations. Surprisingly, the network was
unable to exclude the data outside the patches using the Attach transformation as
shown in Figure 10.2 on the right side. The non-anomaly patch was classified
as an anomaly and the saliency map has shown that the network took the
peak into account, which means the network performed a sample classification
instead of a patch classification. Using this information, it can be concluded that
the attachment of the channel is not enough to restrict the network. Therefore,
setting the data not included in the patch to zero is mandatory to force a patch
classification. In Figure 10.2 the result for the same patch using the Zero flag is
shown on the left side. This time, the model performed a patch classification.
Using the other parameters can be of relevance when there is information
available about the dataset. However, the performance increase for the Anomaly
dataset was limited due to the time independence.

10.3.4 Local & Global Patch-based Explanations

Using the patch classifier, it is possible to produce predictions for each patch.
Based on the stride and length of each patch, this results in different overlapping
explanations. As shown in Figure 10.2 it is possible to get detailed information
about a patch and its classification. This patch explanation covers only a small

142 patchx : a novel level-wise classification approach

Figure 10.3: Shows the explanation overlay. Gradient highlights confidence. Blue: No
anomaly. Orange: anomaly.

(a) No anomaly patches (b) Anomaly patches

Figure 10.4: FordA sequence explanation. Class wise patch prediction overlay using
PatchX. Blue: No anomaly. Orange: anomaly.

piece of data and is much easier to understand due to the lower cognitive
load [104].

The combination of the patches results in a global sample explanation with
fine-grained classification scores for every patch. The color gradient visualizes the
confidence of the classifier. Lower gradients relate to patches class independent,
whereas higher values relate to class dependent patches.

Figure 10.3 shows the combination of the patch classifications. The blue color is
assigned to non-anomaly patches and orange to anomaly patches. Ultimately, it
highlights that the patch length for this sample could be even smaller. Precisely,
some data classified as non-anomaly by neighborhood patches is included in the
anomaly patches. Using a setup with multiple patch sizes results in more precise
localization.

Additionally, the overlay approach can provide visualizations restricted to a
specific set of classes, e.g. an explanation of the FordA dataset consists of two
classes. This dataset covers an anomaly detection task. In contrast to the previous
results using the Anomaly dataset, the anomalies are not restricted to a single
location. However, it is possible to highlight the class-specific regions, as shown
in Figure 10.4. Especially, when the data covers numerous time steps and data
unrelated to the class of interest, this visualization enables easy filtering. Precisely,
the explanation shown in Figure 10.4 highlights small parts there were classified
independently as an anomaly or no anomaly, enabling a piecewise inspection of
these pieces.

10.3.5 Global Patch Confidence

As the local patch classifier predicts a label for each patch, it is important to differ
between the following cases. Patches that have high value are likely to be class-

10.3 experiments & results 143

(a) Anomaly (b) Character Trajectories

(c) DialyAndSportActivities (d) FordA

Figure 10.5: Shows the confidence for the patches. Y-axis: number of patches. X-axis: Soft-
max.

specific, low valued patches are likely to be class unrelated and medium values
correspond to patches shared between classes.

Using the scores for each patch, it is possible to get global insights about
the task. In Figure 10.5 the patch confidence over the dataset is visualized
as a histogram. The confidence of each patch is calculated using the value
of their softmax prediction to highlight their uniqueness. The patterns of the
DailyAndSportActivities are unique to each class, highlighted by the high values.
The same holds for the Character Trajectories dataset. However, some of the patterns
are shared across the classes. Intuitively, when drawing a character, some parts of
the drawing are not unique to a character. E.g. the classes ’e’ and ’o’ only differ
in the first and last part of the signal. In contrast to the previously mentioned
datasets, the Anomaly dataset shows different behavior as it covers only point
anomalies the number of patches that appear exclusively in one class is smaller.
The FordA dataset shows a combination of the previously mentioned behaviors as
it contains class-specific, unrelated, and shared patterns.

10.3.6 Class Boundary Evaluation

The patch prediction and confidence scores can be used to explore class
boundaries. It is shown that they help to identify the source of a class shift. In
Figure 10.6a peak is visualized. The initial series (blue line) without any change
has a non-anomaly label. When increasing the peak value, the label switches after
the third change to an anomaly (orange line). Mathematically, the labels of this

144 patchx : a novel level-wise classification approach

Figure 10.6: Shows how to convert the sample from one to another class. Line color:
ground-truth. Bars border color: prediction. Bar color and the gradient: Patch
prediction.

dataset are computed based on the mean and std within the signal. Therefore, it is
possible to create a series of the same signal while slightly increasing the peak to
shift the class. However, to understand if the classifier learned the class boundary
correctly, a look at the change of the patch and overall prediction is required. The
border color of the bars shows the sample classification, whereas the bar color
shows the patch prediction. Two patches were used for this sample. The results
provide evidence that the boundary is learned correctly, as the border color of the
bars and the line color match. However, the patch covering time steps 10 to 20

changes first, whereas the prediction of the patch that only includes a part of the
peak changes much slower.

Also, samples sometimes are mislabeled because they are close to a class
boundary. In Figure 10.7 the results of two misclassified characters are shown.
Thanks to the patchwise prediction, it is possible to directly understand the
classification. The time series is projected back to the two-dimensional drawing
of the character and used the overlay to highlight the predicted classes for the
patches.

10.3 experiments & results 145

(a) Label: ’o’. Prediction: ’e’ (b) Label: ’w’. Prediction: ’u’

(c) Pred. as: ’o’. (d) Pred. as ’e’. (e) Pred. as ’w’. (f) Pred. as ’u’.

Figure 10.7: Shows the explanation for mislabeled data thanks to the patch classification.
First row: Overlay of two mislabeled characters. Second row: Correct
classified patches. Third row: Misclassified patches.

(a) PatchX (b) SHAP (c) LIME

(d) PatchX (e) SHAP (f) LIME

Figure 10.8: Comparison of PatchX to state-of-the-art approaches. First row no anomaly,
and second row anomaly sample. Orange: Anomaly. Blue: No anomaly.
White: not classified.

10.3.7 Comparison with State-of-the-art Approaches

This section provides a comparison of the proposed method with two well known
state-of-the-art approaches, namely LIME [115] and SHAP [80]. As both methods
use the black-box model to perform a model-agnostic explanation, the accuracy
can be found in Table 10.2 using the black-box model. Figure 10.8 shows two
samples of the anomaly dataset. Starting with the second row, all methods were
able to precisely locate the peak within the signal. However, SHAP and LIME
only provide information about the part relevant to the prediction. In contrast,
PatchX provides information for every patch. The first row shows a sample with a

146 patchx : a novel level-wise classification approach

significant peak. However, the explanation of SHAP and LIME is not as intuitive
as the one of PatchX.

It has to be mentioned that SHAP provides additional information about the
relevant channel, and it is possible to combine the approaches. SHAP can be
used on the proposed fine-grained patch prediction model to provide additional
insights about the neural network to enhance the explanation further.

10.4 conclusion

This section has shown that the proposed hybrid approach can produce
interpretable results for different time series classification tasks. The utilization of
neural networks and traditional machine learning approaches provides local and
global instance-based explanations. The approach improves the interpretation of
mislabels, class boundaries, and sample explanations. Furthermore, the hybrid
approach covers different levels of explanation, focusing on both low and high-
level patterns. Finally, the results emphasize that the hybrid approach builds a
bridge between the interpretable traditional machine learning algorithms and
neural networks. It combines the scalability, performance, and interpretability
advantages of both worlds.

11
P 2 E X N E T: A N O V E L PAT C H - B A S E D P R O T O T Y P E N E T W O R K
A R C H I T E C T U R E

Divide and conquer is a concept that is applicable in many situations and able
to reduce the complexity of many problems. The previous section has shown
a divide and conquer approach. Think one step further, it is possible to create
not only patches but also prototypes for those. The novel interpretable network
scheme proposed in this section is designed to inherently use an explicable
reasoning process inspired by the human cognition without the need of additional
post-hoc explainability methods and creates prototypes for patches of the input
data. It is based on the standard deep neural network architecture, providing a
global explanation using representative class-specific prototypes and an instance-
based local explanation using patch-based similarities and class similarities. An
analysis of the results on publicly available time series datasets reveals that
P2ExNet reaches similar performance when compared to its counterparts while
inherently providing understandable and traceable decisions.

11.1 method

Inspired by human reasoning behavior, P2ExNet is aligned to rely on implicit
knowledge about objects and examples already seen before. Precisely, new
instances are compared to abstract concepts to include class-specific features.
This is called prototypical knowledge and describes the knowledge about
these concepts and covers the analogical process to map new to the existing
knowledge [46]. Following this process, the proposed method uses shallow
representations. The prototypes encode class-specific pattern and provide the
decision based on similarity.

11.1.1 Architecture

Inspired by the work of Gee et al. [45], an autoencoder is combined with
a prototype network. The autoencoder consists of several convolutional and
max-pooling layers serving as a feature encoding network to provide a latent
representation that encodes the relevant features of an input sequence. This
representation is fed forward to a custom prototype layer to generate prototypes.
Motivated by the work of Chen et al. [17], multiple prototypes are used to
represent a sample rather than a single one for the complete input. Precisely, the
prototype layer has randomly initialized variables representing patch prototypes
of user-defined size. Larger sizes will result in composed concepts, and smaller

This chapter is an adapted version of the work presented in: D. Mercier, A. Dengel, and S.
Ahmed. “P2exnet: Patch-based prototype explanation network.” In: International Conference on
Neural Information Processing. Springer. 2020, pp. 318–330.

148 p2exnet : a novel patch-based prototype network architecture

Figure 11.1: Inference and testing workflow. Artificially, computed prototypes are
evaluated in a similarity-based manner to suggest class-specific patches.

sizes result in more basic concepts. On top of the prototype layer, a prototype
weight layer is attached to encourage class-specific prototypes and weight their
position within the sample to cover the local importance. Finally, a softmax
classification evaluates the similarity scores produced by the prototype layer
multiplied with weights of the prototypes, as shown in Figure 11.1.

11.1.2 Mathematical Background

P2ExNet uses a novel combined loss that captures several aspects, enabling the
network to produce a meaningful set of patch prototypes based on the losses
proposed by [17, 45]. For the following equations, let Sx be the set of patches
corresponding to a sample x and the set P of prototypes.

11.1.2.1 Distances

The L2 norm is used to compute the distance between any two vectors.
Furthermore, the minimum distance between a sample and any prototype (Ds2p)
and vice versa (Dp2s) is computed. Dp2p is denoted as the minimal distance
between a prototype and all others and calculate the minimum distance to a
prototype of the same class Dclst and to the other classes Dsep w.r.t. y. Therefore,
Py denotes the subset of P assigned to the class label of y. The distances are shown
in Equations 11.53 to 11.56.

Ds2p(s) = min
p∈P

L2(s,p) (11.53)

Dp2p(p) = min
p ′∈P

L2(p,p ′) (11.54)

Dclst(s,y) = min
p∈Py

L2(s,p) (11.55)

11.1 method 149

Dsep(s,y) = min
p∈{P\Py}

Ds2p(s,p) (11.56)

11.1.2.2 Loses

To ensure high-quality prototypes, a novel patch loss is introduced. This loss is a
combination of different objectives to achieve good accuracy and an explanation
that does not contain duplicates or prototypes that are not class-specific. This loss
combines the following losses:

• Autoencoder loss: Mean Squared Error (MSE) is used to encourage
reconstruction, later used for prototype reconstruction.

• Classification loss: To produce logits for the softmax cross-entropy, the
reciprocal of Ds2p and the prototype-weight layer are multiplied.

• Lp2s and Ls2p: These losses preserve the relation between the input and the
prototypes and vice versa as shown in Equation 11.57 and 11.58.

• Ldiv: The diversity among the patch prototypes is computed as shown in
Equation 11.59.

• Lclst and Lsep: To encourage the network to learn class-specific prototypes,
Lclst and similarly to Lsep but with a negative sign are computed. This
penalized prototypes close to samples of the wrong class w.r.t. their assigned
class.

Lp2s(x) =
1

|P|

∑
p∈P

Dp2s(p) (11.57)

Ls2p(x) =
1

|Sx|

∑
s∈Sx

Ds2p(s) (11.58)

Ldiv = log(1+
1

|P|

∑
p∈P

Dp2p(p))
−1 (11.59)

Lclst(x,y) =
1

|Sx|

∑
s∈Sx

Dclst(s,y) (11.60)

The proposed final loss is a linear combination considering previously
mentioned aspects and ensures meaningful, diverse, and class-specific patch
prototypes shown in Equation 11.61. By default, all lambda values except λc are
set to one to find the best compromise between the objectives, preserving high
accuracy.

Patch_Loss(x,y) = λcH(x,y) + λmseMSE(x, x) + λp2sLp2s(x)

+ λs2pLs2p(x) + λdivLdiv + λclstLclst(x,y) + λsepLsep(x,y) (11.61)

150 p2exnet : a novel patch-based prototype network architecture

Table 11.1: Datasets used in to benchmark P2ExNet.

Dataset Train Val Test Steps Channels Classes

50words 183 83 286 270 1 13
Adiac 261 129 391 176 1 37
Anomaly Detection [91] 35,000 15,000 10,000 50 3 2
Character Trajectories 1,383 606 869 206 3 20
Crop 5,040 2,160 16,800 46 1 24
Electric Devices 6,244 2,682 7,711 96 1 7
FordA 2,520 1,081 1,320 500 1 2
Pen Digits 5,242 2,252 3,498 8 2 10

11.1.3 Training Process

The training process of P2ExNet consists of two stages. In the first stage, the
weights of the pre-initialized prototype weight layer are fixed to ensure class-
specific prototypes. Then the network is trained until it converges. In the second
learning phase, all layers except the prototype weight layer are frozen, and the
network learns to adjust the prototype weights. The adjustment corrects the
prototype class affiliation using the previously trained latent representation.

11.2 datasets

Eight publicly available time series datasets were used to emphasize the broad
applicability of the proposed approach and examine possible limitations. As a
representative set, seven different datasets from the UEA & UCR Time Series
Classification Repository [9] and a point anomaly dataset proposed in [91]
were used. These datasets and their parameters are visualized in Table 11.1. To
have better coverage of different types, the datasets were selected based on the
characteristics concerning the number of classes, channels, and time steps to cover
several conditions and show the prototypes.

11.3 experiments & results

In this subsection, the experiments and results concerning the performance,
applicability, and resource consumption for the proposed approach are presented.

The proposed method provides the possibility to identify and highlight the
parts of the input that were most relevant for the classification. Besides, it provides
prototypes along with a sample containing the prototypes to compare it to the
original input. Figure 11.2 shows highlighted regions that were important for
the inference on the Adiac dataset sample. This explanation includes the original
sample of the Adiac dataset, a modified version, and two prototypes. In the
modified version shown in Figure 11.2b, the part between the two red lines was
replaced with the most important patch prototype to show how close it is to the

11.3 experiments & results 151

(a) Original (b) Modified (c) Prototypes

Figure 11.2: Adiac dataset prototype explanation. a) shows the original series. b) shows
the series with the prototype between the red bars. c) shows two prototypes.

(a) Time series (b) Character of the class ’m’

Figure 11.3: Character Trajectories dataset prototype explanation. a) shows the original
series and the series with the prototypes. b) shows the character output and
the modified character.

(a) Overall distribution (b) Patch distribution

Figure 11.4: Class and prototype distribution for character dataset. a) shows the class
similarities. b) shows some patches and the corresponding class similarities.

original part. Figure 11.2c shows two prototypes. The value of each prototype
denoted as ’Val’ highlights its contribution towards the classification result.

11.3.1 P2ExNet: Instance-based Evaluation

Similarly, Figure 11.3 shows a sample from the Character Trajectories dataset and
the mapping of the time series back to the character. The black value highlights
the pressure of the pen, and the yellow part shows the mapping of the prototype
back to the input space.

Furthermore, in Figure 11.4 the classwise overall and patchwise distribution
provides additional information about similar classes and important patch
positions. Especially in Figure 11.4b, it is shown that not all patches have the
same importance when it comes to the classification. There are sensitive datasets
for which the re-classification can change if the original data gets replaced with
a prototype. However, for the classification and the explanation, this is not a
problem as it can be solved. A proper scaling and adjustment can remove the
offset between the prototype and the time series.

152 p2exnet : a novel patch-based prototype network architecture

(a) Original (b) Modified (c) Original (d) Modified

Figure 11.5: Prototype substitution. a) and c) show original time series. b) and d) show
the corresponding modified samples and their re-classification.

Table 11.2: A comparison of interpretable and the corresponding non-interpretable
counterpart.

Dataset CNN Acc. [%] P2ExNet Acc. [%]

50words 76.84 81.98
Adiac 63.54 60.15
Anomaly Detection 99.79 93.79
Character Trajectories 96.53 91.78
Crop 68.27 68.54
Devices 55.42 62.53
FordA 85.44 89.32
Pen Digits 94.29 93.95

In Figure 11.5b such a jump in the orange signal is shown and leads to an
anomaly highlighted by the red caption. However, the classification of the original
signal with the network was correct. Furthermore, some datasets are invariant to
small offsets, shown in Figure 11.5d. That is why scaling should be done based on
the problem task. In the case of a point anomaly task, the patches have to align.

11.3.2 P2ExNet: Evaluation as a Classifier

Usually, intrinsic interpretability approaches come with an accuracy drop. In
Table 11.2 the accuracy trade-off is presented, highlighting that P2ExNet is on
the same level as the black-box counterpart. To create a network similar to the
proposed architecture without the interpretable part, the prototype layer with a
dense layer and a cross-entropy loss as suggested by Chen et al. [17] was used.
Furthermore, the decoder was removed as there is no need to restrict the latent
representation as no reconstruction is required. This comparison was conducted
for all datasets, showing that P2ExNet achieves comparable or better performance
in comparison to the non-interpretable variant. Overall, the interpretable network
has an insignificant performance increase of 0.03%. Each architecture was superior
in four out of the eight datasets. The results prove that the accuracy using the
interpretable model dropped about 6% on the Anomaly Detection dataset but
increased 7% on the Electric Devices dataset.

11.3 experiments & results 153

Table 11.3: Replacement of original patch. Second column: Percentage replaced by
prototypes. Third column: Prediction agreement. Fourth column: P2ExNet
accuracy on original samples. Fifth column: P2ExNet accuracy on modified
samples. The first row of each dataset corresponds to replacements with
the most similar, whereas the second row with the most different prototype.
Numbers are given in percentage.

Dataset Replaced Equal Pred. Acc. Modified Acc.

50words
36.43 93.01

81.98
77.20

52.88 62.50 56.98

Adiac
35.22 85.97

60.15
55.98

69.90 9.11 14.84
Anomaly 71.99 87.43

93.79
91.78

Detection 67.32 19.45 22.72
Character 18.15 92.93

91.78
85.30

Trajectories 52.90 31.71 32.87

Crop
50.50 94.08

68.54
66.94

81.12 22.01 23.28
Electric 52.36 81.65

62.53
60.52

Devices 65.81 49.81 39.11

FordA
51.17 99.92

89.32
89.40

44.95 23.09 32.69

Pen Digits
69.47 99.31

93.95
93.54

68.65 8.83 11.0

11.3.3 P2ExNet: Sanity Check

To prove the class-specific and meaningful behavior of the prototypes, the original
time series is replaced once with the most positive and once with the most
negative influencing prototypes. Table 11.3 shows that the replacement with the
most confident prototypes corresponding to the predicted class achieved results
close to the default accuracy, whereas the best fit prototype of a different class
dramatically decreased the performance as the prediction switched. These results
indicate that the prototypes are class-specific.

However, the second sanity check investigated into the need for the decoder
to produce latent representations that are close to the representative prototypes.
Table 11.4 shows that for the Character Trajectories, 50words, and the FordA
dataset there is a significant difference if the decoder gets excluded. Also,
the representative and decoded prototypes and visualized two prototypes are
compared in Figure 11.6 highlighting the small difference between the selected
representative sample (left) and the decoded one (right).

Furthermore, the latent representation of the Character Trajectory prototype is
provided in Figure 11.7. Each plot represents one of the three channels, and the
blue color encodes the part of the selected sample, whereas the orange color
decodes the latent representation of the prototype. It is clearly visible that both

154 p2exnet : a novel patch-based prototype network architecture

Table 11.4: Closeness of prototypes. The difference between representative and generated
latent patch prototypes for P2ExNet with and without the use of the decoder
are shown. Lower values are better.

Dataset With decoder Without decoder Improvement [%]

50words 0.0413 0.2086 505.1
Adiac 0.5380 0.4993 -6.2
Anomaly Detection 0.6393 0.4929 -22.9
Character Trajectories 0.0099 0.5887 5,946.5
Crop 0.4420 0.4815 8.9
Electric Devices 0.4135 0.3399 -17.8
FordA 0.7018 1.0315 47.0
Pen Digits 0.5123 0.5622 9.7

(a) Crop dataset (b) Character trajectories dataset

Figure 11.6: This figure shows the representative patch based on the distance to the latent
prototype and the reconstruction of the latent representation.

Figure 11.7: The difference between the prototype (orange) and the real sample (blue) in
the latent space for each channel is shown.

latent representations share the same pattern and therefore result in a similar
decoded presentation, as shown in Figure 11.6b.

11.3.4 Comparison with Existing Prototype-based Approaches

Furthermore, the proposed method was compared against existing work from
Chen et al. [17] and Gee et al.[45]. Figure 11.8 shows the explanation of each
approach for a character ’a’ sample. While Gee et al. [45] points out the class
with a prototype providing a single prototype capturing the complete sample,

11.4 conclusion 155

(a) Original (b) Gee et al. [45] (c) Chen et al. [17] (d) P2ExNet

Figure 11.8: Different explanations prototype explanations of the character ’a’.

the approach from Chen et al. [17] is based on parts of the input leading to a
more detailed explanation similar to P2ExNet. Precisely, this means additional
position information is available. Lastly, the proposed method provides the
same information about the location but offers re-scaling as well as an implicit
comparison to other prototypes and a class distribution for the complete sample
and the patches, as shown in Figure 11.4b. Furthermore, P2ExNet prototypes are
class-specific and revertible. It is possible to decode them for a comparison with
the representatives.

11.4 conclusion

In summary, the novel network architecture, together with a loss and training
procedure, leads to interpretable results and an inference process similar to
human reasoning without significant performance degradation. Furthermore, it
was proven that the proposed method works for several time series classification
tasks and when excluding the class-specific prototype assignment, the approach
is suitable to produce prototypes for regression and forecast tasks. Besides,
the proposed method was compared with existing prototype-based methods
concerning their interpretable output and time consumption, finding P2ExNet
superior in both aspects.

Part IV

D I R E C T P R I VA C Y

direct privacy 159159

Direct privacy is the most used category of privacy approaches. The sensitive
data is protected thanks to techniques directly applied to the models during
the training procedure. This is mandatory as the information about the sensitive
values is stored in the trained model and needs to be protected against the data
leakage. Therefore, different approaches can be applied to a model and change its
reasoning.

First, a comprehensive benchmark of a selected set of methods applied to
time series classification is presented. As most of the privacy methods are not
benchmarked for time series and their design might introduce large performance
drops, it is required to evaluate their applicability for the time series domain.
The evaluated methods focus on software solutions whereas hardware solutions,
e.g. secure environments, are nor evaluated as these do not affect the model
performance and actually do not address the problem of information leakage of
the model.

Second, the effect of these methods on post-hoc interpretability techniques is
shown. Intuitively, running an experiment in a protected setup preserves the
information but also introduces unpractical restrictions. For the evaluation of the
impact on interpretability methods, this chapter focuses on attribution techniques,
as they are mostly independent of the model architecture and the changes within
these maps can be evaluated precisely.

12
P P M L : B E N C H M A R K I N G S TAT E - O F - T H E - A RT
P R I VA C Y- P R E S E RV I N G A P P R O A C H E S

With the advent of machine learning in applications of critical infrastructure
such as healthcare and energy, privacy is a growing concern in the minds of
stakeholders. It is pivotal to ensure that neither the model nor the data can
be used to extract sensitive information used by attackers against individuals.
However, safety-critical analysis concerning the application of privacy-preserving
approaches on time series is currently underrepresented. This work validates the
efficacy of encryption for deep learning, the dataset dependence of differential
privacy, and the broad applicability of federated methods.

12.1 datasets

A subset of datasets from UEA & UCR [9] repositories was selected for the
experimentation, addressing privacy critical classification tasks from some of the
most critical sectors to benchmark the applicability and performance of existing
privacy-preserving methods on sensitive time-series data. The datasets cover
high-stakes fields such as energy, communication, transportation, industry, and
healthcare. In addition to the variety of tasks, sequence lengths, numbers of
channels, and dataset sizes, the subset addresses different types of data including
sensor or EEG/ECG data. Table 12.1 lists the different characteristics of the
datasets used in this study.

12.2 experiments & results

Figure 12.1 outlines the experimental setup in which different privacy-preserving
data analysis methods are applied on the same pre-processed data to assure
commensurability. Throughout the experiments, Differentially Private SGD

algorithm (DP-SGD) [1] and FedAVG [53] were used as techniques for Differential
Privacy (DP) and Federated Learning (FL). In the case of federated training, data
is split into N distinct data silos and experiments were conducted five times
with different reproducible splits to account for variations in data distribution.
In addition, the best run out of the five was always selected as representative
performance for the corresponding setup.

A one dimensional version of AlexNet [67] was constructed as a baseline. Due
to its sufficiently large number of parameters, the network can properly generalize
on the utilized datasets while still remembering parts of the training data, thus
leaving room for improvement of data privacy. Every model was trained for 100

This chapter is an adapted version of the work presented in: D. Mercier et al. “PPML-TSA:
A modular privacy-preserving time series classification framework.” In: Software Impacts (2022),
p. 100286.

162 ppml : benchmarking state-of-the-art privacy-preserving approaches

Table 12.1: UEA & UCR Datasets related to critical infrastructure.

Sector & Dataset Train Test Steps Channels. Classes

Communications
UWaveGestureLibraryAll 896 3,582 945 1 8
Critical manufacturing
FordA 3,601 1,320 500 1 2
Energy
ElectricDevices 8,926 7,711 96 1 7
Food and agriculture
Crop 7,200 16,800 46 1 24
Strawberry 613 370 235 1 2
Information Technology
Wafer 1,000 6,164 152 1 2
Public health
ECG5000 500 4,500 140 1 5
FaceDetection 5,890 3,524 62 144 2
MedicalImages 381 760 99 1 10
NonInvasiveFetalECGThorax1 1,800 1,965 750 1 42
PhalangesOutlinesCorrect 1,800 858 80 1 2
Telecommunications
CharacterTrajectories 1,422 1,436 182 3 20
HandOutlines 1,000 370 2,709 1 2
Transportation systems
AsphaltPavementType 1,055 1,056 1,543 1 3
AsphaltRegularity 751 751 4,201 1 2
MelbournePedestrian 1,194 2,439 24 1 10

epochs using softmax cross-entropy loss with early stopping, SGD optimizer, if not
stated otherwise. The learning rate was halved upon plateauing of the validation
loss.

12.2.1 Performance Benchmark

Preserving privacy in data analysis usually involves the disguise of sensitive
information, and therefore an inherent trade-off between privacy and model
performance. The missing information would have potentially contributed to
solving the problem at hand, as targeted partial disguise of non-relevant
information is nearly impossible in complex, high-dimensional data. In the first
experiment series, AlexNet was evaluated for all privacy-preserving methods
mentioned before, comparing their performance on the complete selection of
datasets. This performance benchmark does not yet provide any information
about the amount of preserved privacy but serves as an initial comparison of the

12.2 experiments & results 163

Figure 12.1: Visualization of the different approaches, their combination and data used by
those methods. Differential Privacy (DP) + Federated Ensemble (FE) refers to
the fusion approach using differential privacy and federated ensemble.

baseline models’ performance as compared to the application of PPML methods
such as DP, FL, and Secure Sharing.

A direct comparison of the approaches highlights a prevalent performance
decrease when applying methods with higher privacy levels. However, most
performance losses were in a reasonable frame which would not impede practical
application. Table 12.2 shows the detailed comparison of weighted F1 scores for
all evaluated methods and datasets.

Except for some datasets, comparable performance has been achieved by
the DP-SGD approach. However, all datasets except for HandOutlines and
AsphaltRegularity exhibit varying drops in performance. It appears that the
application of DP overall results in notable performance losses for many datasets.
This might indicate a sensitivity of neural networks regarding the clipping of
gradients and the addition of noise. Both privacy and performance highly depend
on the selection of the correct hyperparameters. Further experiments indicated
that there seems to be no general rule, except for empirical testing, leading to
suitable hyperparameters resulting in an optimal trade-off.

Overall results show a similar performance loss as compared to DP,
disregarding small datasets resulting in non-converging models. Surprisingly, the
simple ensemble approach has shown much better performance compared to both
previous approaches. However, it has to be noted that in contrast to FedAVG and
DP, the ensemble does not provide any protection against model inversion or
similar privacy attacks. The coexistence of multiple models trained on fewer data
could even simplify such attacks in some cases.

1
6

4
p

p
m

l:
b

e
n

c
h

m
a

r
k

i
n

g
s

t
a

t
e-

o
f-

t
h

e-
a

r
t

p
r

i
v

a
c

y-
p

r
e

s
e

r
v

i
n

g
a

p
p

r
o

a
c

h
e

s

Table 12.2: Comparison of baseline AlexNet model and different privacy-preserving methods, reporting best weighted F1 scores in percentage. N
corresponds to the number of clients used in federated settings. Results of models that did not converge are struck out.

Dataset Baseline Diff. Privacy FedAVG N=2 FedAVG N=4 Fed. Ens. N=2 Fed. Ens. N=4

AsphaltPavementType 88.30 81.90 85.22 80.88 88.93 86.22
AsphaltRegularity 98.93 98.93 98.54 96.27 99.07 98.80
CharacterTrajectories 99.37 97.88 96.98 89.29 99.09 98.74
Crop 75.16 48.70 56.64 38.06 74.18 72.14
ECG5000 93.37 89.58 88.57 87.49 93.33 92.70
ElectricDevices 64.01 52.71 65.14 64.76 65.91 65.90
FaceDetection 63.58 51.43 62.11 62.34 64.55 64.59
FordA 92.80 91.06 90.90 85.91 93.49 93.11
HandOutlines 91.29 98.81 86.99 85.73 91.31 89.85
MedicalImages 77.20 51.21 34.95 34.95 72.14 64.13
MelbournePedestrian 94.94 86.55 18.44 20.77 86.19 87.60
NonInvasiveFetalECGThorax1 90.81 78.01 35.60 5.15 90.65 87.36
PhalangesOutlinesCorrect 82.29 46.60 46.60 46.60 79.97 78.91
Strawberry 96.77 50.36 50.36 50.36 95.43 95.41
UWaveGestureLibraryAll 96.06 90.26 92.33 89.91 95.54 93.52
Wafer 99.50 98.10 84.12 84.12 98.67 98.19

Average 87.77 75.76 68.34 63.91 86.78 85.45

12.2 experiments & results 165

12.2.2 Architecture Comparison

Furthermore, the impact of the different methods on a variety of deep network
architectures was evaluated. A selection of five common Deep Learning (DL)
architectures (AlexNet, LeNet [72], Fully Connected Network (FCN), Fully Dense
Network (FDN), LSTM) was used for the experiments to assure significant claims.
It is important to notice that the models vary in their number of parameters, and
no comparison across the models was done. The focus was on each architecture
in an isolated way to evaluate the impact of the privacy methods applied to them.
The FCN and FDN structures are aligned with the respective parts in AlexNet. The
LSTM consists of two bidirectional LSTM layers. These architectures cover the main
set of layers used in time series analysis. Moreover, transformer architectures were
excluded due to dataset-specific knowledge and embeddings required as well as
further obstacles like model size, computational expense and lack of compatibility
with the used frameworks.

Table 12.3 shows that the average performance trade-off of AlexNet when
using privacy methods is superior to the other models when applying privacy-
preserving methods. In addition, LeNet resulted in bad performance across
almost all setups. Considering the generally lower performance of LeNet on the
baseline models, it can be assumed that these issues arise from the reduced model
capacity as compared to AlexNet. Furthermore, only the AlexNet and the FDN

network were able to converge across all the setups, whereas the FCN and LSTM

converged for all setups except one. However, besides LeNet all methods showed
to be compatible with the most common privacy-preserving methods.

12.2.3 Differential Privacy: Hyperparameter Evaluation

The impact of different hyperparameters on the privacy obtained by DP-SGD was
evaluated next. However, first, it is important to understand the mathematics and
meaning behind differential. Differential privacy is defined by a privacy budget
that defines the loss of privacy when using the approach. To retain a certain
privacy loss, approaches such as DP-SGD [1] introduce noise during the training
such that an adversarial cannot differ between individuals from the dataset and
those of an adjacent dataset. Mathematically, it is possible to calculate the loss
of privacy using the ϵ-differential privacy as it is defined in Abadi et al.[1].
Furthermore, as the ϵ-differential privacy comes with certain limitations, it is
possible to use the (ϵ, δ)-differential privacy to ensure privacy with a certain
probability. Below the definition as mentioned by Abadi et al.[1] given: Let ϵ > 0

than a random function M : D → R with domain D and range R is ϵ-differential
private if Equation 12.62 holds for all adjacent datasets d,d ′ ∈ D and for any
subset S ⊆ R.

Pr [M (d) ∈ S] ⩽ eϵ ∗ Pr
[
M

(
d ′) ∈ S

]
(12.62)

When ϵ is small, an adversary cannot distinguish whether database d or d’ is
the private database. Respectively, a larger value of ϵ means that the adversary can
determine which database or dataset is the real one and which one was generated.

166 ppml : benchmarking state-of-the-art privacy-preserving approaches

Table 12.3: Comparison of different model architectures reporting weighted F1 scores in
percentage. Four clients were used for the federated approaches. Results of
non-converging models are struck out.

Model Dataset Baseline
Privacy-Preserving Methods

DP FedAVG Fed. Ens. Average

AlexNet ECG5000 93.37 89.58 87.49 92.53
ElectricDevices 64.01 52.71 64.76 62.80

FordA 92.80 91.06 85.91 92.80
Average 83.39 77.78 79.39 82.71 79.96

LeNet ECG5000 87.70 43.03 43.04 43.04
ElectricDevices 63.28 60.18 31.10 61.11

FordA 31.58 35.11 35.61 35.12
Average 60.85 46.11 36.58 46.42 43.04

FCN ECG5000 88.43 88.51 86.91 91.67
ElectricDevices 50.05 46.16 9.46 60.11

FordA 69.70 84.38 61.86 91.82
Average 69.39 73.02 52.74 81.20 68.99

FDN ECG5000 93.08 88.24 89.89 90.61
ElectricDevices 51.50 53.56 52.89 52.63

FordA 82.58 67.01 80.30 76.52
Average 75.72 69.60 74.36 73.25 72.41

LSTM ECG5000 92.57 85.38 85.98 89.10
ElectricDevices 70.33 62.18 57.30 62.12

FordA 42.22 0.00 42.34 48.03
Average 68.37 49.19 61.87 66.42 59.16

The ϵ-differential privacy, also called (ϵ,0)-differential privacy, is a special case
of the (ϵ, δ)-differential privacy as δ = 0, and therefore delta was removed
from Equation 12.62. To relax the privacy making more applicable, a delta on
the right side of the equation is added as the probability of privacy leakage.
Equation 12.63 shows the privacy budget including the delta parameter. Typically,
the delta parameter should be smaller than the inverse of the dataset size, as
otherwise too much information is accessible by an adversarial. It is important to
understand that ϵ-differential privacy ensures that the observed output is almost
equally likely to the output observed using a neighboring database. However, this
does not hold for the (ϵ, δ)-differential privacy as this formulation guarantees the
bounded ϵ only with a probability of at least 1 −δ.

Pr [M (d) ∈ S] ⩽ eϵ ∗ Pr
[
M

(
d ′) ∈ S+ δ

]
(12.63)

During the experiments, DP-SGD was used to ensure the privacy of the
classifier. A common approach to apply DP-SGD is to use the Gaussian noise
mechanism to introduce noise to the answer of a network, making it less

12.2 experiments & results 167

Figure 12.2: Evaluation of the loss in weighted F1 score and change in privacy when using
different noise multipliers. Lower values of Eps correspond to higher privacy.

vulnerable to an adverse. Equation 12.64 shows how M (d) is calculated using
the Gaussian noise distribution defined as N

(
0,S2f ∗ σ2

)
with a mean of zero.

Furthermore, Sf ∗ σ defines the standard deviation.

M (d) ≜ f(d) +N
(
0,S2f ∗ σ2

)
(12.64)

Three representative datasets from different domains were selected to perform
the experiments to understand the impact of the noise multiplier on the privacy
budget and the performance. These datasets were selected due to their varying
sequence lengths, training data sizes, and the number of classes. The FordA dataset
covers an anomaly detection task, whereas the ECG5000 and ElectricDevices
datasets cover classification tasks. All parameters except for the noise multiplier
were kept fixed, as they have only an insignificant impact on the privacy/accuracy
trade-off. Each run is performed with gradient clipping threshold set to one and
a batch size of 32. Moreover, the impact on the privacy level was examined
when changing each training parameter isolated. This impact can be computed
independently of model training and is therefore evaluated using numerous
different conditions.

Figure 12.2 provides detailed insights on the impact of noise on model
performance and the corresponding change in privacy. The Eps value on the y-
axis is an indicator for privacy. A detailed explanation of the parameter, including
the mathematical background, can be found in [95]. It is enough to note that Eps
depends on multiple different parameters, and that lower values indicate higher
privacy levels. The ratio of noise added to the gradients is controlled by the noise
multiplier nϵ, where the gradient is left unaltered for nϵ = 0, but privacy is only
increased for nϵ > 0. Larger values of nϵ bear the risk of generating noise that
dominates the actual gradient information, rendering fine-tuning crucial.

The results show that for all datasets, the performance decreases significantly
after a certain value of nϵ. ECG5000 exhibits a relatively low and linear decrease
of 3% when changing nϵ from 0.1 to 0.25. This does not hold for the remaining
datasets. On the ElectricDevices dataset, a stable F1 score up to nϵ = 0.175
was achieved. For higher nϵ significant drops in the performance are shown.
Similar behavior as exhibited by FordA. Moreover, FordA covers a binary anomaly

168 ppml : benchmarking state-of-the-art privacy-preserving approaches

Figure 12.3: Evaluation of different parameters regarding the privacy. Lower Eps values
correspond to higher privacy.

detection task that reflects an unacceptable performance loss for noise multiplier
values larger than 0.2.

The results can be summarized as follows: The Eps value is a good and
inexpensive indicator that can be used to provide a solid estimate of the privacy
achieved in a specific parameter setup, before model training. However, its
absolute value is difficult to interpret and greatly depends on the dataset. The
noise multiplier nϵ has a drastic impact on the model performance, but this
impact is dependent on the data distribution and problem at hand.

Another important aspect when applying DP is the impact of other parameters
such as dataset size, batch size, and the number of epochs. Using the estimation
approach mentioned above, the expected Eps values were calculated in a
controlled environment. As start point, a fixed setup using 5,000 samples, 100

epochs, batch size 32 and nϵ: 0.5 was used.
Only one of the parameters was changed at a time to assess the impact of

parameters independently. The results are presented in Figure 12.3. The baseline
is marked with vertical orange lines. Confirming intuition, the dataset size, and
the noise multiplier lower increase privacy whereas the batch size and the number
of epochs decrease it. The results emphasize that the method can give a good
idea about the possible setup required to achieve a certain level of privacy before
training. However, the consideration of Eps does not provide any information
about the convergence guarantees, which must be adjusted through batch size
and epochs.

12.2.4 Federated Ensemble: Ensemble Size Evaluation

The number of participating clients, as well as the amount and quality of data
contributed by individual clients, are the most critical factors in federated learning.
This experiment investigates the impact of increasing numbers of clients in the
most simplistic case of federated ensemble. Both batch size (b = {8, 16, 32, 64})
and learning rate (lr = {1e − 2, 1e − 3, 1e − 4}) were tuned to obtain the best
performance in each setting. Federated experiments are conducted five times to
account for variations in data distribution of single data silos.

12.2 experiments & results 169

Figure 12.4: Performance evaluation of three different ensemble voting techniques.
Weighted F1 scores are presented for three different datasets.

Three ensemble methods were evaluated on the federated training of ECG5000,
ElectricDevices and FordA datasets. Figure 12.4 gives an overview of the
performances achieved. The results indicate that weighted softmax averaging
and naive Bayes classification achieved similar performance on the test datasets,
while ensemble by majority vote resulted in the worst weighted F1 scores. It
can be observed that the performance of Majority Voting follows a downward
trend with an increasing number of clients. Ensembles trained on ECG5000 and
FordA both suffered from a minor decline in classification and anomaly detection
performance, whereas the F1 score for ElectricDevices significantly decreases with
a higher number of clients.

12.2.5 Differential Privacy in a Federated Setting

Furthermore, the possibility to train local data in a federated setting using DP-
SGD at each client machine was theoretically examined to consider the resulting
gain in privacy. The evaluation was done on all datasets for different number Combine DP &

FEof clients N = {2, 4} and batch sizes b = {16, 32}, with fixed gradient clipping
parameter L2 = 0.5 and noise multiplier nϵ = 0.1.

Table 12.4 shows the results of combined differential private training of
federated ensembles on all datasets. Many datasets showed decent performance
losses over all tested settings. Overall, the results showed that depending on
the dataset at hand, a combination of DP and FE can be feasible to combine its
strengths. Higher performance could be achieved by extensive hyperparameter
tuning on the specific use case, as experience showed that specially DP-SGD is
sensitive to certain hyperparameters.

A combination of differentially private with federated training results in a
non-linear combination of the privacy levels as the privacy achieved by DP-SGD
depends on the dataset size, batch size, and the number of epochs, which might
vary when switching from an aggregated to a federated setting. Training in a
federated setting aids training data privacy in two ways, by ensuring that a
client’s data remains on-site and by introducing an averaging which mitigates
some model inversion attacks. The additional application of differential private
training on-site adds further noise to the process, which consequentially results
in an overall improvement of the training data privacy. Whether a combination of
DP and FE is suitable highly depends on the dataset sizes available at individual

170 ppml : benchmarking state-of-the-art privacy-preserving approaches

Table 12.4: Comparison of baseline weighted accuracies using both methods separately
and their combination to achieve better privacy reporting weighted F1 scores
in percentage. N corresponds to the number of clients used for the federated
approaches. FE corresponds to federated ensemble. Results of non-converging
models are struck out.

Dataset DP
N=2 N=4

FE DP + FE FE DP + FE

AsphaltPavementType 81.90 88.93 78.44 86.22 77.96
AsphaltRegularity 98.93 99.07 97.87 98.80 96.40
CharacterTrajectories 97.88 99.09 97.72 98.74 97.66
Crop 48.70 74.18 63.18 72.14 62.99
ECG5000 89.58 93.33 90.01 92.70 89.52
ElectricDevices 52.71 65.91 61.22 65.90 55.39
FaceDetection 51.43 64.55 51.66 64.59 51.84
FordA 91.06 93.49 93.33 93.11 91.36
HandOutlines 98.81 91.31 68.33 89.85 87.40
Medical Images 51.21 72.14 47.53 64.13 37.95
MelbournePedestrian 86.55 86.19 87.95 87.60 86.47
NonInvasiveFetalECGThorax1 78.01 90.65 76.18 87.36 1.79
PhalangesOutlinesCorrect 46.60 79.97 62.29 78.91 50.70
Strawberry 50.36 95.43 50.36 95.41 50.36
UWaveGestureLibraryAll 90.26 95.54 93.55 93.52 92.24
Wafer 98.10 98.67 96.16 98.19 95.48

Average 75.76 86.78 75.98 85.45 70.34

client locations as well as the complexity of the problem, and must therefore be
decided on a case-by-case basis. As previously concluded in the hyperparameter
evaluation of DP, a lower dataset size, as well as a higher number of epochs,
decrease privacy. Both of which are likely to be the consequence of switching
from an aggregated to a distributed setting. A securely aggregated, differentially
private training therefore might result in a higher privacy level as compared to
local, federated training on smaller datasets.

12.2.6 Secret Sharing Runtime Evaluation

Training and validation runtimes are major considerations for the practical
applicability of data-driven methods, especially in time-critical real-time
applications. The feasibility of applying secret sharing to time series applications
was evaluated by assessing training and validation runtimes, comparing the
implementations of the same two-dimensional AlexNet for time series in vanilla
PyTorch versus CrypTen [65]. CrypTen has been evaluated in the most basic
setting, performing encrypted training with only a single client. Note that a

12.2 experiments & results 171

Table 12.5: Evaluation of runtimes over one batch of size 8. All Values are given in seconds.
Used hardware: Intel Xeon (Quad Core), Nvidia GTX 1080 Ti, 64 GB memory.

Dataset Framework
Training Inference

Avg [s] Std [s] Avg [s] Std [s]

ECG5000
CrypTen 35.132 0.594 8.561 0.363
PyTorch CPU 0.105 0.019 0.024 0.002
PyTorch GPU 0.004 0.001 0.001 0.000

ElectricDevices
CrypTen 30.196 0.145 7.113 0.030
PyTorch CPU 0.086 0.005 0.019 0.000
PyTorch GPU 0.004 0.001 0.001 0.000

FordA
CrypTen 68.110 0.484 18.673 0.931
PyTorch CPU 0.186 0.016 0.050 0.005
PyTorch GPU 0.004 0.001 0.001 0.000

Table 12.6: Performance loss for encrypted inference compared to baseline AlexNet
reporting weighted F1 scores in percentage.

Model ECG5000 ElectricDevices FordA

AlexNet Baseline 93.37 64.01 92.80
AlexNet Encrypted 90.10 63.14 93.03

two-dimensional model was chosen to have a comparable number of parameters
in both settings. Unlike CrypTen, vanilla PyTorch is not restricted to two-
dimensional architectures, which results in a minor slow down.

An evaluation of training and inference runtimes comparing the
implementations of the same one dimensional AlexNet for time series in
vanilla PyTorch versus CrypTen gives a first estimate about the feasibility of
encrypted secret sharing in practice. Table 12.5 shows that both training and
inference using CrypTen is significantly slower than vanilla PyTorch in the case
of CPU (roughly factor 350) and even more in the more realistic case of GPU
computation. This highlights the impracticality of encrypted Secret Sharing for
current real-world applications.

12.2.7 Encrypted Inference Evaluation

In a final experiment, a different secret sharing scenario is considered, where a
model is trained on public data and encrypted for inference on secret data. The
potential performance deviations arising from the encrypted evaluation of data
and model at inference time were assessed.

Table 12.6 shows the weighted F1 scores obtained by private prediction on
an encrypted AlexNet, trained on public data. It can be observed that the
performance of ECG5000 and ElectricDevices decreased negligibly, and FordA even

172 ppml : benchmarking state-of-the-art privacy-preserving approaches

increased slightly. This minor deviation of the original results is expected, as
encrypted computation results in some change due to the noisy encryption.

12.3 discussion

The image domain is usually in the focus of new ML developments due to
the ease of problem understanding and intuitive interpretation of context. The
conducted experiments serve as a first overview of the applicability and usability
of current state-of-the-art PPML applications for time series classification in safety-
critical domains. The experience with available open-source frameworks showed
that PPML methods applicable to time series classification already exist. However,
for some applications, minor and sometimes major adjustments are required for
the proper utilization as most of the frameworks are not in a productive state
and offer only limited support concerning features specifically required for time-
series. For instance, most of the frameworks cover only implementations for two-
dimensional image processing, although time series classification is an essential
modality that is used in almost all the sixteen safety-critical domains.

During experimentation, some challenges of PPML specific to the domain of
time series classification were revealed. DP is a useful tool for ensuring the
privacy of remote time series data. The applicability of the method is, however,
strongly linked with a trade-off between privacy and accuracy, which depends
a lot on the dataset and machine learning task at hand. The selection of the
right hyperparameters to ideally balance this trade-off is especially complicated in
real-world scenarios, where model providers have to select hyperparameters for
unseen data on the client-side. In such cases, a top-down strategy is recommended
in which the noise and gradient clipping parameters should initially provide
maximum privacy in critical infrastructure use cases while gradually being
relaxed until an acceptable model performance is achieved while data privacy
is still tolerable. However, a set of possible setups can be discovered using the
mathematical equation to compute the privacy value related to the differential
privacy approach. Doing so provides a possible set. However, it is not possible
to know the degree of network convergence without training the network using
the actual setting. Summarizing the findings, it is highly beneficial to know
the dataset features and their susceptibility regarding noise. Therefore, the
understanding of the classification task and the value ranges can be used to
approximate suitable parameters for the approach.

Both FL and secret sharing did not prove to present unusual challenges when
applied to time series classification. For FL in general, but especially in time
series classification, it is of prime importance that the pre-processing of data
is performed identically. Whereas pre-processing of other data types such as
images is much more natural and standardized, pre-processing of time series
data is very application and problem dependent and must be communicated to all
participating clients in a learning federation. The application of time series data
partially alleviates the common downside of the high temporal and computational
cost related to homomorphic or partially homomorphic encrypted computation.
Despite HE exhibiting unbearable computation times, making it unfeasible for
practical application in critical infrastructure, the private sharing of data for

12.4 conclusion 173

encrypted inference turned out to be a suitable approach. Furthermore, the
experiments using federated learning showed that the combination of privacy-
persevering methods, namely DP and FE, performs similarly well. This indicates
that the combination of several feasible privacy-preserving methods can be used
to develop a comprehensive privacy concept for real-world applications. Overall,
the performance of FL is comparable to the DP approach. Whereas DP is more
sensitive to hyperparameters like noise, FL is more sensitive towards small
dataset sizes and uneven data distributions. Intuitively, the combination of both
approaches suffers from both aspects and achieved a lower average accuracy but
an increase in privacy. However, if certain aspects of the datasets are known, it is
possible to adjust for these aspects.

12.4 conclusion

The experiments in this section benchmarked methods and open-source
frameworks to provide a first overview of the applicability of PPML methods to the
time series domain, which plays a crucial role in a variety of critical infrastructure
application fields like energy, industry, and healthcare, and highlighted challenges
specific to this particular type of input data. The benchmark covered different
model architectures commonly used in the time series domain. Furthermore, a
set of carefully selected datasets was used to cover various aspects regarding
their domain, data shape and task. The findings highlighted that it is possible
to successfully apply DP, FL, and a fusion approach to different architectures
and datasets. Furthermore, the findings highlight the importance of a proper
hyperparameter selection for the DP and the drawbacks of using HE regarding
the computational effort.

13
P P M L X X A I : I N T E R A C T I O N P R I VA C Y- P R E S E RV I N G
A P P R O A C H E S A N D X A I

XAI and PPML are both crucial research fields, aiming at mitigating some of
the drawbacks of prevailing data-hungry black-box models in DL. Despite brisk
research activity in the respective fields, no attention has yet been paid to their
interaction. This section investigates the impact of private learning techniques on
generated explanations for DL-based models. The findings suggest non-negligible
changes in explanations through the introduction of privacy.

13.1 datasets

To comprehensively analyze the impact of privacy-preserving methods on
explanations, a variety of different datasets were utilized, as listed in Table 13.1.
Except for the Anomaly Detection dataset [91], the datasets are taken from the UEA
& UCR repository [9]. The selection includes both univariate and multivariate
time series with different numbers of classes. The Anomaly Detection dataset
and the FordA dataset consider the task of anomaly detection. The Anomaly
Detection dataset deals with point anomalies, and the FordA dataset with sequence
anomalies. The point anomalies are very interpretable for humans, as in their
case the data is more or less noise and contains a large peak that indicates the
anomaly. Even without the annotation, it is possible to understand whether the
explanation for such a sample is correct or not. This is not the case for the
FordA data, as the sequences are very long and there is no annotation. In this
dataset, the anomaly can be a long part of the sequence that varies from the
expected behavior. The Character Trajectories dataset was selected as it is possible to
transform it back to the 2D input space to understand the explanation. It consists
of three channels covering the acceleration within the x and y direction and the
pen force, and enables precise identification of whether an explanation is good or
not. In addition, the dataset size of the time series datasets differs significantly, to
properly represent the influence of data volume.

13.2 experiments & results

A broad experimental basis, covering various domains, applications, and
configurations is necessary, to make general statements about the impact of
privacy techniques on explanations. Therefore, a selection of state-of-the-art
classifiers is trained on a range of different datasets. Each combination of model
and dataset is trained in four different settings, including training without
privacy (Baseline), with differential privacy (DP), federated training (FedAVG),

This chapter is an adapted version of the work presented in: D. Mercier et al. “Privacy Meets
Explainability: A Comprehensive Impact Benchmark.” In: arXiv preprint arXiv:2211.04110 (2022).

176 ppml x xai : interaction privacy-preserving approaches and xai

Table 13.1: Shows the datasets used to evaluate the impact of PPML on XAI methods.

Dataset Domain Train Test Steps Channels Classes

Anomaly [91] Synthetic 50,000 10,000 50 3 2
Character Traj. Communication 1,422 1,436 182 3 20
ECG5000 Medical 500 4,500 140 1 5
FordA Manufacturing 3,601 1,320 500 1 2
Wafer Information 1,000 6,164 152 1 2

and federated training with client-side differential privacy (FedAVG-DP). Different
explanation methods are finally applied to every model instance to compare their
generated explanations.

Evaluating explanations and judging their quality is a common problem
not only in XAI research [162], but also in the social sciences [93]. Multiple
evaluation dimensions have to be considered to make clear statements about
the impact of privacy-preserving model training on the explainability of DL-
based models. Human-centered evaluation is laborious and requires domain
experts. Instead, functionality-grounded methods are best suited for the domain-
and dataset-wide fair comparison and quality assessment of XAI and are
therefore utilized throughout this study. In the experiments, the focus was
on the two main properties of explanations as defined in [162], namely their
fidelity and interpretability. Fidelity measures soundness and completeness to
ensure that explanations accurately reflect a model’s decision-making behavior.
Interpretability refers to the clarity, parsimony, and broadness of explanations,
and therefore describes factors related to the ease of communication on the
interface of machines and humans. Functionality-grounded methods make use
of formal mathematical definitions as proxies of perceived interpretability.

13.2.1 Experiment Setup

Baseline networks were trained using the standard SGD or Adam optimizer with
varying numbers of epochs per dataset to ensure convergence. For all other
settings, training and privacy hyperparameters have been manually tuned to find
a good trade-off between privacy and model performance matching the baseline.
This is important to guarantee a sufficiently fair comparison between the methods,
since a significantly worse network would also show worse attribution results.
However, all models were trained with overall comparable settings. The reported
performances correspond to the accuracies of the model performing best on the
test datasets. InceptionTime [35] and ResNet [36] were used as representative
networks, since they achieve state-of-the-art performances for the utilized datasets.
The training data was split between training and validation with a factor of 0.9,
wherever no validation dataset had been provided.

Some XAI methods pose specific requirements on the model architecture or
training procedure, complicating the application of privacy-protection techniques.
Therefore, this work solely focuses on the commonly used post-hoc explanations.
Different attribution methods vary considerably in their realization and their

13.2 experiments & results 177

Table 13.2: Test accuracies on all datasets for different architectures and privacy-
preserving settings, divided by application domain. For configurations
containing DP or FL, the ϵ and nc values are provided, respectively.

Datasets & Models AccBaseline AccDP / ϵ AccFedAVG AccFedAVG-DP / ϵ

Anomaly Detection nc = 4 nc = 4

InceptionTime 98.74 92.87 / 5.0 98.77 89.50 / 5.0
ResNet 98.70 97.02 / 5.0 98.60 97.36 / 5.0
Character Trajectories nc = 4 nc = 4

InceptionTime 99.44 91.85 / 5.0 98.82 87.26 / 50.0
68.73 / 5.0

ResNet 99.44 85.03 / 5.0 98.19 82.10 / 50.0
59.19 / 5.0

ECG5000 nc = 4 nc = 4

InceptionTime 94.38 89.07 / 5.0 93.36 89.29 / 5.0
ResNet 94.16 89.64 / 5.0 92.78 88.87 / 5.0
FordA nc = 4 nc = 4

InceptionTime 95.61 92.88 / 5.0 97.70 94.17 / 50.0
91.43 / 5.0

ResNet 94.32 86.14 / 5.0 93.94 87.12 / 50.0
76.44 / 5.0

Wafer nc = 4 nc = 4

InceptionTime 99.22 89.21 / 5.0 97.81 89.21 / 5.0
ResNet 98.75 89.21 / 5.0 89.21 89.21 / 5.0

associated underlying assumptions. Therefore, it was decided to apply a broad
range of diverse methods differing in their implementations and theoretical
foundations. The work covers a total of nine methods, including gradient-based
Saliency, InputXGradient, GuidedBackpropagation, IntegratedGradients, DeepSHAP,
and DeepLift, but also gradient-free methods such as Occlusion, LIME and
KernelSHAP.

The Fidelity of the explanations is quantified using Sensitivity [155],
Infidelity [155], and Area Over the Perturbation Curve (AOPC) [124]. The
interpretability of explanations was measured using the Continuity metric. For
time series, Continuity is the absolute change between each subsequent point
in a sequence. Lower Continuity scores indicate better interpretability. Due to
computational and time restrictions, the influence of PPML on attribution methods
was quantified using a subset of the respective test sets, limited to a maximum
of 1,000 examples as it is assumed this is a sufficient quantity to generalize the
findings to the complete test datasets.

178 ppml x xai : interaction privacy-preserving approaches and xai

13.2.2 Impact on Model Performance

Applying privacy-preserving training techniques for DL models can have a very
diverse impact on their test performances. The severity depends on multiple
factors including model architecture, type of dataset, as well as the various
hyperparameters for model and private training. Table 13.2 shows the results
on the respective test sets for all experiment configurations when trained with
different private training techniques.

Even in privacy-preserving training settings, all models converged and
demonstrated acceptable accuracies. However, the best accuracies were usually
achieved in Baseline or FedAVG settings. DP had a considerable impact on
the models’ test performances. In contrast to DP, FedAVG always resulted in
significantly lower performance losses. The combination of FedAVG and DP almost
exclusively resulted in a lower performance, considering a comparable ϵ-value.

The results indicate that InceptionTime is usually affected slightly less by
private training, in direct comparison with ResNet. The only exception is
the Anomaly Detection dataset, which experienced almost no performance loss
with ResNet. One possible explanation for this is the advanced architecture
of InceptionTime including residual connections and inception modules. This
enables the InceptionTime to be more robust against noise and outliers. All
datasets, except for the Anomaly Detection, and ECG5000, considerably suffered
from the combination of DP with FedAVG. For the Character Trajectories and FordA
datasets, the ϵ-value had to be increased to achieve adequate results.

13.2.3 General Impact on Explainability (Qualitative)

A visual inspection of individual explanations gives a first impression of the
influence privacy-preserving techniques can have on the trained models. These
local impressions are then further validated on the dataset level through the
qualitative analysis of summary statistics.

13.2.3.1 Individual Analysis

Figure 13.1 shows explanations generated for the Anomaly Detection and Character
Trajectories. For the Anomaly Detection dataset, it was observed that there is a
general overlap between the explanations from different training settings, always
highlighting the anomaly. In some cases, DP increased the amount of noise
in the signal’s relevance around the anomaly, yielding unclear and misleading
explanations by highlighting distant points which do not correspond to the
anomaly at all. However, this was not the case when additionally adding FedAVG
in the FedAVG-DP setting. By contrast, DP-trained models showed remarkable
deviations from the original Baseline explanation when trained on the Character
Trajectories dataset. This observation holds not only for DP but also FedAVG-DP
settings. FedAVG, on the other hand, showed explanations close to the Baseline
setting, with only minor deviations. To capture overall trends and characteristics
in attribution maps of different configurations, further analysis of dataset-level
statistics of the generated attribution maps was performed.

13.2 experiments & results 179

(a) Anomaly Detection

(b) Character Trajectories

Figure 13.1: Shows the change in the attribution for ResNet for three selected samples of
the Anomaly Detection and Character Trajectories dataset, respectively. DP-based
training techniques tend to add additional noise and alter the explanation.
FedAVG, by contrast, is closer to the original attribution of the baseline.

13.2.3.2 Dataset-wide analysis

Figure 13.2 shows the Pearson correlation of the explanations generated by
different training settings for the Anomaly Detection dataset. Therefore, the
correlation across the different training approaches was computed using all
available attribution maps. Precisely speaking, the attribution between the
corresponding attribution maps was calculated and the average over the number
of samples was taken. The final correlation shows the score averaged over
the attribution methods and the samples. For both architectures, it is evident
that the privacy methods significantly change the produced attribution maps.
However, FedAVG yields a significantly higher correlation to the Baseline setting
as compared to the DP-based approaches. Moreover, it is surprising that the

180 ppml x xai : interaction privacy-preserving approaches and xai

(a) InceptionTime (b) ResNet

Figure 13.2: Shows the average Pearson correlation of the attribution maps compared
between the different privacy approaches for the Anomaly Detection dataset.
FedAVG shows higher similarity to the Baseline setting, as compared to the
DP-based approaches.

correlation between DP and FedAVG-DP is rather low. The remaining matrices
are excluded as they showed similar results to the presented ones and do not
provide any additional information.

This qualitative analysis already drew an interesting initial picture, proving that
to some degree, any privacy-preserving training technique has an impact on the
generated explanations. Furthermore, the results suggest that DP-trained models
generate explanations that tend to be noisier and cover potentially unimportant
regions, harboring the danger of misleading the explainer. However, it is unclear
whether noise added by DP only concerns the explanations, or whether this
reflects the model decision (Fidelity). The first results also indicated that the
FedAVG approach can even improve explanations, leading to more focused, and
meaningful explanations in some instances.

13.2.4 General Impact on Explainability (Quantitative)

The quantitative analysis serves as a means to further verify the findings from
the previous section and allows the investigation of whether privacy-preserving
techniques impact only the explanations, or also the underlying model behavior.

13.2.4.1 Continuity

Measuring the Continuity of an explanation helps to understand how difficult
the interpretation of an explanation might be for an explainer. Humans
usually struggle when confronted with high-dimensional, diffuse data. A
smoother map results in a lower Continuity. Figure 13.3 shows the CD
diagrams for the Continuity. The ranked results are averaged over all datasets
and attribution methods. The results clearly show that the Baseline and the
FedAVG settings yield better Continuity scores as compared to the DP-based

13.2 experiments & results 181

Figure 13.3: Critical difference diagram for the Continuity of models trained on the
different datasets. Privacy results in less Continuity and therefore noisier
explanations.

Figure 13.4: Critical difference diagram for the AOPC of models trained on the different
datasets. The baseline showed the best performance.

approaches. This confirmed that DP-based private models generate significantly
more discontinuous attribution maps compared to the other training techniques.
Comparing only Baseline and FedAVG models, the results emphasized that the
Baseline shows a better Continuity compared to the FedAVG. Moreover, FedAVG-
DP achieved better ranks as compared to DP. DP and Non-DP approaches even
show a clear visual separation in the Critical Difference Diagrams (CDDs).

13.2.4.2 Area over the Perturbation Curve

The AOPC measures how removing features deemed relevant by the explanation
affects local model predictions. This provides important insights into the Fidelity
of the explanations. Intuitively, removing features with lower importance should
affect the prediction less, whereas the deletion or perturbation of important
features should result in significant prediction changes. In this experiment,
features were removed sequentially starting with the most important, as per the
attribution map. Figure 13.4 shows all critical difference diagrams for the AOPC

measure. The most prevalent pattern was that Non-DP-based settings occupied
the higher ranks. ResNet showed the clear superiority of the Baseline and the
FedAVG compared to DP and FedAVG-DP. For InceptionTime, DP surprisingly
achieved almost similar performance as compared to the Baseline. Apart from this
outlier, the presented results suggest that adding DP during training decreases the
explanation’s fidelity.

13.2.4.3 Infidelity

The Infidelity measure provides information about an explanation’s fidelity by
evaluating a model’s adversarial robustness in regions of varying explanation
relevance. Perturbations are both applied to the attribution map and the input
image, while comparing the predictions of the unperturbed and noisy input. It

182 ppml x xai : interaction privacy-preserving approaches and xai

Figure 13.5: Critical difference diagram for the Infidelity of models trained on the
different datasets. Federated learning showed the best performance.

Figure 13.6: Critical difference diagram for the Sensitivity of models trained on the
different datasets. Baseline and federated learning achieved the best results.

is expected that the perturbation of a more important feature leads to a larger
change in prediction. Figure 13.5 shows the Infidelity ranks for all configurations.
Approaches involving FedAVG achieved the highest scores. Interestingly, the
addition of DP to FedAVG settings resulted in higher scores, whereas the sole
use of DP during training led to the worst outcomes. Furthermore, the FedAVG
approaches were the best performing approaches during the experiments. This
indicates that FedAVG increases adversarial robustness and Fidelity, while DP

alone leads to lower Fidelity.

13.2.4.4 Sensitivity

In contrast to Infidelity, Sensitivity quantifies Fidelity by perturbing the input
directly. The change in the generated explanation is measured before and after
the input is insignificantly perturbed. Small changes in the input should not
result in large changes in the attribution map. Figure 13.6 shows the Sensitivity
ranks for all configurations. The results show a clear ranking, with Baseline
and FedAVG being superior to FedAVG-DP, followed by DP. However, no clear
statistical distinction can be made between Baseline, FedAVG, and FedAVG-DP for
InceptionTime, and for Baseline and FedAVG for ResNet.

13.2.5 Impact of Noise on Different Settings

The results so far suggest that the introduction of DP during the training process
has a considerable impact on the generated explanations. Moreover, it was found
that using the combination of FedAVG and DP can sometimes mitigate the negative
effects of the added noise during the training process. These experiments cover
an investigation of whether the degree to which the quality of explanations is
affected, differs, for different attribution methods and datasets. Therefore, the
relative increase in Continuity score was measured when comparing the Baseline

13.3 discussion 183

Figure 13.7: Critical difference diagram showing the impact of adding DP during training,
on the quality of explanations generated by different attribution methods.

Figure 13.8: Critical difference diagram showing the impact of adding DP during training,
on the quality of explanations when applied to different datasets.

with the DP training setting. A higher relative increase indicates a bigger impact,
resulting in a lower rank.

13.2.5.1 Attribution Methods

Figure 13.7 shows the ranks of different attribution methods when applied to
different architectures before and after adding DP to the training. A prominent
separation of two distinct groups was noticed. Both KernelSHAP and Occlusion
were affected significantly less by DP as compared to the remaining methods.
Similarly, KernelSHAP and Occlusion outperformed most other methods.

13.2.5.2 Datasets

Figure 13.8 shows the impact of DP on the quality of explanations for different
datasets. It can be seen that noise had the least impact on the Anomaly Detection
dataset, as the decision-relevant anomaly was not affected much by the added
noise. On the other hand, Character Trajectories dataset was highly affected by noise.
This can be explained by the fact that the dataset consists of raw sensor values
that describe drawn letters. Slight noise distributed over the time series can have
a devastating influence on the meaning of a given sample, as the error adds up
over time.

13.3 discussion

First, it was shown that not every PPML method has the same impact on model
performance. DP models have shown to almost always deteriorate test accuracy.
FedAVG, on the other hand, yielded accuracies similar to the Baseline setting,
sometimes even improving the results. It has to be mentioned, though, that
both DP and FedAVG follow different goals in the domain of privacy. Whereas

184 ppml x xai : interaction privacy-preserving approaches and xai

DP aims at preventing models to capturing individual sample information,
which could be used for reconstruction, FedAVG mainly aims at minimizing the
exposure of sensitive information by keeping the training data local. Although
FedAVG also generates an aggregated model which might have less vulnerability
to reconstruction attacks due to averaging effects, it still needs to transfer
information about the local models to the orchestration server. Therefore, the
combination of FedAVG and DP provide the highest privacy, yielding in numerous
instances similar performance compared to only DP.

The qualitative and quantitative analysis revealed various interesting findings
regarding the impact of different privacy-preserving techniques on explanations.
DP, for example, stood out in almost all configurations for its property to add
noise to the attribution maps. This has been reported in many individual samples
and could be confirmed by dataset level analysis, as well as quantitative analysis,
where DP-based methods stood out for increased Continuity values. One possible
reason for this phenomenon is the addition of noise during the training process
with DP. The introduction of noise in the parameter update most likely leads to
contortions in the parameter space, which are never completely compensated, and
translate into the prediction process. This effect might be counteracted by slightly
tweaking the optimization, such as fine-tuning public datasets, or by increasing
the batch sizes during training.

The degree to which noise is added has been investigated in the previous
subsection. The results suggest, that perturbation-based methods are a lot less
prone to changing their explanation’s continuity when influenced with noise.
The main reason for perturbation-based methods being less affected by noise
in terms of Continuity is their higher resolution which neglects fine nuances in
relevance, and the fact that randomly introduced noise is prone to cancel out
within a patch. However, Continuity is only a mathematical approximation of
an explanation’s interpretability. Figure 13.1b illustrated that the occlusions are
often significantly changed when introducing DP during training. Furthermore,
the high interpretability of heatmaps is worthless if their fidelity is not ensured.
As reported, DP exclusively led to the deterioration of metrics indicating an
explanation method’s fidelity. Therefore, even when applying Occlusion, it needs
to be clarified how truthful the generated explanations remain to be.

In contrast to DP, FL often resulted in smoother attribution. Interestingly,
combining FedAVG with DP can lead to more continuous attribution maps
compared to the Baseline setting, reducing the negative effects introduced by DP

alone. However, FedAVG-DP has also been reported to decrease the fidelity of
explanations. Therefore, whenever XAI is required and DP is applied, it might
be worth considering a combination of DP and FL. This will also be possible in
cases where FL is not required, as the federated setting can easily be simulated
by dividing the dataset into chunks. In addition, a better Continuity score for
Baseline settings was observed, however, the fact that FedAVG shows a slightly
lower Continuity has a strong theoretical basis. Averaging models during training
inevitably prevents the final model from overemphasizing granular features or
noise.

The presented experiments also indicated that the influence of PPML on XAI

depends on the choice and feature scales of the dataset. The noise introduced by

13.4 conclusion 185

DP has, above all, a detrimental impact on classification tasks that rely on fine-
grained and nuanced features or patterns. For simpler anomaly detection tasks or
tasks focusing on the detection of overall, coherent structures are seemingly less
affected by privacy-preserving training techniques.

Besides the different influences PPML has on XAI, there is another fact that needs
to be considered when combining both techniques. No matter how private a
system has been made, exposing an explanation is in itself always a potential point
of attack for a system, revealing sensitive information about the decision-making
process. This is, for instance, particularly evident with Saliency, which provides
the raw gradients of a single input instance. For truly critical applications, one
should ask of whom, in the end, should be authorized to request explanations,
and under which circumstances. Moreover, it might even be required to further
obfuscate the exact generation process for explanations, or rely exclusively on
global explanations for applications with extremely high privacy requirements.

The experiments revealed several general trends which will affect explanations
on a global scale when applying private training strategies to DL models. However,
one major limitation of such studies is the examined basis of comparison.
When comparing explanations of separate model instances, there is always the
risk of obtaining different local minima, i.e., different classification strategies.
Previous research [57] suggests that one dataset can have multiple, redundant,
but fundamentally different features. Therefore, even models with identical test
performance could have, in theory, picked up entirely different cues to solve the
same problem, hence yielding deviant explanations per model. When training
models using different training strategies, it cannot be avoided to obtain models
with deviating classification strategies. This is also clearly reflected in the naturally
lower model performance of DP models.

Further limitations are related to the evaluation of the explanation’s quality
through quantitative metrics. As already mentioned, quantitative quality metrics
for XAI are simply mathematical approximations of factors that could account for
human interpretability or test assumptions of Fidelity that should be satisfied by
good explanations. Many such metrics still have inherent limitations like AOPC,
Sensitivity, and Infidelity, introducing out-of-distribution samples through the
perturbation of samples.

13.4 conclusion

This part of the work showed that, although the exact effect on explanations
depends on a multitude of factors including the privacy technique, dataset, model
architecture, and XAI method, some overall trends can be identified. It was shown
that DP, on average, decreases both the interpretability and fidelity of heatmaps.
However, FL was found to moderate both effects when used in combination. When
used, alone, FedAVG was even sometimes found to improve the interpretability of
attribution maps by generating more continuous heatmaps. The results suggest
considering FL before DP, where appropriate. Moreover, it is recommended always
to choose Differnetial Private Federated Learning (DPFL) as well as perturbation-
based XAI methods, if an application requires both privacy and explainability.

Part V

I N D I R E C T P R I VA C Y

indirect privacy 189189

Instead of protecting the model that is trained on a classification task using
private data, there is the possibility to generate data. While there are certain
restrictions to the generative model, it enables the free use of the synthetic
data. The core idea behind this indirect privacy preservation is that the final
classification model can be public. It cannot expose private data as it has never
seen the private data and is only trained on synthetic data that looks similar. One
additional benefit of this is that the interpretability approaches are not biased, as
they are used on the classifier only. In addition, this enables the use of intrinsic
interpretability, which is not possible for direct privacy preservation without
complex adjustments through the privacy mechanism and the models. The main
difficulty for this indirect privacy preservation is to produce indistinguishable
data to preserve the privacy of the real data and make it possible to apply the
model trained on the synthetic data to the private data.

14
F R O M P R I VAT E T O P U B L I C : B E N C H M A R K I N G G E N E R AT I V E
P R I VA C Y

Deep learning has proven to be successful in various domains and for different
tasks. However, when it comes to private data, there are several restrictions
making it difficult to use deep learning. Recently, generating data in a private
manner instead of applying privacy preserving mechanism directly has gained
more attention. Therefore, in this section, two very prominent GAN-based
architectures were evaluated in the context of private time series classification. The
experiments provide evidence for the successful use of GSWGAN and highlight
the architecture impact.

14.1 datasets

The experiments below were conducted across multiple datasets of the UEA &
UCR repository [9]. The datasets were selected in a way that covers multiple
different aspects such as a different number of channels, classes, dataset size,
and problem statement. Furthermore, the selection covers different domains
to emphasize the broad applicability of the methods as well as to highlight
limitations. This way, the selection of datasets presents a comprehensive set
covering both easy and difficult datasets concerning the generation of data. The
datasets are shown in Table 14.1.

14.2 experiments & results

To evaluate the performance of selected GANs, private data is generated, and
a classification task is performed. To do so, InceptionTime [35] was used as
a classification network, as it produces state-of-the-art performances for the
datasets. During pre-processing, the datasets were standardized and normalized
to range between zero and one for the sigmoid function of the generator. As a
baseline, an InceptionTime network was trained for each dataset using a learning
rate scheduler and Adam optimizer. These models are referred to as private
models as they have trained directly on real UEA & UCR [9] datasets and should
not be shared.

14.2.1 Accuracy Comparison of DP, DPWGAN, and GSWGAN

In this experiment, the capabilities of generative models and the direct application
of privacy on the classifier were compared. In addition, the difference between

This chapter is an adapted version of the work presented in: D. Mercier, A. Dengel, S. Ahmed, et al.
“From Private to Public: Benchmarking GANs in the Context of Private Time Series Classification.”
In: arXiv preprint arXiv:2303.15916v2 (2023).

192 from private to public : benchmarking generative privacy

Table 14.1: Datasets related to critical infrastructures.

Domain & Dataset Train Test Steps Channels Classes

Transport Systems
AsphaltPavementType 1,055 1,056 1,543 1 3
AsphaltRegularity 751 751 4,201 1 2
Communications
CharacterTrajectories 1,422 1,436 182 3 20
HandOutlines 1,000 370 2,709 1 2
UWaveGestureLibraryAll 896 3,582 945 1 8
Wafer 1,000 6,164 152 1 2
Pulbic Health
ECG5000 500 4,500 140 1 5
FaceDetection 5,890 3,524 62 144 2
Critical Manufacturing
FordA 3,601 1,320 500 1 2

public, differential privacy, and gradient sanitized generative models is shown.
Therefore, for each dataset first, a private classifier was trained as a baseline.
Furthermore, a differentially private version of the classifier was trained. It
has to be mentioned that this classifier suffers concerning interpretability, as it
was trained on noisy data to fulfill the privacy constraints. Next, Wasserstein
Generative Adversarial Model (WGAN) [7], DPWGAN [151], and GSWGAN [18]
were trained on the private data resulting in a private generator for the WGAN

and public generators for the other approaches. Using the data generated by
the generator, a classifier without privacy constraints was trained. Except for the
WGAN generator, this results in a public classifier that preserves privacy due to
the privacy constraints involved during the training of the generator.

Table 14.2 shows the results for both the classification of the private and public
generated datasets. The models and data are denoted with either a plus or a
minus sign, highlighting the used data and the training conditions. Models with
a minus (m-) correspond to the baseline classifier and therefore cannot be used
in a public manner, whereas models with a plus (m+) are trained on generated
data and can be used in a public manner, except for the WGAN approach. Data
with a plus (d+) corresponds to the generated test data, and data with a minus
(d-) corresponds to the private test data. Throughout the rest of the experiment
section, this denotation is used. In addition, InceptionTime was always used as
the architecture for the classifier, whereas the number of layers for the generative
models varied based on the datasets.

Table 14.2 shows that applying Differential Privacy (DP) on the classifier directly
reduces the performance by about 10% on average compared to the baseline
without privacy. However, the accuracy drop strongly varied between the datasets,
e.g. the accuracy for the UWaveGestureLibraryAll dataset declined by 48% whereas

14.2 experiments & results 193

Table 14.2: Accuracy Comparison: Shows the weighted F1 scores in percentage for
classifiers trained on private or public data. Private (d-) and public (d+)
correspond to the privacy of the evaluation dataset. The model (InceptionTime)
was trained on private (m-) and public (m+) data. A noise multiplier of 0.5 was
used for all privacy preserving approaches.

Dataset Base DP [1] WGAN [7] DPWGAN [151] GSWGAN [18]
m- d+ m+ d- m- d+ m+ d- m- d+ m+ d-

AsphaltPavement 90.82 83.56 78.45 69.55 57.34 34.72 57.30 72.99
AsphaltRegularity 99.73 96.14 93.74 94.79 81.61 45.75 76.52 83.99
CharacterTraj. 99.65 89.55 97.16 97.49 60.06 55.74 97.72 98.87
ECG5000 93.18 89.55 87.69 53.29 85.03 19.06 91.89 88.11
FaceDetection 49.44 59.73 33.24 35.92 33.33 34.16 34.60 33.40
FordA 94.92 94.17 94.85 92.50 42.36 46.90 96.06 92.20
HandOutlines 65.40 50.02 67.63 53.47 45.73 72.46 67.20 53.04
UWaveGestureLib. 90.32 42.38 92.64 86.58 85.66 70.31 94.01 84.61
Wafer 99.79 95.21 98.80 97.69 97.94 85.81 98.08 85.01

Average 87.03 77.81 82.69 75.70 65.45 51.66 79.26 76.91

on the FordA dataset the drop was less than one percent. Overall, the DP approach
converged for all datasets, but does not enable sharing of any data. In contrast to
that, the DPWGAN and GSWGAN allow the exchange of the data as it is created
synthetically. The WGAN serves as a baseline for the generative power and has
shown a similar drop as the DP approach. The average performance of the WGAN

was about 12% lower when the classifier was trained on public data produced
by the WGAN and tested on the private. Similarly, training the classifier on the
private data and testing on the public data generated by the WGAN resulted in
a 5% performance loss. Intuitively, adding DP constraints to the WGAN resulted
in lower performance. The DPWGAN has shown a decline of 36% when tested
on the private data and trained on the generated data. For most of the datasets,
the models showed a significantly lower performance due to the additional
privacy constraints that limit the discriminator and therefore the generative
capabilities. GSWGAN which addresses the limitations of the discriminator has
shown superior performance across all datasets with an average decline of
10% compared to the baseline. GSWGAN was on par with the DP classifier
but, in addition, enables the free use of the generated data and the trained
classifier. Across all datasets, its performance was stable and could be improved
further when the hyperparameters were tuned. The superior performance can be
explained by the fact that privacy is only applied to the generator, as this is the
only vulnerable part. It has to be mentioned, that the FaceDetection dataset overall
has shown a bad performance independent of the classifier and generative model.

14.2.2 Finding the Best Stopping Criteria for GSWGAN

Training a generative model is a challenging task, as these models can collapse
or produce worse samples when trained for too many iterations. Usually, when it
comes to privacy-preserving approaches, these are trained for a fixed number

194 from private to public : benchmarking generative privacy

of iterations based on the available privacy budget. However, finding a good
compromise between the budget available and the performance is difficult to
measure. In addition, training a generative model is costly and takes time.
Therefore, it is necessary to find a good stopping criterion. Below, the evaluated
criteria are listed:

• Training the Generative Adversarial Network (GAN) without any stopping
criteria for a fixed number of iterations results in using the maximum
privacy budget.

• The Frechet Inception Distance (FID) introduced by Heuse et al. [54]
measures the distance of samples in the latent space of a classifier model.
Using this measurement provides evidence that the generated data is close
to the original when considering the abstract latent space representation.

• The Inception Score (IS) proposed by Salmimans et al. [121] computes the
similarity of the distribution based on the samples. The idea is to measure
the quality of the samples based on their similarity.

• Loss and accuracy are two well known direct metrics. However, these do
not provide any information about the quality of the generated data, but
rather focus on the performance of the classifier attached to the GAN. The
drawback of this method is that it can produce data that looks different from
the original data, but performs well concerning accuracy.

For the metrics that require an additional classifier, the trained InceptionTime
of the baseline can be used. This does not lower the privacy, as the measurements
are not back propagated to the generative models. However, this means that
additional time is required to create the baseline model.

In Table 14.3 the results of GSWGAN on a set of selected datasets are presented.
The results on the remaining datasets do not provide additional insights and
are excluded. Furthermore, DPWGAN was excluded, as the results in Table 14.2
emphasize the use of GSWGAN. The rest of this work focuses on GSWGAN as it
is the most promising concerning stability and performance.

The results provide evidence that the FID score produces better results
on average, leading to a higher quality of generated samples. The classifier
performance using the FID showed that the average performance is 3% better
than using the accuracy. The worst result was achieved using the IS score, which
showed a decline of 7% compared to the FID. Training for a fixed number of
iterations has shown the second worse results. This provides evidence that the
FID score, which measures the similarity in the latent representation, is a good
measurement to use as an early stopping criterion for the privacy-preserving
training of GSWGAN. The largest gains were observed for the FaceDetection and
Wafer dataset. In the case of FaceDetection and Wafer, the FID approach has shown
an increase of 15% and 10% compared to excluding the stopping criteria. In
addition, it has to be mentioned that except for the FaceDetection dataset, FID

showed the best performance for every tested dataset.

14.2 experiments & results 195

Table 14.3: Stopping criteria: F1 scores of classifiers trained on generated data of
GSWGAN [18] and tested on private dataset (m+ d-). Limit of 50,000 iterations
and patience of 2,500 iterations. Values are given in percentage performance.

Dataset None FID [54] IS [121] Loss Accuracy

CharacterTraj. 98.87 98.95 98.40 97.72 98.26
ECG5000 88.11 89.39 88.45 88.90 88.90
FaceDetection 33.40 48.33 33.56 44.07 50.13
Wafer 85.01 95.76 83.28 83.28 82.06

Average 76.35 83.11 75.92 78.50 79.84

14.2.3 Impact of Architecture on GSWGAN

The architecture of the discriminator and generator plays an important role. In
this experiment, the difference between a dense and a convolutional setup for
the generative models was tested on four datasets. Therefore, GSWGAN-dense
was created using fully connected layers, while GSWGAN-conv uses convolutional
and transposed convolutional layers. However, using convolutional layers requires
defining different strides filter sizes, leading to a closer optimization of the model
architecture as these parameters depend on the dataset parameters. The fully
connected network does not require these parameters, making it easier to find
a working architecture. Based on the previous findings, the networks are trained
with the early stopping based on the FID score.

In Table 14.4 the results are shown. It is visible that the convolutional setup
has achieved a better performance across all datasets. This is further reflected
by the IS as the convolutional one is higher than the dense one. Concerning the
performance, the convolutional setup has shown an increase of 4% on the private
test data, with the largest increase of 10% for the FaceDetection dataset. As the
training of the GSWGAN requires a lot of time to converge, it is essential to find
an architecture that works without a comprehensive grid search on the model
architecture. In the experiment presented in Table 14.4, no additional architecture
search was required.

However, for complex datasets such as the FordA, it is required to perform
an architecture search. In the case of the FordA, different numbers of layers,
filters, and latent dimension sizes were evaluated. The experiments cover only a
subset of interesting architectures, emphasizing on the most relevant differences.
Additional other setups were excluded as they did not provide any useful insights.
In addition, in this setup, only convolutional architectures were tested due to
two reasons. First, the previous analysis has shown that the convolutional setup
achieves better results, and second, the dense setup did not converge to any
meaningful model.

Table 14.5 shows the subset of different convolutional setups. The baseline
performance of the InceptionTime classifier for this dataset was 94.92% and
the best performing architecture achieved 92.20%. Therefore, with the correct
architecture, the model dropped only 2.7% in performance. However, the results
provide evidence that with a worse selection of the architecture, the performance

196 from private to public : benchmarking generative privacy

Table 14.4: Architecture impact: Shows the F1 score of InceptionTime classification using
the GSWGAN [18] approach. Higher IS is better. Performances are given in
percentage. InceptionTime classifier trained on private data (m-) and on Public
data (m+).

Dataset
GSWGAN-dense GSWGAN-conv

m- d+ m+ d- IS [121] m- d+ m+ d- IS [121]

CharacterTraj. 98.07 98.95 18.1667 99.30 98.67 19.2626
ECG5000 92.36 89.39 1.8705 94.43 58.31 1.8722
FaceDetection 33.79 48.33 1.0206 48.67 58.51 1.0574
Wafer 97.55 95.76 1.2756 98.74 98.98 1.3491

Average 80.44 83.11 5.5834 85.28 78.61 5.8853

Table 14.5: Architecture search: Shows the weighted F1 scores for InceptionTime classifier
trained on private data (m-) and on public data (m+). GSWGAN was used to
generate the data. The baseline performance was 94.92%. Performances are
given in percentage.

Network parameters
m- d+ m+ d- FID [54] IS [121]

z-dim Number of Filters Size

32 256-256-256-256 7-5-3 70.43 72.10 16.5325 1.4347
32 512-256-128-128-64-64 7-5-5-3-3 96.06 92.20 1.3951 1.7158
32 512-256-128-64 7-5-3 77.81 78.04 16.9240 1.4585
48 512-256-128-64 7-7-7 73.00 71.25 15.0901 1.4678
48 512-512-512-512 7-7-7 96.44 81.94 4.0653 1.8208
64 512-256-128-64 7-5-3 73.08 74.73 16.3632 1.4303
64 512-256-128-64 7-7-7 70.58 41.49 15.7679 1.4339

dropped to 41.49%. Furthermore, the results indicate that the increase in the
z-dimension did not provide any improvement. However, the filter size and
filter number play an important role. As a result, the architecture search can be
expensive, especially as training a generative model is costly. An important point
is that the complexity of the data does not mandatory depend on the number of
classes or channels. E.g. the CharacterTrajectories dataset has a larger number of
channels and classes but less complex patterns.

14.2.4 Impact of Noise Multiplier on Privacy-preserving Approaches

As the goal of privacy-preserving machine learning is to achieve sufficient privacy
using the budget, it is important to understand the impact of the budget on the
outcome performance. The noise used in the DP learning process is one of the
main parameters that affect privacy. The selection of the noise multiplier depends
on multiple parameters such as the dataset size, model iterations during training,
and desired privacy budget. To better understand the capabilities of the presented

14.2 experiments & results 197

architectures, it is important to test their performance drop with an increasing
noise multiplier. In this experiment, the noise multiplier was increased from 0.25

to 2.0. The DP classifier was also included, although it is not possible to directly
compare the performance, as the number of iterations differs. An important point
is that increasing the noise multiplier decreases the epsilon value that reflects
privacy. A lower epsilon corresponds to better privacy. However, there is always a
trade-off between privacy and accuracy.

In Table 14.6 the results are shown for a subset of datasets. The DP classifier
shows that there is a significant difference based on the datasets. Whereas the
performance drop for the ECG500 dataset was less than 2% for all multipliers,
for most of the other datasets the model fails at a certain point. Especially for
the CharacterTrajectories dataset, a noise multiplier of 0.5 was enough to decrease
the performance by more than 40%. The rest of the datasets validated the finding
that DP classifiers show significant performance drops compared to the generative
approaches. In comparison to that, the DPWGAN and GSWGAN were able to
produce datasets that resulted in converging classifiers across all datasets. The
DPWGAN has shown a similar performance decrease with an increasing noise
multiplier. However, the GSWGAN achieved much higher performances across
all the datasets when compared to the other two approaches. Except for the
FaceDetection dataset, GSWGAN performed better in every setup. In the case of the
CharacterTrajectories dataset, the performance drop for the noise multiplier of 2.0
was 25%. The performance of GSWGAN does not show significant performance
drops up to a noise multiplier of 1.5. Overall, the noise multiplier experiments
provide evidence that the GSWGAN is more robust to the noise added. This is
the case as the discriminator does not suffer from privacy concerns and only the
generator is affected by the noise. Therefore, it is possible to have a much stronger
discriminator even with high noise values.

14.2.5 T-SNE Visualization of Generated Data

Understanding the actual dataset distribution is an important part, as in an
ideal scenario, both datasets are indistinguishable. However, if the datasets are
distinguishable, this does not mandatory result in a badly trained classifier. To
understand the difference between the private and public data, T-SNE plots
were created. The T-SNE approach transforms data into a two-dimensional space.
The visualized plots show the difference between both sets. In Figure 14.1 the
results of four datasets are shown. The first column of each sub figure shows
the private train data and the public train data. Ideally, the data overlaps, as this
states that the private and generated (public) dataset are indistinguishable. The
CharacterTrajectories dataset shows this behavior for DPWGAN whereas, for the
other three datasets, this is not the case. The second and third columns of the
sub figure show the class distribution within the private and public train datasets.
The results provide evidence that the generated data for the CharacterTrajectories
dataset using the GSWGAN shares the same distribution as the original data
(Figure 14.1b). The plots for the DPWGAN and the CharacterTrajectories dataset
show a similar behavior (Figure 14.1a). Although the data shows a small offset,
this did not hinder the performance by a large margin. Both models show a similar

198 from private to public : benchmarking generative privacy

Table 14.6: Impact Noise: Shows the impact of the noise on the different architectures.
The DP Baseline was trained on the private data, whereas accuracies of the
GAN are computed using a classifier trained on the generated public datasets.
Performances are given in percentage.

Dataset Method
Noise

0.25 0.5 1.0 1.5 2.0

CharacterTraj.
DP [1] 81.14 39.86 18.24 8.83 6.82
DPWGAN [151] 80.92 74.79 47.65 34.97 27.27
GSWGAN [18] 95.58 98.95 96.50 90.41 69.99

ECG500
DP [1] 89.61 89.49 89.02 88.24 87.65
DPWGAN [151] 27.39 85.45 44.90 43.02 9.53
GSWGAN [18] 87.53 89.39 89.44 89.58 73.64

FaceDetection
DP [1] 59.64 58.71 56.01 33.77 33.53
DPWGAN [151] 46.71 34.23 50.54 52.78 35.10
GSWGAN [18] 44.68 48.33 51.14 37.44 33.92

Wafer
DP [1] 95.22 84.12 84.12 84.12 84.12
DPWGAN [151] 85.33 84.12 2.10 65.07 81.18
GSWGAN [18] 96.92 95.76 85.52 96.02 71.52

position of the 20 classes within the space. Furthermore, the results provide
evidence that the dataset generated using GSWGAN shows a much better overlap
compared to the private data. In addition, the class separation is much better
compared to the DPWGAN. The results provide evidence that the generated data
for the CharacterTrajectories and FaceDetection dataset using the GSWGAN share the
same distribution as the original data (Figure 14.1b and Figure 14.1f). Figure 14.1c
and Figure 14.1d show the T-SNE plots for the ECG5000 dataset. This dataset
consists of five classes. However, the first two classes cover 292 and 177 samples,
leaving 31 samples for the remaining classes. This makes it impossible for the
GANs to, correctly, learn all classes and results in generators that cover only the
two main classes. In addition, the Figure 14.1c shows a large offset between the
private and public data which is reflected in the accuracy as the public classifier
cannot perform well on the private dataset. Furthermore, the two classes are not
separated well. In contrast to that, Figure 14.1d shows that the generated data
of the GSWGAN, although it is different from the original distribution, separated
the two classes well. In addition, this model was able to perform well, although
the distribution shows some differences. For the accuracy results related to this
figure, the reader is referred to Table 14.2. The third dataset is visualized in
Figure 14.1g and Figure 14.1h. Similar to the previous dataset, the DPWGAN
produces a distribution with an offset, resulting in a bad performance. In contrast
to that, the GSWGAN generated a dataset that shows a similar distribution within
the T-SNE plot, resulting in high performance for the classifier trained on that
dataset.

14.2 experiments & results 199

(a) CharacterTrajectories: DPWGAN [151] (b) CharacterTrajectories: GSWGAN [18]

(c) ECG5000: DPWGAN [151] (d) ECG5000: GSWGAN [18]

(e) FaceDetection: DPWGAN [151] (f) FaceDetection: GSWGAN [18]

(g) Wafer: DPWGAN [151] (h) Wafer: GSWGAN [18]

Figure 14.1: T-SNE Visualization (1/2): Subfigures show datasets generated using
DPWGAN [151] and GSWGAN [18]. Plots within each subfigure: Left shows
the difference between private and public train datasets. Middle: Class
distribution of private train dataset. Right: Class distribution public train
dataset.

One general finding across all datasets was that the DPWGAN produces data
that is less similar to the original data. This can be explained by the fact
that the differential privacy is applied to both the discriminator and generator,
resulting in a worse performance of the discriminator. This is not the case for
the GSWGAN as the privacy constraints are only applied to the generator. The
stronger discriminator seems to improve the quality of the generated data.

Figure 14.2 covers the remaining T-SNE plots for the GSWGANs. Except for the
HandOutlines dataset, the dataset distributions of the real and the generated data
show a high overlap. In addition, the class separation in the space is well for all
the visualized datasets. Although the distribution of the HandOutlines dataset and
the generated one does not perfectly fit, the results still show that the classifier
trained on the generated dataset can classify the real data.

14.2.6 Dataset Visualization - Private vs Generated (Public) Data

Breaking down the dataset using the T-SNE visualization shows that there is some
discrepancy between the private and the generated data. However, understanding

200 from private to public : benchmarking generative privacy

(a) AsphaltPavementType (b) AsphaltRegularity

(c) FordA (d) HandOutlines

(e) UWaveGestureLibraryAll

Figure 14.2: T-SNE Visualization (2/2): Sub-figures show the datasets generated using
GSWGAN [18]. Plots within each sub-figure: Left shows the difference
between private and public train datasets. Middle: Class distribution of
private train dataset. Right: Class distribution public train dataset.

this discrepancy is key to understanding whether it is acceptable or not. Therefore,
in Figure 14.3 real data and generated data are visualized to highlight the main
differences. To create the samples for GSWGAN-dense and GSWGAN-conv the
corresponding generator was used. The results indicate that the data generated
using the generator preserves the dataset characteristics and has a similar shape
when compared to the original data. The samples of the FaceDetection dataset were
excluded, as visualizing that numerous channels do not provide any insights. One
finding is that using GSWGAN-conv results in much smoother samples compared
to GSWGAN-dense. Especially, GSWGAN-dense shows worse performance on the
Wafer dataset, although the shape of those samples is not very complex. On the
other side, GSWGAN-conv was able to produce very smooth samples for the Wafer
dataset.

In the second part of this experiment, a sample generated using GSWGAN-
conv is plotted against the real data to show how it fits into the original
dataset. GSWGAN-dense was excluded, as the previous experiments indicate that
it provides lower-quality samples. It is visible that the general shape of the
generated sample is similar. In a latter experiment, the dataset statistics are
evaluated to show that it is not a direct copy of the existing data, as it is not
feasible to infer that from this visualization. For privacy, it is important that the
generator produce new samples and does not memorize the existing ones, as this
yields data leaks. Figure 14.4 shows the real and generated sample for the datasets.
The plots provide evidence that the generated samples are not identical to the real
data, but still preserve the same overall shape related to the classes.

1
4.

2
e

x
p

e
r

i
m

e
n

t
s

&
r

e
s

u
l

t
s

2
0

1

(a) CharacterTrajectories: Private data (b) ECG5000: Private data (c) Wafer: Private data

(d) CharacterTrajectories: Public data (GSWGAN-dense) (e) ECG5000: Public data (GSWGAN-dense) (f) Wafer: Public data
(GSWGAN-dense)

(g) CharacterTrajectories: Public data (GSWGAN-conv) (h) ECG5000: Public data (GSWGAN-conv) (i) Wafer: Public data
(GSWGAN-conv)

Figure 14.3: Dataset Visualization (1/2): Shows the private and the generated (public) data generated using GSWGAN-dense and GSWGAN-conv. The
generated data of GSWGAN-dense shows a noisy behavior compared to the very realistic samples GSWGAN-conv [18].

2
0

2
f

r
o

m
p

r
i
v

a
t

e
t

o
p

u
b

l
i
c

:
b

e
n

c
h

m
a

r
k

i
n

g
g

e
n

e
r

a
t

i
v

e
p

r
i
v

a
c

y

(a) CharacterTrajectories

(b) ECG5000 (c) UWaveGestureLibraryAll (d) Wafer

(e) AsphaltPavementType (f) AsphaltRegularity (g) FordA (h) HandOutlines

Figure 14.4: Dataset visualization (2/2): Shows datasets created using GSWGAN-conv [18]. Grey lines correspond to multiple original data samples. Blue
corresponds to the generated data sample.

14.2 experiments & results 203

(a) CharacterTrajectories (b) ECG5000

(c) FaceDetection (d) Wafer

Figure 14.5: Dataset Distances (1/2): Shows the distance between the private and
generated datasets using GSWGAN-dense and GSWGAN-conv and the
samples within each dataset. To compare two datasets, the union of the
samples was built and the L2-norm is used to compute the distance.

Especially, for complex datasets such as the FordA dataset, it is necessary to have
very smooth and high-quality samples as the anomaly detection task is fragile to
peaks and small changes in the data.

14.2.7 Dataset Analysis - Computing the distance between samples

To provide evidence that the generated dataset does not consist of copies of the
real data but rather shows new and different samples, the distances between
samples were computed. The goal was to show that the samples are different
but share the same distribution, which cannot be stated by visual inspection.
To analyze the differences and similarities between the private and the public
datasets, the L2-norm was computed. Therefore, first, the distances within each
dataset were computed. This helps to understand how diverse the data within
the dataset is. However, to understand the connection between the datasets, the
values were computed between the private and the public data. Therefore, the
distance between every sample in the real dataset and the generated dataset was
computed to identify changes in the minimal and maximal distance. Ideally, the
distances should not change, highlighting that the data is neither a copy nor has
the wrong distribution.

In Figure 14.5 the results are shown for four datasets which include the dense
and convolutional setup. Especially, for the CharacterTrajectories the distances
show that the distances within the private and the synthetic datasets are similar.
The minimal distance value provides information about the clustering within

204 from private to public : benchmarking generative privacy

the data, and ideally should be similar to the real private data. Otherwise, the
synthetic samples could be centered around a single real data point. The max
value provides insights about outliers. Comparing the values between the real
and the generated dataset, the values are in the same range, highlighting that
the data quality is good. A significantly lower minimum value would provide
evidence that the generator copies existing data instead of creating new data.
Accordingly, significantly higher maximum values correspond to outliers. The
results show that except for the FaceDetection dataset, the distances provide
evidence that the data quality is good. However, in Figure 14.5c the maximum
distance within the synthetic datasets is much lower compared to its real data
counterpart. This suggests that the generated data did not show a high variance.
Furthermore, the mean distance for GSWGAN-dense was very low, which suggests
that most of the data was very similar, and the synthetic data did not cover the
complete distribution. In contrast to that, GSWGAN-conv has shown a similar
mean distance as the real data. The comparison between the real and synthetic
data provides further evidence that the generated data of the GSWGAN-conv
generator successfully generates data that preserves a certain distance to the real
data. For the remaining datasets in Figure 14.6, similar results can be observed.
There are only small changes in the distance values, highlighting that the method
successfully produces new data samples within the same space. For these datasets,
only the convolutional setups are visualized, as these produced much better
results.

14.3 discussion

GSWGAN has shown a good performance across all the experiments. The
comparison of the privacy approaches has shown that while a differential private
classifier might apply to some cases, it limits not only the performance but
is less stable than the GSWGAN. Furthermore, it can have impact methods
applied on top of the classifier, such as interpretability methods. Another finding
was that the DPWGAN has shown inferior performance for all experiments
compared to the GSWGAN. The lower performance can be explained by the
noise added to the complete architecture, whereas the GSWGAN only produces a
private generator. To produce this private generator, privacy on the discriminator
is not mandatory. A stronger public discriminator makes the network more
stable. Furthermore, the experiments on the architecture strongly evidence
that GSWGAN-conv outperforms GSWGAN-dense in the context of time series.
The convolutional generator produced smoother samples and achieved higher
accuracies. Especially, for anomaly detection tasks, it is important to use the
convolutional setup for smoother samples. Furthermore, depending on the
dataset, the successful application of GSWGAN requires an architecture search
to find a suitable network. The T-SNE visualization has shown similar findings
concerning the better convergence of GSWGAN compared to DPWGAN. The
distribution of the generated datasets projected into a two-dimensional space is
very similar to the original dataset. Finally, the dataset visualization and dataset
statistics provide evidence that the generated samples are smooth and similar to

14.4 conclusion 205

(a) AsphaltPavementType (b) AsphaltRegularity

(c) FordA (d) HandOutlines

(e) UWaveGesture

Figure 14.6: Dataset Distances (2/2): Shows the distance between the private and
generated datasets for GSWGAN-conv and the samples within each dataset.
To compare two datasets, the union of the samples was built and the L2-norm
is used to compute the distance.

the real data but still different enough from the real data in a way that the l2-norm
between the real and generated data are similar.

14.4 conclusion

This section benchmarked DPWGAN and GSWGAN in the context of time series
classification. The results provide evidence that the gradient-sanitized approach is
superior to the traditional DPWGAN. GSWGAN was able to achieve more stable
performance across the datasets with the same amount of privacy. In addition,
training a classifier directly, on private data does not provide better results across
all datasets, highlighting that the generation of public data makes it possible
to use any classifier without the limitation of differential privacy. The original
GSWGAN uses a fixed number of iterations to train. However, the results indicate
that the quality of the generator is not monotonic increasing and early stopping

206 from private to public : benchmarking generative privacy

criteria such as the FID score resulted in superior performance for all datasets.
Furthermore, the experiments show that GSWGAN-conv provides much smoother
samples compared to GSWGAN-dense. In addition, the experiments provided
evidence that an architecture search has a significant impact on the performance of
the generative model. Concerning privacy, GSWGAN further shows better results
when increasing the noise multiplier to achieve better privacy values. Finally,
visual evidence for the correct dataset creation is provided and the distances
within and between the real (private) and generated (public) data were computed,
which validated the correctness of GSWGAN in the data generation process. The
generator was able to provide high-quality data that share the same distribution
as the real data.

Part VI

S U M M A RY

15
C O N C L U S I O N

This chapter discusses and concludes the findings of the interpretability and
privacy components of TimeFrame. This covers the different perspectives that were
evaluated in the context of this work and the novel approaches and conclusions
that are valuable for the research. The discussion further highlights application
scenarios and limitations of the approaches. For detailed numerical insights, the
reader is referred to the corresponding chapter that covers the approach and all
experiments.

15.1 post-hoc interpretability

The Part ii covered a comprehensive attribution benchmark (Time to Focus). The
results of the benchmark have indicated that there is a need for a time series-
specific attribution method that considers time series-specific features. Therefore,
TimeREISE was proposed as a novel technique for time series attribution. Another
aspect that was covered in the post-hoc part was the visualization of attribution
methods and the network structure. TSViz was proposed as a framework that
provides an explanation based on an attribution method and considers the user
experience. In parallel, the problem of the complexity of time series data was
tackled with TSInsight, a method that compresses the input data to reduce the
cognitive load and focus only on data relevant for the prediction. Finally, as
compression is not limited to an instance, influence functions were benchmarked
in Data Lens to understand the relevance of samples during the training and
inference.

15.1.0.1 Time to Focus

Time to Focus a comprehensive benchmark of existing attribution methods. A set of
twelve state-of-the-art attribution methods was benchmarked across five different
datasets concerning their Sensitivity, Infidelity, runtime, Continuity, insertion and
deletion, and impact on accuracy. While some of the methods have shown to
produce good results concerning some metrics, the analysis provided evidence
that there is no superior method. Furthermore, the results provide evidence that
some approaches are favored by some metrics. This is an important finding as
most times attribution methods are evaluated without any information about the
bias that is introduced by the used metric. E.g. perturbation-based approaches,
naturally, show more robust results concerning metrics such as Continuity
which evaluate the amount of noise. Furthermore, perturbation-based approaches
showed better results for the Sensitivity and the insertion and deletion test. In
contrast to that, gradient-based approaches are superior concerning the runtime,
as they do not require a series of forward passes. Also, concerning the Infidelity,
gradient-based approaches were superior. Especially the Occlusion showed the

210 conclusion

best performance for the perturbation-based approaches except for the runtime.
Among the gradient-based approaches, the Integrated Gradients performed slightly
better compared to others. Based on the category an attribution method belongs
to, it is possible to predict its performance for the metrics. In addition, this
helps to define the context in which it is possible to use the approach. E.g. real-
time interpretability requires fast approaches which are mostly gradient-based,
whereas if time is not a concern the perturbation-based approaches offer smoother
results.

15.1.1 TimeREISE

TimeREISE is a novel attribution approach created to capture the characteristics of
the time series domain. During the development of this approach, the findings of
Time to Focus played a pivotal role. Motivated by a perturbation-based approach
used in the image domain, the idea was adopted and led to an approach
that produces high-quality results. In the insertion and deletion test TimeREISE
outperformed five state-of-the-art methods on 17 datasets with an average rank
of 2.0 and 1.6 across all datasets. A similar superiority was shown in the
Sensitivity and Continuity. Concerning the Infidelity, there was no superior
method. In addition, TimeREISE has shown to have a better runtime compared
to methods such as Occlusion and other window-based approaches. TimeREISE
has shown that an approach aligned to the time series data can produce superior
results in almost all metrics, as it is optimized for the modality. Its superiority
against the approaches introduced in the image domain and applied in the
time series domain emphasizes on the importance of modality-specific evaluation
of approaches. TimeREISE considers characteristics of time series such as the
interaction between channels, and the effect of events spread over the whole time
series. E.g. the interaction between channels is defined for the image domain and
needs to be defined differently for the time series context. Furthermore, window-
based approaches might not cover the effect of events across the whole time series.
While in the image domain, most times concepts are close together if they belong
to each other. This does not hold for time series. A change at the beginning of a
series can take effect on the last value without showing a dramatic change in the
values between.

15.1.2 TSViz

To bridge the lack of a visualization framework that considers the user experience
to analyze the attribution and the network TSViz was developed. Previous
benchmarks have shown that attribution methods are a valuable source of
explanation, their presentation to a stakeholder requires a careful design. TSViz
exemplary shows the possible visualization of a gradient-based approach for the
time series context. In addition to the representation of the input saliency, it
extends the idea to visualize the importance of the network architecture parts.
During the experiments, it was shown great results on two datasets when pruning
based on the importance values and the clustering of filters was performed. The

15.1 post-hoc interpretability 211

pruning showed that removing the filters not relevant resulted in no increase
concerning the loss, while removing the important filters increased the error by
up to 8,000%. In addition, it highlights the limitations and remaining issues when
it comes to time series interpretability. These limitations are mainly the amount of
data that needs to be visualized in a suitable manner. While it provides the first
network visualization for time series data, there is still space for improvement.
However, the idea to cluster network parts and show only representative
information is one step towards an improved network visualization. Furthermore,
the restful application programming interface and the three-dimensional front-
end provide easy access to the framework. In addition, the dashboard offers great
opportunities concerning explanations aligned for different user groups. Finally,
the gesture controlled virtual reality version of TSViz provides capabilities to
interactively explore and understand the network flow.

15.1.3 TSInsight

TSInsight was proposed as a compression framework for time series data, as it
compresses the data in a way that offers extended interpretability. Assuming
that the input required by a trained network must be preserved while any
other data point can be removed without dramatic changes, the results have
confirmed that this is true for time series. Using a specific training procedure
and loss, it was possible to produce a compression that preserved the shape of
the relevant data points and suppressed the irrelevant data. Across eight datasets
and compared against ten state-of-the-art approaches for, it was shown that this
compression preserves the important features similar to the attribution methods.
The performance dropped by less than two percentage points in the worst case.
In addition, it was shown that TSInsight can be applied to a model without
restrictions to the architecture. Furthermore, it offers a global interpretability,
which is not the case for the attribution methods. In addition, the autoencoder
trained to compress the data can be used to directly pre-process the data, making
it more robust and to discard information that is not used by the model.

15.1.4 Data Lens

Data Lens covers a comprehensive influence function benchmark. Interpreting
the models through the lens of data is not considered commonly in research.
However, as the model is trained on a dataset and can leak information about
this dataset, it is intuitive that the model stores some information relevant for the
reasoning process. Using existing state-of-the-art approaches, a comprehensive
benchmark was conducted. This benchmark has shown across three datasets
that while advanced approaches lead to high-quality results for the mislabel
detection in the image domain, it is possible to achieve similar results using direct
measurements such as the Loss. Across the different datasets, the Loss showed
the best mislabel detection in seven out of nine scenarios. Furthermore, the
loss shows a pretty large discrepancy between correctly labeled and mislabeled
data concerning the loss value. The Representer Point approach has shown the

212 conclusion

worst performance regarding the separation of correct and mislabeled data.The
mislabel detection was selected in this context as it is related to the model
and its generalization. Furthermore, this exposes interesting results concerning
interpretability. The experiments show thanks to different Influence Functions, Loss
and the combination of these approaches the bias of a model from a global
perspective. Especially, the combination of the Loss and Influence Functions has
shown to produce excellent results, identifying more than 95% of the mislabels.
However, the use of the Influence Functions has shown a significant increase in the
time consumption compared to the Representer Points and the Loss. Finally, the
results indicate that the correction of the data based on the evaluated methods
improved the network performance, whereas the deletion of the mislabeled data
did not improve the performance.

15.2 intrinsic interpretability

The Part iii covered two novel approaches for the time series analysis. PatchX
realizes the idea of divide and conquer to reduce the complexity of a problem.
Therefore, patches are used, and a hierarchical classification is put on top. Based
on the findings of PatchX the second approach, P2ExNet, proposed a framework
for patch-based prototypes. In addition to the divide and conquer principle,
prototypes used to enable an easier interpretation based on similarity.

15.2.1 PatchX

With PatchX a novel interpretable reasoning approach was presented. The idea
of dividing the data to produce smaller problems and later on combining the
findings of these to produce an overall result has shown to work well in the
time series context. Compared to two other state-of-the-art approaches, PatchX
has shown to produce high-quality results for long sequences across five datasets.
The accuracy results further show that the performance trade-off was marginal. In
three out of five cases, PatchX outperformed the back-box model, whereas in the
remaining cases the performance only dropped by about 1.5%. PatchX has shown
that it is possible to produce predictions for the patches of a sample without the
effort of data labeling. Only using the overall label, a novel patch transformation
approach and a specific training led to impressive results that can also be used to
label data. In addition, using PatchX it is possible to provide an explanation based
on different levels which enables to go step-wise from the overall prediction down
to each patch and understand the interaction. Finally, it has to be highlighted that
the framework is modular, offering great applicability and the ability to extend it
further. Concerning the additional time to produce this explanation, PatchX has
shown to be faster than the SVM approach in the inference mode, while being
slightly slower than the black-box model. During the training, PatchX requires
additional time, making it slower than the SVM but still faster than the feature
extraction approaches. Finally, the results indicate that it is not required to know
the patch sizes precisely, as selecting multiple did not hinder the performance and
quality of the PatchX results.

15.3 direct privacy 213

15.2.2 P2ExNet

P2ExNet was proposed as a novel prototype and patch-based reasoning approach.
Using prototypes to point out the global behavior and produce instance-based
explanations has been very prominent in the image modality. The results have
shown that P2ExNet can produce prototypes for time series. Precisely, the
prototypes are not for the complete sequence, but rather for patches. P2ExNet was
inspired by the existing prototype-based approaches and has shown that with
a minor drop in accuracy, it is possible to come up with a reasoning process
based on the human reasoning behavior. P2ExNet was able to achieve a better
performance in four out of eight datasets compared to a similar black-box CNN.
The largest accuracy drop was about 5% and the largest gain was about 5%. The
sanity check has shown that replacing the patches with the correct prototype
preserves the accuracy, while replacing them with wrong prototypes results in
a significant accuracy drop. While using the correct prototypes, the performance
dropped about 6.5% in the worst case, compared to drops of more than 20% when
a wrong prototype was used. P2ExNet produces the prototypes in the latent space,
which further improves their quality as the network learns uses an enhanced
representation instead of the input directly to produce the prototypes. To produce
these high-quality prototypes, the decoder part is pivotal, as the results have
shown that discarding it produces prototypes that are up to 6,000% further away
from the selected representatives when comparing their latent representation to
those of the prototypes using the decoder. Furthermore, the decoder helps to
present the precise prototype instead of the closest patch within the dataset.
Finally, the prototypes produced by P2ExNet are class dependent and have a class
weight, which makes it possible to understand how relevant they are.

15.3 direct privacy

Part iv covered a comprehensive benchmark of existing privacy mechanisms and
evaluated the impact of those on interpretability methods. PPML addresses the
runtime and performance impact when the privacy is applied on top of the model
during the training process. In contrast to that, PPML x XAI focuses on the change
in explanations when interpretability methods are applied on top of a model that
was trained in a private manner.

15.3.1 PPML

The PPML benchmark has shown across 16 datasets that differential privacy
and federated learning to introduce minor up to major accuracy drops based
on the hyperparameters, the network architecture and the dataset. The average
performance using DP resulted in a decline of 12% across the datasets. The
results of federated learning showed an average decline of about 20% whereas the
federated ensemble approach showed an accuracy decline of only one percentage
point. Furthermore, the results indicated that the performance of AlexNet was
significantly better compared to LeNet, FCN, FDN, and LSTM. However, the

214 conclusion

behavior concerning the accuracy drops regarding the privacy method showed
a similar behavior across the model architectures. It was found that while
differential privacy works well for some datasets that are robust to noise, it is
not possible to predict this behavior. Furthermore, the experiments emphasize on
the careful combination of differential privacy and federated learning to improve
the privacy. The accuracy combining the differential privacy and the federated
ensemble did not show any further accuracy drop compared to the differential
approach without the federated ensemble. While there are major accuracy drops
when using both approaches, a hyperparameter tuning can resolve them. Another
finding in this work was that the homomorphic encryption comes with significant
overhead, making it unfeasible to use for time series data on a large scale. Training
a network using the HE has shown to increase the training time by a factor of up
to 17,000. However, the secure sharing works well and is a solution to transfer the
data in a save manner.

15.3.2 PPML x XAI

PPML x XAI is a comprehensive analysis that has shown that the effect on
interpretability methods can lead to significant changes. A broad range of nine
different attribution methods was evaluated on five datasets concerning multiple
aspects such as Sensitivity, Infidelity, Continuity, and others. For privacy, the most
famous approaches such as the DP and FL as well as their combination were used.
While some attribution methods have shown to be more robust to privacy, the
overall finding was that the use of DP introduces noise to the attribution and
lowers the Continuity significantly. In contrast to that, the use of FL in addition
to the DP recovered the attribution results up to a certain point. Furthermore, it
was shown that the gradient-based attribution methods show a significantly lower
quality compared to perturbation-based approaches. Another finding was that the
impact of privacy on the attribution method depends on the dataset. For some
datasets, the noise significantly affects the attribution, whereas for other datasets
the influence is marginal. This mainly depends on the definition of the problem
and the features, as well as the pattern sizes ,and the vulnerability to noise.

15.4 indirect privacy

Part v covered the use of a generative approach was evaluated to understand if
it is possible to exclusively work on synthetic data and transfer the findings. The
goal of this was to provide an approach that does not affect the interpretability of
the system and helps produce data that is easier to access.

15.4.1 From Private to Public

From private to public is a benchmark that covers the DPWGAN and the GSWGAN
on nine different datasets. The main difference between those two approaches is
that the GSWGAN does not apply any privacy constraints to the discriminator.
The experiments have indicated that this has a huge impact, as the performance

15.4 indirect privacy 215

of the GSWGAN was significantly better compared to the DPWGAN. In addition,
training a public classifier based on the data generated by the WGANs resulted
in good performances if the GAN was optimized correctly. Further experiments
emphasize that the architecture of the GAN influences the results a lot, and a
hyperparameter tuning to get a suitable architecture is beneficial. The use of
convolutional architectures has shown better visual performance for the generated
data. However, training a convolutional network suffers from more training time
compared to a dense setup. The visual and analytical inspection shows that the
generated samples are close enough to the original samples to be used, but
still preserve enough distance to not mimic the original data. While training the
GAN is a challenging task, it comes with several advantages. The generated data
can be used by third-parties without privacy concerns. In addition, it can help
to overcome data shortage, as the generative model can generate the required
amount of data if initially the amount of data was large enough to train the GAN.
Another benefit is that the classifiers trained on the data can be shared and do
not need privacy mechanisms, making it possible to use interpretability methods
without the risk of misleading results due to the privacy approach.

16
F U T U R E W O R K

This section first shows the novel components developed in the scope of this thesis
that can further be extended. Therefore, Table 16.1 shows the novel approaches
that are included in TimeFrame, the proposed framework for interpretable
and privacy-preserving time series analysis using deep neural networks. The
explanation scope highlights whether the explanation provides information for
each individual data point or only for the sample. The data scope defines
whether the explanation is given for the instance individually or based on the
whole dataset. It is visible that several different perspectives were addressed. In
addition, to the proposed methods, existing techniques are included to evaluate
and combine them with the proposed approaches.

Most of the approaches are developed for time series classification, and it is
possible to extend them to the field of regression or forecast. In the case of
TimeREISE the adaption to a regression task requires some changes in the score
function. Instead of taking the classification confidence, it is possible to use the
difference between the original prediction and the modified one. However, the
basic framework to produce the attribution masks needs no further adjustments.
Furthermore, it would be possible to enhance the perturbation technique used
to replace masked input data points as it is currently, replacing them with
the mean signal. One possible improvement could be to slightly adjust them
towards the mean to have smaller changes within the signal and understand
their impact. This way, the sample is more likely to be in distribution. As
TSViz is a visualization framework that is based on gradient-based attribution
methods, there are only minor changes required to support different attribution
methods and regression. In addition, it is possible to enhance the visualization
by supporting currently unsupported layer types such as attention layers and
long short-term memory layers. Concerning TSInsight, PatchX, and P2ExNet only
changes in the loss function are mandatory to enable their use on regression tasks.
Besides the transfer to regression and layer support, one possible improvement for
TSViz covers the better visualization with numerous channels. Also, future work
could investigate in a better visualization, e.g. grouping of layers to make the
network more compact in the visualization. Another idea is to group channels by
their relevance to reduce the cognitive load for datasets with various channels.
Concerning the main limitation of TSInsight are the hyperparameters which
are tuned manually. Using an optimization algorithm, finding the best suitable
parameters can be automated. However, this will produce a runtime increase. In
addition to that, a metric to evaluate the quality of a compressed input does
not exist so far. For PatchX one of the major limitations is that the training
involves wrong labeled patches. Although the network can learn which patches
are not class relevant, a possible improvement could be an advanced training
mechanism that discards or weights the patches based on their class relevance.
Finally, one possible improvement for P2ExNet covers a detailed analysis of

218 future work

Table 16.1: Shows the novel approaches and their categories.

Approach Explanation Expl. Scope Data scope

Post-hoc
TimeREISE [85] perturbation local instance
TSViz [91] saliency local & global instance & global
TSInsight [90] compression global instance & global
Intrinsic
PatchX [84] pattern local & global instance & global
P2ExNet [83] prototypes local global

different autoencoder structures. While traditional autoencoders and variational
autoencoders have shown similar performance, it might be that Wasserstein
encoders can improve the quality of the prototypes.

B I B L I O G R A P H Y

[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang. “Deep learning with differential privacy.” In: Proceedings of
the 2016 ACM SIGSAC conference on computer and communications security.
2016, pp. 308–318 (cit. on pp. 16, 27, 28, 161, 165, 193, 198).

[2] A. Abdul, C. von der Weth, M. Kankanhalli, and B. Y. Lim. “COGAM:
Measuring and Moderating Cognitive Load in Machine Learning Model
Explanations.” In: Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems. 2020, pp. 1–14 (cit. on p. 71).

[3] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim.
“Sanity checks for saliency maps.” In: Advances in neural information
processing systems 31 (2018) (cit. on pp. 4, 40, 59, 105).

[4] Z. Allam and Z. A. Dhunny. “On big data, artificial intelligence and smart
cities.” In: Cities 89 (2019), pp. 80–91 (cit. on p. 3).

[5] D. Alvarez-Melis and T. S. Jaakkola. “On the Robustness of Interpretability
Methods.” In: arXiv e-prints (2018), arXiv–1806 (cit. on p. 91).

[6] Y. Aono, T. Hayashi, L. Wang, S. Moriai, et al. “Privacy-preserving deep
learning via additively homomorphic encryption.” In: IEEE Transactions on
Information Forensics and Security 13.5 (2017), pp. 1333–1345 (cit. on p. 28).

[7] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein generative
adversarial networks.” In: International conference on machine learning.
PMLR. 2017, pp. 214–223 (cit. on pp. 192, 193).

[8] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. “The great time
series classification bake off: a review and experimental evaluation of
recent algorithmic advances.” In: Data Mining and Knowledge Discovery 31.3
(2017), pp. 606–660 (cit. on p. 3).

[9] A. Bagnall, J. Lines, W. Vickers, and E. Keogh. The UEA & UCR Time Series
Classification Repository. 2021. url: www . timeseriesclassification . com

(visited on 03/01/2021) (cit. on pp. 39, 61, 102, 113, 136, 150, 161, 175, 191).

[10] J. Benesty, J. Chen, Y. Huang, and I. Cohen. “Pearson correlation
coefficient.” In: Noise reduction in speech processing. Springer, 2009, pp. 1–
4 (cit. on p. 49).

[11] Y. Bengio, A. Courville, and P. Vincent. “Representation learning: A review
and new perspectives.” In: IEEE transactions on pattern analysis and machine
intelligence 35.8 (2013), pp. 1798–1828 (cit. on p. 11).

[12] A. Bibal, M. Lognoul, A. De Streel, and B. Frénay. “Legal requirements on
explainability in machine learning.” In: Artificial Intelligence and Law 29.2
(2021), pp. 149–169 (cit. on pp. 3, 12–14).

[13] T. M. Breuel. “The OCRopus open source OCR system.” In: Proc.SPIE 6815

(2008), pp. 6815 - 6815 –15. doi: 10.1117/12.783598 (cit. on p. 3).

www.timeseriesclassification.com
https://doi.org/10.1117/12.783598

220 bibliography

[14] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song. “The secret sharer:
Evaluating and testing unintended memorization in neural networks.” In:
28th USENIX Security Symposium (USENIX Security 19). 2019, pp. 267–284

(cit. on p. 26).

[15] J. Castro, D. Gómez, and J. Tejada. “Polynomial calculation of the Shapley
value based on sampling.” In: Computers & Operations Research 36.5 (2009),
pp. 1726–1730 (cit. on p. 21).

[16] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. “Differentially private
empirical risk minimization.” In: Journal of Machine Learning Research 12.3
(2011) (cit. on p. 28).

[17] C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su. “This looks like
that: deep learning for interpretable image recognition.” In: Advances in
neural information processing systems 32 (2019) (cit. on pp. 24, 147, 148, 152,
154, 155).

[18] D. Chen, T. Orekondy, and M. Fritz. “Gs-wgan: A gradient-sanitized
approach for learning differentially private generators.” In: Advances in
Neural Information Processing Systems 33 (2020), pp. 12673–12684 (cit. on
pp. 29, 34, 192, 193, 195, 196, 198–202).

[19] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke. “The rise
of deep learning in drug discovery.” In: Drug discovery today 23.6 (2018),
pp. 1241–1250 (cit. on p. 12).

[20] M. Coavoux, S. Narayan, and S. B. Cohen. “Privacy-preserving Neural
Representations of Text.” In: arXiv e-prints (2018), arXiv–1808 (cit. on p. 25).

[21] P. Cortez, M. Rio, M. Rocha, and P. Sousa. “Multi-scale Internet traffic
forecasting using neural networks and time series methods.” In: Expert
Systems 29.2 (2012), pp. 143–155 (cit. on p. 78).

[22] J. Crabbé and M. Van Der Schaar. “Explaining time series predictions with
dynamic masks.” In: International Conference on Machine Learning. PMLR.
2021, pp. 2166–2177 (cit. on pp. 23, 44).

[23] J. Cristian Borges Gamboa. “Deep Learning for Time-Series Analysis.” In:
arXiv e-prints (2017), arXiv–1701 (cit. on p. 3).

[24] G. Dahl, M. Ranzato, A.-r. Mohamed, and G. E. Hinton. “Phone
Recognition with the Mean-Covariance Restricted Boltzmann Machine.”
In: Advances in Neural Information Processing Systems 23. Curran Associates,
Inc., 2010, pp. 469–477. url: http : / / papers . nips . cc / paper / 4169 -

phone-recognition-with-the-mean-covariance-restricted-boltzmann-

machine.pdf (cit. on p. 3).

[25] A. Das and P. Rad. “Opportunities and Challenges in Explainable Artificial
Intelligence (XAI): A Survey.” In: arXiv e-prints (2020), arXiv–2006 (cit. on
pp. 19, 20).

[26] K. Das and R. N. Behera. “A survey on machine learning: concept,
algorithms and applications.” In: International Journal of Innovative Research
in Computer and Communication Engineering 5.2 (2017), pp. 1301–1309 (cit.
on p. 11).

http://papers.nips.cc/paper/4169-phone-recognition-with-the-mean-covariance-restricted-boltzmann-machine.pdf
http://papers.nips.cc/paper/4169-phone-recognition-with-the-mean-covariance-restricted-boltzmann-machine.pdf
http://papers.nips.cc/paper/4169-phone-recognition-with-the-mean-covariance-restricted-boltzmann-machine.pdf

bibliography 221

[27] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh. “The UCR time series archive.” In:
IEEE/CAA Journal of Automatica Sinica 6.6 (2019), pp. 1293–1305 (cit. on p. 3).

[28] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato, A.
Senior, P. Tucker, K. Yang, et al. “Large scale distributed deep networks.”
In: Advances in neural information processing systems 25 (2012) (cit. on p. 12).

[29] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al. “Predicting parameters
in deep learning.” In: Advances in neural information processing systems. 2013,
pp. 2148–2156 (cit. on p. 83).

[30] X. Ding, L. Zhang, Z. Wan, and M. Gu. “A brief survey on de-
anonymization attacks in online social networks.” In: 2010 international
conference on computational aspects of social networks. IEEE. 2010, pp. 611–
615 (cit. on p. 27).

[31] F. K. Došilović, M. Brčić, and N. Hlupić. “Explainable artificial intelligence:
A survey.” In: 2018 41st International convention on information and
communication technology, electronics and microelectronics (MIPRO). IEEE.
2018, pp. 0210–0215 (cit. on p. 13).

[32] P. Esling and C. Agon. “Time-series data mining.” In: ACM Computing
Surveys (CSUR) 45.1 (2012), pp. 1–34 (cit. on p. 3).

[33] L. M. Fagan, E. H. Shortliffe, and B. G. Buchanan. “Computer-based
medical decision making: from MYCIN to VM.” In: Automedica 3.2 (1980),
pp. 97–108 (cit. on p. 13).

[34] H. Fang and Q. Qian. “Privacy preserving machine learning with
homomorphic encryption and federated learning.” In: Future Internet 13.4
(2021), p. 94 (cit. on p. 16).

[35] H. I. Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. F. Schmidt, J. Weber,
G. I. Webb, L. Idoumghar, P.-A. Muller, and F. Petitjean. “Inceptiontime:
Finding alexnet for time series classification.” In: Data Mining and
Knowledge Discovery 34.6 (2020), pp. 1936–1962 (cit. on pp. 62, 63, 176, 191).

[36] V. Feng. “An overview of resnet and its variants.” In: Towards data science
(2017) (cit. on p. 176).

[37] L. Feremans, V. Vercruyssen, B. Cule, W. Meert, and B. Goethals. “Pattern-
based anomaly detection in mixed-type time series.” In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2019, pp. 240–256 (cit. on p. 140).

[38] A. Fisher, C. Rudin, and F. Dominici. “All Models are Wrong, but Many
are Useful: Learning a Variable’s Importance by Studying an Entire Class
of Prediction Models Simultaneously.” In: J. Mach. Learn. Res. 20.177 (2019),
pp. 1–81 (cit. on pp. 44, 68–70, 72).

[39] R. Fong, M. Patrick, and A. Vedaldi. “Understanding deep networks via
extremal perturbations and smooth masks.” In: Proceedings of the IEEE/CVF
international conference on computer vision. 2019, pp. 2950–2958 (cit. on pp. 23,
102).

222 bibliography

[40] R. C. Fong and A. Vedaldi. “Interpretable explanations of black boxes by
meaningful perturbation.” In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 3429–3437 (cit. on p. 66).

[41] M. Fredrikson, S. Jha, and T. Ristenpart. “Model inversion attacks that
exploit confidence information and basic countermeasures.” In: Proceedings
of the 22nd ACM SIGSAC conference on computer and communications security.
2015, pp. 1322–1333 (cit. on pp. 15, 26).

[42] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. “Privacy
in pharmacogenetics: An End-to-End case study of personalized warfarin
dosing.” In: 23rd USENIX Security Symposium (USENIX Security 14). 2014,
pp. 17–32 (cit. on p. 26).

[43] T.-c. Fu. “A review on time series data mining.” In: Engineering Applications
of Artificial Intelligence 24.1 (2011), pp. 164–181 (cit. on p. 3).

[44] K. Fukuchi, Q. K. Tran, and J. Sakuma. “Differentially private empirical
risk minimization with input perturbation.” In: International Conference on
Discovery Science. Springer. 2017, pp. 82–90 (cit. on p. 28).

[45] A. H. Gee, D. Garcia-Olano, J. Ghosh, and D. Paydarfar. “Explaining
deep classification of time-series data with learned prototypes.” In: CEUR
workshop proceedings. Vol. 2429. NIH Public Access. 2019, p. 15 (cit. on
pp. 24, 147, 148, 154, 155).

[46] D. Gentner and J. Colhoun. “Analogical processes in human thinking and
learning.” In: Towards a theory of thinking. Springer, 2010, pp. 35–48 (cit. on
p. 147).

[47] S. Ghosh and P. O. Kristensson. “Neural Networks for Text Correction and
Completion in Keyboard Decoding.” In: arXiv e-prints (2017), arXiv–1709

(cit. on p. 12).

[48] R. Girshick. “Fast r-cnn.” In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 1440–1448 (cit. on p. 3).

[49] S. P. Gochhayat, C. Lal, L. Sharma, D. Sharma, D. Gupta, J. A. M. Saucedo,
and U. Kose. “Reliable and secure data transfer in IoT networks.” In:
Wireless Networks 26.8 (2020), pp. 5689–5702 (cit. on p. 13).

[50] S. González-Carvajal and E. C. Garrido-Merchán. “Comparing BERT
against traditional machine learning text classification.” In: arXiv e-prints
(2020), arXiv–2005 (cit. on p. 12).

[51] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.
Ozair, A. Courville, and Y. Bengio. “Generative adversarial nets.” In:
Advances in neural information processing systems 27 (2014) (cit. on p. 29).

[52] I. J. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and Harnessing
Adversarial Examples.” In: arXiv e-prints (2014), arXiv–1412 (cit. on pp. 77,
87, 91).

[53] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang. “Towards efficient and privacy-
preserving federated deep learning.” In: ICC 2019-2019 IEEE International
Conference on Communications (ICC). IEEE. 2019, pp. 1–6 (cit. on pp. 16, 161).

bibliography 223

[54] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter.
“Gans trained by a two time-scale update rule converge to a local nash
equilibrium.” In: Advances in neural information processing systems 30 (2017)
(cit. on pp. 194–196).

[55] L. Hou, D. Samaras, T. M. Kurc, Y. Gao, J. E. Davis, and J. H. Saltz.
“Patch-based convolutional neural network for whole slide tissue image
classification.” In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 2424–2433 (cit. on p. 25).

[56] T. Huber, B. Limmer, and E. André. “Benchmarking Perturbation-based
Saliency Maps for Explaining Atari Agents.” In: arXiv e-prints (2021), arXiv–
2101 (cit. on p. 40).

[57] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry.
“Adversarial examples are not bugs, they are features.” In: Advances in
neural information processing systems 32 (2019) (cit. on p. 185).

[58] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren. “Secure,
privacy-preserving and federated machine learning in medical imaging.”
In: Nature Machine Intelligence 2.6 (2020), pp. 305–311 (cit. on p. 4).

[59] H. Kannan, A. Kurakin, and I. Goodfellow. “Adversarial Logit Pairing.”
In: arXiv e-prints (2018), arXiv–1803 (cit. on p. 87).

[60] M. Karliuk. “Ethical and Legal Issues in Artificial Intelligence.” In:
International and Social Impacts of Artificial Intelligence Technologies, Working
Paper 44 (2018) (cit. on p. 3).

[61] A. Karpathy and L. Fei-Fei. “Deep visual-semantic alignments for
generating image descriptions.” In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2015, pp. 3128–3137 (cit. on p. 3).

[62] B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al.
“Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav).” In: International conference on machine
learning. PMLR. 2018, pp. 2668–2677 (cit. on p. 135).

[63] J. Kim, A. Rohrbach, T. Darrell, J. Canny, and Z. Akata. “Textual
explanations for self-driving vehicles.” In: Proceedings of the European
Conference on Computer Vision (ECCV). 2018, pp. 563–578 (cit. on p. 80).

[64] W. Knight. MIT Technology Review: The Financial World Wants to Open AI’s
Black Boxes. 2017. url: https://www.technologyreview.com/s/604122/
the-financial-world-wants-to-open-ais-black-boxes/ (cit. on p. 3).

[65] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten. “CrypTen: Secure Multi-Party Computation Meets
Machine Learning.” In: Proceedings of the NeurIPS Workshop on Privacy-
Preserving Machine Learning. 2020 (cit. on p. 170).

[66] P. W. Koh and P. Liang. “Understanding black-box predictions via
influence functions.” In: International conference on machine learning. PMLR.
2017, pp. 1885–1894 (cit. on pp. 23, 113–115, 119–121, 125, 126).

https://www.technologyreview.com/s/604122/the-financial-world-wants-to-open-ais-black-boxes/
https://www.technologyreview.com/s/604122/the-financial-world-wants-to-open-ais-black-boxes/

224 bibliography

[67] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification
with Deep Convolutional Neural Networks.” In: Advances in Neural
Information Processing Systems 25. Curran Associates, Inc., 2012, pp. 1097–
1105. url: http : / / papers . nips . cc / paper / 4824 - imagenet -

classification-with-deep-convolutional-neural-networks.pdf (cit.
on pp. 3, 40, 161).

[68] D. Kumar, G. W. Taylor, and A. Wong. “Opening the Black Box of
Financial AI with CLEAR-Trade: A CLass-Enhanced Attentive Response
Approach for Explaining and Visualizing Deep Learning-Driven Stock
Market Prediction.” In: ArXiv e-prints (Sept. 2017). arXiv: 1709 . 01574

[cs.AI] (cit. on pp. 80, 103).

[69] A. Kurakin, I. J. Goodfellow, and S. Bengio. “Adversarial examples in the
physical world.” In: Artificial intelligence safety and security. Chapman and
Hall/CRC, 2018, pp. 99–112 (cit. on pp. 77, 87).

[70] A. Labrinidis and H. V. Jagadish. “Challenges and opportunities with big
data.” In: Proceedings of the VLDB Endowment 5.12 (2012), pp. 2032–2033

(cit. on p. 11).

[71] M. Längkvist, L. Karlsson, and A. Loutfi. “A review of unsupervised
feature learning and deep learning for time-series modeling.” In: Pattern
Recognition Letters 42 (2014), pp. 11–24 (cit. on p. 3).

[72] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. “Backpropagation applied to handwritten zip code
recognition.” In: Neural computation 1.4 (1989), pp. 541–551 (cit. on p. 165).

[73] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. “Visualizing the
loss landscape of neural nets.” In: Advances in neural information processing
systems 31 (2018) (cit. on p. 105).

[74] O. Li, H. Liu, C. Chen, and C. Rudin. “Deep learning for case-
based reasoning through prototypes: A neural network that explains its
predictions.” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 32. 1. 2018 (cit. on pp. 14, 24).

[75] X. Li and J. Lin. “Linear time complexity time series classification with bag-
of-pattern-features.” In: 2017 IEEE International Conference on Data Mining
(ICDM). IEEE. 2017, pp. 277–286 (cit. on p. 140).

[76] Y. Li and T. Yang. “Word embedding for understanding natural language:
a survey.” In: Guide to big data applications. Springer, 2018, pp. 83–104 (cit.
on p. 17).

[77] Z. W. Lim, M. L. Lee, W. Hsu, and T. Y. Wong. “Building trust in deep
learning system towards automated disease detection.” In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019, pp. 9516–9521

(cit. on p. 12).

[78] Z. C. Lipton. “The mythos of model interpretability: In machine learning,
the concept of interpretability is both important and slippery.” In: Queue
16.3 (2018), pp. 31–57 (cit. on p. 19).

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/abs/1709.01574
https://arxiv.org/abs/1709.01574

bibliography 225

[79] X. Liu, L. Xie, Y. Wang, J. Zou, J. Xiong, Z. Ying, and A. V. Vasilakos.
“Privacy and security issues in deep learning: A survey.” In: IEEE Access 9

(2020), pp. 4566–4593 (cit. on pp. 4, 15, 25).

[80] S. M. Lundberg and S.-I. Lee. “A unified approach to interpreting model
predictions.” In: Advances in neural information processing systems 30 (2017)
(cit. on pp. 22, 44, 145).

[81] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas.
“Communication-efficient learning of deep networks from decentralized
data.” In: Artificial intelligence and statistics. PMLR. 2017, pp. 1273–1282 (cit.
on p. 28).

[82] D. A. Melis and T. Jaakkola. “Towards robust interpretability with self-
explaining neural networks.” In: Advances in Neural Information Processing
Systems. 2018, pp. 7775–7784 (cit. on pp. 3, 90, 91).

[83] D. Mercier, A. Dengel, and S. Ahmed. “P2exnet: Patch-based prototype
explanation network.” In: International Conference on Neural Information
Processing. Springer. 2020, pp. 318–330 (cit. on pp. 147, 218).

[84] D. Mercier, A. Dengel, and S. Ahmed. “PatchX: Explaining Deep Models
by Intelligible Pattern Patches for Time-series Classification.” In: 2021
International Joint Conference on Neural Networks (IJCNN). IEEE. 2021, pp. 1–
8 (cit. on pp. 133, 218).

[85] D. Mercier, A. Dengel, and S. Ahmed. “TimeREISE: Time Series
Randomized Evolving Input Sample Explanation.” In: Sensors 22.11 (2022).
doi: 10.3390/s22114084 (cit. on pp. 57, 218).

[86] D. Mercier, A. Dengel, S. Ahmed, et al. “From Private to Public:
Benchmarking GANs in the Context of Private Time Series Classification.”
In: arXiv preprint arXiv:2303.15916v2 (2023) (cit. on p. 191).

[87] D. Mercier, A. Lucieri, M. Munir, A. Dengel, and S. Ahmed. “PPML-TSA:
A modular privacy-preserving time series classification framework.” In:
Software Impacts (2022), p. 100286 (cit. on p. 161).

[88] D. Mercier, S. Saifullah, A. Lucieri, A. Dengel, and S. Ahmed. “Privacy
Meets Explainability: A Comprehensive Impact Benchmark.” In: arXiv
preprint arXiv:2211.04110 (2022) (cit. on p. 175).

[89] D. Mercier, S. A. Siddiqui, A. Dengel, and S. Ahmed. “Interpreting deep
models through the lens of data.” In: 2020 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2020, pp. 1–8 (cit. on p. 113).

[90] D. Mercier, S. A. Siddiqui, A. Dengel, and S. Ahmed. “TSInsight: A Local-
Global Attribution Framework for Interpretability in Time Series Data.” In:
Sensors 21.21 (2021), p. 7373 (cit. on pp. 97, 218).

[91] D. Mercier, S. A. Siddiqui, M. Munir, A. Dengel, and S. Ahmed. “Tsviz:
Demystification of deep learning models for time-series analysis.” In: IEEE
Access 7 (2019), pp. 67027–67040 (cit. on pp. 39, 40, 61, 62, 77, 101, 102, 113,
114, 136, 150, 175, 176, 218).

https://doi.org/10.3390/s22114084

226 bibliography

[92] D. Mercier., J. Bhatt., A. Dengel., and S. Ahmed. “Time to Focus: A
Comprehensive Benchmark using Time Series Attribution Methods.” In:
Proceedings of the 14th International Conference on Agents and Artificial
Intelligence - Volume 2: ICAART, INSTICC. SciTePress, 2022, pp. 562–573.
doi: 10.5220/0010904400003116 (cit. on p. 39).

[93] T. Miller. “Explanation in artificial intelligence: Insights from the social
sciences.” In: Artificial intelligence 267 (2019), pp. 1–38 (cit. on p. 176).

[94] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar, and H.
Esmaeilzadeh. “Privacy in Deep Learning: A Survey.” In: arXiv e-prints
(2020), arXiv–2004 (cit. on pp. 15, 25–27).

[95] I. Mironov, K. Talwar, and L. Zhang. “Rényi Differential Privacy of the
Sampled Gaussian Mechanism.” In: arXiv e-prints (2019), arXiv–1908 (cit.
on p. 167).

[96] R. Mitchell, J. Cooper, E. Frank, and G. Holmes. “Sampling permutations
for Shapley value estimation.” In: (2022) (cit. on p. 44).

[97] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz. “Pruning
Convolutional Neural Networks for Resource Efficient Inference.” In: arXiv
e-prints (2016), arXiv–1611 (cit. on p. 90).

[98] L. Myers and M. J. Sirois. “Spearman correlation coefficients, differences
between.” In: Encyclopedia of statistical sciences 12 (2004) (cit. on p. 49).

[99] R. R. Nadikattu. “The emerging role of artificial intelligence in modern
society.” In: International Journal of Creative Research Thoughts (2016) (cit. on
p. 11).

[100] M. Naehrig, K. Lauter, and V. Vaikuntanathan. “Can homomorphic
encryption be practical?” In: Proceedings of the 3rd ACM workshop on Cloud
computing security workshop. 2011, pp. 113–124 (cit. on p. 28).

[101] I. E. Nielsen, D. Dera, G. Rasool, R. P. Ramachandran, and N. C. Bouaynaya.
“Robust Explainability: A tutorial on gradient-based attribution methods
for deep neural networks.” In: IEEE Signal Processing Magazine 39.4 (2022),
pp. 73–84 (cit. on pp. 16, 40).

[102] S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu. “Using
of Jaccard coefficient for keywords similarity.” In: Proceedings of the
international multiconference of engineers and computer scientists. Vol. 1. 6.
2013, pp. 380–384 (cit. on p. 49).

[103] S. J. Oh, B. Schiele, and M. Fritz. “Towards reverse-engineering black-box
neural networks.” In: Explainable AI: Interpreting, Explaining and Visualizing
Deep Learning. Springer, 2019, pp. 121–144 (cit. on p. 25).

[104] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. Van Gerven. “Cognitive load
measurement as a means to advance cognitive load theory.” In: Educational
psychologist 38.1 (2003), pp. 63–71 (cit. on p. 142).

[105] S. Palacio, J. Folz, J. Hees, F. Raue, D. Borth, and A. Dengel. “What do deep
networks like to see?” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2018, pp. 3108–3117 (cit. on pp. 23, 99, 100,
103, 107).

https://doi.org/10.5220/0010904400003116

bibliography 227

[106] S. Palacio, A. Lucieri, M. Munir, S. Ahmed, J. Hees, and A. Dengel. “Xai
handbook: Towards a unified framework for explainable ai.” In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 3766–
3775 (cit. on p. 15).

[107] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow, and K. Talwar. “Semi-
supervised Knowledge Transfer for Deep Learning from Private Training
Data.” In: arXiv e-prints (2016), arXiv–1610 (cit. on p. 28).

[108] M. Perc, M. Ozer, and J. Hojnik. “Social and juristic challenges of artificial
intelligence.” In: Palgrave Communications 5.1 (2019), pp. 1–7 (cit. on p. 3).

[109] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata. “Industrial
artificial intelligence in industry 4.0-systematic review, challenges and
outlook.” In: IEEE Access 8 (2020), pp. 220121–220139 (cit. on p. 3).

[110] V. Petsiuk, A. Das, and K. Saenko. “RISE: Randomized Input Sampling for
Explanation of Black-box Models.” In: arXiv e-prints (2018), arXiv–1806 (cit.
on pp. 23, 57, 59, 60).

[111] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin.
“Variational autoencoder for deep learning of images, labels and captions.”
In: Advances in neural information processing systems 29 (2016) (cit. on p. 29).

[112] T. E. Raghunathan et al. “What do we do with missing data? Some options
for analysis of incomplete data.” In: Annual review of public health 25.1
(2004), pp. 99–117 (cit. on p. 12).

[113] M. A. Rahman, T. Rahman, R. Laganière, N. Mohammed, and Y.
Wang. “Membership Inference Attack against Differentially Private Deep
Learning Model.” In: Trans. Data Priv. 11.1 (2018), pp. 61–79 (cit. on p. 15).

[114] G. D. P. Regulation. “Regulation EU 2016/679 of the European
Parliament and of the Council of 27 April 2016.” In: Official
Journal of the European Union. Available at: http://ec.europa.eu/justice/data-
protection/reform/files/regulation_oj_en.pdf (accessed 20th Sep. 2017) (2016) (cit.
on pp. 4, 13, 15, 31).

[115] M. T. Ribeiro, S. Singh, and C. Guestrin. “" Why should i trust you?"
Explaining the predictions of any classifier.” In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
2016, pp. 1135–1144 (cit. on pp. 17, 21, 22, 44, 65, 68–70, 72, 100, 145).

[116] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio. “Contractive auto-
encoders: Explicit invariance during feature extraction.” In: Proceedings
of the 28th International Conference on International Conference on Machine
Learning. Omnipress. 2011, pp. 833–840 (cit. on p. 107).

[117] T. Rojat, R. Puget, D. Filliat, J. Del Ser, R. Gelin, and N. Díaz-Rodríguez.
“Explainable Artificial Intelligence (XAI) on TimeSeries Data: A Survey.”
In: arXiv e-prints (2021), arXiv–2104 (cit. on p. 19).

[118] M. Al-Rubaie and J. M. Chang. “Privacy-preserving machine learning:
Threats and solutions.” In: IEEE Security & Privacy 17.2 (2019), pp. 49–58

(cit. on p. 4).

228 bibliography

[119] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning
representations by back-propagating errors.” In: Nature 323.6088 (Oct.
1986), pp. 533–536. url: http://dx.doi.org/10.1038/323533a0 (cit. on
p. 78).

[120] M. Sabt, M. Achemlal, and A. Bouabdallah. “Trusted execution
environment: what it is, and what it is not.” In: 2015 IEEE
Trustcom/BigDataSE/ISPA. Vol. 1. IEEE. 2015, pp. 57–64 (cit. on p. 29).

[121] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X.
Chen. “Improved techniques for training gans.” In: Advances in neural
information processing systems 29 (2016) (cit. on pp. 194–196).

[122] R. Saluja, A. Malhi, S. Knapič, K. Främling, and C. Cavdar. “Towards a
Rigorous Evaluation of Explainability for Multivariate Time Series.” In:
arXiv e-prints (2021), arXiv–2104 (cit. on p. 4).

[123] S. Salvador and P. Chan. “FastDTW: Toward accurate dynamic time
warping in linear time and space.” In: Intelligent Data Analysis 11.5 (2007),
pp. 561–580 (cit. on p. 83).

[124] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller.
“Evaluating the visualization of what a deep neural network has learned.”
In: IEEE transactions on neural networks and learning systems 28.11 (2016),
pp. 2660–2673 (cit. on p. 177).

[125] W. Samek, T. Wiegand, and K.-R. Müller. “Explainable Artificial
Intelligence: Understanding, Visualizing and Interpreting Deep Learning
Models.” In: arXiv e-prints (2017), arXiv–1708 (cit. on p. 3).

[126] M. Schermann, H. Hemsen, C. Buchmüller, T. Bitter, H. Krcmar, V. Markl,
and T. Hoeren. “Big data.” In: Wirtschaftsinformatik 56.5 (2014), pp. 281–287

(cit. on p. 11).

[127] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim. “Towards
a rigorous evaluation of xai methods on time series.” In: 2019 IEEE/CVF
International Conference on Computer Vision Workshop (ICCVW). IEEE. 2019,
pp. 4197–4201 (cit. on p. 13).

[128] P. Schmidt, A. Reiss, R. Duerichen, C. Marberger, and K. Van Laerhoven.
“Introducing WESAD, a Multimodal Dataset for Wearable Stress and
Affect Detection.” In: Proceedings of the 20th ACM International Conference on
Multimodal Interaction. ICMI ’18. Boulder, CO, USA: ACM, 2018, pp. 400–
408. doi: 10.1145/3242969.3242985 (cit. on p. 102).

[129] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.
“Grad-cam: Visual explanations from deep networks via gradient-based
localization.” In: Proceedings of the IEEE international conference on computer
vision. 2017, pp. 618–626 (cit. on p. 103).

[130] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. “Membership inference
attacks against machine learning models.” In: 2017 IEEE symposium on
security and privacy (SP). IEEE. 2017, pp. 3–18 (cit. on p. 25).

http://dx.doi.org/10.1038/323533a0
https://doi.org/10.1145/3242969.3242985

bibliography 229

[131] A. Shrikumar, P. Greenside, and A. Kundaje. “Learning important features
through propagating activation differences.” In: International conference on
machine learning. PMLR. 2017, pp. 3145–3153 (cit. on pp. 20, 22, 44).

[132] D. F. Silva, R. Giusti, E. Keogh, and G. E. Batista. “Speeding up similarity
search under dynamic time warping by pruning unpromising alignments.”
In: Data Mining and Knowledge Discovery 32.4 (2018), pp. 988–1016 (cit. on
p. 3).

[133] K. Simonyan, A. Vedaldi, and A. Zisserman. “Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps.”
In: arXiv e-prints (2013), arXiv–1312 (cit. on pp. 20, 44).

[134] J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. “Striving for
Simplicity: The All Convolutional Net.” In: ICLR (workshop track). 2015 (cit.
on pp. 20, 44, 65, 68–70, 72, 103).

[135] T. Sudkamp and R. J. Hammell. “Interpolation, completion, and learning
fuzzy rules.” In: IEEE Transactions on Systems, Man, and Cybernetics 24.2
(1994), pp. 332–342 (cit. on p. 12).

[136] M. Sundararajan, A. Taly, and Q. Yan. “Axiomatic attribution for deep
networks.” In: International conference on machine learning. PMLR. 2017,
pp. 3319–3328 (cit. on pp. 21, 44, 65, 68–70, 72, 103).

[137] L. Sweeney. “k-anonymity: A model for protecting privacy.” In:
International journal of uncertainty, fuzziness and knowledge-based systems
10.05 (2002), pp. 557–570 (cit. on p. 27).

[138] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. “Inception-v4,
inception-resnet and the impact of residual connections on learning.” In:
Thirty-first AAAI conference on artificial intelligence. 2017 (cit. on p. 62).

[139] S. C. Tan, K. M. Ting, and T. F. Liu. “Fast anomaly detection for
streaming data.” In: IJCAI Proceedings-International Joint Conference on
Artificial Intelligence. Vol. 22. 2011, p. 1511 (cit. on p. 102).

[140] H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim. “Privacy-Preserving Deep
Learning on Machine Learning as a Service—a Comprehensive Survey.” In:
IEEE Access 8 (2020), pp. 167425–167447 (cit. on p. 4).

[141] H. C. Tanuwidjaja, R. Choi, and K. Kim. “A survey on deep learning
techniques for privacy-preserving.” In: International Conference on Machine
Learning for Cyber Security. Springer. 2019, pp. 29–46 (cit. on p. 25).

[142] L. Theis, I. Korshunova, A. Tejani, and F. Huszár. “Faster gaze prediction
with dense networks and Fisher pruning.” In: arXiv e-prints (2018), arXiv–
1801 (cit. on p. 90).

[143] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schoelkopf. “Wasserstein Auto-
Encoders.” In: arXiv e-prints (2017), arXiv–1711 (cit. on p. 29).

[144] R. Tomsett, D. Harborne, S. Chakraborty, P. Gurram, and A. Preece. “Sanity
checks for saliency metrics.” In: 34.04 (2020), pp. 6021–6029 (cit. on p. 4).

230 bibliography

[145] T. Vermeire, T. Laugel, X. Renard, D. Martens, and M. Detyniecki. “How to
choose an Explainability Method? Towards a Methodical Implementation
of XAI in Practice.” In: arXiv e-prints (2021), arXiv–2107 (cit. on p. 54).

[146] M. M.-C. Vidovic, N. Görnitz, K.-R. Müller, and M. Kloft. “Feature
Importance Measure for Non-linear Learning Algorithms.” In: arXiv e-
prints (2016), arXiv–1611 (cit. on p. 101).

[147] S. Wagh, D. Gupta, and N. Chandran. “SecureNN: Efficient and private
neural network training.” In: Cryptology ePrint Archive (2018) (cit. on pp. 28,
29).

[148] P. Wang, E. Fan, and P. Wang. “Comparative analysis of image classification
algorithms based on traditional machine learning and deep learning.” In:
Pattern Recognition Letters 141 (2021), pp. 61–67 (cit. on p. 12).

[149] A. Warnecke, D. Arp, C. Wressnegger, and K. Rieck. “Evaluating
explanation methods for deep learning in security.” In: 2020 IEEE european
symposium on security and privacy (EuroS&P). IEEE. 2020, pp. 158–174 (cit.
on p. 14).

[150] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M.
Krikun, Y. Cao, Q. Gao, K. Macherey, et al. “Google’s Neural Machine
Translation System: Bridging the Gap between Human and Machine
Translation.” In: arXiv e-prints (2016), arXiv–1609 (cit. on p. 3).

[151] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou. “Differentially Private
Generative Adversarial Network.” In: arXiv e-prints (2018), arXiv–1802 (cit.
on pp. 29, 192, 193, 198, 199).

[152] M. Yan, C. W. Fletcher, and J. Torrellas. “Cache telepathy: Leveraging
shared resource attacks to learn DNN architectures.” In: 29th USENIX
Security Symposium (USENIX Security 20). 2020, pp. 2003–2020 (cit. on
p. 26).

[153] Q. Yang, Y. Liu, T. Chen, and Y. Tong. “Federated machine learning:
Concept and applications.” In: ACM Transactions on Intelligent Systems and
Technology (TIST) 10.2 (2019), pp. 1–19 (cit. on p. 28).

[154] Q. Yang and X. Wu. “10 challenging problems in data mining research.” In:
International Journal of Information Technology & Decision Making 5.04 (2006),
pp. 597–604 (cit. on p. 3).

[155] C.-K. Yeh, C.-Y. Hsieh, A. Suggala, D. I. Inouye, and P. K. Ravikumar. “On
the (in) fidelity and sensitivity of explanations.” In: Advances in Neural
Information Processing Systems 32 (2019) (cit. on pp. 14, 39, 45, 69, 177).

[156] C.-K. Yeh, B. Kim, S. Arik, C.-L. Li, T. Pfister, and P. Ravikumar. “On
completeness-aware concept-based explanations in deep neural networks.”
In: Advances in Neural Information Processing Systems 33 (2020), pp. 20554–
20565 (cit. on pp. 14, 16).

[157] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar. “Representer point
selection for explaining deep neural networks.” In: Advances in neural
information processing systems 31 (2018) (cit. on pp. 23, 113–115, 119–121).

bibliography 231

[158] X. Yi, R. Paulet, and E. Bertino. “Homomorphic encryption.” In:
Homomorphic encryption and applications. Springer, 2014, pp. 27–46 (cit. on
p. 28).

[159] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional
networks.” In: European conference on computer vision. Springer. 2014,
pp. 818–833 (cit. on pp. 22, 44, 60, 65, 68–70, 72).

[160] Q.-s. Zhang and S.-C. Zhu. “Visual interpretability for deep learning: a
survey.” In: Frontiers of Information Technology & Electronic Engineering 19.1
(2018), pp. 27–39 (cit. on p. 4).

[161] M. Zheng, D. Xu, L. Jiang, C. Gu, R. Tan, and P. Cheng. “Challenges of
privacy-preserving machine learning in IoT.” In: Proceedings of the First
International Workshop on Challenges in Artificial Intelligence and Machine
Learning for Internet of Things. 2019, pp. 1–7 (cit. on p. 25).

[162] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger. “Evaluating the quality
of machine learning explanations: A survey on methods and metrics.” In:
Electronics 10.5 (2021), p. 593 (cit. on p. 176).

[163] T. Zhu, D. Ye, W. Wang, W. Zhou, and P. Yu. “More than privacy:
Applying differential privacy in key areas of artificial intelligence.” In:
IEEE Transactions on Knowledge and Data Engineering (2020) (cit. on p. 15).

[164] Y. Zhu and Y.-X. Wang. “Poission subsampled renyi differential privacy.”
In: International Conference on Machine Learning. PMLR. 2019, pp. 7634–7642

(cit. on p. 28).

[165] L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. “Visualizing Deep
Neural Network Decisions: Prediction Difference Analysis.” In: arXiv e-
prints (2017), arXiv–1702 (cit. on p. 80).

I N D E X

AI, 3, 11, 31, 32

AOPC, 177, 181, 185

API, 91

AUC, 66–69

CDD, 181

CNN, 107, 110, 136, 137, 213

DL, 11, 165, 175, 176, 178, 185

DP, 27–29, 161, 163, 168–170, 172, 173,
177–185, 192, 193, 196–198,
213, 214

DPFL, 185

DTW, 83, 84

FCN, 165, 213

FDN, 165, 213

FE, 163, 169, 173

FGSM, 77, 87, 88

FID, 194, 195, 206

FL, 161, 163, 172, 173, 177, 184, 185,
214

GAN, 29, 191, 194, 198, 215

GDPR, 13, 31–34, 131

HE, 28, 172, 173, 214

IS, 194–196

LSTM, 107, 110, 165, 213

ML, 11, 136, 172

MSE, 90, 98, 149

PPML, 4, 5, 25, 163, 172, 173, 175–177,
183–185

RDP, 28

ReLU, 79, 136

SGD, 28, 40, 62, 79, 161, 162, 176

SMC, 28

SVM, 12, 140, 212

TEE, 29

TS, 3

TSA, 4

VAE, 29

WAE, 29

WGAN, 192, 193, 215

XAI, 3, 13, 25, 175, 176, 184, 185

A C A D E M I C C U R R I C U L U M V I TÆ : D O M I N I Q U E M E R C I E R

personal information

Affiliation: German Research Center
for Artificial Intelligence

Department: Smart Data & Knowledge Systems
Phone: +49 631 20575 3521

Email: dominique.mercier@dfki.de
University Email: mercier@rhrk.uni-kl.de
Google Scholar: 9CLJlYUAAAAJ
ORCID: 0000-0001-8817-2744

LinkedIn: dominique-mercier-177227220

skills & interests

Python
Tensorflow, Keras, Pytorch, Pandas, Numpy, Seaborn, Matplotlib, Sklearn

Web Development
HMTL, CSS, JavaScript

Unity Engine
Development of 3d and virtual reality environments including C++ scripts for interaction.

Further Computers Skills
Bash, Linux, SSH, Cluster computing

Language Skills
German and English

Interests
Time Series Analysis, Document Analysis, Natural Language Processing, Deep Learning,
Convolutional Neural Networks, Transformer, Interpretability, Privacy

education

RPTU Kaiserslautern-Landau 05/2018 -
09/2023PhD Student / Researcher, Knowledge-based Systems Group, Prof. Dengel

Main areas: XAI, Privacy, Time Series, Deep Learning, CNNs, GANs
PhD Topic: TimeFrame: A Novel Framework for Interpretable and Privacy-Preserving Deep

Learning for Time Series Analysis

TU Kaiserslautern 04/2016 -
05/2018Master of Science in Computer Science

Master Thesis: Towards Understanding Deep Networks for Time Series Analysis

TU Kaiserslautern 10/2012 -
05/2016Bachelor of Science in Computer Science

Bachelor Thesis: Publicaiton Sentiment Analysis

mailto:dominique.mercier@dfki.de
mailto:mercier@rhrk.uni-kl.de
https://scholar.google.de/citations?user=9CLJlYUAAAAJ
https://orcid.org/0000-0001-8817-2744
https://www.linkedin.com/in/dominique-mercier-177227220/

236 academic curriculum vitæ : dominique mercier

experience

German Research Center for Artificial Intelligence (DFKI)since 06/2017
Smart Data and Knowledge Services Department, Prof. Dengel
Researcher

German Research Center for Artificial Intelligence (DFKI)06/2017 -
05/2018 Smart Data and Knowledge Services Department, Prof. Dengel

Student Assistant

selected publications

TimeREISE: Time-series Randomized Evolving Input Sample ExplanationSensors 2022
D. Mercier, A. Dengel, S. Ahmed

Time to focus: A comprehensive benchmark using time series attributionICAART 2022
methods

D. Mercier, J. Bhatt, A. Dengel, S. Ahmed

Patchx: Explaining deep models by intelligible pattern patches for time-seriesIJCNN 2021
classification

D. Mercier, A. Dengel, S. Ahmed

Evaluating privacy-preserving machine learning in critical infrastructures: AIEEE 2021
case study on time-series classification

D. Mercier, A. Lucieri, M. Munir, A. Dengel, S. Ahmed

Tsviz: Demystification of deep learning models for time-series analysisIEEE 2019
S. A. Siddiqui, D. Mercier, A. Dengel, S. Ahmed

	Executive Summary
	Acknowledgments
	List of Publications as Part of this Thesis
	Contents
	List of Tables
	List of Figures
	Acronyms
	URI Prefixes (CURIEs)
	 Preamble
	1 Introduction
	1.1 Motivation
	1.2 Research Questions & Goals
	1.3 Contributions
	1.3.1 Post-hoc Interpretability
	1.3.2 Intrinsic Interpretability
	1.3.3 Direct Privacy Preservation
	1.3.4 Indirect Privacy Preservation

	1.4 Overview

	2 Background
	2.1 Performance & Computational Aspects of AI
	2.2 Challenges for Deep Learning in the Real-world
	2.3 Explainable Artificial Intelligence
	2.4 Privacy-preserving Artificial Intelligence
	2.5 Delimitation from other Modalities
	2.5.1 Image Domain
	2.5.2 Natural Language

	3 Related Work
	3.1 State-of-the-art Interpretability Methods
	3.1.1 Post-hoc
	3.1.2 Intrinsic

	3.2 State-of-the-art Privacy-preserving Methods
	3.2.1 Attack Mechanisms
	3.2.2 Defense Mechanisms
	3.2.3 Synthetic Data Generation

	4 TimeFrame: Interpretable and Privacy-Preserving Deep Learning
	4.1 Need of the System
	4.2 Components of the Proposed Framework
	4.2.1 Interpretability Components
	4.2.2 Privacy Components
	4.2.3 Interaction of Components

	 Post-hoc Interpretability
	5 Time to Focus: Benchmarking State-of-the-art Attribution Approaches
	5.1 Datasets
	5.2 Experiment & Results
	5.2.1 Impact on the Accuracy
	5.2.2 Prediction Agreement
	5.2.3 Infidelity & Sensitivity
	5.2.4 Runtime
	5.2.5 Attribution Correlation
	5.2.6 Dependency on Model Parameter
	5.2.7 Visual Attribution Comparison
	5.2.8 Continuity

	5.3 Discussion
	5.4 Conclusion

	6 TimeREISE: A Novel Time Series Attribution Approach
	6.1 Method
	6.1.1 Mathematical Formulation
	6.1.2 Theoretical Correctness
	6.1.3 Theoretical Runtime
	6.1.4 Theoretical Implementation

	6.2 Datasets
	6.3 Experiments & Results
	6.3.1 Baseline Accuracy
	6.3.2 Sanity Check
	6.3.3 Runtime Analysis
	6.3.4 Insertion & Deletion
	6.3.5 Infidelity & Sensitivity
	6.3.6 Attribution Continuity
	6.3.7 Visualization

	6.4 Discussion
	6.5 Conclusion

	7 TSViz: A Novel Gradient-based Visualization Framework
	7.1 Datasets
	7.1.1 Regression
	7.1.2 Classification

	7.2 Method & Experiments
	7.2.1 Backpropagation
	7.2.2 Influence Computation
	7.2.3 Filter Clustering
	7.2.4 Inverse Optimization
	7.2.5 Adversarial Examples
	7.2.6 Network Pruning
	7.2.7 Properties
	7.2.8 Implementation

	7.3 Discussion
	7.4 Conclusion

	8 TSInsight: A Novel Time Series Compression Approach
	8.1 Method
	8.1.1 Pretrained Classifier
	8.1.2 Autoencoder
	8.1.3 Formulation by Palacio et al.
	8.1.4 TSInsight: The Proposed Formulation

	8.2 Datasets
	8.3 Experiments & Results
	8.3.1 Impact on Accuracy
	8.3.2 Suppression Comparison
	8.3.3 Loss Landscape
	8.3.4 Autoencoder's Jacobian Spectrum Analysis

	8.4 Discussion
	8.5 Conclusion

	9 Data Lens: Benchmarking of State-of-the-art Influence Functions
	9.1 Datasets
	9.2 Experiments & Results
	9.2.1 Mislabel Correction Approaches
	9.2.2 Mislabel Correction Performance
	9.2.3 Influence of Inspection Ratio
	9.2.4 Analyzing Score of Correction
	9.2.5 Identification Differences - Sample Ranking
	9.2.6 Combining Correction Approaches
	9.2.7 Additional Time Consumption
	9.2.8 Detailed Sample Analysis
	9.2.9 Model Accuracy Comparison

	9.3 Discussion
	9.4 Conclusion

	 Intrinsic Interpretability
	10 PatchX: A Novel Level-wise Classification Approach
	10.1 Method
	10.1.1 Data Transformation (Step 1)
	10.1.2 Fine-grained Classification (Step 2)
	10.1.3 Metadata Extraction (Step 3)
	10.1.4 Sample Classification (Step 4)

	10.2 Datasets
	10.3 Experiments & Results
	10.3.1 Accuracy Comparison
	10.3.2 Computation Time Analysis
	10.3.3 Hyperparameter Selection
	10.3.4 Local & Global Patch-based Explanations
	10.3.5 Global Patch Confidence
	10.3.6 Class Boundary Evaluation
	10.3.7 Comparison with State-of-the-art Approaches

	10.4 Conclusion

	11 P2ExNet: A Novel Patch-based Prototype Network Architecture
	11.1 Method
	11.1.1 Architecture
	11.1.2 Mathematical Background
	11.1.3 Training Process

	11.2 Datasets
	11.3 Experiments & Results
	11.3.1 P2ExNet: Instance-based Evaluation
	11.3.2 P2ExNet: Evaluation as a Classifier
	11.3.3 P2ExNet: Sanity Check
	11.3.4 Comparison with Existing Prototype-based Approaches

	11.4 Conclusion

	 Direct Privacy
	12 PPML: Benchmarking State-of-the-art Privacy-preserving Approaches
	12.1 Datasets
	12.2 Experiments & Results
	12.2.1 Performance Benchmark
	12.2.2 Architecture Comparison
	12.2.3 Differential Privacy: Hyperparameter Evaluation
	12.2.4 Federated Ensemble: Ensemble Size Evaluation
	12.2.5 Differential Privacy in a Federated Setting
	12.2.6 Secret Sharing Runtime Evaluation
	12.2.7 Encrypted Inference Evaluation

	12.3 Discussion
	12.4 Conclusion

	13 PPML x XAI: Interaction Privacy-preserving Approaches and XAI
	13.1 Datasets
	13.2 Experiments & Results
	13.2.1 Experiment Setup
	13.2.2 Impact on Model Performance
	13.2.3 General Impact on Explainability (Qualitative)
	13.2.4 General Impact on Explainability (Quantitative)
	13.2.5 Impact of Noise on Different Settings

	13.3 Discussion
	13.4 Conclusion

	 Indirect Privacy
	14 From private to Public: Benchmarking Generative Privacy
	14.1 Datasets
	14.2 Experiments & Results
	14.2.1 Accuracy Comparison of DP, DPWGAN, and GSWGAN
	14.2.2 Finding the Best Stopping Criteria for GSWGAN
	14.2.3 Impact of Architecture on GSWGAN
	14.2.4 Impact of Noise Multiplier on Privacy-preserving Approaches
	14.2.5 T-SNE Visualization of Generated Data
	14.2.6 Dataset Visualization - Private vs Generated (Public) Data
	14.2.7 Dataset Analysis - Computing the distance between samples

	14.3 Discussion
	14.4 Conclusion

	 Summary
	15 Conclusion
	15.1 Post-hoc Interpretability
	15.1.1 TimeREISE
	15.1.2 TSViz
	15.1.3 TSInsight
	15.1.4 Data Lens

	15.2 Intrinsic Interpretability
	15.2.1 PatchX
	15.2.2 P2ExNet

	15.3 Direct Privacy
	15.3.1 PPML
	15.3.2 PPML x XAI

	15.4 Indirect Privacy
	15.4.1 From Private to Public

	16 Future Work
	Bibliography
	Index
	Academic Curriculum Vitæ: Dominique Mercier

