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Abstract

The field of 3D reconstruction is one of the most important areas in computer
vision. It is not only of theoretical importance, but it is also increasingly
used in practical applications, be it in reverse engineering, quality control or
robotics. In practical applications, where high precision reconstructions are
required for a large variety of different objects, structured light reconstruc-
tion is often the method of choice. It allows to achieve accurate and dense
point correspondences over the entire scene, regardless of object texture or
features. Techniques that project phase-shifted sinusoidals are widely used
because, based on the harmonic addition theorem, they theoretically allow
surface encoding in full camera resolution invariant to the object’s coloring.
In this thesis, a fully-automatic reconstruction pipeline based on the si-

nusoidal structured light technique is presented. From the projection of the
fringe patterns for encoding the object’s surface, the robust matching of the
point correspondences in sub-pixel accuracy, the auto-calibration of the setup
including the active device, up to the fully-automatic alignment of the partial
reconstructions, all steps will be described and examined in detail. During
that, improvements will be achieved in the area of matching, obtaining highly
accurate and topologically consistent correspondences in sub-pixel precision
between all the devices used. Furthermore, the auto-calibration from point
correspondences, based on the epipolar geometry of the structured light sys-
tem is improved. Weaknesses of previous methods in the extraction of focal
lengths from the fundamental matrices are discovered and addressed. The par-
tial point clouds, reconstructed from the auto-calibrated devices, are finally
pre-aligned using a neural network approach, based on light-resistant optical
flow estimation and subsequently refined using a global approach.
The weaknesses of the structured light method itself will also be addressed

and partially fixed during the course of this work. Since it is an active re-
construction method, certain surface properties can affect the quality of the
reconstruction. It will be shown how these problems can be eliminated or at
least be reduced using an iterative approach that combines fringe patterns with
an inverse texture. Another weakness of the method is its time-consuming ac-
quisition procedure. Typically, a large number of horizontal and vertical fringe
patterns are projected onto the scene to achieve high-precision encoding de-
spite the limited dynamic range and resolution of the projector. Therefore, a
method will be presented which allows to combine the horizontal and vertical
patterns for a simultaneous two dimensional surface encoding.
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Chapter 1
Introduction

Contents

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . 8

Digital 3D reconstructions of a wide spectrum of real objects are increas-
ingly finding their way into our modern society. In some areas, such as digital
shopping, we visibly encounter 3D models and consciously perceive the ad-
vantages that reconstruction methods enable. But there are many other areas
where they already perform important tasks in the background, often without
us knowing or noticing. Whether in industry, cultural heritage, medicine or
commerce, the areas of application are impressive and constantly growing, and
this trend is by no means expected to slow down.

A particularly important application of 3D reconstruction is the documen-
tation of our cultural heritage. There is a great amount of ephemeral culture
that can be preserved for posterity in digital form. In the meantime, museums
have begun to digitize an increasingly large part of their exhibits in order to
document them, to maintain them, and at the same time to make them accessi-
ble to a broad public in digital exhibitions. The weathering and destruction of
centuries-old objects, statues and buildings can be controlled, documented and
partially prevented with the help of these methods. For example, ancient stat-
ues are examined for damage using 3D reconstruction techniques and restored
as weathering progresses. In many cases, this prevents irreversible decay. Fig-

1



Chapter 1: Introduction

(a) 3D reconstruction in cultural heritage [116] (b) Quality control

(c) Medical tooth prothesis [1] (d) Object tracking with NNs
[127]

Figure 1.1.: Examples of applications of 3D reconstruction: (a) Different views of a
digitized antique marble statue. (b) An example of automatic quality
control in industrial production. An overlay of the reconstructed part
with the associated CAD model enables highly accurate inspections.
(c) Medical dentures can be fitted precisely with the help of 3D re-
constructions. (d) For applications in object recognition and tracking,
artificial neural networks can be trained using rendered 3D models.

ure 1.1 (a) shows different views of a reconstruction of a marble statue, which
was carried out to meticulously and traceably document damaged and already
repaired parts.

Besides that, 3D reconstructions will also be an important component in
modern industry. For instance, they enable fully automated quality control in
areas of production. Components can be checked for measurement accuracy
and quality defects without user interaction. For this purpose, Figure 1.1 (b)
shows an overlay of a reconstructed component with the corresponding CAD
model. Surface defects and dimensional inaccuracies can be detected with
high precision in relation to the ground truth given by the CAD model. Inde-
pendently of this, the processes also play a leading role in reverse engineering.
Components for which no plans, drawings or models exist can be scanned and
rebuilt, which allows for example the reproduction of antique machines.

Also medical science is already aware of the advantages of modern recon-
struction techniques. The body’s own parts, such as joints or teeth, do not
have a blueprint and often cannot be replaced with an exact fit if the worst
comes to the worst. Through the process of reverse engineering with 3D re-
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1.1. Motivation

constructions, highly accurate replicas can be created and thus give people
back their sense of life. Also, new dentures, often have to be fitted precisely
to remaining tooth parts. Here, precise 3D models can already avoid a lot of
effort and pain (see Figure 1.1 (c)).

Especially in retail, we are all particularly often confronted with the many
benefits of 3D models. Digital product views have been used in sales for
quite some time and are used as a strategy to spotlight the goods. High-
quality 3D models allow customers to preview products and assess the effect
in interaction with other components. Such digital presentations will continue
to be an important element in this increasingly digitizing domain.

Lastly, one of the supreme applications of the digital age should be men-
tioned. In near future, it is very likely that we will do our weekly shopping in
fully automated supermarkets. This will require stable and reliable recogni-
tion, classification and tracking of our goods in the supermarket, eliminating
the need for time-consuming individual bar-code scanning of goods after shop-
ping. Large companies are already training artificial neural networks using 3D
models of their products to recognize them securely in any situation (Figure
1.1 (d)). First prototype-stores are already being tested. With a constantly
growing product range, new goods have to be digitized again and again and
the networks have to be permanently retrained. For this purpose, 3D scanners
are indispensable, enabling fully automated and user-friendly reconstruction
of a large number of different product types, in order to provide a large amount
of high-quality training data, given by rendered images of the products.

The application areas of 3D reconstruction will certainly continue to grow
as digitization progresses and reconstruction methods become more applicable
and user-friendly. Also, the increasingly available technologies of 3D printing
make reconstruction methods, for quickly obtaining printable models, more
and more appealing. In particular, the printability of a wide variety of mate-
rials such as plastic, metal, and concrete will make this push noticeable. In
this context, another impact on the preservation of cultural heritage through
collapsing buildings should be mentioned. For precisely this case, where plans
of complex structures, worth to be preserved, do not exist, there is often no
practical way to rescue them. Therefore, a combination of modern 3D recon-
struction and printing techniques could provide a new low-cost alternative.

1.1. Motivation

There is already a multitude of different 3D scanners available for purchase.
These provide 3D models of varying quality based on different reconstruction
techniques. These approaches each have advantages and disadvantages that
qualify or exclude them for different demanding applications, such as specular
surfaces or smooth and un-textured ones. A silver bullet has not been found,
yet.

While passive reconstruction approaches are often quite flexible, the quality
of the obtained results may not be sufficient for many applications. These
methods are usually dependent on identifiable and distinguishable features in

3



Chapter 1: Introduction

the object texture or geometry that allow to find matches between different
camera views. Especially in industrial applications (such as for example the
production of industrial parts), often no feature-rich texture can be expected
on the objects, which makes finding a large number of correspondences difficult
or even completely impossible. Dense reconstructions can thus usually not be
guaranteed, which strongly limits the applicability.

Therefore, active reconstruction methods are widely used. They allow to
reliably provide accurate and dense reconstructions for a large variety of dif-
ferent object types. In fact, with these techniques, it is not relevant whether
the objects are textured or have geometric features or not. Nevertheless, such
methods rely on the successful interaction of an active component, that in-
troduces information into the scene, and passive components such as one or
more cameras. To ensure this, pre-calibrated fixed setups are usually used for
which this interaction can be ensured. Unfortunately, such a setup restricts
the usability considerably. The fixed baseline between the devices and the
inflexible focal settings of the cameras make the method applicable only for a
limited working volume. However, in many applications it would be desirable
to be able to adjust the baseline and zoom in on objects as desired. This
would allow to flexibly digitize different object sizes in different applications
with any desired resolution. Another major disadvantage of pre-calibrated
devices is the pre-definition of the devices used. While industrial applications
may require particularly high-quality reconstructions, private users may prefer
to be satisfied with inexpensive customer devices and the associated loss of
quality. In addition, the hardware may have to meet special requirements for
different industrial applications, such as being heat resistant or insensitive to
moisture. This can only be implemented at great expense in a pre-defined and
pre-calibrated setup.

There are alternative approaches that allow calibration of the devices used
after each setting change such as positional alignment or focal point adjust-
ment. Thereby, the calibration of the cameras is determined by means of
special calibration targets, such as checkerboard patterns, which have to be
recorded from different perspectives by all devices. In particular, the calibra-
tion of the active component is often particularly complex and in most cases
requires special setups. In all cases, such an approach means a significant
intervention of the user and a non-negligible amount of time. The operator
must know exactly what he is doing and there are many errors that can occur
and lead to a failure of the calibration process, which makes the application
of such procedures almost impossible for laymen.

1.2. Problem Statement

The goal of this work is to develop a complete pipeline for fully-automatic 3D
reconstruction that is as flexible, cost-effective and user-friendly as possible.
It should allow to reconstruct a wide range of different object types with high
accuracy, density and resolution in a wide variety of applications.

As few requirements as possible should be placed on the objects to be recon-
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structed, and the hardware used should be freely available (customer devices)
and interchangeable. The method should remain flexible and easily adaptable
to a wide range of applications with different requirements without relying on
special devices. In this way, resolution and reconstructed detail density can
be efficiently controlled by the hardware used. This makes it possible to use,
for example, high-quality industrial hardware for applications in production,
while at the same time offering an affordable variant with customer devices
for private needs.

Unlike most existing systems, the method should be self-calibrating so that
it can be set up and adapted to new use cases without complicated and time-
consuming procedures and user interaction. The entire reconstruction process,
from the acquisition of the data, the calibration of the setup, the generation
of the 3D data, the alignment of the partial views, the meshing of the 3D
structure and the texturing of the model, should be done fully-automatically.
In this way, it should be intuitively applicable and successfully usable even for
untrained operators.

1.3. Contributions

During the work on the mentioned task a number of publications resulted
which are the basis of this thesis. They are the pillars of almost all the chapters,
from matching, over calibration up to automatic registration of point clouds.
In addition, new theoretical and application-related results could be obtained
and published with respect to the weaknesses of the chosen structured light
method itself. The following contributions are the core of this thesis:

[42] Fast Projector-Driven Structured Light Matching in Sub-Pixel
Accuracy using Bilinear Interpolation Assumption, T. Fetzer,
G. Reis and D. Stricker, Proceedings of the International Conference on
Computer Analysis of Images and Patterns (CAIP), 2021

A method is introduced that allows to find optimal sub-pixel positions
for an arbitrary number of devices in a structured light setup in lin-
ear complexity. For this purpose, the quadrilateral regions containing
the sub-pixels are extracted. The convexity of these quads and their
consistency in terms of topological properties can be guaranteed during
runtime. Subsequently, an explicit formulation of the optimal sub-pixel
position within each quad is derived, using bilinear interpolation, and
the permanent existence of a valid solution is proven. Due to the ensured
topological properties, exceptionally smooth, highly precise, uniformly
sampled matches with almost no outliers are achieved. The point corre-
spondences obtained do not only have an enormously positive effect on
the accuracy of reconstructed point clouds and resulting meshes, but are
also extremely valuable for auto-calibrations calculated from them.

5
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[46] Robust Auto-Calibration for Practical Scanning Setups from
Epipolar and Trifocal Relations, T. Fetzer, G. Reis and D. Stricker,
Proceedings of the International Conference on Machine Vision Appli-
cations (MVA), 2019

In this paper, we showed how to generate a highly accurate epipolar
geometry between more than two views. We investigated the quality
of resulting fundamental matrices based on methods that minimize the
epipolar error and the trifocal error. We showed that the trifocal er-
ror, which tries to reconcile three devices, gives very good results in the
case of very accurate point correspondences, but is much more prone to
outliers and noise than the well-known epipolar error, which considers
only pairwise views. We further showed how significant advantages can
be drawn from both approaches by combining both error types with a
suitable weighting parameter. For auto-calibration techniques based on
the underlying fundamental matrices, this has a particularly large im-
pact on subsequent steps. In addition to the increased probability of
successful calibrations, we also showed the increased accuracy of camera
matrices whose parameters were extracted from the fundamental matri-
ces calculated in this way. Significantly lower back-projection errors of
triangulated points demonstrate the beneficial results.

[48] Stable Intrinsic Auto-Calibration from Fundamental Matrices
of Devices with Uncorrelated Camera Parameters, T. Fetzer, G.
Reis and D. Stricker, Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision (WACV), 2020

Auto-calibration is an important task in computer vision and is desir-
able for many visual applications. Unfortunately, methods based on the
epipolar geometry of the devices are very sensitive to errors in the fun-
damental matrices. In addition they need good initialization to converge
to the global solution. In practice this leads to difficulties if optical pa-
rameters like principal point or focal length are unconstrained. In such
situations, even auto-calibration methods tend to diverge and do not
yield a valid calibration. In this work, the reasons for this behavior are
investigated, in particular for the initialization method of Bougnoux [17]
and Lourakis’ auto-calibration method [104]. Based on this analysis, a
more stable method is proposed. A continuous and smooth energy func-
tion is introduced, which offers better convergence properties. Finally, a
thorough evaluation was performed and a detailed comparison with the
state of the art is presented.
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[43] INV-Flow2PoseNet: Light-Resistant Rigid Object Pose from
Optical Flow of RGB-D Images using Images, Normals and
Vertices, T. Fetzer, G. Reis and D. Stricker, MDPI Sensors 22(22),
2022

This paper presents a novel architecture for simultaneous estimation of
highly accurate optical flows and rigid scene transformations for diffi-
cult scenarios where the brightness constancy assumption is violated by
strong illumination changes. In the case of rotating objects or mov-
ing light sources, such as those encountered for driving cars in the
dark, the scene appearance often changes significantly from one view
to the next. The presented method fuses texture and geometry infor-
mation by combining images, vertices and normal vectors to compute
an illumination-invariant optical flow. By using a coarse-to-fine strat-
egy, globally anchored optical flows are learned, reducing the impact of
erroneous shading-based pseudo-correspondences. Based on the learned
optical flows, a second architecture is proposed that predicts robust rigid
transformations from the warped vertex and normal maps. The method
has been evaluated on a newly created dataset containing both synthetic
and real data with strong rotations and shading effects. This data rep-
resents the typical use case in 3D reconstruction, where the object often
rotates in large steps between the partial reconstructions. Additionally,
we apply the method to the well-known Kitti Odometry dataset.

[45] Joint Global ICP for Improved Automatic Alignment of Full
Turn Object Scans, T. Fetzer, G. Reis and D. Stricker, Proceedings
of the International Conference on Computer Analysis of Images and
Patterns (CAIP), 2021

In this paper, we have shown how to stably register closed turns of par-
tial reconstructions, as they typically result from 3D scanners. Thereby,
we formulated the global problem as a joint minimization problem and
showed how it can be effectively minimized. We showed that there are
considerable advantages if ICP iterations are performed jointly instead
of the usual pairwise approach. Without the need for increased compu-
tational effort, lower alignment errors are achieved, drift is avoided and
calibration errors are uniformly distributed over all scans. The joint ap-
proach is further extended into a global version, which not only considers
one-sided adjacent scans, but updates symmetrically in both directions.
The result is an approach that leads to a much smoother and more stable
convergence, which moreover enables a stable stopping criterion to be
applied. This makes the procedure fully-automatic and therefore supe-
rior to most other methods, that often tremble close to the optimum and
have to be terminated manually. We presented a complete procedure,
which in addition addresses the issue of automatic outlier detection in
order to solve the investigated problem data independently, without any
user interaction.
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[47] Simultaneous Bi-Directional Structured Light Encoding for Prac-
tical Uncalibrated Profilometry, T. Fetzer, G. Reis and D. Stricker,
Proceedings of the International Conference on Computer Analysis of
Images and Patterns (CAIP), 2021

Profilometry based on structured light is one of the most popular meth-
ods for 3D reconstruction. If it is used to encode the scene in horizontal
as well as in vertical direction it allows to compute point correspondences
without a pre-calibrated setup. On the contrary, calibration can be es-
timated directly from the correspondences in this way. Unfortunately, a
significant disadvantage is that a large number of images of the scene,
with differently illuminated fringe patterns, has to be captured, which
yields a considerable amount of acquisition time. This paper presents a
new approach that encodes the scene simultaneously in horizontal and
vertical directions using combined sinusoidal fringe patterns. This allows
to almost halve the number of recorded images, making the approach at-
tractive again for many practical applications with time aspects.

[44] Iterative Color Equalization for Increased Applicability of Struc-
tured Light Reconstruction, T. Fetzer, G. Reis and D. Stricker, Pro-
ceedings of the International Conference on Computer Vision Theory
and Applications (VISAPP), 2020

Due to the accuracy and density of the reconstructions obtained, the
structured light approach, whenever applicable, is often the method of
choice for industrial applications. Nevertheless, it is an active approach
which, depending on material properties or coloration, can lead to prob-
lems and fail in certain situations. In this paper, a method based on the
standard structured light approach is presented that significantly reduces
the influence of the color of a scanned object. It improves the results
obtained by iterative application in terms of accuracy and general appli-
cability. Especially in high-precision reconstruction of small structures
or high-contrastly colored and specular objects, the technique shows its
greatest potential. The advanced method requires neither pre-calibrated
cameras or projectors nor information about the equipment. It is easy
to implement and can be applied to any existing scanning setup.

1.4. Organization of the Thesis

This is a brief outline of the chapters of the thesis presented. While the first
chapters reflect the respective steps of the proposed reconstruction pipeline,
the last chapters deal in particular with weaknesses of the chosen active re-
construction approach.
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Chapter 2 This chapter will summarize the fundamental theory on which this
work is based on. The process of 3D reconstruction will briefly be repeated. It
will be explained what happens during calibration, how point correspondences
can be generated using the structured light approach based on phase-shifted
sinusoidal fringe patterns and how the 3D positions can be estimated from
multiple views.

Chapter 3 The various steps are outlined, which the presented 3D recon-
struction pipeline goes through in order to obtain a fully-automatic procedure
that is user-friendly and applicable. Detailed information about the setup of
the 3D scanner that was used for most of the acquired data is provided.

Chapter 4 It will be explicitly shown how to effectively obtain dense point
correspondences from a two-dimensional structured light surface encoding be-
tween all the cameras used and the projector. It will also be presented how
to ensure that the obtained correspondences have excellent consistency prop-
erties.

Chapter 5 Detailed information on how the setup, including all cameras and
the projector, can be calibrated in a convenient way without user interaction,
will be delivered in this chapter. It will be shown how the epipolar geometry
can be determined, the intrinsic parameters can be stably extracted, and the
relative extrinsics can be calculated. Finally, it will be shown how the setup
can be further refined in order to achieve maximal accuracy.

Chapter 6 In this chapter we will show, how the partial point clouds, that
are received from the different views can be efficiently pre-aligned using a new
approach based on artificial neural networks, that are in addition robust to
light and shading changes as they often appear for rotating objects. This
comes up for the common case of fully automatic scanners, where turntables
are used to ease acquisition.

Chapter 7 A method will be presented, that allows roughly initialized point
clouds to be aligned by a global variant of Iterative Closest Points. The method
especially takes into account, that closed turns of partial object scans are given,
where the last scan overlaps the first one, which yields an over-determined
registration problem.

Chapter 8 Techniques for representing the reconstructed structure will be
briefly mentioned in order to complete the general reconstruction pipeline.
In particular, normal vectors and meshes will be discussed, which allow to
represent realistic images of the reconstructed models in a memory-efficient
way.
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Chapter 9 A procedure will be presented that allows to speed up the ac-
quisition by combining the horizontal and vertical fringe images. This is es-
pecially of interest, if the correspondences are used for auto-calibrations with
slow devices (low frame-rate), such as SLR cameras, which may be extremely
time-consuming.

Chapter 10 The penultimate chapter will show how disadvantages of the
structured light method itself, due to the active interaction with the object’s
surface, can be handled. Especially in the case of specular surfaces, high-
contrast object coloring and high precision reconstruction of small structures,
this can yield large benefits.

Chapter 11 Finally a conclusion of the presented work will be given. It will
summarize the tasks of the thesis, its contributions and give suggestions for
future work.

10



Chapter 2
Background

Contents

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1. Intrinsic Camera Parameters . . . . . . . . . . . . . . . . 13

2.2.2. Extrinsic Camera Parameters . . . . . . . . . . . . . . . . 14

2.2.3. Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.4. Calibration from Calibration Targets . . . . . . . . . . . 16

2.3. Point Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1. Epipolar Constraint . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2. Structured Light Encoding . . . . . . . . . . . . . . . . . . 20

2.4. Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1. Introduction

The task of 3D reconstruction is to create realistic and geometrically identical
(up to scale) 3D models of scenes, that have been captured by 2D images. In
order to obtain a reliable estimate of the depth of a 3D scene, multiple images
from different perspectives have to be acquired. Using underlying camera mod-
els that describe the projection process that led to the creation of the scene’s
images, the 3D position of each projected scene point can be calculated by in-
tersecting light rays from the scene point to the different camera centers. For
this purpose, the scene must be viewed from at least two different perspectives
in order to make the problem solvable. Additional views can further improve
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Chapter 2: Background

Figure 2.1.: The task of 3D reconstruction is to compute an accurate 3D model
from captured images of a scene. The figure shows a reconstructed
point cloud with visualizations of the three calibrated devices, that
have been used for the reconstruction process.

the quality of the depth estimate. In order to get multiple views of an object,
a single camera can be used to move around a static scene. Conversely, the
object may be moving in front of a single camera, to provide different views.
Or, as it is often the case, multiple cameras in a stereo or multi-view setup
can be used at the same time. Figure 2.1 visualizes a reconstructed model
from three views. The camera views, that were used for reconstruction are
additionally sketched in the scene.
There are also first methods that estimate depth from single RGB images

([144], [97], [59]) using focus cues to guess relative depth. These can indeed
be used to estimate which objects in a scene are closer and which are further
away, but they are far from achieving high-quality 3D models of an object
within the depth of field of a camera. Therefore, at this point there seams to
be no way around the classical approach with at least two different camera
views.
The basis for the calculation of a 3D point in the scene is the knowledge

of its projected location in the respective captured images. Corresponding
points between the images of the different views must be found so that the 3D
position can be triangulated using the camera models. Basically, the problem
of 3D reconstruction can be reduced to the following steps, that are addressed
in this chapter:

• Calibration of the cameras

• Matching of corresponding points in the camera images

• Triangulation of the 3D scene points

With a multi-view approach, that follows these steps, only the parts of a scene
can be reconstructed that are seen by all involved cameras. In the context of
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3D scanners, which are usually supposed to generate complete reconstructions
of an object, it is therefore necessary to perform several partial reconstruc-
tions and to align them afterwards. This way, a complete point cloud can
be generated. More detailed information about the procedure of point cloud
alignment will be given in chapter 6 and 7. In order to visualize the gener-
ated point clouds, additional information such as normal vectors and surface
reflectance properties are often estimated and modeled. In addition, surfaces
are often expressed by textured meshes in order to save memory during rep-
resentation. Further steps regarding the object representation will be briefly
addressed in Chapter 8.

2.2. Calibration

The process of calibration specifies the calculation of all parameters of a vir-
tually modeled pinhole camera, which lead to the generation of 2D images
of a 3D scene. A distinction is made between intrinsic and extrinsic calibra-
tion. While the intrinsic camera parameters model the projection process of
a 3D point in the camera’s coordinate system onto the image plane, extrin-
sic parameters specify the camera’s position and orientation in a fixed world
coordinate system.

2.2.1. Intrinsic Camera Parameters

The intrinsic calibration matrix of a camera is defined in the following way:

K =
⎛
⎜
⎝

fx s xp
0 fy yp
0 0 1

⎞
⎟
⎠

(2.1)

It contains the camera’s parameters that determine the projection process:

• Focal lengths in pixels fx and fy, that define the projection cone. For
modern devices that have been manufactured in high-quality, square
pixels can be assumed, whereby f ∶= fx = fy can be considered in the
following.

• Skew parameter s that models non-rectangular pixel properties. For
modern devices, this also no longer occurs, which means that this value
can be set equal to 0 throughout.

• Principal point located at coordinates (xp, yp) that specifies the position
where the optical ray hits the image plane. It is often assumed to be in
the image center, but this does not hold true for arbitrary devices such
as for example video projectors. Also for cameras that are particularly
small or cheaply manufactured, such as those in some light field systems,
this cannot be guaranteed in general. The location of the principal
point also has a not insignificant influence on focal length calculations
in calibration procedures. Therefore, it should not be considered to be
fixed at an uncertain estimate in general.
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Applying calibration matrix K to a 3D point XC = (XC , YC , ZC)T ∈ R3 in
the camera coordinate system, performs the projection process onto an image
point x̃ = (uI , vI ,wI)T ∈ R3 in homogeneous image space:

KXC =
⎛
⎜
⎝

f 0 xp
0 f yp
0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

XC

YC
ZC

⎞
⎟
⎠
=
⎛
⎜
⎝

uI
vI
wI

⎞
⎟
⎠
= x̃ ⇒ x = (x

y
) = 1

wI
(uI
vI
) (2.2)

As visualized in Figure 2.2, the application of K maps the 3D point to the
image space and then shifts the optical ray to the principal point of the image.
The resulting ray x̃ in homogeneous coordinates is finally mapped to image
point x = (x, y)T ∈ R2 on the 2D image plane by dividing and subsequently
dropping the last entry wI .

Figure 2.2.: Sketch of the projection process in a pinhole camera model. The
internal camera parameters define the projection operation.

2.2.2. Extrinsic Camera Parameters

Independently of the internal projection procedure, the extrinsic camera pa-
rameters describe the location and orientation of the camera in a fixed world
coordinate system and vice versa. The so-called pose of a camera is given by
an orthogonal rotation matrix R ∈ SO(3) with det(R) = 1 and a translation
vector t ∈ R3. For imagination, Figure 2.3 shows the transformation of a point
in world coordinates towards camera coordinates. While the rotation matrix
R rotates the axes of the world coordinate system towards the axes of the
camera coordinate system, the translation vector t is given by the world ori-
gin with respect to the camera center.
If these extrinsic parameters are applied to a 3D point X = (X,Y,Z)T ∈ R3

in the world coordinate system, its coordinates are transferred to the camera
coordinate system:

RX + t =R
⎛
⎜
⎝

X
Y
Z

⎞
⎟
⎠
+ t =

⎛
⎜
⎝

XC

YC
ZC

⎞
⎟
⎠
=XC (2.3)
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Figure 2.3.: Sketch of the coordinate transform of a point in world coordinates to
camera coordinates.

In order to apply both rotation and translation in a single joint operation, the
pose matrix [R∣t] is usually applied to a homogeneous version of the 3D world
point X̃ ∈ R4, which is obtained by adding an additional dimension:

XC =R
⎛
⎜
⎝

X
Y
Z

⎞
⎟
⎠
+ t = [R∣t]

⎛
⎜⎜⎜
⎝

X
Y
Z
1

⎞
⎟⎟⎟
⎠
= [R∣t]X̃ (2.4)

Conversely, these parameters can also express the position of the camera in
the world coordinate system by −RTt.

2.2.3. Camera Model

When working with multiple cameras it is important to anchor them in a
common coordinate system. In the following, it will be assumed that all points
are given in the world coordinate system and all extrinsic camera parameters
are defined in relation to this reference system. A complete transformation of
a 3D point in world coordinates to camera image coordinates can be achieved
by applying a camera matrix P ∶=K[R∣t] in homogeneous space:

x̃ = PX̃ =K[R∣t]X̃ (2.5)

The application of the camera matrix is a subsequent execution of the coor-
dinate transformation (introduced in Section 2.2.2) that transforms the world
point into the camera coordinate system, followed by the projection process
(from Section 2.2.1) that maps the point to homogeneous image space.
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2.2.4. Calibration from Calibration Targets

In order to calibrate a camera, common procedures use either known 3D struc-
tures given by special 3D calibration targets, or 2D calibration targets such
as checkerboards, as shown in Figure 2.4.

(a) 3D calibration target [7] (b) Multiple views of 2D calibration target
[147]

Figure 2.4.: Example of 3D and 2D calibration targets, that are commonly used
for camera calibration.

3D Calibration Target A 3D calibration object as depicted in Figure 2.4
(a) delivers a set of 3D-2D point correspondences {X1 ↔ x1, ...,XN ↔ xN}.
Thereby the structure of the 3D points in space is known. Corresponding 2D
points in the image can be easily detected from the checkerboard patterns
(see [161], [119]). If the 3D points are not all in one plane, a camera matrix
P can be directly fitted into these point correspondences. Therefore, the
correspondences are transformed into homogeneous coordinates and the cross
product is minimized, allowing for scale invariant minimization. Explicitly, the
following minimization problem is solved using singular value decomposition:

argmin
P∈R3×4

N

∑
n=1
∥PX̃n × x̃n∥22 , s.t. ∥P∥F = 1, (2.6)

where ∥ ⋅ ∥F denotes the Frobenius matrix norm, that is equivalent to the
Euclidean norm of a vectorized version of the matrix.

In a subsequent step, calibration matrix K and rotation matrix R can be
extracted from P using QR-decomposition on a sub-matrix of P, that results
from dropping the last column. Finally, knowing K, the translation can be
directly extracted from the last column of P. Further detailed information
about such standard methods in computer vision can be found in [62].

2D Calibration Target A much more widely used method that is the stan-
dard in target-based camera calibration is a homography-based technique
as introduced by Zhang in [188]. Given an image of a 2D checkerboard
in 3D space (see Figure 2.4 (b)) corners of the pattern can be reliable de-
tected in the image using strategies that involve the arrangement of the cor-
ners of the checkerboards (see [170], [110]). Thus, assuming that the X-Y
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plane of the world coordinate system coincides with the plane of the checker-
board, we obtain 2D-2D correspondences {X1 ↔ x1, ....,XN ↔ xN}, where
Xn = (Xn, Yn)T ∈ R2, since Zn = 0 is assumed. Under the assumption of

x̃n =K[r1∣r2∣t] =
⎛
⎜
⎝

Xn

Yn
1

⎞
⎟
⎠
=HX̃n (2.7)

with r1 and r2 being orthonormal rows of an unknown rotation matrix R, we
can fit a homography H, that models the 2D-2D mapping by solving a similar
problem to 2.6:

argmin
H∈R3×3

N

∑
n=1
∥HX̃n × x̃n∥22 , s.t. ∥H∥F = 1 (2.8)

If at least M ≥ 2 checkerboards have been captured, that are not in a common
plane, M independent homographies H1, ...,HM can been computed and their
common component K can be extracted. While each homography contains
its own extrinsic parameters, the calibration matrix always remains the same.
Thus, a simple further minimization problem can be set up and solved, yielding
an estimate of the calibration matrix K.
Assuming that one of the checkerboards is located in the desired world coor-

dinate system, the vectors r1, r2 and t can be obtained by inverse application
of the calibration matrix to the respective homography matrix. The extrinsic
camera parameters are finally given by t and R = [r1∣r2∣r1 × r2].

The disadvantage of methods based on the utility of calibration targets is
that they rely on special hardware. A particular drawback of the 3D calibra-
tion object is that the working volume is already limited by the object size.
The volume of the space from which 3D points affect the calibration accuracy
is already defined by the object. For different work ranges, therefore, different
standardized calibration targets are required. In contrast, 2D checkerboards
can theoretically cover an arbitrarily large space by placing the checkerboard
at different locations in the scene in order to provide points from all regions for
calibration. A disadvantage of this method, however, is the considerable user
effort involved in placing the checkerboard in different parts of the room. A
more convenient solution to this problem can be provided by auto-calibration
methods, which estimate the calibration from unstructured point correspon-
dences in different image views only, without knowledge about the 3D reference
in space. More information on this and a procedure to apply it in a stable
way for structured light setups is provided in detail later on in Chapter 5.
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2.3. Point Matching

Matching is probably the main component of any 3D reconstruction procedure.
The task is to identify which pixels in different views of an object represent the
projection of the same 3D scene point. Once the locations of corresponding
points between two calibrated views are determined, the 3D position of the 3D
scene point can be estimated by out-projecting respective rays into the scene.
Figure 4.2 shows two camera views of a 3D object and the rays that project a
3D point to respective image points.

Figure 2.5.: Matching is the task of identifying corresponding image points be-
tween different views, that result from projecting the same 3D scene
point to the images.

A well known and popular approach to find matching points between different
views of a scene is so called feature matching. This involves searching for
meaningful points in the images and assigning properties to them using suit-
able descriptors. Based on these properties, corresponding features between
the views are matched to each other. Particularly famous are, for example,
SIFT-Features or KAZE-Features as described in [107], [106] and [5]. They are
advantageous since they provide a set of properties that make them invariant
under several transformations (such as scaling and translation), that typically
occur from one image to the next. There is a number of other descriptors
with their own advantages and disadvantages, as recently listed and compared
by Tareen and Saleemin in [157]. The problem with feature-based methods is
that they do not provide dense correspondences. They only yield matches in
meaningful locations of the scene, such as edges or corners. This may work
well for texture-rich objects with many unambiguous and non-repetitive fea-
tures and also in many outdoor scenes, but fails for uniformly colored objects
that have rather smooth geometries, such as in many industrial and medical
applications. Dense and detailed reconstruction of such surfaces is hardly pos-
sible with feature-based methods. Therefore, this approach is not suitable for
a general reconstruction method to be used in a wide variety of fields.
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2.3.1. Epipolar Constraint

A typical approach to create dense correspondences over the whole scene is to
use the calibration information of the different camera views. For each point
in the first image, the respective projection ray can be out-projected into the
scene. This ray theoretically hits at some point the corresponding 3D point
in the scene. When this entire ray is projected onto the image of the second
view, it provides a line, the so-called epipolar line, on which the corresponding
point, as a projection of the same 3D point, must theoretically lie. Based
on this epipolar constraint, the search for suitable correspondences is reduced
from a two-dimensional search problem to a one-dimensional one. Figure 2.6
gives a sketch of this epipolar relation.

Figure 2.6.: The epipolar geometry between two camera views constraints possible
locations of correspondences between the views. If the calibration of
the cameras is known, this reduces the search for corresponding points
from a two-dimensional problem to a one-dimensional one.

This can be modelled by a fundamental matrix F ∈ R3×3 (see [108] or [62])
that maps any point of the first image x̃1 in homogeneous representation to
its corresponding epipolar line l1 in the second view:

l1 = Fx̃ =K2[t]×RK−11 x̃1

Thereby, K1 and K2 are the instrinsic calibration matrices of the two cameras,
t and R denote the relative extrinsics between the views and [⋅]× is the skew-
symmetric cross-product matrix.
A typical approach to obtain rather dense matches between two calibrated

views starts with determining the fundamental matrix from the known camera
intrinsics and extrinsics. Possible candidates along or near the line are evalu-
ated using regional descriptors such as Sum of Absolute Distances, Normalized
Cross Correlation or many others ([15], [180], [66]) and the most coinciding
pixels are selected for matching. This leads to significantly denser matches
than sole feature approaches, but only works if points can be sufficiently iden-
tified and assigned by their neighborhood. For smoother surfaces or repetitive
patterns, this approach is also not effective and only a limited improvement
of the extremely sparse correspondences from feature matching methods.
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2.3.2. Structured Light Encoding

A much denser encoding of the scene, independent of the surface texture or
geometry, is made possible by so-called structured light approaches. Thereby,
one of the cameras is replaced by a video projector that illuminates the scene
by specific patterns, such as stripes, pseudo-random-dots, etc. and thus ac-
tively adds information to the 3D scene. The object itself is not required to
have any features on its own; instead, the visible projected data serves to
encode the surface. This makes the approach exceptionally well suited to en-
sure highly accurate and dense reconstructions of a variety of different object
types. The calculated depth measurements are in no way inferior to those
of other hardware-sensitive methods such as time-of-flight [54]. Particularly
interesting are fringe projection strategies, where multiple shifted sinusoidal
fringe patterns are projected onto the scene, in order to encode it in the shifted
direction. In this way, texture invariant encoding of the surface at full camera
resolution can be enabled. The method is based on practical application of
the harmonic addition theorem as introduced in the next section. Figure 2.7
shows the setup in which one of the cameras has been replaced by a projector,
illuminating the scene by an exemplary fringe pattern.

Figure 2.7.: Sinusoidal structured light techniques use a video projector, that ac-
tively projects multiple phase-shifted fringe patterns onto the scene in
order to encode the surface densely along the shifted direction.

Phase Shift Method The projected patterns are modulated in one direction
(horizontally in the example of Figure 2.7) by a sine/cosine and continued
constantly in the other direction (vertically in the example of Figure 2.7). Let
be given a set of N horizontal sinusoidal fringe patterns {PH

1 , ..., PH
N } with

frequency FH that are shifted n = 1, ...,N times. Then the elements PH
n (i, j)

of the patterns can be explicitly generated by

PH
n (i, j) = cos(

2πj

width
FH +

2π(n − 1)
N

) , n = 1, ...,N . (2.9)

Projecting these patterns onto the scene and capturing respective illuminated
scene image {IH1 , ..., IHN } from the camera view, allows to compute an encoding
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of the scene by application of the harmonic addition theorem (see [126]). It
states that any superposition of cosines with same phase is again a cosine with
the same phase:

N

∑
n=1

IHn cos(δn) = A cos(Φ) (2.10)

with Φ = atan2 (∑ IHn sin(δn), ∑ IHn cos(δn)) (2.11)

and A2 =
N

∑
n=1

N

∑
m=1

IHn IHm cos(δn − δm) , (2.12)

where δn, δm denote the equidistant phase shifts, Φ the phase to be recovered
and A the amplitude of the superposition. atan2 denotes the two-dimensional
arcustangens function taking into account the quadrants of the input.

(a) Fringe image of patterns with FH = 1 (b) Phase Φ0

(c) Fringe image of patterns with FH = 5 (d) Phase Φ1

(e) Fringe image of patterns with FH = 23 (f) Phase Φ2

Figure 2.8.: Several horizontally shifted fringe images of different frequencies
(a,c,d) and the computed horizontal phase images of the respective
levels that encode the scene from left to right (b,d,f).
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Phase image Φ of Equation (9.3), which is computed from the illuminated
scene images IHn , encodes the object’s surface from left to right by values in
the range [−π,π]. The basic phase, computed from the first level of patterns
with frequency FH = 1 usually does not provide sufficiently precise encoding,
due to limited dynamic range of the digital devices. Therefore, successively
patterns with higher frequencies are projected. Unfortunately, the phase im-
ages calculated for patterns with higher frequencies contain several segments
from −π to π over the encoding range. Due to the limited range of values of
atan2, these are each interrupted by wraps (jumps from π to −π). Figure 2.8
shows the captured fringe images of three levels with increasing frequencies.
Thereby Φ0 is the basic phase with frequency FH = 1 that encodes the surface
from left to right without any wraps. Higher phases Φ1 and Φ2 need to be un-
wrapped in order to get a continuous encoding. Once the wraps are removed,
the accuracy of the encoding multiplies in each level. A simple unwrapping
method that allows a stable and pixel-wise procedure will be shown later on
in Chapter 9.
Such an encoded surface can be used together with the epipolar constraint

from Section 2.3.1 to generate densely and highly accurate correspondences
on the scene’s surface. Thereby, along the epipolar line, the corresponding
point is determined on the basis of the absolute phase value. This phase value
theoretically equals the value in the other image where the projector holds the
theoretically perfect phase.

Figure 2.9.: From calibrated cameras, the 3D position of a scene point can be esti-
mated by triangulating the corresponding image points. The optimal
3D location has minimal distance to the out-projected rays.

2.4. Triangulation

If matching pixels in two or more views are given and the calibrations of
the cameras are known, the 3D position of the associated scene point can
be determined. Out-projecting the rays of corresponding points with known
camera matrices of the views, the 3D position with smallest distance to the
rays is assumed to be the optimal estimate. Figure 2.9 visualizes the process of
triangulation for depth estimation. In order to formulate this algebraically, let
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2.4. Triangulation

two corresponding image points x1 and x2 be given. Furthermore the camera
matrices P1 and P2 of the two views are known. These are assumed to model
the projection of the searched 3D scene pointX in the world coordinate system
onto the corresponding image points x1 and x2, as described in Section 2.2.3.

Let us set up an optimization problem that minimizes the projection error
scaling invariant in homogeneous space, similar to the one in (2.6):

argmin
X̃∈R4

2

∑
i=1
∥PiX̃ × x̃i∥22 , s.t. ∥X̃∥2 = 1 (2.13)

This can be reformulated into a simple homogeneous minimization problem
using the cross product matrix [⋅]×:

argmin
X̃∈R4

2

∑
i=1
∥PiX̃ × x̃i∥22 , s.t. ∥X̃∥2 = 1 (2.14)

= argmin
X̃∈R4

2

∑
i=1
∥[x̃i]×PiX̃∥22 , s.t. ∥X̃∥2 = 1 (2.15)

= argmin
X̃∈R4

∥([x̃1]×P1

[x̃2]×P2
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶A

X̃∥
2

2

, s.t. ∥X̃∥2 = 1 (2.16)

This system can be solved again by singular value decomposition (SVD). Let
A = UΣVT be the SVD of A. Then the minimizer of problem (2.16) is
given by the eigenvector (given by columns of V), with respect to the smallest
eigenvalue that is larger than zero (i.e. not in the nullspace of A).
In a last step, the reconstructed 3D point in homogeneous coordinates is

transformed back into spatial coordinates. Therefore, X is obtained by divid-
ing and subsequently omitting the homogeneous coordinate of vector X̃.
Note that this procedure can be extended to any number of devices by

adding more rows with the measurements of the additional cameras in matrix
A. Additional views can improve the depth estimation. However, it should
be noted that searching for correspondences across many devices often results
in fewer correspondences, since each view introduces its own occlusions. The
choice of the used number of devices should therefore be considered carefully.
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This chapter outlines the basic steps that the presented 3D reconstruction
pipeline will go through. These steps have been chosen so that the procedure
is widely applicable due to its active nature, but at the same time remains
flexible and unlimited due to an auto-calibration of the complete setup. By
using a structured light approach that includes a customer projector, we rely
on a method that allows to auto-calibrate both the passive devices (cameras)
and the active device (projector), which distinguishes it from other active
methods using highly engineered pre-calibrated devices.

Although the application of auto-calibration from point correspondences
works without complicated user interactions or calibration targets, there are
nevertheless certain circumstances that can facilitate success of the procedure.

In the case of a pre-defined fully-automatic 3D scanner, optimal conditions
can be created from which the process can benefit. It will therefore be shown
how such an environment can be chosen to speed up the acquisition of a
complete object from all sides with a turntable and to be able to perform
an automatic separation of the object to be reconstructed from the undesired
background. For completeness, the setup and hardware used for most of the
data acquired in this work will also be presented here.

3.1. General Reconstruction Pipeline

Basically, the implementation of a complete reconstruction of an object is
composed of two main independent steps.
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1. The acquisition, calibration and reconstruction of each partial view (Fig-
ure 3.1 (a)). This independence between the views allows different scene-
adjusted camera settings for each view.

2. The alignment of the partial views to a complete point cloud of the ob-
ject, the calculation of the normal vectors, the meshing of the surface and
its texturing for an appropriate realistic representation of the generated
3D model (Figure 3.1 (b)).

Acquisition, Calibration and Partial Reconstruction For flexibility and to
avoid being dependent on object features, the method uses an approach based
on the sinusoidal structured light technique described in Section 2.3.2. Thereby,
the encoding strategy, using the phase-shift algorithm, is performed in both
horizontal and vertical directions. The given two-dimensional encoding of each
scene point, given by a horizontal and a vertical phase value, allows for estab-
lishing matches between the views without prior knowledge on the calibration
of the used devices. Unlike the standard approach, the epipolar constraint
is not needed and replaced by the second phase in independent direction. In
Chapter 4, it will be shown how phase images generated in this way can be
used to create highly accurate and dense point correspondences with sub-pixel
accuracy between all included devices.

For the structured light encoding, good experiences have been achieved using
pattern sets consisting of four levels each with {N0 = 3,N1 = 3,N2 = 5,N3 = 11}
shifts for both the horizontal and vertical pattern sets.
Good choices for the frequencies of the levels that also take into account the
resolution and aspect ratio of a standard high-definition projector image are

{F (0)H = 1, F (1)H = 5, F (2)H = 23, F (3)H = 91} for horizontal encoding patterns and

{F (0)V = 1, F (1)V = 2, F (2)V = 13, F (3)V = 52} for the vertical ones. This choice is
just a recommendation that has always served well in many investigations that
have been carried out. More than satisfactory results have been achieved with
it for a wide variety of scene types and object sizes. Besides that, however,
there is also research, as recently by Mirdehghan et al. [117], which aims to
optimize patterns depending on the scene.

With the help of this two-dimensional encoding approach, point correspon-
dences between the devices used, i.e. cameras and video projectors, can be
obtained without knowledge about their calibration. Conversely, however, the
calibration of the devices with auto-calibration procedures can theoretically be
calculated from these. A stable way, to do this for all devices will be presented
in Chapter 5. In particular, it will be shown how the projector can be cali-
brated in addition to the cameras used. It has specific properties that cause
standard auto-calibration procedures to fail in many cases. It will be shown
how the projector can nevertheless make a valuable contribution to the overall
calibration, especially with respect to determining the focal length of the cam-
eras. Note that this approach, which puts matching before calibration, makes
the procedure flexible and thus allows to arbitrarily adjust settings between
different views, thus enabling better scene-specific reconstructions.
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3.1. General Reconstruction Pipeline

(a) Data acquisition, auto-calibration and reconstruction of one view.

(b) Alignment of partial views, meshing and texturing of full reconstruction.

Figure 3.1.: Steps of the presented 3D reconstruction pipeline. While the sub-
steps in (a) are performed individually for each partial view, the sub-
steps in (b) merge the partial reconstructions to a complete model and
compute an effective realistic visualization.

From the calibration and dense point correspondences generated in this way,
a 3D point cloud of the scene can finally be triangulated, as described earlier in
Section 2.4. This step of generating partial reconstructions of different views
will be performed independently multiple times in order to capture all sides
of the object. Experience has shown that it is usually sufficient to record 8
positions in which either the object is rotated by 45° or conversely the recording
setup is moved around the object. Figure 3.1 (a) visualizes the steps for an
example scene.

Alignment and Representation of Full Model As outlined in Figure 3.1, the
partial reconstructions must subsequently be merged into a complete model.
How this can be done successfully and how the typically closed turn of partial
reconstructions (where neighboring views usually overlap and the last scan
catches up with the first one) can be exploited to enable stable convergence,
will be shown in chapters 6 and 7. Subsequent post-processing steps such as
calculating high-quality, crispy normal vectors for the point cloud, meshing
the 3D structure in order to visualize the surface in a memory-efficient way,
and high-resolution texturing of the point cloud will finally be addressed in
Chapter 8.
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(a) Scan-head (b) Scanning environment

Figure 3.2.: Scan-head (a) consisting of two industrial cameras for geometry esti-
mation, a texture camera and a video projector for scene illumination.
Advantageous scanning environment (b) with turntable for comfort-
able rotation of the object, dark diffuse material for automatic back-
ground masking and additional texture banderole for alignment.

3.2. Specific Setup for Fully Automatic 3D Scanner

If the aim is to build a fully-automatic 3D scanner, some benefits can be
generated from the creation of an optimal scanning environment. Although,
it is important to mention that the approach outlined above can be applied
to any scenario, a specific setup is explained, that enables to generate high-
resolution models without any interaction, in greater detail.

As shown in Figure 3.2 (a), the scanner used to capture most of the data
in this thesis, consists of a scan-head on which all included optical systems
are fixed. Two monochrome industrial cameras (FLIR Blackfly S BFS-U3-
200S6M) are mounted, which are used exclusively for geometry calculation.
These have the advantage that they have a high frame rate, thus the projected
patterns can be recorded very quickly. Moreover, experience has shown that
monochrome cameras provide better reconstructions than RGB cameras whose
color images pass through a Bayer filter. The scene is illuminated with a
small consumer projector (Optoma ML 750e), that has a resolution of 1280 ×
800 pixels, which has been shown to be sufficient. Later, correspondences
with a higher resolution can be achieved by using an imaginary projector
resolution, as will be shown in Chapter 4. Discrepancies in projector and
camera resolutions can be compensated for by projector blurring, as shown
by Taylor in [158]. This effect was observed to be sufficient in the applied
system even without strong additional blurring of the projected patterns. In
this chapter, it will also be explained, why having more than one camera
in conjunction with the projector is beneficial for depth estimation and not
redundant. To enable high quality textures on the created 3D models, an SLR
camera (CANON EOS 5DS R) is additionally attached to the scan head, which
finally allows to map crispy textures onto the created mesh. The acquisition
time with this camera is significantly higher than with the geometry cameras.
Therefore, we usually only take texture images with this camera, which we then
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map to the geometry that was created with the geometry cameras. However, if
the camera settings are adjusted to the scene, re-calibration is easily possible
as described before.
How the calibration process can be further accelerated by reducing the num-

ber of acquisitions with such low frame-rate devices will be shown later in
Chapter 9.
To quickly capture data of the object from all sides, it is placed on a

turntable in an advantageously designed room/box as shown in Figure 3.2
(b). This allows the object to be rotated comfortably while the scan head re-
mains static. This eliminates the need for re-calibration in each view and only
requires it after camera setting adjustments. The background of the box is de-
signed in a particularly dark and diffuse black. This reflects particularly little
light and makes the patterns difficult to be recognized in corresponding camera
views. Thus, only inconsistent phase values are determined here, which makes
them easy to detect and to mask afterwards. In this way masking of the un-
wanted background and the object to be reconstructed is implicitly achieved.
Furthermore, a texture banderole is attached to the edge of the turntable.
This can be used to roughly align the various partial reconstructions. This is
merely an aid to make the alignment more convenient.
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4.1. Introduction

The structured light approach enables the determination of precise and dense
point correspondences between a camera and a projector view. For general
calibration-independent surface encoding, as introduced in Chapter 3, multi-
ple sinusoidal patterns are projected to encode the scene in two directions.
With the help of the deformed patterns, horizontal and vertical phase images
are calculated for each camera view, that theoretically lead to a direct corre-
spondence between each projector pixel and its position in the camera image.
From these point correspondences, cameras and projector can be calibrated
(see Chapter 5) and a dense point cloud can be triangulated using the obtained
camera matrices.
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(a) Camera 1

(b) Horizontal phases

(c) Vertical phases (d) Camera 2

Figure 4.1.: Illustration of projector-driven matching of two cameras (left and
right) and a projector (middle). Red lines visualize the encoding of a
point by its horizontal and vertical phase values. The optimal match
is given by the intersection of these lines.

The optimal matches between images with respect to an encoded surface
point are usually not on pixel but on sub-pixel level. Common matching
techniques that look for pixel-to-pixel correspondences between camera and
projector often lead to noisy results that must be subsequently smoothed.
The method presented here allows to find optimal sub-pixel positions for each
projector pixel in a single pass and thus requires minimal computational ef-
fort. For this purpose, the quadrilateral regions containing the sub-pixels are
extracted. The convexity of these quads and their consistency in terms of topo-
logical properties can be guaranteed during runtime. Subsequently, an explicit
formulation of the optimal sub-pixel position within each quad is derived, us-
ing bilinear interpolation, and the permanent existence of a valid solution is
proven. In this way, an easy-to-use procedure arises that matches any number
of cameras in a structured light setup with high accuracy and low complex-
ity. Due to the ensured topological properties, exceptionally smooth, highly
precise, uniformly sampled matches with almost no outliers are achieved. The
point correspondences obtained do not only have an enormously positive effect
on the accuracy of reconstructed point clouds and resulting meshes, but are
also extremely valuable for auto-calibrations calculated from them.
In theory, a setup consisting of a projector as active device, holding the

perfect phase, and a camera is sufficient for depth estimation. However, in
many practical arrangements, several cameras, at least two, are used in ad-
dition to the projector. This is due to a much cleaner projective behavior of
high quality cameras compared to most projectors:

• Cameras usually cause less distortion (radial and especially tangential
distortions) than most projectors, since higher quality lenses are avail-
able.

• Auto-calibration directly from point correspondences is more stable to
achieve with high-quality cameras due to constrained principal points.
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• Most industrial cameras allow gamma correction to be disabled, which
has a significant impact on assumptions in computer vision applications.
Since this is not possible with affordable projectors, it is of considerable
advantage to triangulate the final point cloud with the camera informa-
tion only.

In order to cover the general case of any number of cameras, in this chapter
the situation with two cameras and one projector is considered. Thus, the
procedure can be trivially extended to an arbitrary number of cameras. Also
the simplest case with one camera and a projector requires no special treatment
and can be matched by the presented approach.

The idea of projector-driven matching is to find suitable correspondences in
the camera images for each projector pixel. In this way, all the camera views
are transitively matched via the projector pixels. Figure 4.1 illustrates this
procedure. (a) and (d) show the texture images of the two camera views. (b)
and (c) show the corresponding horizontal and vertical phase images of the
cameras and in the center of the projector. The red lines illustrate the unique
encoding process of a pixel through the two phases. This method appears to
be simple and to create dense point correspondences in a trivial way. However,
a number of difficulties arise during the exact execution, which can often lead
to problems and are comprehensibly solved in the following:

• Phase images are discrete samples of continuous camera and projector
phases. Therefore, there is usually no exact pixel-to-pixel mapping. In-
stead, it is very likely that the match of a pixel in the projector image
lies between certain camera pixels.

• The topology of the pixels remains locally preserved during the projec-
tion process. In simple terms, this means that a point to the left of
another point on the object surface is also to the left of this point in the
projected camera image. Thus, certain conditions can be defined which
must be fulfilled by the phases and met during the matching process in
order to avoid noisy results.

• Matching is only a sub-step in 3D reconstruction and auto-calibration
and should therefore be fast. The trivial procedure of searching for the
optimal match for each pixel of each image in each of the other images is
not practical at all. The procedure would be of quadratic complexity in
terms of resolution, and with increasing camera resolutions this is very
poor.

In the following, a procedure is developed that is extremely fast and can
match any number of devices stably and consistently with sub-pixel accuracy.
Each image pixel must be passed through exactly once resulting in a linear
complexity. The consistency conditions are enforced during run-time, thus
avoiding mismatches already during execution.
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4.2. Related Work

Matching is one of the main components in the field of 3D reconstruction. The
goal is to find point correspondences as dense and precise as possible across
the entire scene. Standard approaches search for suitable candidates along the
epipolar lines and evaluate them according to their neighbors using suitable
region descriptors ([15], [180], [66], [16]). This is a common approach, but
requires a calibrated setup and can fail in many cases, as in uniform areas of
the scene. If it is, in contrast, possible to create very precise matches without
prior calibration information auto-calibration methods allow to perform an
exact calibration of the system directly from these matches, which makes such
a computer vision system much more user-friendly and flexible. It also makes it
suitable for a variety of other applications where pre-calibration is not possible,
extremely tedious or problematic, since the setup may de-calibrate over time.
Common matching procedures without pre-calibration are based on trans-

formation invariant features, such as introduced by Lowe [106] and further
applied by Hu [70], which provide robust matches if sufficient object texture
is available. Also, there are methods that do not only include appearance
but also object geometry into the search as shown by Isack and Boykov in
[77]. However, all of them most likely fail in the case of very smooth uniform
objects, which limits the applicability. In order to enable the reconstruction
of un-textured objects, the structured light approach is a common tool. In
[109] Ma et al. use structured light information to handle large disparities in
binocular matching. Similarly, in [134] Pribanic et al. use the wrapped phase
to refine the stereo matches. In [98] Liu et al. use binary patterns to reduce
the search range and thus speed up the matching. Scharstein and Szeliski [145]
show how to get accurate dense matches using only the reconstructed phase.
In [34] Asmi and Roy introduce a sub-pixel matching for un-synchronized
structured light, while for each match an energy is minimized by gradient
descent. Matching based on peak calculation as introduced by Donate et al.
[28] and Xie et al. [173] also achieve sub-pixel accuracy but require higher
computational effort than the method presented here.

In [32] Du et al. proposed a deep learning approach for structured light
matching recently. It uses a Siamese network trained on a synthetic data set
that expects rectified images, which is not suitable for arbitrary un-calibrated
systems and auto-calibration. Also in [95] Li et al. combine structured light
and deep learning to achieve good and exact matches. In [141] Ryan Fanello et
al. presents a method that even skips matching and directly calculates depth
using deep learning.
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4.3. Fast Projector Driven Matching (FPDM)

The task of fast projector-driven matching is to find corresponding positions
in the camera phases for each integer projector pixel. Since this is usually
not again an integer position, it must be estimated with sub-pixel accuracy.
Figure 4.2 (a) illustrates this for the projector in the middle and camera images
left and right. Everything at the sub-pixel level can only be described by the
pixels in its environment, since no finer information is available in an image. In
order to compute the sub-pixel matches, it is therefore necessary to find integer
camera pixels that span a quadrilateral (Figure 4.2, green pixels) that encloses
the optimal sub-pixel match as closely as possible. From this quad, the sub-
pixel match can then be interpolated in a subsequent step. The quadrilateral
does not necessarily have to be square or rectangular, but should at least
be convex. This constraint is fulfilled in the general case and only violated
at regions with depth discontinuities. It ensures that the enclosed area can
be described smoothly through its corners. In addition, there are certain
consistency characteristics that should be met.

4.3.1. Matching Integer Pixel Quads

In a first step, best possible convex quads, enclosing the sub-pixel match for
each projector pixel, are found in each camera image. Each camera pixel
should only be processed once in order to maintain linear complexity. The
chosen vertices should fulfill several properties, which will be implemented
step by step. Therefore, for each projector pixel, four corner points will be
stored whose quadrilateral contains the optimal camera correspondence as
shown in Figure 4.2. An array four times the size of the projector resolution
is needed as a buffer. Note that the projector image can be selected in any
resolution as it is completely imaginary. The resulting density of the point
cloud can be precisely controlled in this way. Practice has shown that the
projector resolution should be selected in approximately the same order as
the camera resolutions, since usually both cover about the same area of the
scene.

In the following, horizontal and vertical phase images ΦH and ΦV of a
camera with values in the interval [0,1] are assumed. The phases run from
left to right and from bottom to top according to the common coordinate axes.
Similarly, the optimal projector phases run from 0 to 1 at a selected resolution

Figure 4.2.: Visualization of optimal sub-pixel matches (red) between projector
(center) and two cameras (left and right). The surrounding integer
pixels of the sub-pixel matches, are marked in green.
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(wP , hP ). This is depicted in Figure 4.1.
For each camera pixel (x, y), the theoretical corresponding position in the

projector image is uniquely given by the vertical and horizontal phase values
ΦH(x, y) and ΦV (x, y). Therefore, a camera pixel (x, y) would theoretically
match projector pixel

(x̂P , ŷP ) = (ΦH(x, y)wP ,ΦV (x, y)hP), (4.1)

which is not an integer value, as sought. Nevertheless, it is an approximate
position and likely a lower and upper corner of the next integer projector
pixels, which is the basic idea of the presented fast (linear) method.
For each integer projector pixel (xP , yP ) the vertices of the spanned match-

ing quad in the camera image are noted as indicated in Figure 4.6 (right).
So (x00, y00), (x10, y10), (x01, y01) and (x11, y11) denote the bottom left, the
bottom right, top left and top right corner pixels of the quad around sub-pixel
match (x̂, ŷ) in the camera image with respect to the integer projector pixel
(xP , yP ). Using the notations ⌊⋅⌋ and ⌈⋅⌉ for floor and ceil integer rounding, a
camera pixel (x, y) would be a feasible corner point of four adjacent quadri-
laterals containing sub-pixel camera matches with respect to four projector
pixels. Thereby, it would be exactly one bottom left, one bottom right, one
top left and one top right corner of the four corresponding quadrilaterals. The
buffers for the projector pixels are filled by traversing the image and assigning
each image pixel as:

(x, y) Ð→

(⌈x̂P ⌉00, ⌈ŷP ⌉00)
(⌊x̂P ⌋10, ⌈ŷP ⌉10)
(⌈x̂P ⌉01, ⌊ŷP ⌋01)
(⌊x̂P ⌋11, ⌊ŷP ⌋11)

(4.2)

Since phases in arbitrary real scenes are usually sampled non-uniformly, it may
be possible that several camera pixels are feasible corner points of a specific
quadrilateral. Using the example of a lower left corner point, the quality of the
corner point can be calculated by its distance to the optimal sub-pixel value:

E = ∣x̂P − ⌈x̂P ⌉00∣ + ∣ŷP − ⌈ŷP ⌉00∣ (4.3)

If a corner point is already occupied when running through the image, it is
only replaced if this error is less than that of the previously stored pixel. This
ensures that the enclosing quadrilateral becomes minimal.

4.3.2. Topological Consistency Check (TCC)

An important property of a projection is that the topology of the projected
points is locally preserved. Therefore, also surface points that have been en-
coded using structured light must remain consistent in the corresponding phase
images. Theoretically, there are a few situations at borders of objects and very
different viewing angles where this property may be violated. However, by con-
sidering local neighborhoods, these exceptional cases can be excluded. Some
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test strategies are introduced in the following, that enforce the topology preser-
vation property. Most importantly, they remain valid for non-minimal quads,
allowing their application on non-final temporal stores of corner points. This
way, incorrect and noisy phase values are excluded from matching, resulting
in smoother and more accurate matches with way less outliers. Advantages
can be seen both in applied auto-calibration and in triangulated point clouds.
Before saving any image pixel to a corner point (x00, y00), (x10, y10), (x01, y01)

or (x11, y11) with respect to a projector pixel (xP , yP ), it is ensured that a
lower left pixel in the camera phase is also a lower left pixel in the projec-
tor phase and so on. In this way, many faulty matches can be detected and
avoided. Moreover, it ensures that the resulting quads are convex. The fol-
lowing simple checks have to be fulfilled:

(x01, y01)
x01≤x11ÐÐÐÐÐ→ (x11, y11)

y
0
0
≤y

0
1

ÐÐ
ÐÐ
Ð→

y
1
0
≤y

1
1

ÐÐ
ÐÐ
Ð→

(x00, y00)
x00≤x10ÐÐÐÐÐ→ (x10, y10)

(4.4)

The tests are applied to the pixels during the storing process while looping
through the images. Naturally, therefore, during the storing process, one
vertex is checked for consistency with respect to other vertices that are not
final and that may be part of non-minimal representations of a quad around
a sub-pixel match. As already mentioned these tests are also valid for non-
minimal quads as long as they do not represent severe outliers, which moreover
would simply lead to finding no match for the projector rather than an outlier.
Figure 4.3 (a) illustrates an update of a corner point to a closer representation.
It is easy to see that the convexity properties are fulfilled throughout by all
points, while converging to the minimal representation.

Diagonal Check for Weak Quads (DCW) Theoretically, the quadrilaterals
can take a wide variety of shapes and still satisfy the desired topology and
convexity. But the more unusual the shape, the worse its content is determined
by bilinear interpolation. Practice has shown that it is optimal if the vertices
span a square, but this is not absolutely necessary. An additional optional
test avoids unnatural quads by checking the diagonal values:

∣x00 − x11∣ + ∣y00 − y11∣ < τ, ∣x10 − x01∣ + ∣y10 − y01∣ < τ (4.5)

The quads should not be of arbitrary size just because they might theoretically
be feasible. Usually they will not provide an accurate measurement if the
corners are above a certain distance, which can be generously set to τ = 5
pixels for most applications.
For illustration, Figure 4.3 (b) shows an example of an unfavorable quad that

would be removed. Note that this check should only be done after the entire
quad matching, otherwise some quads may be removed due to non-minimal
representations that may have improved over time.
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(a) (b)

Figure 4.3.: (a) Example of a corner point update, where the consistency proper-
ties stay fulfilled. (b) Example of a unfavorable quad, that would be
removed by the diagonal check (4.5).

Epipolar Consistency Check (ECC) In many practical scenarios a rough cal-
ibration of the setup is already available. This can be extremely advantageous
and easily involved into the scheme. In this case a camera point (x, y) should
only be mapped to a corner point of projector pixel (xP , yP ) if the symmetric
epipolar error is below a certain threshold σ, which can also be set generously,
like σ = 10 pixels to fit almost all scenarios. Using the homogeneous point rep-
resentations x̃ and x̃P , the epipolar lines in the respective other image can be
calculated in homogeneous representation by applying the fundamental ma-
trix F and its transpose. The symmetric Euclidean epipolar error, can then
be easily checked using the following formula:

x̃ F x̃T
P√

(l)21 + (l)22
+

x̃ FT x̃T
P√

(lP )21 + (lP )22
< σ (4.6)

Thereby (l)1, (lP )1 and (l)2, (lP )2 denote the first and second entries of the
respective epipolar lines l = F x̃P and lP = FTx̃.

In order to illustrate the effect of the checks on calculated matches, Figure
4.4 shows the resulting point cloud of FPDM without (a) and with TCC (b).
There are significantly fewer outliers, resulting in less flying points. (c) shows
how the matches can be further improved by ECC by avoiding faulty assign-
ments, especially in discontinuities of the scene. False matches can also occur
due to incorrect but permissible phase regions, caused by (inter-)reflections.

4.4. Bilinear Sub-Pixel Matching

After the quad matching, for each permissible projector pixel a consistent
convex quadrilateral is given per camera image. Under certain assumptions it
is possible to determine the sub-pixel position of the optimal match from the
corners of the quad and their phase values. The optimal sub-pixel position is
calculated in the unit patch using bilinear interpolation assumption and then
mapped to the convex region as shown in Figure 4.6.
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(a) FPDM (b) FPDM+TCC+DCW (c) FPDM+TCC+DCW
+ECC

Figure 4.4.: Resulting point clouds of FPDM applied to the exemplary scene with
and without Topological Consistency Check (TCC) (4.4), Diagonal
Check for Weak Quads (DCW) (4.5) and Epipolar Consistency Check
(ECC) (4.6).

4.4.1. Sub-Pixel Position in Unit Patch

Given a unitary patch with horizontal phase values ϕH00, ϕH10, ϕH01 and ϕH11

of the corner points as depicted in Figure 4.6, the bilinear interpolated value
ϕH(x̃, ỹ) for any position (x̃, ỹ) ∈ [0,1]2 is given by

ϕH(x̃, ỹ) = a0 + a1x̃ + a2ỹ + a3x̃ỹ (4.7)

with coefficients

a0 = ϕH00

a1 = ϕH10 − ϕH00

a2 = ϕH01 − ϕH00

a3 = ϕH11 + ϕH00 − ϕH10 − ϕH01

and analogously for the vertical phase by

ϕV (x̃, ỹ) = b0 + b1x̃ + b2ỹ + b3x̃ỹ (4.8)

with coefficients

b0 = ϕV 00

b1 = ϕV 10 − ϕV 00

b2 = ϕV 01 − ϕV 00

b3 = ϕV 11 + ϕV 00 − ϕV 10 − ϕV 01

Figure 4.5 (a) illustrates how two bilinearly interpolated phases on the unit
patch can look like. The task is to find the optimal sub-pixel position inside
the patch meeting the phase values (ϕ̂H , ϕ̂V ). The patch that interpolates the
horizontal phase values defines a two-dimensional curve on which the value
ϕ̂H is assumed. The same applies to the patch of the vertical phase values,
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(a) Horizontal (left) and vertical (right) phases in unit patch (b) Top view

Figure 4.5.: Unit patch with interpolated phases (a). Red curves are possible so-
lutions, where the interpolated patch meets the sought phase value.
The intersection of the curves (green) solves the problem.

which describes a curve for ϕ̂V . Such curves are visualized by red lines in
Figure 4.5 (a). The point where the curves intersect within the patch is the
optimal position of the sought sub-pixel match. Figure 4.5 (b) shows the top
view of the unit patch and the two curves defined by the phase values. The
intersection is marked by a green dot, which is also plotted in (a).

In order to find optimal positions x̃ ∈ [0,1] and ỹ ∈ [0,1] at which the bilinear
interpolated patches meet the sought values ϕ̂H and ϕ̂V the following system
of equations is solved:

ϕ̂H = a0 + a1x̃ + a2ỹ + a3x̃ỹ
ϕ̂V = b0 + b1x̃ + b2ỹ + b3x̃ỹ

(4.9)

Solving for x̃ results in the simple quadratic equation

ux̃2 + vx̃ +w = 0 (4.10)

with coefficients

u = b1a3 − b3a1
v = b1a2 + (b0 − ϕ̂V )a3 − b2a1 − b3(a0 − ϕ̂H)
w = (b0 − ϕ̂V )a2 − b2(a0 − ϕ̂H)

which can be explicitly solved by

x̃ =
⎧⎪⎪⎨⎪⎪⎩

− v
2u ±
√
( v
2u
)2 − w

u , u ≠ 0
−w

v , u = 0
. (4.11)

The vertical position ỹ is directly computed from one of the equations in
(4.9). Note that the properties of the quads received in Section 4.3 ensure the
existence of intersection within each patch.

Existence of Solution The interpolated value ϕ̂H is by construction achieved
inside the patch and moreover the following holds true due to the consistency
checks:

ϕH00, ϕH01 ≤ ϕ̂H ≤ ϕH10, ϕH11 (4.12)
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4.4. Bilinear Sub-Pixel Matching

Of course for any convex combination with ỹ ∈ [0,1], we also have:

(1 − ỹ)ϕH00 + ỹϕH01 ≤ ϕ̂H ≤ (1 − ỹ)ϕH10 + ỹϕH11 (4.13)

Therefore the curve, defined by the first equation of (4.9), that maps feasible
positions x̃ to any value ỹ ∈ [0,1] has the following property:

x̃ = ϕ̂H − a0 − a2ỹ
a1 + a3ỹ

=

=(i)≥0 (4.13),
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ϕ̂H − (1 − ỹ)ϕH00 − ỹϕH01

(1 − ỹ)(ϕH10 − ϕH00
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0 (4.12)

) + ỹ(ϕH11 − ϕH01
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0 (4.12)

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(ii)>0 (4.13)

≥ 0 (4.14)

Thereby, the situation in which all corner points carry the same value is ne-
glected. In this case division by zero would not be defined. Nevertheless,
in this case an optimal integer pixel match exists and interpolation is not
necessary.
Additionally, the denominator (ii) in this fraction is greater or equal than

the numerator (i), which limits the fraction to 1:

(ii) − (i) = (1 − ỹ)ϕH10 + ỹϕH11 − ϕ̂H

(4.13)
≥ 0 (4.15)

Proceeding similar for the vertical phase, the following properties are obtained
for the curves of equations (4.9):

x̃ = ϕ̂H − a0 − a2ỹ
a1 + a3ỹ

∈ [0,1] for ỹ ∈ [0,1] (4.16)

ỹ = ϕ̂V − b0 − b1x̃
b2 + b3x̃

∈ [0,1] for x̃ ∈ [0,1] (4.17)

Therefore, the curves are defined for all ỹ, x̃ ∈ [0,1] and map to valid values
x̃, ỹ ∈ [0,1]. This proves that the continuous curve (4.16) describes a continu-
ous connection between the top and bottom of the patch that runs inside the
patch (x̃ ∈ [0,1]). Similarly, curve (4.17) is a continuous connection within
the patch (ỹ ∈ [0,1]) from the left side to the right side. These curves must
therefore intersect at least once within the patch. This guarantees a solution,
which can be explicitly computed by solving the resulting quadratic equation
(4.9) and choosing the feasible solution inside the patch. Theoretically, it can
happen that both ϕH00 = ϕ̂H = ϕH11 and ϕV 00 = ϕ̂V = ϕV 11 are satisfied. This
case has practically no meaning but for completeness it is briefly mentioned.
In this situation, both curves run from point (0,0) to point (1,1), so that
two solutions exist. If in addition the other vertices take exactly such values,
that both curves are exactly diagonal, there can even be an infinite number of
solutions. These cases will usually not occur, but if they do, it is evidence of
badly chosen quads, which often carry noisy data and do not contribute much
information anyway. In this case, the middle of the patch (x̃, ỹ) = (0.5,0.5)
can simply be chosen as solution, or the patch can just be discarded. ∎
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4.4.2. Mapping to Convex Quad

In general, the corner points around a sub-pixel match will not span a square
region. However, for convex quads, the method can be applied by assuming
an additional bilinear interpolation scheme. With corresponding corner points
in the image given by

(x01, y01)↔ (0,1) (x11, y11)↔ (1,1)
(x00, y00)↔ (0,0) (x10, y10)↔ (1,0)

(4.18)

a point (x̃, ỹ) ∈ [0,1]2 in the unit square can be mapped to the convex quadri-
lateral by:

(x̂
ŷ
) = (x00 x10 x01 x11

y00 y10 y01 y11
)
⎛
⎜⎜⎜
⎝

1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1
x̃
ỹ
x̃ỹ

⎞
⎟⎟⎟
⎠

(4.19)

Figure 4.6.: Procedure of bilinear sub-pixel matching. The position is computed
in the unit patch and afterwards mapped to the convex quad.

4.5. Results

Figure 4.8 shows the reconstructed point clouds of different scenes as a qual-
itative illustration of the reconstructions obtained. For each scene, the left
reconstruction shows the result of the matches obtained with best-pixel cor-
respondences. The right point cloud shows the result of the Fast Projector
Driven Consistent Sub-Pixel Matching (FPCSM) presented in this chapter.
For (a-d) the images on the far right show in addition the back-projections
of the points onto the projector image, with in- and outliers marked in green
and red. The reconstructions are significantly smoother and contain almost
no outliers. Of particular note is the Monkey data, which was taken from a
highly specular metallic brushed monkey statue, which clearly shows the influ-
ence and improvements of the consistency checks. Of course there are methods
to smooth out noisy results and to remove flying points in a post processing,
but the method presented here removes outliers during the matching process
without any additional computational effort. Also, in contrast to smoothing,
erroneous measures are removed and not smeared over the entire point cloud.
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4.5. Results

(a) Entire point cloud (b) Best-pixel matching (c) FPDM

Figure 4.7.: Reconstructed point clouds using best-pixel matches (b) and FPCSM
(c). The position of the enlarged areas in the global point cloud is
depicted in (a). Due to the optimal sub-pixel matching, the surface is
much more uniformly sampled and less noisy.

Especially, if the correspondences are used for auto-calibration procedures this
can be a huge advantage.

Figure 4.7 (b) and (c) shows the enlargement of two regions in the recon-
structed Buddha statue (a). Due to the optimal sub-pixel matching, the sur-
face is much more uniformly sampled and less noisy. Especially for subsequent
meshing and precise depth measurement this may have a significant influence.

Finally, Table 4.1 shows the reduction of the median back-projection errors
on the camera images from which they were triangulated. The median error
was chosen to avoid over-weighting extreme outliers of the standard approach
without consistency checks. Throughout, the error is improved in all data sets.

Data Set Best-Pixel Matches FPCSM Matches
Camera 1 Camera 2 Camera 1 Camera 2

Buddha 0.354478 0.354868 0.253260 0.254019
Bird 0.371168 0.372484 0.261994 0.261302
Totem 0.329969 0.338314 0.258966 0.261391
Monkey 0.378873 0.375521 0.277572 0.278189
Scene 0.267318 0.279251 0.170884 0.178666

Table 4.1.: Median back-projection errors of the evaluated data sets for best-pixel
matching (left) and the proposed method (right).
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(a) Point clouds and projector views of Buddha dataset.

(b) Point clouds and projector views of Monkey dataset.

(c) Point clouds and projector views of Totem dataset.

(d) Point clouds and projector views of Bird dataset.
(f) Point clouds of

Scene dataset.

Figure 4.8.: Results of Fast Projector Driven Consistent Sub-Pixel Matching
(FPCSM) (right) applied to exemplary scenes in comparison to point
clouds obtained by standard best-pixel matching (left). Each row
shows the point clouds and the back-projected points to the projector
image with labeled in- and outliers.
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Algorithm 1: Fast Projector Driven Consistent Sub-Pixel Matching
(FPCSM)

1 Input: Phase images ΦH and ΦV for each camera.

2 Create buffers B00, B10, B01 and B11 of size of the projector
resolution (wP , hP ).

3 for each camera do
4 for each camera pixel (x, y) do

5 Compute projector position
x̂P =ΦH(x, y)wP , ŷP =ΦV (x, y)hP.

6 Where TCC (+ECC) is fulfilled and buffer is free or E
decreases store:

(x, y) Ð→ B00(⌈x̂P ⌉ + k, ⌈ŷP ⌉ + l)
(x, y) Ð→ B10(⌊x̂P ⌋ − k, ⌈ŷP ⌉ + l)
(x, y) Ð→ B01(⌈x̂P ⌉ + k, ⌊ŷP ⌋ − l)
(x, y) Ð→ B11(⌊x̂P ⌋ − k, ⌊ŷP ⌋ − l)

k, l = 0, ..., ⌊τ⌋

7 end

8 Perform Diagonal Check (DCW) to remove weak quads.

9 for each projector pixel (xP , yP ) do

10 Compute interpolation coefficients (4.7) and (4.8) from phase
values:

ϕHij =ΦH(Bij(xP , yP )),
ϕV ij =ΦV (Bij(xP , yP )), (i, j) ∈ {0,1}2

11 Using (9.21) with ϕ̂H = xP

wP
and ϕ̂V = yP

hP
delivers the optimal

sub-pixel match (x̃, ỹ) in the unit patch.

12 Apply convex mapping (Sec. 4.2) to transform (x̃, ỹ) to its
position in the real quad in order to receive the final sub-pixel
match (x̂, ŷ).

13 end

14 end

15 Remove all matches for a projector pixel if not for every camera a
match was found.

16 Output: Optimal sub-pixel matches between all cameras, stored for
every pixel of the projector.
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4.6. Conclusions

In this chapter a matching strategy has been presented which generates high-
precision correspondences for two-dimensional encodings of structured light
systems with any number of cameras. The matches are estimated in sub-pixel
accuracy. Therefore, an explicit formula has been derived, which provides
matches under the assumption of bilinearly interpolated patches. The exis-
tence of such matches has been mathematically investigated and proven. An
important contribution is that this is achieved with linear complexity, while
simultaneously ensuring topological consistency over the views. This results in
high quality matches with nearly no outliers, that are uniformly sampled over
the scene. Overall, a method has been developed which reaches extremely high
accuracy with extremely low (linear) computational effort. In order to achieve
maximal reproducibility of the procedure, the individual steps are given in
Algorithm 16 as pseudo-code.
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5.1. Introduction

The task of calibration is to calculate the intrinsic and extrinsic camera pa-
rameters, that model the projection process of a scene to a captured image,
directly from given point correspondences. As introduced in Chapter 2, basi-
cally, there are two types of calibration approaches: On the one hand, meth-
ods based on 2D or 3D calibration targets, which exploit additional scene
information such as planar structures, parallel lines or calibration tools. On
the other hand, modern techniques on auto-calibration that aim to calibrate
multiple devices from general scenes without any form of user interaction or
additional assumptions. Although, the consideration of additional informa-
tion works well, its use in practice is cumbersome and time-consuming. An
auto-calibration procedure without these requirements is therefore preferable.
The presented procedure uses images from at least three different views. As-
suming static scenes, it is basically irrelevant whether these images were taken
with several cameras at the same time or one after the other with only one
camera. In particular, active lighting elements such as a projector treated as
an “inverse” camera can also be considered. The following investigations will
therefore be focused on static scenes and use the term view to describe an
image content including its pose, completely independent of a point in time
or whether an image is captured or projected. The camera settings used for
the acquisition, will not be limited at all. Even if a single camera is used,
the camera settings will not be assumed to remain constant for all images.
Therefore, shooting is supported with automatic image settings such as auto-
focus, as well as with different camera models. The only limitation made for
the observations listed here is that all images reproduce the same scene and
the visual content sufficiently overlaps. This is especially necessary in order
to find point correspondences between the views, which are the only required
input for the calibration.

Since no calibration objects are used, planar structures can not be assumed
to be available in the scene in general. Planar-based methods such as the ones
of Sturm and Maybank [155], Malis et al. [112] or Chen et al. [22]) may work
in many in-house scenarios but not in arbitrary scenes. The general approach
on auto-calibration, that is treated here, is only based on the computation
of epipolar relations between multiple devices, which are represented as fun-
damental matrices. Well-known procedures as described by Zhang in [189],
and Hartley and Zisserman in [62] already address this tasks. Nevertheless, in
the presented approach all subsequent steps on intrinsic and extrinsic calibra-
tion depend on the accuracy of epipolar relations estimated by such methods.
Moreover, these subsequent steps appeared to be very sensitive to small errors
in the epipolar geometry. Therefore, it is important to achieve the highest
possible accuracy to avoid a failure of further calibration steps.

Having computed the fundamental matrices, intrinsic parameters can the-
oretically directly be extracted. Since the entire calibration process, except
the estimation of the fundamental matrix, depends further on the intrinsic
parameters, their accurate estimation is crucial and likely the most difficult
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and error-prone part. Consequently, extensive research has been carried out
in this respect in recent decades and methods have been discovered that en-
able intrinsic calibration directly on the basis on the fundamental matrix.
Although state-of-the-art methods are theoretically sound and valuable, their
practical application is often not stable and fails in many cases. Especially
setups consisting of different camera models and projectors, as in the case of
active scanning, can cause problems. This chapter combines and extends our
works [46] and [48] on auto-calibration in order to provide an entire pipeline
based on recent research results. The presented procedure provides accurate
calibration without any user interaction.

Method [46] focuses on the robust computation of accurate and compatible
epipolar geometry between all used devices. It heavily increases the chance of
convergence of further calibration steps based on the fundamental matrices.
It is the first approach to combine epipolar and trifocal relations, as well as
distortions of arbitrary order. The correction of errors caused by the optical
system of the devices is an essential aspect. Distortions are corrected while the
fundamental matrices are estimated. Based on this, further auto-calibration
also apply to cameras with a large field of view.

Method [48] moreover increases the region of convergence in order to provide
stable focal length estimates of the used devices directly from the previously
computed fundamental matrices. In order to compute Euclidean reconstruc-
tions, precise estimates are essential. As mentioned in Chapter 2, other in-
trinsics like skew and aspect ratio are of less importance nowadays, as modern
devices are equipped with square pixels. The minimized energy term is smooth
and of superior properties, which allows a stable estimation of the principal
points, even if they are far off the image centers. This leads in particular to
an advantage over the widely used method of Pollefeys et al. [133]. Their ap-
proach is not based on the fundamental matrices, but uses directly knowledge
on the absolute conic and is widely used for camera calibration. It estimates
the camera matrices up to a projective transformation and upgrades them to
generate Euclidean reconstructions in a second step. However, in the presence
of video projectors, it performed poorly in all experiments due to the strongly
shifted principal point. This motivated the investigations carried out based
on Kruppa’s equations, which led to a method that, in particular, no longer
requires particularly good initializations for convergence and is therefore suit-
able for structured light setups.

In order to extract the extrinsic parameters of the devices (rotation and
translation) from the fundamental matrices, as described by Hartley and Zis-
serman in [62], a simple formula is provided to find the correct decomposition
of extrinsic parameters. It allows to choose the correct configuration between
four algebraic solutions only by comparing two scalar values. Famous bundle-
adjustment as it was treated in a multitude of publications e.g. by Triggs et
al. [163], Engels et al. [37], Chen et al. [23], Zach [178], Aravkin et al. [9],
Kanatani and Sugaya [84]) or methods like the one from Gherardi and Fusiello
[53] are methods that require already appropriate calibration as initialization.
They may be finally applied in order to further refine the parameters.
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5.2. Related Work

Extensive research has been done in the field of auto-calibration. Estimat-
ing the epipolar geometry between two views has been reviewed by Zhang in
[189]. In a nutshell, Euclidean epipolar errors between point correspondences
are minimized in a nonlinear energy functional. This approach represents the
standard method when distortion-free input images and precise point corre-
spondences are available. Torr and Zisserman [160] examined the trifocal ten-
sor to derive relationships between three images. Their approach depends on
very precise point correspondences and is therefore practically hardly usable.
Brito et al. [18] and Stein [150] proposed methods to estimate a single radial
distortion parameter. Fitzgibbon [49] combined single parameter estimation
with the calculation of the epipolar geometry. Unfortunately, this approach is
limited to constant intrinsic parameters for all views.

The most popular distortion model has already been introduced in 1966
by Brown [19] and is still widely used. Romera and Gomez [139] proposed
a method for approximating Brown’s distortion parameters using calibration
boards for homography estimation. In the context of auto-calibration, Li et
al. [94] presented an alternating method for simultaneously estimating dis-
tortions and fundamental matrices, combining the work of Zhang and Brown.
Unfortunately, the resulting fundamental matrices are often not sufficiently
accurate to apply further intrinsic calibration from the fundamental matrices.
Gherardi and Fusiello [53] extended this approach, but require very good ini-
tialization and the choice of a large number of weighting parameters, which
are often not available in practice.

Research on intrinsic calibration from epipolar geometry achieved a quan-
tum leap by the theory of the absolute conic used by Faugeras et al. in order
to introduce Kruppa’s Equations into computer vision in [38]. These equa-
tions will represent the basis of the proposed auto-calibration method as they
describe a direct connection between fundamental matrices and the respective
intrinsic calibration matrices. Bougnoux [17] and Hartley [61] gave formula-
tions for computing the focal lengths of two uncorrelated views given their
fundamental matrix. Both approaches depend on known principal points and
epipoles. Since the epipoles are usually estimated as the null-space of the fun-
damental matrix, they are sensitive to small inaccuracies in the fundamental
matrix. This can lead to instabilities of the methods, even if correct principal
points are given. To avoid this problem, Hartley reformulated Kruppa’s equa-
tions in terms of the singular value decomposition of the fundamental matrix
to introduce epipole-invariant Kruppa Equations in [64]. Based on Hartleys
work, Sturm [154] presented a method for two views with constant focal lengths
and fixed principal points. Whitehead and Roth [172] gave a more general ap-
proach for multiple devices with varying focal lengths, but still restricted to
given principle points. Although high quality cameras can be assumed to have
the principal point close to the image center, this is generally not the case.
For optical components with interfaces that are not orthogonal to the princi-
pal ray, e.g. in the case of projectors, the principal point can even be outside
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the image. Therefore, in a number of practical applications, said methods are
not suitable for auto-calibration.

In order to estimate both focal lengths and principal points, Pollefeys et
al. [133] presented a least-squares method based on the absolute dual quadric
supporting an arbitrary number of devices. The approach is widely used for
camera compositions, but can fail in order to calibrate setups containing pro-
jectors whose principal points are usually far away from the image center.
Gherardi and Fusiello [53] built on this approach in upgrading given cam-
era matrices and introduced a more specific energy functional with several
regularizations. This method is based on a given initial calibration and is
essentially a post-processing. In order to converge to the global minimum,
both approaches require good initialization and suitable regularizers. Finally,
Lourakis and Deriche [104] presented a method that minimizes pairwise differ-
ences of the epipole-invariant Kruppa equations from [64]. These differences
are weighted by covariance matrices from the numerical optimization of the
fundamental matrix. This method is build on solving Kruppa’s equations and
appeared to be able to handle even coarser initializations. Nevertheless, this
method has some weaknesses, which are addressed later on in Section 5.4.1.
All three energy-based methods are likely to fail if the principal points are far
off the image center or in presence of significantly differing focal lengths. The
method proposed here is based on an energy, derived from epipole-invariant
Kruppa equations. It will converge to the global minimum under reasonable
initial conditions and thus significantly extends the practical applicability.

5.3. Determining the Epipolar Geometry

The presented auto-calibration method that does not require additional cali-
bration tools, starts with the estimation of the epipolar geometry from point
correspondences. Therefore, it is a basic component of the procedure since all
subsequent calibration steps are based on the fundamental matrices. The ac-
curacy of them is therefore decisive for an exact calibration. Even with small
inaccuracies, it is likely that the intrinsic calibration, which would be the next
step, and thus the entire calibration process fails.

Finding suitable fundamental matrices that meet all expected requirements,
depends strongly on the quality of the correspondences. Furthermore, since
the pinhole camera model is assumed for theoretical consideration, it may be
crucial to correct distortions of practical systems jointly.

Standard methods minimize the epipolar error to approximate fundamental
matrices. If more than two views are given, the trifocal error can theoret-
ically also be used, but it is sensitive to noise and therefore less practical.
In this chapter, a combination of both error types is proposed, that leads to
consistently improved fundamental matrices. The proposed method has been
evaluated on both synthetic and real data sets. Besides the increased proba-
bility that intrinsic calibration methods converge, the resulting intrinsic and
extrinsic parameters are of superior accuracy. The method is quasi parameter-
free, easy to implement, and requires only a slightly increased computational
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effort in comparison to the standard methods.

5.3.1. Background

First, both epipolar and trifocal errors are introduced, which are used to eval-
uate epipolar geometry between different camera views. These error measures
are used to estimate as well the fundamental matrices between all the views
and to determine the distortions caused by the lenses of the used devices.
Relations between two different views Ci and Cj are given by fundamental
matrices Fij which model the epipolar geometry between image Ii and image
Ij . Thereby, fundamental matrix Fij is defined as a rank two matrix that
satisfies the epipolar constraint

x̃T
j Fijx̃i = 0, ∀ x̃i ∈ Ii, x̃j ∈ Ij (5.1)

for corresponding image points x̃i and x̃j in homogeneous coordinates.

Epipolar Error A standard approach to approximate (5.1) is to minimize
the epipolar error for all correspondences and all view pairs. For each point
pair (x̃i, x̃j) this error is defined by the Euclidean distance of the computed
epipolar line lij = Fijx̃i to its respective point x̃j in the other image:

d(x̃j ,Fijx̃i) =
x̃T
j Fijx̃i√

(lij)21 + (lij)22
, (5.2)

where (lij)1 and (lij)2 denote the first and second entry of epipolar line lij .
Since this also applies to the mapping FT

ij from x̃j to x̃i, both errors can be
combined to a least squares error by adding the squared distances

Eij
epipolar = d(x̃j ,Fijx̃i)2 + d(x̃i,F

T
ijx̃j)2. (5.3)

This error measure is symmetrical between two views. Considering all epipolar
relations between C views, this results in 1

2C(C − 1) pairwise epipolar errors.

Trifocal Error Unlike the epipolar error, which describes only relationships
between two views, the trifocal error connects relations between three views
that are not collinear. For a triple of point correspondences (x̃i1 , x̃i2 , x̃j) ∈
Ii1 × Ii2 × Ij , theoretically epipolar lines li1j = Fi1jx̃i1 and li2j = Fi2jx̃i2 should
intersect in image point x̃j . The squared Euclidean distance between inter-
section sj(li1j × li2j) (with scaling factor sj) and measured point x̃j is defined
by:

Ej
trifocal = ∥x̃j − sj(Fi1jx̃i1 ×Fi2jx̃i2)∥

2
2 (5.4)

with sj = ((Fi1jx̃i1)1(Fi2jx̃i2)2 − (Fi1jx̃i1)2(Fi2jx̃i2)1)
−1 , (5.5)

for (i1, j), (i2, j) ∈DF , (i1, j) ≠ (i2, j)
and Fkl = FT

lk for (k, l) ∈DF , k > l

The set of indices DF is given by all combinations of views. For each image we
can compute 1

2(C − 1)(C − 2) trifocal errors, which leads to 1
2C(C − 1)(C − 2)

contributions to the total trifocal error.
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Extensions to Quadrifocal Error In theory error measures for relations be-
tween four or more images exist as well, like the ones using the quadrifocal
tensor. In practice the number of combinations to be considered would be
way too large. Nevertheless, the trifocal relations are sufficient to correlate
even more than three views transitively, which makes the use of higher error
relations dispensable.

Figure 5.1.: Visualization of Eepipolar and Etrifocal for an image point x and asso-
ciated epipolar lines l1 and l2 with respect to corresponding image
points x1 and x2 from two other views.

5.3.2. Fundamental Matrices

In general, minimizing the epipolar error is well suited to estimate fundamen-
tal matrices between two views. The trifocal error, however, includes a more
global arrangement between all views and ensures that all fundamental ma-
trices are coherent. Nevertheless, minimizing the trifocal error usually does
not lead to good results as it requires disproportionately good initialization
to converge to the global minimum and is sensitive to noisy data. In order
to investigate the advantages of the different errors to different situations, a
combination of both errors, linked by a scalar regularization parameter τ ∈ R+0 ,
is introduced to exploit the advantages of both approaches.

For a given set of N correspondences in C views, optimal fundamental
matrices are sought as the rank two minimizers of functional (5.6).

argmin
Fij ∈ R3×3,
(i, j) ∈DF

N

∑
n=1

∑
(i,j)∈DF

E
ij,(n)
epipolar + τ

C

∑
j=1

E
j,(n)
trifocal (5.6)

s.t. rank(Fij) = 2, ∀(i, j) ∈DF (5.7)

E
ij,(n)
epipolar and E

j,(n)
trifocal denote the epipolar and trifocal errors with respect to

the n-th point correspondence.
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Parameterization Since a fundamental matrix has rank two and is up to
scale, it has seven degrees of freedom. Following Csurka et al. [27] a funda-
mental matrix can be parameterized according to (5.8). This parameterization
has an optimal condition number, which is important for the convergence rate
of the numerical optimization.

F(f1, ..., f7) =

⎛
⎜⎜⎜⎜⎜
⎝

f6(f1f4 + f2f5)
+f7(f3f4 + f5)

f1f6 + f3f7 f2f6 + f7

f1f4 + f2f5 f1 f2

f3f4 + f5 f3 1

⎞
⎟⎟⎟⎟⎟
⎠

(5.8)

Minimizing functional (5.6) under this parameterization enforces property
(5.7). Therefore, it is a well-conditioned optimization problem in t ⋅ C un-
knowns, that can be efficiently solved by truncated Levenberg-Marquardt al-
gorithm.

5.3.3. Distortion Correction

At the same time, distortion parameters are estimated to account for the un-
derlying pinhole camera model. Due to the least-squares formulation, the qual-
ity of a fundamental matrix, computed by minimizing (5.6), strongly depends
on highly accurate point correspondences. Therefore, a distortion correction
is essential. According to Brown’s Model [19], every un-distorted image point
x̂ is related to the observed distorted image point x = (x, y)T by

x̂(xp, yp, k1, ..., kL) =
⎛
⎜⎜⎜
⎝

xp + (x − xp)(1 +
L

∑
l=1

kl( rd)
2l)

yp + (y − yp)(1 +
L

∑
l=1

kl( rd)
2l)

⎞
⎟⎟⎟
⎠
, (5.9)

(xp, yp) denotes the center of distortion and r
d ∈ [0,1] ⊂ R the Euclidean

distance of the normalized distorted image point x to the center of distortion.
Taking into account that points xs are distorted in this way by parameters
xps , yps , k1s , ..., kLs for cameras s = 1, ...,C, the distortions are corrected by
minimizing functional (5.10) assuming fixed fundamental matrices.

argmin
xps , yps , kls ∈ R,
l ∈ {1, ..., L},
s ∈ {1, ...,C}

N

∑
n=1

∑
(i,j)∈DF

E
ij,(n)
epipolar + τ

C

∑
j=1

E
j,(n)
trifocal (5.10)

5.3.4. Minimization

In order to obtain the desired epipolar geometry, while correcting the distor-
tions jointly, problems (5.6) and (5.10) are alternatingly minimized. For both
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sub-problems solutions can be found separately using truncated Levenberg-
Marquardt ([120], [137], [102]), while keeping the variables of the other sub-
problem constant. A global solution can finally be found by alternating be-

tween both sub-problems. Therefore, let J
ij,(n)
epipolar and J

j,(n)
trifocal denote the Ja-

cobian matrices of the epipolar and trifocal errors either with respect to the
fundamental matrices or the parameters of the distortion model. An infinites-
imal update δ of the parameter vector can be obtained solving

(A + αI)δ = b (5.11)

with a numerical step size α of the algorithm. System matrix A, containing
the approximated Hessians and right hand side b are explicitly given by

A =
N

∑
n=1

∑
(i,j)∈DF

J
ij,(n)T
epipolarJ

ij,(n)
epipolar + τ

C

∑
j=1

J
j,(n)T
trifocalJ

j,(n)
trifocal. (5.12)

b = −
N

∑
n=1

∑
(i,j)∈DF

J
ij,(n)T
epipolar

√
E

ij,(n)
epipolar − τ

C

∑
j=1

J
j,(n)T
trifocal

√
E

j,(n)
trifocal.

To achieve good convergence rates, suitable dumping or preconditioning strate-
gies as reported by Kwak et al. in [91] or recently by Bellavia et al. in [12] can
be used. For the centers of distortion, the image centers have appeared to be
a good initialization. Although the principal point of projectors is generally
not in the image center, no special treatment is needed. The radial distortion
parameters kls are initialized with zeros. Since the center of distortion is often
inside the image, in most cases scaling factor d can be chosen as half of the
image diagonal.

5.3.5. Robust Initialization

A robust initialization for matrices Fij can be achieved by the Normalized-
Eight-Point algorithm, combined with a RANSAC procedure in order to ac-
count for outliers. The well-known approach minimizes Equation (5.1) for at
least 8 measurements including a normalization step that maximizes numerical
accuracy as proposed by Hartly in [63]. The minimization is performed after
reformulation to matrix-vector form similar to the procedure shown in Section
2.4. Finally, after reordering the destination vector into a 3 × 3 fundamental
matrix F, the rank 2 condition is enforced by setting the smallest singular
value to zero.
This approach is of low computational cost and allows for application in a

robust RANSAC approach, that is well-established. For visualization Figure
5.2 shows the plotted epipolar lines of an exemplary setup consisting of two
cameras and a projector. Point correspondences are generated using phase
shifted sinusoidal structured light. Valid matches are plotted in green, while
outliers are plotted in red. The removal of outliers by this robust initialization
step is of high importance for subsequent steps, that are variants of least
squares energies, which are known to be sensitive to outliers.
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(a) First camera view (b) Projector view (c) Second camera view

Figure 5.2.: Results of RANSAC initialization of the fundamental matrices in a
structured light setup with two cameras and a projector. Green points
are valid correspondences, while red ones are outliers, detected by the
robust method. Respective epipolar lines are plotted in orange.

5.4. Intrinsic Calibration

Pollefeys et al. [133] as well as Lourakis et al. [105] developed methods for
auto-calibration of camera setups with uncorrelated intrinsic camera parame-
ters. While the former represents the common way for camera compositions,
it did not work satisfactorily in a large number of investigations with setups
containing video projectors. A probable reason is the principal point, which is
far away from the image center for such devices. Here, the second approach,
which is in contrast based on the available epipolar geometry, provided more
stable results, which is why it serves as the basis for the presented method for
calibrating structured light setups.

Lourakis [105] introduced a method to estimate intrinsic parameters directly
from fundamental matrices. Therefore, at least three views are necessary, while
more views increase the accuracy as well as the number of calibration param-
eters that can be estimated. The covariance of the numerical minimization
algorithm is used to weight the uncertainties to enhance the stability of the
method, as described by Csurka et al. in [27]. Unfortunately, it requires epipo-
lar relations of high accuracy as it is very error-prone and sensitive to small
errors in the fundamental matrices. This work assesses reasons for this be-
havior, in particular for [104] and the method of Bougnoux [17], which treats
especially the two-view case. Based on the analysis, a more stable method is
proposed. A continuous and smooth energy functional is introduced, providing
superior convergence properties. I.e. it converges faster and has a significantly
enlarged convergence region with respect to the global minimum.

Finally, a detailed evaluation has been conducted and a comparison with
the method of Lourakis is presented.

5.4.1. Background

The basis of intrinsic auto-calibration was the development of the theory of
the absolute conic. The main idea is that any quadric, captured by an optical
device, is projected as a conic onto the image plane and the respective epipolar
lines are tangential to this conic. Figure 5.3 visualizes this basic relation.
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Figure 5.3.: Visualization of the absolute conic at the plane at infinity and its
projections. Kruppa’s equations give a direct relation of the cameras’
intrinsics and their fundamental matrix.

Furthermore, the dual of the image of the absolute conic is independent of the
camera pose. Its computation is equivalent to the calculation of the intrinsic
calibration of the device.
Given the epipolar geometry between image planes Ii and Ij , represented by

a fundamental matrix Fij , Kruppa’s equations use this knowledge to describe
a direct connection between Fij and the intrinsic calibration matrices Ki and
Kj of the respective cameras Ci and Cj .

Kruppa Equations Let ei and ej be the left and right epipoles computed
from the left and right null-space of Fij and w∗i =KiK

T
i and w∗j =KjK

T
j the

duals of the absolute conic. Then Kruppa’s equations read:

[ej]×w∗j [ej]× = Fijw
∗
iF

T
ij

[ei]×w∗i [ei]× = FT
ijw

∗
jFij

(5.13)

where [⋅]× denotes the cross-product matrix. However, solving these equations
is not practicable due to the strong dependence on the epipole estimates, which
are in general very error-prone.

Epipole-Invariant Kruppa Equations Hartley [64] expressed the equations
by avoiding dependencies on the epipoles. Equations (5.13) are equivalent to:

σ2
1v

T
1w
∗
i v1

uT
2w
∗
ju2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ρ1

=
σ1σ2v

T
1w
∗
i v2

−uT
2w
∗
ju1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ρ2

=
σ2
2v

T
2w
∗
i v2

uT
1w
∗
ju1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ρ3

(5.14)

with Fij =USVT = (u1,u2,u3)
⎛
⎜
⎝

σ1 0 0
0 σ2 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

v1

v2

v3

⎞
⎟
⎠

(5.15)
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Numerators and denominators of the terms in Equations (5.14) describe the
tangent lines of the image of the absolute conic in the different views. These
must be identical up to scale and are therefore considered relatively. These
equations are the basis of Lourakis’ method [104]. Since the method derived in
this chapter addresses weaknesses of the method, its main idea will be briefly
introduced.

Basic Approach: Method of Lourakis Lourakis et al. [104] proposed a
nonlinear approach for approximating Equations (5.14). The least-squares
energy to be minimized is defined by

argmin
Kl, l∈{1,...,C}

∑
(i, j) ∈DF
(u, v) ∈DK

(ρiju − ρijv )2

σij
uv

2
, (5.16)

where Kl denotes the intrinsic calibration matrices, DF the set of device pair-
ings and DK the set of combinations of Kruppa terms. σuv are confidence
measures calculated during the estimation of the fundamental matrices.
This method extends the two-view case from Equation 5.14 to any number

of C devices by considering 1
2C(C − 1) pairwise fundamental matrices. Each

of them provides two independent constraints, which limits the number of
computable camera parameters to C(C − 1). The number of determinable
parameters per device is sufficient for most applications and increases with
the number of devices used, as explained in more detail in Section 5.7.2.
Avoiding degenerate cases as reported by Sturm in [153] and [152] by en-

suring sufficient camera parameter variance (as it is usually given, by using
multiple devices with different intrinsic camera settings), the method is known
to work well for three or more devices, assuming high quality epipolar relations
and good initialization of the principal points and focal lengths. Nevertheless,
the method may fail in many practical situations for the following reasons:

• Weak initialization of focal lengths or principal points.

• Significantly differing focal lengths.

• Bias towards larger focal lengths.

• Significantly off-center principal points.

• Singularities of the energy.

Assumptions As mentioned in Chapter 2, for modern devices, zero skew and
square pixels can be assumed. Thus the dual of the absolute conic can be
written as

w∗s =KsK
T
s =
⎛
⎜
⎝

f2
s + x2ps xpsyps xps
xpsyps f2

s + y2ps yps
xps yps 1

⎞
⎟
⎠
, (5.17)
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where fs denotes the focal length and cps = (xps , yps ,1)T the principal point
of any device Cs.

5.4.2. Stable Energy Minimization

In this chapter, a new robust energy functional is proposed. Compared to
Lourakis’ it has the following beneficial properties:

• Focal lengths of different scales are treated homogeneously and unbias-
edly.

• The multidimensional energy field is smooth and has no discontinuities
or singularities in the range of possible solutions.

• A significantly larger region of convergence to the global minimum, which
is finite and uniquely defined.

• The energy function is quasi-symmetric with respect to the Kruppa
curves (5.24), and seams convex with respect to the principal point.

This greatly increases the stability of the numerical optimization as well as
the likelihood of convergence.

Kruppa Curves of Focal Lengths

Using the notation and assumptions of Section 5.4.1, the terms of (5.14) can
be written as

ρ1 =
f2
i σ

2
1(v211 + v212) + σ2

1(cTpiv1)2

f2
j (u221 + u222) + (cTpju2)2

(5.18)

ρ2 =
f2
i σ1σ2(v11v21 + v12v22) + σ1σ2(cTpiv1)(cTpiv2)
−f2

j (u11u21 + u12u22) − (cTpju1)(cTpju2)
(5.19)

ρ3 =
f2
i σ

2
2(v221 + v222) + σ2

2(cTpiv2)2

f2
j (u211 + u212) + (cTpju1)2

, (5.20)

where ukl and vkl denote the l-th entries of vectors uk and vk. With the explicit
formulations of (5.18), (5.19) and (5.20), Equations (5.14) of any fundamental
matrix Fij can be moreover written in the form

f2
i ai1 + bi1

f2
j aj1 + bj1

=
f2
i ai2 + bi2

f2
j aj2 + bj2

=
f2
i ai3 + bi3

f2
j aj3 + bj3

(5.21)

with coefficients

⎛
⎜
⎝

ai1
ai2
ai3

⎞
⎟
⎠
=
⎛
⎜
⎝

σ2
1(v211 + v212)

σ1σ2(v11v21 + v12v22)
σ2
2(v221 + v222)

⎞
⎟
⎠
,
⎛
⎜
⎝

bi1
bi2
bi3

⎞
⎟
⎠
=
⎛
⎜
⎝

σ2
1(cTpiv1)2

σ1σ2(cTpiv1)(cTpiv2)
σ2
2(cTpiv2)2

⎞
⎟
⎠

⎛
⎜
⎝

aj1
aj2
aj3

⎞
⎟
⎠
=
⎛
⎜
⎝

u221 + u222
u11u21 + u12u22

u211 + u212

⎞
⎟
⎠
,
⎛
⎜
⎝

bj1
bj2
bj3

⎞
⎟
⎠
=
⎛
⎜⎜
⎝

(cTpju2)2

(cTpju1)(cTpju2)
(cTpju1)2

⎞
⎟⎟
⎠
. (5.22)
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For fixed principal points, the equations define curves, named Kruppa curves,
which describe direct relations between the focal lengths.
For each fundamental matrix Fij coefficient vectors are defined as:

dijuv ∶=
⎛
⎜⎜⎜
⎝

aiuajv − aivaju
aiubjv − aivbju
biuajv − bivaju
biubjv − bivbju

⎞
⎟⎟⎟
⎠

for (u, v) ∈DK (5.23)

Each equation from (5.22) defines a two-dimensional parametric curve that
can be represented by the one-dimensional functions Kij

1,uv and Kij
2,uv:

Kij
1,uv(fj) ∶= −

f2
j d

ij
uv,3 + d

ij
uv,4

f2
j d

ij
uv,1 + d

ij
uv,2

, Kij
2,uv(fi) ∶= −

f2
i d

ij
uv,2 + d

ij
uv,4

f2
i d

ij
uv,1 + d

ij
uv,3

(5.24)

The curves Kij
1,uv(fj) and K

ij
2,uv(fi) and the coefficients dijuv are obtained by

resolving Equations (5.22) with respect to fi and fj . Figure 5.4 shows the
Kruppa curves for three independent fundamental matrices (from left to right),
plotted as green lines. Famous two-view techniques such as Bougnoux [17] de-
termine the intersections of the curves to estimate the focal lengths. Having
said that, Bougnoux and similar methods fail in the many cases where the
Kruppa curves nearly coincide. Moreover, the curves are plotted into visual-
izations of the top views of the energies of Lourakis (top) and the proposed
method (bottom) to illustrate relationship of the methods. The color coding
indicates a rather high energy (yellow) up to a low energy (blue). This may
give an idea of how the methods behave during minimization.

Energy as Relative Distances to Kruppa Curves

In order to establish a suitable energy term, relative Euclidean distances be-
tween focal length estimates and Kruppa curves are used, which provide a scale
invariance with respect to largely different focal lengths. The new energy term
reads:

argmin
cpj , fj

j ∈ {1, ...,C}

∑
(i, j) ∈DF
(u, v) ∈DK

(
f2
i −K

ij
1,uv(fj)
f2
i

)
2
+ (

f2
j −K

ij
2,uv(fi)
f2
j

)
2

(5.25)

By setting up the Jacobians J ij
uv,1 and J ij

uv,2 for each pair of energies, (5.25) can
be solved by applying truncated Levenberg-Marquardt, with system matrix A
and inhomogenity b:

A = ∑
(i, j) ∈DF
(u, v) ∈DK

J ijT

uv,1J
ij
uv,1 + J

ijT

uv,2J
ij
uv,2 (5.26)
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b = − ∑
(i, j) ∈DF
(u, v) ∈DK

J ijT

uv,1

⎛
⎝
1 +

f2
j d

ij
uv,3 + d

ij
uv,4

f2
i f

2
j d

ij
uv,1 + f2

i d
ij
uv,2

⎞
⎠
+ J ijT

uv,2

⎛
⎝
1 +

f2
i d

ij
uv,2 + d

ij
uv,4

f2
i f

2
j d

ij
uv,1 + f2

j d
ij
uv,3

⎞
⎠
.

(a) Lourakis Energy

(b) Presented energy

Figure 5.4.: Top view of Lourakis’ (5.16) (top) and the presented energy function
from (5.25) (bottom) for several fundamental matrices. The color
coding indicates a rather high energy (yellow) up to a low energy
(blue) in logarithmic scale. For each fundamental matrix, the three
nearly coinciding Kruppa curves are plotted in green.

Computational effort Since both, Lourakis’ method and the proposed one
are based on the singular value decomposition of 1

2C(C − 1) fundamental ma-
trices, the energy functions can be set up with the same computational effort.
The minimization of the energies with Levenberg-Marquardt consistently led
to a faster convergence of the proposed method compared to [104], which may
be explained by better conditioning of the system matrices of the new method.
Appropriate preconditioning may improve the convergence rate in both cases.
Since the running time in both cases is short and negligible compared to other
calibration steps, no further investigations were performed.
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5.4.3. Discussion

In this section the advantages of the proposed approach are presented by
means of visualizations of the minimized energy functional and comparisons
to the state of the art are shown.

Case: Individual focal lengths per device In real scenarios, the focal lengths
of the devices often differ significantly. If these differences become too large,
methods based on Kruppa’s equations are likely to fail if initialization is not
close to the true values. Another disadvantage is the uneven slope of the
gradient of Lourakis’ energy in vicinity of the Kruppa curve: For small fo-
cal lengths, the slope is significantly smaller than for large ones. Therefore,
a Levenberg-Marquard update prefers the gradient direction of the larger to
the smaller focal lengths when optimizing such a system. Due to the gra-
dient slope, the method generally tends to overestimate the focal lengths.
Figure 5.5 compares Lourakis’ energy functional (5.16) (top row) with the
proposed one (5.25) (bottom row) for several combinations of focal lengths
f1, f2 ∈ [1000,8000] for different views. In particular, in the right sub-image,
the increase of the slope can be observed when increasing the values of the
focal lengths. Due to the relative Euclidean distances used in (5.25), the new
energy functional is much more homogeneous.

Moreover, it is quasi-symmetric with respect to the Kruppa curves, which
avoids the preference of a particular direction over others.

(a) Lourakis energy with respect to focal length

(b) Proposed energy with respect to focal length

Figure 5.5.: Kruppa curve distances computed from the fundamental matrix for
several combinations of focal lengths f1, f2 ∈ [1000,8000] of devices
with fixed principal points. The upper row corresponds to Lourakis’
and the lower row to the proposed method. Note that the new energy
is quasi-symmetric with respect to the Kruppa curve, while the state
of the art is sloped unfavorably. Plots are given in logarithmic scale.

Case: Principal point far off the image center If the principal point of
a device is not close to the image center, all known methods are likely to
fail. In case of Lourakis’ functional, the energy surface corresponding to the
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principal point positions has been analyzed and two main issues have been
identified, depicted in Figure 5.6 (left): The sought minimum of the energy
is almost completely surrounded by a discontinuity, so that initialization be-
yond the discontinuity cannot converge (top left); Even for initialization on
the plateau, convergence cannot be guaranteed because the entire plateau is
inclined (top left). In contrast, the proposed energy functional appears to be
globally continuous, smooth and convex (Figure 5.6 top right). Comparing
the second row of Figure 5.6 demonstrates that the sought minimum of both
methods coincide. Although it can be assumed that the principal point of
a modern camera is close to the image center, optical systems in industrial
setups often have a displaced principal point. Reasons for this include addi-
tional lens assemblies, obstacles such as glass plates or liquids, and periscopic
systems. Also for projection systems, e.g. used in active scanning solutions,
it is not unusual for the principal point to be completely outside the image.
Initialization of the principal point with the image center will often be out-
side the convergence plateau of Lourakis’ method. The third row of Figure
5.6 shows slightly enlarged top views of Lourakis’ and the proposed energy
functional of the first row. The contour plots give a good indication of the
improved convergence properties of the newly proposed functional.

(a) Lourakis energy with respect to principal point

(b) Proposed energy with respect to principal point

Figure 5.6.: Energies of Lourakis (left) and the proposed Kruppa curve distance
energies (right) with respect to the principal point position. While
the top row shows an overview, the second row is a close-up of the
area around the sought solution. Note that the location of the solu-
tion coincides for both energies. In the third row a top view of the
energies of the first row is given. The region beyond the discontinuity
is colored in dark blue. Please observe that the contour lines indicate
significantly improved convergence properties. Plots are given in log-
arithmic scale for visualization.
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5.5. Extrinsic Calibration

With precise fundamental matrices and known intrinsic calibration, the essen-
tial matrix can be estimated and in turn the relative extrinsic parameters of
each pair of views can be extracted, as described by Hartley and Zisserman in
[62]. To this end, in the following Eij denotes the essential matrix, which can
be seen as a calibrated version of the fundamental matrix Fij . The essential
matrix is computed by

Eij =KT
j FijKi. (5.27)

with intrinsic calibration matrices Ki and Kj of the respective views. The
essential matrix is moreover composed by the relative rotation matrix Rij and
the skew-symmetric cross-product matrix [tij]× of the translation vector tij :

Eij = [tij]×Rij (5.28)

Following [62], the basic idea for extracting the extrinsic parameters is to use
QR-decomposition, which however is not unique. For convenience, the indices
i and j are omitted in the next steps. Given the singular value decomposition
of any essential matrix E =UΣVT, possible QR-decomposition are given by:

R1 =UWT
1V

T

[t1]× =UW1ΣUT and
R2 =UWT

2V
T

[t2]× =UW2ΣUT (5.29)

with W1 =
⎛
⎜
⎝

0 −1 0
1 0 0
0 0 1

⎞
⎟
⎠

and W2 =
⎛
⎜
⎝

0 1 0
−1 0 0
0 0 1

⎞
⎟
⎠

(5.30)

Moreover, an essential matrix E is up to scale, which leads to the fact, that
the extracted translation vector t will be up-to-scale, too. The absolute length
of t can not be determined from the essential matrix and is not of interest at
this point, in contrast to the orientation. Consequently, the following four
algebraic decompositions of E, respective -E exist:

(R1, t1), (R1,−t1), (R2, t2), (R2,−t2) (5.31)

Nevertheless, there is exactly one feasible configuration that generates two
projection matrices oriented in a way that reconstructed points lie in front of
both cameras.

5.5.1. Feasible Decomposition of Essential Matrices

In order to find the right configuration, usually randomly chosen points are
triangulated from the different configurations and the reconstructed positions
relative to the cameras are tested. In the case of structured light reconstruc-
tions, the devices used are usually oriented towards the same object and the
overlapping areas are chosen to be as large as possible. Otherwise, a large part
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(a) Theoretical case with cameras
pointing to different directions

(b) Practical case with adjusted cam-
eras to have a large overlap

Figure 5.7.: Theoretically, the cameras to be calibrated can point in any directions
as long as the projection cones have a partial overlap from which
point correspondences can be obtained. When reconstructing with
structured light, it can be assumed that the devices are adjusted so
that the cones cover a common volume that is as large as possible.

of the acquired images would not be reconstructable. Figure 5.7 visualizes the
influence of the orientation on the overlapping regions of the camera images.
In the investigated case, it can be assumed that the optical axes of the devices
point in the direction of the scene. Here, the possible combination of rotations
and translations can be determined independently of arbitrarily chosen points.
To find the possible combination of the relative extrinsics they are applied

to the optical axis of the first camera whose position w.l.o.g. is assumed to be
in the origin of the world coordinate system. This results in the optical axis of
the second camera. Computing the improper intersection of both axes, given
by the point of shortest distance to both, allows to decide if this point is in
front of both cameras or not.
Let z1(λ) and z2(µ) denote parameterizations of rays passing though re-

spective camera centers in view direction:

z1(λ) =
⎛
⎜
⎝

0
0
0

⎞
⎟
⎠
+ λ
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠
, z2(µ) = −RT

ijtij + µRT
ij

⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

(5.32)

Computing the point of smallest distance on every ray by solving the mini-
mization problem

argmin
λ,µ

∥z1(λ) − z2(µ)∥22 (5.33)

results in the parameters λ and µ that minimize the distance of the rays:

λ = t1r1 + t2r2
r23 − 1

, µ = t3 + r3λ (5.34)
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Thereby, r1, r2 and r3 denote the elements of the third column of rotation
matrix Rij and t1, t2, t3 the entries of the rotation vector tij . Only in the
feasible configuration both values λ and µ will be positive. Checking this
for all four configurations leads to the feasible choice. Despite the exceptional
simplicity of this approach, to our knowledge there is no other method deciding
for a feasible decomposition of essential matrices by simply checking two scalar
values independent from any reconstructed points.

5.5.2. Scaling Translations

From extrinsic and intrinsic camera parameters, camera matrices can be com-
posed (see Chapter 2), ready for triangulating a point cloud from given cor-
respondences. Since the fundamental matrix is up to scale, the extracted
relative translation is also up to scale. In case of two views usually scaling is
done by simply setting the translation to unit length. If there are more than
two views, they must be reconciled, with respect to one chosen references.
Without loss of generality, an arbitrary camera Ci is set as reference to the
origin and translation tij between cameras Ci and Cj is defined as the refer-
ence translation. Following [151], camera matrices Pi, Pj and all following
cameras Pk are composed by

Pi =Ki[I∣0]
Pj =Kj[Rij ∣tij]

Pk =Kk[Rik∣sktik], sk =
(tjk × tik)T(tjk ×Rjktij

∥tjk × tik∥22

(5.35)

with factors sk, that scale all cameras consistently with respect to the refer-
ence.

A metric calibration can finally be inferred if e.g. one of the camera base-
lines or the metric size of any object in the reconstructed scene is known.
Subsequently, the translation vectors are simply scaled to the metric value.

Figure 5.8.: Visualization of a static scene and the 16 camera views used for the re-
construction. The result was obtained from 8 partial reconstructions,
each with two camera views, which were subsequently aligned.
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5.6. Bundle Adjustment

In almost every auto-calibrated computer vision application that requires high-
precision calibration, bundle adjustment ([103], [101], [163], [3], [37], [89], [178],
[90]) is performed as a final step in order to refine the estimated camera ma-
trices. This involves refining both intrinsic and extrinsic parameters of all
devices used and correspondingly mapped 3D points in a joint optimization.
Minimizing the re-projection error while taking all parameters into account is
the usual choice that has been proven to be very efficient for a long time:

argmin
Pi,Xn

∑
i
∑
n

∥PiXn − xi,n∥22 (5.36)

To make the method more robust, an energy that is less sensitive to outliers
can be used instead. One approach, described by Engels et al. in [37], is
to assume that the re-projection errors satisfy a Cauchy distribution with a
chosen variance σ. Therefore, the minimization problem simply changes to

argmin
Pi,Xn

∑
i
∑
n

ln(1 +
∥PiXn − xi,n∥22

σ2
) . (5.37)

In many cases, it is necessary, to also correct projected points xi,n for distor-
tions, in order to achieve further improvements. During this whole optimiza-
tion process, a wide range of possible values is searched for a large number of
parameters. This is an extensive calculation and time consuming procedure.
Even though the state of the art has generally been given for some time by
Lourakis and Agyros [103], [101], to this day there is still research carried out
on pre-conditioning methods. Approaches, such as Katayan’s et al. recently
published work [85], still aim to speed up this famous optimization task.
A statement that is generally true, is that the better the initial calibration

information, the faster the convergence. After applying the calibration method
presented in this chapter, the parameters are already of very high accuracy, so
that a few steps of bundle adjustment are sufficient to reduce the calculated re-
projection error below 0.1 pixels in all our tests, which is sufficient for almost
all conceivable applications.
To illustrate the result of the presented calibration procedure, Figure 5.8

shows the result for a static scene reconstructed and calibrated from 16 camera
perspectives.

5.7. Evaluation

In order to demonstrate the advantages and improvements of the presented
methods, the critical sub-steps of the calibration are independently evaluated.
First, the accuracy of the calculated epipolar geometry using the combina-

tion of the epipolar error and the trifocal error, presented in Section 5.3, is
investigated. The new method is compared to current approaches that min-
imize either the epipolar error or the trifocal error. The advantage of the
combined approach becomes apparent in terms of both epipolar and trifocal
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errors achieved. When applied to a large data set, a pattern becomes visible
which suggests a generally advantageous value for the weighting parameter τ .
Improvements can also be seen with respect to the accuracy of the calculated
relative rotations and the behavior of the back-projection error when noise
occurs.

In the next section, the intrinsic calibration from epipolar geometry is con-
sidered (Section 5.4) and compared to the state of the art.

The comparisons start with the minimum case of two cameras whose focal
lengths are determined. In contrast to the established method, no problems
occur with the presented approach even in particularly demanding situations
with very different camera models. In the case of three devices, which is an
important scenario also in the field of reconstruction, the greatest gain in sta-
bility of the method becomes visible. With the presented method it is possible
to stably calibrate a projector together with two cameras, which makes the
application particularly powerful for common structured light setups. Even
in extreme situations where extremely poor fundamental matrices are used as
input, the method works more stably. Finally, for the sake of completeness,
the case with 4 or more cameras is also covered.

5.7.1. Epipolar Geometry

In this section, the proposed method from Section 5.3 for determining the
epipolar geometry is evaluated to assess its benefits. The effect of regular-
ization parameter τ is examined on real and synthetic data sets. Note that
the method minimizes the epipolar error for τ = 0, while τ → ∞ yields a
pure trifocal minimization. Further note, that Li et al. mention in [94] that
the minimization of the epipolar energy term in several ways, like for exam-
ple in the gold-standard approach [62], is still seen as the common approach
and the trifocal error is often not practicable, which may be due to its noise
susceptibility.

Test Data Both synthetic and real datasets were acquired to evaluate the
proposed method. For all datasets, up to 300 correspondences were carefully
selected and validated, in order to guarantee absence of strong outliers. In
both cases the same setup, comprised from two cameras and a projection
device, has been used. Such a setup is quasi standard for most active scanning
solutions and is suitable for evaluation in the contexts of active as well as
passive methods.

For the real setup, wDSLR cameras with a resolution of 6M pixels and a
full-HD projector were used. The synthetic setup reproduces the real setup. It
was modelled with Unity [2] and has different principal points, various degrees
of distortion, and different focal lengths. Apart from that, the synthetic model
is a perfect pinhole camera. In order to assess the robustness of the proposed
calibration procedure, the synthetic datasets were artificially degraded. To
this end, multiple datasets with different levels of positional noise added to
the correspondences (Gaussian with σ ∈ [0,2] and µ = 0) were derived. Based
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(a) Back-projection error (b) Rotational error (c) Distortions

Figure 5.9.: Evaluation on synthetic data for an increasing level of Gaussian noise.
Back-projection errors (left), angular errors (middle) and distortion
coefficients (right) for epipolar, trifocal and the proposed minimization
method.

on this data, the back-projection error as well as the angular error with respect
to the cameras were computed (see Figure 5.9).
For evaluation of the real data, a calibration with several values for the

regularization parameter τ ∈ [10−6,104] was calculated. After computing the
calibration, the remaining epipolar as well as trifocal error were estimated (see
Figure 5.10).

Results Using the synthetic data we observe that:

• For noise-free data the selection of τ is irrelevant, since both error terms
converge robustly to the global minimum (see Figure 5.9 for σ = 0). Also
the proposed combination provides the expected result.

• For slightly noisy data (σ < 0.5) the trifocal error clearly outperforms
epipolar optimization. Although the proposed method is not better than
the trifocal minimization, it consistently outperforms the more robust
epipolar error (see Figure 5.9).

• For very noisy data (σ > 0.5), minimizing the trifocal error does not
provide useful results. In this case, minimizing the epipolar error is much
more robust and yields stable results. The same is true for the proposed
method, which consistently provides significantly better results than the
state of the art, given by pure epipolar minimization.

The proposed combination of both errors improves the state of the art (i.e.
epipolar optimization) for all cases with σ > 0. Figure 5.9 gives an impression
of the relation between noise and errors. In terms of the back-projection error
(left), the improvement is up to 30% with respect to the state of the art. In
terms of angular error (middle), we observe an improvement of 1-2 degrees.
This is equivalent to a 3D point position error of not less than 1.7cm assuming
a baseline of 1m.
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(a) Mean epipolar and trifocal errors for increasing τ (b) Average errors

Figure 5.10.: Mean epipolar errors (a, top left, top right) and mean trifocal errors
(a, bottom left, bottom right) computed from high quality (a, left)
and noisy (a, right) real datasets. Average errors from real data sets
with different noise levels (b).

To evaluate the accuracy of the distortion parameters computed by the
proposed method, distorted synthetic data has been generated using Unity.
An example of distortion parameters (−1 ⋅ 10−2,5 ⋅ 10−4,1.1 ⋅ 10−2) that have
been estimated by the method is given in Figure 5.9 (right). Unfortunately,
the parameter space under investigation is too large to allow a comprehensive
evaluation. Therefore, the focus was on evaluating the first coefficient of the
distortion model, since it dominates the others and reflects most of the distor-
tion caused by lenses. Gaussian noise of σ ∈ [0,1] was applied to investigate
the influence of measurement errors. Figure 5.9 (c) shows the estimated radial
distortion coefficients for increasing values of σ. It can be observed that all
methods provide useful distortion parameters. The proposed method provides
consistently superior parameters, although the improvement may be marginal.

Choice of the Regularization Parameter

In Figure 5.10 all errors are given relatively to the state of the art (τ = 0),
i.e. pure epipolar error optimization. On the left side (a), the behavior of the
mean epipolar error (top) and the mean trifocal error (bottom) is visualized. In
total 100 uncorrelated datasets have been investigated, using 300 high quality
correspondences each. By emphasizing the trifocal term, both the trifocal
error as well as the epipolar error are improved in the case of low noisy data.

Figure 5.10 (a, right) visualizes the behavior of the errors after adding weak
Gaussian noise (σ = 0.3). It can be observed, that the minimization of the
trifocal error in the presence of noise does not lead to lower epipolar errors,
but the epipolar error increases significantly (> 10%). Hence, adding a small
amount of noise dramatically reduces the dependency (see Figure 5.1) between
the epipolar and the trifocal error.

Since neither of the two errors is to be preferred in principle, a combina-
tion of both errors is well reasoned. A suitable measure for the calibration
quality is the back-projection error. Applying the proposed method, simi-
larly to the previous section, to 100 uncorrelated datasets with different noise
levels, results in average errors visualized in Figure 5.10 (b). Minimal back-
projection errors were achieved with a selection of τ = 10−3 over a large number
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of datasets. Therefore, it can be assumed that τ is a constant, rendering the
proposed method quasi parameter-free. Note that trifocal errors are usually
much larger than epipolar errors, a value of τ = 10−3 leads to nearly equal
influence of both errors to the minimization. In Figure 5.10 (b) the original
value of τ according to (5.6) is shown in the upper ordinate. The lower ordi-
nate shows τ after a transformation into the interval [0,1] using normalized
energies.

5.7.2. Intrinsic Calibration

Both the method [105] and the proposed approach, are based on Kruppa’s
equations. These equations provide two independent constraints for each fun-
damental matrix. Therefore, the number of computable parameters is deter-
mined by the number of devices (see Table 5.1). For two devices, only two
parameters can be estimated based on the single fundamental matrix between
the views. This case is the most basic and most frequently examined system
setup. With four or more devices, the problem of intrinsic calibration is well
defined and theoretically all parameters can be estimated. Nevertheless, even
the calibration of four devices can be a challenge in practice. A particularly
interesting case, which motivated this course, is the use of three devices, such
as two cameras and a projector, as found in most active scanning setups. For
all three devices, the focal lengths can be calculated. With the remaining
constraints, the principal point of the projector can be estimated, which is
usually far off the image center.

For the evaluation, three cases are considered, i.e. two, three and four de-
vices. In order to investigate the stability of the methods, probability maps
are calculated that visualize the convergence chances for different initializa-
tions and thus represent the convergence regions of the methods. To calculate
these probability maps fixed setups with two, three and four devices and fixed
extrinsic and intrinsic parameters are used. A total of 16 different scenes
were recorded with these setups. The scenarios were selected in such a way
that they cover a multitude of different practical application scenarios. From
the different scenes, fundamental matrices are computed using the technique
in Section 5.3. The matches used for the computations were previously val-
idated to avoid falsification by strong outliers. Consequently, the resulting

# Devices # Basic Equations Computable Parameters

2 2 f1, f2 or xpl , ypl
3 6 f1, f2, f3, xp1 , yp1
4 12 fl,xpl , ypl , l = 1, ...,4
⋮ ⋮ ⋮
C C(C − 1) fl,xpl , ypl , l = 1, ...,C

Table 5.1.: Overview of degrees of freedom in terms of the number of devices and
useful calibration parameters that can be computed.
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fundamental matrices of each setup approximate exactly the same epipolar
relations with uncorrelated numerical errors because they are computed from
different matches received from totally different scenes. Applying the methods
under investigation on a fundamental matrix for all combinations of initial fo-
cal lengths f1, f2 ∈ [1,10000] leads to a binary map, which indicates whether
the method converged or not. The binary maps of all the fundamental matri-
ces have been combined into probability maps depicted in Figures 5.11, 5.12
and 5.13. Therefore, the percentage at which convergence has been achieved
color-codes the maps. Green color indicates a very high probability of con-
vergence, while red indicates either divergence or convergence to an incorrect
value. Yellow depicts regions with approximately 50% chance to converge to
the correct value. Further interpolated values between green and red indicate
corresponding probabilities.

Since the probability maps are not dependent on individual scenes, corre-
spondences, or fundamental matrices, they are meaningful indicators for the
convergence behavior of the procedures.

In the following, the focal lengths are given in terms of sensor pixel size.
For typical devices, a plausible range would be in [500,15000]. Depending on
the sensor size, this would correspond to approximately [18mm,50mm] for a
standard camera. The principal points are given in terms of image pixel size,
depending on the resolution.

Two-View Focal Length Estimation

In the case of two cameras, the principal points are usually assumed to be in the
image centers. Therefore, in most cases only the focal lengths are computed.
Bougnoux [17] gave a famous formula to calculate the focal lengths directly:

f1 =

¿
ÁÁÁÀ−

cTp2[e2]×ĨF12cp1c
T
p1F

T
12cp2

cTp2[e2]×ĨF12ĨF
T
12cp2

, f2 =

¿
ÁÁÁÀ−

cTp1[e1]×ĨF
T
12cp2c

T
p2F12cp1

cTp1[e1]×ĨF
T
12ĨF12cp1

,

(5.38)

where cps and es denote the principal points and epipoles of camera Cs ∈ {1,2}
in homogeneous coordinates. Moreover, [.]× denotes again the cross-product
matrix and Ĩ = diag(1,1,0) is the embedding of the two-dimensional identity
matrix. Unfortunately, this formula fails in many practical situations. As
already mentioned in Section 5.4.2, it often tries to intersect curves that are
almost coinciding in many situations. This is likely related to situations close
to the degenerated cases reported by Sturm in [153] and [152]. Although
it is not well suited for auto-calibration in general, it can still be used as
initialization for iterative methods in case it is not degenerated.

For the case with two cameras, Bougnoux’s, Lourakis’ and the proposed
method are compared. Bougnoux’s method is a direct one and therefore does
not depend on initialization. Therefore, no region of convergence can be deter-
mined and visualized in the following. Having said this, Bougnoux’s method
failed in most cases during the tests (likely because of dependency on error-
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prone epipole estimates), while the iterative methods could still converge when
initialized accordingly.
For the current investigation, the focal lengths of the devices were chosen

to be approximately equal in order to resemble the practical case of manually
adjusting the cameras. Despite that, exactly the same focal lengths would
lead to a degeneration that would be perfectly captured by Sturm’s method
[154]. However, this special case rarely occurs in practice for setups including
multiple devices. Inspecting Figure 5.11 for the two camera case with similar
focal lengths, it can be observed that the proposed method converges for nearly
all initializations, while Lourakis’ method only converges in a region of radius
of approximately 1500 pixels relative to the true solution.

(a) Lourakis method (b) Proposed method

Figure 5.11.: Comparison of the convergence in the two-view case with similar
focal lengths. Colors visualize the probability of successful conver-
gence to the correct solution for different combinations of initial focal
lengths. Left: Lourakis’ method, right: the proposed method.

Strongly Differing Focal Lengths In the case of strongly varying focal lengths,
even more benefits can be achieved. Figure 5.12 shows the convergence prob-
ability map of a similar configuration as in Figure 5.11. While the method of
Lourakis converges in a region with a radius of only 500 pixels, the proposed
method converges in almost all cases.

(a) Lourakis method (b) Proposed method

Figure 5.12.: Comparison of the convergence behavior in the two-view case for dis-
similar focal lengths. The axes represent the respective focal lengths.
Left: Lourakis’ method, right: the proposed method.
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Three-View Intrinsic Calibration

Perhaps, the most interesting case for the presented application is a three
device setup. According to Table 5.1 the focal values plus the position of the
principal point of one device can be estimated. This allows the calibration
of setups consisting of two cameras and one projector, which is of practical
importance, as it is common for modern structured light setups. In this case,
it is assumed that the principal points of the cameras are in the image center,
while their focus values can be very different. The projector is assumed to
have a completely independent focal length and an extreme position of the
principal point, usually near the image border.
Again a system setup with fixed extrinsics and intrinsics is assumed. Fun-

damental matrices are computed from 16 scenes similar to the previous test.
Now that three devices are given, the respective probabilistic convergence
maps with respect to focal length intializations would be three-dimensional.
In order to achieve an expressive visualization in two dimensions, the focal
length of the projector was initialized by f3 ∈ {1,10,100,1000,10000} and
the resulting maps averaged. Figure 5.13 depicts the convergence regions for
Lourakis’ method on the left and the proposed method on the right. As can
be clearly observed, Lourakis’ method does not provide a secure convergence
region, i.e. a region of focal length selections that converges for an arbitrary
principal point.

(a) Lourakis method (b) Proposed method

Figure 5.13.: Comparison of the convergence behavior for focus optimization in the
three-view case. The axes represent two of the three focal lengths,
the third one is visualized as a mean projection along the third co-
ordinate axis. Left: Lourakis’ method, right: the proposed method.

Multi-View Intrinsic Calibration

In the multiview case of four or more devices, the problem is much easier to
solve. Theoretically, it is possible to fully calibrate all devices, including focal
lengths and principal points. However, practice shows that Lourakis’ method
does not converge if the focal lengths are initialized far too small, while the
proposed method converges in all situations.
However, for failure of Lourakis’ method the focal lengths have to be so small
that this case can be neglected (see Figure 5.14 for visualization).
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In the case of five or more devices, the stability of the convergence of each
procedure further increases. Due to the inherent difficulty of visualizing multi-
dimensional data and the fact that both methods perform well in practice,
respective visualization are omitted.

(a) 4 view case Lourakis method (b) 4 view case proposed method

Figure 5.14.: Comparison of the convergence behavior in the four-view case (third
Louraki’s, fourth the proposed method) with extreme initializations
of the principal points and the focal lengths outside the convergence
regions of the methods. In the four-view case the newly proposed
method always converges to the correct solution, while Lourakis’
method may still fail.

5.8. Conclusions

A stable and robust method for computation of accurate calibration of mul-
tiple views (i.e. cameras and projectors) based on their epipolar geometry
has been proposed and evaluated. The procedure combines two improvements
on auto-calibration and extends them to a complete calibration method. The
procedure eliminates weaknesses of existing methods, especially in the pres-
ence of noisy data. A suitable regularization parameter τ has been estimated
and fixed, so that the whole procedure can be assumed parameter-free. The
optimal result is observed to be achieved when epipolar and trifocal errors
contribute about the same amount to the calibration.
Contrary to the former approach, the presented method for intrinsic cali-

bration from fundamental matrices converges to the global solution for nearly
all reasonable initializations and enables the calibration of projectors and low
quality devices. It therefore has a major impact on active scanning techniques
that can thus be calibrated from scratch, including the active element. It has
been shown that and why the applicability of the standard method on intrinsic
calibration from fundamental matrices is subject to systematic limitations.
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6.1. Introduction

3D reconstructions of objects as well as depth information of scenes play an
increasingly important role in industry. Whether it is quality control in pro-
duction or the recognition of the environment in autonomous driving, the
number of applications is continuously increasing. Due to the simplicity of
applicability, depth cameras are more and more used in parallel to flexible 3D
scanners, and the availability of depth data for a wide variety of applications
is steadily increasing. At the same time, the demand for scene understanding
methods, represented by optical flow estimation, is constantly increasing, es-
pecially in the field of automation. Since in addition to images alone, more
and more information is available, also the demand for higher quality scene
understanding increases.

For the vast majority of applications, rigid scenes can be assumed and taken
into account. And even for dynamic scenes, the optical flow can be approxi-
mated by rigid models if not too large motions of the camera or the environ-
ment are expected. This rigidity assumption can even guide the estimation of
optical flow, whose accuracy can benefit from it. The simultaneous extraction
of the rigid transformation between two subsequent frames is then also desir-
able. In this way, the method can be used for automatic alignment of point
clouds in difficult scenarios, including large motion (fast driving cars) and
large rotation (3D reconstruction, where often approx. 45° rotation between
partial views occur), that yield strong shading changes.

The presented method will use an optical flow approach based on PWC-
Net [156], that has been adapted in order to use data from texture images,
normal maps and vertex maps simultaneously. This procedure is moreover
combined with the extraction of rigid transformations, that are computed from
the normal and vertex maps, that are warped by the predicted optical flow.
The so predicted pose can mutually benefit from the coarse to fine strategy of
the optical flow, which can find dense correspondences over the whole scene
using a pyramidal approach, even in the presence of large motion. Textural,
geometric and shading features are included, which partly compensate for
each other’s weaknesses (sparsity of normal and vertex maps, illumination
susceptibility of the texture images). From the warped 3D information of the
scene, the rigid transformation can be determined stably in a second step.

6.1.1. Motivation: Flow-Based Alignment

In order to compute the alignment of two subsequently reconstructed frames,
usually robust and transformation invariant features (SIFT, KAZE, ...) are de-
tected and matched between the frames. Robust and outlier resistant methods
like RANSAC-based PnP-solvers are used to compute the rigid transformation
between the views [40]. It is commonly known, that this approach, applied
with some few good features only, results in way better alignments than us-
ing many worse features jointly. Modern deep learning approaches adopt this
scheme and deliver competitive results on a wide range of data in real time.

The basis of all common feature-based methods is the brightness constancy
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(a) SIFT Matches (b) Illuminated
Scene

(c) Overlap of Views (d) Flow Matches

Figure 6.1.: (a) and (d) show matches based on SIFT features and optical flow. (b)
shows the scene, which has been illuminated by a strong spot light, in
a different color space that is more visual to human perception. This
more clearly visualizes the different shadings of the object, which is the
reason for the failure of the common method based on SIFT features.
(c) shows overlapping regions of subsequent scans. Even a rotation of
approx. 45° yields a large overlap of more than 80%.

assumption, which expects that the appearance of the object does not change
significantly from one frame to another. This assumption is fulfilled for a
large number of applications, especially in scenarios, in which the camera
moves smoothly through a scene or an object undergoes slow motion. If,
on the contrary, the direction of the light incidence changes, the shading of
the scene also differs dramatically and the brightness constancy assumption
gets violated strongly. This leads to a very probable failure of the standard
methods based on this requirement, especially in the following situations:

• Outdoor scenes where lighting conditions can change suddenly. This can
occur from direct sun light, as well as indirect light reflections from other
objects.

• Moving objects, especially rotating ones, inevitably change the relative
direction of light incidence. This leads in particular to considerable
difficulties in the application area of 3D reconstruction, where the object
is often rotated in order to capture it from all sides.

• Driving cars in the dark may cause strong shading differences in the
captured images of the environment. Visible elements in the scene are
illuminated by the car’s headlights. These light sources move together
with the car through the scene, which may yield strong variation of the
direction of light incidence.

In order to illustrate this problem and investigate it, a setup with a static light
source, a static camera and a rotated object is considered. Figure 6.1 (a) shows
how the standard approach based on SIFT matches fails, due to different light
incidence. Figure 6.1 (b) shows the scene in a different color coding, that maps
the grayscale values to a color scale that is more visual to human perception,
which makes the different shading become obvious. While the features in the
scene change in appearance, it can still be assumed that a significant portion
of the scene overlaps in the different views. In the important case of object
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rotation in 3D reconstruction, our research shows that in the vast majority of
cases a typical rotation of 45° still yields more than 80% overlap of the scene’s
content. Figure 6.1 (c) visualizes the overlapping areas of the two views.
Optical flow methods can benefit from this in turn, as they view and match the
motion as a whole, using pyramidal approaches. Finally, Figure 6.1 (d) shows
correspondences determined using an optical flow method, as introduced in the
following. The correspondences do contain noise and smaller errors, especially
in feature-poor regions. They are nevertheless capable of predicting stable
orientations of the object, significantly more stable ones than feature-based
methods.

6.2. Related Work

Optical flow estimation is a well-known problem in applied machine vision
and has wide spread use cases in industrial applications such as robotics, au-
tonomous driving and quality control. The task is to determine dense motion
at pixel level between image pairs as accurately as possible. Starting with the
method of Horn and Schunck [69], variational methods were the state of the
art for a long time. Since the problem itself is an ill-posed problem, further
assumptions have to be made on the flow field, which led to a multitude of
different methods that use the most diverse regularization procedures to make
the problem solvable according to the specific application. In recent years
the problem of optical flow estimation increasingly expanded to the problem
of scene flow estimation, which deals with the 3D motion of scene points in
space, whereas optical flow was limited to 2D point motion on the image plane.
Based on the variational approaches for optical flow, a number of variational
scene flow methods have been developed. Most of them use rectified stereo
image pairs as input and thus estimate scene flow with different regularization
methods or partial rigidity assumptions ([21], [71], [78], [96], [11], [128], [187],
[41]). At the same time, methods that determine the scene flow directly from
RGB-D data have been developed. With an increasingly number of depth sen-
sors that became available, this approach is quite justified. Several variants of
methods handle this case ([93], [55], [65], [136]).

The appearance of FlowNet [31] revolutionized the field of optical flow es-
timation. It became possible to treat the problem in real time with the help
of convolutional neural networks (CNNs). In contrast, the variational meth-
ods were extremely time consuming and computationally expensive. A higher
accuracy at the expense of a much larger network was subsequently achieved
with FlowNet2 [76]. This was followed by the release of PWC-Net [156], which
uses warping layers at different levels of an image pyramid, representing the
current state of the art that is in addition much smaller than the previously re-
leased FlowNet2. Based on PWC-Net, Saxena et al. have presented a method
for estimating scene flow from rectified stereo image pairs.

In addition, they handle occlusions within the forward pass. Previous meth-
ods required at least one forward and one backward warping to stably detect
occlusions ([75], [115], [168]). Other approaches even tackle the task by itera-
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tive approaches such as [74]. Besides that, a large amount of research currently
focuses on either making networks lighter ([73], [72]) or on training networks
without ground truth through un- or self-supervision ([99], [82], [194], [79]). A
survey on variational as well as CNN-based optical flow methods can be found
in [164].

Similar to earlier approaches in the variational path, methods that extract
the scene flow directly from RGB-D data also evolved over time. Qiao et al.
showed how scene flow based on FlowNet can be improved by fusion with fea-
tures of depth data extracted in an extra network pass. Based on PWC-Net,
Rishav et al. [138] use depth data from a Lidar sensor to determine the scene
flow. In doing so, they account for the lower resolution of Lidar data using
appropriate reliability weights from [35]. In general, scene flow networks based
on RGB-D data show poor performance for outdoor scenes, due to range lim-
itations of the sensors. A number of approaches attempt to address this issue
([168], [175], [177], [196]). Since the omission of active components removes
the range limitations, but is accompanied by a loss of quality of the depth
information, we will nevertheless restrict ourselves to this limited case. We
are content with the scene flow within the sensor limits, since it is sufficient
for an overwhelming number of practical applications, where the limits of the
sensor can be planned accordingly.

In order to predict the pose of an object, a long time RANSAC approaches
using explicit pose estimates based on the singular value decomposition were
used. In recent years, first deep learning approaches predicted the pose di-
rectly using neural networks. Kendall et al. [88] use in their PoseNet several
convolutional layers, followed by linear layers to directly predict rotation and
translation from RGB images. This way, they were the first to solve the prob-
lem of camera re-localization in static scenes by a deep learning approach. A
few years later Vijayanarasimhan et al. [166] extend this principal in SfM-Net
in order to predict simultaneously the rigid transformations and the depth of
the scene. They basically adopt the principals of the famous Structure-from-
Motion pipeline to a deep learning framework. In parallel Zhou et al. [193]
developed a related model and showed how to train it in an un-supervised
manner.

Finally, there has been a row of methods for direct point cloud registration
with deep learning. Some of them replace parts of the standard strategies
by deep learning methods and some try to replace the full pipeline. A large
number of different approaches, correspondence-based and correspondence-
free, are reviewed in [191] and [167].

Related to the presented work, [50] and recently [131] introduced variational
and CNN-based methods for flow-aided pose estimation, based on fulfilled
brightness constancy assumption. Nevertheless, an automatic and light resis-
tant flow-based pose-estimation method, that works correspondence-free, and
takes geometrical, textural and coherent scene motion into account has never
been addressed before.
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6.3. Light-Resistant Optical Flow

The optical flow between two images is understood as the displacements of the
individual pixels from one to the other image. Determining the optical flow
between images of a scene often serves the purpose of scene understanding, as
it directly allows the analysis of a large amount of scene information:

• The optical flow between calibrated camera images from different per-
spectives of the same static scene allows theoretically to compute dense
point correspondences and accompanying depth data.

• The optical flow between static camera images of a moving scene theoret-
ically allows the analysis of scene motion and object tracking. If depth
data is additionally available, the scene flow, i.e. the spatial movement
of the points in the scene, can be calculated.

In the estimation of the optical flow between two consecutive images I0 and
I1, a horizontal and a vertical displacement field (F 01

x , F 01
y ) are calculated,

mapping each pixel in image I0 to its corresponding pixel in image I1. The
usual basis of the estimation is the brightness constancy assumption, which
assumes that corresponding pixels have the same appearance in the different
images:

I0(x, y) ≈ I1(x + F 01
x , y + F 01

y ) (6.1)

Figure 6.2 shows image I0 and besides image I1, which has been warped by
the optical flow F 01. Since the used optical flow has been computed from
real data, the flow field is semi-dense and contains some masked pixels. Such
errors will be addressed later on, where we will also show how to adopt filters
to sparse, semi-sparse and mixed data. Instead of looking for exactly the same
values between I0 and I1, filtered values are considered in a regional context
in order to robustify the matching. Deep neural networks have proven to be
extremely effective for this purpose. The current state of the art is given by
PWC-Net, which will be briefly introduced in the following to serve as a basis
for the subsequently presented light-resistant method.

Figure 6.2.: Image I0 in comparison to image I1 that has been warped by optical
flow F 01. Assuming consistent brightness, these should be identical
(ignoring masked pixels due to the semi-dense optical flow from real
data). In case of strong rotations of the object the shading changes
dramatically, which violates this assumption.
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6.3.1. PWC-Net

PWC-Net combines classical techniques such as a pyramidal approach, warp-
ing and correlation to create a highly effective network for optical flow es-
timation. The input images are passed through a pyramid of convolutions
which extract rotation- and translation-invariant features at different levels of
the receptive field. The number of hierarchies should be adapted appropriate
to the image resolution. By successively halving the resolution in each step,
the procedure should cover almost the entire scene in the filter of the last
stage. From the lowest level, cost volumes based on extracted features are
established from which the optical flow is effectively predicted. These flows
are refined upwards with each level, incorporating new features of the current
level and the flows and more global features from previous levels. By warping
the data using the previous flow, the search space is significantly reduced and
even large displacements can be treated and predicted with this comparatively
small network. Figure 6.3 depicts the architecture of the network. Each pre-
diction block consists of a cost volume for flow prediction and is fed with the
corresponding layer in a U-Net structure, in order to predict a flow field in full
resolution. Note that the standard network presented by Sun et al. in [156]
predicts the optical flow up to the second last level and afterwards refines
the resulting flow by a context-network as a post-processing. This results in
a final optical flow whose resolution is only 1

16 of the input images’ resolu-
tion. Instead of up-sampling by variational methods, we go for two additional
texture-guided up-sampling steps within the network, in order to provide full
resolution optical flows within a single training routine.

Figure 6.3.: Sketch of the PWC-Net architecture. The input is convolved by mul-
tiple layers and the optical flow is predicted starting from the lowest
level upwards in a U-Net structure. In each level, the layers of I1 are
warped towards the layers of I0 in order to provide initial flows from
previous lower levels. With this pyramidal approach also large flows
are predictable with quite small filter kernels.

6.3.2. INV-Net using Images, Normals and Vertices

Classical PWC-Net uses texture images only. Unfortunately, for the investi-
gated use case these texture images may be disturbed due to shading changes,
resulting from rotations of the object or light position changes, which would
make the network likely to fail due to a violated brightness constancy assump-
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tion (see Figure 6.1). In many situations, where depth data is available, a lot
of additional information can be provided to the network, that is invariant
under the shading effects related to light changes or object rotations:

• Texture images I0 and I1 that underlay shading effects. Nevertheless,
they provide full and dense data, which can deliver local context.

• Depth maps D0 and D1 that store the relative geometrical information
of the scene, light- and shading-invariant, with respect to the camera
center. Due to measuring errors there may be outliers or data-less pixels,
resulting in semi-dense depth maps.

• Vertex maps V0 and V1 that store the spatial information of the scene,
light- and shading-invariant in three channels of a map in image resolu-
tion. They are computed from the depth maps and the available cam-
era calibration in order to store the geometrical information calibration
independent. Therefore, they are similar to the depth maps semi-dense
maps with masked pixels. Moreover, they are structured representations
of point clouds, that allow to perform neighboring operations on 3D data
in 2D space, which yields large advantages in the following approach.

• Normal maps N0 and N1 that store spatial information of the surfaces
in the scene. They are related to partial derivatives of the 3D vertices
and do not underlay scaling and translation bias. They are in a spe-
cific range and responsible for a large amount of shading features of a
scene (where standard methods based on fulfilled brightness constancy
assumption get a large amount of information from), without being dis-
turbed by the light changes. They can be directly computed from the
vertex maps, using the topological information given by the image grid
(see Chapter 8). Unfortunately, they thus also inherit the semi-density
from underlying vertex maps.

Figure 6.4.: Possible input that is available to the task of light resistant optical
flow estimation and subsequent pose prediction. In addition to texture
images, there are depth maps, vertex maps, point clouds and normal
maps available. The depth maps as well as the vertex maps contain
geometrical information. Since the vertex maps are independent of
the calibration it is the preferable choice for the presented method.

Figure 6.4 sketches the basic problem of finding a light resistant pose esti-
mation from all the available input. The first task is to find a light resistant
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high quality optical flow from this large amount of input data. Depth maps
as well as vertex maps store the spatial information of reconstructed surface
points. Since they are somehow interchangeable we use the vertex maps only.
This way the method becomes independent of the intrinsic calibration at the
cost of a higher amount of data that needs to be processed. Figure 6.7 (left
part) sketches the basic network that takes features from images (textural
features), normal maps (shading features) and vertex maps (geometrical fea-
tures). Thereby we follow the basic principal of PWC-Net but run the different
input through separate feature pipelines and set up independent cost volumes,
that contribute to the flow prediction. All features are processed as in [156]
and fed to the pose prediction in each layer. This way the network learns to
treat the feature appropriate and to achieve advantages from all. Figure 6.5
depicts the prediction procedure in each layer, except the first one, where only
the cost volumes are used for initialization of the flow.

Figure 6.5.: Flow prediction architecture in each layer (except first one). Features
of images (texture), normals (shading) and vertices (geometry) are
extracted separately and jointly fed to the prediction module.

Normalized Convolutions In order to take into account the semi-density of
the vertex maps and the normal maps, the convolutions, leading to the first
layer are replaced by normalized convolutions as introduced by Eldesokey et
al. in [36]. Using the following slightly changed convolution procedure, the
known masks can be used to ensure that data-less pixels do not contribute
to the convolution with respect to neighbored pixels. Suppose, we are given
a signal A to be convolved with a filter kernel K. Further assume that the
measurements of the signal A are of varying quality with a confidence measure
W of the same size as A having values between 0 and 1 to describe these
uncertainties. It is desired to use the confidence measure as a weighting of
the entries of A during convolution to ensure that reliable measurements have
a higher influence on the convolution signal than inferior measurements or
missing data for certain points. For this purpose, each summand within the
convolution is weighted accordingly and divided by the sum of the weights to
ensure the normalized character of the convolution. In detail, the normalized
convolution of signal A, convolved with kernel K and weighted by confidence
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W around data point [n] is given by

(K ∗A)
W
[n] = ∑mK[m] ⋅W[n −m] ⋅A[n −m]

∑mK[m] ⋅W[n −m]
=
(K ∗ (W⊙A))[n]
(K ∗W)[n]

,

(6.2)

where ⊙ denotes the element-wise Hadamard-Product. In order to avoid influ-
ence of missing pixels, a binary mask, that contains zeros in case of missing
data and ones otherwise, can be fed to the convolutions as confidence W.

Consistency Assumptions Similar to the brightness constancy assumption
given in Equation (6.1) the following consistency assumptions hold true for
normal vectors and vertices of rigid scenes:

N0(x, y) ≈RN1(x + F 01
x , y + F 01

y ) (6.3)

V0(x, y) ≈RV1(x + F 01
x , y + F 01

y ) + t (6.4)

Figure 6.6 visualizes the consistency relations for normal vectors and vertices.
While the pixels of the warped normal map coincide with the reference nor-
mals up to a rotation matrix R, the vertices coincide up to rotation R and
a translation vector t. These relations will be essential later on, in order to
extract the rigid pose from the given optical flow. A very important result of
our research is, that features, computed from filtered normal and vertex maps
allow for computation of accurate optical flows. This means, the standard ap-
proach for feature extraction from images (as used in PWC-Net), is suitable
to compute rotation- and transformation-invariant features from normal and
vertex maps, as well.

Figure 6.6.: Normal maps and vertex maps that have been warped by optical flow
F 01. Assuming rigid scenes, normal vectors should be identical up to
a rotation, vertices up to a rotation and a translation.

6.4. Pose from Warped Normals and Vertices

Several research papers have already shown that it is possible to predict the
relative pose of two views of a scene using neural networks. Usually, features
are detected, matched, outliers are rejected and then passed through a series
of layers in order to get representative feature vectors. Finally, as introduced
in [88], the parameters of a relative transform (consisting of a translation and
a rotation) are predicted jointly using at least two fully connected layers.
In the previous section, a light-resistant optical flow has been computed

by INV-Net. Based on this, it is not necessary to search for matches in the
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Figure 6.7.: Architecture of Flow2PoseNet. The left part of the network aims to
predict accurate optical flow from images, normal- and vertex-maps,
using textural features from images, shading features from normal
vectors and geometrical features from vertices in order to predict ac-
curate and light resistant flow fields. The pose of the rigid scene is
computed in three steps from the warped normal- and vertex-maps.
The first step predicts the normal vectors from the warped normal-
maps. The second step predicts the translation from the warped and
rotated vertex-maps. The third step predicts a correction transforma-
tion to refine the predicted rotation and translation incrementally.

entire image. Considering images, normal maps, and vertex maps from two
views, that have been warped towards one reference frame using the computed
optical flow, the data at each pixel-position theoretically matches densely. It
should be mentioned, that there still might be many erroneous and inaccurate
regions in the flow field, especially in feature-poor regions, where the flow is
mainly interpolated. Nevertheless, previous work has shown that in general
more accurate poses are estimated if only a few good features are used for
the calculation, instead of many less good ones. This idea is implemented by
an additional feature extraction from the warped normal and vertex maps for
the pose prediction sub-network. It should be noted that in areas where good
features for the pose estimation are found, usually also a good optical flow
is available. In a way, both the optical flow and the subsequently calculated
pose are based on the identical good features. Nevertheless, in the case of low
quality features, as is the case with texture-poor and smooth surfaces, or even
many false features due to light changes, we benefit from the more general
information of the dense flow field.

In order to obtain best poses from the warped vertex and normal maps,
we investigated two different approaches (1 Step Method and 2 Step Method),
that have led to the conclusion that a 3 Step Method as combination of both
performs best, as it compensates for the weaknesses of each method.
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1 Step Method This approach uses the concatenated warped vertex maps
to extract jointly rotation matrix R and translation vector t that align the
vertex maps rigidly. The relation is based on consistency assumption (6.4).
Note that after warping, the matching vertices are theoretically placed at the
same location in the concatenated input. Due to convolutional layers the
network is able to extract reliable locations, where a more accurate optical
flow has been provided. The basic structure is shown in Figure 6.7 at branch
0. on the right.

2 Step Method This approach uses two steps to predict rotation and transla-
tion individually by two separate networks. Following the consistency property
of Equation 6.3, the warped normal map N1 and the reference normal map N0

are related by a rotation matrix R only. In a first step, this relative rotation
R is predicted by stacking N0 and the warped N1 to processing them through
several convolutional layers, followed by two fully connected layers in order to
predict an optimal rotation with respect to the normals vectors.

Based on the third consistency property of rigid transformations, given in
Equation 6.4, the translation t is predicted from the warped vertex map V1,
that has been rotated by matrix R and the reference vertex map V0. Rotation
matrix R, from the previous step, has been applied in order to get dependency
on the translation vector t for this inference step only. The structure is again
shown in Figure 6.7 at branches 1. and 2. on the right.

3 Step Method Rotation and translation are two fundamentally different
operations that have a strong influence on each other. The smaller a rotation,
the better it can be approximated linearly. Unfortunately, the joint extraction
as in the 1 Step Method may yield inaccuracies in case of large rotations. In
these situations, it may be beneficial to extract them separately like in the
2 Step Method. Nevertheless, small rotational errors, from the first step of
this approach influence the predicted translation from the second step.

The idea of the 3 Step Method is to first apply the 2 Step Method to pre-
align the vertex maps. In a third step a correctional rotation matrix R̃ and
a correctional translation vector t̃ are jointly predicted from the warped and
pre-transformed vertex map RV1 + t and reference vertex map V0. The final
pose P = (R̂, t̂), as visualizes in Figure 6.8, is then given by:

R̂ = R̃R, t̂ = R̃t + t̃ (6.5)

For extracting this correctional transformation the 1 Step Method is used. This
is beneficial, since the correctional rotations are usually small, which makes it
possible to predict the rotation and the translation jointly in order to avoid
weaknesses of successive prediction as in the 2 Step Method. The structure is
again depicted in Figure 6.7 at branches 1., 2. and 3. on the right.
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Figure 6.8.: Point clouds of the two exemplary views. The resulting transformation
P = (R̂, t̂) aligns the point cloud of the first view to the one of the
second view. The registered combined point cloud is shown besides.

6.5. Datasets and Data-Processing

There is already a number of public datasets for optical flow estimation (Fly-
ing Chairs, Sintel, Kitti, Flying Things3D) as well as for pose estimation and
odometry (Kitty Odomety, 3D Match, ModelNet14, ShapeNet). Unfortunately,
only datasets that provide both images and depth data are suitable for the
proposed investigations. Given the depth map and the camera calibration,
the required normal maps can be approximated by practical methods, such as
introduced later on in Chapter 8 and are thus not prerequisites. Therefore, for
the evaluation of the estimated flow fields and the inferred poses, the estab-
lished Kitty Odomety dataset will be used later on. It should be mentioned,
that the included scenes do not reflect the main application area for the de-
velopment of the method, since they involve quite small rotations that barely
show shading differences due to movement of the camera instead of the scenes
themselves.

Nevertheless, for the task of rotating objects, ground truth data of both
optical flow and scene pose are required for training the presented network.
In addition, it is advantageous to be able to use absolutely correct normal
vectors, depth and calibration data to avoid the influence of errors in the data
on the training. To the best of our knowledge, no such dataset exists. In
addition, a general dataset for object orientation in the context of 3D recon-
struction is not available to our knowledge. Therefore, several datasets have
been created together with our investigations that were made publicly avail-
able. Among them are two synthetic datasets with rendered images, normals,
depth maps and ground truth of camera calibration, optical flow and camera
positions. The first one contains data with fixed illumination of the scene
(ConsistentLight) for both camera views. The other one contains scenes with
inconsistent illumination (InConsistentLight), where the position of the light
source changes significantly between the views. This simulates the difficult
case, where, for example, the object rotates, which may dramatically change
the angle of incidence of the light (violated brightness constancy assumption).
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(a) Models of synthetic training data

(b) Models of synthetic test data (c) Models of real test data

Figure 6.9.: 3D models that have been used to create the synthetic and real
datasets. (a) shows the models on which the synthetic training scenes
are based on, (b) shows the models of the synthetic test scenes (c)
shows the models, that result from the captured real data.

The scenes of the synthetic datasets were created and rendered using Unity
[2]. To avoid dependencies on the background, 75 spherical backgrounds were
added to the scenes randomly. The grayscale images, depth maps, normal
maps and optical flows have been rendered for random scenes (random ob-
jects, random object positions and orientations, random light positions) each
from two random camera perspectives. The calibration information, the cam-
era positions and the position of the illuminating point light are also provided
in the dataset. For both synthetic datasets, a training subset and a test subset
were created. The training sets contain 20,000 random scenes in which objects
were randomly placed. The test sets contain 1,000 random scenes in which
other objects that have not been used in the training sets were chosen. The
22 models used for the training sets are shown in Figure 6.9 (a) and the eight
models used for the test sets are shown in Figure 6.9 (b). Figure 6.10 (a)-(d)
shows the rendered data for an exemplary scene.

In a similar format, a real dataset (BuddhaBirdRealData) is provided, which
consists of captured data from 5 different objects, shown in Figure 6.9 (c).
The images were captured by monochrome cameras. The depth data has
been reconstructed by the structured light approach based on the presented
procedure of the previous chapters. The normal maps were estimated using
a geometry-based method that will be presented in the upcoming Chapter 8.
After manually aligning the partial scans, the semi-dense flow fields between
the views have been directly computed from projecting the aligned point clouds
to the calibrated camera views. During the reconstruction process, the scenes
have been illuminated by a projector, that has been calibrated jointly with
the cameras which thus also provides the light position in the scenes. Each of
the five models has been captured from 8 positions with two different cameras
each. Flow and pose data is available for each of the camera combinations
of adjacent positions, which yields ground truth data for 40 combinations per
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object. This results in 200 ground truth scenes of the real data. Thereby, the
first 40 pairs represent the scans within one scan head (consistent light) with
8 reconstructions per object. The last 160 pairs represent the inconsistent
light case with combinations of camera views between adjacent scans (that
use different projectors). Similar to the synthetic case Figure 6.10 (e), (f), (g),
(h) shows the captured and estimated data for an exemplary real scene.

6.5.1. Data Sources and Data Formats

The 3D Models that have been used to create the datasets are taken from
different sources and free to use. Models [m9, m12, m27] were taken from the
Stanford 3D Scanning Repository [149], while models [m2, m7, m8, m11, m20]
were taken from [192]. Models [m1, m3, m5, m6, m10, m13, m14, m17, m18,
m21, m23, m24, m25, m26, m29, m30] can be found on the Smithsonian 3D
Digitization page [148] that collects a large amount of 3D data from several
museums and archives, from which a lot is free to use. Finally, models [m4,
m15, m16, m19, m22, m28, m31, m32, m33, m34, m35] resulted from own
research and are released with this work.
Each scene of the datasets, no matter if real or synthetic, consists of the
following data parts:

• image0 and image1 contain the 8-bit integer grayscale images of the two
camera views.

• data0 and data1 are .json files that contain the intrinsic calibration ma-
trices K, camera rotation R and translation t, the minimal and maximal
depth values minDepth and maxDepth, the minimal and maximal val-
ues of the horizontal and vertical optical flows minF lowX, maxFlowX,
minF lowY andmaxFlowY and the coordinates if the light source lightPos.

• depth0 and depth1 are 16-bit integer grayscale images that need to be
scaled after loading using minimal and maximal depth values from the
data files:

D =D ⋅ maxDepth −minDepth

65535
+minDepth

• normal0 and normal1 are 24-bit integer RGB images in tangent space
that can be re-transformed to spatial space by:

n = (2n1

255
− 1, 2n2

255
− 1, 1 − 2n3

255
)

• flow0 and flow1 contain the horizontal and vertical displacements of
the respective flow fields between the views. The flows are stored as
16-bit integers in three channel images (flowX, flowY, zeros) and need
to be scaled similar to the depth files.

Note that missing/masked pixels for which no depth information is available
contain zeros in the depth, flow and normal files. After rescaling and shifting
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(a) Rendered images (b) Rendered depth
maps

(c) Rendered normal
maps

(d) Rendered flow
fields

(e) Captured images (f) Reconstructed
depth maps

(g) Computed nor-
mal maps

(h) Computed flow
fields

Figure 6.10.: Example scene of the synthetic (top row) and real (bottom row)
datasets. Each scene contains images, depth maps, normal maps
and flow fields of two different camera views. In addition a data
file for each camera is stored, that contains calibration information,
camera position, light source position and minimal/maximal values
of flows and depths in order to allow memory efficient saving of the
data.

these files, the mask should be applied again to keep the masking information
with values of zero.

The presented network uses vertex maps instead of depth maps. These can
be computed from the depth data and the given calibration information by
applying the following operation to each image pixel (x, y):

V (x, y) = K−1(x y 1)T

∥K−1(x y 1)T∥2
⋅D(x, y) (6.6)

6.5.2. Camera Pose and Scene Pose

The given depth, vertex and normal maps are independent of any camera
pose (assuming the camera being placed in the world origin), as these are
usually not available beforehand and need to be computed by the procedure.
In order to use them with respect to the given camera pose in the world
coordinate system, the vertex maps (or point clouds) and normal maps can
be transformed in the following way. Given a camera pose P = (R, t), the 3D
point with respect to a complete camera matrix P =K[R∣t] is given by:

V (x, y) = −RTt +RTV (x, y) (6.7)

and the normals of the respective 3D points are given by:

N(x, y) =RTN(x, y) (6.8)

For completeness, we remind, that the camera itself is located in RTt.
In the usual case of unknown camera poses, only the relative transformation

between two vertex maps / point clouds can be estimated from the given
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data. In order to train a network, as introduced in the previous sections, it
is necessary to convert the provided data to relative transformations between
two views. If we are given the camera extrinsics of two views R0, t0 and R1,
t1, the relative pose between vertex map V0 and vertex map V1 is given by

R01 =R1R
T
0 , t01 = t1 −R1R

T
0 t0 (6.9)

where vertex map V0 is mapped to vertex map V1 by applying the transfor-
mation as:

V1 =R01V0 + t01 . (6.10)

Example code on how to read, transform and also visualize the given data can
be found together with the datasets.

6.5.3. Pre- and Post-Processing of Data

Point clouds that need to be aligned may theoretically be of arbitrary scale.
Neural network based approaches, like the presented one, need to extract
meaningful features within the given vertex maps to find corresponding points
from which the desired transformation can be predicted. For this purpose, the
weights of the network that performs this task are determined optimally using
a data-based training. Thereby, the learned weights should have the same
effective influence on all point clouds. Unfortunately, it is not possible to
extract meaningful features from differently scaled vertex maps with always
the same weights. Especially, learned thresholds for activations within the
network may not be applicable.
A practical way around is to scale and move the point clouds, or equivalently

the 3D data in the vertex maps, approximately towards the unit cube, which
is located at the world origin. Within this working volume, the neural network
can work effectively and perform the alignment. The calculated pose is then
combined with the previous transformation towards the unit cube and thus
provides the desired alignment operation on the raw data.
In a first step, the point clouds are moved to the origin by subtracting the

centroids. In a second step the point clouds are scaled to fit approximately
into the unit cube. Note that the method presented assumes each pair of point
clouds to be of similar scale, as the underlying depth data usually comes up
from the same sensor. Therefore, the scaling factor s towards the unit cube
should be chosen similar for each pair of point clouds that are processed.

Let be given the two point cloudsX0 = {x(0)1 , ..., x
(0)
M } andX1 = {x(1)1 , ..., x

(1)
N }

that need to be aligned. The centered point clouds at the origin are given by:

X0 − µ0 = {x(0)n − µ0 ∣ x(0)n ∈X0}, µ0 =
M

∑
m=1

x(1)m

X1 − µ1 = {x(1)m − µ1 ∣ x(1)m ∈X1}, µ1 =
N

∑
n=1

x(1)n

(6.11)
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In a second step X0 − µ0 and X1 − µ1 are scaled jointly and robustly in order
to ensure that 90% of the point clouds map into the according subspace of the
unit cube ([−0.45,0.45]3 ⊂ R3), that is located at the origin. This robustifies
the scaling and reduces the negative effect of outliers dramatically. Note that
in general it can be assumed that at least 90% of a point cloud should contain
usable data. Let be given the set of values with maximal absolute coordinates
of both centered point sets, Y = {max(∣x∣) ∣ x ∈ (X0 − µ0) ∪ (X1 − µ1)}.
Having sorted the values yn ∈ Y in ascending order y1 ≤ ... ≤ yM+N , the scaling
factor, that ensures 90% of both point clouds being mapped into the cube,
defined above is given by s = 1/y⌊0.45(M+N)⌋, where ⌊⋅⌋ denotes floor rounding
to integer values. The scaled, centered point clouds, that are ready to be fed
to the network, are finally given by:

X̃0 = s(X0 − µ0), X̃1 = s(X1 − µ1) (6.12)

Having computed a pose P̃ = (R̃, t̃) using the neural network, that aligns the
scaled point clouds by

R̃X̃0 + t̃ ≈ X̃1, (6.13)

the final transformation P = (R, t), that aligns the raw point clouds X0 and
X1 is given by

R = R̃, t = 1

s
t̃ + µ1 − R̃µ0 (6.14)

6.6. Coherent Learning of INV-Flow2PoseNet

The goal of training the network is to estimate the best possible optical flow
that will enable stable extraction of the pose. Therefore, to get an end-to-
end trainable network, we define a joint loss function that penalizes both the
ground truth flow and the extracted pose under given flow.
The PWC-Net structure predicts flows F (l) of different levels l = 0, ..., L.

Flow2PoseNet moreover uses the flow to predict the relative rotation R and
translation t. The upcoming sections will introduce the different error types
that are finally combined to provide the overall training loss for the network.

Therefore, let according ground truth be given by F
(l)
GT, RGT and tGT.

6.6.1. Multiscale Endpoint Error

The multiscale endpoint error (EPE) penalizes the different levels of the flow
calculation with different hardness, provided by the respective weighting pa-
rameters αl:

LEPE(F (0), ..., F (L)) =
L

∑
l=0

αl∥F (l) − F
(l)
GT∥F (6.15)

with suitable level weights αl, l = 0, ..., L and Frobenius matrix norm ∥ ⋅ ∥F .
In case of sparse data the differences inside the norm are masked in order to
take the sparsity into account.
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Note that the higher levels, which describe the rather coarse flow, are more
important than the lower levels, which get the higher levels as input. However,
since the higher levels have a lower resolution, the flow errors in absolute num-
bers are smaller than those of the lower levels. As a rule of thumb, due to the
pooling between each level, the weighting should be at least halved each time to
account for the resolution discrepancy. The weights that have been used for the
proposed network are {α0, ..., α6} = {0.001,0.0025,0.005,0.01,0.02,0.08,0.32}.

6.6.2. Alignment Error

A measure that treats both rotation and translation jointly is the well-known
alignment error. It models the mean Euclidean distance of all point corre-
spondences given by the groundtruth flow:

LAE(R, t) =∑ ∥RV0(x, y) + t − V1(x + F 01
x , y + F 01

y )∥F (6.16)

This measure best describes the problem to be solved. It has the advantage
that it weights the impact of rotation against the translation. It is again im-
portant to mask errors that contain invalid pixels either of V0 or of warped V1,
in order to ensure that only locations are taken into account, where matching
vertices in both views are available.
Note that this error alone might erroneously interchange rotations and trans-

lation effects in order to receive a minimal alignment error. These interchanges
can be prevented by adding some direct translational and rotational error
terms to the overall loss function. These additional terms act as a regulariza-
tion to enforce a better decomposition into translation and rotation.

6.6.3. Translational and Rotational Errors

The error of the predicted translation is given by the Eucliden distance towards
the ground truth translation:

LTRANS(t) = ∥t − tGT∥2 (6.17)

Special attention is required for the rotation error. A suitable differentiable
error between two rotation matrices R and RGT is given by the angular error,
which is defined by the absolute value of the rotation angle θ of the relative
rotation Rrel =RRT

GT. Having a look at the conversion towards the axis angle
representation there are basically two ways to compute the rotation angle.
The first relation is given with the trace of the rotation matrix:

Tr(Rrel) = 1 + 2 cos(θ) (6.18)

Another way is to calculate the rotation angle from the length of the extracted
rotation axis. Having an explicit rotation matrix, the rotation axis u is given
by:

Rrel =
⎛
⎜
⎝

a b c
d e f
g h i

⎞
⎟
⎠
⇒ u =

⎛
⎜
⎝

h − f
c − g
d − b

⎞
⎟
⎠

(6.19)
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The rotation angle θ is related to the length of u by:

∥u∥2 = 2 sin(θ) (6.20)

A direct computation of θ from Equation (6.18) or (6.20) requires the use of an
inverse trigonometric function, either arcus sinus or arcus cosinus. Unfortu-
nately, these yield numeric problems due to singularities in case of angles close
to ±π

2 or ±π, which is unsuitable for a general loss function that is required
to be differentiable. To avoid this, we used a more stable way to compute θ
based on the two-dimensional arcus tangens atan2 with both arguments:

LROT(R) = ∣atan2(∥u∥2,1 −Tr(Rrel))∣ (6.21)

6.6.4. Joint Training Loss

The joint loss function, is subsequently given by:

L = LEPE(F (0), ..., F (L)) +LAE(R1Step, t1Step)
+LAE(R2Step, t2Step) +LAE(R3Step, t3Step)
+LTRANS(t3Step) +LROT(R3Step)

(6.22)

In order to speed up the training procedure in the beginning, the gradients
of the computed optical flow have been detached before backpropagating the
alignment errors. Once the sub-network for optical flow prediction has sat-
isfactorily formed its weights we attached the gradients and trained the full
network in an end-to-end manner.

6.6.5. Representation of Rotation

In order to ensure the predicted rotation matrix to be a proper rotation, a
minimal parameterization by Euler Angles is chosen. Therefore, three values
(θ, ρ, ϕ) are predicted by the network, defining the rotation angles around the
x, y and z axes by the rotation matrices:

Rx =
⎛
⎜
⎝

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

⎞
⎟
⎠
, Ry =

⎛
⎜
⎝

cos(ρ) 0 sin(ρ)
0 1 0

− sin(ρ) 0 cos(ρ)

⎞
⎟
⎠
, Rz =

⎛
⎜
⎝

cos(ϕ) − sin(ϕ) 0
sin(ϕ) cos(ϕ) 0

0 0 1

⎞
⎟
⎠

(6.23)

The total rotation is given by R = RxRyRz as the consecutive execution of
these rotations. Vice versa, the respective Euler Angles can be extracted from
a given rotation matrix R by:

θ = atan2(−R23,R33) (6.24)

ρ = atan2(R13,
√

R2
23 +R2

33) (6.25)

ϕ = atan2(−R12,R11) (6.26)

This conversion is especially used to compute the Euler Angles of the refined
rotation matrix R̂ in the 3 Step Method of Section 6.4.
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6.7. Evaluation

For evaluation, we compare the calculated optical flow and the resulting regis-
tration qualitatively on different synthetic and real datasets. Highly accurate
results visualize a good generalization without finetuning from synthetic train-
ing data to the difficult real test scenes. Figure 6.11 and Figure 6.12 show the
results for exemplary objects from the training (top 3 rows) and test datasets
(bottom 3 rows) for the consistent and inconsistent light (moving light source)
case. Thereby the first columns show the input data consisting of images, nor-
mal and depth maps (that are converted to vertex maps using the calibration
information, as in Equation 6.6). The second column shows the resulting op-
tical flow in comparison to the semi-dense ground truth optical flow in column
3. Columns 4 and 5 finally show the initial and the registered point clouds
using the proposed neural networks. Special attention should be given to row
6 of Figure 6.12, which shows the performance of the neural network on a real
test scene without finetuning.
Further positions of the real scene are shown in Figure 6.14. It visualizes

the performance of the method applied to 8 partial scans of the Buddha scene
(from the BuddhaBirdReal dataset), as it usually comes up from 3D scanners.
Using the alignment given by the neural network, a few iterations of Iterative
Closest Points (ICP) for refinement yield good results on the overall aligned
point cloud of the object.

In addition, we also consider a network trained on the popular training
sequences of Kitti Odometry and evaluate it on the test data as shown in
Figure 6.13. As the Kitti dataset has less strong rotations and less shading
changes, it is not the typical use case for the proposed method. Nevertheless,
the proposed method works reliable for this easier kind of situations as well.

6.7.1. Quantitative Evaluation

For quantitative evaluation we compare the different architectures (1 Step and
3 Step) on the datasets published together with this work. Table 6.1 shows the
results on the full subsets with consistent light and inconsistent light. In both
cases the 3 Step method yields superior results in comparison to the standard
procedure that directly predicts rotation and translation jointly. Especially
the resulting rotation is much more accurate, resulting in an alignment error
that is up to 3 times smaller than in the standard prediction method.

Light Consistent Inconsistent

Data Type Method EPE AE EPE AE

Train Data 1 Step 1.83 0.035 2.33 0.035
Train Data 3 Step 1.83 0.012 2.33 0.013
Test Data 1 Step 4.09 0.037 8.08 0.048
Test Data 3 Step 4.09 0.023 8.08 0.035

Table 6.1.: Quantitative comparison of the 1 Step and the proposed 3 Stepmethods
to predict the pose from given warped vertex and normal maps.
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Input
Optical
Flow

Ground
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Aligned
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Synthetic
Test Data
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Figure 6.11.: Qualitative results of the proposed method on training (top 3 rows)
and test (bottom 3 rows) data of the synthetic consistent light
dataset. The situation of consistent light represents the standard
case, where for example the camera moves through a static scene with
static light sources. The brightness constancy assumption is usually
not violated. The network generalizes well from known training to
unknown test data.
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Figure 6.12.: Qualitative results of the proposed method on training (top 3 rows)
and test (bottom 3 rows) data of the synthetic inconsistent light
dataset as well as real test data. The situation of inconsistent light
represents the situation under investigation, motivating this paper,
where the light sources or the objects in the scene move or rotate,
yielding strong shading changes. The brightness constancy assump-
tion is dramatically violated. The network still generalizes well from
known training to unknown test data. Even for real data without
additional finetuning the results are satisfying.
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Figure 6.13.: Qualitative results of the proposed method on training and test data
of the Kitti Odometry dataset. The method also works on this kind
of scenario with less rotations and less shading changes than in the
mainly investigated case, but also handles noise resulting from the
lidar depth mesurement in the Kitti data. The network generalizes
well from known training to unknown test data.
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Figure 6.14.: Application of the method to a full sequence of partial reconstruc-
tions of a the real Buddha object from the BuddhaBirdReal dataset.
Such sequences usually result from 3D scanners (as here from a struc-
tured light scanner). Since usually a turntable is used, strong rota-
tions (≈ 45○) and shading changes disturb the data. After the pre-
alignment a few iterations of the ICP algorithm are applied to refine
the alignment of the point clouds. The image on the bottom right
shows the result on the overall aligned full point cloud of the statue.

6.7.2. Predicted Dense Optical Flow

A special feature of the proposed method is its coarse to fine pyramidal optical
flow base, combined with the rigid pose extraction. Therefore one can assume
that the optical flow predicting sub-network learns rigidity relations from the
extractability of the rigid pose from the dense optical flow. As shown in Figure
6.15, the ground truth optical flow (column 2) that has been used for training
and evaluating the networks, is sparse, as it only contains the flow of points
that are visible in both views. As the data is created synthetically, it is possible
to also render dense ground truth optical flows (column 4) that contain the
flow of points which are occluded in one of the views and therefore may not be
computable at all by the network. As can be seen, the predicted optical flow
(column 3) is dense. It also predicts flow values for points that are not visible
in both views. These values result from context of other points, where the flow
can be estimated stably. The network learns how the flow behaves for rigid
objects and transfers the knowledge to interpolated pixels. This works for
objects that are known from the training set (rows 1 and 3) as well as for test
objects, that have never been used for training (rows 2 and 4). This applies
to the ConsistentLight case (rows 1 and 2) and to the InconsistentLight case
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(rows 3 and 4), as well. Table 6.2 moreover shows that the resulting Endpoint
Errors (EPE) do not dramatically increase for the invisible points, which
indicates, that the network learns to predict flows for the invisible points from
context, according to the behavior of rigid objects.

Consistent Light

Data Type Visible Points EPE Invisible Points EPE

Train Data 2.7446 3.4978
Test Data 3.6411 4.9284

Inconsistent Light

Data Type Visible Points EPE Invisible Points EPE

Train Data 3.6974 5.4024
Test Data 4.7996 4.7703

Table 6.2.: Quantitative results for the visible and invisible points in the evaluated
scenes. The resulting Endpoint Errors (EPE) do not heavily increase.
The network is still able to predict accurate flows from context of visible
points and to generalize to the test data for the consistent as well as
for the inconsistent data.

6.8. Conclusion

In this chapter, a method has been presented that combines optical flow esti-
mation of rigid scenes with a posterior pose estimation. In this way, a method
has been developed that allows scenes with difficult lighting conditions to be
registered in a stable way.
Optical flow is thereby estimated accurately using geometric, shading and
texture features. The variety of different feature types allows the system to
be trained to be illumination resistant (using geometric and normal features)
without having to completely sacrifice potentially important texture features.
The pose is then stably estimated from the warped normals and vertex maps
using a new 3-step procedure. This has, compared to typical approaches that
directly infer the pose, significant advantages especially in cases with strong
rotations that often cause the considered shading changes.
The combination of optical flow and rigid pose estimation allows the pose to
benefit from the features of different levels of the underlying coarse-to-fine flow
approach, which means that the method is not dependent on highly accurate
features and can also align smooth scenes with weak features. In turn, the
optical flow sub-network learns a typical flow behavior of rigid scenes from
the posterior estimability of the pose. This allows accurate dense estimates
to be achieved, even for occluded areas based on context and overall learned
behavior.
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Input Sparse GT Predicted Dense GT

(a) Consistent Light: Train Object

(b) Consistent Light: Test Object

(c) Inconsistent Light: Train Object

(d) Inconsistent Light: Test Object

Figure 6.15.: Qualitative results of the predicted (dense) optical flow. The network
allows to compute accurate flows for invisible pixels from context of
visible parts for the consistent as well as for the inconsistent data.
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7.1. Introduction

Point cloud registration is an important task in computer vision, computer
graphics, robotics, odometry and many other disciplines. The problem has
been studied for a long time and many different approaches have been estab-
lished. In the case of existing rough initializations, the Iterative Closest Point
(ICP) method is widely used. Often only the pairwise problem is treated. In
case of many applications, especially in 3D reconstruction, closed rotations of
sequences of partial reconstructions have to be registered. In this chapter, it
will be shown that there are considerable advantages if ICP iterations are per-

105



Chapter 7: Automatic Alignment of Full Turn Object Scans

formed jointly instead of the usual pairwise approach (Pulli’s approach [135]).
Without the need for increased computational effort, lower alignment errors
are achieved, drift is avoided and calibration errors are uniformly distributed
over all scans. Based on the underlying global energy functional, the joint
approach is further extended into a global version, which not only considers
one-sided adjacent scans, but updates symmetrically in both directions. The
result is an approach that leads to a much smoother and more stable conver-
gence, which moreover enables a stable stopping criterion to be applied. This
makes the procedure fully automatic and therefore superior to most other
methods, that often tremble close to the optimum and have to be terminated
manually. A complete procedure is presented, which in addition addresses the
issue of automatic outlier detection in order to solve the investigated problem
data independently without any user interaction.
The task of point cloud registration is to align two point sets so that they
resemble each other as closely as possible in as many regions as possible. In
order to make this problem well-defined, it is assumed that the point clouds
represent the same scene or at least that sufficiently large parts of the point
clouds represent overlapping parts of the scene. Otherwise, no matching areas
can be identified and the problem cannot be solved.
A distinction is made between rigid and non-rigid registration. For the rigid
case, two point clouds are aligned only by rotation and translation (in some
cases also scaling). The appearance and proportions are fully preserved. In
contrast, for non-rigid registration, deformable objects are aligned by non-
linear transformations.
In classical computer vision and robotics, rigid alignment is by far the most
common case and has been extensively studied. For this purpose, methods
have been established, which simultaneously detect point correspondences and
align them iteratively. In particular the ICP approach ([13], [195], [25], [24])
has to be named, which has been successfully applied for decades and that
will also form the basis of the presented procedure.
A special case, which occurs in many practical applications, is given by a se-
quence of point clouds, which partially overlap pairwise and whose last point
cloud closes up with the first one. In this case, it is no longer a matter of sev-
eral pairwise registration problems but a global over-determined registration
problem. This is because each point cloud has two neighbors (last and next
one) with which it must be aligned. In the case of real data, such as the partial
reconstructions of a 3D scanner, pairwise sequential alignment would usually
lead to a drift, i.e. a large gap or too much overlap between the last and
first position. This drift occurs when the partial alignment errors and possible
calibration errors in the partial reconstructions add up to a large error. To
avoid such drift, it is common to apply Pulli’s procedure [135], which involves
aligning and merging opposite pairs of adjacent point clouds. The resulting
merged larger point clouds are then further treated together. In this way, the
error is not concentrated between two scans and the drift is distributed over
a larger number of scans.
In this chapter will be shown that there are nevertheless better ways with
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much better properties to solve the global alignment problem in a stable way
and to actually distribute the drift evenly without higher computational effort.
It will be shown that a joint iteration of the pairwise registrations distributes
the drift uniformly and achieves lower alignment errors. Furthermore, it will
be presented how the standard procedure of pairwise minimization can be
extended into a global procedure by symmetrically registering each scan with
the next and previous scan in the sequence. This results in a global approach
that leads to a much smoother convergence, which allows the reliable use of
automatic stopping criteria. In contrast, standard procedures usually begin to
tremble near the minimum, which often requires a manual termination of the
iterations. Finally, a practical approach to the automatic detection of outliers
is presented. This is to provide a complete and stable solution to the problem
without any user interaction. To allow maximum reproducibility, the entire
procedure is attached as pseudo-code at the end of the chapter.

Figure 7.1.: Partial reconstructions of a full turn with 8 separate scans and the
complete point cloud after alignment (middle).

7.2. Related Work

The problem of point cloud registration has been well studied for several
decades. Explicit methods for rigid alignment of given point correspondences
from two datasets have already been developed in the last century by Arun
et al. in [10] and Umeyama in [165]. They are based on the singular value
decomposition and due to their simplicity they are still the basis of the mod-
ern state of the art. These methods can further be robustified by additional
weights, based on the certainty of the correspondences as shown by Arun in
[4]. In [33] these approaches are extensively evaluated and compared with
other approaches.
For many applications, there are more than two views to be aligned. In order
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to treat multiple point clouds jointly, an extension of the Orthogonal Pro-
crustes Problem has been introduced by Berge in [159]. In [162] Trendafilov
and Lippert use a relaxation of the orthogonal constraints. Jointly obtained
solutions are projected to the space of the orthogonal matrices afterwards.
Piztarro and Bartoli [132] transferred the problem into a simple semi-definite
programming in order to ease solving. These methods are no longer explicit
and require higher computational effort. In the context of point cloud align-
ment performed in the upcoming task, the given correspondences are erroneous
approximations and change from iteration to iteration. Therefore, a higher ac-
curacy at the costs of additional internal iterations is not reasonable.
Usually, no exact point correspondences are available. A famous principle
proven in practice is Iterative Closest Point [13], [135], [195], which iteratively
selects the closest points of the data sets as correspondences and calculates
infinitesimal updates accordingly. There are also variants that take the normal
vectors of the point clouds into account, as the one of Masuda et al. [113] or
Gelfand et al. [52], and thus improve the alignment for badly sampled and
very smooth objects.
In order to accelerate convergence of the methods a possibility is to adeptly
sample the point clouds like proposed by Rusinkiewicz and Levoy in [140] or by
Gelfand et al. in [52]. Outliers are often efficiently detected and rejected like
introduced by Zhang [190], Dorai et al. [30] or Rusinkiewicz and Levoy in [140].
Another way to speed up convergence is to extrapolate iteration updates like in
[176]. There are also methods that accelerate by a multi-resolution approach
like proposed by Jost and Hügli [83] or recently by Anderson acceleration
as shown in [129]. In order to register a closed sequence of scans, as it is
the case in a large number of applications, and to distribute alignment and
calibration errors to all views, Pulli’s method [135], followed by joint iterations,
was considered to be the state of the art for a long time. In this chapter we will
show that there is a better way to improve global alignment without increasing
complexity, resulting from a joint iteration in a global approach that updates
symmetrically towards all neighbors.

7.3. Background: Rigid Point Cloud Alignment

The most common algorithm for rigidly aligning point clouds is Iterative Clos-
est Point. Thereby, the closest points of two point sets are chosen as corre-
spondences and optimally aligned with each other. Afterwards, new corre-
spondences are chosen, based on the improved alignment. Iteratively, the
alignment of the point clouds is improved. For given point correspondences
there is a closed form of the optimal rotation matrix and the translation vec-
tor for the pairwise case (Procrustes Analysis). Since this is also the basis
of the method presented in the following and in order to make the chapter
independently, the procedure for the pairwise case will be briefly presented.
Afterwards, it will be shown how the method can be applied to a full turn
according to the current state of the art.
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7.3.1. Orthogonal Procrustes Problem

Assume two sets of point clouds P = {x0, ...,xN−1} and P ′ = {x′0, ...,x′N−1}
consisting of matching point pairs xn ↔ x′n, for n = 0, ...,N − 1 are given. The
task is to find an optimal rotation matrix R and translation vector t in order
to align points xn from P by Rxn + t to points x′n from P ′. Therefore, the
sum of Euclidean distances between all point pairs is minimized:

argmin
R, t

N−1
∑
n=0
∥x′n −Rxn − t∥22 (7.1)

Setting the derivative of (7.1) with respect to translation vector t equal to
zero leads to the minimizer t of the energy:

t = 1

N

N−1
∑
n=0

x′n −R
1

N

N−1
∑
n=0

xn = µP ′ −RµP (7.2)

Thereby µP and µP ′ denote the centroids of the point clouds computed by the
mean of the point sets. Inserting Equation (7.2) into the problem formulation
(7.1) decouples the problem. It is equivalent to aligning point clouds with zero
centroids by optimal rotation only:

argmin
R

N−1
∑
n=0
∥q′n −Rqn∥22,

with qn = xn − µP

and q′n = x′n − µP ′
(7.3)

Calculating the norm explicitly and replacing the remaining scalar product by
the trace formulation leads to the following formulation of the problem that
can be solved in terms of the singular value decomposition of matrix H. The
validity of this optimizer can be shown by application of Cauchy-Schwartz
Inequality.

argmax
R

Tr(R
N−1
∑
n=0

qnq
′T
n) = argmax

R
Tr(RH) →R =VUT, with H =UΛVT

(7.4)

Weighted Case When working with real data it is usual to apply certainty
weights wn ≥ 0 with ∑N−1

n=0 wn = 1 with respect to the point pairs to the align-
ment error (7.1) in order to robustify the approach.

argmin
R, t

N−1
∑
n=0

wn∥x′n −Rxn − t∥22 (7.5)

The problem is solved similarly to the unweighted case using weighted versions
of the centroids and matrix H:

µP =
N−1
∑
n=0

wnxn, H =
N−1
∑
n=0

wnqnq
′T
n (7.6)
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7.3.2. Iterative Closest Point (ICP)

Usually, no point correspondences are available between two point clouds. In
the procedure of ICP, these are approximately chosen in each iteration as the
nearest points between the data sets and infinitesimal updates are calculated
by Orthogonal Procrustes Analysis. Since it is a least-squares formulation, it
is important to assess the quality of the correspondence. For this purpose,
outliers, i.e. points that obviously have no matches in the other data set, are
rejected. All other points are weighted according to their quality, which is
often done by the point-to-point distance. Sampling rates and methods can
also have a strong influence on performance and should not be disregarded.

Initialization For this procedure to work, an initial alignment is urgently
required. This prevents the procedure from getting stuck in a local minimum.
Based on feature points in the object, from texture as well as from geometry
an initial alignment of the point clouds can be achieved as shown in Chapter
6. Based on a good initial registration, the ICP algorithm has proven over a
long period of time to be a good choice for refining the alignment.

7.3.3. Full Turn Registration: Pulli’s Approach

In a variety of practical applications, full turns of overlapping partial recon-
structions are captured as depicted in Figure 7.1. Usually, the last scan over-
laps with the first one and therefore completes the reconstruction process. In
sequential pairwise registrations of the scans, a drift error between the last
and the first position often occurs. To avoid or at least reduce this drift error,
Pulli’s approach [135] has always been the undisputed state of the art. One
after the other, scans are registered and merged with their neighbors. These
merged point clouds are then registered again until the whole object is com-
posed. In fact, the error is distributed more evenly than in the naive approach
and is not added up to a single gap, but it is far from uniform. While the
first registration procedures only contain the local alignment errors, the last
step combines the alignment errors of several sub-alignments and possible cal-
ibration errors. Therefore, in a further step, often pairwise iterations of all
scans are performed jointly, which can lead to strong alternations in the global
convergence. In the following, the problem will be formulated completely as a
global registration problem, and the connection of the joint pairwise iterations
to the minimization of the problem will be shown. In particular, the prob-
lem of alternating convergence in this case becomes clear. This is, since the
pairwise approach considers in each iteration only an incomplete sub-problem
with respect to the current minimization objective.

7.4. Joint Rigid Point Cloud Alignment

In the following, the alignment problem of a full rotation of scans is formulated
as common optimization problem. It is assumed that two successive scans have

110



7.4. Joint Rigid Point Cloud Alignment

at least some overlap and that the last scan closes up to the first one, thus
well-defining the problem.

Joint Minimization Problem Given a full turn of partial reconstructions
consisting of S scans {S0, ...,SS−1}, where the last position SS−1 is assumed to
be overlapping with the first one S0. Between two subsequent scans, say scan s

and scan s+1, N point matches are assumed each, given by x
(s,s+1)
n ↔ x

(s+1,s)
n ,

for n = 0, ...,N − 1. The objective error function that has to be minimized is
then given by

argmin
R(s), t(s)

S−1
∑
s=0

N−1
∑
n=0
∥R(s+1)x(s+1,s)n + t(s+1) −R(s)x(s,s+1)n − t(s)∥22. (7.7)

Note that a periodic arrangement is assumed, so that the scans’ indices are
treated modulo S, which means S ≡ 0. Setting the partial derivative with
respect to any translation vector t(s) equal to zero yields:

2t(s) − t(s−1) − t(s+1) =R(s−1)µs−1,s +R(s+1)µs+1,s −R(s)(µs,s−1 + µs,s+1)
(7.8)

which is sufficiently fulfilled for

t(s+1) − t(s) =R(s)µs,s+1 −R(s+1)µs+1,s . (7.9)

Therefore, the objective function (7.7) can be decoupled into:

argmin
R(s)

S−1
∑
s=0

N−1
∑
n=0
∥R(s+1)(x(s+1,s)n − µs+1,s) −R(s)(x(s,s+1)n − µs,s+1)∥22 (7.10)

= argmin
R(s)

S−1
∑
s=0

N−1
∑
n=0
∥R(s+1)q(s+1,s)n −R(s)q(s,s+1)n ∥22 (7.11)

Joint Sequential ICP Solving the terms of the joint minimization problem
(7.11) sequentially for one s after the other by simply applying the standard
strategy (7.4) leads to a pairwise approach with joint iterations. Iteratively,
closest points between each neighboring pair are chosen and alignment updates
by Orthogonal Procrustes Problem (7.4) are applied to each pair. If it does
not get stuck in a local minimum, this procedure already avoids drift and the
errors are uniformly distributed without additional computational effort.

Joint Global ICP In order to derive a global formulation that does not only
take pairwise point clouds into account, but also treats the global arrangement
information, functional (7.11) is minimized with respect to each R(s) while
fixing the others. This is equivalent to solving the following optimization
problem:

argmax
R(s)

S−1
∑
s=0

Tr(R(s)Hs,s+1R(s+1)
T

) (7.12)

= argmax
R(s)

Tr(R(s)(Hs,s+1R(s+1)
T

+HT
s,s−1R

(s−1)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Hs

))
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This is a form of a symmetric alignment update of scan SS towards previous
and next adjacent scans SS−1 and SS+1. The problem can be solved similar to
(7.4) using singular value decomposition and without special treatment.

Efficient Point Matching To efficiently find the nearest points between two
point clouds, the use of space partitioning techniques such as k-d-trees ([56],
[123], [20]) has been established for a long time. Building them means a not
inconsiderable effort, but once they are created, the nearest points can be
found in logarithmic time. A special feature is, that for each point cloud
of a scan only one tree has to be set up, which can be further used after
transformation by applying the inverse transformation to the input points, as
shown in Algorithm 23. Especially in the iterative application to large point
sets, this means an enormous time saving.

7.5. Outlier Rejection

In order to achieve an automatic procedure that can be applied to a possibly
large number of configurations, outliers must be reliably detected in every set
of correspondences. Standard procedures, such as rejecting the 10% of corre-
spondence with largest point-to-point distances in each iteration, are widely
used, but rely on a well-chosen value. In order to be independent of a fixed
value, investigations on a large number of datasets have been carried out.
The task is to separate a set of N point correspondences into two subsets.
The separation should divide the outliers as well as possible from the eligible
correspondences.
Let D = {d0, ..., dN−1} be the set of point-to-point distances of respective cor-
respondences, sorted in a descending order (d0 ≥ d1 ≥ ... ≥ dN−1). Tests on
approximately 25000 different point sets and configurations have shown that
a good partition

D =Doutliers ∪Dinliers = {d0, ..., dt} ∪ {dt+1, ..., dN−1} (7.13)

is achieved at a split point t ∈ {0, ...,N − 1} if the coefficients of variation of
both subsets is equal or as close as possible. Therefore, t can be successively
increased until the following equation holds approximately true:

1
t+1 ∑

t
n=0 d2n

( 1
t+1 ∑

t
n=0 dn)

2
=

1
N−t ∑

N−1−1
n=t+1 d2n

( 1
N−t−1 ∑

N−1
n=t+1 dn)

2
(7.14)

Figure 7.2 shows the behavior of the rejection strategy for the point sets that
are evaluated in the upcoming section (see Figure 7.3, bottom right). Each
reconstruction consists of 8 partial scans as it usually comes up from 3D scan-
ners. Between each adjacent pair of scans, matches are computed and outliers
are detected by the proposed strategy. Each of the subplots in Figure 7.2
shows the 8 curves which result from sorting 1000 matches between each of
the 8 point pairs. The red segments visualize the detected set of outliers. For
better visualization the plots are normalized and given in a logarithmic scale.
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Figure 7.2.: Outlier rejection strategy (7.14) applied to the point clouds shown in
Figure 7.3 bottom right. The lines result from point-to-point distances
of matches sorted in descending order. The red segments visualize the
detected subset of outliers.

7.6. Evaluation

For perfect artificial data or uniformly added noise, all alignment strategies
work satisfactorily. The situation is different for the real use case of recorded
data. In the following the considered ICP methods for registration of full turns
are evaluated on a number of sample datasets as they appear from typical 3D
scanners. For five independent objects (Buddha, Totem, Industry, Elephant,
Bird), full rotations of eight partial reconstructions each were created. In order
to fully align them, the registration methods must be able to deal with both,
local alignment errors of the partial point clouds and calibration errors that can
have an impact on the overall fit. The standard procedures were compared to
the presented joint ICP variants. Figure 7.3 bottom right shows the resulting
aligned point clouds of the Joint Global ICP approach to represent the objects
under investigation.
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Figure 7.3.: Convergence behavior for five independent data sets. Alignment error
of the naive pairwise approach is given by the black line (contains
drift error). State of the art is given by Pulli’s approach (red line).
Jointly iterating approaches converge to much lower errors. While the
sequential procedure (blue) may alternate depending on the data, the
global approach (green) converges smoothly.
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The plots in Figure 7.3 show the convergence behaviour of the alignment
strategies for increasing numbers of iterations. Both methods that were pro-
posed converge to significantly lower errors than the trivial sequential pairwise
alignment (black line) and Pulli’s drift preventing procedure (red line). Al-
though both, the Joint Sequential ICP and the Joint Global ICP converge
to the same optimum, the alignment error of the sequential variant occasion-
ally alternates depending on the data (see Totem). In contrast, the global
approach converges completely smoothly and evenly, which leads to a more
stable convergence in general.

7.6.1. Stopping Criterion

The smooth convergence behaviour of the presented global ICP variant pro-
vides a considerable advantage over all previous ICP methods. Most of them
alternate during the procedure, due to iteratively updated point correspon-
dences, which increases the chance of getting stuck in local minima.
Moreover, the error often starts to alternate around the minimum. Most pa-
pers write “we iterate until the alignment error does not reasonably improve
any more” without further information. Standard stopping criteria for con-
vergence do not hold in most situations, since the differences between two
subsequent iterations may not fall under a given threshold. This is the reason
why in many practical implementations the alignment does continue and start
to tremble until it is manually stopped.
Figure 7.4 shows the behavior of the weighted alignment errors for the investi-
gated datasets. Left plot shows the behavior for the Joint Sequential ICP and
right plot for Joint Global ICP. A simple smooth stopping strategy like check-
ing for improvements of the alignment within the last few iterations enables
the stable automatic termination of the procedure after a reasonable number
of iterations.
The stopping points are visualized by the stars in Figure 7.4.
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Figure 7.4.: Alignment errors of the proposed joint sequential (left) and global
(right) ICP variants. Red stars mark automatic stopping points of
the global method.
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7.7. Conclusion

In this chapter a procedure has been presented that aligns complete closed
turns of partial point clouds jointly in a global manner. Not only pairwise
adjacent point clouds are considered but also corrected symmetrically to all
neighbors. The usual, widely spread ICP procedure can be applied in a slightly
adapted way. By iterating the sub-problems jointly, alignment and calibration
errors are evenly distributed over all scans and drift is prevented. The global
approach leads to a smooth convergence behaviour, which enables the credible
application of automatic stopping criteria. Together with an introduced outlier
rejection strategy, this results in an extremely stable automatic procedure.
The results are moreover achieved without any user interaction or additional
computational effort. To ease reproduction, the procedure is finally attached
as pseudo-code.
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Algorithm 2: Joint Global ICP for Full Turn Alignment

1 Input: Initially aligned partial point clouds P0, ..., PS−1 of scans
S, ...,SS−1.

2 Initialize parameters R(s) = I, t(s) = 0 for all partial scans Ss,
s = 0, ..., S − 1.

3 Setup a k-d-tree Ts for each point cloud Ps.

4 Sample point clouds Ps to a size of N elements.

5 for i = 0,1,2, ... do
6 for s = 0, ..., S − 1 do

7 Search in k-d-trees of adjacent scans for correspondences:

Ts−1(R(s−1)
T

(R(s)Ps + t(s) − t(s−1)))→ P (s,s−1)

Ts+1(R(s+1)
T

(R(s)Ps + t(s) − t(s+1)))→ P (s,s+1)

8 Reject outliers as introduced in Sec. 7.5.

9 Weight correspondences with respect to point distances.

10 Subtract centroids from point sets:

µs,s−1 =
N−1
∑
n=0

wnx
s,s−1
n → Q(s,s−1) = P (s,s−1) − µs,s−1

µs,s+1 =
N−1
∑
n=0

wnx
s,s+1
n → Q(s,s+1) = P (s,s+1) − µs,s+1

11 end

12 for s = 0, ..., S − 1 do

13 Set up symmetric system matrices:

Hs,s−1 =
N−1
∑
n=0

wnq
(s,s−1)
n q(s−1,s)n

T
, Hs,s+1 =

N−1
∑
n=0

wnq
(s,s+1)
n q(s+1,s)n

T

→Hs =Hs,s+1R(s+1)
T

+HT
s,s−1R

(s−1)T
14

15 Compute SVD Hs =UsΛsV
T
s and compose updated rotation

R(s) =VsU
T
s .

16 end

17 for s = 0, ..., S − 1 do

18 Update translation vectors t(s) by Eq. 7.8.

19 end

20 Compute weighted alignment error and check for improvement
withing the last say

21 10 iterations. If no improvement break.

22 end

23 Output: Optimal transformations R(s), t(s).
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With the methods presented so far, highly accurate 3D reconstructions in
the form of point clouds (unstructured set of 3D points) can be generated.
This is already suitable for a variety of applications in which only geometric
measurements are required, such as for example automatic quality control or
object inspection methods [6]. However, it is often desirable to generate 3D
models that can be rendered realistically or at least as close to as possible. In
this way, they also become suitable for impressions from human observers.
This chapter will briefly address how to compute normal vectors for point
clouds generated with the presented procedure. A simple method will be
shown, that allows efficient computation of normal vectors for semi-dense point
clouds reconstructed from images. The introduced method does not require a
fixed neighborhood, so that it is suitable for scenes reconstructed with different
densities. Although the method has not been published due to its simplicity,
it comes from own research and, to our knowledge, has not been used in this
way anywhere else.
Subsequently, to complete the general reconstruction pipeline, it will be briefly
mentioned how meshes can be generated from the calculated points and nor-
mal vectors. These allow complex geometries to be represented with desired
accuracy in a memory-saving manner. Finally, high-resolution textures can be
mapped onto these geometries to show color details in the model.
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8.1. Normal Vector Estimation

Standard approaches, such as the established and widely used approach of
Hoppe et al. [68], compute the k-nearest neighbors for each point in the set
and subsequently fit planes to the chosen environments. Mitra and Nguyen
[118] extended this approach to deal with noisy data as well. These methods
give good results, but depend on a well-chosen neighborhood size, which can
cause problems when working with inhomogeneous data.
Moreover, the extraction of 3D neighborhoods in full-resolution point clouds
is particularly costly, even when k-d-trees are used. In 3D reconstruction,
where the underlying data comes from 2D images, it is possible to embed the
spatial data again into 2D images. This allows further steps to benefit from
the embedded topology in 2D. An approximation of neighborhoods in this way
was presented by Holzer et al. in [67].
Since the method presented in the following is independent of explicitly chosen
neighborhoods, it is ideally suited for inhomogeneous data that strongly varies
in terms of density. By using a Gaussian weighting that assigns closer pixels
always a higher influence than more distant points, consistent influences of
surrounding points can be obtained even for very isolated pixels. Masking
of uncoded pixels is considered throughout. In the following, will be shown
how neighborhood information can be extracted over the entire image by 2D
convolutions, taking into account weighting and masking of all points in the
image. Since these operations can be performed in Fourier space, kernels of
arbitrary size can be applied without expensive computational overhead. This
makes it possible to consistently ensure the influence of even distant neighbors
on isolated pixels.

Vertex Maps for Topology Approximation in 2D Assume we are given a
depth map D ∈ RH×W of a scene and a binary mask Λ ∈ RH×W that specifies
if a pixel D(x, y) carries information or not. Given the camera’s intrinsic
calibration matrix K, a 3D point V (x, y) ∈ R3 can be computed for every
encoded pixel (x, y) in D by scaling the out-projected ray to the desired depth:

V (x, y) = K−1(x, y,1)T

∥K−1(x, y,1)T∥2
⋅D(x, y) (8.1)

The three channel image V ∈ RH×W×3, which stores the 3D position for each
pixel is called vertex map. Approximating 3D neighborhoods by the image
neighborhood yields a great computational advantage. Further, all calcu-
lations can then be performed by 2D convolutions as will be shown in the
following.

Normals from Masked Vertex Maps The idea is to find a normal vector
n for each reconstructed point V (x, y) that fits as well as possible into the
sampled object surface. Thereby, n is supposed to minimize the following
functional (8.2) describing the angular error of n to be orthogonal to all lines
between the point V (x, y) and the points V (x̃, ỹ) in a given region weighted
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by a Gaussian Gσ.
To ensure that un-coded points do not adversely affect the normal calculation,
only values in the particular neighborhood for which the binary mask specifies
Λ(x̃, ỹ) = 1 should be used. So for each point in the vertex map V (x, y) with
Λ(x, y) = 1 the following optimization problem is solved:

argmin
n∈R3

∑
V (x̃,ỹ)

with Λ(x̃,ỹ)=1

Gσ(V (x, y) − V (x̃, ỹ)) ⋅ ∥(V (x, y) − V (x̃, ỹ))
T
n∥22 (8.2)

The large advantage of vertex maps is the possibility to efficiently approximate
the Gaussian in image space:

Gσ(V (x, y) − V (x̃, ỹ) ≈ Gσ((x, y) − (x̃, ỹ)) (8.3)

In this way, the Gaussian is reduced from a 3D to a 2D version with still great
expressiveness. Therefore, also the problem reduces to:

argmin
n∈R3

∑
(x̃,ỹ)

with Λ(x̃,ỹ)=1

Gσ(V (x, y) − V (x̃, ỹ)) ⋅ ∥(V (x, y) − V (x̃, ỹ))
T
n∥22 (8.4)

≈ argmin
n∈R3

∑
(x̃,ỹ)

with Λ(x̃,ỹ)=1

Gσ(x − x̃, y − ỹ) ⋅ ∥(V (x, y) − V (x̃, ỹ))
T
n∥22 (8.5)

= argmin
n∈R3

∑
(x̃,ỹ)

Λ(x̃, ỹ) ⋅Gσ(x − x̃, y − ỹ) ⋅ ∥(V (x, y) − V (x̃, ỹ))
T
n∥22 (8.6)

Computing the gradient with respect to n and setting it equal to zero leads to

∑
(x̃,ỹ)

Λ(x̃, ỹ)Gσ(x − x̃, y − ỹ) ⋅ (V (x, y) − V (x̃, ỹ))(V (x, y) − V (x̃, ỹ))
T
n

!= 0

(8.7)

which is moreover equivalent to solving a problem of the form

An
!= 0 (8.8)

with matrix A set up as

A = V (x, y)V (x, y)T(Λ ∗Gσ)(x, y) +
⎛
⎜
⎝

Ṽ11(x, y) Ṽ12(x, y) Ṽ13(x, y)
Ṽ12(x, y) Ṽ22(x, y) Ṽ23(x, y)
Ṽ13(x, y) Ṽ23(x, y) Ṽ33(x, y)

⎞
⎟
⎠

− p(x, y)
⎛
⎜
⎝

Ṽ1(x, y)
Ṽ2(x, y)
Ṽ3(x, y)

⎞
⎟
⎠

T

−
⎛
⎜
⎝

Ṽ1(x, y)
Ṽ2(x, y)
Ṽ3(x, y)

⎞
⎟
⎠
p(x, y)T

(8.9)
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using the following convolved vertex maps, that only need to be calculated
once:

Ṽi = (Λ⊙ Vi) ∗Gσ, Ṽij = (Λ⊙ Vi ⊙ Vj) ∗Gσ, i, j = 1, ...,3, j ≥ i (8.10)

Thereby, ⊙ denotes the point-wise multiplication and ∗ the 2D convolution
that can be efficiently performed in Fourier space independently of the Ker-
nel size Gσ which leads to an overall complexity of O(HW log(HW )) only.
Finally, n(x, y) is computed by applying Singular Value Decomposition on
system matrix A, similar to the problem in 2.4. Due to usually full rank of
system matrix A, the optimal normal vector is given by the singular vector
with respect to the smallest singular value of A:

SVD(A) =UΣVT ⇒ n(x̃, ỹ) =V3

Figure 8.1 shows the resulting normals, applied to the investigated exemplary
scene.

(a) Depth map (b) Normal map

Figure 8.1.: Example of a normal map (b) computed for a semi-dense depth map
(a) with a Gaussian kernel with standard derivation σ = 0.5. Due
to the integration of the mask into the optimization process missing
points do not negatively affect the method.
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8.2. Outlook: Meshing and Texturing

After performing the methods from Chapters 4, 5 , 7 and Sections 2.4 and 8.1,
a fairly dense point cloud of a full object and associated normal vectors are
given. This allows already to create a representation of the object with light
interactions, which enables a visual perception of the geometry by humans.
However, this representation has some disadvantages that make it unsuitable
for most practical applications:

• Storing all points and associated normal vectors is extremely memory
intensive and especially too expensive for regions of the object surface
where little details are given.

• No matter how densely a point cloud samples the surface, there will al-
ways be sparsely scanned areas and holes due to different surface proper-
ties of an object. At the same time there will always be overlapping areas
where the partial scans have been aligned. This leads to inconsistencies
and redundancies in the representation of the object surface.

• Some applications, such as many 3D printers, require watertight repre-
sentations of an object, which can not be achieved with point clouds.

A long-established approach for memory-efficient representation of 3D geome-
try is to compute a mesh, comprised from connected faces that represents the
surface, which is sampled by the point cloud as closely as possible. Only the
vertices of each face and their connections to each other need to be stored.
This usually results in significant cost savings in data storage, since only few
vertices need to be considered for smooth surfaces. Remaining capacity can
be used for finer resolution of more detailed areas. Thereby, the mesh should
be designed in a way that the orientation of the individual faces corresponds
as closely as possible to the given normal vectors of the point cloud (up to
multiplication by -1).
A widely used method is Poisson Surface Reconstruction [86], which was in-
troduced by Kazhdan et al., that can be followed by well established mesh-
ing procedures such as Marching Cubes [100]. These procedures provide an
approximation of the surface from given point clouds and respective normal
vectors. In Poisson Surface Reconstruction the gradient field of local envi-
ronments is approximated, leading to a reduction of the problem to a Poisson
equation. These types of equations have been studied extensively in the past
and can be approximated using finite elements or finite differences methods
([122], [81], [26]). By using an octree structure to efficiently search for neigh-
borhoods within the data, the computation time is significantly reduced. The
fineness of the obtained mesh can be controlled by the depth of the octree used.
Nevertheless, a considerable computational effort remains in the execution of
the method.
Some time later, Kazhdan and Hoppe extended their approach of Poisson
Surface Reconstruction to Screened Poisson Surface Reconstruction [87]. In
this process, they explicitly added the given points as constraints and ob-
tained sharper details in the mesh in areas where guiding points are present.
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(a) Plain and textured
mesh of Buddha

(b) Plain and textured mesh of Totem

Figure 8.2.: Meshes of the reconstructed point clouds of the Buddha and the Totem
data. Plain meshes (a, b, left) and respective textured ones (a, b,
right).

By adding this constraint, the Poisson equation has been transferred into a
screened Poisson equation, which can be solved with comparable computa-
tional effort as the previous problem. However, a screening parameter needs
to be chosen, in order to weight the additional term. Thus, the detail of the
resulting mesh is weighed against its susceptibility to noise. Figure 8.2 shows
two meshes reconstructed using the Screened Poisson Meshing, which has been
applied to the point clouds resulting from Section 7.
Even though these methods work well and are widely used, they are time con-
suming. Recent methods such as [60] and [39] address meshing from point
clouds with approaches based on artificial neural networks. These could sig-
nificantly reduce the time aspect of meshing in the post-processing of any
reconstruction pipeline.
In order to add color to the fitted mesh, it is necessary to identify, for all the
faces of the mesh, the cameras that are best suited to map their captured
texture. The quality of a camera texture to a given face can be estimated
using the face normals and the associated camera position and its angle of
view. For surfaces that are seen by multiple cameras, it is a common strategy
to blend the textures by weighting with the angular errors.
As a reference Fu et al. [51] recently presented an approach for parameterizing
and texturing meshes, that can be applied to the presented method, where
all the devices, including the texture camera are carefully calibrated. Finally,
Figure 8.2 (a, b, right) shows the textured meshes resulting from the presented
pipeline so far.
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9.1. Introduction

The self-calibrating approach, presented in Chapters 4 and 5, is extremely
flexible, but requires a large number of image acquisitions of the scene with
multiple patterns projected. In this chapter, a new approach will be presented
that encodes the scene simultaneously in horizontal and vertical directions
using sinusoidal fringe patterns. This allows to almost halve the number of
recorded images, making the approach attractive for many practical appli-
cations with time aspects. As explained in Chapter 2, the frequency of the
projected fringes is increased several times, depending on the required accu-
racy, in order to successively improve the quality of the encoding. The high
number of camera shots required, leads to a considerable expenditure of time
in data acquisition, which is one of the main weaknesses of the method.
According to the state of the art, the phase shifting method is the basis of
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sinusoidal structured light methods, due to its texture invariance and the sur-
face encoding in full camera resolution. Thereby, sinusoidal fringe patterns
with equidistantly shifted phases are projected onto the scene. A superposed
phase, which can be calculated from at least three shifted patterns, encodes
the scene pixel by pixel in the direction of the phase shifts. Doing this, both in
horizontal and vertical direction, results in a minimum of 6 captured images.
Even more acquisitions are necessary if further refinement steps with higher
frequencies are performed. The patterns are sinusoidally modulated in the
direction to be encoded and constantly continued in the decoded direction.
Therefore, one dimension of the patterns (the direction orthogonal to the en-
coded one) does not carry any information, which leaves room for new options.
In the following, more detailed investigations on the phase shifting algorithm
and the harmonic addition theorem are carried out. Especially, findings with
regard to the resulting amplitude of the phase superposition will encourage to
combine the horizontal and vertical patterns in order to encode both directions
simultaneously. The horizontal and vertical phases are then extracted from
the combined patterns by a per pixel strategy, making the whole procedure
scene-independent.

9.2. Related Work

Extensive research has been carried out in the field of structured light re-
construction. Various strategies, assuming pre-calibrated setups, have been
reviewed and compared by Salvi et al. [142] and more recently by Zanuttigh
et al. [179]. Popular methods, based on the phase shifting algorithm, have
been reviewed by Servin et al. in [146]. In the mean time, new approaches, like
the Fourier-based regularized method of Legarda-Saenz and Espinosa-Romero
[92] came up which, however, could not compete with the state of the art.
Based on the phase shifting method, Mirdehghan et al. [117] recently pre-
sented a procedure to generate optimal scene-dependent projection patterns
and thus to control the quality of the resulting encoding. Zhang and Yau pre-
sented in [186] a system with two cameras that offers many quality advantages
in contrast to standard setups with one camera and one projector.
Unfortunately, the recording time is the great weakness of the structured light
method. One way to shorten the required acquisition time is to distribute
several patterns among the different color channels of the cameras and projec-
tors used ([80], [181]). These approaches work in theory but suffer from color
cross-talk between cameras and projector and a very accurate color calibration
is required. In particular, the object color influences the type and strength
of the cross-talk. This leads to difficulties in implementing the procedures in
practice and even then, one has to expect large quality losses.
To reduce the number of acquisitions required, Guan et al. [57] and Sansoni
and Redaelli [143] combine patterns of different frequencies into individual pat-
terns. Several fringes are encoded by carrier waves and additively combined.
Afterwards they are separated by filter methods. These methods also work
in theory, but have a poor applicability in practice. The frequencies of the
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carrier waves must be stable in the image to enable an appropriate extraction,
which cannot be achieved for arbitrary 3D scenes. Nevertheless, they made
it possible for the first time to provide information in the un-coded direction
of the patterns. Based on this idea, Yang et al. [174] further improved this
approach, and created special patterns based on co-prime frequent sine waves
that can be separated more robustly by a Garbor filter. Recent advances in
real-time measurement with structured light have been detailed and analyzed
by Zhang in [183]. Finally, Wang and Yang [169] recently introduced a one-
shot approach based on binary stripe patterns, from which the phase can be
directly approximated and interpolated. However, the approach assumes the
stripes to be continuously visible in the scene, which cannot be guaranteed for
general scenarios.
All in all, the task of combining multiple patterns has already been regarded,
but has not been solved satisfactorily, yet. In particular, the combination of
horizontal and vertical encoding patterns has not been addressed, before.

9.3. Mathematical Investigation

In order to develop a new projection pattern, that allows to simultaneously
recover the horizontal and vertical phases, the standard case is investigated
more closely. This will provide new insights into the amplitude of the superpo-
sition of the illuminated scene. These findings will finally enable a subsequent
separation of the phase directions from the combined patterns.

9.3.1. Background: Sinusoidal Phase Shifting Method

Basis of the presented work is the sinusoidal phase shifting method. Thereby,
patterns are modulated by sine or cosine (convention-dependent) signals and
equidistantly shifted at least three times over the periodic domain. The pat-
terns are projected onto the scene and captured by a camera. Superposition
of the resulting images allows to encode the scene texture-invariantly in full
camera resolution. Horizontal and vertical directions are treated by separate
sets of patterns, each modulated by a sine/cosine in the respective direction
and continued constantly in the other direction. Horizontal and vertical sets of
patterns PH

n and P V
n with frequencies FH and FV that are shifted n = 1, ...,N

times, can be explicitly generated as:

PH
n (i, j) ∶= cos(

2πj

width
FH +

2π(n − 1)
N

) ,

P V
n (i, j) ∶= cos(

2πi

height
FV +

2π(n − 1)
N

)
(9.1)

Thereby, i = 1, ..., height and j = 1, ...,width denote the image pixels. The first
row of Figure 9.1 shows an exemplary set of horizontal (a) and vertical (b)
patterns with N = 3 and FH = FV = 1. In both cases, the patterns are shown to
the left, and the projection of the patterns onto an exemplary scene is shown
to the right.
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(a) Horizontal phase recovery (b) Vertical phase recovery (c) Amplitudes

Figure 9.1.: Example of the phase shifting algorithm for encoding a scene by phase
recovery via harmonic addition theorem. The top rows of (a) and (b)
show sets of horizontal and vertical fringe patterns and the result-
ing scene after projection. The bottom rows show the phase images
computed by Equation (9.3). (c) shows the amplitude of the superpo-
sition (Equation (9.4)) (top) and the one given by the scaled texture
as introduced in Lemma 9.2 (bottom).

Harmonic Addition Theorem

Structured light approaches with sinusoidal patterns are based on practical
application of the harmonic addition theorem as introduced in Section 2.3.2:

N

∑
n=1

In cos(δn) = A cos(Φ) (9.2)

with Φ = atan2 (∑ In sin(δn), ∑ In cos(δn)) (9.3)

and A2 =
N

∑
n=1

N

∑
m=1

InIm cos(δn − δm) , (9.4)

where δn, δm denote the equidistant phase shifts, Φ the phase to be recovered
and A the amplitude of the superposition. atan2 denotes the two-dimensional
arcus tangens function taking into account the quadrants of the input.

Recovering the Phases in the Scene

Projecting patterns from Equation (9.1) to a scene I results in images IHn and
IVn for the different phase shifts n = 1, ...,N . Applying Equation (9.3), the
horizontal and vertical phases ΦH and ΦV can then be computed by:

ΦH = atan2 (∑ IHn sin(δn), ∑ IHn cos(δn))
ΦV = atan2 (∑ IVn sin(δn), ∑ IVn cos(δn))

(9.5)

The second rows of Figure 9.1 (a) and (b) show the recovered phases com-
puted for the patterns and the scene. Using this information, the scene points
are uniquely encoded by their horizontal and vertical phase values. This al-
lows robust and dense matches between the different camera views and the
projector to be achieved. Amplitude A is not needed here and usually not
treated further. For the method that is developed in this chapter, A plays an
important role and is therefore further investigated.
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9.3.2. Amplitude of Superposition

From illuminated images In, amplitude A is given by Equation (9.4), which can
be directly expressed in terms of a captured texture image I of the scene. This
will be formally proven and therefore assumed in the following. These findings
will make subsequent procedures possible. Firstly, the following lemma is
needed. It is well known, that equidistantly shifted cosines sum up to zero.
This is also the case for integer multiples of the shifts. Formally the following
holds true:

Lemma 9.1 Cosines with equidistantly shifted phases sum up to zero, even
for integer multiples of the shifts:

N

∑
n=1

cos(x + k ⋅ δn) = 0 , with δn =
2πn

N
, k ∈ Z (9.6)

Proof The proof is straight forward using the Euler Formula (∗1) and the
Formula of Geometric Series (∗2):

N

∑
n=1

cos(x + k ⋅ δn) =
N−1
∑
n=0

cos(x + k ⋅ δn) (9.7)

(∗1)=
N−1
∑
n=0

1

2
(eix+ikδn + e−ix−ikδn) (∗2)= eix

2

=1
¬
ei2kπ −1
ei

2kπ
N − 1

+ e−ix

2

=1

e−i2kπ −1
e−i

2kπ
N − 1

= 0 (9.8)

∎

Using this knowledge it is possible to proof the following fundamental infor-
mation about A in Equation (9.2):

Lemma 9.2 A captured scene In, illuminated by patterns Pn = sin(x + δn),
with an arbitrary number of equidistant shifts n = 1, ...,N ≥ 2, can be super-
posed to

N

∑
n=1

In cos(δn) =
N

4
I cos(Φ) , (9.9)

where Φ denotes the phase angle and I the fully illuminated scene. Therefore,
the amplitude of the superposition is given by a scaled version of the scene
image I.

Proof Using the Harmonic Addition Theorem the lemma is fully proven if
A = N

4 I is shown to be true:
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A2 =
N

∑
n=1

N

∑
m=1
(Pn ⊙

I

2
)(Pm ⊙

I

2
) cos(δn − δm) (9.10)

= I2

4
∑
n,m

PnPm cos(δn − δm) (9.11)

= I2

4
∑
n,m

cos(x + δn) cos(x + δm) cos(δn − δm) (9.12)

= I2

16
∑
n,m

cos(0) + cos(2x + 2δn) + cos(2x + 2δm) + cos(2δn − 2δm) (9.13)

Lemma 9.1= N2

16
I2 , (9.14)

where I denotes the fully projected scene and ⊙ denotes element-wise multipli-
cation of corresponding camera and projector points. x denotes any position
in the projector image. Taking the square root proves the lemma. ∎

Figure 9.1 (c) shows the amplitudes of the example scene computed by Equa-
tion (9.4) (top) and from scaled texture as in Lemma 9.2 (bottom). Apart
from artifacts caused by clipping, due to limited dynamic range of the cam-
eras and gamma corrections of the devices, these are identical. The lemma
can be proven straight forwardly using properties of trigonometric functions
and the harmonic addition theorem.

9.3.3. Combined Patterns

In the following, additively combined patterns are going to be introduced
and a mathematical problem with the newly gathered information about the
amplitude is set up. Solving this problem enables the simultaneous recovery of
horizontal and vertical phase values. Let the combined patterns PC

n be defined
as

PC
n ∶=

1

2
(PH

n + P V
n ) for n = 1, ...,N. (9.15)

Thereby, two-dimensional sinusoidal patterns result as visualized in Figure 9.2
(a, left) and projected onto the scene (b, left). The shifting direction naturally
becomes the diagonal. The task in the following is to extract the horizontal as
well as the vertical phase simultaneously from images of the scene, illuminated
by these patterns. Assuming the optimal case, where cameras and projector
respond linearly and do not perform any gamma correction or internal post-
processing, a captured scene of a combined pattern IC is proportional to the
sum of the separately illuminated scenes IH and IV :

IC = PC ⊙ I

2
= 1

2
(PH + P V )⊙ I

2
= 1

2
(IH + IV ), (9.16)

where ⊙ denotes pixel-wise multiplication of the patterns and the scene ap-
pearance I.
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(a) Ideal phases computed from patterns (b) Scene phases from camera images

Figure 9.2.: Combined sinusoidal patterns, computed by Equation (9.15) and pro-
jected onto the scene. The horizontal and vertical phases, to be re-
covered, are shown to the right.

Problem Formulation

Lemma 9.2 and Equation (9.16) directly deliver the basic properties to set up
the problem to be solved, in order to extract the phase information:

2
N

∑
n=1

ICn cos(δn) =
N

4
I cos(ΦH) +

N

4
I cos(ΦV )

2
N

∑
n=1

ICn sin(δn) =
N

4
I sin(ΦH) +

N

4
I sin(ΦV )

(9.17)

This gives two equations with respect to two phase values, that have to be
recovered from the superpositions per pixel. In the following section the prob-
lem is treated strictly mathematically, before it is again applied to the real
world.

9.3.4. Mathematical Solution to the Problem

Given the following system of equations:

a cos(x) + a cos(y) = b
a sin(x) + a sin(y) = c

(9.18)

with measured data a, b, c, the task is to compute optimal values x, y that
solve both equations. Using addition theorems of trigonometric functions and
dividing the equation leads to:

2a cos(x
2
+ y

2
) cos(x

2
− y

2
) = b

2a sin(x
2
+ y

2
) cos(x

2
− y

2
) = c

⇒ x + y = 2arctan(c
b
) (9.19)

In this way the equations of (9.19) can be decoupled. Thereby, both lead to
the same equation:

2ab cos(z) + 2ac sin(z) = b2 + c2 z ∈ {x, y} (9.20)

Using harmonic addition theorem, four explicit solutions for this equation can
be derived, where the two feasible ones are given by

x/y = 2arctan
⎛
⎝
2ac ±

√
(b2 + c2)(4a2 − b2 − c2)
b2 + 2ab + c2

⎞
⎠

. (9.21)
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9.4. Application to Real World

The left column of Figure 9.4 shows the results of Equation (9.21) applied
to the system (9.17) that models the real process. If there is a significant
influence of ambient light, it may be necessary to subtract an ambient image
from the captured images.
With the proposed procedure, phase values ΦH and ΦV can be recovered ro-
bustly. Unfortunately, due to the symmetric additive superposition of the
phases in the whole procedure there is no information about which of the two
phase values corresponds to the horizontal and which to the vertical phase.
These interchanges can occur at pixel level due to the pixel-wise approach.
However, due to the natural continuity of the phases, these interchanges usu-
ally occur fragmentary. This can be seen in the first columns of the different
examples of Figure 9.4 for different frequencies, for both the synthetic and the
real case. Note that application directly to the patterns is meaningful for any
synthetic scene, because of the scene-independent pixel-wise approach.
The first errors can be corrected by simple comparison (comparison step),
which sorts the values to fragments, lifting the swaps from pixel to region
level:

ΦH =max{ΦH ,ΦV } , ΦV =min{ΦH ,ΦV } (9.22)

The second columns of Figure 9.4 (a,b,c,d) show the effect to the respective
scenes. This step is also pixel-wise and therefore scene independent.

9.4.1. Swapping Step

After this step, still many values are swapped (see Figure 9.4). A gradient
based strategy could be used to assign them, which would not be per-pixel
and therefore scene dependent.
Nevertheless, a common procedure, to obtain reconstructions of high accuracy,
is the projection of several levels of fringe images with increasing frequencies.
It is assumed that separate horizontal and vertical fringe images recorded at
frequency 1 were projected in the first level, so that basic phases are available.
In order to get a more applicable swapping procedure, that is per-pixel and
stable in difficult situations (e.g. discontinuities in the phase) this can be done
during the phase unwrapping of the higher level phases. In the following,
a simple pixel-wise unwrapping strategy is presented, that can be used to
perform the swapping step simultaneously by checking for consistency with
the recorded images.

Per Pixel Unwrapping using Predicted Phase

Assume a wrapped phase Φ̂ has been computed from fringes with some fre-
quency F and a predicted phase Φ0 of a previous level is given, that is not
wrapped. A refined phase Φ can be computed by unwrapping Φ̂ using infor-
mation from Φ0.
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As depicted in Figure 9.3 in a perfect world the following statement would
hold true:

F ⋅Φ = Φ̂ + k ⋅ 2π, k ∈ Z≥0 (9.23)

In a scenario with carefully increased frequencies, one can at least assume that
there are no jumps larger than π from one level to the next one, which means

Φ̂ + k ⋅ 2π − F ⋅Φ0 ≤ π ⇒ k = ⌊F ⋅Φ0 − Φ̂ + π
2π

⌋ (9.24)

with floor rounding ⌊⋅⌋. Therefore, Φ̂ can be explicitly unwrapped to Φ by:

Φ = Φ̂

F
+ 2π

F
⌊F ⋅Φ0 − Φ̂ + π

2π
⌋ (9.25)

Figure 9.3.: Illustration of the unwrapping process for an ideally wrapped linear
phase, that was computed from fringes with frequency F > 1, resulting
in a F times wrapped phase.

Per Pixel Swapping

Using the per pixel unwrapping, the step can be performed as well on the phase
combination (ΦH ,ΦV ) as on the swapped one (ΦV ,ΦH). The consistency
towards captured fringe images can be described by a suitable error like:

En(ΦH ,ΦV ) = ∣( cos(FHΦH + δn) + cos(F V ΦV + δn) + 2)I − 4ICn ∣ (9.26)

Since one can assume the refined phases to improve after every unwrapping
step, the accumulated consistency error of all captured images

E(ΦH ,ΦV ) =∑
1

l
En(ΦH ,ΦV ) (9.27)

should decrease. Therefore, the combination with lower consistency error can
be chosen to complete the swapping. Results of this tactic for the sample
scenes are shown in the third columns of Figure 9.4 in comparison to the
ground truth phases in the last columns.
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(a) Basic level of synthetic data set (FH = 1, FV = 1)

(b) Higher level of synthetic data set (FH = 11, FV = 6)

(c) Basic level of real captured data set (FH = 1, FV = 1)

(d) Higher level of real data set (FH = 11, FV = 6)

Figure 9.4.: Results of the algorithm applied to synthetic and real data for different
frequencies. For each set the two rows show the horizontal and the
vertical phase. The left two columns show the results of Formula
(9.21) before and after the comparison step. The third column shows
the phase after the swapping step. The ground truth is depicted in
the right column. The colorbar indicates the coding in the range of
[−π,π].
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9.4.2. Handling One-Dimensional Artifact

There are one-dimensional lines in every image, where both superpositions
from (9.17) are equal to zero or at least close to. Close to these lines, there is
no information to recover the phase. Since it is only a one dimensional region
in a two dimensional encoded scene, the missing data is smoothly filled by
neighboring information. Very likely, the erroneous regions of the next higher
level do not coincide and therefore correct them. A sparse matrix Λ localizes
and stores the erroneous stripes:

Λ(i, j) =
⎧⎪⎪⎨⎪⎪⎩

0, if ∣∑ ICn (i, j) cos(δn)∣ + ∣∑ ICn (i, j) sin(δn)∣ < ε
1, else

(9.28)

The artifacts are removed by choosing pixels in the near neighborhood, which
is done using a Gaussian filter Gσ specified by the variance σ:

Φ̃ = Λ⊙Φ + (1 −Λ)⊙ (Λ⊙Φ) ∗Gσ

Λ ∗Gσ
(9.29)

Figure 9.5 shows the result on the first level of the exemplary scene.

(a) Λ after thresholding (b) Artifacts (c) Corrected

Figure 9.5.: (a) shows the resulting Λ with a threshold of ε = 0.05, (b) and (c) show
a computed phase with artifacts and after the proposed correction.

9.5. Evaluation

In order to evaluate the behavior of the procedure, the median pixel error
of the calculated phases to the ground truth after several levels are given in
Table 9.1, for the proposed approach with combined patterns as well as for
the separate approach. As expected, the error of the combined phases in each
level is slightly higher than the procedure with separately computed horizon-
tal and vertical phases. However, less recordings were necessary. Considering
the accuracy in relation to the image captures used, even with a two-stage
procedure and the 12 shots usually required for this, the combined procedure
can take another level and double the accuracy of the calculated phases (see
Figure 9.6). The plots next to Table 9.6 visualize this. Figure 9.7 shows the fi-
nal phases, computed by the proposed approach, in comparison to the ground
truth. It should be noted that the gamma correction of the devices used (es-
pecially the projector) strongly influences the quality of later reconstructions,
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Level 1 2 3 4

Combined Patterns

Median Error of ΦH 0.0514 0.0149 0.0066 0.0028
Median Error of ΦV 0.0587 0.0390 0.0124 0.0055
Captured Images 6 9 12 15

Separate Patterns

Median Error of ΦH 0.0514 0.0110 0.0052 0.0019
Median Error of ΦV 0.0587 0.0278 0.0093 0.0034
Captured Images 6 12 18 24

Table 9.1.: Median errors for different levels of the proposed method with combined
patterns and separate patterns, applied to the example data.

Figure 9.6.: Behavior of the median phase error with respect to the images that
have to be captured.

since it violates the assumed linearity condition from Equation (9.16). In the
shown tests, inverse gamma correction has been applied to the projected pat-
terns with a roughly determined gamma value in order to compensate for this.
Therefore real results can still be demonstrated. Nevertheless, the use of in-
dustrial projectors without gamma correction or precise gamma calibration of
the consumer device used, would significantly improve the quality of the re-
constructions. Finally, the calibration results of two other setups and scenes,
directly computed from the received point correspondences are visualized in
Figure 9.7 (d).

9.6. Conclusions

A new method has been introduced, which allows to perform sinusoidal struc-
tured light encoding in horizontal and vertical directions, at the same time.
Thereby, the recording time is effectively halved. This procedure especially
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(a) Ground truth and ΦH computed (b) Ground truth and ΦV computed

(c) Reconstructed point
clouds

(d) Auto-calibrations received from the correspon-
dences

Figure 9.7.: Ground truth phases of the exemplary scene (a, b, left) in comparison
to the recovered phases (a, b, right). The triangulated point clouds
from ground truth (left) and simultaneously recovered phase (right)
are shown in (c). Auto-calibrations from point correspondences of two
additional scenes are visualized in (d).

allows to auto-calibrate arbitrary setups directly from the achieved point cor-
respondences. Extensive mathematical investigations were carried out, which
yield new findings in the field of applied harmonic addition theorem. Over-
all, a method was developed, which can determine the horizontal and verti-
cal phase values from the combined captured patterns pixel-wise, making it
scene-independent and therefore applicable to a wide variety of scenarios. The
applicability to real scenes besides artificial ones was demonstrated as well.
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10.1. Introduction

Due to the accuracy and density of the reconstructions obtained, the struc-
tured light approach, whenever applicable, is often the method of choice for
industrial applications. Nevertheless, it is an active approach which, depend-
ing on material properties or coloration, can lead to problems and fail in certain
situations. There is a number of disadvantages that should by no means be
neglected. The basis of the process is the visibility of the projections on the
object’s surface. In this context, transparent, mirroring and specular scenes
should be mentioned above all. Even objects whose textures contain both
highly absorbent and highly reflective areas can cause problems. In many
cases such scenes lead to inaccuracies or even to a complete failure of the
method.
This chapter, will attempt to eliminate or at least reduce some of these prob-
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lems in a way that can be easily adopted to existing scanning setups. A
method based on the sinusoidal structured light approach is presented, that
significantly reduces the influence of the color of a scanned object. It improves
the results obtained by repeated application in terms of accuracy, robustness
and general applicability. Especially in high-precision reconstruction of small
structures or high-contrast colored and specular objects, the technique shows
its greatest potential. The advanced method requires neither pre-calibrated
cameras or projectors nor information about the equipment. It is easy to
implement and can be applied to any existing scanning setup. Therewith,
the application area of structured light reconstruction is increased without
additional hardware requirements.
As a basis, phase shifted sinusoidal fringe patterns are used which sum up to
zero. Therefore, the encoding method is in theory invariant to the object’s
texturing. The following reflection properties are unfortunately neglected in
this idealized model:

• Different materials cause different light reflection.

• Different colors reflect the light in different ways.

Therefore, in some cases the appearance of the projected fringe patterns can
change into the imperceptible. Most reconstructions of objects made of stan-
dard material are not very strongly affected and time-consuming procedures,
to always treat this behavior, would certainly be overdone. Nevertheless, this
effect is clearly noticeable in high-precision reconstructions and it is worth
taking a closer look. To illustrate this, Figure 10.1 shows a captured area of a
10 Euro note and a point cloud thereof, reconstructed with structured light.
The enlargement of the point cloud clearly shows the erroneous depth, caused
exclusively by the texturing of the object. As will be shown, a combination
of the projection patterns with an inverse texture significantly reduces this
effect.

(a) Texture Image (b) Reconstructed point cloud (left) and enlarged red region
(right)

Figure 10.1.: Recorded section of a 10 Euro note (left) and corresponding point
cloud, reconstructed by structured light (middle). The enlarged area
(right) shows errors in the estimated depth, solely caused by the
object’s coloration.
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10.2. Related Work

Modern phase-shifted structured light systems with digital devices were intro-
duced by Zhang and Huang in [184]. In order to shorten the acquisition time,
Zhang et al. [181] and Zhang and Huang [185] introduced methods that use
color-coded patterns. Sansoni and Redaelli [143] and later Yang et al. [174]
introduced single shot structured light techniques, where the multiple shifted
fringe images were coded by carrier waves and combined to one pattern. Also
Donlic et al. [29] and Petkovic et al. [130] presented single-shot structured
light approaches, based on de Bruijn color sequences. All methods to shorten
the acquisition time reduced the quality of reconstructions significantly. In
contrast Zhang and Yau [186] presented a setup with two cameras to signifi-
cantly increase the scan quality. When using several cameras (ideally the same
camera model) there are many advantages with regard to calibration, gamma
correction of the recorded scenes and the resulting quality of the reconstruc-
tions. Although, the approach based on this technique has become popular in
many areas, there are several scenarios, where this approach is not applicable.
Extensive research has been carried out to improve the applicability to gen-
eral situations. In order to cope with strong ambient lighting such as sunlight,
Gupta et al. introduced in [58] a possibility of compensation by sequentially
allocating a given energy budget to several sections. Nayar et al. [121] and
later O’Toole et al. [124], [125] presented ways to split direct and indirect light
paths, enabling the reconstruction of mirroring, reflecting and light emitting
objects and even scanning through dust. Unfortunately, this requires expen-
sive hardware, the process is error-prone and requires high-precision calibra-
tion of camera pixels to a DLP panel, making it difficult to use for practical
applications. Also Weinmann et al. [171] worked on increasing the range of
application of structured light but using additional devices.

10.3. Inverse Texture

First of all, the influence of a projection to the captured image of a scene is in-
vestigated. After that, a procedure is presented that modulates the projection
in a way that as many points as possible in the scene have an equivalent in-
fluence to the captured image. This procedure equalizes the appearance of an
object iteratively and converges after only a few steps. The projector-camera
correspondences are generated using the sinusoidal structured light approach
and are reliably cleaned of erroneous phases with the help of an introduced
simple masking method.
Let I be a captured image of a scene that was illuminated by a projection T .
Schreiber and Bruning [111] described the physical influence of T on image I.
Accordingly, the captured image can be approximated as the composition

I = I ′ + I ′′ ⊙ T, (10.1)

of the ambient intensity I ′ and the scene intensity I ′′, modulated by the pro-
jected texture T . Thereby, ⊙ denotes the element-wise multiplication operator.
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In order to minimize the influence of the coloring of an object to its image,
projection texture T has to be estimated so that it balances the object colors
as much as possible. Therefore, the following minimization problem has to be
solved:

argmin
T,Ī

∑
ij

(Iij − Ī)2 = argmin
T,Ī

∑
ij

(I ′ij + I ′′ijTij − Ī)2 (10.2)

While Iij denotes the pixels of image I and Ī the optimal common color value
of the equalized pixels. Projecting T on the scene approximates an uncolored
grayish scene as visualized in Figure 10.2.
Theoretically, an optimal texture T as the solution of problem (10.2) can be
calculated explicitly from at least two captured images. However, this is not
recommended from a practical point of view. This is due to the following
phenomena, which cannot be considered in the underlying model (10.1):

• Color cross-talk between the different color channels of projector and
camera.

• Scattered light from one pixel to others are not considered, since it only
takes into account direct pixel-to-pixel correspondences.

• Specular or absorbing materials, leading to clipped values in the captured
image, due to a limited dynamic range.

10.3.1. Iterative Color Equalization

To solve Problem (10.2), an iterative method is proposed that is robust against
the irregularities listed above. Alternated updates of the projected texture T
and the equalized target value Ī are combined with a logarithmic search that
uses the limited range of projector pixel values (8-bit in [0,255]). In this way,
a stable convergence of the process is achieved after a few iterations.

Logarithmic Search In the following, it is assumed that direct correspon-
dences between camera and projector pixels are given by a mapping
P ∶ (xI , yI)→ (xP , yP ) that assigns a corresponding projector pixel (xP , yP )
to each image pixel (xI , yI). Therewith, any projection pixel Tij in the cap-
tured scene is known to be located at P(Tij) in the projector input image.
Since these projector colors are usually limited to 8-bit values in three color
channels, a discrete search range for texture values of T is given, that can
be effectively used by a logarithmic search. Moreover, projecting light is a
monotonous procedure, therefore increasing values of Tij lead to increasing
values of Iij . In order to implement and exploit this knowledge, the values
of the projection P(T ) are adjusted via a logarithmic search until the error
(10.2) of the resulting image I = I ′ + I ′′ ⊙ T to the equalization value Ī for all
pixels is minimal.
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Figure 10.2.: Textures T projected onto an exemplary scene: Gray projection (bot-
tom, left) and inverse texture calculated with Algorithm 9 (bottom,
right). Correspondingly captured scenes without and with color cor-
rection (top row).

Equalization Value Minimizing energy (10.2) with a fixed texture T leads to
an optimal equalization value

Ī = 1

MN
∑
ij

Iij (10.3)

given by the mean of image I ∈ RM×N . Alternating updates of the inverse
texture T and the equalization value Ī with adjusted increments lead to Al-
gorithm 9, which already converges after 7 iterations in case of standard 8-bit
projective devices. Since the texture update is pixel-wise independent, the
individual iterations can be implemented efficiently. Figure 10.2 (right) shows
a scene that has been equalized in this way. Each iteration was applied sepa-
rately to the different color channels to intercept the color cross-talk.

Algorithm 3: Iterative Color Equalization

1 Input: Camera-projector correspondences P.

2 Initialize projection texture P(T (0)ij ) = 128 ∀ij.
3 Project pattern T

(0)
ij and capture lit scene I(0).

4 for z = 1, ...,7 do

5 Ī(z−1) = 1
MN ∑ij I

(z−1)
ij

6 P(T (z)ij ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P(T (z−1)ij ) + 27−z, I
(z−1)
ij < Ī(z−1)

P(T (z−1)ij ) − 27−z, I
(z−1)
ij > Ī(z−1)

P(Tij), else

7 Project pattern T (z) and capture resulting scene I(z).
8 end

9 Output: Inverse texture T .
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10.3.2. Camera-Projector Correspondences

In order to apply Algorithm 9, a reliable mapping P(⋅) as described in Sec-
tion 10.3.1 is required. A recommended approach for determining close point
correspondences between projector image and camera image is the structured
light approach introduced in [184]. The projection of phase-shifted sine waves
(Figure 10.3 (a), allows the calculation of phase images encoding the scene
through the projection (Figure 10.3 (b)). This usually requires phase unwrap-
ping methods like [14] or [8] or the pixel-wise method presented in Chapter
9 to use generated wrapped phases to improve the surface encoding. The
phase information can be used to determine point correspondences of projec-
tor and camera pixels as described in Chapter 4. Errors in the underlying
phase information can be caused by

• Overexposed or underexposed areas in the scene where the projected
fringes are not visible.

• Regions in the scene that are visible to the camera but not to the pro-
jector.

• Shadows caused by the illuminated object.

(a) Fringe patterns and images (b) Horizontal and vertical phase images

Figure 10.3.: Examples of sinusoidal fringe patterns (a, left) and thus illuminated
scenes captured by a camera (a, right). Horizontal and vertical
phases of the projector (a, left) and the camera (a, right) calcu-
lated from the fringe images.

Masking Erroneous Phase Values For the success of the proposed color
equalization method it is a prerequisite to have an accurate mapping P avail-
able. No false correspondences should be used that would significantly falsify
the result. For this purpose, incorrect phase information should be masked
out beforehand. Defective phase regions, which are calculated using stan-
dard phase shift approaches [111], are usually much more noisy than correctly
coded ones. Therefore, gradient based filters are typically used to mask out
erroneous regions. However, these approaches are not sufficiently accurate for
the presented application. Due to the gradient dependency, edges are falsely
masked out, which runs counter to the later goal of reconstructing highly ac-
curate small structures. In order to create an appropriate masking, a simple
method is presented that provides much more accurate results.
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Given is the basic property of phase-shifted sinusoidal patterns:

1

N

N

∑
n=1

IHn =
1

M

M

∑
m=1

IVm = I ′ + 0.5I ′′. (10.4)

The sum of the phase-shifted sine waves results in zero, which neglects their
influence. This means that the applied illumination of the scene in sum is
equivalent to a uniform grey projection. Let IHn and IVn denote the captured
scenes, illuminated by respective sine patterns PH

n and P V
m as defined in For-

mula 9.1. If the scene was captured without illumination, I ′ is already given,
so I ′′ can be estimated by

I ′′ = 1

N

N

∑
n=1

IHn +
1

M

M

∑
m=1

IVm − 2I ′. (10.5)

Finally, an error E of the horizontal and vertical phase values ΦH and ΦV to
the captured images IHn and IVm can be calculated by

E =
N

∑
n=1
(cos(ΦHFH +

2π(n − 1)
N

) − IHn − I ′

I ′′
)
2

+
M

∑
m=1
(cos(ΦV FV +

2π(m − 1)
M

) − IVm − I ′

I ′′
)
2

.

(10.6)

Figure 10.4 (a) shows an example of a texture computed from image means
(10.4) and (b) the respective error image E from (10.6). This error reliably
indicates the quality of the phase values in relation to all captured images of the
scene. Since erroneous phase values produce much higher errors than correct
ones, a high-quality mask can be generated by applying k-Means Clustering
to error image E. Note that bi-clustering can be efficiently implemented in
O(MNlog(MN)). Moreover, bi-clustering on scalar values can be solved with
a guarantee of a global solution. Figure 10.4 (c) shows the final mask as a
result of k-Means Clustering applied with two clusters. Figure 10.4 (d) shows
the final masked phases.

(a) Superposed
fringe images

(b) Error image (c) Computed mask (d) Masked phase
images

Figure 10.4.: Texture image calculated from averaging captures (10.4) (a) and er-
ror image calculated from (10.6) (b). Projection mask clustered from
error image (c) and correspondingly masked phase images (d).
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10.4. Inverse Texturing Structured Light (ITSL)

In order to neglect color influences on the geometry estimation by the struc-
tured light approach, the inverse texture calculated by Algorithm 9 is combined
with the fringe images PH

n and P V
m . Instead of the normal patterns the Inverse

Texturing Structured Light Patterns (ITSLP) are projected:

TH
n = PH

n ⊙P(T̃ ), n = 1, ...,N, T V
m = P V

m ⊙P(T̃ ), m = 1, ...,M (10.7)

Values of the inverse texture close to zero are lifted to avoid that no fringes
are projected in these regions after multiplication:

T̃ij =
⎧⎪⎪⎨⎪⎪⎩

Tij , if Tij > 0.05 ⋅max(T )
0.05 ⋅max(T ) , else

(10.8)

In the process, masked areas are also coded after several iterations of the
approach.
An important feature of ITSLP is, that they fulfill the basic property for
fringes of a sinusoidal structured light system, as mentioned in (10.4). In the
new case for every scene the following holds true:

1

N

N

∑
n=1

IHn = I ′ +
1

N

N

∑
n=1
P−1(PH

n )⊙ T̃ ⊙ I ′′ = I ′ + 0.5(T̃ ⊙ I ′′) ≈ I ′ + 0.5(T ⊙ I ′′).

(10.9)

This is equivalent to usual sinusoidal structured light patterns being projected
onto a greyish scene with little color influence. Figure 10.5 (a, right) shows
ITSLP, computed by (10.8) and the patterns projected onto the scene (a, left).
For further visualization Figure 10.5 (right) shows the scenes after averaging
(10.4) the standard structured light patterns (left) and ITSLP (right).
Each iteration of ITSLP increases the quality of the reconstructions. Regions
with incorrect phase information of the first iteration can be corrected by
multiple iterations of ITSL.

(a) ITSL Patterns (left) projected to scene
(right)

(b) Mean images computed from normal
SL patterns (left) and ITSL patterns
(right)

Figure 10.5.: Examples of inverse texturing fringe images projected by the projec-
tor (top left) and illuminated scene (top right). Textures calculated
by (10.5) from the fringe images (bottom).
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10.5. Evaluation

In order to evaluate the usefulness of the method presented, some quantita-
tive and qualitative tests are carried out. First the performance of the color
equalization from Algorithm 9 is examined. In particular, the behavior after
several iterations of ITSL is investigated. Subsequently, the advantages and
the important practical benefits of ITSLP to structured light reconstruction is
shown. In several scenarios, in which the standard structured light approach
usually fails, the benefits, which arise from the new, improved approach, be-
come clear.

10.5.1. Inverse Projection Texture

Figure 10.6 (left) shows a captured image of a standardized X-Rite Col-
orChecker commonly used for color calibration. It consists of 24 calibrated
colors that well cover the entire visual color spectrum. Figure 10.6 (middle)
shows the captured checkerboard after applying Algorithm 9. The method
applied to this object demonstrates its behavior in case of very large color
differences in an object’s texture. It is clearly visible that some color patches
(dark red, yellow) cannot be equalized completely. The reason for this is that
light can only be projected but not removed. If the red, green or blue compo-
nent is already in an area above the mean value of the equalization, it cannot
be reduced by any projection. To be exact, the required value to be projected
does not lie in the gamut generated by the projector. Nevertheless, equaliza-
tion results of this quality lead to a significant improvement in the reflective
properties of an object. Moreover, since grayscale images are sufficient for
reconstruction, monochrome cameras can also be used. Errors that may occur
during color equalization due to inconsistent gamuts are negligible in this case.
Multiple iterations of ITSL, further improve the quality of equalization. Fig-
ure 10.6 (right) shows the behavior of the Root-Mean-Squared-Error (RMSE),
referred to the mean value (10.3), for an iterative application. While after the
first iteration the RMSE decreases by more than 90%, the following iterations
reduce this error only slightly in this case.
However, these minor changes can lead to a dramatic improvement of recon-
structions. In particular, the reflection behavior at edges of strongly contrast-
ing areas can be significantly improved after a few iterations, due to lower

Figure 10.6.: Captured image of a X-Rite ColorChecker before (top left) and af-
ter one iteration of color equalization with Algorithm 9 (top right).
RMSE of color equalization for several iterations of ITSLP (bottom).
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radiation. For visual evaluation, Figure 10.7 shows several iterations of the
method applied to a figurine of a zebra. The coloration of this object contains
maximally strong edges in the transitions from black to white areas. Due to
better approximated phase values, every iteration improves the equalization
quality. Note that limited projector brightness and stray light between pixels
are the reasons why it is impossible to achieve complete equalization in an
extreme scenario like the one shown in Figure 10.7. But within the scope of
the possibilities, the result obtained here is by far sufficient to yield significant
improvements in reconstruction, as will be demonstrated later on.

Figure 10.7.: Captured scene of a zebra to visualize the improvements of several
iterations of ITSL to color equalization. Normal image (left) and
equalized captures after one, two and three iterations (second to
right).

10.5.2. Inverse Texturing Structured Light

In order to demonstrate the advantages of the presented method in the con-
text of 3D reconstruction, it will be applied to exemplary scenarios in the
following. Quantitative and qualitative improvements in the important case
of high-precision reconstruction of very small structures will be shown. After
that it will be applied to objects with high-contrast staining, such as the one
in Figure 10.7, and the behavior after several iterations of the method will
be qualitatively investigated. Finally, the chances arising from the method in
context of specular and reflecting objects are shown by an exemplary recon-
struction of a shiny metal sphere.

High-Precision Reconstruction

Different colors of an object’s texture reflect different wavelengths of light.
These specific properties, depending on the object coloration, cause projected
patterns in structured light applications to be reflected in slightly different
ways. Therefore, depending on the coloration of an object, slightly differ-
ent depth values are estimated. Usually, this effect is very small, compared
to the geometry of an object, and can therefore be neglected. However, in
high-precision 3D reconstructions, as for example encountered in quality con-
trol setups, this problem has considerable effects and significantly affects the
results.
In order to evaluate the usefulness of the procedure in relation to this problem,
it is applied to a flat checkerboard with patches of different colors, as shown
in Figure 10.8. The checkerboard is absolutely flat and any differences in the
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Figure 10.8.: Flat colored checkerboard: Initial reconstructed point cloud (top
left), normal texture (top middle) and equalized texture after one
iteration of ITSL (top right). Enlarged marked area of point cloud
(bottom left) and point clouds before and after two iterations of the
proposed approach (bottom second left to right).

depth of the reconstruction are errors due to the different colors of the patches.
Figure 10.8 (top left) shows the reconstructed point cloud resulting from the
standard structured light approach. For further visualization, Figure 10.8 (top
center, right) shows the captured scene before and after color equalization. To
demonstrate the problem more clearly, Figure 10.8 (bottom, left) shows an
enlarged version of the marked area. Figure 10.8 (bottom, second left) shows
the point cloud of the enlarged region without texture information, but colored
by the Euclidean error with respect to the flat ground truth. Finally, Figure
10.8 (bottom, second right and right) shows the reconstructed regions after
one and two iterations of ITSL. To make a qualitative evaluation possible, the
depth value of the checkerboards is enhanced by a factor of 3 for visualization.
This clearly shows the improvements of the method presented.
Besides the qualitative evaluation, the benefits are demonstrated by a quanti-
tative error measurement. Figure 10.9 shows the behavior of the average depth
error of the reconstructed points with respect to the ground truth. Multiple
iterations improve the quantitative error continuously. Nevertheless, since the
improvements are in the range of µm, one should decide whether the improve-
ment of accuracy of the reconstruction justifies higher additional expenses in
the specific case.

Figure 10.9.: Average Euclidean depth error in µm of reconstructed point cloud
for several iterations of ITSL.
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High-Contrast Colored Objects

Another important field of application of the method is the reconstruction of
objects with extremely unfavourable coloring. The statue of a zebra from Fig-
ure 10.7 is treated as an example. Due to the very bright and very dark areas
there is no camera setting that allows a complete encoding of the surface with
structured light. Figure 10.10 (left) shows the result of standard structured
light with a rather short exposure time. The white areas of the zebra are well
reconstructed, while the black areas are underexposed and not encoded by the
patterns. Conversely, Figure 10.10 (middle) shows the reconstructions at a
higher exposure time, which allows the reconstruction of the black areas, but
overexposes the white regions. Finally, Figure 10.10 (right) shows the result
of ITSL. Already one iteration can solve the problem caused by the color con-
trasts and allows the reconstruction of the entire surface. Further iterations
improve the quality slightly, but they should again be weighed according to
the benefit and the recording time that needs to be spent.

Figure 10.10.: Reconstructed point clouds of a zebra statue. Top row and bottom
row show the same point clouds with and without color informa-
tion. Left and middle columns show results of standard structured
light in case of over- and underexposed images. Right shows ITSL
handling the proposed problems.

Specular Objects

As a last field of application of the method, its benefits in structured light
reconstruction of specular objects is demonstrated. The method is applied
to a specular metal sphere that strongly reflects the light emitted by the
projector. The resulting highlighted areas are overexposed and cannot be
encoded by the projected patterns. This effect cannot be completely avoided,
but it can be noticeable reduced. Figure 10.11 shows the reconstructed point
clouds with standard structured light (left) and after one and two iterations
of ITSL (center and right).
The highlighted points do not only depend on the projector’s position rel-
ative to the object, but also on the camera perspective. To illustrate that
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the overexposed point is different for different camera positions. The point
clouds in Figure 10.11 are triangulated from a pair of cameras instead of a
camera-projector pair. Therefore, there are two independent faulty holes in
the reconstructed point clouds from Figure 10.11. Finally, it should be pointed
out that this property means, that the defective area of the phase of one cam-
era is most likely correctly encoded in the other camera. This could be used
to improve reconstructions and to make them invariant to reflective objects in
multiple camera structured light setups, as they are typical used for practical
applications.

Figure 10.11.: Triangulated point clouds of a specular sphere, captured from two
views. Standard structured light (left) and results of ITSL after one
and two iterations (middle and right). While the top row shows the
textured point clouds, the bottom row visualizes the sole geometry.

10.6. Conclusion

In this chapter, a method has been presented that expands the practical scope
of structured light reconstruction. Typical scenarios, in which the standard
approach usually fails, are now treatable. Unfavorably colored and reflective
objects cause no or significantly fewer problems. In the area of high-precision
reconstruction, a significant leap in accuracy is achieved. However, the it-
erative character of the method also increases the recording time. Several
iterations increase the accuracy, but should be weighed against the additional
time required. Therefore, the approach is designed so that it can be easily
built on existing setup and applied or omitted as needed.
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11.1. Goals of the Thesis

The goal of this work was to develop a complete, fully automatic 3D recon-
struction pipeline that works for a large number of different objects. This
was delivered using an active structured light approach based on sinusoidal
patterns that enables highly accurate reconstructions without dependence on
object features. The pipeline should also be suitable and applicable for differ-
ent applications. For this purpose, a flexible auto-calibration procedure was
developed that works independently of the selected devices and enables stable
calibration of all devices, including the projector used. It does not depend on
pre-calibration (especially of the active component) and thus allows any adap-
tation of the equipment to the targets to be reconstructed. This approach
is thus cost-efficient, flexible, and at the same time user-friendly, i.e. fully
automatic.

11.2. Summary of Thesis Achievements

In terms of the resulting quality and applicability of structured light recon-
struction, contributions have been made in several ways.
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Accuracy Using the consistent sub-pixel matching for two-dimensional struc-
tured light encodings, introduced in Chapter 4, a reduction of the back-
projection error by about 28% was achieved, while the matching cost still
remained linear. In addition, outliers were excluded without additional filters.
In the calibration of the used devices, the combination of the methods pre-
sented in Chapter 5 allows to reduce the resulting back-projection errors even
further by up to 30%. In the case of high precision reconstructions, in Chapter
10 a method has been presented that iteratively reduces erroneous reconstruc-
tions of very small structures caused by color influences. The examined errors
decreased by 32% from 38µm to 26µm in the examined object after three it-
erations. When fully automatically aligning full turns of 3D reconstructions
from Chapter 7, a reduction of the alignment errors by an average of 15% was
achieved without more iterations than the standard method.

Stability and Robustness In terms of stability, a number of results was ob-
tained, especially in the area of calibration in Chapter 5. The presented
method allows minimizing the trifocal error for estimating the epipolar geome-
try even in the presence of strong noise and outliers. Intrinsic auto-calibration,
which estimates camera parameters directly from fundamental matrices, con-
verges under minimization with the proposed energy with an extraordinarily
increased convergence region, allowing the approach to be used for applica-
tions where success was previously critical. In particular, the approach enables
stable calibration of a projector from point correspondences and to cleanly es-
timate its principal point. The pre-alignment of Chapter 6 allows to stably
register ancient partial scans, that are usually differently shaded, as they are
illuminated by projectors from different relative positions. In the alignment
of Chapter 7, it was also possible to experience much smoother convergence
behavior by introducing symmetric updates of the partial reconstructions. It
proceeds much more smoothly and allows the use of automatic stopping cri-
teria, which otherwise often fail due to alternations of the alignment error in
other ICP approaches.

Speed With respect to the extremely time-consuming acquisition procedure
of two-dimensional scene encoding with sinusoidal structured light, on which
the presented approach is based, is was possible to present a method in Chapter
9 that almost halves the required acquisition images by combining horizon-
tal and vertical patterns. Unfortunately, the obtained correspondences suffer
especially from influences of gamma correction of the used devices. The ob-
tained point correspondences are significantly more noisy, but still, considering
the median errors, significantly lower than encodings with separate patterns,
which could have made fewer refinements in the same recording time. The
correspondences obtained in this way are of particular interest for calibration
where outliers are not significant, due to subsequently used stable RANSAC
approaches. Especially for the calibration of devices like SLR cameras, which
have a slow recording time, this approach to calibration is of interest.

152



11.3. Future Work

Usability and Flexibility Last but not least, the overall method has gained
some applicability especially in terms of flexibility and usability without user
interaction. This could be achieved in particular through the auto-calibration,
based on self-generated correspondences in the scene, and the opportunity to
use arbitrary cameras and projectors. In addition, the application area of
the active structured light approach has been extended to some problematic
surfaces, as shown in Chapter 10. In this way, even extremely unfavorable
high-contrast textures and specular surfaces can be examined and their nega-
tive influence on the resulting reconstructions can at least be reduced.

11.3. Future Work

Possible future work to expand the pipeline would be on applications that
combine and benefit from joint normal vector calculations and texturing. In
situations such as a structured light scanner, where turntables are used to
rotate the object, the illumination and thus the shading of the object often
changes due to the rotation. The different shadings of the object for different
views can lead to seams in the model’s texture afterwards. At the same time
the direction of illumination by the projector is known, since the active device
has also been calibrated with high precision. A combination of geometric
approaches to normal vector estimation and a Lambertian assumption of the
resulting shading, as exploited in Shape-from-Shading methods [182] may allow
to estimate better normal vectors and at the same time a base-color of the
texture without disturbing influence of the active illumination.
Another future improvement of the pipeline would be to co-estimate mate-
rial properties, such as Bidirectional Reflectance Distribution Functions [114]
for the reconstructed surfaces within the 3D scanner. These allow to render
material properties photorealistically. The renderings obtained from the 3D
reconstruction pipeline would thus be even more realistically representable.

153





Bibliography

[1] url: https://www.implantate.com (visited on 09/15/2021).

[2] url: https://unity.com (visited on 12/02/2021).

[3] Sameer Agarwal et al. “Bundle adjustment in the large”. In: European
conference on computer vision. Springer. 2010, pp. 29–42.

[4] Devrim Akca. Generalized procrustes analysis and its applications in
photogrammetry. Tech. rep. ETH Zurich, 2003.

[5] Pablo Fernández Alcantarilla, Adrien Bartoli, and Andrew J Davi-
son. “KAZE features”. In: European conference on computer vision.
Springer. 2012, pp. 214–227.

[6] Abd Albasset Almamou et al. “Quality control of constructed models
using 3d point cloud”. In: (2015).

[7] Abdulrahman S Alturki and John S Loomis. “X-corner detection for
camera calibration using saddle points”. In: International Journal of
Computer and Information Engineering 10.4 (2016), pp. 676–681.

[8] Yatong An, Jae-Sang Hyun, and Song Zhang. “Pixel-wise absolute
phase unwrapping using geometric constraints of structured light sys-
tem”. In: Optics express 24.16 (2016), pp. 18445–18459.

[9] Aleksandr Aravkin et al. “Student’s t robust bundle adjustment algo-
rithm”. In: 2012 19th IEEE International Conference on Image Pro-
cessing. IEEE. 2012, pp. 1757–1760.

[10] K Somani Arun, Thomas S Huang, and Steven D Blostein. “Least-
squares fitting of two 3-D point sets”. In: IEEE Transactions on pattern
analysis and machine intelligence 5 (1987), pp. 698–700.

[11] Tali Basha, Yael Moses, and Nahum Kiryati. “Multi-view scene flow
estimation: A view centered variational approach”. In: International
journal of computer vision 101.1 (2013), pp. 6–21.

[12] Stefania Bellavia, Serge Gratton, and Elisa Riccietti. “A Levenberg–
Marquardt method for large nonlinear least-squares problems with dy-
namic accuracy in functions and gradients”. In: Numerische Mathe-
matik 140.3 (2018), pp. 791–825.

[13] Paul J Besl and Neil D McKay. “Method for registration of 3-D shapes”.
In: Sensor fusion IV: control paradigms and data structures. Vol. 1611.
International Society for Optics and Photonics. 1992, pp. 586–606.

155

https://www.implantate.com
https://unity.com


Bibliography

[14] Jos M Bioucas-Dias and Gonalo Valadao. “Phase unwrapping via graph
cuts”. In: IEEE Transactions on Image processing 16.3 (2007), pp. 698–
709.

[15] Stan Birchfield and Carlo Tomasi. “A pixel dissimilarity measure that
is insensitive to image sampling”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 20.4 (1998), pp. 401–406.

[16] Michael Bleyer, Christoph Rhemann, and Carsten Rother. “Patch-
Match Stereo-Stereo Matching with Slanted Support Windows.” In:
Bmvc. Vol. 11. 2011, pp. 1–11.

[17] Sylvain Bougnoux. “From projective to euclidean space under any prac-
tical situation, a criticism of self-calibration”. In: Computer Vision,
1998. Sixth International Conference on. IEEE. 1998, pp. 790–796.
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[21] Jan Čech, Jordi Sanchez-Riera, and Radu Horaud. “Scene flow estima-
tion by growing correspondence seeds”. In: CVPR 2011. IEEE. 2011,
pp. 3129–3136.

[22] Yisong Chen et al. “Full camera calibration from a single view of planar
scene”. In: International Symposium on Visual Computing. Springer.
2008, pp. 815–824.

[23] Yu Chen, Yisong Chen, and Guoping Wang. “Bundle Adjustment Re-
visited”. In: arXiv preprint arXiv:1912.03858 (2019).

[24] Dmitry Chetverikov, Dmitry Stepanov, and Pavel Krsek. “Robust Eu-
clidean alignment of 3D point sets: the trimmed iterative closest point
algorithm”. In: Image and vision computing 23.3 (2005), pp. 299–309.

[25] Dmitry Chetverikov et al. “The trimmed iterative closest point algo-
rithm”. In: Object recognition supported by user interaction for service
robots. Vol. 3. IEEE. 2002, pp. 545–548.

[26] Ion Aurel Cristescu. “Approximate solution of nonlinear Poisson equa-
tion by finite differences method”. In: Rom. Rep. Phys 68.2 (2016),
pp. 473–485.

[27] Gabriella Csurka et al. “Characterizing the uncertainty of the funda-
mental matrix”. In: Computer vision and image understanding 68.1
(1997), pp. 18–36.

[28] Arturo Donate, Xiuwen Liu, and Emmanuel G Collins. “Efficient path-
based stereo matching with subpixel accuracy”. In: IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 41.1 (2010),
pp. 183–195.

156



Bibliography

[29] Matea Donlic, Tomislav Petkovic, and Tomislav Pribanic. “3D surface
profilometry using phase shifting of De Bruijn pattern”. In: Proceed-
ings of the IEEE International Conference on Computer Vision. 2015,
pp. 963–971.

[30] Chitra Dorai et al. “Registration and integration of multiple object
views for 3D model construction”. In: IEEE Transactions on pattern
analysis and machine intelligence 20.1 (1998), pp. 83–89.

[31] Alexey Dosovitskiy et al. “Flownet: Learning optical flow with convolu-
tional networks”. In: Proceedings of the IEEE international conference
on computer vision. 2015, pp. 2758–2766.

[32] Qiuchen Du et al. “Stereo-Matching Network for Structured Light”. In:
IEEE Signal Processing Letters 26.1 (2018), pp. 164–168.

[33] David W Eggert, Adele Lorusso, and Robert B Fisher. “Estimating 3-
D rigid body transformations: a comparison of four major algorithms”.
In: Machine vision and applications (1997).
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