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Abstract

This thesis deals with modeling and simulation of district heating networks (DHN) and the
mathematical analysis of the proposed DHN model. We provide a detailed derivation of
the complete system of governing equations, starting from a brief exposition of the physi-
cal quantities of interest, continued with the components to set up a graph based network
model accounting for fluxes and coupling conditions, the transport equations for water and
thermal energy in pipelines, and the terms representing consumers and producers. On
this basis, we perform an analysis of the solvability of the model equations, starting from
the scalar advection problem in a single–consumer single–producer network, to a general-
ized problem suitable to model simple networks without loops. We also derive an abstract
formulation of the problem, which serves as a rigorous mathematical model that can be
utilized for optimization problems. The theoretical results can be utilized to perform tran-
sient simulations of real world DHN and optimize their performance by optimal control, as
indicated in a case study.

Kurzzusammenfassung

Diese Arbeit befasst sich mit der Modellierung und Simulation von Fernwärmenetzen und
der mathematischen Analyse des vorgeschlagenen Netzmodells. Nach einer kurzen Dar-
stellung der relevanten physikalischen Größen folgt eine detaillierte Herleitung des voll-
ständigen Gleichungssystems, welches ein Fernwärmenetz beschreibt. Wesentliche Be-
standteile sind die Komponenten zur Aufstellung eines graphenbasierten Netzmodells unter
Berücksichtigung von Flüssen und Kopplungsbedingungen, die Transportgleichungen für
Wasser und Wärmeenergie in Rohrleitungen und die Modellterme für Verbraucher und
Erzeuger. Auf dieser Grundlage führen wir eine Analyse der Lösbarkeit der Modellgle-
ichungen durch, ausgehend vom skalaren Advektionsproblem in einem Ein-Verbraucher-
Ein-Erzeuger-Netzwerk bis hin zu einem verallgemeinerten Problem, das sich für die Mod-
ellierung einfacher Netzwerke ohne Schleifen eignet. Wir leiten auch eine abstrakte For-
mulierung des Problems ab, die als strenges mathematisches Modell dient, das für Opti-
mierungsprobleme verwendet werden kann. Die theoretischen Ergebnisse können genutzt
werden, um instationäre Simulationen von realen Fernwärmenetzen durchzuführen und
deren Leistung durch optimale Steuerung zu optimieren. Dies wird in einer Fallstudie
aufgezeigt.
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Chapter 1

Introduction

District heating designates the supply of heat to buildings through a heating network deliv-
ering thermal energy generated by a central supplier like e.g. a power plant, solar thermal
or geothermal installation, or a large heat pump. The energy is used to heat water, which
is then fed into a network of insulated pipes that transport thermal energy straight into
the buildings connected to the system. The water then flows through a handover station
and into the building’s own heat distribution system, which provides for a supply of heat-
ing energy and hot water. Once the water has cooled down, it flows back to the original
heat source and the circle begins anew (see FIGURE 1.1 ). In this way, buildings that are
supplied with district heating can do without their own heating systems. 1

The climate change mitigation project Drawdown lists district heating technology among
the most efficient methods to reduce greenhouse emissions. We refer to https://www.
drawdown.org/solutions/district-heating for a discussion of the benefits and limita-
tions of the technology.
District heating networks (DHN) will play a prominent role in sector coupling. On the one
hand, they can help compensating for fluctuations in renewable power generation. On the
other hand, they allow to use waste heat from industrial processes and thus save natural
gas. However, this new role of district heating requires new operating modes, deeper
insight into the network and, consequently, more sophisticated simulation and optimization
tools.
The recent article [Mohring et al., 2021] provides a consise summary of the aspects that
are relevant for the future design of DHN and their operating modes, which we reproduce
in parts, as a motivation for the research work carried out in this thesis.
Modern district heating plants use combined heat and power generation. Operators can
decide which part of the hot steam is used for power generation and which part for district
heating. The heating network behaves more like a storage device allowing delays between
feed-in and consumption. This enables the operator to react to sudden changes in the
demand for electric power by redirecting temporarily the hot steam.
Another task is optimal preheating. In some periods of the year, the power of the main
heating source is enough to cover the demand on average, but not during the load peaks.
Here, additional gas boilers have to be fired, which is expensive due to long start-up and
shut-down phases. To some extent, this can be avoided by intelligent preheating. At some
point, however, the contractually guaranteed connection pressures and temperatures can
no longer be maintained.
So far, operators have been able to master these tasks thanks to many years of expe-
rience. In the future, however, district heating networks will no longer be supplied by a

1https://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2021/03/Meldung/
direkt-account.html

1

https://www.drawdown.org/solutions/district-heating
https://www.drawdown.org/solutions/district-heating
https://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2021/03/Meldung/direkt-account.html
https://www.bmwi-energiewende.de/EWD/Redaktion/EN/Newsletter/2021/03/Meldung/direkt-account.html
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Figure 1.1: A schematic
view of a district heating
network, with separate for-
ward (orange) and return
flow (blue) pipe networks.

single source, but also by waste heat of industrial plants. At that point at the latest, simu-
lation will have to be used to get an idea of the present state of the network and its future
development.
Dynamic run-time effects play a central role for all of these tasks, while current software
does usually not take them into account. Products for operational optimization usually treat
the entire network as a sink without structure [KISTERS Gruppe, 2020]. On the other hand,
thermo-hydraulic simulators are made for network design and provide only quasi-stationary
solutions [Fischer-Uhrig, Ingenieurbüro, 2018]. This means that the temperature field is
calculated as if the current consumption had always been the same before. In particular,
no temperature fields can be represented that are warmer inside the network than at the
source.
But also academic codes which are based on classical numerical methods for hyperbolic
transport [Köcher, 2000] reach their limits, since the shortest pipes and highest flow veloc-
ities define the calculation grid in time and place, while smoothness of real consumption
profiles is not exploited. The following example may illustrate the challenge. The city net
of Technische Werke Ludwigshafen (TWL) comprises about 1000 consumers and 6000
pipes. In [Mohring et al., 2021] a periodic optimal control problem for known consumption
was addressed, ignoring issues like reconstructing states from noisy measurements. In
the future, however, TWL intends to apply model-predictive control. Periods of two or three
days have to be simulated several times within a quarter of an hour. Using a standard first-
order upwind method, due to stability, one has to deal with more than 1.9×109 degrees of
freedom in space and time, which is far too much for solving problems in time.

1.1 Related work

Before discussing the models and methods used in this thesis, we will give a more gen-
eral overview of related literature (see also [Mohring et al., 2021]). Early approaches to
computer aided operational optimization of district heating networks date back to 1995
[Benonysson et al., 1995]. The authors identified the significant role of time delays in dis-
tribution networks, and the resulting complexity of an accurate numerical solution. The net-
work dynamics are approximated using the so-called node method - a Lagrangian scheme
based on time series of temperatures at nodes (i.e. intersection points between different
components) of the the network. A detailed modeling approach for heating networks is pre-
sented in [Köcher, 2000], featuring complex network geometries with loops, non-constant
thermodynamical properties of water, and unsteady friction models. The main focus of this
work lies on optimal network design. A common trait, which most modeling approaches for
DHN share, is the description of energy transport in the distribution network as an advection
process. In [van der Heijde et al., 2017b], and [van der Heijde et al., 2017a], the authors
analyze this class of models, including an experimental validation. In [Hauschild et al., 2019],
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an embedding into the framework of Port-Hamiltonian systems is presented, with the
aim to provide a mathematically and physically rigorous basis to model coupling of sec-
tors. Besides district heating, flow based network models have been proven to pose
a suitable approach for problems in other areas, traffic, gas transport, or logistic net-
works. For an overview of network based modelling we refer to [Ambrosio et al., 2013]
and [Bressan et al., 2014].
Explicit high order numerical schemes for general hyperbolic conservation laws on net-
works are discussed in [Borsche and Kall, 2014], and [Borsche, 2016]. The presented nu-
merical methods can easily be applied to the field of district heating. As length scales can
vary vastly in district heating networks, a global time step restriction can result in large
computational costs. In [Borsche et al., ], local time stepping (LTS) schemes for networks
are used to circumvent this restriction. More common in the field, however, is the use of
classical methods, e.g. explicit or implicit Upwind [Vivian et al., 2018] or a modification of
the QUICKEST scheme [Grosswindhager et al., 2011].
As already observed, an accurate numerical simulation is essential if sharp estimates of
transport time delays are required. On the other hand, such models tend to be computa-
tionally intensive and are often too complex for usage in optimization. The model predictive
control (MPC) approach in [Sandou et al., 2005] tackles this problem by coupling a full non-
linear forward simulation with a simplified, linear approximation, where the former serves
as predictor, and the latter is used as an optimization model. In [Giraud et al., 2017], a
similar method is used to solve optimal control problems involving multiple, switchable
energy sources, resulting in mixed integer linear programs (MILP). A nonlinear, instan-
taneous control approach for district heating networks with power constraints is presented
in [Krug et al., 2019]. An outline of the optimization algorithms, which are a part of the ap-
proach we present in this thesis, are presented in [Mohring et al., 2021] and [Linn et al., 2019].
Based on a combination of a nonlinear, and a linearized model as well, it eliminates the
internal state variables from the optimization model, hence reducing its dimension. First
results obtained with this approach for industrial use cases provided the motivation to in-
vestigate the subject more thoroughly in this thesis.
An alternative to linearized models for optimization lies in model order reduction, as it
is depicted in [Rein et al., 2019a] and [Rein et al., 2019b]. Moment matching is applied
to approximate the full, high resolution model by one with significantly fewer degrees of
freedom, while preserving the system’s essential dynamic behaviour.
In [Mohring et al., 2021] another approach was chosen to keep simulation times short.
Temperatures, or more precisely, energy densities are represented by low order polyno-
mials on both, local and temporal inflow boundaries of a pipeline, and followed along char-
acteristics. As long as information is propagated only from the local inflow boundary, the
method is similar to [Benonysson et al., 1995]. The resulting differential algebraic equa-
tions were integrated by classical collocation [Iserles, 2009] and adaptive time stepping is
controlled by Richardson extrapolation [Richardson, 1911].
While all previously mentioned methods are based on physical models involving ordinary
or partial differential equations, the authors of [Nielsen et al., 2002] present an approach
based on stochastic model predictive control, which has successfully been implemented
as an on-line controller.
In the field of numerical mathematics and analysis, several relevant studies have con-
tributed to the optimal control of district heating networks. Gugat et al. ([Gugat, 2016])
focused on the exact boundary controllability of traffic flow, which shares mathematical
similarities with our application domain. Their work provides insights into addressing sim-
ilar challenges. Another significant contribution by Gugat et al. ([Gugat et al., 2015]) in-
volved the analysis of systems of nonlocal conservation laws on networks. Considering
that nonlocality poses a considerable challenge in our model, their findings offer valuable
perspectives.
Although our hydraulic model differs from the more general isothermal Euler equations, Gu-
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gat ([Gugat et al., 2012]) studied the H2-stabilization of such equations. This research is
relevant as our model incorporates non-isothermal aspects. Moreover, Ulbrich ([Ulbrich, 2002])
investigated sensitivity and adjoint calculus for discontinuous solutions of hyperbolic con-
servation laws. While not directly applicable to systems with algebraic constraints like ours,
their study offers insights into sensitivity analysis for more general solutions.
The existence and uniqueness of solutions for nonlocal transport equations were explored
by Coron ([Coron et al., 2020]). Although not directly related to our district heating net-
works, their research on nonlocal equations provides a foundation for understanding sim-
ilar mathematical properties. Alberto ([Alberto and Andrea, 1995]) developed variational
calculus methods for discontinuous solutions of hyperbolic conservation laws, which con-
tributes to the broader understanding of mathematical techniques applicable to our work.
To assess the accuracy of finite volume schemes, Merlet ([Merlet and Vovelle, 2007]) con-
ducted error estimation studies. Their work offers valuable insights into quantifying errors
in numerical approximations, which is crucial for our optimization efforts. Additionally, Mer-
let ([Merlet, 2008]) explored L∞ and L2 error estimates for finite volume schemes. These
findings further support the evaluation and validation of our numerical approaches.
By incorporating these studies from numerical mathematics and analysis into the optimal
control of district heating networks, we can enhance our understanding of the mathemat-
ical foundations and refine our numerical methods to improve the overall efficiency and
accuracy of our models.
Besides a numerical simulation of the distribution network, a good load prediction is es-
sential for precise numerical simulation and optimization. Here, standardized load profiles
[BGW, 2006], which originally have been developed in the context of gas networks, may
serve as a good starting point, if no detailed measurements are available.
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1.2 The structure of this thesis and main results

This thesis is structured as follows:
We continue in CHAPTER 2 with a detailed derivation of the complete system of governing
equations for the network. We start with a short overview of the relevant physical quantities
(including a summary of the thermodynamic properties of water) and then introduce the
necessary components to set up a graph based network model. The transport equations
for water and thermal energy in pipelines are presented in dimensional form as well as in
scaled form, with all physical quantities related to characteristic units, and physical process
parameters expressed in dimensionless numbers. Further model elements account for
fluxes and coupling conditions, and the terms representing consumers and producers. We
finish the chapter with a one page summary of the complete model equations.
In CHAPTER 3 , which represents the mathematical core of our thesis work, we perform
an analysis of the solvability of the model equations, starting from the scalar advection
problem in a single–consumer single–producer (SCSP) network, to a generalized problem
suitable to model simple networks without loops. Following the SCSP case, we study well-
posedness and regularity for networks without flow reversal. We then introduce abstract
residual and solution operators on suitable Banach spaces to derive an abstract formulation
of the problem, which serves as a rigorous mathematical model that can be utilized for
optimization problems.
In CHAPTER 4 we turn towards optimal control problems built upon the model which we
have established in CHAPTER 2 , and demonstrate their numerical solution by applying
the insights from the mathematical analysis of the models carried out in CHAPTER 3 .
After some brief considerations on the existence of local solutions with regularized state
constraints, we explain the algorithmic component of projected gradient descent in H1,
including a short comparison of L2 to H1 gradients, followed by an outline on numerical
discretization schemes and automatic differentiation utilized to obtain the discrete adjoint
and the propagation of sensitivities. Finally we show two application examples: The appli-
cation of the H1 projected gradient algorithm to a single pipeline network, and the optimal
operation of a real world district heating network using discrete sensitivity propagation.
In CHAPTER 5 we conclude the thesis with a short summary of our results, and give an
outlook on further work that could be performed on this basis.
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Constributions of this thesis

We finish the introductory chapter with a short list of results that we obtained in our thesis
and that to our knowledge extend the state of the art of industrial mathematics applied to
district heating network simulation and optimization:

• Improved DHN modeling: Adaption of the already existing mathematical models
([Mohring et al., 2021], [Krug et al., 2019]) with focus on a consistent water model,
and solvability of the equations independent of the feasibility of state inequality con-
straints.

• Extensions in the mathematical analysis of DHN models: Existence and unique-
ness results in C0, as well as H1 for district heating networks where flow reversals
cannot occur.

• Weak formulation for optimal control: Motivated by the solution theory for parabolic
equations: Weak formulation in Bochner spaces which permit differentiability and
weak-weak? continuity. The first property is necessary to establish optimality condi-
tions for this non-convex system, the second one aids as a theoretical tool to prove
existence of local minimizers.

• Application in a projected gradient method: H1 projection is performed by trans-
formation into an obstacle problem, for which established methods exist.

The case studies presented in CHAPTER 4 indicate how these theoretical results can be
favourably utilized to perform transient simulations of real world DHN and optimize their
performance by optimal control.



Chapter 2

Derivation of the governing
equations

In district heating, thermal energy is transported from one (or few) central producers to
many distributed consumers via a network of water pipelines. Therefore, the domain of
hydraulics and thermodynamics provides the modelling basis to simulate the functionality
and physical properties of district heating networks.
An overview of typical quantities of interest, as well as their assumed range of magnitude
is given in table TABLE 2.1 .

Symbol Name (SI) Unit Magnitude
p hydraulic pressure Pa 105 − 106

v flow velocity m · s−1 10−2 − 100

ρ mass density kg ·m−3 ∼ 103

e internal energy density J ·m−3 108 − 109

T temperature ◦C 101 − 102

q volumetric flow rate m3 · s−1 10−4 − 10−2

q̂ mass flow rate kg · s−1 10−1 − 101

Q energy flow rate / power W 104 − 107

Table 2.1: Model variables and their typical magnitudes

Mathematical models describing transient, spatial transport processes display the inter-
play of the involved time and length scales, which are summarized in TABLE 2.2 , and
TABLE 2.3 .

While a three dimensional, high resolution numerical model would certainly be nice to have,
we need to keep in mind that the model is going to be used in the context of optimization
problems covering a time range of multiple days. In order to keep computation times at
an acceptable level, we therefore choose a graph based modelling approach for our dis-
trict heating network. This involves the usage of a simplified, one dimensional pipeline

Symbol Range Description
∆xnet 1-10 km Average network diameter
L 0.1-1000 m Pipeline length
∆xsim <100m Desired simulation length scale

Table 2.2: Relevant length scales in district heating

7
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Symbol Range Description
∆thyd 5 1 s Estimated network traversal time of hydraulic shock waves
∆tadv 100 − 104 s Average advective pipeline traversal time
∆topt 15 min Operational control time interval
∆tsim 1-15 min Desired numerical simulation time scale

Table 2.3: Relevant time scales in district heating
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Figure 2.1: Isobaric fluid properties of water at P = 3.0 bar, taken from the NIST chemistry
webbook [NIST, 2016]

model, whose practical accuracy has been investigated in [van der Heijde et al., 2017b],
and [van der Heijde et al., 2017a].
The entire network model is structured into five parts:
An approximate polynomial model for the thermodynamic properties of water is given in
section SECTION 2.1 .
In SECTION 2.2 , we introduce a graph based model, which describes the interaction be-
tween different components in the form of coupling and boundary conditions. The model
equations and constraints for different network components, namely pipelines, producers,
and consumers, are established in SECTION 2.3 , SECTION 2.4 , and SECTION 2.5 .

2.1 Thermodynamic Properties of Water

In district heating, one makes use of the good heat storage capacities of water, in order to
transport thermal energy over long distances.
Quantities of interest are temperature T , mass density ρ, the (non-specific) internal energy
density e, and heat capacity cv. FIGURE 2.1 shows the variation of these quantities in the
temperature range 7 ◦C ≤ 130 ◦C at a constant pressure level of 3 bar.
The relative changes in magnitude given in TABLE 2.4 support the following assumption:
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Density Internal Energy Heat Capacity
isothermal 0.052 0.065 0.099

isobaric 6.681 179.987 1.968

Table 2.4: Relative changes (w.r.to mean) of fluid properties in % in isobaric (p = 3.0 bar,
7.0 ◦C ≤ T ≤ 130.0 ◦C) and isothermal (T = 7.0 ◦C, 3.0 bar ≤ p ≤ 14.0 bar) settings.

Assumption 2.1

The influence of pressure to internal energy and mass density can be neglected.

For the remaining quantities temperature T , the (non-specific) internal energy density e,
heat capacity cv, and mass density ρ, we want to establish a polynomial model, which is
inherently consistent. Starting with an approximation of cv, the specific density of internal
energy u(T ) is given by

u(T ) = u(Tmin) +

∫ T

Tmin

cv(θ) dθ. (2.1)

Therefore, the total amount of internal energy U(T ) contained in a volume Ω is given by
the integral

U(T ) =

∫
Ω

ρ(T )u(T ) dV =

∫
Ω

e(T ) dV, (2.2)

where

e(T ) = ρ(T )u(T ) (2.3)

denotes the (internal) energy density per unit volume. In order to replace the basis variable
T by e, the mapping T 7→ e(T ) needs to be bijective within the context of our model. A
sufficient condition for this is that the derivative satisfies

de(T )

dT
> 0 (2.4)

for any feasible temperature. Using the definition of u, this leads to the inequality

de(T )

dT
=
dρ(T )

dT
u(T ) + ρ(T )cv(T ) > 0. (2.5)

The inverted mapping e 7→ T (e) can be obtained by integrating its derivative

dT

de
= T ′(e) =

1

e′(T (e))
=

1

ρcv + ρ′e
, (2.6)

where ·′ denotes the derivative of an univariate function w.r.t. its argument. In many appli-
cations, only the quantities ρ, e (or u), and T are needed, whereas exact values cv are not
required.
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Assumption 2.2: Polynomial thermodynamic model

Given polynomial approximations ρ̃ and c̃v and an admissible temperature range
[Tmin, Tmax], we assume the following:

W.1 ρ̃ and c̃v only depend on T , but not on p.

W.2 ρ̃ is bounded, strictly positive, and nowhere increasing .

W.3 c̃v is bounded, strictly positive, and convex .

W.4 The mapping T 7→ e(T ) defined in (2.3) is a diffeomorphism from [Tmin, Tmax]
to [emin, emax]. Further, its inverse preserves the properties of ρ̃ and c̃v in the
sense that ρ = ρ̃ ◦ T (e), and cv = c̃v ◦ T (e) satisfy W.2 and W.3, respectively.

The values of T in FIGURE 2.1 motivate a linear model for u, which implies a constant
approximation of cv. Even though the qualitative behaviour depicted in figure FIGURE 2.1
suggests a polynomial approximation of at least second order, the relative deviations given
in TABLE 2.4 show, that a mean value approximation of ρ,

ρ̄ =
1

Tmax − Tmin

∫ T

Tmin

ρ(θ) dθ, (2.7)

and cv

c̄v =
1

Tmax − Tmin

∫ T

Tmin

cv(θ) dθ, (2.8)

should be sufficient for many practical applications. As we are going to show in SECTION 3.1 ,
such a simplified constitutive law poses an important special case, for which we can ex-
plicitly solve the model equations of the pipeline derived in SECTION 2.3 . Furthermore,
conservation of mass and volume are equivalent, when the mass density is assumed to be
constant.
The resulting models of the specific internal energy density

u(T ) = u(Tmin) + c̄v (T − Tmin) (2.9)

and non-specific internal energy density

e(T ) = ρ̄u(Tmin) + ρ̄c̄v (T − Tmin)

= emin + ρ̄c̄v (T − Tmin) ,
(2.10)

are affine linear functions. We thus can invert (2.10), and obtain an explicit expression

T (e) = Tmin +
e− emin
ρ̄c̄v

(2.11)

of the temperature T in terms of e, which is affine linear as well. These considerations
motivate the following approximations to the material model of ASSUMPTION 2.2 :

Assumption 2.3: Averaged thermodynamic model

W.2’ The mass density is approximated by its average ρ(e) ≡ ρ̄ .

W.3’ The specific heat capacity is approximated by its average cv(e) ≡ c̄v .

W.4’ The mapping e 7→ T (e) is explicitly given by the affine function (2.11).
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2.2 Graph Based Network Model

From the macroscopic point of view, the district heating network is modelled as an oriented,
finite graph G = (N ,A), and an injective adjacency mapping. A quick summary of basic
concepts from graph theory is summarized in DEFINITION 2.4 (for a complete introduction
into the topic, see e.g. [Bondy and Murty, 2008]).

2.4 Definition (Basic definitions from graph theory)

An ordered pair (N ,A) is called finite, unordered graph, where the vertex set N , and
the edge set A ⊂ N ×N , which consists of ordered tuples of nodes, are both finite.
The graph is called simple, if for two nodes n1, n2 ∈ N there exists at most one edge a
with a = (n1, n2) or a = (n2, n1) (i.e. there are no double edges).
A graph is called oriented, if there exist mapping

A −→ N ×N
a 7−→ (i(a), o(a))

(2.12)

which identify each edge with their incoming i(a), and outgoing node o(a).
A sequence of nodes (ni)i is called path, if (ni, ni+1) ∈ A. Such a path is called
orientation preserving, if there exists a sequence of edges, such that i(ai) = ni, and
o(ai) = ni+1.
A graph is called connected, if there exists a path between every pair of distinct nodes.
It is called acyclic, if there exists at most one connecting path.
For an oriented graph (N ,A, i, o), we define the incidence sets

I(n) =
{
a ∈ A

∣∣ i(a) = n ∨ o(a) = n
}
,

I+(n) =
{
a ∈ A

∣∣ o(a) = n
}
,

I−(n) =
{
a ∈ A

∣∣ i(a) = n
}
,

(2.13)

as well as the signed incidence matrix

In,a =


+1, n = o(a)

−1, n = i(a)

0,else
a ∈ A (2.14)

of the network. We now can define the degree of a node

deg(n) = |I(n)| (2.15)

as the size of its incidence set.

Starting from these basic definitions, we may characterize the graph-topological properties
of a district heating network (in the following abbreviated by DHN ) as follows:
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Assumption 2.5: Graph topology of district heating networks

Let G = (N ,A) be the graph associated with the topology of a district heating
network. We assume that the following properties are fulfilled:

G.1 G is finite, simple, oriented, and connected.

G.2 The edge set is a disjoint unionA = AP tACtAS , where the subsets contain
all edges representing pipes AP , consumers AC , and producers AS .

G.3 There are no leaves, i.e. for every node n ∈ N it holds that deg(n) ≥ 2.

G.4 The set of pipes can be further partitioned into its forward flow AffP , and
return flow subset ArfP . The former one is the pipe subnetwork, which trans-
ports heated water from the production plantsAS to the consumers’AC water
inlets, whereas the later one is the pipe subnetwork, which transports water
from the consumers’ outlets back to the producers. If we introduce the node
sets

N ff =
{
n ∈ N

∣∣ i(a) = n ∨ o(a) = n for some a ∈ AffP
}
, (2.16a)

N rf =
{
n ∈ N

∣∣ i(a) = n ∨ o(a) = n for some a ∈ ArfP
}
, (2.16b)

N ext =
{
n ∈ N

∣∣ i(a) = n ∨ o(a) = n for some a ∈ AC ∪ AS
}
, (2.16c)

then the sub graphs Gff =
(
N ff ,AffP

)
, and Grf =

(
N ff ,ArfP

)
are con-

nected.

Whereas heating networks with redundant paths (loops) exist, networks with a treelike
topology are quite common, as well. They form an interesting special case, which allows
to study the interaction of complex, advective systems, without having to deal with non-
smooth phenomena, such as flow indirection.

2.6 Definition (Simple district heating networks)

Let G = (N ,A) be the graph associated with the topology of a district heating net-
work, which satisfies all assumptions in ASSUMPTION 2.5 . We call the district heating
network simple, if the following is true:

G.5 There is only one producer such that AS = {s}. We define nrf := i(s), and
nff := o(s).

G.6 There are no immediate connections from the producer to any consumer:
I
(
nff

)
\ {s} ⊂ AffP .

G.7 Let NC =
{
n ∈ N

∣∣∣ ∃c ∈ AC : i(c) = n
}

denote the set of all forward flow nodes

attached to a consumer. Then deg(n) = 2 and I(n) ∩ AffP 6= ∅ ∀n ∈ NC , such
that every consumer has a unique supply pipeline.

G.8 For each n ∈ N ff , the path connecting nff with n is orientation preserving (see
DEFINITION 2.4 ). In the same way, for each n ∈ N rf , the path connecting n with
nrf is orientation preserving.
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Remark 2.7

With the assumptions of DEFINITION 2.6 , it follows immediately that the sub graphs
Gff is a tree with root node nff , and Grf is an inverted tree with root node nrf .

2.2.1 Fluxes and coupling conditions

In the following, we assume that all edges and nodes are part of a simple district heating
network in the sense of definition DEFINITION 2.6 , unless stated otherwise. For each
edge, we introduce the following notation for the set of fluxes directed towards their incident
nodes, where we denote volume fluxes by q, mass fluxes by q̂, and energy fluxes by Q.
To be more specific, consider the pair of mass fluxes q̂a:in, q̂a:out of a with respect to its
adjacent nodes. We introduce the notation

q̂a:n =

{
q̂a:in, i(a) = n

q̂a:out, o(a) = n
(2.17)

such that q̂a:n > 0 when mass is moving out of the edge in direction of the node n, and
q̂a:n < 0 if mass is transported into the edge.
In the same way, we define volume qa:n, and (heat) energy fluxes Qa:n. We do not assign
any volume to nodes, such that they cannot store quantities of any kind. The principle of
total mass conservation therefore translates to∑

a∈I(n)

q̂a:n = 0 (2.18)

whereas heat energy conservation requires that∑
a∈I(n)

Qa:n = 0 (2.19)

holds true for all nodes.

n

q̂a0:m q̂a0:n

Qa0:n

m

q̂ a1
:n

Q a
1
:n

Qa0:m

q̂a2:n

Qa2:n

Figure 2.2: Definition of pipeline fluxes

Next, we want to make sure that the fluxes and their coupling conditions are compatible
with the material law established in SECTION 2.1 . For this purpose, we assume that
the expression ea:n is well defined for each edge, where its exact meaning is given in
the upcoming SECTION 2.3 , and SECTION 2.5 . We define the mass and energy fluxes
through the relations

q̂a:n = ρ(ea:n)qa:n, (2.20a)
Qa:n = ea:nqa:n, (2.20b)
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such that it is only necessary to know either q̂, or q. In the special case, that deg(n) = 2,
one easily sees that

ea1:n = ea2:n (2.21)

is the only possible solution. In general, the conservation laws alone leave the system
undetermined, such that one needs to add additional conditions. A common choice is the
perfect mixing assumption, which requires that

Qa:n = enqa:n ∀a ∈ I(n) : qa:n < 0, (2.22)

or in terms of energy densities,

ea:n = en ∀a ∈ I(n) : qa:n < 0, (2.23)

where en is the (implicitly) defined mixing energy of the node n. We will later see in section
2.3, that this is compatible with the boundary conditions of transport models for pipelines.
In the same way, we assume that the expression pa:n is well defined for each edge. Antici-
pating section 2.3, we require that pressure is continuous across junctions, such that

pa:n = pn ∀a ∈ I(n). (2.24)

This completes the treatment of coupling conditions between different components, and
we proceed with derivation of model equations describing the behaviour of pipelines, con-
sumers, and producers.

2.3 Hydrodynamic and Thermal Energy Transport in Pipelines

La

da

∆ha

pi(a)

ea
va

ei(a)

po(a)

eo(a)

pa

Figure 2.3: Variables and parameters of a pipeline a

In this section we consider a single pipeline with length L, and diameter d, as depicted in
FIGURE 2.3 (here with subscript a). We want to model the evolution of flow velocity v,

hydraulic pressure p, and energy density e, both in space and time. The starting point for
our pipeline model are the one dimensional Euler equations for a thermodynamic system
(see e.g. [LeVeque, 2008])

∂tρ+ ∂x (ρv) = 0, (2.25a)

∂t (ρv) + ∂x
(
ρ(v2 + gh) + p

)
= 0, (2.25b)

∂tE + ∂x (v(E + p)) = 0, (2.25c)

where

E =
1

2
ρv2 + ρgh+ e (2.26)

is the total energy of the system. Besides the advection driven transport of energy, the
equations (2.25) also describe physical effects, such as the propagation of hydraulic pres-
sure waves, which are hard to resolve at the desired length and time scales (see TABLE 2.2 ,
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and TABLE 2.3 ), and only of lesser interest in water driven district heating. Due to the large
number of pipelines in a DHN, and the need to repeatedly solve the model equations in the
context of optimization, we wish to further simplify (2.25), to obtain a model which is better
suited for this use case. We introduce the convective derivative

Df

Dt
= ∂tf + v∂xf (2.27)

and reformulate (2.25) to

Dρ

Dt
= −ρ∂xv (2.28a)

Dv

Dt
= −∂xp

ρ
+ ghx −

v |v|
2d

λ︸ ︷︷ ︸
ffrict

(2.28b)

De

Dt
= − (e+ p) ∂xv −

4k

d
(T − Twall)︸ ︷︷ ︸
floss

− ∂x (Dw∂xT )︸ ︷︷ ︸
fdiff

(2.28c)

where the terms ffrict, floss, and fdiff are additional source (or reaction) terms modelling
pressure loss due to friction, energy loss through conduction, and diffusive energy trans-
port, respectively. To be more precise, the influence of friction is modelled by

ffrict = −v |v|
2d

λ (2.29)

which depends on the dimensionless friction factor λ, which we are going to treat as an
unknown parameter for now. The energy loss term

floss =
4k

d
(T − Twall) (2.30)

is obtained by integrating the heat flux according to Fourier’s law around the pipe’s diame-
ter, with k being the heat transmission coefficient. The final term

fdiff = ∂x (Dw∂xT ) (2.31)

models the transport of energy by diffusion, where Dw is the thermal conductivity of water.
From section 2.1, we know that T follows the differential rule

dT

de
=

ρ

ρ′e+ ρ2cv
(2.32)

such that the diffusion term expands to

∂x (Dw∂xT ) = ∂x

(
Dw

ρ

ρ′e+ ρ2cv
∂xe

)
= ∂x

(
Dw

ρ

ρ′e+ ρ2cv

)
∂xe+Dw

ρ

ρ′e+ ρ2cv
∂xxe.

(2.33)

According to the model scales given in TABLE 2.1 , this expression can be roughly approx-
imated by the linear diffusion term

∂x (Dw∂xT ) ≈ ε∂xxe, (2.34)

where we define the averaged diffusion parameter as

ε = Dw
1

ρ̄c̄v
. (2.35)
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Using the values given in TABLE 2.1 , its magnitude can be estimated by ε ≈ 10−6m2

s .
Plugging this simplification into our model equations (2.28), we end up with

Dρ

Dt
= −ρ∂xv, (2.36a)

Dv

Dt
= −∂xp

ρ
+ ghx −

v |v|
2d

λ, (2.36b)

De

Dt
= − (p+ e) ∂xv −

4k

d
(T − Twall)− ε∂xxe. (2.36c)

Next, we want to estimate the importance of each reaming term in the model, in order
to simplify it even further. For this purpose we introduce reference scales according to
TABLE 2.3 , TABLE 2.2 , and TABLE 2.1 , as well as dimensionless scaled quantities

x̃ =
x

xref
, t̃ =

t

tref
, h̃ =

h

href

ṽ =
v

vref
, ẽ =

e

eref
, p̃ =

p

pref
,

ρ̃ =
ρ

ρref
, T̃ =

T

Tref
,

(2.37)

together with a set of dimensionless numbers

c =
trefvref
xref

(reference CFL number),

m =

√
ρrefv2

ref

pref
(Mach’s number),

δ =
d

xref
(relative diameter),

κ =
4k

d

trefTref
eref

(energy transmission number),

F r =

√
ghref
v2
ref

(Froude number),

P e =
cx2
ref

trefε
(Peclet number),

(2.38)

and obtain a set of scaled equations

Dρ̃

Dt̃
= −cρ̃∂x̃ṽ, (2.39a)

1

c

Dṽ

Dt̃
= − 1

m2

∂x̃p̃

ρ̃
− 1

Fr2
∂x̃h̃−

λ

2δ
ṽ |ṽ| , (2.39b)

Dẽ

Dt̃
= −

(
ẽ+

pref
eref

p̃

)
c∂x̃ṽ − κ

(
T̃ − T̃wall

)
− 1

Pe
∂x̃x̃ẽ, (2.39c)

which allow us to compare the impact of different terms to each equation. Due to the
small magnitude of the diffusion parameter ε, we wish to compare it against the advective
transport and loss terms. Comparing the respective scaling factors, we can see that the
estimates

cPe =
c2x2

ref

εtref
� 1, (2.40)
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and

κPe = 4
k

d

Tref
eref

cx2
ref

ε
� 1, (2.41)

hold, if the magnitude of the flow velocity v has a positive lower bound |v| ≥ vmin > 0. In
this case, diffusive effects are dominated by advection and cooling, such that we can safely
dismiss them, and we continue with the slightly simplified system

Dρ̃

Dt̃
= −cρ̃∂x̃ṽ, (2.42a)

1

c

Dṽ

Dt̃
= − 1

m2

∂x̃p̃

ρ̃
− 1

Fr2
∂x̃h̃−

λ

2δ
ṽ |ṽ| , (2.42b)

Dẽ

Dt̃
= −

(
ẽ+

pref
eref

p̃

)
c∂x̃ṽ − κ

(
T̃ − T̃wall

)
. (2.42c)

2.3.1 Incompressible model

In SECTION 2.1 we have established a constitutive law for water, which defines the quanti-
ties ρ, cv, and T as functions of the internal energy density e. In particular, these quantities
do not depend on the hydraulic pressure. Therefore, any variation of ρ is the consequence
of a variation of e caused by (de-)compression and cooling. We are going to show, that
these influences are negligible for our use case. In order to do so, we make the assump-
tion, that the density is constant along characteristics (see SECTION 3.1.1 for a discussion
of this term)

Dρ

Dt
= 0, (2.43)

which directly leads to

∂xv = 0, (2.44)

resulting in the simplified, incompressible model

∂x̃ṽ = 0, (2.45a)
1

m2
∂x̃p̃ = −1

c
ρ̃∂t̃ṽ −

ṽ |ṽ|
2δ

ρ̃λ− ρ̃ 1

Fr2
∂x̃h̃, (2.45b)

Dẽ

Dt̃
= −κ

(
T̃ − T̃wall

)
. (2.45c)

Due to the constitutive law ρ = ρ(e) the continuity equation then becomes

ρ′
D

Dt
e = 0, (2.46)

which is fulfilled, either if ρ̃′ = 0, or D
Dt ẽ = 0. The first case is applicable whenever a con-

stant material law for the water density is chosen, then second one requires the absence
of diffusive effects and conductive energy loss. If neither of these conditions is satisfied,
the incompressibility assumption introduces a model error. By combining (2.45) with the
material laws from section 2.1

−cρ̃∂x̃ =
Dρ̃

Dt̃

= ρ̃′
Dẽ

Dt̃

= −ρ̃′
(
ẽ+

pref
eref

p̃

)
c∂x̃ṽ − κ

(
T̃ − T̃wall

)
.

(2.47)
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we obtain

∂x̃ṽ =
ρ̃′

ρ̃

1

1− ρ̃′

ρ̃

(
ẽ+

pref
eref

p̃
) κ
c

(
T̃ − T̃wall

)
(2.48)

leading to the estimate

‖∂x̃ṽ‖∞ ≤
∥∥∥∥ ρ̃′ρ̃

∥∥∥∥
∞

κ

2c

(∥∥∥T̃∥∥∥
∞
− T̃wall

)
(2.49)

such that the model error is negligible, as long as the reference CFL number c is relatively
large when compared to the cooling term, or the maximal relative change

∥∥∥ ρ̃′ρ̃ ∥∥∥∞ of ρ w.r.t.
e is comparably small.
Finally, we move back to unscaled variables, and assume a constant slope

hx =
∆h

L
, (2.50)

yielding the system of equations

∂xv = 0 (2.51a)

∂xp = −v |v|
2d

ρλ− ρg∆h

L
(2.51b)

∂te+ v∂xe = −4k

d
(T (e)− Twall) (2.51c)

which we are going to use as our pipeline model in the upcoming sections.

2.3.2 Pressure losses due to friction

So far, the friction coefficient λ only appeared as a dimensionless parameter, which has
yet to be specified.
A common choice is the phenomenological Colebrook-White equation ([Moody, 1944])

1√
λ

= −2 log10

(
κ

3.7d
+

2.51

Re
√
λ

)
(2.52)

which depends on the surface roughness κ, and the dimensionless Reynold’s number

Re =
drefv

ν
. (2.53)

In general, the kinematic viscosity ν changes with temperature (here: e), such that the
implicitly defined friction factor has a (point wise) representation λ(t, x) = fλ(e(t, x), v(t))
(an efficient numerical method is presented in [Clamond, 2009]). In the turbulent limit (i.e. if
Re is large), the term involving the Reynold’s number becomes negligible, and the simplified
equation

1√
λ

= −2 log10

( κ

3.7d

)
(2.54)

would pose a good approximation to (2.52). Examining possible values of Re (as shown in
FIGURE 2.4 ) we observe that the flow stays in the fully turbulent regime, as long as v is

bounded from below by a sufficiently large, positive constant.
As a result, we define

λ = log10

( κ

3.7d

)
, (2.55)

and from now on treat it as a constant, known parameter for each pipeline.
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Figure 2.4: Reynolds number for a pipe with d = 0.1 m (data for ν obtained from
[NIST, 2016])

2.3.3 Complete pipeline model and boundary conditions

We model the transport of energy in pipeline as a thermohydraulic system, whose state is
determined by its spatial energy density ea, flow velocity va, and hydraulic pressure pa. For
each pipe a ∈ AP , the state variables are defined as the solutions of a system of partial
differential equations

∂xva = 0 (2.56a)

∂tea + ∂x (vaea) = −4ka
da

(
T (ea)− Twalla

)
︸ ︷︷ ︸

−ra(ea)

(2.56b)

∂xp = −ρ (ea)

(
λa
2da

va |va|+ g
∆ha
La

)
(2.56c)

in the space-time domain It × Ωa = It × [0, La], together with boundary conditions for pa,
and ea

ea:in = ei(a) (2.57a)
pa:in = pi(a) (2.57b)
pa:out = po(a) (2.57c)

as well as an initial condition

ea(t0, ·) = einita (2.58)

for ea. Under the assumption that e and p are at least continuous, we formally define their
traces as

ea:in = lim
x↘0

ea(·, x), ea:out = lim
x↗La

ea(·, x), (2.59a)

pa:in = lim
x↘0

pa(·, x), pa:out = lim
x↗La

pa(·, x). (2.59b)

(2.59c)



20 CHAPTER 2. GOVERNING EQUATIONS

According to our assumptions, the right hand side of (2.56c) does not change its sign in
any spatial direction at any fixed time, such that p(t, x) is always monotonous in x. If only
the values of the nodal pressures are of interest, we can integrate (2.56c) over the interval
Ωa = [0, La] and obtain

po(a) = pi(a) −
∫

Ωa

ρ (ea)

(
λa
2da

va |va|+ g
∆ha
La

)
dx, (2.60)

which does not depend on pa any more.

Remark 2.8: Formal set of equations considering flow indirections

Formally, the inflow boundary conditions can be generalized to

1

2
(va + |va|)

(
ea:in − ei(a)

)
+

1

2
(va − |va|)

(
ea:out − eo(a)

)
= 0 (2.61)

which is well defined in terms of conservation laws, if va is regular enough.

In consistency with the definitions in section 2.2, we define the fluxes

qa:in = −vaAa, (2.62a)
qa:out = vaAa, (2.62b)
Qa:in = qa:inea:in, (2.62c)
Qa:out = qa:outea:out. (2.62d)

2.4 Consumers

Typically, the consumers’ water circuit is separated from the district heating network, and
heat energy is transferred via a heat exchanger. Assuming a large enough pressure gradi-
ent, the systems mass flow is regulated in such a way, that the hot water fed into the return
network has a fixed temperature T retc .
Since these processes usually happen on a much smaller time scale, when compared to
the delivery network’s dynamics, we consider the following simplified, algebraic model for
each consumer:

ρ
(
ei(c)

)
qc:in + ρ

(
eretc

)
qc:out = 0, (2.63a)

Qc:in − ei(c)qc:in = 0, (2.63b)

Qc:out − eretc qc:out = 0, (2.63c)

Qc:in +Qc:out + ∆Qpredc = 0. (2.63d)

In this system, the first and fourth equation are conservation laws for mass and energy,
whereas the second and third equation specify the incoming and outgoing energy fluxes
in terms of other state variables, and boundary conditions. The return flow energy eretc is
assumed to be constant for each consumer, and implicitly defined as

T
(
eretc

)
= T retc . (2.64)

The second boundary condition ∆Qpredc is the time dependent consumer demand function,
which is usually based on historical data, or a prediction model.
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Remark 2.9: Choice of q instead of q̂ as independent variable

Alternatively, one could choose the mass fluxes q̂in, q̂out as independent variables,
which would result in the system of equations

q̂in + q̂out = 0 (2.65a)

Qin −
ein

ρ (ein)
q̂in = 0 (2.65b)

Qout −
eret

ρ (eret)
q̂out = 0 (2.65c)

which is algebraically equivalent to (2.63). However, multiplication is easier to deal
with than division, which is why we don’t consider this option.

Even though we have chosen a simplified, algebraic model over a more detailed one,
which models the consumer station’s internal state, we have to pay more attention to the
consumption prediction model, as it directly affects the district heating network’s dynamical
behaviour. The derivation and discussion of such a model is covered in SECTION 2.4.1 .
In order to be physically consistent, these algebraic equations have to be complemented
with a set of box constraints

eretc < emin ≤ ei(c) ≤ emax (2.66)

for the supplied energy density ei(c).
For the same reason, we have to impose constraints on the hydraulic variables

pmin ≤ pi(c) ≤ pmax, (2.67a)

∆pminc ≤ pi(c) − po(c) ≤ ∆pmaxc , (2.67b)

where we allow the bounds for the pressure difference to be set individually for each con-
sumer.

2.4.1 Consumption profiles

We assume, that the consumption prediction model takes the general form

∆Qpredc (t) = ∆Qavgc · Sc(t) · F corrc (2.68)

where the average consumption ∆Qavgc (usually given in k Wh/d, which technically trans-
lates to a unit of power) is a real, positive parameter, which is distinctly defined for each
consumer, and the factor F corrk depends on the air temperature and week day. The dimen-
sionless distribution (or shape) function Sc(t) is assumed to be continuous and normalized,
such that ∫

It

Sc(t) dt = 1, |It| = 24h (2.69)

whenever the time interval covers an entire day, and the dimensionless correction factor
F corrc accounts for fundamental changes of the consumption behaviour on different week-
days and air temperatures, where the later are assumed to be constant throughout a day.
In general, we expect Sc to depend on the (predicted) average air temperature, and the
consumer’s category (e.g. one family house, apartment building, school, etc.), such that a
single shape function is likely to be used for multiple individual consumption models.
A fitting method, which computes consumer shape functions Sc from a combination of nu-
merical simulation and observed net consumption data is described in [Mohring et al., 2021].



22 CHAPTER 2. GOVERNING EQUATIONS

However, this method requires observation data of a certain quality and quantity, which
might not be available in some cases.
That is why, within this work, we choose another approach, which is based on the standard-
ized consumption profiles for gas networks (c.f. [BGW, 2006]), which are widely adopted
by many DHN operators. In order to adapt this method to our purposes, we consider a
time interval

[
t(k), t(k+1)

)
, which spans exactly one hour, and assume that the daily mean

air temperature T air is known. Then, the standardized profiles provide us with hourly aver-
ages ∫ t(k+1)

t(k)

S(t) dt = S(k)
c (T air), k = 0, . . . , Nt − 1, (2.70)

of the distribution function, which are normalized in the sense that

Nt(=24)∑
k=0

S(k)
c (T air) = 1. (2.71)

The correction factor is further split up into

F corrc = F dayc,k · h(T air), (2.72)

where the factor F day,(k)
c depends on the weekday, and the function h is defined as

h(T ) =
A

1 + ( B
T−T0

)C
+D + max

{
mH · T + bH

mW · T + bW
, h(8◦C) = 1 (2.73)

with parameters A,B,C,D,mH , bH ,mW , bW depending on the consumer category.
In some cases, one chooses

T̄ air =

∑n
i=0 2−i · T air,(−i)∑n

i=0 2−i
, (2.74)

as the reference temperature to account for the thermal inertia of buildings.
The last missing piece of our continuous consumption profile is the reconstruction of the
density function Sc.
In the case of a piecewise linear approximation, one additional boundary condition is
needed to make the linear system (2.70) uniquely solvable. Natural boundary conditions

S(t(Nt−1)) = S(t(Nt)), or S(t(1)) = S(t(0)) (2.75)

on either side of the time domain are suitable choices. A realisation of this piecewise linear
(P1) reconstruction is shown in the left picture of FIGURE 2.5 . This reveals an immedi-
ate drawback of this method: The density function oscillates heavily in some regions, and
attains values substantially smaller than zero. An alternative approach, which tries to min-
imize the total variation of Sc instead of providing fixed boundary condition (right picture) ,
produces better results, but still has too many flaws to be usable. The total variation dimin-
ishing piecewise polynomial reconstruction from averages plays an important role in many
numerical methods for hyperbolic conservation laws (see e.g. [Shu, 2020] for an overview),
and its realizability when including additional constraints is a delicate topic by itself.
A thorough analysis of this problem would be beyond the scope of this thesis, which is
why we decided to choose a hands-on approach: Given piecewise averages of the (yet
unknown) density Sc, we define the cumulative distribution function Cc as

Cc(t) =

∫ t

t0
S(t̃)dt̃ = ∆t

k̂−1∑
k=0

F kc +
(
t− tk̂

)
F k̂c , k̂ =

⌊
t

∆t

⌋
, (2.76)
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Figure 2.5: P1 interpolation and total variation diminishing (TVD) P1 approximation of Sc

Figure 2.6: Cumulative distribution function (left) and density function (right), as well as
their continuous reconstructions

which is piecewise linear, and hence continuous. Knowing of its total variation diminishing
properties, we chose cubic polynomial splines to approximate Cc. The density function is
retrieved as the derivative Sc(t) = C ′c(t), and therefore is a continuous, piecewise quadratic
function. An example of both Cc and Sc is illustrated in FIGURE 2.6 .
In some cases it can happen, that the resulting function attains values lower than 0. In
order to fix this, we choose an artificial lower bound Smin ≥ 0, and transform the shape
function according to

S̃(t) = max
(
Smin, S(t)

)
. (2.77)

So far, we have constructed a continuous extension of the consumption distribution from
piecewise averages. During the interpolation and bounding procedures, the normaliza-
tion property (2.71) is most likely not preserved. In order to fix this, we consider another
normalization step

Ŝ(t) =
S̃(t)

1
Ndays

∫ tNt

t0
S̃(t) dt

. (2.78)

As a consequence of interpolation errors, and the additional renormalization step, the con-
tinuous reconstruction Ŝc possibly does not fulfil the interpolation conditions (2.70) exactly.
In practise, this deviation has shown to be negligible.
Finally, we consider the case, when the time interval spans multiple days It =

⋃Ndays−1
l=0 I

(l)
t .

We can identically apply the reconstruction procedure from above, but have to change the
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normalization step to

Ŝ(t) =
S̃(t)

1
Ndays

∫ tNt

t0
S̃(t) dt

. (2.79)

The complete consumption prediction model for a consumer c ∈ AC now reads

∆Qpredc (t) = ∆Qavgc

Ndays−1∑
l=0

F corr,(l)c Sc(t)χI(l)t
(t), (2.80)

where χ
I
(l)
t

is the characteristic functions of the lth time subdomain.

2.4.2 Relaxed model for infeasible supply temperatures

The consumer model (2.63) has to be paired with a set of inequality constraints in order to
be complete. In particular, we want to ensure, that the outward oriented volume flux qc:in is
always negative (i.e. water flows towards the consumer), which requires that ei(c) > eretc .
In numerical simulations, non-linear systems are commonly solved using iterative meth-
ods, where intermediate states usually do not comply with the constraints (2.66)-(2.67).
Therefore, we would prefer a more robust set of equations, which preserve the signs of the
fluxes. We approach this problem by replacing the supplied energy ei(c) by the expression

φmaxc

(
ei(c)

)
= max

{
ei(c), e

min
}
. (2.81)

This relaxation alters the energy balance equation, such that conservation of thermal en-
ergy is no longer maintained, if the energy variable violates the constraint (2.66). As a
consequence, the consumer behaviour is not changed whenever (2.66) is satisfied, but the
possible maximal volume flow (i.e. velocity) is increased. If a smooth consumer model is
preferred, the function φmax can be replaced by the piecewise expression

φcubc (e) =


emin, e ≤ emin

φ1(e), emin < e < ecrit

e, ecritc ≤ e
(2.82)

where φhermitec is the cubic Hermite polynomial satisfying the conditions

φ1

(
emin

)
= emin, (2.83)

φ′1
(
emin

)
= 0, (2.84)

φ1

(
ecritc

)
= ecritc , (2.85)

φ′1
(
ecrit

)
= 1. (2.86)

Here we introduced an additional parameter ecritc , which should be chosen within the range

eretc < ecritc ≤ emin. (2.87)

With either approach, the consumers may be as if the supplied temperature was higher
than it actually is, resulting in an effective upper bound for the volume fluxes and flow
velocities.
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2.5 Producers

District heating plants make use of the combined heat output of electricity generators, water
boilers, hot water storage tanks, and external sources of thermal energy, such as garbage
incineration plants. As such, they usually operate on a much smaller time scale than the
hot water supply networks. Therefore, the internal systems of such a heating plant can
be quite complex, and usually operate on a much smaller time scale (typically less than a
second) than the heating network itself.
In this work, we are primarily focused in the network’s capabilities as a thermal energy
storage, and the interplay between slowly travelling energy packages, and fast propagating
hydraulic consumer response. We assume, that the heating plants control mechanisms
are able to track sufficiently smooth reference curve for inflow energy, pressure difference,
and reference pressure level, as long as they satisfy a certain set of constraints.
We propose an algebraic model for a generalized producer

Qs:in = ei(s)qs:in (2.88a)
Qs:out = uesqs:out (2.88b)

where the outgoing energy flux is partially determined by the control input ue.
In the same way, we introduce equations for the hydraulic control variables

pi(s) − po(s) + u∆p
s = 0 (2.89a)

pi(s) = up0 (2.89b)

which involve control inputs for the networks reference pressure up0 , and the pressure dif-
ference for the producer u∆p

s . For all three control inputs, we impose simple box constraints

ue,mins ≤ ues ≤ ue,max,s , (2.90a)

u∆p,min
s ≤ u∆p

s ≤ u∆p,max,
s , (2.90b)

up0,mins ≤ up0s ≤ up0,maxs , (2.90c)

as well as a mixed supply power box constraint

0 < ∆Qmins ≤ Qs:in +Qs:out ≤ ∆Qmaxs , (2.91)

which involve both, state and control variables. Here we emphasize, that we only directly
control the energy input, and pressure levels, whereas flow velocities (and volume/mass
fluxes) are completely determined by the network’s internal dynamics. Therefore, we often
can not easily find a set of control inputs, which satisfy (2.91), as a validation of feasibility
usually involves a full numerical simulation.
To be consistent with the notation introduced in SECTION 2.2 , we define the symbols

es:in = ei(s), (2.92)
es:out = ues, (2.93)

for the inlet and outlet energies.
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2.6 Summary: The complete model

For each pipe a ∈ AP , we solve the energy transport and pressure difference equations

∂tea + ∂x (vaea) = −ra (ea) , (2.94a)

po(a) − pi(a) = −
(
g

∆ha
La

+
λa
2da

va |va|
)∫

Ωa

ρ (ea) dx, (2.94b)

with fluxes, initial and boundary conditions

ea:in = ei(a), (2.95a)

ea(t0, ·) = einita , (2.95b)
pa:in = pi(a) (2.95c)
pa:out = po(a), (2.95d)

qa:in = −Aava, (2.96a)
qa:out = Aava, (2.96b)
Qa:in = qa:inea:in, (2.96c)
Qa:out = qa:outea:out, (2.96d)

If the initial state einita is not known, one can add the stationary advection problem

va(t0)∂xe
init,
a = −ra

(
einita

)
, (2.97a)

einita (0) = ei(a) (t0) , (2.97b)

to the equation system.

For each consumer c ∈ AC , we couple mass an energy fluxes according to

ρ
(
φc
(
ei(c)

))
qc:in + ρ

(
eretc

)
qc:out = 0 (2.98a)

Qc:in + qc:inφc
(
ei(c)

)
= 0 (2.98b)

Qc:out + qc:ine
ret
c = 0 (2.98c)

Qc:in +Qc:out + ∆Qpredc = 0 (2.98d)

eminc ≤ ei(c) ≤ emaxc , (2.99a)

pminc ≤ pi(c) ≤ pmaxc , (2.99b)

∆pminc ≤ po(c) − pi(c) (2.99c)

where we require additional state constraints to be satisfied in order to guarantee problem-
free functionality of the heat exchangers.

For the producer s, the control inputs are coupled with the rest of the network by a linear
system of equations

Qs:in = qs:inei(s) (2.100a)
Qs:out = qs:outu

e (2.100b)
pi(s) = up0s (2.100c)

po(s) − pi(s) = u∆p
s (2.100d)

ue,mins ≤ ues ≤ ue,maxs (2.101a)

up,mins ≤ up0s ≤ up,maxs (2.101b)

u∆p,min
s ≤ u∆p

s ≤ u∆p,max
s (2.101c)

Qs:in +Qs:out ≤ ∆Qmaxs . (2.101d)

The box constraints for control variables, and the mixed, bilinear constraint are supposed to
ensure a realizability of the reference curves by the district heating plants control systems.

For each node n ∈ N we require, that the conservation laws∑
a∈In

ρ (ea:n) qa:n = 0, (2.102)
∑
a∈In

Qa:n = 0, (2.103)

for mass and energy fluxes are fulfilled.



Chapter 3

Analysis and H1 formulation

Now, that we have set up a system of equations describing the district heating network’s
dynamical behaviour, we are going to analyse its solvability, and derive a rigorous mathe-
matical model which is suitable for optimization problems.
Our first goal is to examine, under which conditions the system (2.94a) - (2.103) has a
solution, and whether it is unique. In particular, we study existence and uniqueness results
in different function spaces such that we can choose the one which we consider the most
practical within the context of optimal control problems.
We start with the scalar advection equation

∂te+ v∂x(e) + r(e) = 0, (3.1a)

e(t0, ·) = einit, (3.1b)

e(·, 0) = ein, (3.1c)

whose classical solution (see e.g. [LeVeque, 2008], [Evans, 2010]) is well known and has
an explicit representation formula using characteristics, if v is positive, and sufficiently reg-
ular.
We expect the same to hold true, if we add a simple consumer model

v
(
e(·, L)− eret

)
= g (3.2)

to the system (3.1), which can be interpreted as a non-local boundary condition defining the
advection velocity v. This becomes more obvious, if we eliminate the consumer equation,
and obtain the non-local conservation law

∂te+ ∂xe

∫
Ω

k(e; t, x) dx = 0 (3.3a)

k(e; t, x) =
g(t)

δ(x− L) (e(t, x)− eret)
(3.3b)

e(t0, ·) = einit, (3.3c)

e(·, 0) = ein, (3.3d)

with singular kernel. Here we can already recognize, that the trace evaluation e(·, L) needs
to be well-defined. We also notice, that we take the non-local point of view to gain intuition
for the systems dynamical behaviour, and we prefer the coupled system (3.1)-(3.2) for
our analytic examination. In the upcoming SECTION 3.1 , we establish a suitable notion
of a solution to the equation, which is then generalized to simple networks (in terms of
DEFINITION 2.6 ), in SECTION 3.2 .

27
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Finally, we define appropriate Banach spaces U , Y, Z, and the abstract residual and solu-
tion operators

G : U × Y −→ Z?, S : U −→ Y, (3.4)

such that G(u,y) = 0 holds, if and only if y = Su. This formulation should be equivalent
to solutions of (2.94) - (2.103) in the sense of the theory presented in SECTION 3.1 and
SECTION 3.2 , if appropriate boundary conditions are given.

For applications in both abstract and numerical optimization, we would like the dual pairings

〈G(u,y), z〉Z?,Z , 〈Gu(u,y), z〉Z?,Z , 〈Gy(u,y), z〉Z?,Z , (3.5)

to be well defined, and take a form which is convenient for the derivation of the adjoint
state equations (i.e. the adjoint of the linearized residual operator), and their numerical
solution. Here, Z? denotes the topological dual space of Z. In particular, this requires
G to be bounded, continuous, and (at least one time) continuously Fréchet differentiable
(see SECTION 3.3 ). A structured overview over these different approaches and results is
shown FIGURE 3.1 .

Unsteady advection problem
C1 solutions (3.13)
C0 solutions PROPOSITION 3.2
C0/1 solutions with cooling PROPOSITION 3.3

Coupled single pipeline problem
Clip solutions THEOREM 3.7
C0 solutions COROLLARY 3.11
C0 solutions with data in H1 THEOREM 3.19

Unsteady advection on simple networks
C0 solutions COROLLARY 3.11
C0 solutions with data in H1 THEOREM 3.19
C0 and H1 solutions for pressure PROPOSITION 3.29

Definition of the residual operator G
state variable space DEFINITION 3.39
control variable space DEFINITION 3.42
construction of G and weak solutions DEFINITION 3.43

Analysis of G
boundedness and continuity THEOREM 3.52
differentiability THEOREM 3.60
equivalence to C0/H1 solutions THEOREM 3.62

single-consumer-single-producer
networks SECTION 3.1

simple networks
without loops
SECTION 3.2

abstract formulation
SECTION 3.3

Figure 3.1: Structure of this chapter: From the scalar advection problem to an abstract
formulation for simple networks
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In the following, we always assume It = (t0, tf ) to be the time domain of our model,
and Ω = (0, L) the spatial domain of a pipeline (Ωa = (0, La), if a specific pipe a ∈ AP is
addressed). We denote by C0

(
M̄
)
, and Ck(M) the classical function spaces of continuous,

and k times continuously differentiable, real-valued functions, where M ⊂ Rd is open and
bounded (see, e.g. [Rudin, 1986]). Given any Banach space X, we denote its norm by
‖·‖X . If X is a Hilbert space, we denote its scalar product by (·, ·)X . Further, Lp(M),
and Hk(M) = W k,2(M) denote the usual Lebesgue and Sobolev Hilbert spaces (see e.g.
[Evans, 2010], [Brezis, 2011]).

3.1 Single-Consumer-Single-Producer Networks

The single pipeline network (depicted in FIGURE 3.2 ) consists of a consumer, a producer
and a pipeline. The return network is contracted to a single node, making this the simplest
possible network within the framework of CHAPTER 2 .

n0 n1

nR

producer consumer

pipeline

Figure 3.2: Smallest pos-
sible simple district heating
network following definition
DEFINITION 2.6 , consist-

ing of a single pipeline, pro-
ducer, and consumer. The
return flow network (blue)
consists of only one node
nR.

With the assumption, that ρ is constant, we can eliminate all flux and node variables, and
the governing equations can be formulated as a system

∂te+ v∂xe = −r(e) in It × Ω, (3.6a)

e = ein in Īt × {0}, (3.6b)

e = einit in {t0} × Ω̄, (3.6c)

v
(
e− eret

)
= g in Īt × {L}, (3.6d)

in the space-time domain It × Ω = (t0, tf ) × (0, L), for which we want to prove existence
and uniqueness of a solution (e, v) in an appropriate setting.
Here, the function

g(t) =
∆Qpred(t)

π
4 d

2
. (3.7)

denotes the cross section averaged consumer demand.
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3.1.1 Characteristics and continuous solutions of the advection equa-
tion

Before we study the fully coupled single consumer network, we consider the unsteady
advection problem

∂te+ v∂xe+ r(e) = 0 in (t0,∞)× (0, L), (3.8a)

e = einit in {t0} × [0, L], (3.8b)

e = ein in [t0,∞)× {0}, (3.8c)

with initial data einit ∈ C1((0, L)), and boundary data ein ∈ C1((t0,∞)). Furthermore, we
assume that the advection velocity is a continuous function v ∈ C0([t0,∞)), satisfying a
lower bound condition v(t) ≥ vmin > 0.
A possible approach to solve this equation is provided by the method of characteristics (see
[Alinhac, 2009], [LeVeque, 2008], or [Hörmander, 1997] for a broader introduction into this
topic)

dt

ds
= 1, t(0) = τ, (3.9a)

dx

ds
= v(s), x(0) = ξ, (3.9b)

de

ds
= −r(e), (τ, ξ) ∈ Σ, (3.9c)

where the origin coordinates (τ, ξ) ∈ {t0} × [0, L] ∪ [t0,∞] × {0} := Σ are points on the
hyperbolic boundary of our space-time domain.
We can directly integrate the first two equations (3.9a)-(3.9b) and obtain closed form solu-
tions

t(s) = τ + s, (3.10a)

x(s) = ξ +

∫ s

0

v(s̃) ds̃ = ξ +

∫ t

τ

v(t̃) dt̃, (3.10b)

for the characteristic curves.
We define the set

D (It) =

{
(t, x) ∈ It × Ω

∣∣∣ ∫ t

t0

v(s) ds− x ∈ Ω

}
(3.11)

of points (t, x) ∈ It × Ω which are reachable from Ω0 = {t0} × Ω ⊂ Σ in finite time.
We can see, that if (t, x) ∈ D (It), there always exists a characteristic curve with origin
coordinates (t0, ξ), which passes through the point (t, x). In particular, we can rearrange
(3.10b), and obtain

ξ(t, x) = x−
∫ t

t0

v(s) ds > 0. (3.12)

In the special case r ≡ 0, the solution takes the explicit form

e(t, x) = einit (ξ(t, x)) = ẽinit
(
x−

∫ t

t0

v(s) dx

)
. (3.13)

On the other hand, for every point (t, x) ∈ Dc(It) = It×Ω \D(It) in the complement set of
D(It), such a point cannot exist. The properties of v ensure, that the equation∫ t

τ(t,x)

v(s) ds− x = 0 (3.14)
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always has a unique positive solution t0 < τ(t, x) < tf .
Putting both parts together, we can conclude that

ξ(t, x) = max

{
x−

∫ t

t0

v(s) ds, 0

}
(3.15)

and

τ(t, x) =

{
t0, if x ≥

∫ t
t0
v(s) ds

solution of
∫ t
τ
v(s) ds = x, else,

(3.16)

are the origin coordinates for the unique characteristic curve passing through the point
(t, x) ∈ Īt × Ω̄ in the closed space time domain. In the special case r ≡ 0, this yields the
general solution of (3.8)

e(t, x) = e (τ(t, x), ξ(t, x))

=

{
einit (ξ(t, x)) , ifx >

∫ t
t0
v(s) ds,

ein(τ(t, x)) , else,

(3.17)

provided that ein, and einit satisfy the appropriate compatibility conditions

lim
t↘t0

dkein

dtk
(τ(t, 0)) = lim

x↘0

dkeinit

dxk
(ξ(t0, x)) (3.18)

up to the desired order k ≥ 1.
In the case k = 0, it immediately follows, that we require

einit(0) = einflow(t0) (3.19)

for e(t, x) provided by (3.17) to be continuous. Implicit differentiation of the equation (3.14)
gives us the relation

dτ(t, x)

dx
= −v(τ(t, x)) (3.20)

such that we can derive compatibility conditions

deinit

dx
(0) + v(t0)

dein

dt
(t0) = 0, (3.21)

for continuously differentiable solutions. We note, that (3.19)-(3.21) are only necessary, if
one wishes to solve (3.8) in the classical sense, but the solution formula (3.17) still yields a
well defined, continuous function, if only the first condition is imposed. Therefore, it can be
thought of as a generalized (or weaker) solution of (3.8).
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Remark 3.1: Higher order coupling terms

Theoretically, (3.18) can yield compatibility conditions up to an arbitrary order. In the
case of C2 solutions, the data need to satisfy

0 = v(t0)2 d
2einit

dx2
(0)−

dv
dt (t0)

v(t0)

dein

dt
(t0) +

d2ein

dt2
(t0)

= v(t0)2 d
2einit

dx2
(0) +

dv

dt
(t0)

deinit

dx
(0) +

d2ein

dt2
(t0),

(3.22)

which requires v to be at least one time continuously differentiable.

If we summarize all the observations from above, we can formulate the following proposi-
tion:

3.2 Proposition (Explicit solution formula for the unsteady advection equation)

Let v ∈ C0
(
Īt
)
, such that v(t) ≥ vmin > 0, and ein ∈ C0

(
Īt
)
, einit ∈ C0

(
Ω̄
)
, such that

(3.19) holds. Then the function e defined by (3.17) is continuous, (i.e. e ∈ C0
(
Īt × Ω̄

)
),

and solves (3.8) without reaction term (r ≡ 0) in the sense that it is constant along the
characteristic curves defined by (3.9a)-(3.9b).
If, in addition, ein ∈ C1(It), and einit ∈ C1(Ω), such that (3.21) holds, then e ∈
C(1,1)(It × Ω) solves the initial boundary value problem (3.8) in the classical sense.

Proof. Both claims follows from the explicit construction of (3.17) given above.

Before we move on to the general case with an arbitrary, non-zero cooling term, we con-
sider a special version, where we approximate certain thermodynamic quantities by their
averages, as described in ASSUMPTION 2.3 . The relation between the temperature T ,
and energy density e then is an affine linear function

T (e) = T0 + T1e (3.23)

with positive, real constants T0, and T1. For the resulting reaction term

r(e) =
4k

d
T1︸ ︷︷ ︸
r1

(
e− ewall

)
(3.24)

we can explicitly compute the solution

e(t, x) = ewall +
(
e0(t, x)− ewall

)
exp (−r1 (t− τ(t, x))) , (3.25)

of (3.8), where e0(t, x) refers to the unique solution (3.17) of the advection problem without
cooling.
For the general case, it is sufficient to assume that r is strictly increasing on a compact
interval [emin, emax], with a single zero r(ewall) = 0, to justify

r(e) ≤ r1

(
e− ewall

)
for e ∈ [ewall, emax]. (3.26)

We use this estimate, to prove a generalized version of PROPOSITION 3.2 :
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3.3 Proposition (Solution of the unsteady advection problem with nonlinear re-
action term)

Let v, ein, and einit fulfil all requirements of PROPOSITION 3.2 , and

0 < ewall < emin ≤ ein(t), einit(x) ≤ emax (3.27)

holds for all t, x. Further, let r ∈ C1((0, emax))∩C0([0, emax]) be monotonously increas-
ing, and strictly positive on the sub-interval (ewall, emax], whose growth is bounded by
a first order polynomial

r(e) ≤ r1

(
e− ewall

)
, (3.28)

with a positive constant r1 > 0. Then, the problem (3.8) has a unique solution e ∈
C(1,1)(It × Ω) ∪ C0

(
Īt × Ω̄

)
, such that ewall < e ≤ emax. Furthermore, the e depends

continuously on the boundary and initial data.

Proof. We follow the method of characteristics with a modified reaction term

r̃(e) =


0, r ≤ ewall

r(e), ewall < e < emax

r (emax) , emax ≤ e
(3.29)

which is Lipschitz continuous. Then the solution ẽ(t, x) of (3.8) (with modified r) at each
point (t, x) is given by the solution of the ordinary differential equation

dẽ

ds
+ r̃(e) = 0, s ∈ (0, t− τ(t, x)), (3.30)

ẽ(0) = ẽ0, (3.31)

with initial value ẽ0 = e(t, x) provided by the solution formula (3.17) of the problem without
reaction term. We now apply the Picard-Lindelöf theorem, which yields the existence and
uniqueness of a solution ẽ. Because, by assumption, ewall < ẽ0 ≤ emax, and −r is strictly
negative and decreasing, the solution is strictly decreasing along each characteristic, but
cannot attain the value ewall in finite time due to the polynomial bound (3.28): Solving the
equation with R(e) = r1

(
e− ewall

)
as the reaction term yields a sub-solution of the original

problem, and we obtain an estimate

ẽ(t, x) ≥ ewall +
(
e0(t, x)− ewall

)
exp (−r1 (t− τ(t, x))) > ewall, (3.32)

which proves that ewall always is a strict lower bound. Therefore, the solution satisfies
r̃(ẽ) = r(ẽ), and also solves the unmodified problem (3.8), and e = ẽ is the unique solution,
which continuously depends on e0(t, x). Due to PROPOSITION 3.2 we also know, that
e0(t, x) (as defined by (3.17)) is continuous, and continuously depends on ein, and einit,
which completes the proof.

Remark 3.4: Lipschitz continuity

For every point (t, x), the solution fulfils the (scalar) integral equation∫ t−τ(t,x)

0

ds = −
∫ e(t,x)

e0(t,x)

dλ

r(λ)
, (3.33)
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such that we have a pointwise estimate

0 <
de(t, x)

de0(t, x)
=

r(e(t, x))

r(e0(t, x))
≤ r(emax)

r(emin)
:= LS <∞ (3.34)

for the sensitivity of e(t, x) w.r.t. e0(t, x) along each characteristic.
If we implicitly define the solution operator S : e0 7→ e, we can estimate the influence
of a perturbation ẽ0 of the initial data by

‖S(e0)− S(ẽ0)‖∞ ≤ LS ‖e0 − ẽ0‖∞ . (3.35)

A more general result, which proves the Lipschitz continuity of e w.r.t. ein, einit, and
v, is shown in the upcoming section.

3.1.2 Lipschitz solutions of the coupled problem

With an explicit solution formula at hand, we can now approach solving the coupled prob-
lem, which adds the non-local boundary condition

v(t)
(
e(t, L)− eret

)
= g(t) (3.36)

to the system. According to (3.17), the energy density at the outflow boundary eL(v) =
e(·, L) is uniquely determined by ein, einit, and v, such that we can interpret

v(t) =
g(t)

eL(v)− eret
(3.37)

as a fixed point equation w.r.t. v. In order to prove existence and uniqueness of a solution,
we make use of the following theorem:

3.5 Theorem (Banach Fixed Point Theorem)

Let V be a closed subset of a Banach space X, and f : V → V a contraction. Then
the equation

f(x) = x (3.38)

has a unique solution in V .

Proof. See e.g. [Evans, 2010].

So far, we have not made any assumptions about the properties of initial and boundary
data. The fixed point form (3.37) of the consumer equation suggests, that we might run
into a problem, if e(t, L) = eret at some time point, or if the normalized consumption g
attains non-positive values. Therefore, we have to make a few assumption, before we
proceed with our existence theorem.
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Assumption 3.6: Regularity assumptions for Lipschitz solutions

Given initial and boundary data einit, ein, and g , we assume the following:

SP.1 einit ∈ C0
(
Īt
)

with emin ≤ einit ≤ emax

SP.2 ein ∈ C0
(
Īt
)

with emin ≤ ein ≤ emax. Further ein(t0) = einit(0).

SP.3 eret < ein,min ≤ emin ≤ emax ≤ ein,max

SP.4 g ∈ C0
(
Īt
)

with 0 < gmin ≤ g ≤ gmax

3.7 Theorem (Existence And Uniqueness for a Single Pipeline)

Let einit, ein, and g be data for the coupled advection problem

∂te+ v∂xe = 0, (3.39a)

e(·, 0) = ein, (3.39b)

e(t0, ·) = einit, (3.39c)

v
(
e(·, L)− eret

)
= g, (3.39d)

fulfilling all assumptions in ASSUMPTION 3.6 . Further assume, that ein ∈ Clip
(
Īt
)
, and

einit ∈ Clip
(
Ω̄
)
. Then the there exists a unique solution (v, e) ∈ C0

(
Īt
)
× Clip

(
Īt × Ω̄

)
in the sense of PROPOSITION 3.3 (i.e. in the terms of characteristics). If ein, and einit

are even continuously differentiable, and satisfy the compatibility condition

∂te
in(t0) + v(t0)∂xe

init(0) = 0, (3.40)

then e ∈ C(1,1)(It × Ω).

Proof. Step 1: Local Solutions by the Banach Fixed Point Theorem
By the reformulation of the consumer equation (3.37), we can immediately derive upper
and lower bounds

vmin =
gmin

emax − eret
≤ v ≤ gmax

emin − eret
= vmax (3.41)

of the advection velocity v, and define the set

V =
{
v ∈ C0(It)

∣∣ vmin ≤ v ≤ vmax} (3.42)

which is a bounded, and closed subset of C0(It). Within this set, the simplified solution
formula (3.13) is well-defined, and the equation (3.37) can be re-written as

v(t) =
g(t)

einit(L−
∫ t
t0
v(s)ds)− eret

=: f(v) (3.43)

with t ∈ [t0, t0+ L
vmax

). The right hand side f is a mapping from V to itself, which is Lipschitz
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continuous due to the estimate

‖f(t, v1)− f(t, v2)‖∞ =

∥∥∥∥∥∥ g(t)

einit
(
L−

∫ t
t0
v1(s)ds

)
− eret

− g(t)

einit
(
L−

∫ t
t0
v2(s)ds

)
− eret

∥∥∥∥∥∥
∞

≤

∥∥∥g(t)
(
einit

(
L−

∫ t
t0
v1(s)ds

)
− einit

(
L−

∫ t
t0
v2(s)ds

))∥∥∥
∞

(emin − eret)2

≤
‖g‖∞

(emin − eret)2 · CLip,e ·
∥∥∥∥∫ t

t0

v1(s)− v2(s) ds

∥∥∥∥
∞

≤
‖g‖∞

(emin − eret)2 · CLip,e · |t− t0| · ‖v1 − v2‖∞ .

(3.44)

As a consequence, there exists t? ∈ (t0, t0 + L
vmax ), such that f is a contraction. Therefore,

all prerequisites from THEOREM 3.5 are met, such that a unique solution v? ∈ V exists
within [t0, t

?].
Step 2: Lipschitz-Continuity of all intermediate solutions
For this step, lets assume that (e, v) is the unique solution to (3.39) on a subinterval t0 ≤
s < s̄ ≤ t1. Assuming Lipschitz continuity of the initial data at s, the estimate

‖e(s2, x)− e(s1, x)‖∞ ≤ CLip,e
∥∥∥∥x− ∫ s1

s

v(t) dt− x+

∫ s2

s

v(t) dt

∥∥∥∥
∞

= CLip,e

∥∥∥∥∫ s2

s1

v(t) dt

∥∥∥∥
∞

≤ vmax ‖s2 − s1‖∞

(3.45)

holds for all s1 6= s2 ∈ [s, s̄], x ∈ (0, L], such that
∫ si
s
v dt ≤ x. For all positions x where

∫ s̄

s

v(t) dt > x (3.46)

we define the time point s?(x) ∫ s?(x)

s

v(t) dt = x (3.47)

where one transitions from initial data to boundary data. Given s2 > s1 ≥ s?(x), we can
compute the initial time points τi of the characteristics passing through the point (si, x) by
solving ∫ si

τi

v(t) dt = x. (3.48)

This yields the second part

‖e(s2, x)− e(s1, x)‖∞ =
∥∥ein(τ2)− ein(τ1)

∥∥
∞

≤ CLip,u ‖τ2 − τ1‖∞

≤ CLip,u
vmax

vmin
‖s2 − s1‖∞

(3.49)
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of the desired estimate, such that e is Lipschitz in time. In order to show Lipschitz continuity
of e in space let x1 < x2 ∈ [0, L] and s ≥ s0. We directly obtain the estimate

‖e(s, x2)− e(s, x1)‖∞ ≤ CLip,e ‖x2 − x1‖∞ (3.50)

in the explicit case (i.e.
∫ s
s0
v dt ≤ xi), and

‖e(s, x2)− e(s, x1)‖∞ ≤ CLip,u
∥∥∥∥∂τ(t, x)

∂x

∥∥∥∥
∞,x
‖x2 − x1‖∞

= CLip,u
1

vmin
‖x2 − x1‖∞

(3.51)

otherwise.

Step 3: Continuation to the whole time interval

Due to the considerations in Step 1, we can construct a local, unique solution to the cou-
pled transport problem within any time interval [t(n), t?(n)] ⊂ [t0, t1], where t?(n) is chosen
as the maximal element of the set defined by

(
t? − t(n)

) ‖g‖∞
(emin − eret)2 · CLip,e < 1, (3.52)

t(n) ≤ t? ≤ t(n) +
L

vmax
.

We observe that the difference t?(n) − t(n) is a constant independent of n, and define
∆t := t?(n) − t(n). This induces a unique partition

t(n) = t0 + n∆t, Nt :=

⌈
t1 − t0

∆t

⌉
, t(Nt) = min (t1, t0 +Nt∆t) . (3.53)

of the whole time interval. The considerations in Step 2 ensure that all intermediate so-
lutions are Lipschitz, and therefore satisfy the prerequisites of Step 1. By induction, this
leads to a unique solution (e, v) of the coupled problem (3.39), with e being Lipschitz, and
v being continuous.

Step 4: Classical Solutions

Together with the compatibility condition in ASSUMPTION 3.6 , the differentiability follows
immediately from the explicit construction of (3.17).

Here we notice, that similar techniques, which stem from combining the method of charac-
teristics with Banach’s fixed point theorem are commonly used in the context of nonlocal
transport equations. For a existence result for conservation laws with nonlocal velocities in
a broader context we refer the reader to [Friedrich et al., 2022] .

The preceding theorem ensures the existence of a continuous, bounded, and positive ad-
vection velocity under certain conditions. If the consumption model g admits more regular-
ity, we can prove the same for v:
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3.8 Corollary (Improved Regularity Results for v)

Let einit, ein, and g satisfy all conditions in ASSUMPTION 3.6 . Further, assume g ∈
Clip(It) as well. Then v is Lipschitz continuous with

CLip,v =
CLip,e · CLip,g
(emin − eret)2 . (3.54)

If g is even continuously differentiable with bounded derivative, then the same folds for
v, and one has

∂tv =
∂tg · e(·, L)− g · ∂te(·, L)

(e(·, L)− eret)2 . (3.55)

Proof. In the Lipschitz case, the statement follows immediately from the fixed point formula-
tion (3.37) of the consumer equation, and the norm estimates in the proof of THEOREM 3.7 .
If g is continuously differentiable, we apply the quotient derivative rule to (3.37), and obtain
the second statement.

3.1.3 Generalization to continuous solutions

The proof of THEOREM 3.7 relies on the rather strict assumption, that initial and boundary
data are at least Lipschitz continuous. For applications in optimal control, we would like
to generalize this result to data in H1(It), whose continuous representative only satisfies
a weaker Hölder condition. In order to do so, we make use of the following approximation
theorem:

3.9 Theorem (Stone-Weierstraß)

Let [a, b] be a real interval, and denote by C0([a, b]) the space of continuous, real-valued
functions on [a, b]. Assume, that V is a sub-algebra of C0([a, b]), which contains at least
one non-zero function. Then V is dense in C0([a, b]) (w.r.to the C0 norm) if and only if
it separates points, i.e.

∀x, y ∈ [a, b] : x 6= y : ∃f ∈ V : f(x) 6= f(y). (3.56)

Proof. See e.g. [Stone, 1948].

3.10 Lemma (Uniform approximation by Lipschitz functions)

Let f ∈ C0([a, b]) be a continuous function with bounds fmin, fmax ∈ R such that

fmin ≤ f(x) ≤ fmax∀x ∈ [a, b]. (3.57)

Then there exists a series (fk)k ⊂ Clip([a, b]) satisfying

fmin ≤ fk(x) ≤ fmax∀x ∈ [a, b]∀k ∈ N (3.58)

which uniformly converges to f .
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Proof. The space Clip([a, b]) is closed under addition and multiplication, since we have

‖f + g‖Clip ≤ max {‖f‖Clip , ‖g‖Clip} (3.59)

and

‖f · g‖Clip ≤ ‖f‖Clip · ‖g‖Clip . (3.60)

Furthermore, it contains all constant functions, as well as piecewise linear functions, such
that the prerequisites of theorem THEOREM 3.9 are fulfilled.
Now denote by (fk)k ⊂ Clip([a, b],R) a sequence of approximating functions satisfying

lim
k→∞

‖f − fk‖C0 = 0. (3.61)

In order to apply the point wise projection onto [fmin, fmax], notice that

min {f1, f2} =
f1 + f2 − |f1 − f2|

2
, (3.62a)

max {f1, f2} =
f1 + f2 + |f1 − f2|

2
, (3.62b)

such that Clip([a, b]) is closed under these operations. As a consequence, the function

f̃k = min
(
fmax,max

(
fk, f

min
))

(3.63)

is Lipschitz continuous as well. Since the original function f maps onto [fmin, fmax] as
well, we have the estimate ∥∥∥f − f̃k∥∥∥

C0
≤ ‖f − fk‖C0 , (3.64)

which completes the proof.

3.11 Corollary (Existence and uniqueness in C0)

Let g ∈ C0
(
Īt,R

)
, ein ∈ C0

(
ĪtR
)
, and einit ∈ C0(Ω,R), be positive, bounded functions.

Further, assume that a C0 compatibility conditions

ein(t0) = einit(0), (3.65)

and all properties in ASSUMPTION 3.6 are fulfilled. Then (3.39) has a unique solution
(v, e) in C0

(
Īt
)
× C0

(
Īt × Ω̄

)
in the sense of PROPOSITION 3.3 .

Proof. The proof is almost identical to that of THEOREM 3.7 . In order to apply Banach’s
fixed point theorem, we successively approximate einit by a series ek of Lipschitz functions.
This results in a series of fixed point problems

vk(t) =
g(t)

ek(L−
∫ t
t0
vk(s)ds)− eret

=: fk(vk) (3.66)

which each have a unique solution vk. By the estimate

‖vk+1 − vk‖C0 ≤
‖g‖∞

(emin − eret)2 ‖ek+1 − ek‖∞ (3.67)

we ensure, that the series vk indeed converges to a unique function v in C0.
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As already mentioned in SECTION 2.4 , its relatively hard to determine sharp bounds for
ein, such that e(·, L) > eret is guaranteed to hold. As a consequence, we introduced a
relaxed consumer model in SECTION 2.4.2 , which modifies e(·, L) through a correction
function φ. Using this modification, we can prove the following:

3.12 Corollary (Continuous solutions with cooling)

Assume, that the reaction term

r(e) =
4k

d
(T (e)− Twall) (3.68)

is strictly monotonously increasing, and bijective with one single root r(ewall) = 0, and
consider a correction function φ, which is at least Lipschitz continuous, and bounded
from below such that φ(e) ≥ ecrit > eret. Further, consider a modified version of (3.39),
where the consumer constraint (3.36) is replaced with

v
(
φ (e(·, L))− eret

)
= g. (3.69)

Then the modified system has a unique, continuous solution (e, v), which is bounded.

Proof. Due to the properties of the reaction term r, we see that

inf
(t,x)
|e(t, x)| ≥ ewall. (3.70)

Further, the relaxation function φ is (at least) Lipschitz, such that the modified fixed point
problem

f̃(v) =
g(t)

φ
(
einit(L−

∫ t
t0
v(s)ds)

)
− eret

(3.71)

is Lipschitz as well. Therefore, we can proceed as in the proof of COROLLARY 3.11 , and
conclude the existence and uniqueness of a fixed point f̃ (v?) = v?. Further, the solution is
bounded, where the lower bound

ewall ≤ ẽmin ≤ emin (3.72)

of e, and the upper bound

gmax

φ (ẽmin)− eret
=: ṽmax ≥ vmax (3.73)

of v have to be modified, while all other bounds remain exactly the same.

Remark 3.13: Estimates for affine reaction terms

If the chosen material law leads to an affine relation

T (e) = T0 + T1e, (3.74)

the reaction term is affine as well. In fact, the condition r(ewall) = 0 implies, that r
must be of the form

r(e) = r1

(
e− ewall

)
(3.75)
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for a positive, real constant r1. By using the estimate t−τ(t, x) ≤ L
vmin , we can derive

a lower bound

e(t, L) = ewall +
(
e0(t)− ewall

)
exp {−r1 (t− τ(t, L))}

≥ ewall +
(
e0(t)− ewall

)
exp

{
−r1

L

vmin

} (3.76)

for the outflow energy. Unfortunately, this estimate is not very sharp, such that it is
very unlikely, that it yields a practically usable lower bound, if multiple pipelines are
involved. Given a path (a0, . . . , aN ) of pipelines, such that eak(t, 0) = eak−1

(t, Lak−1
),

the above estimate generalizes to

eaN (t, LaN ) = ewall +
(
ea0(t, 0)− ewall

)
· exp

{
−

N∑
k=0

rak,1 (t− τak (t, Lak))

}

≥ ewall +
(
ea0(t, 0)− ewall

)
· exp

(
−

N∑
k=0

rak,1
Lak
vminak

)
,

(3.77)

and therefore the approximation error propagates in a multiplicative fashion.

So far, we have established different results regarding existence, uniqueness and regularity
of solutions of the single pipeline problem with reaction term. Most notable, we could prove
the existence of solutions for continuous data. In the following section, we are going to
re-add a bit of regularity, to develop a solution framework which is suitable for optimization
problems.

3.1.4 Continuous solutions with data in H1

In the previous section we have seen, that our intuitive understanding of solutions for the
coupled pipeline consumer system in terms of characteristics remains valid, if we reduce
the regularity of data do "just" continuous functions.
As motivated in the introduction of this chapter, we want to establish a weak formulation
of the model equations, which capture most good properties of the classical solution, but
endows them with a nicer geometry. Since all spatial and temporal domains, which are
relevant to our problem, are (compact) intervals, the Sobolev spaces H1(It), and H1(Ω)
are good candidates for slightly more regular initial and boundary data.
For a broader introduction into Sobolev spaces, their properties, and embeddings, we refer
to [Evans, 2010], and [Brezis, 2011].
We start out with two simple observations regarding Sobolev functions on real intervals.

3.14 Lemma (Properties of H1(M) )

Let M ⊂ R be an open, real interval. Then the following statements hold true:

1. The embedding C∞
(
M̄
)
↪→ H1(M) is dense.

2. The embeddings H1(M) ↪→ C0
(
M̄
)

and H1(M) ↪→ L2(M) are compact.

3. H1(M) is closed under pointwise multiplication. In particular, the triplet(
H1(M),+, ·

)
defines a commutative ring, with the constant function 1(x) ≡ 1

as the multiplicative unit element.
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Proof. For the statements (1) and (2), we refer to [Wloka, 1987] and [Alt, 2016]. We are
going to prove the third statement. The tuple

(
H1(M),+

)
defines a commutative group,

because H1(M) is a R-vector space. The existence of a 1-element, and the distributive
laws follow immediately from the properties of pointwise multiplication. It remains to show,
that for all f, g ∈ H1(M), the product also satisfies f · g ∈ H1(M).
We know that both functions have unique, continuous representatives, such that we can
estimate the L2 norm of their product by

‖fg‖L2(M) ≤ ‖f‖∞ ‖g‖∞
√
|M |. (3.78)

Now, we are going to show that the distributional derivative of f · g can be identified with a
function L2. Let gn ∈ C∞c (M) such that ‖g − gn‖H1(M) → 0 as n → ∞. Using the product
rule for a H1 and C∞c functions, and estimates analogue to (3.78), the weak derivative f ′

of f satisfies

(f ′ · gn, φ)L2 = (f ′, gn · φ)L2

= −
(
f, (gn · φ)

′)
L2

= − (f, g′n · φ+ gn · φ′)L2

(3.79)

for all φ ∈ C∞c (M), which we rearrange to

(fgn, φ
′)L2 = − (f ′gn + fg′n, φ)L2 . (3.80)

For gn ∈ H1(M), all three expressions

gn 7→ (gn, f · φ′)L2

gn 7→ (gn, f
′ · φ)L2

gn 7→ (g′n, f · φ)L2

(3.81)

define continuous, linear functionals in H1(M)?. Since the strong convergence of gn also
implies weak convergence, all limits necessarily exist in H1(M), and we conclude that
f · g ∈ H1(M).

Remark 3.15: Polynomials in H1

A direct consequence of LEMMA 3.14 is, that formal polynomial expressions

P (f) =

N∑
k=0

akf
k (3.82)

define mappings from H1(M) to itself. Furthermore, integrals of the form

JP (f) =

∫
M

P (f)(t) dt (3.83)

are well defined, and Fréchet differentiable (as we are going to show later in
SECTION 3.3 ).
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3.16 Lemma (Chain rule for H1)

Let D,M ⊂ R be real intervals, and f ∈ H1(M), with f(x) ∈ D for a.e. x ∈M . Further,
let F : D → R be bi-Lipschitz. Then F is differentiable almost everywhere in D, and
the composition F ◦ f ∈ H1(M) satisfies the chain rule

∂x (F ◦ f) (x) = (F ′ ◦ f) (x) · ∂xf(x) (3.84)

for almost every x ∈ M . Analogously, if F : D → M is bi-Lipschitz, then F is differen-
tiable almost everywhere in D, and the composition f ◦ F ∈ H1(D) satisfies the chain
rule

∂x (f ◦ F ) (x) = (∂xf) ◦ F (x) · F ′(x) (3.85)

for almost every x ∈M .

Proof. See [Ziemer, 1989], Theorem 2.2.2



44 CHAPTER 3. ANAYLSIS AND H1 FORMULATION

Remark 3.17: Quotient rule for H1

If g ∈ H1(M) such that g ≥ gmin > 0, and we define the function

F : (gmin,∞) : R, x 7→ 1

x
, (3.86)

we see that F is a continuously differentiable (with bounded derivative), and the
composition F ◦ g has a weak derivative

∂x (F ◦ g) (x) = − 1

g(x)2
∈ L2(M). (3.87)

More generally, for any f ∈ H1(M), the quotient fg is well defined, and weakly differ-
entiable with

∂x

(
f

g

)
(x) =

∂xf(x) · g(x) + f(x) · ∂xg(x)

g(x)2
∈ L2(M). (3.88)
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We now use these results to derive H1-norm estimates for the partial evaluations e(t, ·),
and e(·, x) of the (continuous) solution of the advection problem.

3.18 Lemma (Change of coordinates for the advection problem in H1)

Let v ∈ C0
(
Īt
)

such that vmax ≥ v ≥ vmin > 0, and define the sets Iimpl0 = (t0, s) ⊂ It,
and

Ωimpls :=

{
x ∈ Ω

∣∣∣ ∫ s

t0

v(t′) dt′ < x

}
⊂ Ω (3.89)

for s ∈ It. Then, the mapping

ϕs : Ω̄impls → Īimpl0 , x 7→ τ(s, x) :

∫ s

τ(s,x)

v(t′) dt′ − x = 0 (3.90)

is well defined, and induces a continuous, linear operator

Φs : H1
(
Ωimpls

)
→ H1

(
Iimpl0

)
, u 7→ u ◦ ϕs. (3.91)

Analogously, we define Ωimpl0 = (0, x) ⊂ Ω, and

Iimplx :=

{
s ∈ It

∣∣∣ ∫ s

t0

v(t′) dt′ < x

}
⊂ It (3.92)

for x ∈ Ω. Then, the mappings

ϑx : Īimplx → Ω̄impl0 , t 7→ ξ(t, x) = x−
∫ t

t0

v(t′) dt′, (3.93)

and

ζx : Īexplx → Īexpl0 , t 7→ τ(t, x) :

∫ t

τ(t,x)

v(t′) dt′ − x = 0 (3.94)

are diffeomorphisms, such that the operators

Θx : H1
(
Iimplx

)
→ H1

(
Ωimpl0

)
, u 7→ u ◦ ϑx, (3.95)

and

Ξx : H1
(
Iexplx

)
→ H1

(
Iexpl0

)
, u 7→ u ◦ ϑx, (3.96)

are linear and continuous, as well.

Proof. A visualisation of the domain subdivisions is given in FIGURE 3.3 . Let s ∈ It be
arbitrary but fixed. We define the residual equation

G(τ, s, x) :=

∫ s

τ

v(t′) dt′ − x = 0, (3.97)

and obtain

ϕ′s(x) =
1

v(ϕs(x))
(3.98)



46 CHAPTER 3. ANAYLSIS AND H1 FORMULATION

t
t0 It

s tf

0

Ω

L

τ = s− x
v

Ωimpls

Iimpl0

Ωexpls

Ωexpl0

t
t0 It tf

0

Ω

L

x
ξ = x− v · tIimplx
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Figure 3.3: Illustration of the domain subdivisions used in LEMMA 3.18 and
THEOREM 3.19

by applying the implicit differentiation theorem, As of LEMMA 3.16 , the composition u ◦ φs
is an element of H1

(
Iimpl0

)
, and

∂x(Φsu) = (∂xu) ◦ ϕ(x) · ϕ′(x) (3.99)

almost everywhere in Ωimpls .
This yields the estimate

‖Φsu‖H1(Iimpl
0 ) = ‖u ◦ ϕs‖H1(Ωimpl

s ) ≤
1

vmin
‖u‖H1(Iimpl

0 ) , (3.100)

for the norm of Φsu, such that Φs is bounded. We easily see that Φs is linear, since
(u1 + u2) ◦ ϕs = u1 ◦ ϕs + u2 ◦ ϕs. Therefore, it is also continuous.
Analogously, given x ∈ Ω arbitrary but fixed, one shows that

ϑ′x(t) = −v(t) (3.101)

and

ζ ′x(t) =
v(t)

v(ζx(t))
, (3.102)

such that the norm estimates

‖Θxu‖H1(Iimpl
x ) = ‖u ◦ ϑx‖H1(Iimpl

x ) ≤ v
max ‖u‖H1(Ωimpl

0 ) , (3.103)

and

‖Ξxu‖H1(Iexpl
x ) = ‖u ◦ ϑx‖H1(Iexpl

x ) ≤
vmax

vmin
‖u‖H1(Iexpl

0 ) , (3.104)

for the linear operators Θx and Ξx, which hence are continuous.

We apply this transformation rule to obtain a vastly improved regularity result for e, if the
initial and boundary values einit and ein are H1 functions.
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3.19 Theorem (Regularity of C0 solutions with H1 data)

Let (v, e) be a continuous solution of the coupled single pipeline problem, as stated
in COROLLARY 3.11 . Further, let ein ∈ H1(It), and einit ∈ H1(Ω). Then e ∈
H(1,1)(It × Ω) ∩ C0

(
Īt, H

1(Ω)
)
, and the trace operator (spatial point evaluation)

trx : Ω̄ ×H(1,1)(It × Ω)→ H1(It), e 7→ e(·, x) (3.105)

is well defined, and preserves weak differentiability in the sense of Sobolev spaces. In
particular, eout = e(·, L) is an element of H1(It).

Proof. First, we want to show that e ∈ H(1,1)(It × Ω), i.e. that

‖e‖2H(1,1)(It×Ω) =

∫
It

∫
Ω

e(t, x)2 + (∂te(t, x))
2

+ (∂xe(t, x))
2
dx dt <∞ (3.106)

We apply the subdivision given in FIGURE 3.3 , which yields∫
It

∫
Ω

e(t, x)2 dx dt =

∫
It

(∫
Ωexpl

t (t)

e(t, x) dx+

∫
Ωimpl

t (t)

e(t, x)2 dx

)
dt (3.107)

=

∫
It

(∫
Ωexpl

0 (t)

einit(x̃)2 dx̃+

∫
It0impl(t)

(
Φ−1
s ein(s)

)2
ds

)
dt (3.108)

for the first term. Knowing, that the operators Φ−1
s are linear, and diffeomorphisms, we can

conclude that the weak partial derivative terms are well defined, and we can analogously
apply the subdivision, which yields the desired result.
In order to see that e ∈ C0

(
Īt, H

1(Ω)
)
, we remind ourselves, that e is continuous by as-

sumption. Therefore, e ∈ C0
(
Īt × Ω̄

) ∼= C0
(
Īt, C

0
(
Ω̄
))

, where we define the time evalua-
tion e(t) as

e(t)(x) = e(t, x)∀t ∈ Īt, x ∈ Ω̄. (3.109)

This way, we naturally get the embeddings e ∈ C0
(
Īt, L

2(Ω)
)
, and e ∈ L2(It × Ω).

We again apply the domain subdivision given in FIGURE 3.3 and LEMMA 3.18 .
Now, let s ∈ It be arbitrary but fixed. By LEMMA 3.18 , we have the norm estimate

‖e(s)‖H1(Ω) ≤ ‖e(s)‖H1(Ωimpl
s ) + ‖e(s)‖H1(Ωexpl

s )

≤
∥∥einit∥∥

H1(Ωexpl
0 ) +

1

vmin
∥∥ein∥∥

H1(Iimpl
0 )

≤
∥∥einit∥∥

H1(Ω)
+

1

vmin
∥∥ein∥∥

H1(It)

(3.110)

such that e(t) ∈ H1(Ω) for every t ∈ Īt, and hence e ∈ C0
(
Īt, H

1(Ω)
)
.

For the last claim, we pick x ∈ Ω̄ arbitrary, but fixed. Again, LEMMA 3.18 guarantees us
the norm estimates

‖trxe‖H1(It)
= ‖trxe‖2H1(Iimpl

x ) + ‖trxe‖H1(Iexpl
x )

≤ vmax
∥∥einit∥∥

H1(Ωimpl
0 ) +

vmax

vmin
∥∥ein∥∥

H1(Iimpl
0 )

≤ vmax
∥∥einit∥∥

H1(Ω)
+
vmax

vmin
∥∥ein∥∥

H1(It)

(3.111)

such that trx is a linear and bounded operator for every x ∈ Ω̄.
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3.2 Well-posedness and regularity for networks without
flow reversal

After this thorough analysis of the single pipeline problem, we are going to extend the
results of SECTION 3.1 to slightly more complex networks, whose graph structure is a
simple graph according to DEFINITION 2.6 .
At first, we recognize that all pipelines in AffP , whose outflow is connected to a consumer,
can be partially reduced to a single pipeline problem for a restricted time interval. This
allows us to constructively extend the existence and uniqueness results with continuous
data in SECTION 3.2.1 , and improved regularity for H1 data in SECTION 3.2.2 .
Finally, we conclude the discussion about existence and uniqueness of solutions with the
treatment of the hydraulic equations in SECTION 3.2.3 .

3.2.1 Continuous solutions

We start the generalization of the results from SECTION 3.1 to simple networks with the
following observation:

3.20 Lemma (Simplified coupling conditions in forward flow)

Let G be the graph of a simple district heating network in accordance with definition
DEFINITION 2.6 . Then all quantities of the forward flow network Gff can be computed

independently from those ones of the return flow, and va > 0∀a ∈ AP .
Furthermore, one can equivalently replace the energy balance equation by

en = ea:n, o(a) = n, a ∈ AffP . (3.112)

and conservation of volume ∑
a∈In

qa:n, n ∈ N ff (3.113)

automatically implies conservation of mass for each node n ∈ N ff .

Proof. We rearrange the mass conservation equations for consumers and obtain

qc:in = −
ρ(êi(c))

ρ(eretc )
qc:out (3.114)

such that qc:in, and qc:out only differ by a negative scaling factor s(ei(c)) with
∣∣s(ei(c))∣∣ < 1,

where ê = φ(e) is the regularized supply energy.
By using this expression in the energy balance equation

Qpredc = qc:out

(
ei(c) −

eretc
ρ(eretc )

ρ(ei(c))

)
(3.115)

we obtain

Qc:in +Qc:out = −qc:out
(
êi(c) − eretc

ρ(êi(c))

ρ(eretc )

)
, (3.116)

and conclude, that all consumer fluxes do not depend on quantities defined on the return
flow network. Next we show, that va > 0∀a ∈ AffP . By the monotonicity and boundedness
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properties of ρ we get

êi(c) > eretc > eretc
ρ(êi(c))

ρ(eretc )
(3.117)

such that qc:in < 0 for each consumer. Given a pipeline a with o(a) = i(c) for some c ∈ AC ,
we can define the set

Ñff
0 =

(
N ff ∩N ext

)
\ nff (3.118)

of interior nodes in the forward flow network, for which all outgoing mass fluxes are known.
Right now, this set contains precisely those ones, which are connected to a consumer,
such that we can immediately compute the flow velocity

va = −qc:in
Aa

> 0, (3.119)

which is strictly positive. Due to DEFINITION 2.6 , the forward flow network has a tree
structure, and each node in N ff \ N ext is connected to pipes only, with deg(n) ≥ 2. We
recursively define

Ñff
k =

{
i(a)

∣∣∣ a ∈ AffP : o(a) ∈ Ñff
k−1

}
(3.120)

which is non-empty, as long there are any unknown flow velocities in AffP , such that we
can explicitly compute

va = −

∑
b∈I(n)\a

qb:n

da
> 0 (3.121)

for all a with o(a) ∈ Ñff
k .

We repeat this process, until Ñff
k becomes the empty set for the firs time. Now we can

compute

qs:out = −
∑

b∈I(nff )\s

qb:n > 0 (3.122)

For the return flow network, we follow an analogous argument, such that we can summarize
this result with

qa:out > 0∀a ∈ A. (3.123)

Therefore, we know that the water flow does not change directions, and the perfect mixing
condition for pipes simplifies to

Qa:in = ei(a)qa:in∀a ∈ AffP ∪ AC (3.124)

As there is only one component with o(a) = n for every n ∈ N ff , which is either the
producer, or a pipe, we can rearrange the node balance equations for energy

ea:nqa:n = −en
∑

b∈I(n)\a

qb:n, (3.125)

and mass

ρ(ea:n)qa:n = −ρ(en)
∑

b∈I(n)\a

qb:n, (3.126)



50 CHAPTER 3. ANAYLSIS AND H1 FORMULATION

which yields the compatibility condition

ea:n

ρ(ea:n)
=

en
ρ(en)

. (3.127)

Since we assume ρ to be bounded, and either constant or strictly decreasing, we see that
en = ea:n is the only possible solution. In particular, we conclude that enff = ue. Finally,
conservation of mass becomes equivalent to

∑
qa:n = 0,∀n ∈ N ff , (3.128)

as e is continuous across junctions.

This result delivers a strategy, how to solve the energy transport problem for simple net-
works: Given a pipeline which is connected to a consumer’s inlet, we already know how to
(partially) solve the nonlocal advection problem. In particular, we can determine the flow
velocity for all such pipelines within a certain subinterval of It, and extend this solution to
all flow velocities and volume fluxes in Gff .

3.21 Lemma

Let g be a bounded, positive, monotonously decreasing function, and f Lipschitz and
bounded. Then h(x) f(x)

g◦f(x) is Lipschitz as well.

Proof. Without loss of generality, assume that f(x) < f(y), and define gmin = g(fmin).

‖h(x)− h(y)‖∞ =

∥∥∥∥ f(x)

g ◦ f(x)
− f(y)

g ◦ f(y)

∥∥∥∥
∞

≤
∥∥∥∥f(x)− f(y)

g ◦ f(y)

∥∥∥∥
∞
≤ Lf

‖x− y‖∞
gmin

(3.129)

Unlike in the single pipeline case, the compatibility of the initial energies einita with the nodal
energies en(t0) at the initial time point is not enough to ensure the existence of continuous
solutions. In addition, we have to consider the flux coupling conditions

∑
a∈In

ρ (ea:n) (t0)qa:n(t0) = 0

∑
a∈In

Qa:n(t0) = 0,
(3.130)

at the time t0. Now we can formulate the regularity assumptions for continuous solutions
of simple district heating networks as follows:
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Assumption 3.22: Regularity assumptions for C0 solutions

C.1 The initial values einita ∈ C0
(
Ω̄a

)
are bounded by emin ≤ einita ≤ emax, and

satisfy ea(t0)(0) = ei(a)(t0) for all a ∈ AP .

C.2 The control input ues ∈ C0
(
Īt
)

with ue,mins ≤ ues ≤ ue,maxs . Further ues(t0) =
eo(s)(t0).

C.3 All node energies en and fluxes qa:n, Qa:n are consistent with the coupling
conditions (3.130) at the time t0 for all n ∈ N , a ∈ A.

C.4 The consumer return energies satisfy ewall < eretc < ee,min ≤ emax for all
c ∈ AC .

C.5 The consumption prediction models ∆Qpredc ∈ C0
(
Īt
)

are positive, bounded
functions, such that 0 < ∆Qminc ≤ ∆Qpredc ≤ ∆Qmaxc ∀c ∈ AC .

C.6 eret < ue,min ≤ ee,min ≤ emax ≤ ue,max

3.23 Theorem (Continuous solution for tree shaped networks)

Let G be the graph of simple district heating network in compliance with definition
DEFINITION 2.6 . Further, let ∆Qpredc , ue, and einit,a which fulfil ASSUMPTION 3.22 .

Then the system (2.94)-(2.103), excluding inequalities and all equations involving the
hydraulic pressure, has a unique continuous solution in the sense that ea ∈ C0

(
Īt × Ω̄a

)
is a generalized solution of the advection problem in terms of PROPOSITION 3.3 , and
all other state variables are continuous and bounded on Īt.

Proof. According to LEMMA 3.20 , it is sufficient to focus on the forward flow network at
first. Consider the set ÃP of all pipelines a ∈ AffP , with o(a) = i(c) for some consumer
c ∈ AC .
By assumption, there exists a pipeline a ∈ AffP , such that

ec:in := φc(ei(c)) = φc(ea(·, La)) (3.131)

is Lipschitz continuous with respect to ei(c) and ea. We use the relation

qa:out = vaAa = −qc:in (3.132)

within the consumer’s energy balance equation

∆Qpredc = vaAa

(
ec:in
ρ(ec:in)

ρ(eretc )− eretc
)

(3.133)

and obtain the expression

va =
∆Qpredc

Aa

(
ec:in
ρ(ec:in)ρ(eretc )− eretc

) (3.134)

which is Lipschitz according to lemma 3.2.1.
Further, we can estimate an upper bound for the flow velocities of all pipelines

vmaxa =

∥∥∆Qpredc

∥∥
∞

Aa

(
emin

ρ(emin)ρ(eretc )− eretc
) (3.135)
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such that there the outflow trace ea(t, La) only depends on einita , whenever t ∈
[
t0, t0 + La

vmax
a

]
.

We define ∆texp as the largest possible time step, such that this assertion holds for all
pipelines, which are directly connected to a consumer. Therefore, we effectively reduced
the problem to the case of a single consumer network, such that COROLLARY 3.12 guar-
antees the existence and uniqueness of a continuous solution for each such pipeline.
By LEMMA 3.20 we already know, that all remaining flow velocities are computable, pos-
itive, and bounded. For the solution of the remaining pipelines a ∈ AffP , we traverse the
forward flow network in orientation preserving order, starting with the root node nff .
We define the set

Nk =
{
o(a)

∣∣∣ a ∈ AffP : i(a) ∈ Nk−1

}
, k > 0 (3.136)

of nodes, which are computable at step k, which we initialize with

N0 = {nff}. (3.137)

For each node n ∈ Nk, we apply COROLLARY 3.12 to all pipes with i(a) = n. This is
always possible, since enff = ue, and each pipeline a ∈ AffP has successor node, and the
traversal process continues, until every consumer has been reached. Analogously to the
single pipeline problem, we repeat this procedure until the entire time domain Īt has been
covered.
For the return flow network we use a similar induction argument, where we traverse the
graph starting with the nodes located at the consumer’s outlets.

N0 =
{
o(c)

∣∣∣ c ∈ AC} (3.138)

ec:n = eretc , qc:out = −ρ(ec:in)

ρ(eretc )
qc:in (3.139)

By the definition of simple networks, for every n ∈ N0 (and N rf in general), there exists
exactly one edge a0 ∈ Arf such that I−(n) = {a0}. We rearrange the conservation laws
for mass and energy ∑

a∈I+(n)

ea:nqa:n + enqa0:n = 0 (3.140a)

∑
a∈I+(n)

ρ(ea:n)qa:n + ρ(en)qa0:n = 0 (3.140b)

and obtain

en = ρ(en)

∑
a∈I+(n) ea:nqa:n∑

a∈I+(n) ρ(ea:n)qa:n

= ρ(en) · f,
(3.141)

where the functions determining f are always known, when the node n is traversed. By the
definition of f , and the monotonicity properties of ρ, we know that

emin

ρ(emin)
≤ f ≤ emax

ρ(emax)
(3.142)

and

emin ≤ ρ(en) · f ≤ emax (3.143)
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hold, such that the equation must have a unique solution. Here we emphasise, that ρ was
assumed to be strictly positive and nowhere increasing, such that it cannot be a linear
function. Therefore, the set of conservation laws (3.140) is never redundant.
Now, we define the set

N1 =
{
n ∈ N rf

∣∣∣ i(a) ∈ N0∀a ∈ I+(n)
}

(3.144)

of all nodes, whose inflow variables are computable during the first iteration of the graph
traversal. Due to the topology of the return flow network it may occur, that only a subset
of the edges in I−(n) directed towards a node n ∈ N rf are computable. We introduce the
sets

M0 = {} , (3.145a)

Mk =
({
o(a)

∣∣∣n ∈ Nk−1 ∪Mk−1, a ∈ I−(n) ∩ AP
}
∪Mk−1

)
\ Nk, k > 0, (3.145b)

which contain all nodes which have not been traversed yet, even though their average
energy can be computed. Finally, we define the set of nodes

Nk =
{
n ∈ N rf

∣∣∣ i(a) ∈ Nk−1 ∪Mk−1∀a ∈ I+(n)
}
, k > 0, (3.146)

which are computable during the kth iteration.
Now we repeatedly solve the equations for all pipelines with i(a) ∈ Nk, and update the sets
Nk+1,Mk+1, until we reach the first iteration k̂, such that Nk̂ = {}. By assumption, the

return flow pipe network
(
N rf ,ArfP

)
has the topology of an inverted tree, where the root

node is located at the producer’s inlet. In particular, every node n ∈ N rf is reachable by a
unique path, starting at a consumer’s outlet, such that Kk̂ must be empty, and all nodes in
N rf have been traversed.

3.2.2 Continuous solutions with data in H1

We extend the improved existence, uniqueness, and regularity results for the nonlocal
advection problem to simple networks. An equivalent statement for the forward flow sub-
network directly follows from the one dimensional case. For the return flow network, the
node energies en are defined as the weighted averages

en = −
∑
a∈I+n ea:nqa:n∑
a∈I−n qa:n

(3.147)

of all incoming energy fluxes.
In the special case, that all ea:n, and outgoing fluxes qa:n, a ∈ I−n , are constant in time, we
immediately see that en ∈ H1(It), if and only if qa:n ∈ H1(It)∀a ∈ I+

n . Therefore, we need
to specify additional conditions, under which all volume fluxes are weakly differentiable.
In the proof of THEOREM 3.23 we have seen, that all volume fluxes (and flow velocities)
are uniquely defined, once equations of the feed forward network have been solved. As
pointed out in COROLLARY 3.8 , we can derive C1 estimates for v (and therefore q), if the
consumer demand functions are continuously differentiable. The generalized quotient rule
for Sobolev spaces REMARK 3.17 allows us to extend this result to weakly differentiable
data, if assume the following:
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Assumption 3.24: Extended Regularity assumptions for C0 solutions with H1

data

In addition to ASSUMPTION 3.22 , we assume the following:

C.1′ einita ∈ H1(Ωa) for all a ∈ AP .

C.2′ ues ∈ H1(It).

C.4′ ∆Qpredc ∈ H1(It) for all c ∈ AC

The improved regularity result for data in H1 follows immediately:

3.25 Corollary (Existence and uniqueness of solutions for simple networks with
data in H1)

Let (N ,A) be the DEFINITION 2.6 and let all initial and boundary data be compliant
with ASSUMPTION 3.24 . Then the continuous solution given in THEOREM 3.23 ad-
mits higher regularity. In particular, the state variables va, qa:n, Qa:n, en are all elements
of H1(It), and the energy densities admit continuous representatives with weak spa-
tial derivatives ea ∈ C0

(
Īt, H

1(Ωa)
)
, such that the point evaluation tra,xea ∈ H1(It) is

weakly differentiable for all x ∈ Ω̄a.

Proof. For the forward flow network, we slightly alter the proof of THEOREM 3.23 , and
apply the regularity result THEOREM 3.19 for each pipeline.
The representatives in C0

(
Īt, H

1(Ωa)
)

guarantee that the explicit time stepping argument
is compatible with ASSUMPTION 3.24 . For the improved regularity of all state variables
without a spatial component, we apply the results LEMMA 3.14 (product rule in H1),
LEMMA 3.16 (chain rule), and REMARK 3.17 (quotient rule).

For the return flow network, we have to take a closer look onto the coupling conditions,
As in the proof of THEOREM 3.23 we observe, that for every node n ∈ N rf , the outflow
incidence set consist of a single element I−(n) = {a0}. We use REMARK 3.17 to explicitly
compute the weak derivative

∂ten = −
∑
a∈I+n ∂tea:nqa:n + ea:n∂tqa:n

qa0:n
+

(∑
a∈I+n ea:nqa:n

)
∂tqa0:n

(qa0:n)
2 (3.148)

such that we can safely apply THEOREM 3.19 to get the desired regularity result for ea
with a ∈ ArfP .

Remark 3.26: Nonlocality in simple district heating networks

We observe two fundamental differences between the dynamical behaviour of the
forward and return flow networks.
As we have already pointed out in the introduction of this chapter, the single-pipeline
model can be interpreted as a nonlocal advection problem, where the flow velocity
is determined by the trace trLe at the outflow boundary. The same reasoning holds
true for the forward flow of simple district heating network, where the flow behaviour
is uniquely determined by the outflow traces trLaea of all pipelines, which are directly
connected to a consumer. As a consequence, every change of the initial conditions
or model parameters (length, diameter, ...) of any pipeline a ∈ AffP can potentially
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affect every other state variable in the entire forward flow network.
This is not true for the return flow network, where all information travels strictly down-
stream.

3.2.3 Solutions of the hydraulic system with controls in H1

So far, we have mostly dealt with the thermodynamic part of the equation system, which
we have derived in CHAPTER 2 , as the hydraulic pressure is not needed in order to fully
describe the advective energy transport of simple networks. Given a solution (va, ea)a∈AP

of the advection system, we can rearrange (2.94b), and immediately compute the pressure

po(a)(t) = pi(a)(t)−
(
g

∆ha
La

+
λa
2da

va(t) |va(t)|
)∫

Ωa

ρ (ea) (t)(x) dx (3.149)

at the outflow boundary of a pipeline a ∈ AffP , if we assume that the pressure pi(a) at the
inflow boundary is already known. A similar argument holds for all pipelines in the return
flow network. We propose the following regularity assumptions

Assumption 3.27: C0 regularity assumptions for hydraulic control variables

In addition to ASSUMPTION 3.22 we require that

H.1 The networks reference pressure is a continuous function up0 ∈ C0
(
Īt
)

with
up,min ≤ up0 ≤ up,max.

H.2 The pressure difference between forward and return flow is a continuous func-
tion u∆p ∈ C0

(
Īt
)

with 0 < u∆p,min ≤ u∆p ≤ u∆p,max.

for continuous solutions of the complete thermohydraulic system. If more regularity is
needed, we additionally require that

Assumption 3.28: H1 regularity assumptions for hydraulic control variables

In addition to ASSUMPTION 3.27 and ASSUMPTION 3.24 , we require that

H.1′ up0 ∈ H1(It),

H.2′ u∆p ∈ H1(It), and

H.3′ ρ is Lipschitz continuous.
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3.29 Proposition (Solution of the hydraulic pressure equations for simple DHN)

Let (N ,A) be a the graph representation of a district heating network, and assume that
ASSUMPTION 3.27 is fulfilled.

Then the hydraulic pressure is uniquely defined by (2.94b) and has a continuous rep-
resentative. In particular, the estimates

pmino(a) ≥ p
min
i(a) −

(
g

∆ha
La

+
λa
2da

vmaxa |vmaxa |
)
Laρ

(
emina

)
(3.150)

and

pmaxo(a) ≤ p
max
i(a) −

(
g

∆ha
La

+
λa
2da

vmina

∣∣vmina

∣∣)Laρ (emaxa ) (3.151)

hold for every pipeline a ∈ AP , where emina and emaxa denote the respective spatial
minima and maxima.
If additionally ASSUMPTION 3.28 is fulfilled, the nodal pressures satisfy pnH1(It) for
each node n ∈ N .

Proof. By THEOREM 3.23 the energy densities ea and flow velocities va are continuous,
positive, bounded functions. Furthermore, ρ is a non-negative, continuous function, such
that the first statement, including the estimates (3.150) and (3.151), immediately follows.
If ASSUMPTION 3.28 is fulfilled, the weak differentiability of all pn is a consequence of
COROLLARY 3.25 , paired with the generalized chain rule LEMMA 3.16 .

Remark 3.30: Worst case estimates of the pressure differences at consumer stations

In analogy to REMARK 3.13 , we can derive rough estimates for the propagation of
hydraulic pressure throughout the network. Let P+

c = (a+
0 , . . . , a

+
kc

) be the unique
path of pipelines connecting the outflow of the source with the inflow of a consumer
c ∈ AC . Then a repeated application of the estimates (3.150) and (3.151) yields

pmini(c) ≥ u
p,min + u∆p,min −

∑
a∈P+

c

(
g

∆ha
La

+
λa
2da

vmaxa |vmaxa |
)
Laρ

(
emina

)
(3.152)

and

pmaxi(c) ≤ u
p,max + u∆p,max −

∑
a∈P+

c

(
g

∆ha
La

+
λa
2da

vmina

∣∣vmina

∣∣)Laρ (emina

)
(3.153)

for each consumer. In the same way, along each orientation preserving path P−c =
(a−0 , . . . , a

−
kc

) in the return flow network, which connects a consumer’s outlet with the
producers inflow, we obtain the estimates

pmino(c) ≥ u
p,min +

∑
a∈P−c

(
g

∆ha
La

+
λa
2da

vmaxa |vmaxa |
)
Laρ

(
emina

)
(3.154)

and

pmaxo(c) ≤ u
p,max +

∑
a∈P−c

(
g

∆ha
La

+
λa
2da

vmina

∣∣vmina

∣∣)Laρ (emina

)
, (3.155)
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such that we can compute the bounds

∆pminc ≤ pmaxo(c) − p
min
i(c) , (3.156)

∆pmaxc ≤ pmino(c) − p
max
i(c) , (3.157)

for the pressure difference at each consumer stations. The sharpness of each es-
timate heavily depends on the respective path length between the source and each
consumer station, as well as the variation of energies ea and flow velocities va.

This concludes our studies of continuous solutions of the model equations for simple district
heating networks networks with data in H1. In the next section, we are going to build upon
these results, in order to construct an abstract formulation of the governing equations,
which is suitable for applications in optimization.

3.3 Weak formulation and analysis of the residual opera-
tor G

In SECTION 3.1.4 we have shown, that the solution of the IBVP for a single pipeline is
an element of C0

(
It, H

1(Ω)
)
, if the initial and boundary data are compatible, and regular

enough. The Banach-valued version of e is simply defined as the partial evaluation

e(t) = e(t, ·) (3.158)

at a time point t.
Using the Riesz-Fréchet isomorphism RL2 : L2? → L2, and the (continuous and closed)
inclusion map i? : L2? → H1?, we can identify the expression

∂te(t, x) = −v(t)∂xe(t, x)− r(e(t, x) = −v(t) (∂xe(t)) (x)− r(e)(t)(x) (3.159)

with a linear functional φ∂te(t) ∈ H1(Ω)?, which we define as〈
φ∂te(t), ω

〉
H1(Ω)?,H1(Ω)

:=
〈
i?R−1

L2 ∂te(t), ω
〉
H1(Ω)?,H1(Ω)

(3.160)

= (−v(t)∂xe(t), ω)L2(Ω) (3.161)

for every t ∈ It, and ω ∈ H1(Ω).
Since all mapping involved in this identification are linear and continuous, we can formally
define the Banach-valued time derivative

d

dt
e(t) := φ∂te(t) ∈ C

0
(
It, H

1(Ω)?
)

(3.162)

and

E := C1
(
It, H

1(Ω), H1(Ω)?
)
, (3.163)

the space of continuous, H1 valued functions, whose derivative is continuous and takes
values in H1?, becomes a candidate for the co-domain of the advection’s residual opera-
tor Gadv. Unfortunately, the corresponding dual space, consisting of vector valued Borel
measures, is too large for our purpose, and the resulting weak formulation〈

µ,Gadv(e)
〉
B(It,H1(Ω)),C0(It,H1(Ω)?)

=

∫
It

G(e)(t)dµ(t) (3.164)
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lacks the desired symmetry.
If we relax the continuity assumption for the derivative, such that

d

dt
e(t) ∈ H1(Ω)? for a.e. t ∈ It, (3.165)

we hope to rewrite (3.164) in terms of a scalar product, which satisfies all of the continuity
and differentiability properties, which are needed in the context of optimization problems.
Starting with the formal identity∫

It

〈
d

dt
e(t), ω(t)

〉
H1(Ω)

dt := −
∫
It

(v(t)∂xe(t) + r (e) (t), ω(t))L2(Ω) dt, (3.166)

we are going to construct a vector valued residual operator, whose solution set is equiv-
alent to the one specified in SECTION 3.2 . Note, that we have yet to rigorously define
appropriate function spaces for e and ω.

3.3.1 Construction of G in (generalized) Sobolev spaces

3.31 Definition (Bochner space [Schweizer, 2013])

Given a measure space (I,S, µ), and a Banach space (X, ‖·‖X) we call a function
f : I → X Bochner measurable, if there exists a sequence (fn)n of finite valued
functions

fn(t) =

M∑
k=0

fn,kχIn,k
(t) (3.167)

with fn,k ∈ X, and I =
⋃M
k=0 In,k, such that

f(t) = lim
n→∞

fn(t) for µ almost every t. (3.168)

Using the norms

‖f‖LpI,X :=

(∫
I

‖f(t)‖pX dµ(t)

) 1
p

, 1 ≤ p <∞ (3.169)

and

‖f‖L∞I,X := ess sup
t∈I

‖f(t)‖X (3.170)

we define the sets

Lp(I,X) :=
{
f : I → X

∣∣∣ f is Bochner measurable and ‖f‖LpI,X <∞
}

(3.171)

and the Bochner spaces Lp(I,X) as the set of equivalence classes of functions in
Lp(I,X) which µ-a.e. identical.

We emphasize a particular property of the Bochner integral, which we are going to use in
later proofs.
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3.32 Theorem (Bochner integral)

Let (I,S, µ) be a measure space, (X, ‖·‖X) a Banach space, and p > 0. For any
function f ∈ Lp(I,X), the Bochner integral satisfies∥∥∥∥∫

I

f(t) dt

∥∥∥∥
X

≤
∫
I

‖f(t)‖X dt, (3.172)

and 〈
φ,

∫
I

f(t) dt

〉
=

∫
It

〈φ, f(t)〉 dt∀φ ∈ X?. (3.173)

Proof. For the full version of the theorem, covering well-posedness, approximation by finite
valued functions, and a generalized Lebesgue convergence theorem, and a proof, we refer
to Theorem 10.4, [Schweizer, 2013].

The Bochner-measurability of a function can be hard to prove at some times. In the case,
that an abstract function maps into a separable Banach space, this strong measurability
property can be relaxed significantly:

3.33 Theorem (Pettis)

Let (I,S, µ) be a measure space, and (X, ‖·‖X) a Banach space. Then f : I → X is
Bochner measurable, if and only if :

• f is weakly measurable, i.e. 〈x?, f(t)〉X?,X is Lebesgue measureable for every
x? ∈ X?, and for µ-almost every t.

• It is µ-almost surely separably valued.

Proof. See [Schweizer, 2013]

In the following, we are going to assume that (I,S, µ) refers to the standard Lebesgue
measure space over a real interval I, and write dt instead of dµ(t).
Following the result THEOREM 3.19 from SECTION 3.1 , we already know that

e ∈ C0
(
It, H

1(Ω)
)

(3.174)

such that we can conclude

e ∈ L2
(
It, H

1(Ω)
)

(3.175)

as a consequence of THEOREM 3.33 . Next, we would like to generalize the time derivative
of e in such a way that it preserves some of the nice geometrical properties of the Bochner
space L2

(
It, H

1(Ω)
)
.

3.34 Definition (Geldfand triple)

Let (H, (·, ·)H) be a Hilbert space, and (V, ‖·‖V ) a Banach space, such that the inclusion
map i : V → H is continuous and dense, and i? : H? → V ? is continuous. Then the
tuple (V,H, V ?) is called Gelfand triple.
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As pointed out in the introduction of this chapter, we can interpret the action of the (partial)
time derivative

∂te(t) = −v(t)∂xe(t)− r(e)(t) (3.176)

as a linear functional over H1(Ω) for almost every t. This motivates the choice of general-
ized Sobolev spaces, which are commonly used in the context of weak formulations of the
heat equations, as the appropriate function space for the energy densities ea.

3.35 Definition (Weak derivatives, generalized Sobolev spaces, and Gelfand
triples)

Let (X, ‖·‖X) be a Banach space and f ∈ L1(I,X). Then f is said to be weakly
differentiable, if there exists g ∈ L1(I,X)∫

I

f(t)φ′(t) dt = −
∫
I

g(t)φ(t) dt ∀φ ∈ C∞0 (I) (3.177)

and call d
dtf = g the weak (time) derivative of f .

We define the vector valued Sobolev spaces as the set of functions

W 1,p(I,X) :=

{
f ∈ Lp(I,X)

∣∣∣ f is weakly differentiable and
d

dt
f ∈ Lp(I,X)

}
,

(3.178)

which we equip with the norm

‖f‖W 1,p(I,X) :=

√√√√‖f‖2Lp(I,X) +

∥∥∥∥ ddtf
∥∥∥∥2

Lp(I,X)

. (3.179)

In the case, that X is a Hilbert space, we write H1(I,X) := W 1,2(I,X).
Let (H, (·, ·)H) be a Hilbert space, such that the inclusion map i : X → H is continuous
and dense, and the relations X ⊂ H ⊂ X? hold in the sense that

X →
i
H →

R−1
H

H? →
i?
X?, (3.180)

where RH : H? → RH is the Riesz isomorphism. We define the generalized Sobolev
space as

H1(I,X,X?) :=

{
f ∈ L2(I,X)

∣∣∣ f is weakly differentiable and
d

dt
f ∈ L2(I,X?)

}
(3.181)

equipped with the norm

‖f‖HI,X,X? :=

√√√√‖f‖2L2(I,X) +

∥∥∥∥ ddtf
∥∥∥∥2

L2(I,X?)

. (3.182)
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3.36 Theorem (C0 representatives for Gelfand triples)

Let (V, ‖·‖V ) be a Banach space, (H, (·, ·)H) a Hilbert space, and (V,H, V ?) a Gelfand
triple. Then the embedding H1(It, V, V

?) ↪→ C0
(
Īt, H

)
is continuous.

Proof. See [Hinze et al., 2009].

Before we can formulate an abstract residual operator for the full system, we have to ad-
dress a technical difficulty, which arises when we try to generalize the notion of boundary
conditions. For functions in C0

(
It, H

1(Ω)
)

the point evaluation trxe(t) = e(t)(x) is well
defined, and even defines a mapping into H1(It) in the setting of COROLLARY 3.25 . The
additional regularity property is crucial, if we want to forward the solution of a pipeline to its
adjacent ones, such that we require it to hold for the solution of G(u,y) = 0.
For an arbitrary function f in H1

(
It, H

1(Ω), H1(Ω)?
)
, its trace trxf can only be expected

to be identified with an element of L2(It), but not H1(It). Fortunately, this is sufficient,
because we intend to construct the residual operator as a mapping from U ×Y with values
in Z ⊂ Y?.
By using a construction involving a Gelfand triple (H1, L2, H1), we can define a generalized
trace operator

trx : H1
(
It, H

1(Ω), H1(Ω)?
)
→ L2(It) ↪→ H1(It)

? (3.183)

such that the residual formulation of the inflow boundary condition

ea:in − ei(a) = tr0ea − ei(a) ∈ H1(It)
? (3.184)

is well defined.

3.37 Lemma (Trace operator for generalized Sobolev spaces)

Let I ⊂ R be an open, real interval, and y ∈ L2
(
It, H

1(Ω)
)
. Then the trace operator

trHx : H1(Ω)→ R continuously extends to an operator

tr : Ω̄× L2
(
It, H

1(Ω)
)
−→ L2(It)

(x, y(t)) 7−→ y(t)(x)∀t ∈ I
(3.185)

such that the point evaluation is well defined for this class of Bochner spaces.

Proof. Let x ∈ Ω̄ be arbitrary but fixed.
For any function f ∈ L2

(
It, H

1(Ω)
)
, the point evaluation operator trHx defines a continuous,

linear functional. By THEOREM 3.32 , we can extend this operator family to an operator〈
trx,

∫
It

f(t) dt

〉
:=

∫
It

〈
trHx , f(t)

〉
dt (3.186)

such that

trx : L2
(
It, H

1(Ω)
)
→ L2(It). (3.187)

Since H1(Ω) is continuously embedded into C0(Ω) , there exists a constant C0 > 0 inde-
pendent of f , such that ∥∥trHx f(t)

∥∥
∞ ≤ C0 ‖f(t)‖H1(Ω) (3.188)
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holds for almost every t ∈ It.
This directly leads us to the norm estimates∥∥trHx f∥∥2

L2(It)
=

∫
It

|〈trx, f(t)〉|2 dt

≤
∫
It

‖f(t)‖2∞ dt

≤ C2
0

∫
It

‖f(t)‖2H1(Ω)

(3.189)

such that trx is indeed bounded, and therefore continuous.

Before we move to the formal definition of the full residual operator G, we prove a small
lemma, which is going to be useful in SECTION 3.3.2 .

3.38 Lemma (Weak-weak? continuity of trHx )

Let (fn)n be a weakly convergent sequence of functions in H1
(
It, H

1(Ω), H1(Ω)?
)
.

Then trx is continuous under weak convergence for every x ∈ Ω̄.

Proof. We need to show that

〈trxfn, g〉 → 〈trxf, g〉 ∀g ∈ H1(It). (3.190)

According to LEMMA 3.37 , the operator trx is linear and bounded, such that

〈fn, g̃〉 = 〈trxfn, g〉 (3.191)

defines a linear functional g̃ ∈ H1
(
It, H

1(Ω), H1(Ω)?
)
?.

It immediately follows, that trxfn ⇀ trxf weakly in H1(It)
?.

Finally, we can begin with the (formal) construction of the residual operator G. We start
with the formulation of an appropriate state space.
For each pipeline a ∈ AP , we define function spaces

ea ∈ H1
(
It, H

1(Ωa), H1(Ω)?
)

=: Ea (3.192a)

va ∈ H1(It) =: Va (3.192b)

qa:in ∈ H1(It) =:Min
a (3.192c)

qa:out ∈ H1(It) =:Mout
a (3.192d)

Qa:in ∈ H1(It) =: Qina (3.192e)

Qa:out ∈ H1(It) =: Qouta (3.192f)

such that we can define the component state space of a as the cartesian product

Ya = Ea × Va × Pa ×Min
a ×Mout

a ×Qina ×Qouta

∼= Ea ×
(
H1(It)

)5
,

(3.193)

and the collective state of all pipelines as the cartesian product

YAP
=
∏
a∈AP

Ya ∼=
(
H1(It)

)5·|AP | ×
∏
a∈AP

Ea. (3.194)
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We proceed exactly the same way for the remaining components in AC , AS , and N . For
each node n ∈ N , we define spaces

en = H1(It) =: En, (3.195a)

pn ∈ H1(It) =: Pn, (3.195b)

as well as the component and collective state spaces

Yn = En × Pn,

YN =
∏
n∈N
Yn ∼=

(
H1(It)

)2·|N | (3.196)

For consumers and producers, the entire state is defined by the fluxes, such that we define

qs:in ∈ H1(It) =:Min
s (3.197a)

qs:out ∈ H1(It) =:Mout
s (3.197b)

Qs:in ∈ H1(It) =: Qins (3.197c)

Qs:out ∈ H1(It) =: Qouts (3.197d)

and

YAC/AS
=

∏
s∈AC/AS

(
Min

s ×Mout
s ×Qins ×Qouts

)︸ ︷︷ ︸
Ys

∼=
(
H1(It)

)4·|AC |/4·|AS | (3.198)

for s ∈ AS ∪ AC .

3.39 Definition (Definition of the abstract state space Y)

We define the state space Y as the cartesian product

Y = YAP
× YAC

× YAS
× YN (3.199)

of the Hilbert spaces, which we introduced in (3.194) - (3.198). Given a representation

Y =

NY∏
i=1

Yi, (3.200)

of Y as the product of NY , we canonically define the scalar product

(y,y′)Y =

NY∑
i=1

(yi,y
′
i)Yi

, y,y′ ∈ Y (3.201)

and the induced norm

‖y‖Y =
√

(y,y)Y (3.202)

on Y. By construction, (Y, (·, ·)Y) is again a Hilbert space.
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Remark 3.40: Abstract state trajectory

Using Y defined as above, we can introduce a family of Hilbert spaces

Xi =

{
H1(Ωa),Yi = Ea
R,else

(3.203)

and define X =
∏
i Xi, such that

Y = H1(It,X ,X ?) (3.204)

is well defined in the sense of DEFINITION 3.35 . Analogously, we define the family
of Hilbert spaces

X 0
i =

{
L2(Ωa),Yi = Ea
R,else

(3.205)

and set X 0 =
∏
i Xi. By the construction above, we have that

X
compact
↪→ X 0 continuous

↪→ ,X ? (3.206)

such
(
X ,X 0,X ?

)
is a Gelfand triple, and that the embeddings

Y ↪→ C0
(
Īt,X 0

)
, C0

(
Īt,X ?

)
(3.207)

are continuous (i.e. y ∈ Y has a time-continuous representative), and the embed-
dings

Y ↪→ L2
(
It,X 0

)
, L2(It,X ?) (3.208)

are even compact. The last result is a consequence of the Aubin-Lions "lemma"
THEOREM 3.41 . From this point of view, it is valid to define state trajectory
{y(t)}t∈It as a continuous curve with values in a infinite dimensional Hilbert space.
The compact embedding ensures, that every bounded sequence in Y has a subse-
quence, which strongly converges in L2

(
It,X 0

)
and L2(It,X ?).

3.41 Theorem (Aubin-Lions)

Let X0, X1, X2 be Banach spaces, such that the embedding X0 ↪→ X1 is compact, and
X1 ↪→ X2 is continuous. For 1 ≤ p, q ≤ ∞, we define the space

W 1,p,q =

{
f ∈ Lp(It, X0)

∣∣ d
dt
f ∈ Lq(It, X2)

}
(3.209)

of functions in Lp(It, X0), whose distributional derivative can be identified with a func-
tion in Lq(It, X2). Then the following holds true:

• If p <∞, the embedding W ↪→ Lp(It, X1) is compact.

• If p =∞ and q > 1, the embedding W ↪→ C0
(
Īt, X1

)
is compact.

Proof. [Aubin, 1963]
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For the construction of the control space we proceed in the same way:

3.42 Definition (Space of control variable U)

Let s0 ∈ AS denote the primary source. For each s ∈ AS , we define the space of its
control variables as

Us :=

{
Ues × U∆p

s × Up0s , s = s0

Ues × U∆p
s , else

(3.210)

where we identify all space U•s ∼= H1(It). We define the space of control variables
U :=

∏
s∈AS

Us.
Further, let ue,mins , ue,maxs , u∆p,min

s , u∆p,max
s , up0,mins0 , up0,maxs0 ∈ L∞(It), such that

max
c∈AC

eretc < ue,mins < ue,maxs ∀s ∈ AS , (3.211a)

u∆p,min
s < u∆p,max

s ∀s ∈ AS , up0,mins0 < up0,maxs0 (3.211b)

and define the closed, convex subsets

Ue,ads :=
{
ues ∈ Ues

∣∣∣ue,mins ≤ ues ≤ ue,maxs

}
(3.212a)

U∆p,ad
s :=

{
u∆p
s ∈ U∆p

s

∣∣∣u∆p,min
s ≤ u∆p

s ≤ u∆p,max
s

}
(3.212b)

Up0,ads0
:=
{
up0s0 ∈ U

p0
s0

∣∣∣up0,mins0 ≤ up0s0 ≤ u
p0,max
s0

}
(3.212c)

of Ues , U∆p
s , and Up0s0 . We define the set of feasible controls as Uad :=

∏
s∈AS

Uads .

Next, we are going to construct the residual

G : U × Y → Z? (3.213)

as a Cartesian product operators as formal residuals of state equations. For now, we are
going to assume that Z (and its dual Z?) is given as the Cartesian product of finitely many
Banach spaces, whose precise definition is going to be given in DEFINITION 3.43 at the
end of this section.
From SECTION 3.2.2 we already know that the mapping

(va, ea) 7−→


zadva 7→

∫
It

〈
d

dt
ea, z

adv
a

〉
H1(Ωa)?,H1(Ωa)

dt

+

∫
It

(
va(t)∂xea(t), zadva

)
L2(Ωa)

dt

+

∫
It

(
r (ea(t)) , zadva

)
L2(Ωa)

dt


(3.214)

is well-defined for every test function zadva ∈ L2
(
It, H

1(Ωa)
)
. Therefore, it naturally extends

to a mapping

Gadva : Va × Ea −→ E?a =:
(
Zadva

)?
(3.215)
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We define the residual operator Gadva of the advection equation for each pipe a ∈ AP as〈
Gadva (u,y), z

〉
E?a ,Ea

:=

∫
It

〈
d

dt
ea(t), zadva (t)

〉
H1(Ωa)?,H1(Ωa)

dt

+

∫
It

(
va(t)∂xea(t), zadva (t)

)
L2(Ωa)

dt

+

∫
It

(
r (ea) (t), zadva (t)

)
L2(Ωa)

dt.

(3.216)

From LEMMA 3.37 and the discussion preceding it, we already know that the expression

Ge:ina (u,y) = ea:in − ei(a) (3.217)

needs some clarification, if ea is an arbitrary element of Ea. In general, we cannot expect
tr0 : Ea → H1(It) to hold, as we can only rely on the significantly weaker property tr0 :
Ea → L2(It).
For each edge a ∈ A and n ∈ {i(a), o(a)}, we define the symbol

ea:n =


ei(a), a ∈ A \ AP , n = i(a)

eo(a), a ∈ A \ AP , n = o(a)

tr0ea, a ∈ AP , n = i(a)

trLa
ea, a ∈ AP , n = o(a)

(3.218)

such that we can maintain the uniform notation introduced in CHAPTER 2 .
Technically, we could formulate the inflow boundary conditions in terms of a L2 identity. In
order to preserve the structure given by the weak formulation Gadv of the advection opera-
tor, we use the Gelfand triple structure of

(
H1, L2, H1?

)
and obtain the weak formulation

〈
Ge:ina (u,y), z

〉
H1(It)?,H1(It)

:=

∫
It

(
ea:in(t)− ei(a)(t)

)
· ze:ina (t) dt. (3.219)

of the inflow boundary conditions.
We note, that if ea solves the equation Ge:ina (u,y) = 0 in H1(It)

?, we get that∥∥Ge:ina (u,y)
∥∥
H1(It)?

= sup
‖ze:ina ‖

H1(It)
≤1

∣∣∣∣∫
It

(
ea:in(t)− ei(a)(t)

)
· ze:ina (t) dt

∣∣∣∣ = 0 (3.220)

and ea:in = ei(a) almost everywhere in It. If ei(a) is a function in H1(It), we immediately
conclude that ea:in = tr0ea =∈ H1(It). This justifies to use the formal notation (3.217), if
we keep in mind that its actual meaning is given by (3.219).
By THEOREM 3.36 we can apply the same reasoning for the initial conditions of the ad-
vection problem, and write

Ginita = ea(t0)− einita (3.221)

where the actual meaning of this expression is given by the dual pairing〈
Ginita (u,y), z

〉
H1(Ωa)?,H1(Ωa)

:=

∫
Ωa

zinita (x)
(
ea(t0)(x)− einita (x)

)
dx. (3.222)

Following this procedure, the weak formulation of the hydraulic equation is given by〈
Ghyda (u,y), z

〉
H1(It)?,H1(It)

=

∫
It

zhyda (t)
(
po(a)(t)− pi(a)(t)

)
dt

+

∫
It

zhyda (t)

(
g

∆ha
La

+
λa
2da

va |va| (t)
)∫

Ωa

ρ (ea) (t)(x) dx dt

(3.223)
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such that Ghyda should define a mapping

Ghyda : Va × Ea × Pi(a) × Po(a) −→ H1(It)
? =:

(
Zhyda

)?
. (3.224)

So far, the assumptions regarding ρ have been rather general. Since we cannot guarantee,
that a continuous representative of ea exists, we will have to require additional properties
for ρ in order for Ghyda to form a well defined mapping in the sense of (3.224).
We briefly summarize all coupling equations of the system, starting with the initial and
boundary conditions

Ge:inita (u,y) = ea(t0)− einita , (3.225) Ge:ina (u,y) = ea:in − ei(a), (3.226)
for each pipeline a ∈ AP , and the mass and energy fluxes

Gq:ina (u,y) = qa:in + vaAa, (3.227a)

Gq:outa (u,y) = qa:in − vaAa, (3.227b)

GQ:in
a (u,y) = Qa:in − qa:inea:in, (3.228a)

GQ:out
a (u,y) = Qa:out − qa:outea:out.

(3.228b)
We highlight, that Gq:in, and Gq:out can be interpreted safely as mappings with values in
H1(It), whereas GQ:in, and Gq:out explicitly depend on the trace of ea. The fluxes and
algebraic coupling conditions of consumers c ∈ AC

GQ:in
c (u,y) = Qc:in − qc:inφc

(
ei(c)

)
,

(3.229a)

GQ:out
c (u,y) = Qc:out − qc:outeretc ,

(3.229b)

G∆q̂
c (u,y) = ρ

(
φc(ei(c))

)
qc:in + ρ

(
eretc

)
qc:out,

(3.230a)

G∆Q
c (u,y) = Qc:in +Qc:out +Qpredc , (3.230b)

and the producer

GQ:in
s (u,y) = Qs:in − qs:inei(s), (3.231a)

GQ:out
s (u,y) = Qs:out − qs:outue, (3.231b)

Gp0s (u,y) = pi(s) − up0s , (3.232a)

G∆p
s (u,y) = po(s) − pi(s) − u∆p

s , (3.232b)
are less problematic, because all state variables involved are elements of H1(It), and we
can rely on their respective continuous representative. are interpreted as mapping with
values in H1(It). Like in the case of Ghyd, we call attention to the detail, that some of these
operators depend on the composition of the functions ρ and φc.
Finally, we conclude the formal construction of the weak residual formulation with the nodal
conservation laws for mass and energy

〈
G∆q̂
n (u,y), z∆q̂

n

〉
H1(It)?,H1(It)

:=

∫
It

z∆q̂
n (t)

 ∑
a∈I(n)

qa:n(t)ρ (ea:n) (t)

 dt

=
∑
a∈I(n)

(∫
It

z∆q̂
n (t)qa:n(t)ρ (ea:n) (t) dt

) , (3.233a)

〈
G∆Q
n (u,y), z∆Q

n

〉
H1(It)?,H1(It)

:=

∫
It

z∆Q
n (t)

 ∑
a∈I(n)

Qa:n(t)

 dt . (3.233b)

Again, we emphasize that these formally defined operators involve the superposition of the
function ρ with the trace operator, as well as multilinear products. We summarize these
results in the following definition:
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3.43 Definition (Residual operator G and weak solutions)

Let (N ,A) be the graph representation of a simple district heating network in the sense
of DEFINITION 2.6 . Further, let Y be the Hilbert spaces given in DEFINITION 3.39 ,
Y the space of controls, and Yad a closed, convex feasible subset according to
DEFINITION 3.42 .

Analogously to the construction of Y, we construct the function spaces

Za = Ea × Va ×H1(Ωa)×
(
H1(It)

)5 (3.234a)

Zc =
(
H1(It)

)4 (3.234b)

Zs =
(
H1(It)

)4 (3.234c)

Zn =
(
H1(It)

)2 (3.234d)

as for each a ∈ AP , c ∈ AC , n ∈ N , and the single producer s.
We define the space of test functions (or adjoint state space) Z as

Z =

( ∏
a∈AP

Za

)
×

( ∏
c∈AC

Zc

)
×

(∏
n∈N
Zn

)
×Zs (3.235)

which is the finite Cartesian product of Hilbert spaces, and therefore a Hilbert space.
In the same way we define the operators

Ga,c,s,n : U × Y → Z?a,c,s,n (3.236)

in terms of (3.216)-(3.233), such that their Cartesian product

G =

( ∏
a∈AP

Ga

)
×

( ∏
c∈AC

Gc

)
×

(∏
n∈N
Gn

)
× Gs (3.237)

formally defines an operator

G : U × Y → Z? (3.238)

whose image lies in the space of continuous, linear functionals on Z. Given u ∈ Uad,
we say that y is a weak solution of (2.94)-(2.103), if G(y,u) is defined and bounded
for y, and

〈G(u,y), z〉Z?,Z = 0 (3.239)

holds for all test vectors z ∈ Z. Equivalently one could say, that G(u,y) = 0Z? is a
functional, which identically vanishes for all z ∈ Z.

The operator G given in the definition above is only formally defined, since it is not nec-
essarily bounded. This is intended, since we want to defer the discussion regarding the
superposition operators ρ and φc to SECTION 3.3.2 and SECTION 3.3.3 , where we deal
with the continuity and differentiability of G .

In order to simplify the further analysis of G , we note that the construction of Y, U , Z, and
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G as finite Cartesian products allows for a decomposition of the weak formulation

〈G(u,y), z〉Z?,Z =
∑
a∈AP

〈Ga(u,y), ψaza〉Z?
a ,Za

+
∑
c∈AC

〈Gc(u,y), ψczc〉Z?
c ,Zc

+
∑
n∈N
〈Gn(u,y), ψnzn〉Z?

n,Zn
+ 〈Gs(u,y), ψszs〉Z?

s ,Zs
,

(3.240)

into finite sums, where

ψi : Zi → Z (3.241)

are the canonical embeddings of Za,c,s,n into Z. In particular, one can rearrange each
individual term without changing the equation, and study not only component wise, but
also term wise.

3.3.2 Weak continuity and boundedness of G
In a first step, we are going to analyse the continuity and boundedness properties of G . As
we have already seen in the preceding section, most terms of G are bounded by construc-
tion, and the only critical parts are those ones, which are generated by superposition with
a (possibly non-linear) function.
As pointed out in the introduction, one of our main goals is to establish a toolset for han-
dling optimal control problems for district heating networks. In CHAPTER 4 we are going
to prove the existence of local minima of certain optimization problems involving G by min-
imizing sequences. Due to the lack of compactness, the boundedness of G and the cost
functional are only enough to deduce the existence of a weakly convergent minimizing
sequence, whereas strong convergence cannot be proven in the general case.
If the system’s dynamics were to be modelled by a continuous, linear operator L with
continuous, linear adjoint L?, we have

〈Lxn, z〉 = 〈xn, L?z〉 → 〈x, L?z〉 (3.242)

such that the Lxn converges weakly in Z?. In general, this is does not hold in the non-linear
case.

3.44 Definition (Weak-weak? continuity of operators)

Let (X, ‖·‖X) , (Y, ‖·‖Y ), be reflexive Banach spaces. A (possibly non-linear) operator
N : X → Y ? is called weak-weak?-continuous, if for every sequence (xn)n ⊂ X,
which weakly converges in X, the sequence N(xn) converges weakly in Y ?, i.e.

〈f, xn〉X?,X → 〈f, x〉X?,X ∀f ∈ X
? ⇒ 〈N(xn), y〉Y ?,Y → 〈N(x), y〉X?,X ∀y ∈ Y.

(3.243)

In our case, most non-linearities are either generated by a superposition

u 7→
(
z 7→

∫
It

φ (u) (t) · z(t) dt
)

(3.244)

of a function in H1(It) with a (possibly non-linear) function φ, or multilinear expressions of
the form

(u, v) 7→
(
z 7→

∫
It

v(t) · 〈F (u) (t), z(t)〉H1(Ω)?,H1(Ω) dt

)
, (3.245)
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where F : H1
(
It, H

1(Ω), H1(Ω)?
)
→ H1(It)

? is assumed to be at least continuous.
Both cases are examples of Nemitskii operators between (subspaces of) Banach spaces
of the form Lp(It, X), and Lq(It, Y ).
The requirements on F and φ, such that the resulting Nemitskii operators are (weakly)
continuous, or even differentiable, are quite strong (especially in the case p = q). For a
broader discussion of this topic we refer to [Goldberg et al., 1992].
Here we can already observe, that weak-weak? is strictly stronger than strong continuity,
since that the last limit cannot hold, if both sequences only weakly converge in L2(It).

Remark 3.45: Extension of Lipschitz function to all of R

The superposition operators, which cause most of the non-linearities in our model
equations, all originate from (bounded) Lipschitz functions, which have only been
defined on a (compact) subset of R. This was sufficient for the study of existence
and uniqueness of solutions in SECTION 3.1 and SECTION 3.2 . In the case of the
weak residual formulation, in particular in the context of optimal control, we want G
to be well defined even outside the solution space.
We briefly outline a construction, which extends such functions the whole real line,
and thereby maintains boundedness, Lipschitz continuity, and (if needed) differentia-
bility.
Let [a, b] ⊂ R be a non-empty real interval, and f ∈ C1([a, b]), with upper and lower
bounds fmin ≤ f ≤ fmax. We define the extension of f as a piecewise function

f̃(x) =



fp(ã), x < ã

fp(x), ã ≤ x ≤ a
f(x), a < x < b

fq(x), b ≤ x ≤ b̃
fq(b̃), x > b̃

(3.246)

where the transition functions fp and fq are constructed as cubic Bézier curves
with control polygons pi ∈ R2, i = 0, . . . , 3, and qi ∈ R2, i = 0, . . . , 3. For the en-
tire set of conditions for continuity and higher order coupling conditions we refer to
[Quarteroni et al., 2007]. We want to highlight a special case for the C1 continuity
condition

p2
y = f(a)− f ′(a)

(
a− p2

x

)
(3.247)

at the left boundary of the interval. In the case, that f ′(a) > 0 and f(a) = fmin

(analogously f ′(a) < 0 and f(a) = fmax), we cannot define f̃ in such a way, that the
original bounds still hold.
However, given any constant δ ≥ 0, we can construct the Bézier curve in such a way,
that

fmin − δ < f̃min ≤ f̃ ≤ f̃max < fmax + δ (3.248)

always holds true. The additional parameter δ gives some flexibility for practical ap-
plications, but is not as relevant for theoretical investigations. Obviously, there exist
many other ways to perform such a construction, and this one merely serves as an
explicit example.

We begin with the simplest case, which only involves the superposition of a single Sobolev
function with a Lipschitz function.
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fmax

fmin

ã a b b̃

Figure 3.4: Illustration of the extension procedure, which is outlined in REMARK 3.45

3.46 Lemma (Boundedness and weak-weak? continuity of Nemitskii operators I)

Let φ : R → R be a globally Lipschitz continuous function. Then the superposition
mapping y 7→ φ(y) induces a bounded operator

Nφ : H1(It)→ H1(It)
?

〈Nφ(y), z〉H1(It)?,H1(It)
:=

∫
I

φ(y)(t)z(t) dt,
(3.249)

which is bounded and weak-weak? continuous.

Proof. Because the function φ is globally Lipschitz by assumption, it is bounded on bounded
intervals, and the operator Nφ is bounded in L2. The derivative of φ exists almost ev-
erywhere, such that the weak derivative of φ(y) is well defined for every y ∈ H1(It) by
LEMMA 3.16 . In particular, Nφ is bounded in H1(It).

For the second statement, let yn be a weakly convergent sequence in H1(It). We are
going to prove that φ(yn) converges weakly in H1(It). From the compact embedding
H1(It) 7→ L2(It) (see LEMMA 3.14 ), we conclude the existence of a subsequence, which
strongly converges in L2(It). In the following we are going to select an arbitrary, strongly
convergent subsequence, which we again refer to as yn. Because φ is Lipschitz continu-
ous, the sequence ηn := φ(yn) is bounded in H1 (this follows from LEMMA 3.16 , and the
embedding into L2). We can conclude, that there exists a subsequence (which we also
refer to as ηn), such that ηn ⇀ η in H1(It). Again, we utilize the compact embedding into
L2 to see, that ηn → η̃ in L2.
Together with the continuity of φ, we finally obtain ηn = φ(yn) ⇀ φ(y) = η ∈ H1(It).
Now, let z ∈ H1(It) be arbitrary but fixed. Using the definition of Nφ in (3.249), we can see
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that

y 7→
∫
I

φ(y)(t)z(t) dt (3.250)

is a continuous, linear functional on H1(It). Therefore, we can establish the limit

〈Nφ(yn), z〉H1(It)?,H1(It)
→ 〈Nφ(y), z〉H1(It)?,H1(It)

, (3.251)

since φ(yn) converges weakly, and Nφ is weak-weak?-continuous.

This result can be immediately generalized to multivariate operators, since the product of
finitely many Lipschitz functions is again Lipschitz.

3.47 Lemma (Boundedness and weak-weak? continuity of Nemitskii operators II)

Let K be a finite index set, and yk ∈ H1(It)∀k ∈ K. Further, let fk : R → R be family
globally Lipschitz continuous functions. Then the function

F (y)(t) =
∏
k∈K

fk (yk) (t) (3.252)

is an element of H1(It), and the operator NF :
∏
k∈KH

1(It)→ H1(It)
?, defined by

〈NF (y), z〉H1(It)?,H1(It)
=

∫
It

F (y)(t)z(t) dt (3.253)

is bounded and weak-weak?-continuous.

Proof. The space H1(It) is closed under (pointwise) multiplication, and composition with
Lipschitz functions. Since F is constructed as the finite product of Lipschitz function, it is
Lipschitz continuous w.r.t. its arguments yk, and therefore F ∈ H1(It).
By LEMMA 3.14 , every yk has a unique C0

(
Īt
)

representative, such that we can derive
explicit bounds fmaxk = ‖fk‖C0([−ymax

k ,ymax
k ]) for each fk, where ymaxk = ‖yk‖∞. By using

these explicit bounds, we can immediately see that∣∣∣〈NF (y), z〉H1(It)?,H1(It)

∣∣∣ ≤ (∏
k∈K

fmaxk

)
︸ ︷︷ ︸

Fmax

‖z‖2H1(It)
(3.254)

holds for all z ∈ H1(It), such that NF is bounded. The weak-weak?-continuity follows
analogously to the proof of LEMMA 3.46 .

As we have seen in LEMMA 3.37 , and LEMMA 3.38 the trace operator on L2
(
It, H

1(Ω)
)

is a L2 valued, linear, and weak-weak?-continuous operator. When we consider the super-
position of the trace with another function, we generally have to restrict ourselves to the
affine and linear ones (see [Goldberg et al., 1992]).

3.48 Definition (Affine operator)

Let (X, ‖·‖X), (Y, ‖·‖Y ) be Banach spaces. An operator

A : X → Y (3.255)

is called affine, if there exists a unique y0 ∈ Y , and a linear operator L : X 7→ Y , such
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that

A(x) = Lx+ y0. (3.256)

An affine operator is called continuous, if and only if L is continuous.

If X and Y are real function spaces it is easy to see, that the superposition with an affine
function a(x) = a0 + a1x yields a bounded, affine operator, if and only if constant functions
are bounded in Y . This leads to the following statement:

3.49 Lemma (Boundedness and weak-weak? continuity of Nemitskii operators III)

Let (X, ‖·‖X) be a Banach space, and A : X → L2(It) a continuous, affine operator.
We define the operator B : X ×H1(It)→ H1(It)

? by

〈B(x, y), ω〉H1(It)?,H1(It)
=

∫
It

(Ax) (t)y(t)ω(t) dt (3.257)

for every z ∈ H1(It). Then B is bounded, and weak-weak? continuous.

Proof. We split the affine operator into its linear part L = A − a0, and the constant re-
mainder term a0 ∈ L2(It). Since H1(It) is compactly embedded into L2(It), the remainder
operator

〈R(y), z〉H1(It)?,H1(It)

∫
It

a0(t) · y(t) · z(t) dt (3.258)

is compact, and therefore bounded and weak-weak?-continuous.
Therefore, it is sufficient to only treat the special case A ≡ L, such that B is a bilinear
operator.
Let (wn)n , wn = (xn, yn) be a weakly convergent sequence in X × L2(It), and ω ∈ H1(It)
arbitrary but fixed. We make use of the subdivision

B(xn, yn)−B(x, y) = B(xn − x, y)−B(xn, y − yn) (3.259)

of B, such that we can examine both parts separately. The first part defines a continuous,
linear functional

〈fy, x〉X?,X
:= 〈B(xn − x, y), ω〉H1(It)?,H1(It)

=

∫
It

(L(xn − x)) (t)y(t)ω(t) dt (3.260)

and therefore vanishes in the limit, since xn converges weakly in X.
If we make use of the compact embedding H1(It) ↪→ L2(It), we conclude that yn con-
verges strongly in L2(It), and we obtain the norm estimate

lim
n→∞

‖yn − y‖L2(It)
= 0. (3.261)

Because
(
H1(It),+, ·

)
is a function ring, the elements zn = ynω also define a sequence in

H1. If we apply the Riesz representation theorem

〈ϕ?, zn〉H1(It)?,H1(It)
= (ϕ, ynω)H1(It)

= (ωϕ, yn)H1(It)
, (3.262)

we can see, that the weak convergence of yn carries over to zn, such that ynω = zn ⇀ z =
yω, and

lim
n→∞

‖zn − z‖L2(It)
= lim
n→∞

‖(yn − y)ω‖L2(It)
= 0. (3.263)
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Next, we observe that every weakly convergent sequence must be bounded, such that
there exist a positive constant Cx satisfying Cx ≤ ‖xn‖X for all n. This leads to the following
estimate

sup
ω∈H1(It)

∣∣∣∣∫
It

(Lxn) (t)y (yn(t)− y(t))ω(t) dt

∣∣∣∣ ≤ Cx ‖L‖ ‖(yn − y)ω‖L2(It)
(3.264)

where ‖L‖ denotes the operator norm of the linear operator L.
This leads to the final estimate of the limit

lim
n→∞

∣∣∣∣∫
It

(Lxn) (t)y (yn(t)− y(t))ω(t) dt

∣∣∣∣ ≤ Cx ‖L‖ lim
n→∞

‖(yn − y)ω‖L2(It)
= 0, (3.265)

such that B is weak-weak?-continuous.

Finally, we cover those bilinear operators, which involve integrals over a spatial Ωa, namely
Ghyd and Gadv.

3.50 Lemma (Boundedness and weak-weak? continuity of Nemitskii operators IV)

Let (X, ‖·‖X) be a real Banach space, Y = H1(It), and A : X → L2
(
It, H

1(Ω)?
)

=: Z?

a continuous, affine operator, and φ : R → R a globally Lipschitz continuous function.
Then the operator

〈B(x, y), z〉Z?,Z :=

∫
It

φ(y)(t) · 〈A (x) (t), z(t)〉H1(Ω)?,H1(Ω) dt, (3.266)

is bounded, and weak-weak? continuous.

Proof. Let xn, yn be weakly convergent sequences. We start with the simplified case,
where φ is the identity function. As in the proof of LEMMA 3.49 , we split A into its linear
part L, and constant remainder a0. We see that the remainder term is bounded by∣∣∣∣∫

It

y(t) · 〈a0(t), z(t)〉H1(Ω)?,H1(Ω) dt

∣∣∣∣ ≤ ‖y‖∞ ∫
It

∣∣∣〈a0(t), z(t)〉H1(Ω)?,H1(Ω)

∣∣∣ dt <∞.
(3.267)

Now we use f(t) = 〈a0(t), z(t)〉H1(Ω)?,H1(Ω) ∈ L2(It) and apply our standard compact
embedding argument on H1(It) to see that it is weak-weak?-continuos w.r.t. y.
For the linear part, boundedness follows in the same way, and we have∣∣∣∣∫

It

y(t) · 〈Lx(t), z(t)〉H1(Ω)?,H1(Ω) dt

∣∣∣∣ ≤ ‖y‖∞ ∫
It

∣∣∣〈Lx(t), z(t)〉H1(Ω)?,H1(Ω)

∣∣∣ dt <∞,
(3.268)

since L is assumed to be bounded.
Like in the proof of LEMMA 3.49 , we now consider the special case a0 ≡ 0, such that B is
assumed to be bi-linear, and we can perform the splitting

B(xn, yn)−B(x, y) = B(xn − x, y)−B(xn, y − yn). (3.269)

For the second term, we combine the standard compactness argument for yn, and use that

〈Lxn(t), z(t)〉H1(Ω)?,H1(Ω) → 〈Lx(t), z(t)〉H1(Ω)?,H1(Ω) (3.270)
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for almost every t ∈ It, from which we conclude the boundedness and weak-weak?-
continuity by the same argument as in LEMMA 3.49 .
For the first term, we rewrite the inner dual pairing

〈L(xn − x)(t), z(t)〉H1(Ω)?,H1(Ω) = 〈(xn − x)(t), L?z(t)〉X,X? (3.271)

in terms of the adjoint of the linear part of A, such that we obtain a linear functional L?z ∈
X? for every z ∈ Z at every time t ∈ It. In particular, the resulting function is an element of
L2 and

〈xn, L?z〉X,X? ⇀ 〈x, L?z〉X,X? in L2(It), (3.272)

such that the whole term is weak-weak?-continuous.
For the general case, we recall that in the proof LEMMA 3.46 we have shown, that the
composition φ(yn) also converges weakly in H1. Therefore, the argument above still holds,
which concludes the proof.

With these tools at hand, we are now ready to pose appropriate conditions for hand, we
are now ready to prove the weak-weak? continuity of G under the following assumptions:

Assumption 3.51: Conditions for the boundedness and weak-weak?-continuity
of G

• The function ρ is at most affine.

• All reaction terms ra are affine functions.

• The cut-off functions φc (·) = φ (eretc , ·) are defined on the whole real line R,
and globally Lipschitz continuous.

3.52 Theorem (Continuity and boundedness of G )

Let ASSUMPTION 3.51 hold true. Then, the operator G : U × Y → Z? is bounded and
weak-weak?-continuous.

Proof. In view of our comment (3.240) at the end of SECTION 3.3.1 , it is sufficient to treat
each component of G separately.
We start with the advection operators Gadva defined in (3.216). The linear operators d

dt
and ∂x both define bounded, linear mappings with values in L2

(
It, H

1(Ω)?
)
. We apply

LEMMA 3.50 , where we choose φ to be the identity operator, y ≡ 1 in the first case, and
y = v in the second one. Since the reaction term ra is assumed to be affine, the resulting
Nemitskii operator is affine as well, and we can again apply LEMMA 3.50 with φ being the
identity, and y ≡ 1.
Next, we examine the hydraulic operators Ghyda defined in (3.223). It is sufficient to consider
the non-linear part, which we rewrite as∫

It

(
g

∆ha
La

+
λa
2da

va |va| (t)
)〈

ρ (ea) (t), zadva (t)
〉
H1(Ω)?,H1(Ω)

dt, (3.273)

to better fit our notation. Sicne ρ is assumed to be (at most) affine, we can immediately
apply LEMMA 3.50 with φ =

(
g∆ha

La
+ λa

2da
va |va| (t)

)
.

For the initial and boundary conditions, fluxes, and coupling conditions defined in (3.225)-
(3.233), the statement follows immediately from LEMMA 3.46 - LEMMA 3.49 , and LEMMA 3.38 .
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3.3.3 Fréchet differentiability of G
We complete the analysis of G by proving its differentiability. Therefore, we briefly recall
two common notions of differentiability for operators between Banach spaces. We refer to
[Hinze et al., 2009], and [Troeltzsch, 2009], for further reading on this topic in the context
of optimization, and [Amann and Escher, 2006] for further reading on the differentiability of
operators between the spaces of Banach-valued functions of the class Ck(It, X).

3.53 Definition (Fréchet and Gâteaux derivatives)

Let X, Y be two Banach spaces, and G : U ⊂ X → Y be an operator defined on an
non-empty subset of X.
Then G is called Gâteaux differentiable at x, if the limits

dG(x, h) = lim
t↘0

G(x+ th)−G(x)

t
∈ Y (3.274)

exist for all directions h ∈ X, and call G′ : h 7→ dG(x, h) the Gâteaux derivative of G
in the point x.
G is called Fréchet differentiable a x, if there exists a continuous, linear operator

DxG(x) : X → Y (3.275)

such that

‖G(x+ h)−G(x)−DxG(x)h‖Y
‖h‖X

→ 0 as ‖h‖X → 0. (3.276)

for all h ∈ X.
If G is Gâteaux/Fréchet differentiable at every point x ∈ U , then we simply call G
Gâteaux/Fréchet differentiable. We call G continuously Fréchet differentiable, if the
mapping x 7→ DxG(x) is continuous at every point x.

Both, the structure of the state space Y, and the construction of G , are based on finite
Cartesian products. This structure makes it easier to analyse the existence and structure
of DG . Let

F0 : Y → Z0 (3.277)

be a bounded, continuous, and (continuously) Fréchet differentiable operator between
Hilbert spaces, where Y =

∏
i∈I Yi is the Cartesian product of finitely many Hilbert spaces.

The Fréchet derivative of F0 at ȳ can be expressed as a sum of linear operators

DyF0(ȳ)δy =
∑
i

Dyi
F0(ȳ)δyi. (3.278)

such that it is sufficient to examine each individual component separately, if all partial
derivatives are continuous. Similarly, if Z =

∏
j∈J Zj is a product of Hilbert spaces, and

F : Y → Z, F (y) =
∏
j

Fj(y) (3.279)

is the Cartesian product if operators

Fj : Y → Zj , (3.280)
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its Fréchet derivative (if it exists) can be broken down into the components

DyF (ȳ)δy =
∏
j

(∑
i

Dyi
Fj(ȳ)δyi

)
. (3.281)

Therefore, in order to proof that G is, in fact, continuously Fréchet differentiable, it is both
necessary and sufficient to show, that each partial derivative of each component operator
exists and is continuous.

Remark 3.54: Generalized gradient

If the spaces Yi and Z0 are separable Hilbert spaces, we observe that for every linear
functional z?0 ∈ Z?0 of the Fréchet derivative of F0, we can rewrite the action of z?0 by

〈z?0 ,DyF0(ȳ)δy〉Z?
0 ,Z0

=

〈
z?0 ,
∑
i

DyiF0(ȳ)δyi

〉
Z?

0 ,Z0

=
∑
i

〈z?0 ,Dyi
F0(ȳ)δyi〉Z?

0 ,Z0

=
∑
i

〈
(Dyi

F0(ȳ))
?
z?0 , δyi

〉
Y?

i ,Yi

=

〈∏
i

(DyiF0(ȳ))
?
z?0 , δy

〉
Y?,Y

,

(3.282)

and obtain a linear functional in Y?. By the Riesz-Fréchet theorem, this functional
can be identified with a unique vector ∇z0y F (ȳ) ∈ Y, such that

〈z?0 ,DyF0(ȳ)δy〉Z?
0 ,Z0

=
(
∇z0y F (ȳ), δy

)
Y

=
∑
i

(
∇z0yi

F (ȳ), δyi
)
Yi
,

(3.283)

and the norm

sup
δy∈Y

∣∣∣〈z?0 ,DyF0(ȳ)δy〉Z?
0 ,Z0

∣∣∣ = ‖∇yF (ȳ)‖Y (3.284)

is preserved. We can formally identify this process with the operator

(
∇̃yF (ȳ)

)?
=

 (Dy0F0(ȳ))
?

...(
Dyni

F0(ȳ)
)?
 ∈∏

i

L (Z?0 ,Y?i ) (3.285)

such that

〈z?,DyF0(ȳ)δy〉Z?
0 ,Z0

=
(
∇zyF (ȳ), δy

)
Y =

〈(
∇̃yF (ȳ)

)?
z?, δy

〉
a?,a

(3.286)

for every linear functional z? ∈ Z?0 .

Before we rigorously prove the differentiability of G , we are going to formally derive expres-
sions for each partial derivative, and prove their correctness afterwards. We assume, that
(ū, ȳ) is a solution of G(ū, ȳ) = 0, and denote the variation of each state variable ȳi by yi
(i.e. without a ·̄ annotation).
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For the advection operators we obtain

〈
DyGadva (ū, ȳ)y, z

〉
Z?,Z =

∫
It

〈
d

dt
ea(t), zadva (t)

〉
H1(Ωa)?,H1(Ωa)

dt

+

∫
It

(
va(t)∂xēa(t), zadva (t)

)
L2(Ωa)

dt

+

∫
It

(
v̄a(t)∂xea(t), zadva (t)

)
L2(Ωa)

dt

+

∫
It

(
r′a (ēa) (t)ea(t), zadva (t)

)
L2(Ωa)

dt,

(3.287)

as it only depends on the state variables ea and va. Here we observe, that the variation
ea obeys an advection equation with known velocity v̄a, and a linear source term, whereas
the variation va only appears as a (linear) right hand side of the system.
Similarly, the derivatives of the hydraulic operators Ghyda are given by

〈
DyGhyda (ū, ȳ)y, z

〉
Z?,Z =

∫
It

(
po(a)(t)− pi(a)(t)

)
zhyda (t) dt

+

∫
It

(
g

∆ha
La

+
λa
2da

v̄a(t) |v̄a(t)|
)(

ρ′ (ēa) (t)ea(t), zhyda (t)
)
L2(Ωa)

dt

+

∫
It

(
λa
da
|v̄a(t)| va(t)

)(
ρ (ēa) (t), zhyda (t)

)
L2(Ωa)

dt.

(3.288)

For the derivatives of fluxes, coupling, initial, and boundary conditions we are going to but
have to keep in mind, that the object of concern is actually an element of Lin(Y,Z?). To
give an example, the notation

DyGq:ina (ū, ȳ)y = (qa:in + vaAa) zq:ina (3.289)

should be interpreted in terms of the dual pairing

〈
DyGq:ina (ū, ȳ)y, z

〉
Z?,Z =

∫
It

(qa:in(t) + va(t)da) zq:ina (t) dt. (3.290)

With this notation in mind, we can (formally) formulate operator expressions for the Fréchet
derivatives of initial and boundary conditions

DyGe:inita (ū, ȳ)y = ea(t0), (3.291) DyGe:ina (ū, ȳ)y = ea:in − ei(a), (3.292)

and the mass and energy fluxes

DyGq:ina (ū, ȳ)y = (qa:in + vaAa) , (3.293a)

DyGq:outa (ū, ȳ)y = (qa:in − vaAa) , (3.293b)

DyGQ:in
a (ū, ȳ)y = Qa:in − qa:inēa:in − q̄a:inea:in, (3.293c)

DyGQ:out
a (ū, ȳ)y = Qa:out − qa:outēa:out − q̄a:outea:out, (3.293d)

for each pipeline a ∈ AP .
Here we want to remind the reader, that ea:in, ea:out, ēa:in, and ēa:out are compaction nota-
tions for the application of the trace operator on ea and ēa.
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In the same way, we can formulate the derivatives of fluxes and coupling conditions

DyGQ:in
c (ū, ȳ) = Qc:in − qc:inφc

(
ēi(c)

)
− q̄c:inφ′c

(
ei(c)

)
, (3.294a)

DyGQ:out
c (ū, ȳ) = Qc:out − qc:outeretc , (3.294b)

DyG∆q̂
c (ū, ȳ) = ρ

(
φc(ēi(c))

)
qc:in + φ′c

(
ei(c)

)
ρ′
(
φc
(
ei(c)

))
q̄c:in + ρ

(
eretc

)
qc:out, (3.294c)

DyG∆Q
c (ū, ȳ) = Qc:in +Qc:out, (3.294d)

for each consumer c ∈ AC , and the producer

DyGQ:in
s (ū, ȳ)y = Qs:in − q̄s:inei(s)

− qs:inēi(s),
(3.295a)

DyGQ:out
s (ū, ȳ)y = Qs:in − qs:outūes, , (3.295b)

DyGp0s (ū, ȳ)y = pi(s), (3.296a)

DyG∆p
s (ū, ȳ)y = po(s) − pi(s). (3.296b)

Finally, the Fréchet derivatives of the flux balance laws w.r.t. y are given by

DyG∆q̂
N (ū, ȳ))y =

∑
a∈I(n)

ρ(ēa:n)qa:n + q̄a:nρ
′(ēa:n)ea:n (3.297a)

DyG∆Q
n (ū, ȳ)y =

∑
a∈I(n)

ēa:nqa:n + q̄a:nea:n (3.297b)

for each node n ∈ N . Computing the derivative of G with respect to the control input u
is way simpler, since only the producer’s equations explicitly depend on u. Therefore, we
have

DuGq:ins (ū, ȳ)u = 0, (3.298a)

DuGq:outs (ū, ȳ)u = −ues, (3.298b)

DuGp0s (ū, ȳ)u = −up0s , (3.299a)

DuG∆p
s (ū, ȳ)u = −u∆p

s , (3.299b)

and DuG...a,c(ū, ȳ)u = 0 for every other equation and component.
Now that we know the rough structure of the linearized operators DyG and DuG , we are
going to show the formal steps leading to (3.287)-(3.299) are, in fact, valid, and the formal
system above defines set of bounded, linear operators. We proceed structurally in the
same way as we did in SECTION 3.3.2 .
As we have already noticed during the analysis of continuity properties, most components
of G are made up of bilinear terms, and compositions with affine or Lipschitz functions.
That’s why we start with the following observation:

3.55 Lemma (Differentiability of bilinear operators)

Let
(
X1, ‖·‖X1

)
,
(
X2, ‖·‖X2

)
, and (Y, ‖·‖Y ) be Banach spaces and B : X1 × X2 →

Y a bounded, bilinear operator. Then B is continuously Fréchet differentiable with
derivative

B′(x̄1, x̄2)h = B(x̄1, h2) +B(h1, x̄2). (3.300)

Proof. We proceed similarly as is in the proof given in [Hinze et al., 2009], but fill in a few
details. Let t > 0 and h ∈ X1 ×X2 := X. Since B is bilinear, we have

B(x̄1 + th1, x̄2 + th2)−B(x̄1, x̄2) = t2B(h1, h2) + tB(x̄1, h2) + tB(h1, x̄2), (3.301)

such that we can easily compute the Gâteaux derivative

lim
t→0

B(x̄1 + th1, x̄2 + th2)−B(x̄1, x̄2)

t
= B(x̄1, h2) +B(h1, x̄2). (3.302)
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The partial evaluations B(x̄1, ·) and B(·, x̄2) are linear operators, because B is bilinear and
bounded by assumption, For the remainder term

B(x̄1 + h1, x̄2 + h2)−B(x̄1, x̄2)−B′(x̄1, x̄2)h = B(h1, h2) (3.303)

we use the estimate

‖B(h1, h2)‖Y ≤ ‖B‖ ‖h1‖X1
‖h2‖X2

≤ ‖B‖ ‖h‖2X (3.304)

and conclude that B is in fact Fréchet differentiable, since

0 ≤ lim
‖h‖→0

‖B(h1, h2)‖Y
‖h‖X

≤ lim
‖h‖→0

‖B‖ ‖h‖2X
‖h‖X

= 0. (3.305)

Finally, we use the explicit formula for DxB(x̄), and boundedness of B to derive the esti-
mate

‖DxB(x̄)h‖Y ≤ ‖B‖
(
‖x̄1‖X1

‖h1‖X1
+ ‖x̄2‖X2

‖h2‖X2

)
≤ ‖B‖ ‖x̄‖2X ‖h‖

2
X (3.306)

such that DxB(x̄) is bounded and therefore continuous with respect to x̄ = (x̄1, x̄2).

3.56 Lemma (Fréchet differentiability of Nemitskii operators I)

Let φ : R→ R be continuously differentiable, with globally Lipschitz continuous deriva-
tive. Then the operator

Nφ : H1(It)→ H1(It)
?

〈Nφ(y), z〉H1(It)?,H1(It)
=

∫
It

φ(y)z(t) dt,
(3.307)

which has already been introduced in LEMMA 3.46 , is continuously Fréchet differen-
tiable, where its derivative at ȳ ∈ H1(It) is given by the bounded, linear operator

DyNφ : H1(I)→ H1(I)?

〈DyNφ(ȳ)y, z〉H1(It)?,H1(It)
:=

∫
It

φ′(ȳ)(t)y(t)z(t) dt.
(3.308)

Proof. We already know, that Nφ is continuous and bounded by LEMMA 3.46 .
First, we consider the restriction

φ] : C0
(
Īt
)
→ C0

(
Īt
)
, y 7→ φ ◦ y (3.309)

of φ, which is continuously differentiable (see e.g. [Amann and Escher, 2006], chapter 7).
Its derivative DyN

]
φ ∈ Lin

(
C0
(
Īt
)
, C0

(
Īt
))

is given by

Dyφ
](ȳ)(t) · δy(t) = φ′(ȳ)δy. (3.310)

If we utilize the (continuous) embeddings of H1(It), into C0
(
Īt
)

and C0
(
Īt
)

into H1(It)
?,

we find that the corresponding weak formulation

N ]
φ : C0

(
Īt
)
→ H1(It)

?〈
N ]
φ(y), z

〉
H1(It)?,H1(It)

:=

∫
It

φ(y)(t)z(t) dt
(3.311)
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is also well defined and continuously Fréchet differentiable, with

〈
DyN

]
φ(ȳ)y, z

〉
H1(It)?,H1(It)

:=

∫
It

φ′(ȳ)(t)y(t)z(t) dt. (3.312)

Furthermore, this operator is well defined for ȳ ∈ H1(I), bounded and weak-weak?-continuous
(hence continuous) in both arguments by LEMMA 3.46 and LEMMA 3.47 . To be more
precise, we have that

∣∣∣〈DyN ]
φ(ȳ)y, z

〉∣∣∣ ≤ C · ‖z‖H1(It)
· ‖y‖H1(I) ·

∣∣∣∣∫
It

φ′(ȳ)(t) dt

∣∣∣∣ <∞ (3.313)

such that its operator norm∥∥∥DyN ]
φ

∥∥∥
H1(It)?

= sup
‖z‖≤1

sup
‖δx‖≤1

|〈DyNφ(x̄, ȳ)δx, z〉| <∞ (3.314)

is finite. It remains to show, that our candidate DyN ]
φ is, in fact, the Fréchet derivative of

Nφ. This, follows immediately from the continuity properties of Nφ, N ]
φ, and DyN ]

φ, together
with the standard density argument for H1 functions.

The remaining statements, which represent the differentiability statements analogous to
LEMMA 3.49 - LEMMA 3.50 , are direct consequences of LEMMA 3.56 , LEMMA 3.55 , and

the chain rule for Fréchet differentiable mappings.

3.57 Lemma (Fréchet differentiability of Nemitskii operators II)

Let (X, ‖·‖X) be a Banach space, and A : X → L2(It) a continuous, affine operator.
Then the operator B : X ×H1(It)→ H1(It)

?

〈B(x, y), z〉H1(It)?,H1(It)
=

∫
It

(Ax) (t)y(t)z(t) dt, (3.315)

defined in LEMMA 3.49 is continuously Fréchet differentiable with partial derivatives

〈DxB(x̄, ȳ)x, z〉H1(It)?,H1(It)
=

∫
It

(Lx) (t)x(t)ȳ(t)z(t) dt, (3.316a)

〈DyB(x̄, ȳ)y, z〉H1(It)?,H1(It)
=

∫
It

(Ax̄) (t)y(t)z(t) dt, (3.316b)

where L is the (bounded) linear part of A.

Proof. The affine operator A is (infinitely often) continuously Fréchet differentiable with
derivative DxA = L.
The operator (x, y) 7→ (Ax) · y is bilinear, such that the statement about the partial deriva-
tives follows from LEMMA 3.55 and the chain rule for Fréchet derivatives.
Both partial derivatives are bounded linear operators, and weak-weak?-continuous w.r.t. x̄
and ȳ. Therefore, B is continuously Fréchet differentiable.
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3.58 Lemma (Fréchet differentiability of Nemitskii operators III)

Let (X, ‖·‖X) be a real Banach space, Y = H1(It), and A : X → L2
(
It, H

1(Ω)?
)

=: Z?

a continuous, affine operator, and φ : R → is continuously differentiable with Lipschitz
continuous derivative. Then the operator

〈B(x, y), z〉Z?,Z :=

∫
It

φ(y)(t) · 〈A (x) (t), z(t)〉H1(Ω)?,H1(Ω) dt, (3.317)

defined in LEMMA 3.50 is continuously Fréchet differentiable. Its partial derivatives
are given by the linear operators

〈DxB(x̄, ȳ)x, z〉H1(It)?,H1(It)
=

∫
It

φ(ȳ)(t) 〈Lx(t), z(t)〉H1(Ω)?,H1(Ω) dt, (3.318a)

〈DyB(x̄, ȳ)y, z〉H1(It)?,H1(It)
=

∫
It

φ′(ȳ)(t) 〈A (x̄) (t), z(t)〉H1(Ω)?,H1(Ω) y(t) dt.

(3.318b)

Proof. Like in the proof of LEMMA 3.57 , the statement follows from a combination of
LEMMA 3.55 , the chain rule, and the continuity properties derived from LEMMA 3.47 and
LEMMA 3.50 .

By combining the results above, we can extend ASSUMPTION 3.51 , such that we can
prove the differentiability of G .

Assumption 3.59: Conditions for the Fréchet differentiability of G

In addition to ASSUMPTION 3.51 , we assume that for every consumer c ∈ AC ,
the cut-off function φc : R→ R is continuously differentiable, with globally Lipschitz
continuous derivative.

3.60 Theorem (Differentiability of G)

Let ASSUMPTION 3.59 hold true. Then, G is continuously Fréchet differentiable, where
the derivatives

DuG ∈ C0(U × Y,Lin(U ,Z?)), (3.319)

and

DyG ∈ C0(U × Y,Lin(Y,Z?)), (3.320)

are given by the expressions (3.287)-(3.299).

Proof. We proceed analogously to the proof of THEOREM 3.52 , and begin with the advection-
reaction operators Gadva . The operator d

dt is linear and bounded, such that it is automati-
cally continuously differentiable. The convection term is handled by LEMMA 3.58 , and the
reaction term is affine, and therefore differentiable, where the derivative is the Nemitskii
operator generated by the function r′a(·).
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For the hydraulic operators Ghyda∫
It

(
g

∆ha
La

+
λa
2da

va |va| (t)
)〈

ρ (ea) (t), zadva (t)
〉
H1(Ω)?,H1(Ω)

dt, (3.321)

we recognize that the first term is differentiable with Lipschitz derivative, and the second
one is affine w.r.t. ea, such that this operator fits the prerequisites of LEMMA 3.58 .
For the fluxes and coupling conditions of nodes, consumers and the producer, the differ-
entiability statement follows immediately from LEMMA 3.56 , LEMMA 3.55 , and the chain
rule.
The differentiability of the fluxes, initial and boundary conditions is obtained by a combina-
tion LEMMA 3.57 , LEMMA 3.55 , and the chain rule.



84 CHAPTER 3. ANAYLSIS AND H1 FORMULATION

3.3.4 The linearized residual operator

We summarize the previous result on one page. We assume that ȳ, ū is a solution of
G(ȳ, ū) = 0, and all variables, which are not marked with a ·̄ are their variations in their
corresponding Hilbert space. Let F ∈ Z?. Then DyG(ȳ, ū)y = F is equivalent to the weak
formulation of the following system of linear equations:
For each pipe a ∈ AP , we solve the linearized advection-reaction and pressure difference
equations

∂tea + v̄a∂xea + r′a (ēa) ea, = −va∂xēa + Fadva (3.322a)

po(a) − pi(a) = −
(
g

∆ha
La

+
λa
2da

v̄a |v̄a|
)∫

Ωa

ρ′ (ēa) ea dx

− λa
2da
|v̄a| va

∫
It

ρ (ēa) (t) dx+ Fhyda , (3.322b)

ea:in = ei(a) + Fe:ina , (3.322c)

ea(t0) = F inita , (3.322d)

which are supplemented by the appropriate linearized initial and boundary conditions. The
corresponding linearized fluxes are given as the solutions of

qa:in = −Aava + Fq:ina , (3.323a)

qa:out = Aava + Fq:outa , (3.323b)

Qa:in = qa:inēa:in + q̄a:inea:in + FQ:in
a , (3.324a)

Qa:out = qa:outēa:out + q̄a:outea:out + FQ:out
a . (3.324b)

For each consumer c ∈ AC , the linearized fluxes and balance conditions are given by

ρ
(
ēi(c)

)
qc:in + ρ′

(
ēi(c)

)
ei(c)q̄c:in = −ρ

(
ēo(c)

)
qc:out + ρ′

(
ēo(c)

)
eo(c)q̄c:out + F∆q̂

c , (3.325a)

Qc:in = qc:inφ
(
eminc , ēi(c)

)
+ q̄c:inφ

′ (eminc , ēi(c)
)
ei(c) + F∆Q

c ,
(3.325b)

Qc:out = qc:oute
ret
c + Fq:outc , (3.325c)

Qc:in +Qc:out = Fq:outc . (3.325d)

For the producer s, the linearized energy fluxes and hydraulic coupling conditions are

Qs:in = q̄s:inei(s) + qs:inēi(s) + Fq:ina , (3.326a)

Qs:out = q̄s:outu
e + qs:outūe + Fq:outs , (3.326b)

pi(s) = Fp0s , (3.326c)

po(s) − pi(s) = F∆p
s . (3.326d)

For each node n ∈ N , we obtain the following set of linearized flux balance laws∑
a∈In

ρ′ (ēa:n) ea:nq̄a:n + ρ (ēa:n) qa:n = F∆q̂
n , (3.327)

∑
a∈In

Qa:n = F∆Q
n . (3.328)

The linearized system has roughly the same structure as the original on given in SECTION 2.6 ,
with the exception that all interactions between thermodynamic and hydraulic variables are
either linear or bilinear. In particular, the contributions of variations of velocity va to (3.322a)
only act as a linear right hand side.
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3.3.5 Well-posedness of weak solutions in terms of G
In the previous sections, we have established an abstract residual operator of the model
equations, which we have proven to be equivalent to solutions in terms of characteristics.
This was motivated by the observation, that the classical function spaces used in the ex-
plicit construction of solutions complicate the analysis of optimization problems for district
heating networks. In this section, we are going to show that this construction is, in fact, well
defined.

3.61 Proposition (Residual operator formulation of the unsteady advection prob-
lem)

Consider the unsteady advection problem (3.8) for a single pipeline, and let e be a solu-
tion in the sense of PROPOSITION 3.3 , where the inflow energy ein, initial energy einit,
and flow velocity v are assumed to be known in advance, and fulfil the requirements
of PROPOSITION 3.3 . We define Gsp = Gadv × Ge:in × Ge:init. Then e is an element
of E = H1

(
It, H

1(Ω), H1(Ω)?
)

and solves 〈Gsp, zsp〉 = 0∀z ∈ E × H1(It) × H1(Ω).
This solution is unique, such that both formulations can be seen as equivalent. In par-
ticular, solutions of the weak formulation inherit higher regularity properties from the
characteristics solution.

Proof. Step 1: Existence.
We are going to show, that the solution e given in SECTION 3.2 is an element of L2

(
It, H

1(Ω)
)
.

By COROLLARY 3.25 , we know that e ∈ C0
(
Īt, H

1(Ω)
)
.

Therefore, the function

f(t) = 〈φ, e(t)〉H1(Ω)?,H1(Ω) (3.329)

is continuous and Lebesgue measurable for any linear functional φ ∈ H1(Ω)?. SinceH1(Ω)

is separable, we know that e is Bochner measurable by THEOREM 3.33 , and we may
estimate its norm by

‖e‖L2(It,H1(Ω)) =

√∫
It

‖e(t)‖2H1(Ω) dt ≤
√
|It| ‖e‖C0(Īt,H1(Ω)) <∞ (3.330)

such that e ∈ L2
(
It, H

1(Ω)
)
.

We know that e has partial derivative in the sense of Sobolev spaces, such that the mapping

d

dt
: t 7→ ∂te(t, ·) = −v(t)∂xe(t, ·)− r(e)(t, ·) (3.331)

is defined almost everywhere in It × Ω, and by the regularity properties an element of
L2(It × Ω) ∼= L2

(
It, L

2(Ω)
)
.

Finally, the continuous embedding

L2
(
It, L

2(Ω)
)
↪→ L2

(
It, H

1(Ω)?
)

(3.332)

which is a consequence of the Aubin-Lions-Lemma THEOREM 3.41 , such that d
dte ∈

L2
(
It, H

1(Ω)?
)
.

Step 2: Uniqueness.

Let e1, e2 be two solutions of the weak advection-reaction problem, and define e∆ = e2−e1.
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By the linearity of Ginit and Ge:in, we can assume e∆(t0) = 0, tr0e
∆ = 0, and focus on the

advection operator.

We are going to show that e∆ ≡ 0 by using an energy argument.

Since e1, and e2 are both weak solutions, and r is assumed to be at most affine, we know
that the difference e∆ is a weak solution of the transport equation with linear reaction term,
and therefore

∫
It

〈
d

dt
e∆(s), e∆(s)

〉
H1(Ω)?,H1(Ω)

ds+

∫
It

v(s)
(
∂xe

∆(s), e∆(s)
)
L2(Ω)

ds

+

∫
It

(
r1e

∆(s), e∆(s)
)
L2(Ω)

= 0,

(3.333)

where we chose zadv = e∆ as our test function. For the convection term, we obtain a rough
estimate

∣∣∣∣∫
Ω

∂xe
∆(s) · e∆(s) dx

∣∣∣∣ =
1

2

∣∣∣∣∫
Ω

∂xe
∆(s)2 dx

∣∣∣∣
≤ 1

2

∣∣(e∆(s)(L)2 + e∆(s)(0)2
)∣∣

≤ C1

∥∥e∆(s)
∥∥2

L2(Ω)

(3.334)

for some constant C1 > 0, and almost every s ∈ It. The reaction term can be estimated

∣∣∣∣∫
Ω

r1e
∆(s) · e∆(s) dx

∣∣∣∣ ≤ C2

∥∥e∆(s)
∥∥2

L2(Ω)
(3.335)

for another constant C2 > 0, and almost every s ∈ It.
Now we combine these estimates and obtain

d

dt

∥∥e∆(t)
∥∥2

E ≤ C
∥∥e∆(t)

∥∥2

E (3.336)

such that by the Gronwall Lemma

∥∥e∆(t)
∥∥2

E ≤
∥∥e∆(t0)

∥∥2

E exp (C(t− t0)) = 0. (3.337)

Therefore, e1 = e2 in the norm of E , and the solution given in step 1 is unique.

We conclude this chapter by the following theorem, which summarizes most results of our
analysis, and completes the connection with the less abstract results in SECTION 3.1 and
SECTION 3.2 .
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3.62 Theorem (Existence and uniqueness of weak solutions for simple networks)

Let u ∈ Uad ⊆ U . Then there exists a unique solution y ∈ Y in the sense that

〈G(u,y), z〉Z?,Z = 0 ∀z ∈ Z. (3.338)

This implicitly defines the solution operator

S : Uad −→ Y,G(u,y) = 0⇔ y = S(u) (3.339)

which is weak-weak?-continuous, bounded, and injective.
If (ū, ȳ) is a solution of G(ū, ȳ), and if we assume, that DyG(ū, ȳ) has a bounded
inverse, S is continuously Fréchet differentiable in an open neighbourhood Ũ of ū, and
its derivative is given by

S ′(ū)u := DuS(ū)u = (DyG(ū, ȳ))
−1

DuG(ū, ȳ)u (3.340)

for all u ∈ Ũ .

Proof. Existence and uniqueness for the advection problem for a single pipeline with known
velocity, initial, and boundary conditions has been proven in PROPOSITION 3.61 . Using a
graph traversal argument like in the proof of THEOREM 3.23 , we conclude that the solution
given by COROLLARY 3.25 is an element of the state space Y given in DEFINITION 3.39 ,
and solves the equation G(u,y) = 0Z? .
For uniqueness, we consider an arbitrary solution of G(u,y) = 0. The additional regular-
ity of the energy densities ea implied by PROPOSITION 3.61 ensures the existence of a
unique, continuous representative. The discussion preceding the weak formulations of all
fluxes, initial, boundary, and coupling conditions in SECTION 3.3.1 , in particular the esti-
mate (3.220), shows that the same holds true for all other state variables. Therefore, this
solution must be unique by THEOREM 3.23 .
As a result, the solution operator (or state-to-control mapping) S is well defined, bounded,
and injective, where the boundedness follows from THEOREM 3.52 .
In order to prove weak-weak?-continuity, we consider a weakly convergent sequence un in
U , such that yn = S(un) defines a bounded sequence in Y.
Since we know, that U × Y is reflexive, we can extract a weakly convergent subsequence
(unk

,ynk
). It remains to show, that the weak limit satisfies y = S(u), i.e. that it is indeed a

solution of G(u,y) = 0Z? . THEOREM 3.52 states that G is weak-weak?-continuous, such
that

〈G(unk
,ynk

), z〉Z?,Z → 〈G(u,y), z〉Z?,Z ∀z ∈ Z, (3.341)

which completes this part the proof. If we additionally assume, that DyG has a bounded
inverse at every solution, the identity (3.340) follows by the implicit function theorem for
Banach spaces (see [Hinze et al., 2009]).
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Chapter 4

Applications in optimal control

In this chapter of the thesis, we turn towards optimal control problems built upon the model
which we have established in CHAPTER 2 , and demonstrate their solution by applying the
insights from the analysis in CHAPTER 3 .
Given the regularity assumptions of the control input implied by DEFINITION 3.42 , we
consider the following cost functional

J u (u) =
αe0
2
‖ue‖2L2(It)

+
αe1
2
‖∂tue‖2L2(It)

+
αp0
2
‖up0‖2L2(It)

+
αp1
2
‖∂tup0‖2L2(It)

+
α∆p

0

2

∥∥u∆p
∥∥2

L2(It)
+
α∆p

1

2

∥∥∂tu∆p
∥∥2

L2(It)
,

(4.1)

which seeks to minimize an weighted sum of the average value, and average variation of
each control variable.
In view of the regularity results of CHAPTER 3 , we can formulate the inequality state con-
straints listed in SECTION 2.6 as mappings

Cec (y) :Y → H1(It)
2

y 7→
(
eminc − ei(c)
ei(c) − emaxc

)
, (4.2)

Cpc (y) :Y → H1(It)
2

y 7→
(
pminc − pi(c)
pi(c) − pmaxc

)
, (4.3)

for the box constraints of pressure and energy density at the inflow of each consumer
station c ∈ AC , and

C∆p
c (y) :Y → H1(It)

2

y 7→
(
pminc + pi(c) − po(c)
po(c) − pi(c) − pmaxc

)
, (4.4)

C∆Q
s (y) :Y → H1(It)

2

y 7→
(

∆Qmin −Qs:in −Qs:out
Qs:in +Qs:out −∆Qmax

)
,

(4.5)

for pressure difference constraint of each consumer c, and the power constraint of the
producer s, and combine them into a single mapping

C(y) :Y → H1(It)
NC

y 7→ C∆Q
s (y)×

∏
c∈AC

(
Cec (y)× Cpc (y)× C∆p

c (y)
)
, (4.6)

by utilizing the same Cartesian product construction, which we already have used in SECTION 3.3 .
Here, NC = 2 + 6 · |AC | is the total number of state constraints of the system.
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We make use of the following concept, in order to formalize our inequality constraints on
abstract spaces:

4.1 Definition (Convex cone)

A subset K ⊂ X of a Banach space (X, ‖·‖X) is called convex cone, if

∀a > 0 : x ∈ K ⇒ a · x ∈ K. (4.7)

It is common to adopt the notation

x ≥K 0⇔ x ∈ K, x ≤K 0⇔ −x ∈ K. (4.8)

Accordingly, we define the convex cone

KC =

6·|AC |·∏
i=1

{
z ∈ H1(It)

∣∣∣ z(t) ≥ 0∀t ∈ It
}

(4.9)

which is a closed subset of H1(It)
6·|AC | due to the embedding of H1(It) into C0

(
Īt
)
.

We refer to [Troeltzsch, 2009], and [Hinze et al., 2009] for a broader overview on the topic
of abstract optimization problems in Banach spaces. Combining the pieces above leads to
the following optimization problem:

P0 :



min
u,y∈U×Y

J u (u,y)

subject to

G(u,y) = 0Z? ,

C(y) ≤KC 0,

ue ∈ Uad.

(4.10)

where G is the residual operator defined in SECTION 3.3 , C and KC are defined as above,
and Uad models the box constraints for control variables, as suggested in DEFINITION 3.42 .
In the case of our district heating model, we neither guarantee the feasibility of all state
constraints, nor provide an initial solution, such that the feasible ones are satisfied. By
numbering the constraints in ascending order, we define the index set IC ⊂ {1, . . . , NC}
of constraints, which we want to regularize. For each i ∈ IC , we select the respective
constraint mapping

Ci(y) =

(
ymini − yi
yi − ymaxi

)
(4.11)

and replace it by a Moreau-Yosida type penalty term

J δi (y) =
δi
2

∫
It

((
ymini − yi(t)

)+)2

+
(

(yi(t)− ymaxi )
+
)2

dt (4.12)

where yi refers to the (linear combinations) of state variables, whom the ith constraint
explicit depends on, and δi ≥ 0 is a possibly large, real parameter.
Given such an index set IC , and a parameter vector δ ∈ R|IC|, we define the regularization
cost functional

J IC,δ (y)) =
∑
i∈IC

J δi (y) , (4.13)
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the reduced constraint mapping

CIC (y) =
∏

i∈{1,...,NC}\IC

Ci(y) (4.14)

and the corresponding convex cone KICC .
This leads to a parametric family of optimization problems

P
IC,δ
1 :



min
u,y∈U×Y

J u (u,y) + J IC,δ (y)

subject to

G(u,y) = 0Z? ,

CIC (y) ≤
K
IC
C

0,

ue ∈ Uad.

(4.15)

with (partially) regularized state constraints. We denote the special case, in which IC =
{1, . . . , NC} (i.e. all state constraints have been regularized) by P δ1 .
In the following sections we briefly cover the solvability of such optimization problems,
followed by a description of a suitable optimization algorithm, and two application examples.

4.1 Existence of local minimizers with regularized state
constraints

As discussed in the introduction of this chapter, one may not be able to prove the existence
of a feasible point in many practical scenarios. Fortunately, we can at least guarantee
the existence of a local minimum, if we can show that some inequality constraints can be
satisfied, and relax (i.e. penalize or ignore) the remaining ones.
We start with the corner case, where we regularize all constraints, such that we have to
solve an equality constrained optimization problem.

4.2 Proposition (Local solution of the equality constrained optimization problem)

Let Uad ⊂ U be a closed and convex, and J : Uad × Y → R be a continuous, and
convex functional, which is bounded from below. Further, we assume that the operator
G satisfies the assumptions of THEOREM 3.62 . Then the fully regularized optimization
problem P δ1 specified in (4.15) has at least one local solution.

Proof. Since J is bounded by assumption, we know that J? := infu J (u,S(u)) exists, and
we can pick a minimizing sequence un ∈ Uad. By THEOREM 3.62 we can pick a weakly
convergent subsequence unk

, such that ynk
= S(unk

) weakly converges to y ∈ Y. In
particular, the weak limits satisfy y = S(u) by the weak-weak?-continuity of S.
Now we use that J is continuous and convex on Uad × Y, and therefore weakly lower
semi-continuous. This yields

J? = lim
k→∞

J (unk
,ynk

) ≥ lim inf
k→∞

J (unk
,ynk

) ≥ J (u,y) (4.16)

such that J attains its local minimum J? at (u,y).
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Next, we consider the opposite scenario, where we can find an initial control u0, such that
all constraints are strictly satisfied.

4.3 Corollary (Local solutions to the optimization problem)

Let Uad ⊂ U be a closed and convex, and J : Uad × Y → R be a continuous, and
convex functional, which is bounded from below. Further, we assume that the operator
G satisfies the assumptions of THEOREM 3.62 . If we assume the existence of a control

input u0 ∈
◦
Uad such that G(u0,y0) = 0, and C(y0) ∈

◦
KC , then P0 has local optimum u?0.

Proof. By assumption, C is continuous. From C(y0) ∈
◦
KC we conclude, that there is a

number εy > 0, such that

C(y) ∈
◦
KC ∀y ∈ Bεy (y0). (4.17)

By THEOREM 3.62 , the control-to-state operator S is continuous and bounded, such that
there exists as second number δu > 0, such that

◦
Uad ⊃ Bδu(u0) 3 u⇒ y ∈ Bεy (y0) ⊂

◦
Yad (4.18)

and therefore C(S(u)) ∈
◦
KC . We define the set Uδu = Bδu(u0) ∩ Uad, which is a closed

and convex subset of
◦
Uad. and formulate the reduced optimization problem without state

inequality constraints

min
u,y
J (u,y) subject to G(u,y) = 0,u ∈ Uδu ,y ∈ Yad (4.19)

which is locally equivalent to P0. Finally, we apply PROPOSITION 4.2 to conclude the
existence of a local minimum, which is attained at (u,y) ∈ Uδu × Yad.

Now we combine both previous results, and immediately get the following result:

4.4 Corollary (Local solution for the partially regularized optimization problem)

Let Uad ⊂ U be a closed and convex, and J : Uad × Y → R be a continuous, convex,
and bounded functional. Further, we assume that the operator G satisfies the assump-

tions of THEOREM 3.62 . If we assume the existence of a control input u0 ∈
◦
U
ad

such

that G(u0,y0) = 0, and CIC (()y0) ∈
◦

KICC , then the optimization problem P
IC,δ
1 has at

least one local solution u?0 inside an open neighbourhood of u0

Proof. Given CIC (y0) ∈
◦

KICC , and the continuity of S (which is ensured by THEOREM 3.62 ),
there exists an convex, open set UIC ⊂ Uad, such that u0 ∈ UIC .
Now we consider a modified version P̃ IC,δ1 of P IC,δ1 , where remove the remaining state con-
straints CIC , and replace the admissible set Uad by UIC . Now we apply PROPOSITION 4.2 ,
which yields the desired result.
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4.2 Projected gradient descent in H1

In CHAPTER 3 we have shown, that the residual formulation is continuously Fréchet differ-
entiable. We are going to use this property in order to compute the gradient vector, which
is going to build the basis of our first order optimization algorithm. For a broader discussion
of optimization methods in Banach spaces, specifically projected gradient algorithms, we
refer to [Hinze et al., 2009].
We consider the simplified optimization problem

min
u∈U
J (u,y) (4.20)

s.t. G(u,y) = 0 (4.21)
u ∈ Uad (4.22)

without (or only with regularized) state constraints.
If we presume, that our residual operator is sufficiently regular in a neighbourhood of its
solutions, the operator

y′(u) = S ′(u) = − (DyG(ū, ȳ))
−1

DuG(ū, ȳ), (4.23)

which is an element of Lin(U ,Y), is well defined.
In the following, we presuppose that the below statement is true:

Assumption 4.5: Regularity assumption for G at solution points

The pair (ū, ȳ) ∈ U × Y is a solution of the state equation G(ū, ȳ) = 0, such that
Gy(ū, ȳ) has a bounded inverse.

In view of (4.23), we define the reduced cost functional

f (u) = J (u,S(u)) (4.24)

whose derivative

〈f ′(ū),d〉U?,U = 〈DuJ (ū,S(ū)) ,d〉U?,U + 〈DyJ (ū, )S ′(ū),d〉U?,U (4.25)

at a point ū ∈ U in direction d ∈ U can be explicitly computed, if the derivative of the
solution operator S is known. If one is only interested in the parts of y′, which directly
contribute to f ′, this approach probably inefficient. An alternative approach utilizes the
adjoint of the linearized state equations

G(ū, ȳ) = 0Z? , (4.26a)
DyG(ū, ȳ)?z = −DyJ (ū, ȳ) , (4.26b)

which is well defined, if ASSUMPTION 4.5 holds true. This leads to an alternative repre-
sentation

〈f ′(ū),d〉U?,U = 〈DuJ (ū, ȳ) ,d〉U?,U +
〈
(DuG(ū, ȳ))

?
z,d

〉
U?,U (4.27)

for the derivative of the reduced cost functional, which does not explicitly depend on y? any
more. Using either approach, we can use the fast, that U is a Hilbert space, and apply the
Riesz isomorphism R : U? → U to obtain a vector representative

〈f ′(ū),d〉U?,U = (Rf ′(ū),d)U =:
(
∇Uu f(ū),d

)
U (4.28)
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of f ′(ū), which is called the gradient of f at ū. The negative gradient is always a direction
of descent, if the gradient is non-zero, such that we can expect the functional value to
decrease, if we adjust ū in this direction.
Since we want to use this method to solve a non-linear optimization problem, we need to
perform a line search to ensure, that the functional value actually decreases. The projected
Armijo rule

f (ū + d)− f (ū) ≤ γ
(
d,∇Uu f(ū)

)
U = −γ

σ
‖σd‖2U (4.29)

yields an appropriate termination rule for this line search procedure (see [Hinze et al., 2009]).
Here, the descent direction is given by the scaled, negative gradient

d = −σ∇Uu f(ū), (4.30)

with positive parameters σ and γ. Unless the magnitude of d is relatively small, and ū is
sufficiently far away from the boundary of Uad, a step into the direction d is likely to result
in an inadmissible control vector.
By its definition in CHAPTER 3 the admissible set Uad is convex and closed within the
Hilbert space U , such that the projection

û = PUad
(ū + d) := arg min

u∈Uad

1

2
‖u− ū− d‖2U (4.31)

is uniquely defined.
Combined, this results in the following optimization algorithm:

Algorithm 4.1: Projected gradient descent
0. Choose an initial control u0 ∈ Uad, and a descent parameter γ ∈ (0, 1)
for k = 0, 1, . . . do

1. Compute dk = −∇Uu f(uk)

2. Choose the largest σk ∈
{

1, 1
2 ,

1
4 , . . .

}
such that

f
(
PUad

(
uk + σkdk

))
− f

(
uk
)
≤ − γ

σk

∥∥PUad

(
uk + σkdk

)
− uk

∥∥2

U

3. Set uk+1 = PUad

(
uk + σkdk

)
if
∥∥uk+1 − uk

∥∥
U < εtol then

Stop and return uk+1

Next, we are going to take a closer look on the projection operator on the Hilbert space
H1(It). For this purpose, we partition the squared H1-distance

1

2

∥∥u− ū+ σ∇Hu f(ū)
∥∥2

H1(It)
=

1

2
(u, u)H1(It)︸ ︷︷ ︸

a(u,u)

+ (u, ū)H1(It)
− 〈σf ′(ū), u〉H1(It)?,H1(It)︸ ︷︷ ︸
−〈φ,u〉H1(It)

?,H1(It)

(4.32)

into an elliptic bilinear form a, and a linear functional remainder 〈φ, u〉. Together with the
affine constraint operator

C(u) =

(
umin − u
u− umax

)
(4.33)
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with corresponding convex cone

K =
{
u1, u2 ∈ H1 ×H1 |u1, u2 ≥ 0

}
, (4.34)

the orthogonal projection onto the admissible set

Uad := {u ∈ U |umin ≤ u ≤ umax a.e. in It} (4.35)

is equivalent to the solution of the cone constrained optimization problem

min
u∈H1(It)

a(u, u)− 〈φ, u〉H1(It)?,H1(It)
(4.36)

s.t. C(u) ≤K 0 (4.37)

in H1.
This is an elliptic, bilateral obstacle problem with a continuous, coercive bilinear form a. In
its discretized form, the optimality system

A~u−BT~λ = ~Φ (4.38)

~λ−max
{
~0, ~λ+ c

(
~β −B~u

)}
= 0 (4.39)

of (4.36) can be efficiently solved by using an active set method. For implementation
details, we refer to [Zhou et al., 2002], and [Kärkkäinen et al., 2003].
In the context of district heating networks, it is likely, that there is more than one boundary
input which can be controlled.
We recall, that U was constructed as the Cartesian product

U =

Nu∏
i=0

Ui, ‖·‖2U =

Nu∑
i=0

‖·‖2Ui , (4.40)

of finitely many Hilbert spaces (see DEFINITION 3.42 ), whose norm (or scalar product) is
given as the finite sum of norms (scalar products) for each control variable ui. Therefore,
we can split the projection problem into Nu sub-problems

u? is the solution of

min
u∈U

1

2
‖u− ū‖2U

s.t. C(u) ≤K 0

⇐⇒

∀i : u?i is the solution of

min
ui∈Ui

1

2
‖ui − ūi‖2Ui

s.t. Ci(ui) ≤Ki
0

, (4.41)

of which each fits exactly into the special case, which we described above.

4.3 Numerical discretization, sensitivities, and discrete
adjoint

For the discretization of the advection operator we consider two different methods. The first
one is a Runge-Kutta Discontinuous Galerkin (RKDG) scheme (see [Cockburn and Shu, 2001])
with upwind flux, and the implicit Euler (see e.g. [Quarteroni et al., 2007]) method for time
integration. An alternative approach is given by a discretization of SECTION 3.1 , which
results in a Euler-Lagrangian collocation method (see [Mohring et al., 2021]).
In both cases, the remaining algebraic equations are coupled implicitly with the advection
sub-system, such that the evolution of the discretized state vector ykh at the time step tk to
the next one is given as the solution of a nonlinear system of equations

G
(
tk, tk+1;ykh,y

k+1
h ,uh

)
=: Gk

(
ykh,y

k+1
h ,uh

)
. (4.42)
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Including an additional equation for the initial state, the complete discrete formulation of
the model equations then takes the form

G0
(
y0
h,uh

)
= 0, (4.43a)

Gk
(
ykh,y

k+1
h ,uh

)
= 0, k = 1, . . . , Nt, (4.43b)

which we commonly refer to by the term G (yh,uh) = 0, if we are not interested in one
particular time step.
We are going to follow two different approaches for the computation of the gradient, which
is then used within the algorithm presented in SECTION 4.2 .

Given ASSUMPTION 4.5 , an application of the implicit derivative rule (4.23) to the dis-
cretized system (4.43) yields the discrete sensitivity equations

Sk (uh) = DuS ′(uh) = −
(
DykGk

)−1 (
Dyk−1GkSk−1 +DuG

k
)
. (4.44)

We note, that this approach relies on the computability of several partial Jacobian matrices.
An easy, robust, and efficient way to solve this problem numerically is given by automatic
differentiation. We refer to [Griewank and Walther, 2008] for a general overview of this
topic. Depending on the optimization problem we are trying to solve, this procedure might
be inefficient, since it requires computing the sensitivities of all state variables at each given
time.
Following the short discussion in the introduction of SECTION 4.2 , we also consider the
discrete counter part of the adjoint equation (4.26b), which results in a linear system of
equations

DyG(ūh, ȳh)?zh = −DyJ (ūh, ȳh) , (4.45)

we assume that G(ūh, ȳh) = 0.
By using the block structure of G shown in (4.43), we split up (4.45), and obtain a linear
time stepping scheme

DykGk(yk−1
h ,ykh,uh)?zkh = −Dyk

h
J (yh,uh) , (4.46a)

k = Nt,

DykGk(yk−1
h ,ykh,uh)?zkh +DykGk+1(ykh,y

k+1
h ,uh)?zkh = −Dyk

h
J (yh,uh) , (4.46b)

k = Nt − 1, . . . , 1,

Dy0G0(y0
h,uh)?z0

h +Dy0G1(y0
h,y

1
h,uh)?z0

h = −Dyk
h
J (yh,uh) , (4.46c)

which moves backwards in time and whose solution is the discrete adjoint state zh.

4.4 Application of the H1 projected gradient algorithm to
a single pipeline network

For our first model example, we consider the single-consumer-single-producer network in-
troduced in SECTION 3.1 without reaction term and hydraulic equations, which has been
partially published in [Linn et al., 2021]. Following the general optimization model, which
we introduced at the beginning of this chapter, this leads to the following optimization prob-
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lem:

min
u∈U

α0

2

∫
It

ue(t)2 dt+
α1

2

∫
It

(∂tu
e(t))

2
dt (4.47a)

subject to
∂te+ v∂xe = 0 (4.47b)

e(·, 0) = ue (4.47c)

v(e(·, L)− eret) = g (4.47d)
e(t0) = einit (4.47e)

v(t0)∂x(einit) = 0 (4.47f)
einit = ue(t0) (4.47g)

uemin ≤ ue ≤ uemax (4.47h)

v(ue − eret) ≤ ∆Qmax. (4.47i)

Here, we have eliminated all flux variables, such that the power constraint of the producer is
turned into the mixed formulation (4.47i). The two additional equations (4.47f) and (4.47g)
connect the (spatially constant) initial state to the initial value ue(t0) of the control variable.
Our goal is to derive the adjoint form of the linearized system, and apply ALGORITHM 4.1
which was outlined in the previous section. Since we cannot be sure that the mixed con-
straint is feasible, we choose to regularize it by adding a Moreau-Yosida penalty term. This
leads to the following modified optimization problem

min
u∈U

α0

2

∫
It

ue(t)2 dt+
α1

2

∫
It

(∂tu
e(t))

2
dt (4.48a)

+
δ

2

∫
It

((
v(t)(ue(t)− eret)−∆Qmax

)+)2

subject to
∂te+ v∂xe = 0 (4.48b)

ein = ue (4.48c)

v(eout − eret) = g (4.48d)
e(t0) = einit (4.48e)

v(t0)∂x(einit) = 0 (4.48f)
einit = ue(t0) (4.48g)

uemin ≤ ue ≤ uemax, (4.48h)

which introduces an additional penalty parameter δ.
Now we utilize the structure of the linearized system, which we already derived in
SECTION 3.3.4 , and apply the partial integration rule for Gelfand triples to obtain

∂tz
adv + v̄∂xz

adv = 0 (4.49a)∫
Ω

zadv(t)∂xē(t) dx = zadv(t, L)
(
ē(t, L)− eret

)
(4.49b)

+ δ
(
ūe − eret

) (
v̄
(
ūe − eret −∆Qmax

))+
zadv(tf ) = 0 (4.49c)

where have already eliminated all remaining adjoint states (ze:in, zconsumer, etc.) due to
the simple boundary conditions. The Fréchet derivative of the reduced cost functional can
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now be represented as

〈f ′(ūe), ue − ūe〉U?,U =α0 (ūe, ue − ūe)L2(It)
+ α1 (∂tūe, ∂t (ue − ūe))L2(It)

(4.50)

+ (ue(t0)− ūe(t0))

∫
Ω

zadv(t0)(x) dx (4.51)

such that we can compute its H1 representative via the Riesz isomorphism, and apply
ALGORITHM 4.1 .

In order to test this optimization algorithm, we selected a reference pipeline with length
L = 1000m, together with a normalized, periodic consumer, shown in the lower graph
in FIGURE 4.1 , with two local maxima of different magnitude per period. The forward
and adjoint equations using a first order discontinuous Galerkin scheme with BDF-1 time
stepping, with ∆x = 1m, and ∆ t = 60s. The simulation time interval It covers a time span
of 3 days, such that effects caused by the spatially constant initial state have enough time
to decay, and a periodic system state can be reached.

Figure 4.1: Upper graph: comparison between the producer’s normalized supply power for
the initial and optimized control. Lower graph: normalized consumer demand

FIGURE 4.2 and the upper graph in FIGURE 4.1 show, that effects of the initial state
can still be observed during the first day, but vanish during the two subsequent ones, as
desired.
The effects of the optimized control can be clearly recognized: While the initial control
causes an overshooting of the supply power at local maxima of the consumer demand g,
the optimized control manages to cut off the undesired peak values, such that the power
constraint (4.47i) is satisfied.
This is achieved by pre-heating the network ahead of demand peaks, as shown in FIGURE 4.2 .
The simple example demonstrates, that the model problem is already able to reproduce
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Figure 4.2: Initial and optimized normalized control input

some of the effects, which are encountered in more complex, real world district heating
networks, as discussed in the subsequent SECTION 4.5 .

Figure 4.3: Value of the cost functional throughout the iterations of the PGD algorithm

However, the performance characteristics of the PGD algorithm, as plotted in FIGURE 4.3 ,
reveal that a large amount of iterations is needed until stationarity is reached.
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4.5 Optimal operation of a real world network using dis-
crete sensitivity propagation

After the simple example covering a model problem for a single pipeline, we demon-
strate the solvability of such power constrained optimization problems for a real world net-
work, whose topology is shown in FIGURE 4.4 . Unlike the class of models analysed in
CHAPTER 3 , this network contains loops, such that we have to adapt the inflow bound-

ary conditions according to REMARK 2.8 . Furthermore, we note that the existence of
loops can lead to contact discontinuities. In order to see this, imagine the following sce-
nario: We observer 3-way junction with two inflowing pipelines - one containing hot, the
other one containing cold water. The resulting mixing temperature of the out-flowing pipe
lies somewhere in between. If the flow direction of one inflowing and the outflowing pipe
change, the former inflowing one is exposed to a boundary value which does not contin-
uously match its internal temperature distribution. For a more elaborate example we refer
to [Mohring et al., 2021]. This detail is important for the development of high resolution
schemes, but negligible four our use case, where the coarse discretization leads to a high
numerical diffusion. The methodology and results presented in this section have been
partially published in [Linn et al., 2019] and [Mohring et al., 2021].

Figure 4.4: Topology of a real district heating network, provided by Technische Werke
Ludwigshafen am Rhein AG (TWL)
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For this example, we consider the following optimization problem

min
ue∈Ue

α

∫
Iday
t

ue(t)2 dt+

∫
Iday
t

(∂tu
e(t))

2
dt =: J (ue) (4.52a)

subject to
G(u,y) = 0 (4.52b)

ei(c) ≤ emin ∀c ∈ AC (4.52c)
Qs:in +Qs:out ≤ ∆Qmax (4.52d)

ue(t0) = ue(tf ) (4.52e)

ue,min ≤ ue ≤ ue,max (4.52f)

which aims to find the most regular solution (in terms of the H1 semi-norm), such that all
state constraints are satisfied. To avoid undesired transient effects in the starting phase
caused by an unfavourable initial state, the control input is a priori set to be periodic with a
period length of a day. The hydraulic control inputs up0 and u∆p are prescribed in advance,
and are treated as boundary conditions.
The basis of our optimization approach for this problem is the discretized version of (4.52)

min
ue
h∈U

e
h

α

∫
Iday
t

ueh(t)2 dt+

∫
Iday
t

(∂tu
e
h(t))

2
dt =: J (ueh) (4.53a)

subject to
G (uh,yh) = 0 (4.53b)

C (yh) ≤ 0 (4.53c)
ueh(t0) = ueh(tf ) (4.53d)

ue,min ≤ ueh ≤ ue,max (4.53e)

where the state constraints are collected in the operator C, whose construction was de-
scribed in the beginning of this chapter. Given a solution yh of the discrete state equations,
we now apply the discrete sensitivity propagation formula (4.44) to derive a first order ap-
proximation

C (uh + dh) = C (uh) +

(
Nt∑
k=0

DykC (yh)Sk

)
︸ ︷︷ ︸

C̃(yh,uh)

dh +O
(
‖dh‖2

)
(4.54)

of the constraint mapping C, which considers changes uh in direction dh. This leads to the
reduced optimization model

min
dh∈Ue

h

1

2
H (dh,dh) (4.55a)

subject to

C (uh) +D (uh) · dh ≤ 0 (4.55b)

ue,min ≤ uh + dh ≤ ue,max (4.55c)
dh(t0) = dh(tf ) (4.55d)

‖dh‖max ≤M (4.55e)

which does not depend on the state vector yh any more. The new objective functional

H (dh,dh) := 2α

∫
Iday
t

dh(t)2 dt+ 2

∫
Iday
t

(∂tdh(t))
2
dt (4.56)
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is the second Fréchet derivative of J , evaluated with dh in both arguments. This is a strictly
convex optimization problem with linear constraints. For its solution, we use the algorithm
presented in [Goldfarb and Idnani, 1983]. The solution of the reduced optimization problem
(4.55) yields a direction of descent required in the following algorithm:

Algorithm 4.2: Sequential linear-quadratic optimization

Choose an admissible initial control u〈0〉h such that ue,min ≤ u
〈0〉
h ≤ ue,max

for l=0,1,. . . do
Solve the forward system for u〈l〉h and simultenously compute the sensitivity
matrices S〈l〉,(k)

Set up the reducied linear-quadratic problem (4.55) and solve it to obtain d
〈l〉
h

if
∥∥∥d〈l〉h ∥∥∥ < εtol then

return u〈l〉

else
Set u〈l+1〉

h = u
〈l〉
h + d

〈l〉
h and proceed with the next iteration, or abort if

l = lmax.

We apply ALGORITHM 4.2 to solve (4.52) in an optimal control scenario for the network
shown in FIGURE 4.4 (see [Linn et al., 2019], and [Mohring et al., 2021]). The optimiza-
tion interval It covers a time span of a whole week. The consumers have been modelled
according to the standardized consumption profiles [BGW, 2006], which we already have
covered in SECTION 2.4 , where the profile of a reference day is continued periodically to
the whole time interval. In a initialization step, we reset the initial state yh(t0) to a peri-
odic solution of the system, obtained for a constant control input with value ueh(t0) at the
beginning of each iteration of ALGORITHM 4.2 .
A local optimal solution to this problem is shown in FIGURE 4.5 . We can observe, that the
power peaks have been avoided as desired. This is achieved by raising the temperature
supplied to the forward flow networks in advance of the expected increase of consumer
demands.

Figure 4.5: Supply temperature T (ue) and supply power ∆Q for the reference and opti-
mized control input [Linn et al., 2019]

This is a common effect in district heating networks, which we were able to replicate with
our simplified model problem discussed in SECTION 4.4 .
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FIGURE 4.6 displays the net mass flux of the system corresponding to the supply temper-
ature and supply power depicted FIGURE 4.5 .

Figure 4.6: Supply temperature T (ue) and producer mass flow q̂ for the reference and
optimized control input

This second example demonstrates that our algorithm is able to handle optimal control
problems for real world district heating networks at a larger scale. With these remarks, we
conclude the discussion of application examples for the theoretical framework presented in
CHAPTER 3 .
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Chapter 5

Summary, conclusion & outlook

In our thesis we have dealt with mathematical modelling and simulation of district heating
networks (DHN).
The pipeline model set up in CHAPTER 2 accounts for fluid flow and energy transport. It
is based on the Euler equations, includes a physical model of the relevant thermodynamic
properties of water, and can be assembled to a DHN model by making use of conservation
laws and some elementary modelling considerations from the engineering context. Our
model provides an adaption and extension of existing mathematical models as presented
in [Krug et al., 2019] or [Mohring et al., 2021] w.r.t. thermodynamically consistent water
modelling, and the solvability of the model equations independent of the feasibility of state
inequality constraints.
The results of our detailed mathematical analysis presented in CHAPTER 3 comprise a so-
lution approach of the advection problem using the method of characteristics, with known
order of wave propagation. We also provided a generalization to C0 and H1 data, along
with a weak residual formulation in Bochner spaces, which is differentiable and has bet-
ter continuity properties compared to other existing approaches. Our weak formulation in
Bochner spaces is motivated by the solution theory for parabolic equations and permits
differentiability and weak-weak? continuity. The first property is necessary to establish op-
timality conditions for this non-convex system, the second one aids as a theoretical tool to
prove existence of local minimizers.
The two case studies presented in CHAPTER 4 indicate how the theoretical results of
CHAPTER 3 can be favourably utilized to perform transient simulations of real world DHN

and optimize their performance by optimal control.
In our first example we demonstrated the application of the H1 projected gradient algorithm
to a single pipeline network. In our second example we address the problem of an optimal
operation of a real world network using discrete sensitivity propagation. Due to the large
number of state constraints penalty regularization becomes a numerically ill conditioned
procedure. In our numerical approach, we use the sensitivities to linearize the state con-
straints, and then solve a sequence of linearized optimization problems. The examples
indicate that the theoretical results of CHAPTER 3 can be favourably utilized to perform
transient simulations of real world DHN and optimize their performance by optimal control.

The theoretical framework developed within this thesis is restricted to networks without
loops and flow indirections. While DHN fitting in this category make up a considerable
amount of industrial use cases, more complicated network topologies containing loops oc-
cur in practice likewise frequently. Therefore, it would be desirable to extend the theory
to such cases as well. A viable approach in this direction would be an asymptotic reg-
ularization of the advection equation by adding artificial viscosity terms, for example by
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applying an operator splitting approach similar to the one used in the development of local
discontinuous Galerkin methods (see [Cockburn and Shu, 1998]).
As we have seen in the mathematical analysis of our network model, the hydraulic com-
ponent is tightly coupled to the consumers’ predicted consumption. While it is reasonable
to assume, that a consumer’s actual consumption behaviour is relatively close to our pre-
diction model based on historical data, we have to accept that some aspects of each con-
sumer’s behaviour cannot be modelled with in a fully deterministic sense. This motivates
an extension of the consumer model to a probabilistic one. Interesting follow up questions
include extending the theoretical model to the domain of stochastic calculus, investigating
possibilities of performing uncertainty quantification and solving stochastic robust optimiza-
tion problems for district heating networks.
As far as the implementation of a feasible optimization algorithm is concerned, we have
only been able to real world use cases using a discretize first approach, whereas the
optimize first alternative has only been applied to the single pipeline model. Due to the
typically increasing number of inequality state constraints with increasing network size, it
would be of interest to investigate appropriate constraint regularization methods for large
scale networks.
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