
Hybrid Continuous-Time
Deep Neural Networks for Robot
System Identification and Control

Vom Fachbereich Maschinenbau und Verfahrenstechnik

der Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte

Dissertation

von

Herrn

M.Sc. Jonas Benjamin Weigand

aus Neustadt an der Weinstrasse

Tag der mündlichen Prüfung: 24.10.2023

Dekan: Prof. Dr. rer. nat. Roland Ulber

Promotionskommision:
Vorsitzender: Prof. Dr.-Ing. Hans Hasse
1. Berichterstatter: Prof. Dr.-Ing. Martin Ruskowski
2. Berichterstatter: Prof. Dr.-Ing. Daniel Görges

D 386

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig verfasst und ohne uner-
laubte, fremde Hilfe angefertigt habe. Alle Ausführungen, die aus anderen Schriften
wörtlich oder sinngemäß übernommen wurden, sind kenntlich gemacht. Alle verwende-
ten Quellen sind im Literaturverzeichnis zitiert.

Zur sprachlichen und grammatikalischen Korrektur der gesamten Arbeit wurde die Soft-
ware Grammarly und die Software LanguageTool verwendet. Zur Plagiatsprüfung der
gesamten Arbeit wurde am 25.04.2023 die Software PlagAware eingesetzt.

Düsseldorf, den 27. November 2023

Jonas Benjamin Weigand

Für meine Freunde und Familie

Acknowledgements

I would like to express my sincere appreciation to Prof. Dr.-Ing. Martin Ruskowski, my
doctoral supervisor, for his guidance and expertise. His knowledge and passion for the
subject have been instrumental in shaping this research. I am thankful for his support
and the opportunity to work under his supervision.

I would like to extend my sincere appreciation to Prof. Dr.-Ing. Daniel Görges, the second
supervisor of my thesis. His guidance and support have been invaluable to the success
of my thesis. I would also like to acknowledge Dr.-Ing. habil. Achim Wagner, the head
of research, for his valuable guidance and support throughout the research process. I am
grateful for his continuous support, valuable insights, and commitment to my academic
journey. In addition, I would like to express my gratitude to Prof. Dr.-Ing. Hans Hasse
for taking over the chairmanship of the doctoral committee.

Regarding the robotics topic, I am particularly grateful to Julian Götz and Jonas Ulmen
for their contributions to the development and validation of the robot controller. Their
insights and dedication have greatly enhanced the quality of this research. Furthermore, I
would like to extend my appreciation to the team of individuals who played a vital role in
the development, implementation, and testing of the industrial robot. These include in al-
phabetical order Dr.-Ing. habil. Achim Wagner, Aleksander ’Sasha’ Sidorenko, Alexandre
Janot, Andreas Wagner, Björn Dietrichs, Christopher Lippert, Florian Wendling, Gajanan
Kanagalingam, Joachim Spangenberg, Jonas Ulmen, Julian Götz, Leon Hensel, Magnus
Volkmann, Marco Sprenger, Prof. Dr.-Ing. Martin Ruskowski, Nigora Gafur, Niklas Ha-
gen, Patrick Kremser, Rüdiger Ruppert, Sebastian Harttig, Sergej Gertje, Simon Lamoth,
Stephan Belz, Sven Varelmann, William Motsch, and Xiaohai Wang.

Regarding the data-based methods, I am grateful to Magnus Volkmann for his contri-
butions to our first publications and Prof. Dr.-Ing. Martin Ruskowski for his scientific
guidance throughout the scientific process. Special recognition goes to Gerben Beintema,
Jonas Ulmen, Prof. Dr.-Ing. Daniel Görges, Asst. Prof. Roland Tóth, Asst. Prof.
Maarten Schoukens, and Prof. Dr.-Ing. Martin Ruskowski for their collaboration on the
topic of state derivative normalization. Their expertise and insights have significantly
enriched my understanding of this phenomenon. Furthermore, I would like to acknowl-
edge Dr.-Ing. Michael Deflorian for his doctoral thesis. His work laid the groundwork
for my research, and I am grateful for his contributions. I would also like to thank Vas-

silios Yfantis for insightful discussions regarding the stability constraints. I extend my
gratitude to Julian Raible and Nico Zantopp for their theses on continuous-time neural
networks, which have provided valuable insights and perspectives in the development of
this research. Together with Dr.-Ing. Demir Ozan, Dr.-Ing. Adrian Trachte, Dr.-Ing.
habil. Achim Wagner and Prof. Dr.-Ing. Martin Ruskowski, we published a great paper
on hybrid data-driven inverse control. I would like to express my gratitude to Jonas Ul-
men and Gajanan Kanagalingam for many invaluable scientific discussions until late after
midnight. Your insights and perspectives have greatly enriched my research, and I am
thankful for the intellectual exchange we have had.

I would like to extend my heartfelt gratitude to my dear friends, Dorian Hargarten, Lukas
Weiner, Malte Weirauch, Matthias Sawatzski, Nils Habermehl, Sebastian Raffauf, and
Tobias Reinmuth. Their unwavering support, encouragement, and friendship have been
invaluable throughout my academic journey. I would like to express my special thanks
to Jonas Ulmen, Lukas Weiner, and Sebastian Raffauf for their diligent proofreading of
the thesis. Their keen attention to detail and constructive feedback have significantly
improved the clarity and quality of this work. I am truly grateful for their time and effort
in helping me refine my ideas and enhance the overall presentation.

I would like to take a moment to express my heartfelt appreciation to my family, grandpar-
ents, and my partner for their unwavering love, encouragement, and support throughout
my academic journey. I am truly fortunate to have such a loving and supportive family,
grandparents, friends, and partner. Thank you for always being there for me, for celebrat-
ing my successes, and for being my pillars of strength during difficult times. I am eternally
grateful for your love and support.

To all those mentioned above, as well as anyone else who has contributed to this thesis in
any way, I offer my sincere thanks. Your support and collaboration have been instrumental
in the successful completion of this work.

Table of Contents

Abstract I

Kurzfassung II

List of Abbreviations III

1 Introduction 1
1.1 Problem Definition . 3
1.2 Objectives . 6
1.3 Approach . 7

2 Foundations of Physical Robot Modeling and Control 9
2.1 State-of-the-Art Literature Robotic Modelling and Control 9

2.1.1 Robot Machining . 9
2.1.2 Nonlinear Flexible Joint Model . 10
2.1.3 Robot Parameter Identification . 11
2.1.4 Nonlinear Robot Control . 12

2.2 Nonlinear Robot Model . 13
2.2.1 Kinematic Model . 13
2.2.2 Rigid Joint Model . 13
2.2.3 Rigid Joint Feed-Forward Controller 14
2.2.4 Friction Model . 14
2.2.5 Inertia, Coriolis, Centripetal, and Gravitational Model 15

3 Foundations of Continuous-Time Neural Networks 17
3.1 State-of-the-Art Literature Neural Networks 17

3.1.1 System Identification with Neural Networks 17
3.1.2 Discrete-Time Neural Networks . 18

3.2 General Form of Continuous-Time Neural Networks 20
3.3 ODE Configuration . 22

3.3.1 Explicit Fixed-step Runge-Kutta Solvers 22
3.3.2 Euler Neural Networks . 23
3.3.3 Runge-Kutta Neural Networks . 24

3.3.4 Neural Ordinary Differential Equations 25
3.4 Neural Network Configuration . 26

3.4.1 Activation Functions . 27
3.4.2 Model Ensemble . 29

3.5 Training Configuration . 30
3.5.1 Loss Functions . 30
3.5.2 Inequality Barrier Methods . 33
3.5.3 Equality Barrier Methods . 34
3.5.4 Reduction of Overfitting . 35
3.5.5 Forecast Horizon . 37
3.5.6 Discretize-then-Optimize vs. Optimize-then-Discretize 39

4 Physical Robot Model and Control 41
4.1 Advanced Nonlinear Robot Model . 41

4.1.1 Elastic-Joint Model . 41
4.1.2 Stiffness Model . 42
4.1.3 Advanced Inertia, Coriolis, Centripetal and Gravitational Model . . 45
4.1.4 Hydraulic Weight Counterbalance 46
4.1.5 Advanced Friction Model . 48

4.2 Friction Parameter Estimation . 49
4.2.1 Identification Algorithm . 49
4.2.2 Design of Experiments . 51
4.2.3 Experimental Setup . 52
4.2.4 Single Batch Identification . 53
4.2.5 Computational Efficiency of Multi Batch Identification 57

4.3 Robot Control . 59
4.3.1 Control Structure . 59
4.3.2 Feedback Controller using Secondary Encoders 62
4.3.3 Flatness-based Feed-Forward Controller 63

4.4 Originality and Background . 65

5 Continuous-Time Neural Networks 67
5.1 State Derivative Normalization . 67

5.1.1 Normalization Definition . 68
5.1.2 Normalization Factor Estimation 71
5.1.3 Empirical Normalization Results 74

5.2 Stability Constraints . 80
5.2.1 Empirical Stability Observation . 80
5.2.2 Preliminaries for Stability . 85
5.2.3 Existence and Uniqueness of Equilibrium 86

5.2.4 Constraints on the Neural Network Parameters 87
5.2.5 Weak Stability Method . 89
5.2.6 Empirical Stability Results . 90
5.2.7 Additional Methods to Improve Model Stability 91

5.3 Demonstration of Continuous-Time Memory Efficiency 92
5.3.1 Discrete-Time Baseline . 92
5.3.2 Continuous-Time Baseline . 94
5.3.3 Baseline Comparison . 96

5.4 Originality and Background . 100

6 Comparison of Physical, Data-based, and Hybrid Models 103
6.1 Design of Experiments . 103
6.2 Model Configuration . 111

6.2.1 Physical Model Configuration . 111
6.2.2 Data-based Model Configuration 111
6.2.3 Hybrid Model Configuration . 113

6.3 Experimental Results . 117
6.3.1 Comparison of Robot Model Accuracy 117
6.3.2 Comparison of Robot Path Accuracy 121
6.3.3 Comparison of Robot Model Safety 127

7 Summary and Outlook 131

Appendix 137
A Proof of Stability Theorem . 137
B Technical Robot Details . 141

B.1 Dimensions and Limits . 141
B.2 Robot Controller Layout . 143
B.3 Sensor Specification . 146
B.4 Physical Robot Model Parameters 148

C Additional Experiments Physical Model 149
C.1 Simulation Results . 149
C.2 Experimental Results . 154
C.3 Improvements Based on Experimental Results 159

D Additional Experiments Data-based Model 161
E Source Code . 168

E.1 Dynamic Model Update . 168
E.2 Advanced Friction Flatness-based Feed-forward Control 169
E.3 Feed-Forward Controller Code . 171
E.4 Weak Stability Barrier . 175

E.5 Differential Algebraic Equation Barrier 176

Bibliography 179
Articles and Monographs . 179
Own Publications . 194
Supervised Student Thesis . 195

Curriculum Vitae 198

I

Abstract

Industrial robots are vital in automation technology, but their limitations become evi-
dent in applications requiring high path accuracy. This research focuses on improving the
dynamic path accuracy of industrial robots by integrating additional sensor technology
and employing intelligent feed-forward control. Specifically, the inclusion of secondary en-
coder sensors enables explicit measurement and compensation of robot gear deformations.
Three types of model-based feed-forward controllers, namely physics-based, data-based,
and hybrid, are developed to effectively counteract dynamic effects.

Firstly, a physics-based feed-forward control method is proposed, explicitly modeling joint
deformations, hydraulic weight compensation, and other relevant features. Nonlinear fric-
tion parameters are accurately identified using a globally optimized design of experiments.
The resulting physics-based model is fully continuously differentiable, facilitating its trans-
formation into a code-optimized flatness-based feed-forward control.

Secondly, a data-based feed-forward control approach is introduced, leveraging a
continuous-time neural network. The continuous-time approach demonstrates enhanced
model generalization capabilities even with limited data. Furthermore, a time domain
normalization method is introduced, significantly improving numerical properties by con-
currently normalizing measurement timelines, robot states, and state derivatives. Based
on previous work, a method ensuring input-to-state and global-asymptotic stability is pre-
sented, employing a Lyapunov function. Model stability is enforced already during training
using constrained optimization techniques. Moreover, the data-based methods are evalu-
ated on public benchmarks, extending its applicability beyond the field of robotics.

Both the physics-based and data-based models are combined into a hybrid model. Com-
parative analysis of the three models reveals that the continuous-time neural network yields
the highest model accuracy, while the physics-based model delivers the best safety prop-
erties. The effectiveness of all three models is experimentally validated using an industrial
robot.

II

Kurzfassung

Industrieroboter sind in der Automatisierungstechnik weit verbreitet. Für Anwendungen,
welche eine hohe Präzision erfordern, stoßen Industrieroboter jedoch an ihre Grenzen.
Diese Arbeit verfolgt den Ansatz, die dynamische Bahngenauigkeit von Industrierobotern
durch zusätzliche Sensorik und eine intelligente Vorsteuerung zu verbessern. Dabei wird
eine abtriebsseitige Sensorik integriert, welche die Verformung von Robotergetrieben ex-
plizit messen und kompensieren kann. Um darüber hinaus dynamischen Effekten entgegen
zu wirken, wird eine physikbasierte, eine datenbasierte und eine hybride Vorsteuerung en-
twickelt und evaluiert.

Erstens wird eine physikbasierte Vorsteuerung entwickelt, welche explizit die Gelenkverfor-
mungen, den hydraulischen Gewichtsausgleich und andere relevante Eigenschaften mod-
elliert. Nicht lineare Reibungsparameter werden durch eine global optimierte Versuchs-
planung präzise identifiziert. Das nicht lineare physikbasierte Modell ist vollständig stetig
differenzierbar und kann dadurch in eine codeoptimierte flachheitsbasierte Vorsteuerung
überführt werden.

Zweitens wird eine datenbasierte Vorsteuerung entwickelt, welche auf einem zeitkontinuier-
lichen neuronalen Netz basiert. Der zeitkontinuierliche Ansatz zeigt eine Verbesserung
der Generalisierungsfähigkeit, selbst bei einer begrenzten Datenmenge. Erweitert wird
der Ansatz um eine Normalisierungsmethode im Zeitbereich, welche die numerischen
Eigenschaften deutlich verbessert, in dem die Zeitpunkte der Messungen, die Zustände
des Roboters sowie deren Abteilungen gemeinsam normalisiert werden. Aufbauend auf
Vorarbeiten wird zudem eine Methode zur Garantie von Input-To-State und Global-
Asympotischer-Stabilität vorgestellt, welche auf einer Lyapunov Funktion basiert. Mittels
beschränkter Optimierungsverfahren kann die Stabilität bereits während des Trainings
garantiert werden. Die Arbeiten zur datenbasierten Modellierung werden zusätzlich auf
Anwendungen getestet, welche über den Bereich der Robotik hinaus gehen.

Das physikbasierte und datenbasierte Modell werden zu einem hybriden Modell kom-
biniert. Der Vergleich der drei Modelle zeigt, dass das zeitkontinuierliche neuronale Netzw-
erk eine überlegene Modellgenauigkeit liefert, während das physikbasierte Modell hervor-
ragende Sicherheitseigenschaften aufweist. Die Effektivität aller drei Modelle wird anhand
eines Industrieroboters experimentell nachgewiesen.

III

List of Abbreviations

AD Automatic Differentiation . 6
AIC Akine Information Criterion . 27
BIC Bayes Information Criterion . 27
BLA Best Linear Approximation . 26
BPTT Backpropagation Through Time . 18
CAD Computer Aided Design . 15
C-FB Conventional Feedback Controller . 149
CNC Computerized Numerical Control . 1
CNF Continuous Normalizing Flows . 17
CPU Central Processing Unit . 52
CTC Computed Torque Control . 59
CTS Cascaded Tank System . 67
DAE Differential Algebraic Equations . 22
DFT Discrete Fourier Transform . 73
Disc-Opt Discretize-then-Optimize . 27
DoF Degrees of Freedom . 7
EMPS Electro Mechanical Positioning System . 67
FB-FF Flatness-Based Feed-Forward Controller 149
FEM Finite Element Methods . 15
GAS Global Asymptotic Stability . 18
GRU Gated Recurrent Units . 20
HWC Hydraulic Weight Counterbalance . 3
IMU Inertial Measurement Unit . 20
ISS Input to State Stability . 18
LMI Linear Matrix Inequalities . 137
LSTM Long Short Term Memory . 17
LTC Liquid Time Constant . 17
MAE Mean Absolute Error . 31
MAPE Mean Absolute Percentage Error . 31
MB-FB Model-Based Feedback Controller . 149
MB-FF Model-Based Feed-Forward Controller . 154
MLP Multi Layer Perceptron . 92
MPC Model Predictive Control . 39
MSE Mean Squared Error . 22
NARX Nonlinear Autoregressive with Exogenous Input 18

IV

NCDE Neural Controlled Differential Equations 20
NLSS Nonlinear State-Space Model . 78
NN Neural Network . 4
NODE Neural Ordinary Differential Equations . 6
NRMSE Normalized Root Mean Squared Error 31
ODE Ordinary Differential Equations . 8
OPC-UA Open Platform Communications Unified Architecture 143
Opt-Disc Optimize-then-Discretize . 39
PD Proportional Derivative . 13
PID Proportional Integral Derivative . 12
PLC Programmable Logic Controller . 127
ReLU Rectified Linear Function . 72
R-FF Rigid-Model Feed-Forward Controller . 149
RK Runge-Kutta . 18
RKNN Runge-Kutta Neural Networks . 17
RMSE Root Mean Squared Error . 31
RNN Recurrent Neural Network . 17
ROS Robot Operating System . 4
RPTU Rheinland-Pfälzische Technische Universität 2
𝑅2 Coefficient of Determination . 31
SDN State Derivative Normalization . 67
SE Secondary Encoders . 1
SMAPE Smoothed Mean Absolute Percentage Error 31
TCP Tool Center Point . 1
TSEM Truncated Simulated Error Minimization 26
VJM Virtual Joint Method . 11

1

1 Introduction

Industrial robots are a key element of automation technology. According to ISO 8373
[21] an industrial robot is defined as “automatically controlled, reprogrammable multipur-
pose manipulator programmable in three or more axes”. Typical applications of industrial
robots include welding, painting, assembly, pick-and-place tasks, packaging, and palletiz-
ing. In the year 2022, 3.02 million industrial robots were in operation worldwide [IF22].
Industrial robots are mainly designed for good repeatability but not for high-precision
tasks, such as milling or robot machining. An example of an industrial robot in a ma-
chining cell is given in Fig. 1.1. The main drawback of using an industrial robot in
machining processes is its low stiffness, for example, caused by joint elasticity between the
actuators and the driven links [Fr14]. As a result, conventional Computerized Numerical
Control (CNC) machines, possessing high stiffness and simple kinematics, can still not be
replaced by industrial robots for machining tasks. Furthermore, the low and highly pose-
dependent overall stiffness of industrial robots, up to 100 times less than conventional
CNC machines, can lead to vibrations and chattering effects so that the machining quality
suffers [Br18; Yu18].

Nevertheless, robot machining is an interesting field of application, as the long reach of
the robot enables operations on large workpieces. CNC machines, on the contrary, can
typically only process smaller workpieces. The low stiffness and low robot’s Tool Center
Point (TCP) path accuracy are core hurdles for enabling robot machining applications
with industrial robots.

One possibility to improve path accuracy is by utilizing additional sensors, which measure
path deviations in terms of joint deformations and enhance the robot control software.
Compared to hardware upgrades for drivetrain and mechanical components a software-
based approach is more cost-effective. Besides traditional control design approaches, ma-
chine learning techniques made substantial progress in the past decades, including system
identification and control.

A sensor suitable for measuring joint deformations is the so-called Secondary Encoders
(SE). Attaching SE to the link side can reduce the oscillatory behavior and chattering
effects by providing sensor information to a feedback controller. An improvement of static
precision by a factor of 10 was achieved in [De11c] using SE. Drive-based damping utilizing
SE was developed in [VKL17]. Nevertheless, the approach is associated with high costs,

2 Chapter 1: Introduction

Figure 1.1: Picture of a robot machining cell at the Chair of Machine Tools and
Control Systems, Rheinland-Pfälzische Technische Universität (RPTU)
Kaiserslautern-Landau.

high implementation effort, communication delays, and sensor noise [Sc14]. Furthermore,
reducing dynamic deflections due to time-varying dynamical effects remains a challenge for
feedback controllers. Knowledge of nonlinear deterministic effects, such as pose-dependent
stiffness, lost motion, backlash, and friction cannot be accounted for in the feedback control
loop.

To improve path accuracy, a sophisticated feedback and feed-forward controller is a promis-
ing solution. To build model-based feed-forward controllers, an accurate and reliable robot
model is required. The feedback control can compensate for external forces and unknown
disturbances. The feed-forward control can compensate for deterministic dynamic effects
in advance. Any model errors might lead to path deviations, which need to be additionally
handled by the feedback control. In contrast, if the feed-forward model is accurate, less
path deviation occurs in the first place. Moreover, the feedback control can be designed
stiffer to compensate for external forces even better.

The problem of designing a proper model-based feed-forward controller is broader than
solely considering its contribution to path accuracy. As it is a safety-critical task, the
reliability of the controller is a core criterion, too. Furthermore, in order to extend the
developed results to different industrial robots, development and adaptation effort needs
to be considered, too.

Two feed-forward model types are subject to this thesis, a physical model and a data-based
model. An additional hybrid model combines the physical and data-based one. Each type
brings its advantages and disadvantages [Sc16a]. A brief look at the shortcomings of

1.1 Problem Definition 3

physical and data-based models is presented in the following.

1.1 Problem Definition

Shortcomings of Physical Robot Models

Most state-of-the-art physical models are based on rigid joints. An extension to flexible
joints is at least required for model-based development of the SE-based feedback control
loop. Although a flexible joint model is not obligatory for feed-forward control, it can
greatly improve its performance by incorporating additional physical knowledge. Flex-
ible joint models can account for gearbox deformations, such as backlash, lost motion,
and linear stiffness. Although flexible joint models can predict the robot’s state accu-
rately, state-of-the-art flexible joint models are not continuously differentiable. Conse-
quently, these models are detrimental to the downstream software architecture. Applying
the model in parameter optimization algorithms is at least with all gradient-based op-
timizers elaborately. Furthermore, code generation is beneficial to derive an optimized
feed-forward controller. Typical symbolic code generation tools can hardly cope with a
non-differentiable source code.

The Hydraulic Weight Counterbalance (HWC) attached to the second joint of the robot
has a significant impact on the effective gravitational load of this axis. However, the
literature lacks geometric and fluid dynamic models to account for this influence. Model
errors of the second joint are due to the long lever especially severe in terms of additional
path deviations.

The friction of the robot is temperature-dependent and therefore potentially changes at
run time. Several approaches have been made to address this issue [Ku08]. However,
most approaches are predetermined to specific model formulations. From a software de-
velopment perspective, an algorithm that can optimize for arbitrary model parameters
at runtime is beneficial. This feature would decouple robot modeling from robot model
parameter identification. However, this task is very demanding, as it requires very efficient
optimization strategies, including model formulation and optimization algorithm, and a
sufficient excitation of parameters.

Finally, a feed-forward control algorithm is required, which incorporates the advanced
nonlinear model. In an ideal setting, this algorithm is computationally efficient and im-
plemented on a low-level controller. In the best case, the feed-forward control algorithm is
given in a single, compilable programming language, without additional software library
dependencies or any approximations of the nonlinear model.

4 Chapter 1: Introduction

Shortcomings of Data-based Robot Models

Data-based models are an alternative to physical models. However, data-based models
must be handled with care when applied directly as control, as extrapolation might cause
safety issues. Furthermore, data-based models are not 100% explainable like first-principle
expert models are. In addition, applying the data-based model to the robot in a sample
time of four ms makes human validation of each prediction impossible. For these three
reasons - uncertain extrapolation, lack of model explainability, and unfeasible human
validation at runtime - safety issues are one major shortcoming of data-based models
applied to industrial robots.

Besides safety issues, data-based approaches potentially suffer from requiring large
amounts of training data. Data acquisition is time-consuming and expensive. If the
data is provided by another research group or direct access to the demonstrator is not
possible, collecting additional data is even infeasible. In general, providing methods which
can create valuable models using few data is desirable.

Furthermore, data is in general not collected in a uniform time grid, yet discrete-time
models require uniform data collection. Especially for non-real-time systems such as the
robot middleware Robot Operating System (ROS), this issue is present. Therefore, some
data preprocessing such as interpolation, missing value information estimation, or partial
data deletion is required. However, these methods manipulate the data, potentially losing
and adding artificial information. Moreover, in general, the non-availability of measure-
ments is also a piece of information, which is erased using these methods. Models which
could handle arbitrary time grids are beneficial.

An important choice to address the issues mentioned before is the choice of the data-based
model architecture: discrete-time or continuous-time Neural Network (NN). Discrete-time
models directly predict the succeeding state given the current measured state. Continuous-
time models predict the change rate based on the current measured state, analog to dif-
ferential equations. Regarding the issue of irregularly collected data, continuous-time
models shine. Continuous-time models can directly handle any, including irregular, time
grids [An23; De20; LH20; RCD19].

Yet, discrete-time models are typically employed for robot manipulator control [Ji18;
MAS03]. This is beneficial if the data is measured at discrete-time steps, e.g., every
millisecond for a technical process. Real-time digital control devices work at discrete,
usually uniform, time grids. However, the real world states are continuous. Discrete-time
models structurally ignore that technical processes are modeled as differential equations
and that objects in the real world obey the laws of physics. Physical expert models are of-
ten defined as change rates and are not just a time-independent state without any relation
to its history.

1.1 Problem Definition 5

Continuous
Real World

Discrete
Data

Discrete
Computation

Discrete
Commands

Discrete
Inference

Discrete or
Continuous

Model?

Figure 1.2: Discrete and continuous data-based workflow.

Consequently, the digital tools (data and computational resources) are discrete-time, yet
the ground-truth underlying dynamics are continuous-time. This leads to motivation for
both discrete-time and continuous-time models. Discrete-time models are often easier to
implement, as hardware and data sets are usually already in discrete-time. Continuous-
time models require additional algorithms and transformations, yet the model space is
closer to the ground-truth process. The data-based workflow is depicted in Fig. 1.2. The
real world process is typically in continuous-time. Data acquisition, model computation,
model inference, and control command are in discrete-time, if a digital controller is uti-
lized. So the question arises if the model is discrete-time, thus closer to the platform it is
implemented on, or continuous-time, and closer to the ground truth process it is supposed
to model.

The distinction of the model time domain is not only about model precision accuracy. It
affects also more than just algorithmic complexity. The model time domain, e.g., discrete-
time or continuous-time, highly influences attributes such as coping with the integration
of expert knowledge, irregularly sampled data, memory efficiency, long-term forecast ac-
curacy, and data normalization.

Yet, continuous-time NN faces issues to be addressed. Long-term forecast accuracy is
troublesome. Forecasting beyond the training horizon, which is always limited to available
computational resources, requires extrapolation in time. In this case, data-based models
can significantly lose prediction accuracy over the forecast horizon.

Furthermore, given discrete-time data, a normalization of the data in the value domain is
sufficient. Given continuous-time NN, the output is the state derivative and is therefore
directly linked to the time domain. Literature does not utilize a normalization in value
and time domain, which results in untapped potential. Only the importance of data
normalization in the value domain to improve numerical properties is well known in the
literature.

In the case of a few training data, continuous-time models are, by default, more effi-
cient than the discrete-time pendant. This routes back to the time continuity prior to
continuous-time models. Defining a prediction as a change rate rather than estimating in-

6 Chapter 1: Introduction

dependent states reflects the restricted stiffness of gradients in many real world dynamical
processes.

Finally, the literature lacks a recent survey of continuous-time NN for system identification.
Early progress with continuous-time NN, such as [WL98], was not vigorously continued. In
2018, [Ch18] gained much attention, introducing Neural Ordinary Differential Equations
(NODE). A general survey on NODE and its variants has been presented in the Ph.D.
thesis [Ki22]. Yet, the literature lacks a survey applying continuous-time NN in system
identification settings for industrial robot control.

1.2 Objectives

The objective of this thesis is to improve the trajectory-tracking accuracy of an industrial
robot. Therefore, a model-based and sensor-based approach are combined. The feedback
control is upgraded by integration of link side sensors, Secondary Encoders (SE), which
explicitly measure gearbox deformations. The feed-forward control is improved by two
methods, a physical and a data-based model. An additional hybrid model is derived to
combine both. All three models are compared and evaluated regarding path accuracy,
implementation effort, and safety. The key contributions made to the physical model
address the shortcomings discussed before.

• Differentiable flexible joints. A continuously differentiable formulation of the
flexible joint model is developed. This enables the use of downstream Automatic
Differentiation (AD) tools to solve the symbolic differential equations and to decrease
computational demands.

• Hydraulic counter weight. A nonlinear HWC model is derived to increase the
accuracy of the gravitational loads acting on the second joint. It is based on hydraulic
and geometric modeling.

• Parameter identification. A parameter identification procedure is designed as
two global, nonlinear optimization problems: One is to determine the ideal design of
experiments and obtain reference trajectories that optimally excite the robot friction
parameters. Thereafter, using a measurement based on these trajectories, the friction
parameters are identified in a second optimization problem.

• Flatness-based feed-forward control. A flatness-based feed-forward control is
derived, which incorporates the nonlinear robot model without approximations. Due
to the continuous differentiability, symbol code generation tools are applied to gen-
erate low-level, performance-optimized C++ code, without external software library
dependencies.

1.3 Approach 7

Regarding the data-based model, the core contributions are stated in the following. To
the best of the authors’ knowledge, continuous-time neural networks have not been ap-
plied to industrial robot feed-forward control yet. One work considers a comparison of
machine learning approaches, including a continuous-time NN, for system identification of
a 3 Degrees of Freedom (DoF) anthropomorphic robotic manipulator [EK99]. However,
[EK99] does not consider a 6 DoF robot, an industrial robot, or the application of NN for
feed-forward control. Many works in the literature address robot control with discrete-
time neural networks [Ji18; MAS03]. However, as discussed before, discrete-time neural
networks account for severe drawbacks regarding memory efficiency, handling of irregularly
sampled data, time-domain normalization, long-term forecast accuracy, and the integra-
tion of expert knowledge. This thesis contributes to addressing the three last-mentioned
shortcomings.

• State Derivative Normalization. To improve the numerical properties of
continuous-time NN, a state derivative normalization method is presented. This
transforms data collected in a sample time suited for the real-time system, to a time
grid suitable for the model. It does not affect model execution time. It deploys and
evaluates the NN on a virtual time grid rather than applying the measurement time
grid directly.

• Stability properties and long-term forecast accuracy. A benefit of the simi-
larity between continuous-time models and the well-understood system theory is the
applicability of stability theorems. Based on a Lyapunov approach, combined with
a constraint optimization problem, model stability for long-term forecast horizons
can be analytically guaranteed. This holds for noisy measurements and any forecast
horizon length and can already be enforced during model training.

• Explainability and expert knowledge. As a result of the resemblance between
continuous-time models and the ground-truth dynamics, integration of expert knowl-
edge is enabled on a parameter level of the data-based models. This reinforces hybrid
models, which combine expert knowledge and data-based models. Besides increased
explainability, hybrid models can explicitly contribute to model safety.

1.3 Approach

The following chapter 2 reflects state-of-the-art concerning physical robot modeling. First,
a literature overview with a focus on robot machining, elastic joint models, parameter
identification, and robot control is given in section 2.1. This embeds the contributions
made in the following chapters in the literature. Second, in section 2.2, a state-of-the-art
nonlinear rigid joint model is presented. This serves as a baseline and starting point for

8 Chapter 1: Introduction

the improved robot model and control in chapter 4.

Chapter 3 reflects the state-of-the-art of system identification with neural networks. Simi-
lar to the previous literature chapter, it starts with an overview in section 3.1, which focuses
on discrete-time and continuous-time approaches. Then, in section 3.2, a mathematical
introduction to continuous-time NN is presented. Special emphasis is given regarding the
Ordinary Differential Equations (ODE) configuration in section 3.3, the NN model archi-
tecture in section 3.4, and the training configuration in section 3.5. The most important
aspects of continuous-time NN for system identification are defined, and the possibilities
regarding each aspect are presented. The advantages and disadvantages of design choices
are discussed, and recommendations are derived. This part aims to guide new researchers
and developers into the field of system identification using continuous-time NN.

Chapter 4 defines the advanced physical nonlinear robot model. First, several components
such as a continuously differentiable flexible joints model, a HWC model, and an advanced
friction model are developed in section 4.1. Second, using an optimization-based design
of experiments, the friction model parameters are fitted to robot measurements in sec-
tion 4.2. Finally, in section 4.3, a flatness-based feed-forward control structure is derived,
which computes the motor torque using the complete nonlinear model. The feed-forward
control complements a feedback control utilizing SE, which can explicitly measure joint
deformations.

Chapter 5 addresses data-based models. Section 5.1 upgrades continuous-time NN with
state derivative normalization. State derivative normalization defines methods to normal-
ize the hidden state and hidden state derivative. It improves the numerical properties of
continuous-time models. Section 5.2 derives stability constraints to guarantee model stabil-
ity for long forecast horizons. The method exploits the similarity between continuous-time
NN and Lyapunov stability and combines this with constraint optimization. Section 5.3
demonstrates the superior generalization capabilities for robot identification given few
training data of continuous-time versus discrete-time NN. Both models, continuous-time,
and discrete-time, are directly comparable as the data processing, the training pipeline,
and the model architecture are almost identical. The only difference is the embedding of
the discrete-time architecture in an Eulerscheme to obtain the continuous-time model.

In chapter 6, the physical, data-based, and hybrid models are applied to the industrial
robot. First, the design of experiments is explained in section 6.1. Then, configurations
for all three model types are derived in section 6.2. Finally, in section 6.3, all models are
compared on directly comparable experiments. The models are evaluated regarding model
accuracy, robot path accuracy, and model safety.

A summary and concluding remarks are given in chapter 7.

9

2 Foundations of Physical Robot
Modeling and Control

This chapter defines first-principle physical models for industrial six-joint robots. A lit-
erature review on robot machining, flexible joint modeling, parameter identification, and
robot control is given in section 2.1. In section 2.2, the mathematical baseline of a state-
of-the-art nonlinear robot model is presented. Section 2.2 serves as starting point for the
advanced modeling presented in chapter 4 of this thesis.

2.1 State-of-the-Art Literature Robotic Modelling
and Control

2.1.1 Robot Machining

Industrial robots are highly flexible due to their open and complex kinematic chain. How-
ever, they are mainly designed for good repeatability but not for high-precision tasks,
such as milling [Ol12] or robot machining (see Fig. 2.1). The main drawback of using
an industrial robot in machining processes is the lack of position accuracy caused by low
stiffness, meaning low Eigenfrequencies and joint elasticity between the actuators and the
driven links [Fr14; Sc14]. As a result, conventional CNC machines, possessing high stiff-
ness and simple kinematics, can still not be replaced by industrial robots for machining
tasks [ISA15; WKK18]. An analysis of the sources of errors leading to low path accuracy
is presented in [Sc16a]. Furthermore, the low and highly pose-dependent overall stiff-
ness of industrial robots, up to 100 times less than conventional CNC machines, can lead
to vibrations and chattering effects so that the machining quality suffers [Br18; VKL17;
Yu18].

In addition, the influence of the placement of a workpiece concerning the robot can lead to
different machining results due to the pose-dependent stiffness of industrial robots [LZD17].
Researchers consider improving the structure of the robot, which leads to a hardware and
therefore cost-intensive approach [Ve15]. Two different methods to increase the machining
accuracy of industrial robots are reported in the literature, either to use a model-based
approach accounting for compliance with flexible joints or to use a sensor-based approach

10 Chapter 2: Foundations of Physical Robot Modeling and Control

Figure 2.1: Exemplary picture of robot machining.

by tracking deformations [Fr17; Ol12; Sc14; WZF09]. The sensor-based approach can lead
to a higher position accuracy than a model-based approach [Sc14].

Attaching SE to the link side can reduce the oscillatory behavior and chattering effects by
providing sensor information to a feedback controller. An improvement of static precision
by a factor of 10 was achieved in [De11c] using SE. Drive-based damping utilizing SE
was developed in [VKL17]. However, the approach is associated with high costs, high
implementation effort, communication delays, and sensor noise [Sc14]. However, reducing
dynamic deflections due to time-varying dynamical effects remains a challenge that a
model-based approach can only handle. By applying the model-based approach, nonlinear
effects, such as time-variant stiffness, lost motion, backlash, and friction, can be accounted
for. The model can be applied to design an appropriate model-based control law for the
high-precision operation of the industrial robot.

2.1.2 Nonlinear Flexible Joint Model

Modeling joint flexibility involves considering stiffness and friction between the motor and
the driven link and the effects occurring in transmission drives. High-precision transmis-
sion drives, such as cycloidal gears and harmonic drives, are typically used for industrial
robots to meet high-precision requirements. Simplified models considering linear stiffness
and damping between the motor and the driven link are used in [AOH07; DL98; Me20;
Sp87; WL92]. An overview of further simplified models can be found in [DB16].

Nonlinear modeling approaches account for torsional compliance by considering hystere-
sis effects [CH17; Hu20; Kl14; RHB09]. Hysteresis behavior results from the structural
damping of transmission elements and their piecewise elastoplastic properties [RHB09].
It was shown that hysteresis effects could significantly contribute to a low path accuracy

2.1 State-of-the-Art Literature Robotic Modelling and Control 11

[CH17]. The authors point out that it primarily impacts the positional error of the base
joint due to the large lever arm. Moreover, hysteresis behavior, which has a bidirectional
behavior, leads to alternating stresses in the gears [Br16]. The authors develop a numerical
method for backlash identification with the help of experimental data from laser track-
ers and recorded control data. The nonlinear characteristics of lost motion and backlash
in transmission drive considerably affect lower path accuracy in machining tasks. Lost
motion is defined as the torsion angle at the midpoint of the hysteresis curve, where not
all tooth flanks of the gearbox are in full contact. In contrast, the backlash is defined as
the angle difference in the output shaft at zero output torque, where gear teeth are not
in contact [HEV18; TPA16]. The authors in [HEV18] show a considerable improvement
in the milling accuracy of aluminum by taking into account backlash effects and all joint
elasticities.

Moreover, it was shown in [Ya16] that backlash leads to the accumulation of positioning
errors while joints change their rotation direction, leading to torque oscillations and, thus,
earlier gear system failure. However, the literature on modeling lost motion effects is
scarce. The impact of the backlash caused by transmission drives was recognized by
[KG97] in his experimental study of harmonic drive, showing that torque transmission
has a nonlinear characteristic and the input torque cannot be entirely transmitted to the
driven link. The impact of backlash is also investigated and modeled in [Fr14; YYH15].

Another extensive work concerning nonlinear dynamical models and identification of elas-
tic robot joints with hysteresis and backlash effects is addressed in [RHB09]. Elasticities of
individual components have often been modeled using the Virtual Joint Method (VJM),
where the components are modeled by virtual springs located in joints [PKC11]. Addi-
tionally, it is essential to account for frictional torque as it can suddenly change direction
and the hysteresis can significantly contribute to very low accuracy [CH17]. One of the
recent studies modeling backlash for a planetary gear transmission and highlighting the
problem mentioned above is [YYH15].

2.1.3 Robot Parameter Identification

Robot identification is a topic that has been intensively investigated in the last four decades
[WWY10]. Moreover, recent years have witnessed a renewal of interest in this problem due
to a rapid increase in robotic hardware platforms capable of accurate model-based con-
trol, e.g., [JW21; WKS18]. Conventional approaches to the identification problem make
use of the linearity of the inverse dynamics model for the unknown parameters, and this
allows identification to be formulated as a least-squares problem, see [GDH01; GJV13;
JW21]. However, although this offline identification method has been validated on several
robots and benchmarks, it will no longer be applicable when friction exhibits nonlinear

12 Chapter 2: Foundations of Physical Robot Modeling and Control

characteristics. Furthermore, parameter-linear models lead to complicated physical feasi-
bility guarantees, which require nonlinear constraints, if possible. For example, enforcing
a positive definite inertia matrix usually requires nonlinear constraints, even if the model
is linear concerning these parameters [BTC18].

Identification of friction models has gained a lot of attention [HGG15; JL92; KG13].
The complex friction modeling includes viscous, Coulomb, and Stribeck effects, analytical
models, and load dependency. Appropriate identification procedures have been presented
[BIS06; KPM07]. Nevertheless, only a few works consider online identification, such as
in [Lä09]. As mentioned earlier, all other works consider dedicated, offline identification
procedures. Gautier [GK92] even argues that a dedicated, high energy-exciting trajectory
is crucial for a good identification process, which is not realizable in an online identification
setting. Although an offline identification procedure can capture time-varying effects by
modifying the dynamic model, online identification methods appear more convenient in
accounting for effects such as temperature-dependent friction coefficients. A comparison
of methods dedicated to payload identification is presented in [KGL07].

2.1.4 Nonlinear Robot Control

Enhancing trajectory tracking accuracy requires considering the most relevant dynamic
effects and designing a proper control law [MH08]. Chattering effects, which significantly
influence the surface quality in a milling process, can only be eliminated using a flexi-
ble model-based controller [KC19]. For the flexible model-based controller, the trajectory
should be continuously differentiable up to the 4𝑡ℎ-order, e.g., up to the jerk derivative.
In contrast, a 2𝑛𝑑-order trajectory is sufficient for rigid model-based controllers. A con-
tinuously differentiable trajectory can be computed, e.g., based on the dynamic model
or estimated by numerical differentiation, which is error-prone due to high sampling fre-
quencies, measurement noise, or model uncertainties. In [Ol12], a two-phase model-based
approach is applied to compensate for compliance and gearboxes kinematic errors. A local
identification was used to identify the joint’s stiffness, and a subsequent offline correction
method was used to improve the accuracy.

Spong [Sp87] was the first to show the global feedback linearization of the flexible joint
system, where all nonlinearities are in the control input range, leading to robust control
law. Many other control approaches emerged since then, such as controllers with gravity
compensation, energy shaping, Proportional Integral Derivative (PID) regulators with
semi-global stability properties, singular perturbation, backstepping, passivity, two-time
scale separation, and sliding mode techniques, which are summarized in [DB16].

The authors in [YP18] propose a robust adaptive control method for trajectory tracking
and online parameter estimation of a 6 DoF industrial robot. The proposed controller

2.2 Nonlinear Robot Model 13

differs from other controllers in the literature. It is designed in the robot’s end effector’s
task space to achieve better trajectory tracking accuracy than controllers designed in
joint space. The method significantly reduces trajectory tracking error compared to a
conventional Proportional Derivative (PD) controller. Similarly, the authors in [Me20]
show an improvement in the dynamic path accuracy of a robot manipulator in a machining
process, proposing a controller built on an independent joint control. A damping control
algorithm is designed and validated experimentally, based on velocity feedback using SE.
A state estimation extends the approach. With the proposed controller, it is possible to
systematically alter the stiffness and damping of the control system with the help of two
proportional gains. The authors in [Zh20] show that nonlinear modeling effects, such as
friction, and subsequent derivation of a model-based controller, can significantly improve
an industrial robot’s position and velocity accuracy.

2.2 Nonlinear Robot Model

2.2.1 Kinematic Model

This work considers a six-joint industrial robot. In particular, the demonstrator is a
KUKA KR300 R2500 ultra SE robot as presented in Fig. 4.12. The complete thesis refers
to this type of robot. Its kinematics is depicted in Fig. 2.2. The model is based on
generalized coordinates 𝑞𝑖 ∈ ℝ𝑁𝑄 , where 𝑁𝑄 stands for the number of DoF, with 𝑁𝑄 = 6
for the demonstrator. To simplify notion, a vector of coordinates 𝑞 = [𝑞1, 𝑞2, ..., 𝑞𝑁𝑄

] is
introduced.

On the six-joint manipulator, SE are mounted on the base, shoulder, and elbow joints,
e.g., joints 1, 2, and 3. The motor encoders of the first three joints are used for velocity
control only. Joints 4, 5, and 6 are not equipped with SE and apply motor encoders for
position and velocity control.

2.2.2 Rigid Joint Model

Details on the robot and control are given in previous works [WGR20]. The well-known
rigid body robot model

𝑀(𝑞) ̈𝑞 + 𝐶(𝑞, ̇𝑞) ̇𝑞 + 𝑔(𝑞) + 𝜏𝐹(̇𝑞) + 𝜏𝐻(𝑞) = 𝑈𝜏𝑀(𝑞, ̇𝑞) (2.1)

consists of the pose-dependent inertia matrix 𝑀(𝑞) ∈ ℝ𝑁𝑄×𝑁𝑄 , the centrifugal and Coriolis
matrix 𝐶(𝑞, ̇𝑞) ∈ ℝ𝑁𝑄×𝑁𝑄 , the vector of gravitational torques 𝑔(𝑞) ∈ ℝ𝑁𝑄 , the nonlinear

14 Chapter 2: Foundations of Physical Robot Modeling and Control

Figure 2.2: Kinematics of the KUKA KR300 R2500 ultra SE robot (Figure based on
[KU21]).

friction torque vector 𝜏𝐹(̇𝑞) ∈ ℝ𝑁𝑄 , the torque vector resulting from the Hydraulic Weight
Counterbalance (HWC), 𝜏𝐻(𝑞) ∈ ℝ𝑁𝑄 , the diagonal gearbox transmission matrix 𝑈 ∈
ℝ𝑁𝑄×𝑁𝑄 , 𝑈 = 𝑑𝑖𝑎𝑔(𝑢1, 𝑢2, ⋯ , 𝑢𝑁𝑄

) and the input torque transmitted from the electrical
motors 𝜏𝑀(𝑞, ̇𝑞) ∈ ℝ𝑁𝑄 . The HWC is introduced in section 4.1.4. It is not part of state-of-
the-art models. However, subsequent chapters utilize the rigid body robot model including
the HWC. For the state-of-the-art model, it is set to zero.

2.2.3 Rigid Joint Feed-Forward Controller

The rigid body inverse robot model required for control is

𝜏𝐹𝐹 = 𝑈−1 (𝑀(𝑞) ̈𝑞 + 𝐶(𝑞, ̇𝑞) ̇𝑞 + 𝑔(𝑞) + 𝜏𝐹(̇𝑞) + 𝜏𝐻(𝑞)) . (2.2)

Equation (2.2) is a constant mapping in which the output 𝜏𝐹𝐹 does not rely on previ-
ous motor torques. Considering the actual control architecture, the motor torque is not
completely discontinuous. Nevertheless, note that the motor torque is not a time function.

2.2.4 Friction Model

A nonlinear friction model accounting for viscous and Coulomb friction is applied

2.2 Nonlinear Robot Model 15

0.50.250−0.25−0.5

0.6

0.3

0

−0.3

−0.6

Angular velocity ̇𝑞 (rad/s)

Fr
ic

tio
n

to
rq

ue
𝜏 𝐹

(k
N

m
)

𝜏𝐹
̃𝜏𝐹

−0.02 0 0.02
−0.25

0

0.25

Figure 2.3: Coulomb and viscous friction model with discontinuous and continuous ap-
proximation, exemplary for joint 1

𝜏𝐹(̇𝑞) = 𝑓𝑣 ̇𝑞 + 𝑓𝑐tanh(𝑠𝑓 ̇𝑞), (2.3)

with the viscous friction coefficient 𝑓𝑣 ∈ ℝ𝑁𝑄 , the Coulomb friction coefficient 𝑓𝑐 ∈ ℝ𝑁𝑄 ,
the sign smoothness factor 𝑠𝑓 ∈ ℝ𝑁𝑄 . The smoothing is required for the derivation of the
flatness-based control. The function (2.3) for different values of Coulomb friction steepness
𝑠𝑓 is presented in Fig. 2.3.

2.2.5 Inertia, Coriolis, Centripetal, and Gravitational Model

The inertia, Coriolis, centripetal matrix, and gravitational load depend on the kinematic
parameters and the mass and inertia of each robot link. The kinematic parameters are
given in the manual [KU21]. Mass and inertia parameters are derived from a Computer
Aided Design (CAD) model of the robot [Ha18a]. The solid body CAD model has trans-
formed into a hollow body CAD model, material parameters were added, and masses,
inertia as well as centers of gravity were calculated using Finite Element Methods (FEM).

Using the MATLAB robotics toolbox by Peter Corke [Co17], the pose- and velocity-
dependent estimation of the inertia, Coriolis, and centripetal, as well as the gravitational
loads, were possible. Moreover, this implementation was computationally sufficiently effi-
cient for trajectory generation, robot simulation, and feed-forward control.

16 Chapter 2: Foundations of Physical Robot Modeling and Control

17

3 Foundations of Continuous-Time
Neural Networks

This chapter defines the foundation of system identification using neural networks. This
idea dates back several decades [FN93; WL98; WZ89]. It has gained much attention since
the publication of NODE [Ch18]. For a brief history, see [Ki22]. The notation standard in
the system identification community rather than the Continuous Normalizing Flows (CNF)
community is utilized in this thesis.

Section 3.1 gives an overview of system identification utilizing NN with a focus on discrete-
time and continuous-time methods. Starting in section 3.2, formal insight of continuous-
time NN is presented. Section 3.2 until section 3.5 are written for readers new to the field,
giving an overview of important configurations and presenting corresponding recommen-
dations.

3.1 State-of-the-Art Literature Neural Networks

3.1.1 System Identification with Neural Networks

Nonlinear system identification is a core discipline in control engineering (e.g., [Ne01;
Sj95]). For more than 30 years, NNs have been developed and widely applied for identifying
nonlinear dynamic systems (e.g., [Ah10; CBG90; DK11; Ha90; NP90; Og16; Sc22; SL19;
WDR21; WZ89]). Models can be divided into discrete-time models, such as Recurrent
Neural Network (RNN) [TB97] or Long Short Term Memory (LSTM) [HS97; Sh20] and
continuous-time models such as NODE [Ch18], Runge-Kutta Neural Networks (RKNN)
[WL98], Deep Encoder Networks [BST22] or Liquid Time Constant (LTC) [Ha18b].

Many contributions focus on discrete-time NNs. As pointed out by [WL98] there are sev-
eral problems in using discrete-time NNs. The first-order discretization induces additional
approximation errors. The long-term prediction accuracy is often amendable, and the
NN can only predict the system behavior at fixed time intervals [WL98]. Furthermore,
a variable time step in training and application leads to complete model failure, opening
the requirement for data preprocessing. This is mainly because feed-forward networks and
RNN tend to learn the system states instead of the change rates of system states. The

18 Chapter 3: Foundations of Continuous-Time Neural Networks

discrete sample time is inseparably connected to the NN weights [WDR21].

Another approach is continuous-time NNs. This type of network does not suffer from
the disadvantages mentioned above. However, continuous-time NNs do not consider the
discrete-time nature of measurements or any digital controller. They often require a quasi-
continuous sample time. This results in a large amount of training data and a restriction
of applications. In industrial real-time applications, a high sample time can be prohibitive;
thus, the discrete-time nature of the measurements has to be taken into account. RKNN
bridges this gap by constructing a NN in the continuous-time domain and explicitly in-
tegrating the Runge-Kutta (RK) approximation method. Thus, a precise estimate of the
change rates of the system states is possible [WL98]. Therefore, RKNN does not suffer
from the disadvantages mentioned earlier of discrete-time or continuous-time NNs and is
superior in generalization and long-term prediction accuracy, as theoretically proven by
[WL98] and shown by simulations by [EK00]. More recently, [BTS21a; FP21; MFP20;
WDR21] achieved excellent results with continuous-time NNs for system identification.

Model stability is crucial for nonlinear system identification, especially with data-based
NNs. Accordingly, the stability properties of discrete-time NNs are widely studied (e.g.,
[BP02; HW02; WX06; Yu04]). The continuous-time model stability properties are broadly
analyzed too, see, e.g., [HW02] for stability, and [SP99] for the more general concept of
Input to State Stability (ISS). ISS extends the stability criterion of Global Asymptotic
Stability (GAS) in the sense of Lyapunov to non-autonomous systems, e.g., systems with
an input unequal to zero. [So08] shows that some GAS stable systems can diverge even
for some inputs that converge to zero.

3.1.2 Discrete-Time Neural Networks

In the 90s, the idea of combining tapped delay lines with NN arose. A discrete input signal
is delayed several time steps using a zero-order-hold memory. The current and past values
are combined into the NN. It is also called Nonlinear Autoregressive with Exogenous
Input (NARX) network and depicted in Fig. 3.1.

A drawback of RNN is the vanishing or exploding gradient problem when trained with
Backpropagation Through Time (BPTT) [We90] A significant improvement regarding the
vanishing or exploding gradient issue for discrete-time NN has been introduced with LSTM
[HS97] networks in 1997. The main idea of LSTM is to make the decay rate of the
internal memory a trainable network parameter. So the optimizer can adjust the memory
depending on the requirements of the data set. Fig. 3.2 presents the scheme of a LSTM
cell.

The scientific popularity of discrete-time versus continuous-time NN can be illustrated by

3.1 State-of-the-Art Literature Neural Networks 19

Process

𝑧−1

𝑧−1

𝑧−1

𝑧−1

𝑧−1

𝑓
𝑁𝑁

(⋅)

𝑢𝑛−1 𝑦𝑛
𝜀𝑛

𝑒𝑛

-

̂𝑦𝑛

𝑢𝑛−1

𝑢𝑛−2

𝑢𝑛−𝑛𝑎

𝑦𝑛−1

𝑦𝑛−2

𝑦𝑛−𝑛𝑏

Process

𝑧−1

𝑧−1

𝑧−1

𝑧−1

𝑧−1

𝑓
𝑁𝑁

(⋅)

𝑢𝑛−1 𝑦𝑛
𝜀𝑛

𝑒𝑛

-

̂𝑦𝑛

𝑢𝑛−1

𝑢𝑛−2

𝑢𝑛−𝑛𝑎

̂𝑦𝑛−1

̂𝑦𝑛−2

̂𝑦𝑛−𝑛𝑏

Figure 3.1: NARX neural network architecture in the predictor (left) and simulation
(right) mode. [De10; XJ02]

𝜎 𝜎 tanh 𝜎

× +

× ×

tanh

𝑐𝑡−1

ℎ𝑡−1

𝑢𝑡

𝑐𝑡

ℎ𝑡

ℎ𝑡

Figure 3.2: Long Short Term Memory Unit [HS97].

20 Chapter 3: Foundations of Continuous-Time Neural Networks

the number of citations of selected, most influential publications. The LSTM work by
Hochreiter and Schmidthuber can still be considered state-of-the-art, with over 73, 400
citations. Gated Recurrent Units (GRU) [Ch14] developed in 2014 a similar idea, with
different mechanisms for adjusting the hidden state’s decay rate. The GRU publication
achieved 10, 800 citations. In contrast, one of the most cited continuous-time NN [WL98]
from 1998 achieved just over 100 citations in the same decades as the LSTM paper.
Furthermore, LSTM and GRU are implemented in both major deep learning libraries,
TensorFlow [Ma15] and PyTorch [Pa19], continuous-time models are implemented by de-
fault in none of those. In the domain of identification of dynamic systems, good results
have been achieved for example in [KF18].

3.2 General Form of Continuous-Time Neural Net-
works

The main idea of continuous-time NN in this work is to combine the universal function
approximation capabilities of a NN with an explicit ODE solver. However, methods exist to
directly apply the network in a continuous-time setting or a closed-form solution [Ha22b].
In both cases, the NN gets the state 𝑥(𝑡) ∈ ℝ𝑁𝑋 and additional features 𝑢(𝑡) ∈ ℝ𝑁𝑈 as
input, and computes the derivative of the hidden state ̇𝑥(𝑡) ∈ ℝ𝑁𝑋 as output,

̇𝑥(𝑡) = 𝑓
NN

(𝑥(𝑡), 𝑢(𝑡)). (3.1)

Furthermore, an output network is defined

̂𝑦(𝑡) = ℎ
NN

(𝑥(𝑡), 𝑢(𝑡)), (3.2)

which creates the predictions ̂𝑦(𝑡) ∈ ℝ𝑁𝑌 which correspond to the target values 𝑦(𝑡) ∈
ℝ𝑁𝑌 . For classification tasks, ̂𝑦(𝑡) contains the output distribution with 𝑁𝑌 ∈ ℕ equal
to the number of target classes. For regression tasks, the number of output channels 𝑁𝑌

corresponds to the number of independent target variables to predict.

In some works, the exogenous input 𝑢(𝑡) is omitted, for example in ResNet or NODE
[Ch18; He16]. ResNet, as well as CNF, depends on the initial state exclusively. In the
system and control community terminology, neglecting the exogenous input corresponds
to an autonomous system. In the terminology of the CNF community, networks with
exogenous inputs are referred to as Neural Controlled Differential Equations (NCDE)

Depending on the setup, the observable output 𝑦(𝑡) can be fed back to the model. For
example in a classification task, a sequence of Inertial Measurement Unit (IMU) measure-

3.2 General Form of Continuous-Time Neural Networks 21

ments of a human is given, and the task is to predict if the individual is sitting, walking,
or running. Thus, the discrete target variable is constant over a time interval and not fed
into the network. In image classification, too, the hidden state 𝑥(𝑡) is forwarded to a sec-
ond network (3.2) with a different architecture to estimate 𝑦(𝑡). In time series forecasting,
especially in a multistep-ahead setting, the forecast variable ̂𝑦(𝑡) is a part of the hidden
state 𝑥(𝑡) and is recursively fed back to the system.

The dimension of the hidden state 𝑥(𝑡) can be augmented. Augmented states refer to
[DDT19], who argues that increasing the number of hidden state dimensions above the
physically motivated level benefits the model’s flexibility. Indeed, augmented states reduce
the information bottleneck in the state vector and improve model performance in the sense
of accuracy, at least on the training data. On the other hand, model performance in the
sense of interpretability is diminished (as non-physical states are incorporated), and model
generalizability is likely reduced, given a limited amount of training data, as the number
of model parameters is increased.

Depending on the application, initial hidden state estimation can be applied. Four stan-
dard options to estimate the initial state are given in the following.

1. The initial state is known by prior knowledge.

2. The initial state is set to zero.

3. The initial state is set to a combination of the initial output variable 𝑦(0), the initial
exogenous input 𝑢(0), its derivatives ̇𝑦(0), and �̇�(0), its higher order derivatives, and
zeros.

4. The initial state is estimated using a Deep Encoder Network [BST22] using the
information of a past horizon of input and output variables.

For many data sets, prior knowledge of the initial state is infeasible. However, if prior
knowledge is available, if the model is based more on expert knowledge than on data, or if
the hidden state is wholly known, then accessing this prior knowledge is usually the first
choice.

Setting 𝑥(0) = 0 reduces model prediction accuracy, as some information at the begin-
ning of each sequence is missing. Nevertheless, the method enables good generalization
capabilities, as the learned model does not require accounting for different initial states.

A continuous-time data-driven approach uses the output variable, its derivative, the input
variable, and zeros for all remaining state dimensions. Given a sufficiently high order of
derivatives of 𝑦(0), no information loss occurs in the initial state estimation for flat systems.
However, considering noisy measurements, non-flat systems, and a limited state dimension,
the theoretical requirements are cumbersome to satisfy. This method is recommended
when no prior knowledge is available, additional model parameters are not intended, and

22 Chapter 3: Foundations of Continuous-Time Neural Networks

loss of information and, in consequence, loss of prediction accuracy is not intended.

The final option, Deep Encoder Networks [BST22] is a very flexible approach without
losing information. It overcomes the difficulties mentioned above. However, Deep Encoder
Networks introduce an additional model, which increases computational effort and memory
load and requires sufficiently rich data to be trained. The Deep Encoder Network is defined
as

𝑥𝑛0
= 𝑒

𝑁𝑁
(𝑦𝑛0

, 𝑦𝑛0−1, .., 𝑦𝑛0−𝑛𝑎
, 𝑢𝑛0

, 𝑢𝑛0−1, .., 𝑢𝑛0−𝑛𝑏
) (3.3)

with an initial state at time step 𝑛0 ∈ ℕ, and past horizons 𝑛𝑎 ∈ ℕ, 𝑛𝑏 ∈ ℕ of input and
output data respectively. The initial step is 𝑛0 = max(𝑛𝑎, 𝑛𝑏).

A further optional enhancement is a Differential Algebraic Equations (DAE) network,

0 = 𝑔
NN

(𝑥(𝑡), 𝑢(𝑡)), (3.4)

which enables the model to cover systems in the form of DAEs. In the proposed imple-
mentation, the DAE is exclusively trained in the loss function and not applied during
inference. For the loss function, a penalty method is introduced

𝐿𝑔 = 𝜆𝑔
1
𝑁

𝑁−1
∑
𝑛=0

𝑔
NN

(𝑥𝑛, 𝑢𝑛)2 (3.5)

with a scaling parameter 𝜆𝑔 ∈ ℝ+. Equation (3.5) is the Mean Squared Error (MSE)
over the complete simulation horizon. As a consequence, the loss function ensures that
0 = 𝑔

NN
(𝑥(𝑡), 𝑢(𝑡)) holds for every time step of the horizon.

3.3 ODE Configuration

3.3.1 Explicit Fixed-step Runge-Kutta Solvers

The continuous-time neural network (3.1) is embedded in an 𝑆-stage explicit RK method
with sample time ℎ to generate the discrete-time system

𝑥𝑛+1 = 𝐹
RKNN

(𝑥𝑛, 𝑢𝑛) (3.6a)

̂𝑦𝑛 = 𝐻
RKNN

(𝑥𝑛, 𝑢𝑛). (3.6b)

3.3 ODE Configuration 23

The discrete sample time 𝑛 ∈ ℕ is defined so that 𝑥𝑛 = 𝑥(𝑡 = 𝑛ℎ). The RK scheme
provides the rule to compute (3.6) from (3.1) for a given sample time ℎ. The general
explicit 𝑆-stage RK method is defined by the discrete-time system

𝑥𝑛+1 =𝑥𝑛 + ℎ
𝑆

∑
𝑠=1

𝑏𝐵,𝑠𝑧𝑛,𝑠 (3.7a)

𝑧𝑛,𝑠 =𝑓
NN

(𝑥𝑛 + ℎ
𝑆

∑
𝑗=1

𝑎𝐵,𝑠,𝑗𝑧𝑛,𝑗, 𝑢(𝑛ℎ + 𝑐𝐵,𝑠ℎ)) (3.7b)

with the Butcher coefficients 𝑎𝐵,𝑠,𝑗, 𝑏𝐵,𝑠, 𝑐𝐵,𝑠 and ∑𝑆
𝑠=1 𝑏𝐵,𝑠 = 1, 𝑐𝐵,𝑠 = ∑𝑆

𝑗=1 𝑎𝐵,𝑠,𝑗

[Bu16]. A common representation is the Butcher array

𝑐𝐵 𝐴𝐵

𝑏T
𝐵

=

𝑐𝐵,1 𝑎𝐵,1,1

𝑐𝐵,2 𝑎𝐵,2,1 𝑎𝐵,2,2

⋮ ⋮ ⋱
𝑐𝐵,𝑆 𝑎𝐵,𝑆,1 𝑎𝐵,𝑆,2 … 𝑎𝐵,𝑆,𝑆

𝑏𝐵,1 𝑏𝐵,2 … 𝑏𝐵,𝑆

The RK scheme (3.7) is completely determined by the parameter matrix and vectors 𝐴𝐵,
𝑏𝐵 and 𝑐𝐵. Note that for an explicit RK method, the matrix 𝐴𝐵 is lower triangular [Bu16].
Although the notation (3.7) allows a varying 𝑢 within the sample interval, it is assumed
to be constant during one arbitrarily short sample interval.

In the following, the state network is defined as

𝑧𝑛,𝑠 =𝑓
NN

(𝑥𝑛 + ℎ
𝑆

∑
𝑗=1

𝑎𝐵,𝑠,𝑗𝑧𝑛,𝑗, 𝑢𝑛) . (3.8a)

The solution of the output network is straightforward since it does not contain any deriva-
tives or any feedback,

𝑦𝑛 = 𝐻
RKNN

(𝑥𝑛, 𝑢𝑛) = 𝑓
NN

(𝑥𝑛, 𝑢𝑛). (3.9)

3.3.2 Euler Neural Networks

Euler Neural Networks are named by the Euler-Forward scheme as ODE solver. It is given
by the Butcher tableau [Bu16]

0
1

.

24 Chapter 3: Foundations of Continuous-Time Neural Networks

𝑓
NN ℎ ∑

𝑥𝑛+1

𝑢𝑛 ℎ
NN

𝑦𝑛

𝑥𝑛

Figure 3.3: Representation of the Euler Neural Network architecture. The Euler Neural
Network explicitly includes the integration method as a neural network graph
extension.

The Butcher tableau results in the corresponding equations

𝑧𝑛,1 = 𝑓
NN

(𝑥𝑛, 𝑢𝑛) (3.10a)

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑧𝑛,1 (3.10b)

̂𝑦𝑛 = ℎ
NN

(𝑥𝑛, 𝑢𝑛) . (3.10c)

The Euler-Forward is the simplest ODE solver scheme. However, mainly due to its sim-
plicity, it gains some advantages, such as low computational requirements. Therefore, it
is the default choice for LTC models [Ha21]. The Euler-Forward model is depicted in
Fig. 3.3.

3.3.3 Runge-Kutta Neural Networks

The RKNN applies the 4-stage Runge-Kutta algorithm as ODE solver. Its Butcher tableau
and the corresponding equations are

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 2/6 2/6 1/6

𝑧𝑛,1 = 𝑓
NN

(𝑥𝑛, 𝑢𝑛) (3.11a)

𝑧𝑛,2 = 𝑓
NN

(𝑥𝑛 + ℎ/2𝑧𝑛,1, 𝑢𝑛) (3.11b)

𝑧𝑛,3 = 𝑓
NN

(𝑥𝑛 + ℎ/2𝑧𝑛,2, 𝑢𝑛) (3.11c)

𝑧𝑛,4 = 𝑓
NN

(𝑥𝑛 + ℎ𝑧𝑛,3, 𝑢𝑛) (3.11d)

𝑥𝑛+1 = 𝑥𝑛 + ℎ/6 (𝑧𝑛,1 + 2𝑧𝑛,2 + 2𝑧𝑛,3 + 𝑧𝑛,4) (3.11e)

̂𝑦𝑛 = ℎ
NN

(𝑥𝑛, 𝑢𝑛) . (3.11f)

3.3 ODE Configuration 25

𝑓
NN

̂𝑥𝑛 ℎ
2 ∑ 𝑓

NN
ℎ
2 ∑ 𝑓

NN ℎ ∑ 𝑓
NN ∑ ℎ

6 ∑
̂𝑥𝑛+1

𝑢𝑛 ℎ
NN

̂𝑦𝑛

2
2

Figure 3.4: Representation of the RKNN architecture. The RKNN explicitly includes
the integration method as a neural network graph extension.

The RKNN architecture as NN graph is depicted in Fig. 3.4. Already decades ago, re-
searchers highlighted the superior prediction accuracy of RKNN [Ah10; WL98].

3.3.4 Neural Ordinary Differential Equations

NODE are developed as the continuous-time limit of the ResNet architecture [Ch18;
OR20]. NODE propose to apply any black-box ODE solver. Importantly, both fixed-
step and adaptive-step solvers are applied. The implementation of [Ch18] contains the
following list of ODE solvers.

• Adaptive-step
Dormand-Prince-Shampine of order 8
Dormand-Prince-Shampine of order 5 (recommended as default)
Bogacki-Shampine of order 3
Runge-Kutta-Fehlberg of order 2
Adaptive Heun of order 2

• Fixed-step
Euler method of order 1
Midpoint method of order 2
Runge-Kutta with 3/8 rule of order 4
Explicit Adams-Bashforth
Implicit Adams-Bashforth-Moulton

[Ch18] argues that the choice of the solver can explicitly trade computational resources for
ODE solver accuracy. Especially using adaptive-step algorithms, numerical error-control
methods can be applied, and the error can be qualified explicitly.

However, it is important to note that only ODE solver accuracy can be directly traded
using adaptive-step or high-order methods. In the forecast and classification tasks, the
overall accuracy depends on both the ODE solver accuracy and the model performance.

26 Chapter 3: Foundations of Continuous-Time Neural Networks

The model’s performance depends on its architecture, training configuration, and data
set. However, as the loss function always accounts for the overall accuracy, the neural
network model can partially compensate for low-accuracy ODE solvers. In the latter case,
utilizing the same ODE solvers in training and inference is vital. Remarkable results using
a fixed-step Euler method have been realized with ResNet [He16], LTC networks [Ha20]
and Truncated Simulated Error Minimization (TSEM) [FP21].

Fixed-step solvers, compared to adaptive-step solvers, obtain the advantage of being fully
deterministic. This results from the fact that failed iteration steps are impossible with
fixed-step solvers. Determinism is essential regarding real-time applications when the
algorithm’s run-time has a limited time budget. It is also crucial regarding the optimization
process. Adaptive-step solutions potentially lead to discontinuity in the Jacobian of the
solver. These discontinuities can be reduced by setting appropriate error-control methods.
Nevertheless, discontinuity caused by non-uniform time grids does not occur for fixed-step
solvers in the first place. For these two reasons, a fixed-step solver is chosen in this thesis.

Besides its ODE solver, [Ch18] argues for applying an adjoint method instead of BPTT.
This discussion is postponed to section 3.5.6.

3.4 Neural Network Configuration

This thesis focuses on a specific network configuration, the nonlinear state-space neural
network. This configuration consists of a linear state-space core and an additive nonlinear
term. It is a subclass of the general form (3.1) and (3.2) and described by

𝑑𝑥(𝑡)
𝑑𝑡

= 𝐴𝑁𝑁 𝑥(𝑡) + 𝐵𝑁𝑁 𝑢(𝑡) + ̃𝑓
𝑁𝑁

(𝑥(𝑡), 𝑢(𝑡)) (3.12a)

̂𝑦(𝑡) = 𝐶𝑁𝑁 𝑥(𝑡) + 𝐷𝑁𝑁 𝑢(𝑡) + ℎ̃
𝑁𝑁

(𝑥(𝑡), 𝑢(𝑡)). (3.12b)

The linear core easily incorporates physical knowledge, even on a network parameter level.
The configuration links to the stability theory, which is essential in section 5.2. Due to
the similarity, it can be initialized with a Best Linear Approximation (BLA) (see for the
discrete-time state-space NN [ST20]). BLA is a linear model which performs best in the
sense of least-squares prediction error over all linearization points. It can be obtained
using analytical solutions such as the subspace identification method with N4SID weight
initialization [VD94].

From theory, one hidden layer is sufficient for universal function approximation capa-
bilities, given bounded activation functions and sufficiently many hidden units [Ho91].

3.4 Neural Network Configuration 27

However, several works indicate that deeper networks increase the approximation capa-
bilities of the network [BWS15; LS17]. In addition, [BDS21] showed that a minimal layer
width is required to ensure that the decision regions are unbounded.

For continuous-time neural networks in a Discretize-then-Optimize (Disc-Opt) (see sec-
tion 3.5.6), the setting, the forward evaluation, and the backpropagation of the network
need to account for all layers multiplied by the number of steps of the ODE scheme and
multiplied by the number of time steps of the simulation. This can be a limiting factor in
applications with long forecasting horizons.

The number of hidden units per layer is chosen as a multiple of the augmented number
of hidden states, as the latter represents the information bottleneck of the network. More
hidden units lead to possibly more accurate prediction capabilities. This results from
increased model flexibility. However, the additional model flexibility also increases the
tendency of overfitting. As a consequence, the number of hidden units is decreased for ap-
plications that are safety critical (for example [We21]) or applications with long simulation
horizons. The Akine Information Criterion (AIC) and Bayes Information Criterion (BIC)
are common evaluation metrics (see section 3.5.1) for developing models with reduced
parameters.

Dropout [Sr14] or Batch-Norm layers [SC15] are not applied. Normalization is discussed
in the chapter 5.1. Dropout regularizes the network and increases its generalization ca-
pabilities during inference. However, a significant effect using dropout in the experiments
could not be observed. Therefore, dropout is renounced.

3.4.1 Activation Functions

Regarding the activation functions, the LeakyReLU unit is applied. This choice is mo-
tivated by the history of activation functions. In the nineties, sigmoid and hyperbolic
tangent activation functions were pervasive. Sigmoid suffered from the disadvantage that
these functions are not symmetrical around zero. Hyperbolic tangent is superior in this
respect, yet hyperbolic tangent suffers from gradient saturation, just like sigmoid. When
the hyperbolic tangent input is an immense (positive or negative) value, the gradient of
the network parameters given this input vanishes, making it hard for the optimization
algorithm. ReLU function solve this issue, at least for large positive values.

Nevertheless, ReLU is not symmetrical around zero and has a non-smooth function. On
the other hand, LeakyReLU applies a linear function on both sides, each with different
slopes. These activation functions reduce the vanishing gradient effect, at least within
one layer, for all real numbers [Le17; NH10]. Tab. 3.1 gives an overview of the activation
functions.

28 Chapter 3: Foundations of Continuous-Time Neural Networks

Table 3.1: Overview of activation functions.
Name Equation Graphic

Sigmoid 𝜎𝑆(𝑥) = 1
1+𝑒−𝑥

−4 −2 2 4

0.5

1

ReLU 𝜎𝑅(𝑥) = 𝑚𝑎𝑥(0, 𝑥)

−4 −2 2

1
2
3
4

LeakyReLU
𝜎𝑅(𝑥) = 𝑚𝑎𝑥(𝛼 ⋅ 𝑥, 𝑥)
𝛼 ∈ ℝ>0

−4 −2 2
−1

1
2
3
4

Linear
𝜎𝐿(𝑥) = 𝛽 ⋅ 𝑥
𝛽 ∈ ℝ −4 −2 2 4

−10
−5

5
10

Gauss 𝜎𝐺(𝑥) = 𝑒−(𝑥2)

−4 −2 2 4

0.5

1

tanh 𝜎𝑇(𝑥) = 𝑒2⋅𝑥−1
𝑒2⋅𝑥+1 −4 −2 2 4

−1
−0.5

0.5
1

3.4 Neural Network Configuration 29

3.4.2 Model Ensemble

Additional robustness for data-based models can be gained when model ensembles are
applied. In literature, model ensembles are also called model committees [De11a]. The
idea is to reduce model variance by training several models in parallel. Consequently,
model variance can be explicitly traded off for the computational effort. Furthermore,
comparing the different models leads to an explicit estimate of the output variance, so an
explicit measure of the certainty of the models is available.

Note that model ensembles do not refer to the multi-model approach for long-time horizons
as discussed in section 3.5.5.

Three main design choices need to be made to design model ensembles.

• Data splitting. Submodels can be trained on different batches or even on com-
pletely different data sets. Distinguishable data sets increase the robustness of the
ensemble, as local minima are less likely. However, it increases the development
effort and complicates the model analysis. Due to different training and validation
data, the submodels are not comparable during these training and validation phases.
Only a common test data set can provide insight and a comparison of submodels.
As a further disadvantage, the submodels cannot be trained in an ensemble setting.
Therefore, any effects caused by different model types or caused by the output ag-
gregation cannot be incorporated into the loss function. So exactly for the same
reason that the models are more independent and more robust, the ensemble perfor-
mance might be diminished as the independence requires a loss of information. As
a consequence, the same data is applied for all submodels.

• Model types. In principle, it is possible to combine any model type. From a de-
velopers’ perspective, combining many models is detrimental, as it gets harder to
validate the contribution of every single model. Without knowledge of the specific
model contributions, model tuning is aggravated. Given sufficient computational re-
sources, this disadvantage can be diminished using black-box hyperparameter tuning.
In this work, each model’s attributes are analyzed in depth. As a consequence, only
a single base model type is utilized. Another advantage of using a single base model
is that the model interface of the ensemble and the submodel can be identical. This
enables a direct comparison of the ensemble as a whole with the submodel itself.
A common interface is still possible for different submodels. However, difficulties
associated with a common interface increase with the diversity of the submodels.

• Output aggregation. For classification tasks, a voting method can be applied.
The arithmetic mean function or the median can be applied for regression tasks as
applied in this thesis. The median is more robust to outliers. The median is not

30 Chapter 3: Foundations of Continuous-Time Neural Networks

defined for ensembles with an even number of submodels. In this case, a linear
interpolation between the output of the two resulting submodels can be utilized.
However, depending on the concrete implementation, the median neglects the results
of the non-median submodels, which complicates training. Recall all submodels
contribute to the arithmetic mean aggregation, yet only one or two submodels define
the median aggregation. Further submodels do not even fractionally influence the
median. So it is likely that some submodels, due to their worse initial performance,
are not trained at all. To ensure the contributions of all submodels, applying the
mean function for output aggregation is recommended.

3.5 Training Configuration

3.5.1 Loss Functions

The neural network is trained using a (usually first-order and gradient-based) optimization
technique, such as ADAM [KB14] or SGD [Am93; Bo12]. For notational convenience, all
trainable parameters are summarized in a vector Θ ∈ ℝ𝑃 with some 𝑃 ∈ ℕ parameters
and with the (locally) optimal solution Θ∗ ∈ ℝ𝑃. Given an initial hidden state 𝑥0, a target
sequence 𝑦, and an exogenous input sequence 𝑢, the loss function is defined as

Θ∗ = arg min
Θ

𝐿𝐹𝑖𝑡(𝑥0, 𝑦, 𝑢, Θ)

+ 𝜆𝐵𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(𝑥0, 𝑦, 𝑢, Θ) (3.13a)

+ 𝜆𝑅𝐿𝑅𝑒𝑔(Θ)

with scaling parameters 𝜆𝐵 ∈ ℝ>0, 𝜆𝑅 ∈ ℝ>0 for the optional barrier 𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) and
regularization 𝐿𝑅𝑒𝑔(⋅) loss functions, respectively. The explicit initial state can be omitted
if the model provides a method to compute it, for example using Deep Encoder Networks
(see section 3.2).

Regularization

In order to increase the generalization capabilities of the estimated model, one can include
a technique named parameter regularization or weight decay [KH91]. The main idea is to
insert an additional term in the cost function, which punishes too large parameters and
encourages the same numerical range for all parameters. The regularization loss in (3.13)
can be defined as Tikhonov Regularization,

3.5 Training Configuration 31

𝐿𝑅𝑒𝑔,𝑇 𝑖𝑘 = 1
𝑇

∫
𝑇

0
||Θ(𝑡)||2𝑑𝑡 (3.14)

with the L2-Norm || ⋅ ||2. Time-dependent trainable parameters Θ(𝑡) are not applied.
Therefore, the integral in (3.14) reduces to a sum and can finally be expressed by

𝐿𝑅𝑒𝑔 = ||Θ||2. (3.15)

It is possible to include other norms or a weighting matrix to tune the amount every single
parameter contributes to the loss function.

Regression

For the fit loss function in a regression task, Tab. 3.2 and Tab. 3.3 give an overview.

Regression tasks often apply the MSE as a loss function. MSE provides smooth first
derivatives, is computationally efficient to compute, provides the best least-squares per-
formance, and focuses on outliers and therefore improves the robustness of the model.
When maximum accuracy in the sense that the mean error is required, or if a one-sided
estimation tendency is intended, the Pinball loss is recommended. The M4 machine learn-
ing forecasting competition was won using a Pinball loss [Sm20].

A closely related task is the choice of one or multiple metric functions for algorithm
development. For metrics functions, comparability across different applications and in-
terpretability is essential. Regarding comparability, a normalization of the metric, for
example, a percentage range instead of absolute target values, is desirable. This is pro-
vided in Normalized Root Mean Squared Error (NRMSE), Coefficient of Determination
Coefficient of Determination (𝑅2), Pinball, Mean Absolute Percentage Error (MAPE) and
Smoothed Mean Absolute Percentage Error (SMAPE). Regarding interpretability, it is
useful if the metric retains the unit of the output and target values, such as Root Mean
Squared Error (RMSE) or Mean Absolute Error (MAE). For developers, insight is helpful
about the parameter efficiency concerning the number of training data points, using AIC
or BIC.

32 Chapter 3: Foundations of Continuous-Time Neural Networks

Table 3.2: Selected loss functions for regression applications (Part I of II).
Name & Formula Properties
Mean Squared Error (MSE)
𝐿𝑀𝑆𝐸 = 1

𝑁 ∑𝑁−1
𝑛=0 (̂𝑦𝑛 − 𝑦𝑛)2 good first derivative

focus on outliers
difficult to interpret

Root Mean Squared Error (RMSE)
𝐿𝑅𝑀𝑆𝐸 = √𝐿𝑀𝑆𝐸 non-smooth first derivative

focus on outliers
unit is interpretable

Normalized Root Mean Squared Error (NRMSE)
𝐿𝑁𝑅𝑀𝑆𝐸 = 𝐿𝑅𝑀𝑆𝐸

𝜎𝑦
non-smooth first derivative

𝜎𝑦 = √var(𝑦) focus on outlier’s
loss is normalized

Bayes Information Criterion (BIC)
𝐿𝐵𝐼𝐶 = 2𝑝1 ln(𝑝2) + ln(𝐿𝑀𝑆𝐸) accounts for model complexity
𝑝1: number of para by means of model parameters
𝑝2: number of data points and required data
Akine Information Criterion (AIC)
𝐿𝐴𝐼𝐶 = 2𝑝1 + 𝑝2 ln(𝐿𝑀𝑆𝐸) accounts for model complexity
𝑝1: number of para by means of model parameters
𝑝2: number of data points and required data
Coefficient of Determination (𝑅2)
𝐿𝑅2 = 1 − ̂𝑦𝑛−𝑦𝑛

̄𝑦𝑛−𝑦𝑛
weights all predictions equally

̄𝑦𝑛 = 1
𝑁 ∑𝑁−1

𝑛=0 𝑦𝑛 loss is normalized
Mean Absolute Error (MAE)
𝑒𝑀𝐴𝐸 = 1

𝑁 ∑𝑁−1
𝑁=0 | ̂𝑦𝑛 − 𝑦𝑛| derivative is non-smooth

easy to interpret
weights all predictions equally

Pinball Loss
𝐿𝑝𝑖𝑛𝑏𝑎𝑙𝑙 = 1

𝑁−𝑛0
𝑝𝑛 one-sided MAE

𝑝𝑛 =
⎧{
⎨{⎩

(̂𝑦𝑛 − 𝑦𝑛)𝜆𝑃 if ̂𝑦𝑛 ≥ 𝑦𝑛

(𝑦𝑛 − ̂𝑦𝑛)(1 − 𝜆𝑃) otherwise
reduces one-sided errors

0 < 𝜆𝑃 < 1

3.5 Training Configuration 33

Table 3.3: Selected loss functions for regression applications (Part II of II).
Name & Formula Properties
Mean Absolute Percentage Error (MAPE)
𝐿𝑀𝐴𝑃𝐸 = ∑𝑁−1

𝑛=0
| ̂𝑦𝑛−𝑦𝑛|
𝑀|𝑦𝑛| derivative is non-smooth

easy to interpret
weights all predictions equally
loss is normalized

Smoothed Mean Absolute Percentage Error (SMAPE)
𝐿𝑆𝑀𝐴𝑃𝐸 = ∑𝑁−1

𝑛=0
| ̂𝑦𝑛−𝑦𝑛|

2𝑁(| ̂𝑦𝑛|+|𝑦𝑛|) derivative is non-smooth
easy to interpret
weights all predictions equally
loss is normalized
symmetric target and output

3.5.2 Inequality Barrier Methods

Modern deep learning libraries such as PyTorch [Pa19] or TensorFlow [Ma15] do not
support constrained optimization. Barrier methods incorporate the constraints as an ad-
ditional term in the cost function.

Following [Co14] barrier methods can be divided into the extreme barrier, progressive
barrier, differentiable barrier, and classic penalty methods, defined in the following.

Given a constrained optimization problem,

Θ∗ = arg min
Θ

𝐿𝐹𝑖𝑡(𝑦, 𝑢, Θ) (3.16)

𝑠.𝑡. 𝑐(Θ)𝑖 ≤ 0 ∀𝑖 ∈ 𝐼 (3.17)

with a loss function 𝐿𝐹𝑖𝑡(⋅) and a (multiple) nonlinear constraint functions 𝑐(Θ)𝑖. Barrier
and penalty methods define a new loss function 𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅), which incorporates both the
original loss and all constraints. Extreme barrier methods are infinity if any constraint is
violated,

𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) =
⎧{
⎨{⎩

𝐿𝐹𝑖𝑡(⋅) if max(𝑐(Θ)𝑖) ≤ 0

∞ otherwise.
(3.18)

Although extreme barriers ensure an unbiased solution, they tend to be numerically detri-
mental. On the other side, classical penalty functions with a scaling 𝜆1 ≤ 0 are defined
as

34 Chapter 3: Foundations of Continuous-Time Neural Networks

𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) =
⎧{
⎨{⎩

𝐿𝐹𝑖𝑡(⋅) if max(𝑐(Θ)𝑖) ≤ 0

𝐿𝐹𝑖𝑡(⋅) + 𝜆1relu(𝑐𝑖)2 otherwise.
(3.19)

Classical penalty functions are numerically favorable because a discontinuity in the loss
function is avoided. However, classical penalty methods cannot guarantee feasibility. Dif-
ferentiable log barrier methods are defined as

𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) = 𝐿𝐹𝑖𝑡(⋅) − 𝜆1

𝐼
∑

𝑖
log(−𝑐𝑖). (3.20)

Log barrier methods provide the best numerical properties, yet they completely modify
the original loss function and introduce a bias in the estimate. Progressive barrier methods
are defined as

𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) =

⎧{{
⎨{{⎩

𝐿𝐹𝑖𝑡(⋅) if max(𝑐𝑖) ≤ 𝜆2

𝐿𝐹𝑖𝑡(⋅) + 𝜆1relu(max(𝑐𝑖) + 𝜆2)2 if 𝜆2 < max(𝑐𝑖) ≤ 0

∞ + max(𝑐𝑖) otherwise.

(3.21)

with a scalar safety offset 𝜆2 < 0. The formulation ∞ + max(𝑐𝑖) ensures a differentiable
solution, guiding the numerical solver. The progressive barrier methods are recommended,
which obtain numerical efficiency, keep the original optimal solution, and still guarantee
to satisfy the constraints.

3.5.3 Equality Barrier Methods

If the constraint function is in the form

Θ∗ = arg min
Θ

𝐿𝐹𝑖𝑡(𝑦, 𝑢, Θ) (3.22)

𝑠.𝑡. 𝑐(Θ)𝑖 = 0 ∀𝑖 ∈ 𝐼 (3.23)

an effective and easy-to-implement solution is to apply the MSE loss with a scaling factor
𝜆3,

𝐿𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) = 𝜆3
1
𝐼

𝐼−1
∑
𝑖=0

𝑐(Θ)𝑖
2. (3.24)

For instance, the DAE network explained in section 3.4 can be trained using the following
Python code E.5 for the PyTorch library. The constant 𝜆3 ≈ 10−3 requires to be adapted

3.5 Training Configuration 35

for each data set. The value is chosen rather small not to disturb the unbiased solution
too much. The code is given in appendix E.5.

3.5.4 Reduction of Overfitting

An effective method to prevent overfitting is early stopping [Pr98]. Therefore, the data is
split into three groups: training, validation, and testing. The model is optimized on the
training data. Validation data is applied for model metric evaluation (see section 3.5.1)
and for early stopping. Test data enables independent evaluation.

If the application gives no validation data, the original training data can be split into
applied training and validation. Random split of the original training data is recommended
for systems with non-uniform input excitation. So that validation sequences obtain a
random starting time over the whole data horizon. As an alternative, data can be split
into two coherent sets. As time series data typically inherits a strong auto-correlation,
two coherent sets most likely increase the independence of training and validation data.

Fig. 3.5 demonstrates overfitting on a noisy sine wave. Training and validation data is
split coherently. The upper figure presents the optimal solution, the lower figure tends to
overfit. Training is stopped if the loss on the validation data (green dots) increases.

In the following, several types of stopping criteria are discussed. Logging the best valida-
tion loss and corresponding all model parameters in that iteration is recommended. After
one stopping criteria is active, it is beneficial for model generalization capability and per-
formance to discard the final model parameter iteration and load the model parameters
from the checkpoint with the best validation error.

• Stop if no improvement of the validation loss can be achieved over a
given number of iterations. Recommended criteria. Only little prior knowledge
is required. Can handle loss processes with high variance.

• Stop if the validation error successively increases for a given small num-
ber of iterations. Reduces computational effort as fewer obsolete iterations are
performed. Tendency to stop too early. Cannot cope with loss processes with high
variance.

• Stop by the number of iterations. Can fail to get the best model as the number
of iterations is not a measure of model performance. Easy to implement. Immune
to loss processes with high variance.

• Stop by the computation time limit. Can fail to get the best model as the
computation is not a measure of model performance. Easy to implement. Immune
to loss processes with high variance.

36 Chapter 3: Foundations of Continuous-Time Neural Networks

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

O
ut

pu
t

(u
ni

tle
ss

)

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

Time (s)

O
ut

pu
t

(u
ni

tle
ss

)

Figure 3.5: Demonstration of overfitting of a noisy sine curve. Blue dots: Training data.
Green dots: Validation data. Red line: Model prediction. Compare with
[LC13; We17].

3.5 Training Configuration 37

• Stop by surpassing the minimum error value. Can fail to get the best model,
depending on the user’s knowledge. Detailed prior knowledge or fine hyperparameter
tuning is required. Immune to loss processes with high variance.

• Stop by user interaction. Fails the goal of automating the training pipeline. Can
fail to get the best model, depending on the user’s knowledge. Recommended as
backup criteria from a practical point of view for unforeseen events or unpredictable
behavior.

3.5.5 Forecast Horizon

A central choice for time-series models is the forecast horizon, which depends on the
applications. In a (one-step-ahead) prediction configuration, e.g., [WL98], the state 𝑥
is completely measured for all time steps. Each predicted output and state, ̂𝑦𝑛+1 and
𝑥𝑛+1, is estimated based on the previously measured state and input, e.g., ̂𝑥𝑛 and 𝑢𝑛.
The estimated state 𝑥𝑛 is not fed back into the state network. Consequently, a one-step
prediction mode leads to fast training and enables parallel computation. However, training
in one-step prediction reduces accuracy for long-term predictions. The model can also be
unstable (without enforcing stability constraints, see section 5.2).

If a long-term estimation is required in the application, it cannot be neglected in train-
ing. Therefore, in a (multistep-ahead) simulation configuration, only the initial state
measurement 𝑥0 is required, and all proceeding states are recursively taken from previous
calculations. [DKR10] presents exemplary work. As a consequence, each successive simu-
lated state 𝑥𝑛+1 in training depends on the previous state estimate 𝑥𝑛 and the input 𝑢𝑛.
The feedback of estimated states leads to a potential accumulation of state errors and is,
therefore, more comprehensive. The challenge can also be viewed as Pareto-Optimization.
The difference regarding estimation performance between simulation and prediction con-
figuration is two orders of magnitude [WDR21].

Note that it is irrelevant for the one-step prediction mode how far the predicted value lies
in the future. This is because the sample time only influences the dominant effects to
capture for the model. For example, a one-minute weather forecast depends on different
dominant physical influences than a seven-day forecast. Nevertheless, both one-minute
and seven-day forecasts do not encounter the issue of recursive error accumulation, as
both are one-step predictions.

For most discrete-time models, the sample time in inference is equal to the sample time in
training. Usually, the time grid is also uniform. However, these two properties are relaxed
for continuous-time models.

All model types referred to in this thesis types support one-step-ahead prediction. Fur-

38 Chapter 3: Foundations of Continuous-Time Neural Networks

Model
𝑧𝑛

𝑦𝑛+1

𝑦𝑛+2

…
𝑦𝑛+𝑁𝐹

Figure 3.6: Multi-output model.

thermore, many models, such as regression trees, support one-step predictions beyond this
thesis. However, three types of model architectures are presented in the following. The
first two can convert one-step prediction models into multistep simulation models without
facing the issue of error accumulation.

• Multi-output models. The main idea is to convert the time dimension into output
channels. This increases model output channels to 𝑁𝑌 ⋅ 𝑁𝐹 with 𝑁𝐹 ∈ ℕ time steps
in the simulations. As the number of output channels is limited by computational
feasibility, the drawback of this architecture is that the forecast horizon is limited,
too. Furthermore, this architecture is not flexible as the forecast horizon can only be
reduced and not extended inference. Finally, this architecture leads to an unfavorable
dependency between network architecture and forecast horizon, so one cannot be
designed without influencing the other. Nevertheless, the accuracy of these models
is good, as no prediction error is fed back to the network.

• Multi-models. The multistep-ahead forecast can be cast into several one-step-
ahead forecasts. This method takes advantage of the fact that it is not important for
the one-step-ahead prediction of how far to predict into the future. The consequences
of multi-models are similar to multi-output models. The forecast horizon is limited,
the horizon is inflexible, and the developers need to cope with a dependency on
architecture and horizon. However, the accuracy is good.

Model 1

Model 2

Model ⋯

Model 𝑁𝐹

𝑧𝑛

𝑦𝑛+1

𝑦𝑛+2

…

𝑦𝑛+𝑁𝐹

Figure 3.7: Multi-models.

3.5 Training Configuration 39

Model
𝑧𝑛

𝑦𝑛+𝑗

𝑥𝑛+𝑗

Figure 3.8: Recursive models.

• Recursive models. The previously estimated outputs are recursively and time
delayed fed back into the model input. This is the most popular choice and the
one applied throughout this thesis. It enables very long forecast horizons as it does
not influence the network size. Furthermore, the forecast parameters can be flexibly
adapted during inference. However, prediction errors are fed back into the model,
so error accumulation and model stability require attention.

A special case of multistep-ahead simulation is present when the inference forecast horizon
is larger than the training forecast horizon. This is the most challenging case and, subse-
quently, the one with the worst performance. In some applications, predicting many time
steps into the future is mandatory. For example, see section 5.2. However, the required
forecast horizon in inference can be so extensive that it would exceed the computer’s com-
putational resources (memory and computation time) during training. In this case, the
forecast horizon needs to be reduced during training to ensure computational feasibility.
However, it implies a discrepancy between the loss function and the inference objective.
The models capable of this task must be recursive, multi-output models, or multi-models.

The application usually determines the required class of the forecast horizon. For example,
Model Predictive Control (MPC) requires multistep-ahead forecasts. A horizon that is
as small as the application allows for is recommended. The fewer forecast steps in the
inference horizon, the less Pareto-Optimality plays a role. Furthermore, recursive models
are recommended. Whenever the application allows for it, avoiding inference horizons
greater than the training horizons is recommended.

3.5.6 Discretize-then-Optimize vs. Optimize-then-Discretize

An important distinction for continuous-time NN is a Discretize-then-Optimize (Disc-Opt)
or Optimize-then-Discretize (Opt-Disc) configuration. In Disc-Opt, the ODE is discretized
in each step of the optimizer, and the optimizer only handles discrete values for esti-
mated states and target variables. On the contrary, in Opt-Disc, the ODE is optimized
in continuous-time using the Adjoint Equations [Ch18; OR20]. Only the trained model is

40 Chapter 3: Foundations of Continuous-Time Neural Networks

discretized in time for inference. For additional information on this distinction, see [HR18;
RH20].

Opt-Disc significantly improves the memory efficiency of the algorithm, as demonstrated
in [Ch18]. Yet, the quality of the gradients required for optimization depends on the
accuracy of the ODE solver in Opt-Disc. Therefore, a high-order and usually adaptive-
step ODE solver is required, with all implications discussed in section 3.3.4. Furthermore,
Opt-Disc requires the implementation effort and the computational resources for solving
the adjoint equations.

In contrast, Disc-Opt always produces good loss function gradients, as the ODE scheme is
incorporated into the loss function. This enables good results even with simple ODE solvers
such as Euler Backward, as demonstrated by the ResNet architecture. Independence of
the optimization gradients from the ODE solver neglects the requirement of explicit ODE
solver accuracy estimation. Therefore, fixed-step solvers such as Runge-Kutta, Midpoint,
or Euler are suitable for Disc-Opt. Furthermore, fixed-step solvers cannot produce failed
steps. In conclusion, AD tools do not require propagating through failed steps.

In contrast to image classification problems, physical models require NN with relatively
few parameters. Therefore, the memory inefficiency of Disc-Opt is not a significant disad-
vantage in the system identification domain.

[Ki22] states a pointed summary of the comparison (quoted literally):

• Discretize-then-optimize – memory inefficient, but accurate and fast.

• Optimize-then-discretize – memory efficient, but approximate and a little slow.

41

4 Physical Robot Model and
Control

This chapter explains the physics-based model and control of the KUKA KR300 R2500
ultra SE robot. Therefore, the nonlinear robot model described in section 2.2 serves as
starting point. To improve the robot model, extensions of robot model components are
derived in section 4.1. To fit the advanced nonlinear robot model to the demonstrator,
sophisticated parameter identification is presented in section 4.2. A feedback and feed-
forward controller based on the physical model is derived in section 4.3.

4.1 Advanced Nonlinear Robot Model

4.1.1 Elastic-Joint Model

For modeling joint flexibility, each motor is considered a rigid body connected to a driven
link via a transmission device and a rotational spring, illustrated in Fig. 4.1. Such a
system can be modeled as a two-mass oscillator leading to two generalized coordinates for
every joint. The generalized coordinates are composed of the motor positions 𝜃 ∈ ℝ𝑁𝑄

and the joint positions 𝑞 ∈ ℝ𝑁𝑄 . That leads to a 2𝑁𝑄 DoF system of a robot, so a
12 DoF system for robot kinematics with 6 joints. The motor velocity is ̇𝜃 ∈ ℝ𝑁𝑄 , the
motor acceleration is ̈𝜃 ∈ ℝ𝑁𝑄 , the link velocity is ̇𝑞 ∈ ℝ𝑁𝑄 and the link acceleration
is ̈𝑞 ∈ ℝ𝑁𝑄 . The motor velocity can be measured using the motor resolvers. The link
angle can be directly measured using the link side mounted SE. The dynamical model of
the considered robot manipulator is derived employing Lagrange’s equations of the second
kind. The transmission ratios are assumed to be high enough so that inertial couplings in
the acceleration between the motors and the links can be neglected [DB16]. The governing
equations are

𝐽 ̈𝜃 + 𝑈−1𝜏𝐸(𝜃, 𝑞) = 𝜏𝑀 (4.1a)

𝑀𝐿(𝑞) ̈𝑞 + 𝐶(𝑞, ̇𝑞) ̇𝑞 + 𝑔(𝑞) + 𝜏𝐹(̇𝑞) + 𝜏𝐻(𝑞) = 𝜏𝐸(𝜃, 𝑞) (4.1b)

where (4.1a) describes the dynamical model of the motor side and (4.1b) represents the

42 Chapter 4: Physical Robot Model and Control

𝐽𝑖

𝜃𝑖

𝜏𝑀,𝑖

𝜏𝑀,𝑖

𝑢𝑖

𝜏𝐸,𝑖

𝜏𝐸,𝑖

𝑞𝑖

Figure 4.1: Representation of a flexible robot joint, exemplary for joint 2.

dynamics of the links. The two dynamical systems are coupled by the generalized elastic
torque vector 𝜏𝐸(𝜃, 𝑞) ∈ ℝ𝑁𝑄 . The inertia matrix of the rotors is 𝐽 = diag(𝐽1, … , 𝐽𝑁) ∈
ℝ𝑁𝑄×𝑁𝑄 . The transmission factor of each joint is 𝑢𝑖, summarized in a diagonal matrix
𝑈 = diag(𝑢1, … , 𝑢𝑁) ∈ ℝ𝑁𝑄×𝑁𝑄 . The pose-dependent inertia matrix of the links without
motors is denoted by 𝑀𝐿 ∈ ℝ𝑁𝑄×𝑁𝑄 with

𝑀𝐿 = 𝑀 − 𝐽𝑈2. (4.2)

4.1.2 Stiffness Model

The stiffness model considers backlash, lost motion, and linear elasticity. The lost motion
describes an effect between backlash and linear elasticity, where not all tooth flanks are in
full contact. During backlash the elastic torque vanishes, e.g., 𝜏𝐸 = 0. In the lost motion
range, the stiffness is modeled as linear with a smaller slope and an offset. In the torsional
rigidity range, the stiffness is modeled linear with an offset, as shown in Fig. 4.2.

The lost motion stiffness coefficient is 𝑐𝐿𝑀 and the torsional rigidity stiffness coefficient is
𝑐𝑇 𝑅. The angular backlash range is 𝜙𝐵∗ and the angular lost motion range is 𝜙𝐿𝑀. The
torsional rigidity is an effect between 50% and 100% of the nominal torque. Lost motion
effects occur directly after the backlash and are measured between ±3% of the nominal
torque [TPA16]. Therefore, an effective backlash angle 𝜙𝐵 = 𝜙𝐵∗ + 𝜙𝐿𝑀 which ensures
correct modeling of the lost motion and torsional rigidity range is introduced. With the
link torsion angle and its sign function

4.1 Advanced Nonlinear Robot Model 43

-8e-4 -5e-4 0 5e-4 8e-4

4

2

0

-2

-4

Torsion angle Δ𝑞 (rad)

El
as

tic
to

rq
ue

𝜏 𝐸
(k

N
m

)
𝜏𝐸
̃𝜏𝐸

-4e-4 0 4e-4
-1

0

1

Figure 4.2: Discontinuous and continuous approximation for stiffness model with the
effects of backlash, lost motion and linear elasticity, exemplary for joint 1.

Δ𝑞 = 𝜃
𝑢

− 𝑞 (4.3)

𝜎 = sign(Δ𝑞) (4.4)

and the elastic torque offset 𝜏𝐸,0 = 𝑐𝐿𝑀 𝜙𝐿𝑀, the elastic torque can be obtained

𝜏𝐸 =

⎧{{
⎨{{⎩

0, |Δ𝑞| ≤ 𝜙𝐵∗

𝑐𝐿𝑀 (Δ𝑞 − 𝜙𝐿𝑀 𝜎
2

) , 𝜙𝐵∗ < |Δ𝑞| ≤ 𝜙𝐵

𝑐𝑇 𝑅 Δ𝑞 + 𝜏𝐸,0 𝜎, otherwise.

(4.5)

Although (4.5) describes the nonlinear stiffness precisely, it is difficult to use it in pa-
rameter estimation or advanced control strategies since the function is not continuously
differentiable. Problems with (4.5) potentially arise with all derivative-based algorithms.
In particular, many AD tools, such as implemented in the Symbolic Math Toolbox from
MATLAB [Ma19], the PyTorch [Pa19] or the TensorFlow library [Ma15] require contin-
uously differentiable equations. A continuously differentiable elastic torque function is
presented, which origins from time-domain considerations. Consider a first-order dynam-
ical system (PT1-System) with a ramp input and set the slope of the ramp equal to the
linear stiffness.

44 Chapter 4: Physical Robot Model and Control

𝑇 𝜕𝑦(𝑡)
𝜕𝑡

+ 𝑦(𝑡) = 𝑐𝑇 𝑅 𝑡. (4.6)

The system output slope will converge towards the input slope, with a constant time offset.
Although a time-domain function is not required, the algebraic solution of (4.6) can still be
used. The time variable 𝑡 can be replaced with the torsion angle Δ𝑞, the output 𝑦(𝑡) with
the elastic torque 𝜏𝐸(Δ𝑞) and setting all initial conditions to zero. In this work, a 3𝑟𝑑-
order system to increase the curvature of the function is utilized. Further, the curvature
can be achieved by applying for an arbitrary higher order. Two issues must be considered
if an order greater than 1 is applied. First, all poles of the transfer function must coincide.
Second, the poles must be adapted to the order 𝑝 ∈ ℕ of the ODE by setting 𝑇 = 𝜙𝐵/𝑝.
This ensures that the asymptote of the solution matches the full-contact stiffness. The
variable-order ODE is given by

𝐺(𝑠) = (1
𝑇 𝑠 + 1

)
𝑝

, (4.7)

which leads to the general order partial differential equation

𝑝

∑
𝑗=0

(𝜙𝐵
𝑝

)
𝑗

(𝑝
𝑗
) 𝜕𝑗𝑦(𝑡)

𝜕𝑡𝑗 = 𝑐𝑇 𝑅 𝑡 (4.8)

with the binomial coefficient (𝑝
𝑗). The third-order equation results in

(𝜙𝐵
𝑝

)
3 𝜕3𝑦(𝑡)

𝜕𝑡3 + 3 (𝜙𝐵
𝑝

)
2 𝜕2𝑦(𝑡)

𝜕𝑡2 + 3 (𝜙𝐵
𝑝

) 𝜕𝑦(𝑡)
𝜕𝑡

+ 𝑦(𝑡) = 𝑐𝑇 𝑅 𝑡. (4.9)

To derive a differentiable approximation ̃𝜏𝐸 ≈ 𝜏𝐸 of (4.5), (4.9) is solved in the time
domain and the substitution of the stiffness model leads to

̃𝜏𝐸,+(Δ𝑞) = 𝑐𝑇 𝑅 Δ𝑞 − 𝑐𝑇 𝑅 𝜙𝐵

+ 𝑐𝑇 𝑅 𝜙𝐵 𝑒−(3 Δ𝑞/𝜙𝐵) (4.10)

+ 2 𝑐𝑇 𝑅 Δ𝑞 𝑒−(3 Δ𝑞/𝜙𝐵)

+ 3 𝑐𝑇 𝑅 /(2 𝜙𝐵) (Δ𝑞)2 𝑒−(3 Δ𝑞/𝜙𝐵)

for all Δ𝑞 ≥ 0 and

̃𝜏𝐸,−(Δ𝑞) = − ̃𝜏𝐸,+(−Δ𝑞) (4.11)

4.1 Advanced Nonlinear Robot Model 45

for all Δ𝑞 < 0. A complete, continuously differentiable elastic torque function is given by

̃𝜏𝐸 = tanh(𝑠𝐸1 Δ𝑞) ̃𝜏𝐸,+ (Δ𝑞 ⋅ tanh(𝑠𝐸1 Δ𝑞)) (4.12)

for all Δ𝑞 ∈ ℝ with the hyperbolic tangent tanh(⋅). It is essential for the tangent slope
factor 𝑠𝐸1 that 𝑠𝐸1 ≫ 3/𝜙𝐵 holds. Note that the slope factor is not upper-bounded,
except for limits due to numerical considerations. The continuously differentiable stiffness
curve is depicted in Fig. 4.2.

A continuously differentiable stiffness function is required for many model applications,
such as MPC or parameter identification. However, a flatness-based control is an exception,
where both, (4.12) and the inverse stiffness function (4.13) can be employed. Although the
inverse stiffness function is neither common nor applicable in general, it is advantageous
in the case of flatness-based control to use the following form

Δ𝑞 =

⎧{{{
⎨{{{⎩

0, 𝜏𝐸 = 0
𝜏𝐸

𝑐𝐿𝑀
+ 𝜙𝐵∗

2
sign(𝜏𝐸), 0 < |𝜏𝐸| ≤ 𝜏𝐸,0

𝜏𝐸
𝑐𝑇 𝑅

+ 𝜙𝐵 sign(𝜏𝐸), 𝜏𝐸,0 < |𝜏𝐸|,

(4.13)

since the inverse stiffness function reduces the number of required exponential functions
from eight in (4.12) to one in (4.14). For (4.13), the same method as for the nonlinear
friction can be applied, and the nonlinear, inverse, continuously differentiable stiffness
function

Δ𝑞 = 𝜏𝐸
𝑐𝑇 𝑅

+ 2 𝜙𝐵
1 + 𝑒−𝑠𝐸2 𝜏𝐸

− 𝜙𝐵 (4.14)

for all Δ𝑞 ∈ ℝ with the elastic smoothing factor 𝑠𝐸2 is obtained.

4.1.3 Advanced Inertia, Coriolis, Centripetal and Gravitational
Model

To embed the model in an optimization method, e.g., for model parameter identification,
the model required numerical improvements to reduce the computational effort. There-
fore, a tool developed by Joern Malzahn [Ma12] was utilized, which converted the model
to a symbolic representation consisting only of simple operators, such as addition, mul-
tiplication, sine, and cosine functions. This symbolic representation is applied in the
MATLAB robot identification suite and the PyTorch continuous-time NN environment

46 Chapter 4: Physical Robot Model and Control

for machine learning. Some modifications significantly reduced the computational effort,
for example, the batch-mode estimation yielded a reduction factor of 64. In the MAT-
LAB version, the symbolic representation is translated to C-code and then pre-compiled
to speed up computation further. The PyTorch library embeds the symbolic code within
its AD tools. However, this code remains the computational bottleneck of the robot
model. The symbolic representation consists of approximately 2000 lines of code, spread
over several submodules, with all in all approximately 2000 additional constants, 10000
multiplications, 2500 additions, 2000 subtractions, 50 cosine functions, 60 sine functions,
and 30 square functions. Mainly the calculation of the pose-dependent dynamic effects,
such as the estimation of 𝑀(𝑞), 𝐶(𝑞, ̇𝑞), and 𝑔(𝑞) requires computational resources. To
generate this symbolic representation, Joern Malzahn split the estimation of, e.g., the
inertia matrix for each matrix row into a separate computational task to account for the
computational limitations of the MATLAB symbolic toolbox. Further, reducing compu-
tational load is especially important for higher-order ODE solvers. The inertia, Coriolis,
centripetal matrices, and gravitational loads are computed on demand, given that a suf-
ficiently large change in position or velocity occurs in any joint. The thresholds are set
to 𝑞𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2 deg and ̇𝑞𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2 deg/s. These threshold values are chosen as a
trade-off between computational complexity and significant change of 𝑀(𝑞), 𝐶(𝑞, ̇𝑞), and
𝑔(𝑞). The source code is given in appendix E.1.

4.1.4 Hydraulic Weight Counterbalance

The HWC is modeled as a static hydraulic torque 𝜏𝐻,𝑆(𝑞2) ∈ ℝ which acts only on joint
2,

𝜏𝐻(𝑞) = [0, 𝜏𝐻,𝑆(𝑞2), 0, 0, 0, 0]𝑇 . (4.15)

The static hydraulic torque 𝜏𝐻,𝑆(𝑞2) is generated by a hydraulic force 𝐹𝐻,𝑆 and an orthog-
onal height ℎ(𝑞2). The height ℎ(𝑞2) can be derived from geometry, as depicted in Fig. 4.3,
which results in

𝑑𝑙(𝑞2) = √𝐷2 + 𝑘2 − 2𝐷𝑘 cos(𝑞2) − 𝑙 (4.16)

ℎ(𝑞2) = 𝐷𝑘 sin(𝑞2)
𝑙 + 𝑑𝑙(𝑞2)

(4.17)

with the distance 𝐷 from joint center to HWC attachment, HWC attachment radius 𝑘,
base length 𝑙 = 𝐷 − 𝑘 and extension length 𝑑𝑙(𝑞2). The hydraulic pressure 𝑝 is generated
by and equal to the nitrogen gas pressure in the bladder accumulators. The ideal gas law
is applied, including a compressibility factor 𝑍, and

4.1 Advanced Nonlinear Robot Model 47

Figure 4.3: The geometry of the Hydraulic Weight Counterbalance of KUKA KR300
R2500 ultra SE robot [Ha18a].

𝑝(𝑞2) = 𝑚𝑁𝑍𝑅𝑆𝑇𝑁
𝑉𝑚𝑎𝑥 − 𝑑𝑙(𝑞2)𝐴

(4.18)

𝜏𝐻,𝑆 = ℎ(𝑞2)𝜏𝑆,𝐹 = ℎ(𝑞2) ⋅ 𝑝(𝑞2)𝐴 (4.19)

with the specific gas constant 𝑅𝑆, the nitrogen mass 𝑚𝑁, the nitrogen temperature 𝑇𝑁, the
maximum bladder volume 𝑉𝑚𝑎𝑥 and the effective piston area 𝐴 is obtained. All geometric
parameters are given in the CAD model. The temperature and the compressibility factor
are assumed to be constant. The nitrogen mass and the bladder volume are identified
using pressure measurements in several static joint positions. The resulting parameters
are given in Tab. 4.1. The data-based estimation of the max bladder volume and the
nitrogen mass lead to plausible values: The measurements of the static positions, together
with the overall HWC model, are presented in Fig. 4.4.

Table 4.1: Hydraulic Counter Weight model parameters.

Parameter Symbol Value Unit

Distance from base anchor point to joint center D 800 mm
Distance from joint anchor point to joint center l 200 mm
Rod diameter d 30 mm
Piston diameter p 55 mm
Nitrogen mass 𝑚𝑁 2 ⋅ 0.0795 kg
Max bladder volume 𝑉𝑚𝑎𝑥 2 ⋅ 0.00048 m3

Compressibility factor nitrogen (176 bar, 328 K) 𝑍 1.03
Real gas factor nitrogen 𝑅𝑆 296.8 J/kg/K
Temperature 𝑇𝑁 328 K

48 Chapter 4: Physical Robot Model and Control

40 60 80 100 120

160

180

200

Joint Angle (deg)

H
yd

ra
ul

ic
Pr

es
su

re
(b

ar
)

angle pressure
(deg) (bar)

120 170
110 167
100 164
90 162
80 162
70 170
60 180
50 190
40 200

Figure 4.4: Hydraulic Weight Counterbalance pressure model (blue line) compared
with static pressure measurements (black circles) for several joint positions.
Torque measurements are not available. Maximum joint movement is from
140 deg to 5 deg. Model is validated for the range of 120 deg to 40 deg, due
to cell pose limitations.

4.1.5 Advanced Friction Model

Note that a good friction model is essential for high-accuracy robot control. As a result,
a nonlinear friction model based on [Di18; GDH01] was applied. The extended friction
model exploits an asymmetrical, viscous, Coulomb, and degressive friction term

𝜏𝐹(̇𝑞) = 𝑓𝑎𝑠𝑦𝑚 + 𝑓𝑣 ̇𝑞 + 𝑓𝑐tanh(𝑠𝑓 ̇𝑞) + 𝑓𝑎tanh(𝑓𝑏 ̇𝑞) (4.20)

with viscous friction 𝑓𝑣 and Coulomb friction 𝑓𝑐 as defined in section 2.2.4. The additional
zero drift error of friction torque is 𝑓𝑎𝑠𝑦𝑚 ∈ ℝ𝑁𝑄 and degressive friction coefficients 𝑓𝑎 ∈
ℝ𝑁𝑄 and 𝑓𝑏 ∈ ℝ𝑁𝑄 . The degressive friction torque routes back to [GDH01] and models
a saturation of the friction torque in the high-velocity range. Modeling this degressive
friction behavior matches various measurements. Furthermore, the Coulomb friction is
approximated by sign(⋅) ≈ tanh(𝑠𝑓 (⋅)) for differentiable friction in the trajectory and
identification optimization algorithm. In contrast to 𝑓𝑏, the smoothness factor 𝑠𝑓 is not a
physically motivated model parameter, and 𝑠𝑓 ≫ 𝑓𝑏 is ensured.

Defining the extended friction model is one matter; the estimation of friction parameters
is the other. Section 4.2 will solely exploit the identification of proper friction model
parameters.

4.2 Friction Parameter Estimation 49

4.2 Friction Parameter Estimation

Depending on the temperature, the friction load can vary from 20 % to 80 % of the motor
torque [Ku08]. Therefore, an accurate friction identification is essential for sophisticated
feed-forward control. The standard dynamic robotic model is utilized to the greatest
extent possible for improved comparability and integration with other research findings.
Only two extensions necessary for the riding joint industrial robot are investigated: An
advanced friction model and a model considering the HWC acting on joint 2. The friction
identification approach consists of two distinct steps: A first step deals with trajectory
optimization, e.g., finding the set of trajectories that excite the parameters well. The
fundamental chicken-egg problem that a model-based trajectory optimization estimates
the excitation trajectory, which is then utilized to identify the model’s parameters arises.
Therefore, a global optimization over a set of initial models in the entire parameter space
is chosen rather than applying a single model based on prior knowledge. The second step
estimates the parameters based on the measurements. This global optimization can be
performed at run-time. The presented methods solve this second step computationally
sufficiently on up-to-date hardware.

4.2.1 Identification Algorithm

A linearly constrained, nonlinear objective global optimization problem is solved. As
the elastic joints are not a part of the identified parameters, the optimization problem
is based on the rigid body model (2.1). Furthermore, the identification is enabled as
an online procedure, meaning that the optimization problem is designed to be computed
at run time. This led to several implications regarding an efficient implementation and
further details on the algorithm. Online computation is entirely optional. The algorithm
can be applied to an offline data set with minor modifications.

Θ̃∗ = argmin
Θ̃

(𝜆1
𝐾

⋅
𝐾−1
∑
𝑘=0

(𝑞𝑘,𝑚𝑒𝑎𝑠 − 𝑞𝑘,𝑠𝑖𝑚(Θ̃))
2

+𝜆2
𝐾

⋅
𝐾−1
∑
𝑘=0

(̇𝑞𝑘,𝑚𝑒𝑎𝑠 − ̇𝑞𝑘,𝑠𝑖𝑚(Θ̃))
2

+𝜆3
𝐾

⋅
𝐾−1
∑
𝑘=0

(𝜏𝑘,𝑚𝑒𝑎𝑠 − 𝜏𝑘,𝑠𝑖𝑚(Θ̃))
2

(4.21)

+ 1
𝑉

𝑉 −1
∑
𝑣=0

𝜆4,𝑣 ⋅ (Θ̃𝑣 − Θ̃∗
𝑣,𝑝𝑟𝑒𝑣)

2
)

𝑠.𝑡. Θ̃𝑙𝑏 ≤ Θ̃ ≤ Θ̃𝑢𝑏.

The optimal parameter vector is Θ̃∗, the search parameter vector is Θ̃, upper and lower

50 Chapter 4: Physical Robot Model and Control

parameter bounds are Θ̃𝑢𝑏 and Θ̃𝑙𝑏 respectively and the previously identified parameter
vector is Θ̃∗

𝑝𝑟𝑒𝑣. Each parameter vector Θ̃ contains 𝑉 ∈ ℕ values. The dataset contains
some 𝐾 ∈ ℕ time steps. The discrete-time index is 𝑘 ∈ ℕ and the parameter vector index
is 𝑣 ∈ ℕ. The four objective terms in (4.21) can be combined arbitrarily using the weight
factors 𝜆(⋅). The objective terms feature the link position MSE, the link velocity MSE,
the motor torque MSE, and a regularization term. The regularization reflects that the
parameter change is slow compared to state variable change rates and clips the currently
identified parameter set to the previous one. At the first iteration, clipping can be omitted
by setting Θ̃∗

𝑝𝑟𝑒𝑣 = 0 if no a priori knowledge about the initial parameters is available.
The nonlinear closed-loop formulation in (4.21) requires a global optimization problem
but opens up some unique possibilities:

• Separation of modeling and identification. The model is defined consistently to
other robotics applications, such as robot simulation or MPC in (4.21): Any model
can be utilized to simulate 𝑞𝑠𝑖𝑚, ̇𝑞𝑠𝑖𝑚 and 𝜏𝑠𝑖𝑚. Unfortunately, additional engineer-
ing effort is necessary for designing a closed-loop model, even if only a single part of
the model is identified. As a beneficial side effect, this leads to validation with mea-
surements for every model component. For example, a good inertia identification is
impossible without designing the proper friction model and feedback controller. Fur-
thermore, it is not required to design models which are linear in inertial parameters.
Moreover, nonlinear and discontinuous models are supported. Additionally, linear
bounds can be enforced directly on the physical parameters, ensuring a physically
feasible system.

• Single measurement sufficient. The optimization problem (4.21) features the
advantage that a single measurement - position, velocity, or torque - is sufficient for
parameter identification. This is enabled by the closed-loop formulation of the model,
which utilizes the reference trajectory (𝑞𝑅, ̇𝑞𝑅) as the model input variable. The
model output variable can be any combination of (including all) position, velocity,
and torque measurements. All but one can be omitted in noisy, inaccurate, or
unavailable position, velocity, or torque measurements. However, usually, the motor
torque MSE has greater dynamic bandwidth than position and velocity MSE, thus
containing more information and is recommendable.

• Arbitrary parameter identification. The parameters to be identified can be
chosen arbitrarily. Parts of the friction, inertia, gravitational loads, feedback con-
troller gains, HWC, or any other component can be identified in a single optimization
problem. The choice of the parameter vectors leads to major consequences for the
computational requirements of the algorithm. The more parameters are chosen, the
more computational resources are necessary. In this work, all 30 friction parameters
are identified at once. However, the choice of the identification parameters influ-

4.2 Friction Parameter Estimation 51

ences the condition number of the excitation trajectory for the parameters. It is not
beneficial, although it is possible, to employ a single trajectory to identify all model
parameters.

4.2.2 Design of Experiments

The sensitivity matrix of a trajectory of a nonlinear dynamic parametric model 𝜏 =
𝑓(𝑞(𝑡), Θ) is denoted by the Jacobian

𝑋0(𝑞(𝑡), Θ) = 𝜕𝑓(𝑞(𝑡), Θ)
𝜕Θ

∣
Θ𝑗=Θ0,𝑗

, (4.22)

which is evaluated at a local point Θ0,𝑗 and is, as a consequence, a local regressor at this
point. The continuous parameter subset Θ𝑗 includes all parameters of Θ that remain in 𝑋
after differentiation. The values Θ0,𝑗 are not known to be the optimal parameter values
and are usually chosen to use assumptions. The fundamental problem is encountered
that a nonlinear model-based trajectory optimization is employed to identify the model’s
parameters. At this point, the model’s parameters cannot yet be known with certainty
because the whole process is intended to identify them. Therefore, multiple points are
chosen as the matrix Θ𝑃,𝑗 over a grid inside bounds for every Θ𝑗, Θ𝑗,𝑙𝑏 ≤ Θ𝑗 ≤ Θ𝑗,𝑢𝑏.
This set of local regressors promises to be more informative than a single, arbitrary point.
Collecting all the Jacobians for the points Θ𝑃,𝑗 in one matrix leads to 𝑋𝑃(𝑞(𝑡), Θ) =
[𝑋1 … 𝑋𝑝]𝑇.

Let the friction model (4.20) be the parametric nonlinear model to consider. The resulting
Jacobian is defined as

𝑋(𝑃 ,𝑖)(𝑞(𝑡), Θ𝑖) = [̇𝑞𝑖(𝑡), tanh(𝑠𝑓 ̇𝑞𝑖(𝑡)), 1, tanh(𝑓𝑏 ̇𝑞𝑖(𝑡)), 𝜉1, 𝜉2]∣
Θ𝑃,𝑗

(4.23)

with the temporary variables 𝜉1 = −𝑓𝑎 ̇𝑞𝑖(𝑡) and 𝜉2 = tanh(𝑓𝑏 ̇𝑞𝑖(𝑡))2 − 1. The parameter
vector Θ𝑖 = [𝑓𝑎𝑠𝑦𝑚,𝑖 𝑓𝑣,𝑖 𝑓𝑐,𝑖𝑓𝑎,𝑖 𝑓𝑏,𝑖] and the matrix Θ𝑖,𝑃 ,𝑗 = [𝑓(𝑎,𝑖,𝑃) 𝑓(𝑏,𝑖,𝑃)] are the
collection of the grid values of the remaining parameters 𝑓𝑎,𝑖 and 𝑓𝑏,𝑖. Combining the
regressors for all joints in one block diagonal matrix 𝑊 = diag(𝑋1, … , 𝑋𝑛) delivers a
formulation for the condition number criterion for the trajectory of the whole system:

̇𝑞∗(𝑡) = argmin
̇𝑞(𝑡)

(cond(𝑊)) (4.24)

52 Chapter 4: Physical Robot Model and Control

s.t. 𝑞(𝐷)
𝑙𝑏 (𝑡) ≤ 𝑞(𝐷)(𝑡) ≤ 𝑞(𝐷)

𝑢𝑏 (𝑡) ∀𝑡 ∈ [0, 𝑇], ∀𝐷 ∈ ℕ0
≤2

𝑞(𝐷)(𝑡) = 0, ∀𝑡 ∈ {0, 𝑇 }, ∀𝐷 ∈ ℕ0
≤4.

The identification is augmented with position, velocity, and acceleration limits, with the
lower and upper bounds 𝑞(𝐷)

𝑙𝑏 (𝑡), 𝑞𝐷)
𝑢𝑏 (𝑡), of derivative order 𝐷. The second constraint guar-

antees that the trajectory up to the 4𝑡ℎ derivative starts and ends at zero. By definition,
the position is zero in the homing position, as pictured in Fig. 6.1. For identification, the
trajectory is usually parameterized and, in most cases, as a Fourier series [SVS07]. Fourier
series ensure the 4𝑡ℎ-order joint differentiability necessary for the flatness-based control
[WGR20]. The resulting formulation is a nonlinear optimization problem and demands
global optimization approaches. As in [TUB20] a so-called Memetic Algorithm is used
to get the optimal trajectory. The trajectories applied to the real robot are depicted in
Fig. 4.5.

4.2.3 Experimental Setup

The experiments are carried out on a KUKA KR300 R2500 ultra SE robot as pictured in
Fig. 6.1. It is an industrial robot featuring a maximum payload capacity of 300 kg and a
reach of 3100 mm. A payload of 150 kg is attached in all measurements. The manipulator
is designed by KUKA and not modified. The robot control, including the electrical hard-
ware and the real-time operating system, is based on components by industrial supplier
B&R Automation. This custom-made controller enables full access to low-level controllers
and filters. However, the target compiler does not support extended capabilities, such
as parallel computation or external software libraries. Consequently, the identification
algorithm runs on an external computer communicating with the real-time target. As
the real-time capabilities of this algorithm are essential, the algorithms are tested on two
external computers. One is a standard Microsoft Surface from 2017, featuring windows 10
and an Intel(R) Core(TM) i7-7660U CPU @ 2.50GHz and 8 GB RAM. The second ex-
ternal computer operates on Linux Mint 20.1 with an Intel(R) Core(TM) i7-8700K CPU
@ 3.70GHz and 32 GB RAM. In both cases, all algorithms are executed in MATLAB
and run only on Central Processing Unit (CPU). If not mentioned otherwise, the Linux
desktop computer is applied.

Three trajectories are applied, as presented in Fig. 4.5. One is applied for robot identi-
fication (blue lines), and two more are employed for cross-validation only(red and green
lines). All trajectories are created as explained in section 4.2.2. Due to the long lever, the
experiments focus on the three main points, although, in all trajectories, all six joints are
moved simultaneously so that all joints influence each other. As required for online iden-

4.2 Friction Parameter Estimation 53

2 4 6 8
−50

0

50

Jo
in

t
Po

sit
io

n
𝑞 (

⋅),
1

(d
eg

)

2 4 6 8
−40
−20

0
20
40

Jo
in

t
Po

sit
io

n
𝑞 (

⋅),
2

(d
eg

)

2 4 6 8
−40
−20

0
20

Time (s)

Jo
in

t
Po

sit
io

n
𝑞 (

⋅),
3

(d
eg

)

Figure 4.5: Measured and simulated trajectory for joint 1 (top), joint 2 (middle)
and joint 3 (bottom). Dotted line: Measured trajectory. Solid line: Simu-
lated trajectory. For clarity, the reference trajectories are not included. The
difference between reference, measurement, and simulation is constantly less
than ±0.25 deg and cannot be observed without magnification. Colors cor-
respond to the trajectory and torque figures. Blue: Identification trajectory,
Red: 1𝑠𝑡 validation trajectory, Green: 2𝑛𝑑 validation trajectory.

tification, the identification does not start in stand sill but starts after 2 s when all joints
are in movement. All movements are recorded in 4 ms. Every trajectory is performed
only once for the single batch optimization. The presented algorithm does not require
multiple repetitions of the measurements to mitigate sensor noise. For the real-time batch
optimization, the identification trajectory (blue line) is repeated 30 times consecutively to
obtain a total experiment duration of 5 minutes.

4.2.4 Single Batch Identification

Besides the baseline of the trajectories, Fig. 4.5 demonstrates the comparison between
position measurements and simulations for a single batch identification. No deviation
between model prediction and measurements can be observed for all trajectories without
further magnification. The same holds for velocity measurements, which are not shown in
this contribution due to space limitations. The raw, unfiltered torque measurements are

54 Chapter 4: Physical Robot Model and Control

2 4 6 8
−10

−5

0

5

10
M

ot
or

To
rq

ue
𝜏 𝑀

,1
(N

m
)

2 4 6 8
−20

−10

0

10

M
ot

or
To

rq
ue

𝜏 𝑀
,2

(N
m

)

2 4 6 8
−20

−15

−10

−5

0

Time (s)

M
ot

or
To

rq
ue

𝜏 𝑀
,3

(N
m

)

Figure 4.6: Motor torque of identification trajectory for joint 1 (top), joint 2 (middle)
and joint 3 (bottom). Light blue: Measured torque. Dark blue: Simulated
torque.

used as illustrated in Fig. 4.6 for the identification of the model. Applying raw data leads
to a natural regularization.

The main results for all three joints and all three trajectories are shown in Tab. 4.2. To
compare the results, the measured motor torque is filtered with a zero-phase digital low
pass filter (passband frequency 30 Hz, filter order 8). The simulated torque remains un-
filtered in all cases. The RMSE on the difference between the measured and simulated
motor torque (meas-sim), filtered and simulated torque (filt-sim), and filtered and mea-
sured torque (filt-meas) are applied as indicators. Furthermore, the relative motor torque
error is captured,

𝑒𝑟𝑒𝑙 = 100 ⋅ ||𝜏𝑚𝑒𝑎𝑠 − 𝜏𝑠𝑖𝑚||2/||𝜏𝑚𝑒𝑎𝑠||2 (error-rel) (4.25)

𝑒𝑟𝑒𝑙,𝑓𝑖𝑙𝑡 = 100 ⋅ ||𝜏𝑓𝑖𝑙𝑡 − 𝜏𝑠𝑖𝑚||2/||𝜏𝑓𝑖𝑙𝑡||2 (error-rel-filt) (4.26)

4.2 Friction Parameter Estimation 55

2 4 6 8
−10

−5

0

5

10

M
ot

or
To

rq
ue

𝜏 𝑀
,1

(N
m

)

2 4 6 8
−20

−10

0

10

M
ot

or
To

rq
ue

𝜏 𝑀
,2

(N
m

)

2 4 6 8
−20

−10

0

Time (s)

M
ot

or
To

rq
ue

𝜏 𝑀
,3

(N
m

)

Figure 4.7: Motor torque of validation trajectories for joint 1 (top) joint 2 (middle) and
joint 3 (bottom). Light red: Measured torque of 1𝑠𝑡 validation trajectory.
Dark red: Simulated torque of 1𝑠𝑡 validation trajectory. Light green: Mea-
sured torque of 2𝑛𝑑 validation trajectory. Dark green: Simulated torque of
2𝑛𝑑 validation trajectory.

56 Chapter 4: Physical Robot Model and Control

Table 4.2: RMSE and relative motor torque errors for every joint and for every trajectory.
For definitions of indicators and filter settings see the main paragraph.

Joint Indicator Ident 1𝑠𝑡 Val 2𝑛𝑑 Val Unit

meas-sim 0.63 0.55 0.60 Nm
filt-meas 0.56 0.45 0.51 Nm

1 filt-sim 0.38 0.32 0.34 Nm
rel-error 15.0 16.2 14.8 %
rel-error-filt 9.5 10.2 8.9 %

meas-sim 0.75 0.71 0.68 Nm
filt-meas 0.72 0.70 0.71 Nm

2 filt-sim 0.61 0.84 0.73 Nm
rel-error 8.4 7.8 7.5 %
rel-error-filt 7.1 9.7 8.4 %

meas-sim 0.60 0.79 0.60 Nm
filt-meas 0.80 0.73 1.00 Nm

3 filt-sim 0.71 0.71 0.89 Nm
rel-error 5.3 7.2 5.2 %
rel-error-filt 6.4 6.8 8.2 %

with the L2-norm and the corresponding torque datasets.

Tab. 4.2 demonstrates that for all joints, every indicator remains the same for all trajec-
tories. Furthermore, the model fit indicators outperform the cross-validation trajectories’
identification trajectory. This indicates a good extrapolation capability and no overfitting
of the identified parameters.

A relatively high RMSE between the filtered measurement and simulation of ≤ 0.89 Nm
is observed. This is based on two reasons: First, the parameters are not identified on
the filtered measurements but the raw data. Second, substantial oscillations in the filtered
measurement below 30 Hz frequencies are observed, most likely due to elastic deformations
of the gearboxes. The noteworthy oscillations in the filtered and unfiltered measurements
are reflected in the relative error of 5.2 to 16.2 %.

The RMSE on filt-meas is an indicator for the noise amplitude in the measured motor
torque, comparing the raw motor torque with its filtered equivalent. In all cases, this
indicator is between 0.45 and 1.0 Nm. The RMSE on simulation, meas-sim and filt-sim,
is constantly less than the RMSE of the measurement noise of 1.0 Nm. As visualized
in Fig. 4.6 and Fig. 4.7, the simulated motor torque stays in all cases within the motor
measurement noise. Identified parameters are given in appendix B.4.

4.2 Friction Parameter Estimation 57

4.2.5 Computational Efficiency of Multi Batch Identification

The software is based on Robotics Toolbox [Co17]. The pose and payload dependent in-
ertia matrix 𝑀(𝑞), centrifugal and Coriolis matrix 𝐶(𝑞, ̇𝑞) and the vector of gravitational
torques 𝑔(𝑞) are derived as symbolic expressions using a modification of the CodeGenera-
tion() function. The closed-loop simulator (2.1), (4.33) is compiled to executable C-code
using the MATLAB Coder Toolbox, for two operating systems, Windows and Linux. The
global surrogate optimizer is given in the MATLAB Global Optimization Toolbox. It is a
general global nonlinear solver capable of mixed-integer problems, nonlinear constraints
(which are not applied in this thesis), and stiff, non-differentiable objective functions. It is
intended for extensive, objective functions and creates a surrogate, a radial-basis-function-
based approximation of the objective function. Likewise, it is capable of a warm start so
that evaluated points from previous computations can be reused. With the surrogate
optimizer, the symbolic model, and the compiled code, the algorithm is already so fast
that it slows down when utilizing MATLAB Parallel Computation Toolbox on one test
hardware platform (Linux computer). However, parallel computation is applied on the
second platform (Windows computer).

For the solution of the differential equations (4.1a), (4.1b), the 4-stage Runge-Kutta algo-
rithm is applied. A fixed-time step solver is selected in order to minimize discontinuities
in the optimization problem. Furthermore, a fixed-time step solver implies a determinis-
tic computation time, which is important considering real-time systems. The simulation
only requires the reference position 𝑞𝑅, the reference velocity ̇𝑞𝑅 and the initial conditions
𝑞0, ̇𝑞0. Suppose only a noisy, inaccurate, or no position or velocity measurement is avail-
able. In that case, the initial conditions can be set to the reference trajectory, 𝑞𝑅,0, ̇𝑞𝑅,0,
with minimal modeling error. The model calculation does not rely on further measure-
ments than the initial state. Including the feedback controller in the closed-loop model
leads to high sampling frequencies in the optimization problem. On the robot, the veloc-
ity controller is calculated each 0.2 ms and the position controller each 0.8 ms. The robot
model must consider different sampling times of the feedback controller. Unfortunately,
high sampling frequencies increase the computational effort. This is especially demanding
for updating the inertia, Coriolis, and gravitational components. Therefore, the update
of these components is only applied if a sufficient change in position or velocity occurred,
e.g., ||Δ𝑞||2 ≥ 2 deg or ||Δ ̇𝑞||2 ≥ 2 deg/s. This method is explained in the appendix E.1.

The identification runs consecutively for 5 minutes to test real-time capabilities. For
clarity, the first 3 minutes are zoomed in Fig. 4.8 and in Fig. 4.9. The optimizer utilizes
the last completed batch, identifies the parameters, and restarts after the computation
is done using the currently completed batch. Discrete circles in Fig. 4.8 and in Fig. 4.9
refer to each completed identification. The optimization variables of the first batch are
randomly sampled from the entire parameter space, e.g., Θ̃𝑙𝑏 ≤ Θ̃ ≤ Θ̃𝑢𝑏. Subsequent

58 Chapter 4: Physical Robot Model and Control

1 5 10 15 20 25 30
0

2

4

6

8

Identification Batch (unitless)

C
om

pu
ta

tio
n

T
im

e
(s

)

Figure 4.8: Computation time for each identification.

optimization performs a warm start to reuse previously evaluated function points. Fig. 4.8
presents the computation time required for each of the 48 optimizations done during the
5 minutes (figure clipped to 30 batches for visibility). The computation duration of the
surrogate solver depends on the number of evaluation points per batch, e.g., 50, the
maximum amount of evaluation points reused from previous iterations, e.g., 300, and the
implementation of the cost function. Fig. 4.8 shows that the solver applies an increasing
number of warm start points. Therefore, the solver slows down until the buffer size is
fixed. A maximum evaluation time for the full robot model, including the 30 optimization
variables, is achieved in less than 7 s in all cases.

Fig. 4.9 presents the results for each batch identification. The RMSE motor torque is after
18.7 s within the range of the torque measurement noise of 0.7 Nm. The cost function values
provide insight into the stable identification process. Except for the first 6 batches, the
identification results of motor torque, link position, and link velocity using the real-time
batch mode are similar to the single batch results presented in Fig. 4.5 and Fig. 4.6.

4.3 Robot Control 59

0 20 40 60 80 100 120 140 160 180
0

2

4

R
M

SE
M

ot
or

To
rq

ue
(N

m
)

0 20 40 60 80 100 120 140 160 180
0

2

4

6

Time (s)

C
os

t
Fu

nc
tio

n
(u

ni
tle

ss
)

Figure 4.9: Identification results for the RMSE error of the motor torques of all joints
(top), and the cost function (bottom). The light red background represents
the motor torque noise level (top).

4.3 Robot Control

4.3.1 Control Structure

A model-based feed-forward controller to account for the dynamic system and a feedback
control law to compensate for unknown disturbances and model errors are utilized. In
Fig. 4.10 and Fig. 4.11 two different control architectures are presented. Both contain a
feed-forward controller, a feedback controller, and trajectory planning.

The trajectory planning generates the reference signals, e.g., the reference link angle 𝑞𝑅

of the desired trajectory and its derivatives. A motor torque 𝜏𝑀 is applied to the robot,
and the link angle 𝑞 and the motor velocity ̇𝜃 are the control variables of the feedback
controller. For the first three joints, the link angle 𝑞 is measured directly using Secondary
Encoders (SE) which are mounted on the hull of the robot structure. The motor velocity

̇𝜃 is independently measured using the resolver mounted on the motor shaft. For both
sensors, noise is addressed by implementing low-pass filters.

Regarding the feed-forward controller, there are two different architectures, as presented
in Fig. 4.10 and Fig. 4.11. The design in Fig. 4.10 is referred to as the flatness-based
feed-forward controller, whereas the structure in Fig. 4.11 is known as exact linearization.
Depending on the literature, both are referred to as Computed Torque Control (CTC)
[MH08; NSP08]. The flatness-based design is explained in detail in section 4.3.3 and com-
putes the feed-forward torque independently of the current states. It relies exclusively on

60 Chapter 4: Physical Robot Model and Control

Trajectory
Planning

Position
Controller

Velocity
Controller

Feed-Forward
Control

Robot

̇𝜃𝑅,𝑖

𝑞𝑅,𝑖

𝜏𝐹𝐹

̇𝜃𝐶,𝑖
𝜏𝐶 𝜏𝑀

𝑞𝑖

̇𝜃𝑖

−

𝑞𝑖

−

̇𝜃𝑖

Figure 4.10: Controller design with feed-forward and feedback control.

Trajectory
Planning

Position
Controller

Velocity
Controller

Inverse
Dynamic-

Model
Robot

̇𝜃𝑅,𝑖

𝑞(𝐷)
𝑅,𝑖

𝑞𝑅,𝑖

̇𝜃𝐶,𝑖 𝑞(𝐷)
𝐶,𝑖

𝜏𝑀

𝑞𝑖

̇𝜃𝑖

−

𝑞𝑖

−

̇𝜃𝑖

Figure 4.11: Controller design with exact linearization.

4.3 Robot Control 61

the reference trajectory and its derivatives, and therefore, it can potentially be computed
offline. As a consequence, it is invulnerable to any measurement noise. The flatness-based
architecture is independent of the feedback control. Consequently, the feedback control
is not time delayed or modified. It contains the disadvantage of a potentially less precise
model since it relies on the reference trajectory rather than the measured trajectory. For
the robot demonstrator used in this work, the joint precision is less than 0.1 deg for all
joints (see the final results in section 6.3.1) and therefore the error, using reference rather
than measured joint angles, is negligible. The robot accuracy improvements gained by
using a noise-free 4𝑡ℎ-order differentiable trajectory prevail. Additionally and equally im-
portant, the feedback control can be faster computed if the feedback loop does not contain
the dynamic model. However, for less accurate robot types, it is possible and useful to
include online measurements to improve the model’s accuracy partially. The inertia ma-
trix, gravity, Coriolis, and centripetal terms can be updated at run time based on online
measurements.

The exact linearization architecture, as presented in Fig. 4.11, attempts to eliminate the
nonlinearity in robot dynamics in an inner loop and therefore control a simple, linear sys-
tem with the feedback controller. A detailed explanation is given in [Sp87]. The feedback
controller computes an angular acceleration for a dynamic inversion-based controller in
order to compensate for nonlinear dynamics.

Its advantage is that the feedback controller is automatically adjusted to the current
robot state. Disadvantages are a necessity of a fast computation of the inverse dynamic
model in the inner loop and a potential time delay of the feedback control. In [NSP08],
both designs are compared, and the flatness-based architecture outperforms the exact lin-
earization structure with several feed-forward models regarding the achieved trajectory
accuracy. The authors in [NSP08] argue that the main advantage of a feed-forward struc-
ture compared to exact linearization is the direct and non-delayed impact of the feedback
control law. Based on these arguments, a flatness-based architecture rather than exact
linearization is applied.

The exact linearization module does not account for joint elasticity; therefore, the inner
loop reduces to a double integrator. The main idea of applying the model inverse remains
the same in the flatness-based feed-forward and the exact linearization case. Assume the
following form gives a model inverse of the robot

𝜏𝑀 = 𝑓𝐹𝐹(𝑞𝑈, ̇𝑞𝑈, ⋯ , 𝑞(𝐷)
𝑈) (4.27)

with an input angle 𝑞𝑈 and its derivatives. The derivative is defined as 𝑞(𝐷) = 𝑑𝐷𝑞
𝑑𝑡𝐷 . In the

flatness-based architecture 𝑞𝑈 = 𝑞𝑅. In the exact linearization formulation

62 Chapter 4: Physical Robot Model and Control

𝑞(𝐷)
𝑈 = 𝑞(𝐷)

𝑅 + 𝑞(𝐷)
𝐶 (4.28)

with the feedback control variable 𝑞(𝐷)
𝐶 . With an elastic joint model, the derivative order

is 𝐷 = 4, whereas with the rigid joint model, the derivative order is 𝐷 = 2 [MH08]. So, a
rigid joint model is

̈𝑞𝑈 = ̈𝑞𝑅 + ̈𝑞𝐶, (4.29)

and a model with elastic joints is

𝑞(4)
𝑈 = 𝑞(4)

𝑅 + 𝑞(4)
𝐶 . (4.30)

In the exact linearization case, applying the highest input derivative is beneficial. Note
that the output of the velocity controller 𝑢𝐶 depends on the architecture. For the flatness-
based, it is equal to the motor control torque, e.g., 𝑢𝐶 = 𝜏𝐶. In the exact linearization
case, it computes the control input of the inverse dynamics model, e.g., 𝑢𝐶 = 𝑞(𝐷)

𝐶 . In
section 4.3.3, the flatness-based module is derived and thus (4.27) is estimated.

4.3.2 Feedback Controller using Secondary Encoders

A PD-controller with a link-side position controller using SE and a motor-side velocity
controller based on the resolver signal is implemented. Considering elastic joints, it is
difficult to precisely calculate the motor reference signals since the equation 𝜃𝑅 = 𝑢 𝑞𝑅

is only valid for rigid joints. A precise calculation of the motor reference signals requires
the full, nonlinear stiffness model (4.1a) and (4.1b). Therefore, the exact calculation of
the motor reference signals is sensitive to modeling errors. In most previous works, this
consideration is simply neglected, and the rigid link equation 𝜃𝑅 = 𝑢 𝑞𝑅 is used for the
motor-side position and velocity controller. Regarding position control, this problem can
be solved by measuring 𝑞 and implementing a link-side position control. Unfortunately,
a link-side velocity control only partially solves this issue. A link velocity speed control
utilizes the correct reference speed ̇𝑞𝑅, but it causes two additional issues. First, a compar-
atively low sensor resolution due to the missing transmission factor requires significantly
low pass filtering. Second, a soft velocity control parameter is necessary to avoid stability
issues caused by the elastic joint. Both drawbacks can be addressed by implementing a
motor-side velocity controller utilizing the full nonlinear elastic joint model for calculating
the correct motor reference speed. The significance of this effect is presented in real world
experiments.

4.3 Robot Control 63

Both the position and velocity controllers are realized as proportional controllers. The
position controller is given by

̇𝜃𝐶 = 𝐾𝑃 (𝑞𝑅 − 𝑞) (4.31)

with the proportional position gain 𝐾𝑃 and the motor velocity ̇𝜃𝐶. The velocity controller
using the proportional speed gain 𝐾𝑉 has the form

𝜏𝐶 = 𝐾𝑉 (̇𝜃𝐶 + ̇𝜃𝑅 − ̇𝜃). (4.32)

All in all, the control signal sums up to

𝑢𝑣𝑒𝑙 = 𝜏𝐹𝐹 + 𝜏𝐶. (4.33)

4.3.3 Flatness-based Feed-Forward Controller

The main task of the feed-forward control law is to achieve a good tracking behavior,
whereby the feedback control law can be applied exclusively for compensating disturbances
and model uncertainties. The inverse nonlinear model of the robot link is used to design
the feed-forward control law. Therefore, a solution of the nonlinear model (4.1a) and
(4.1b) for the motor torque 𝜏𝑀 is required,

𝜏𝑀 = 𝐽 ̈𝜃 + 𝑈−1 (𝑀𝐿(𝑞) ̈𝑞 + 𝐶(𝑞, ̇𝑞) ̇𝑞 + 𝑔(𝑞) + 𝜏𝐹(̇𝑞) + 𝜏𝐻(𝑞)) . (4.34)

The following assumptions are made to estimate (4.34).

• The motor inertia matrix 𝐽 is diagonal.

• All parameter changes during one interval are neglected, in the presented case for
0.8 ms. The parameters are updated each 0.8 ms according to the state trajectory
but are not considered as differentiable variables in the flatness-based feed-forward
control law.

• During each time interval, the dependency of the inertia matrix 𝑀(𝑞, ̇𝑞) on the
position 𝑞 and velocity ̇𝑞 is neglected.

• During each time interval, the dependency of the Coriolis and centripetal matrix
𝐶(𝑞, ̇𝑞) on the position 𝑞 and velocity ̇𝑞 is neglected.

• During each time interval, the dependency of the gravitational load 𝑔(𝑞) on the
position 𝑞 is neglected.

64 Chapter 4: Physical Robot Model and Control

• During each time interval, the dependency of the hydraulic load 𝜏𝐻(𝑞) on the position
𝑞 is neglected.

Using the assumptions, (4.34) turns into

𝜏𝑀 = 𝐽 ̈𝜃 + 𝑈−1 (𝑀𝐿 ̈𝑞 + 𝐶 ̇𝑞 + 𝑔 + 𝜏𝐹(̇𝑞) + 𝜏𝐻) . (4.35)

For good tracking behavior, e.g., 𝑞 = 𝑞𝑅, the motor position is set to the motor reference
position, e.g., 𝜃 = 𝜃𝑅 and regarding the motor torque 𝜏𝑀 = 𝜏𝐹𝐹 is applied. It follows that

𝜏𝐹𝐹 = 𝐽 ̈𝜃𝑅 + 𝑈−1 (𝑀𝐿 ̈𝑞𝑅 + 𝐶 ̇𝑞𝑅 + 𝑔 + 𝜏𝐹(̇𝑞𝑅) + 𝜏𝐻) . (4.36)

The continuous differentiable friction torque 𝜏𝐹(̇𝑞𝑅) is defined in (4.20). In order to solve
(4.36), a substitution of ̈𝜃𝑅 with a function of 𝑞𝑅 and its derivatives is required, which is
given by the inverse nonlinear stiffness model. The torsion angle Δ𝑞 as defined in (4.3) is
utilized for the motor position,

𝜃 = 𝑈𝑅 (Δ𝑞𝑅 + 𝑞𝑅) . (4.37)

The torsion angle Δ𝑞𝑅 is substituted using the inverse, continuously differentiable stiffness
model (4.14) leading to

𝜃𝑅 = 𝑈 (𝜏𝐸
𝑐𝑇 𝑅

+ 2 𝜙𝐵
1 + 𝑒−𝑠𝐸 𝜏𝐸

− 𝜙𝐵 + 𝑞𝑅) . (4.38)

The division operator and the exponential function are defined element-wise in (4.38) and
(4.39). The elastic torque 𝜏𝐸 is substituted using the sum of torques of the link side. This
leads to

𝜃𝑅 = 𝑈 (𝑀𝐿 ̈𝑞𝑅 + 𝐶 ̇𝑞𝑅 + 𝑔 + 𝜏𝐹(̇𝑞𝑅) + 𝜏𝐻
𝑐𝑇 𝑅

+ 2 𝜙𝐵
1 + 𝑒−𝑠𝐸 (𝑀𝐿 ̈𝑞𝑅+𝐶 ̇𝑞𝑅+𝑔+𝜏𝐹(̇𝑞𝑅)+𝜏𝐻) − 𝜙𝐵 + 𝑞𝑅). (4.39)

Obtaining the second derivative of (4.39), e.g., ̈𝜃𝑅 = 𝑑2𝜃𝑅
𝑑𝑡2 , completes the solution for 𝜏𝐹𝐹

in (4.36). The solution is too long to display as a compact equation. The source code
containing the solution is given in E.2 and E.3.

Source code E.2 presents the feed-forward controller with the advanced friction model in
the MATLAB programming language. The code is presented as created by the MATLAB

4.4 Originality and Background 65

Symbolic Toolbox. As the toolbox can only solve for a single joint, source code E.2 must
be extended for all joints before application. The code has been translated into Python
(for the machine learning toolbox) and C (for the real-time robot control). The C code
is given in code E.3.

Some minor modifications differ in code E.2 (MATLAB) and code E.3 (C). First, code E.2
applies the advanced nonlinear friction model (4.20) whereas code E.3 features the non-
linear friction model (2.3). Second, the exp(⋅) functions are modified in code E.2 to
formulations using tanh(⋅), so that Not-A-Number issues can be handled directly without
using a max(⋅) function.

4.4 Originality and Background

To clarify intellectual property, background information is given in this section. This
section is exclusively for background information and can be skipped for all readers only
interested in the methods and results.

Besides the content presented in previous publications, the author wants to thank everyone
who contributed to the industrial robot. These persons developed, implemented, and
tested the hardware and the software, without which this work would have been impossible.
Fig. 4.12 presents the robot in 2017 when this project started.

The extent of the work on the robot controller is reflected in the scope of its documenta-
tion. Full documentation of the controller would exceed the scope of this thesis. The major
hardware components, main electrical concept, software architecture, kinematic robot pa-
rameters, and dynamic model parameters are captured in appendix B. Additionally, please
refer to the 175 page software documentation given in [Ha22a]. Note that [Ha22a] only
contains the final state of the robot control. It does not contain detailed explanations on
the background of software design choices nor statements on developments not included
in the version as of 2022. For the hardware documentation, please refer to [Gö19; Gö20]
with 100 and 99 pages respectively.

The physical robot chapter 4 built up on [We22; WGR20]. In [WGR20], the robot model
is derived and tested in simulation and on the real robot. Nigora Gafur contributed to the
experiments, participated in the discussions, and wrote the state-of-the-art section. Jonas
Weigand developed the model and control and is responsible for the writing of [WGR20].
The final robot model is unpublished work and was developed by Jonas Weigand, Jonas Ul-
men, and Alexandre Janot. In particular, the parameter estimation based on the condition
optimization criterion origins from Jonas Ulmen. Alexandre Janot and Martin Ruskowski
served as supervisors and helped in all discussions. Finally, the model is validated on the
public robot benchmark data presented in [We22]. The benchmark data was created by

66 Chapter 4: Physical Robot Model and Control

Figure 4.12: Picture of the industrial robots in 2017 at the Chair of Machine Tools and
Control Systems, RPTU Kaiserslautern-Landau.

Jonas Weigand, Jonas Ulmen, Julian Götz and Martin Ruskowski.

67

5 Continuous-Time Neural
Networks

In this chapter, advances for continuous-time NN are presented. As the methods are
capable of improvements beyond inverse models for six-joint industrial robots, additional
real world benchmarks are introduced. The benchmarks are publicly available and the
results of the presented methods can be directly compared to system identification methods
beyond NN in literature.

In section 5.1, State Derivative Normalization (SDN) is introduced. The importance of
data normalization in the value domain, e.g., using Min-Max scaling, is well known. For
continuous-time models it is important, too, to normalize the hidden state and hidden state
derivative. As this method improves continuous-time NN beyond the robot application, it
is demonstrated on the public Cascaded Tank System (CTS) benchmark.

In section 5.2, model stability is discussed. Stability constraints can apply the knowledge
from system identification to continuous-time NN. This is important for safety-critical
tasks and in addition, it improves the long-term prediction accuracy of continuous-time
models. The method enhances continuous-time NN beyond the robot use-case and is
validated on the public Electro Mechanical Positioning System (EMPS) benchmark.

In section 5.3, memory efficiency is analyzed. Based on empirical evidence from the
real robot, a direct comparison of discrete-time and continuous-time NN is presented.
This demonstrates the superior generalization capabilities of continuous-time NN for robot
identification.

5.1 State Derivative Normalization

The core idea of normalization is to map the input and output data in a numerically
favorable range [BKH16; Og10; SS97]. That is, (I) to ensure normally distributed data for
the parameter initialization (e.g., Xavier initialization [GB10]), (II) to scale all input and
output channels in the same numerical range, and (III) to numerically improve the scope
of the gradients for the nonlinear activation functions.

SDN can significantly improve the model performance. One novel promising solution

68 Chapter 5: Continuous-Time Neural Networks

method is the introduction of a single normalization factor 𝜏, which augments the state
derivative equation

𝑑𝑥(𝑡)
𝑑𝑡

= 1
𝜏

𝑓
𝑁𝑁

(𝑥(𝑡), 𝑢(𝑡)) . (5.1)

5.1.1 Normalization Definition

One aspect in which dynamical systems can differ is their inherent scale of time. Nor-
malizing means eliminating this aspect when dealing with different dynamical systems. A
time constant of a linear system usually describes the decay rate, e.g., after an excitation.
These constants refer to the decay rate of each dynamic mode, while the slowest mode
determines the overall decay rate. Mathematically, the overall time constant of the linear
system is the inverse of the largest eigenvalue of its system matrix.

For a general nonlinear system of the form

̇𝑥 = 𝑓(𝑥, 𝑡), (5.2)

this analysis is not so straightforward. However, Contraction analysis [Lo99; LS97] con-
cludes that such a time constant exists for the differential dynamics of the nonlinear
system. This section concludes with three different analytic interpretations of the SDN
(5.1), linking the state, the state derivative, and the time domain. Furthermore, the role
of the explicit ODE solver is discussed and graphic insight into the method is given.

A tangent form or respectively the differential dynamics of a nonlinear system are given
by [Lo99]

𝛿 ̇𝑥 = 𝜕𝑓(𝑥, 𝑡)
𝜕𝑥

𝛿𝑥. (5.3)

The Jacobian 𝜕𝑓(𝑥,𝑡)
𝜕𝑥 is the linearization of the system, not at an operating point but

everywhere. Now consider two trajectories of the system that originate from two different
initial conditions. The distance between the two trajectories is denoted by 𝛿𝑥. The squared
distance between two trajectories can be defined by

||𝛿𝑥||22 = 𝛿𝑥T𝛿𝑥. (5.4)

This squared can be tracked over a distance over time to get the rate of change over time,

5.1 State Derivative Normalization 69

𝑑
𝑑𝑡

(𝛿𝑥T𝛿𝑥) = 2𝛿𝑥T𝛿 ̇𝑥 = 2𝛿𝑥T 𝜕𝑓(𝑥, 𝑡)
𝜕𝑥

𝛿𝑥. (5.5)

If the Jacobian 𝜕𝑓(𝑥,𝑡)
𝜕𝑥 is negative definite, the system is contracting, while the eigenvalues

of its symmetric part 1
2(𝜕𝑓(𝑥,𝑡)

𝜕𝑥 + 𝜕𝑓(𝑥,𝑡)
𝜕𝑥

T
) describe how fast any two trajectories of the

system converge to each other.

The overall contraction rate is also bounded by the largest of these eigenvalues, which
leads to

𝑑
𝑑𝑡

(𝛿𝑥T𝛿𝑥) ≤ 2𝜆max𝛿𝑥T𝛿𝑥 (5.6)

1
2

𝑑
𝑑𝑡(𝛿𝑥T𝛿𝑥)

𝛿𝑥T𝛿𝑥
≤ 𝜆max = 1

𝜏
, (5.7)

where 𝜏 is the time constant of the differential dynamics. Modifying (5.7) enables to choose
̂𝜏 as an upper bound for the maximum dynamic constant

𝜏 = 1
𝜆max

≤ ̂𝜏. (5.8)

In the next section, it is shown that a constant is not necessarily interpreted as a measure
of time. Yet, it is more universal.

State Derivative Normalization (SDN). A strictly positive, linear transformation
without offset is introduced in (5.1). Any invertible nonlinear transformation is possible
in principle, yet a strictly positive transformation is sufficient and remains physically
plausible. In addition, a linear transformation can be used easily for inference and does
not require a defined time grid in advance. Clearly, (5.1) compared to (3.1) scales the
hidden state derivative. The linear transformation can also be interpreted as changing the
weight initialization of the output layer of 𝑓

𝑁𝑁
(⋅, ⋅).

The normalization can be implemented as a scalar normalization 𝜏 ∈ ℝ>0 or as a vector
corresponding to each channel of the hidden state network, 𝜏 ∈ ℝ𝑁𝑋

>0 . In the latter case,
the division and multiplication in (5.1) are defined element-wise.

Time Normalization. (5.1) can be rewritten as

70 Chapter 5: Continuous-Time Neural Networks

𝑑𝑥(𝑡)
𝑑(𝑡/𝜏)

= 𝑓
𝑁𝑁

(𝑥(𝑡), 𝑢(𝑡)) (5.9a)

̃𝑡 = 𝑡/𝜏 (5.9b)
𝑑𝑥(̃𝑡𝜏)

𝑑 ̃𝑡
= 𝑓

𝑁𝑁
(𝑥(̃𝑡𝜏), 𝑢(̃𝑡𝜏)), (5.9c)

which suggests that the normalization can be viewed as normalization of the time by factor
𝜏.

The numerical discretization scheme reflects this interpretation as time normalization. The
model integration step ℎ𝑚𝑜𝑑𝑒𝑙 is closely related to 𝜏. The general 𝑆-stage explicit ODE
solver can be defined by the Butcher Tableau [Bu16] which results in the discrete-time
system

𝑧𝑘,𝑠 =𝑓
NN

(𝑥𝑘 + ℎ𝑚𝑜𝑑𝑒𝑙

𝑆
∑
𝑗=1

𝑎𝑠,𝑗 𝑧𝑘,𝑗, 𝑢𝑘,) (5.10a)

𝑥𝑘+1 =𝑥𝑘 + ℎ𝑚𝑜𝑑𝑒𝑙

𝑆
∑
𝑠=1

𝑏𝑠𝑧𝑘,𝑠. (5.10b)

Every explicit ODE scheme multiplies the network output 𝑧𝑘,𝑠 with the integration step
ℎ𝑚𝑜𝑑𝑒𝑙 ∈ ℝ>0 (5.10). Normalizing with 1/𝜏 is equivalent to transforming ℎ𝑚𝑜𝑑𝑒𝑙. The
method applies to both fixed-step solvers and adaptive-step solvers. For fixed-step solvers,
ℎ𝑚𝑜𝑑𝑒𝑙 = ℎ𝑑𝑎𝑡𝑎/𝜏 effectively normalizes in the time domain. For adaptive-step solvers,
ℎ𝑚𝑜𝑑𝑒𝑙,𝑘 = ℎ𝑑𝑎𝑡𝑎,𝑘/𝜏 can be applied for each step.

Graphical intuition about the time normalization can be gained from output data of the
CTS benchmark in Fig. 5.1 [Sc16b]. The measured data (black) of the water level is given
in a sample rate of 𝑇𝑠 = 4.0 s, the normalized data (red) is transferred to a sample time
of 𝑇𝑚 = 𝑇𝑠/𝜏 = 1.0, the number of time steps remains unchanged. The original data is
transferred to the normalized time domain, where the model is trained and evaluated, and
the results are transferred back to the original time grid.

State Normalization. It is also possible to rewrite (5.1) as

𝑑(𝜏𝑥(𝑡))
𝑑𝑡

= 𝑓
𝑁𝑁

(𝑥(𝑡), 𝑢(𝑡)) (5.11a)

̃𝑥(𝑡) = 𝜏𝑥(𝑡) (5.11b)
𝑑(̃𝑥(𝑡))

𝑑𝑡
= 𝑓

𝑁𝑁
(̃𝑥(𝑡)/𝜏, 𝑢(𝑡)). (5.11c)

5.1 State Derivative Normalization 71

0 200 400 600 800 1,000 1,200 1,400
3

5

7

9

11

Time (s)/Unitless

W
at

er
le

ve
l(

V
)

Figure 5.1: Time normalization of the output measurement of the Cascaded Tank System
(CTS) benchmark [Sc16b]. Black: Original measurement (unit seconds).
Red: Time domain normalized data (unitless).

In this way, normalization can be interpreted as state normalization.

The key takeaway of representations (5.1), (5.9) and (5.11) is that the normalization acts
on all three domains simultaneously.

5.1.2 Normalization Factor Estimation

The tendencies of large and small normalization factors to define a proper normalization
factor are discussed in the following. Considering continuous-time models without hidden
state derivative normalization, the smaller the integration step ℎ𝑚𝑜𝑑𝑒𝑙, the more accurate
is the ODE solver, but also the more steps and the more computational resources are
required. The normalization is depicted in Fig. 5.1. Using normalization, the number of
integration steps 𝐾 gets independent of the integration step ℎ𝑚𝑜𝑑𝑒𝑙. Therefore, the ODE
solver accuracy can be increased without additional computation steps. In its limit, very
small integration steps will introduce large and stiff hidden state derivatives, which are
challenging to estimate.

A good normalization factor can be defined by setting the variance of both, the hidden
state var(𝑥) and the hidden state derivative var(�̇�), in a proper range. The notation 𝑥, �̇�
refers to the hidden state (derivative) matrix with all state (derivative) vectors 𝑥𝑘, (̇𝑥𝑘)

72 Chapter 5: Continuous-Time Neural Networks

over time1.

Previous work [BST22; BST23] argued that a proper variance of the hidden state and
hidden state derivative is one. Using the argument from section 5.1.1, that all three
domains are inherently coupled, a formulation of a desirable normalization factor can be
obtained,

var(𝑥) = var(𝑓
𝑁𝑁

(𝑥, 𝑢)) (5.12a)

var(𝑥) = 𝜏2 var(�̇�). (5.12b)

The estimation of the normalization factor 𝜏 in (5.12b) is analyzed in the following. The
difficulty is that the normalization factor depends (I) on the hidden state and (II) the NN
parameters, which are not known apriori.

• Make the normalization factor a trainable (hyper) parameter,

• estimate using cross-validation, or

• use an analytic approach based on the Best Linear Approximation BLA [ST20;
VD94].

The first option is highly flexible concerning different data sets and NN structures. It
should be ensured for physical plausibility that 𝜏 > 0 holds. As most NN libraries do not
provide constrained optimization [Pa19], one can implement

̂𝜏 = 𝜖 + relu(𝜏) (5.13)

with a small positive number 𝜖 ∈ ℝ>0 and the Rectified Linear Function (ReLU). Empirical
pre-examinations revealed that the trainable normalization quickly reaches a stationary
value. Therefore, it can be trained together with the network in the same loss function
and does not require to be fitted as a hyperparameter.

The second option, data-driven estimation with cross-validation, utilizes a grid search to
find a suitable normalization factor for a given data set. Results are presented in Fig. 5.3.

A third option is an analytical approach based on the BLA. Estimating a BLA of a
potentially non-linear system is commonly done employing Prediction Error Minimiza-
tion (PEM) with, for instance, a subspace identification approach using the N4SID

1

Note that this work to the variance over time, not the variance over the hidden state (derivative)
channels.

Considering the dimensionality, var(𝑥) has the unit of (unit state)2 and var(�̇�) has the unit of
(unit state)2/(unit time)2. The normalization factor must hold for any unit of state and time. As a
result, the unit of 𝜏 is time.

5.1 State Derivative Normalization 73

method [VD94]. Substituting the NN with the BLA in (5.12b), the unknown hidden
state 𝑥 can be canceled out. This method is especially recommended for dynamic systems
that can be reasonably represented by a linear model. As an additional advantage besides
normalization, the BLA can be used as good NN weight initialization [ST20].

The BLA can be simulated in the time domain, obtaining 𝑥𝐵𝐿𝐴 and �̇�𝐵𝐿𝐴. Rearranging
(5.12b) leads to

𝜏𝐵𝐿𝐴 = √var(𝑥𝐵𝐿𝐴)
var(�̇�𝐵𝐿𝐴)

(5.14)

for each component of 𝑥𝐵𝐿𝐴 and �̇�𝐵𝐿𝐴. Optionally, estimating the mean can reduce the
vector normalization to an approximate scalar normalization.

An alternative to simulate the BLA over time is to utilize the Discrete Fourier Transform
(DFT). Considering that the input has a periodicity of 𝐿, the input can be composed into
its Fourier components as

𝑢(𝑡) =
∞

∑
𝑚=−∞

𝑈𝑚(𝑒𝑗𝜔𝑚(𝑡+𝜙𝑢
𝑚) + 𝑒−𝑗𝜔𝑚(𝑡+𝜙𝑢

𝑚)) (5.15a)

𝑈𝑚 = | 1
𝐿

∫
𝐿

0
𝑢(𝑡)𝑒−𝑗𝜔𝑚𝑡𝑑𝑡|; 𝜙𝑢

𝑚 = arg(∫
𝐿

0
𝑢(𝑡)𝑒−𝑗𝜔𝑚𝑡𝑑𝑡) (5.15b)

𝑥(𝑡) =
∞

∑
𝑚=−∞

𝑋𝑚(𝑒𝑗𝜔𝑚(𝑡+𝜙𝑥
𝑚) + 𝑒−𝑗𝜔𝑚(𝑡+𝜙𝑥

𝑚)) (5.15c)

𝑋𝑚 = | 1
𝐿

∫
𝐿

0
𝑥(𝑡)𝑒−𝑗𝜔𝑚𝑡𝑑𝑡|; 𝜙𝑥

𝑚 = arg(∫
𝐿

0
𝑥(𝑡)𝑒−𝑗𝜔𝑚𝑡𝑑𝑡) (5.15d)

with 𝜔𝑚 = 𝑚2𝜋/𝐿. Both the variance of the state and state-derivative can be expressed
using DFT components as

var(𝑥) = 1
𝐿

∫
𝐿

0
‖𝑥(𝑡)‖2

2𝑑𝑡 ∼
∞

∑
𝑚=−∞

‖𝑋𝑚‖2
2 (5.16a)

var(̇𝑥) = 1
𝐿

∫
𝐿

0
‖ ̇𝑥(𝑡)‖2

2𝑑𝑡 ∼
∞

∑
𝑚=−∞

𝜔2
𝑚‖𝑋𝑚‖2

2. (5.16b)

The BLA the Fourier components of the state can be written in terms of the transfer
function as 𝑋𝑚 = |𝐺(𝑗𝜔𝑚)|𝑈𝑚 and 𝜙𝑥

𝑚 = 𝜙𝑢
𝑚 + arg(𝐺(𝑗𝜔𝑚)), assuming a single input

system for simplicity. Hence, substituting this and 5.16 into 5.12b results in

𝜏𝐵𝐿𝐴 = √
∑∞

𝑚=−∞ 𝑈𝑇
𝑚𝐺(𝑗𝜔𝑚)𝑇𝐺(𝑗𝜔𝑚)𝑈𝑚

∑∞
𝑚=−∞ 𝜔2

𝑚𝑈𝑇
𝑚𝐺(𝑗𝜔𝑚)𝑇𝐺(𝑗𝜔𝑚)𝑈𝑚

. (5.17)

74 Chapter 5: Continuous-Time Neural Networks

Figure 5.2: Picture of the Cascaded Tank System (CTS) [Sc16b].

This expression allows to derive some properties of the optimal 𝜏𝐵𝐿𝐴. For example, a
single sine wave (e.g., only one nonzero 𝑈𝑚) as input signal 𝑢(𝑡) results in 𝜏𝐵𝐿𝐴 = 1/𝜔𝑚.
Furthermore, if 𝑢(𝑡) or 𝐺(𝑗𝜔𝑚) has a finite bandwidth bounded by Ω than 𝜏𝐵𝐿𝐴 ≥ 1/Ω.

5.1.3 Empirical Normalization Results

Benchmark. The proposed methods are applied to the CTS benchmark [Sc16b]. The
setup is depicted in Fig. 5.2. It consists of two vertically mounted tanks, where the upper
one is filled using a pump, and the water flows from the upper tank into the lower one.
The task is to estimate the water level of the lower tank given a pump input sequence.
The experiment incorporates an overflow of the tank, which introduces a hard saturation
function.

Model Configuration. The fixed-step Runge-Kutta 4 ODE solver [Co84] is chosen. The

5.1 State Derivative Normalization 75

network 𝑓
𝑁𝑁

(⋅, ⋅) consists of linear layers with matrices 𝐴 ∈ ℝ𝑁𝑋×𝑁𝑋 , 𝐵 ∈ ℝ𝑁𝑋×𝑁𝑈 and
two residual hidden layers with a Leaky ReLU activation function 𝜎(⋅) and 64 hidden units
for each layer. Weight matrices are denoted 𝑊(⋅) and bias terms are 𝑏(⋅) with appropriate
dimensions. Bias terms for the linear layer are disabled to encourage model stationar-
ity. An output network 𝑔

𝑁𝑁
(⋅, ⋅) is applied with the same structure as the state network

𝑓
𝑁𝑁

(⋅, ⋅). The overall architecture is

𝑑𝑥(𝑡)
𝑑𝑡

= 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (5.18a)

+ 𝑊𝐹1𝜎 (𝑊𝐹2𝜎 (𝑊𝐹3 [
𝑥(𝑡)
𝑢(𝑡)

] + 𝑏𝐹3) + 𝑏𝐹2)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (5.18b)

+ 𝑊𝐺1𝜎 (𝑊𝐺2𝜎 (𝑊𝐺3 [
𝑥(𝑡)
𝑢(𝑡)

] + 𝑏𝐺3) + 𝑏𝐺2) .

Input and output data are z-score normalized. Batch-Norm or Dropout are not applied.
The implementation is written in Python, using PyTorch [Pa19]. The ADAM optimizer
[KB14] is applied with unmodified configuration except for the learning rate, which is set
to 0.003 for the first 1000 steps, to 0.0009 until step 3000, and to 0.00027 for all subse-
quent iterations. The maximum number of optimization steps is 20000. Regularization is
obtained using weight decay of 𝜆𝑊 = 10−8 and early stopping when the best validation
error does not improve for 2000 iterations. As no explicit validation data set is given for
CTS, the first 512 time steps of the test data are utilized for early stopping. Test data
is not accessed for any other reason. Training is performed in 64 mini-batches with a
sequence length of 𝐽 = 128 steps using TSEM [FP21]. White box modeling of the CTS
would lead to 2 states [Sc16b]. State augmentation, which is also called immersion, is
applied with 4 additional states [DDT19]. The initial hidden states are obtained using a
Deep Encoder Network [BST22] 𝑒

𝑁𝑁
(⋅, ⋅) with 𝑛𝑎 = 𝑛𝑏 = 5. Weight matrices are initial-

ized with a small random number 𝒰[−0.01, 0.01], and bias terms are initialized to zero.
A barrier function 𝐿𝑆 is applied to the linear layer 𝐴 of the state network to encourage
model stability [WDR21]. The barrier function ensures that all eigenvalues of the linear
layer are negative, estimated using the differentiable Sylvester Criterion [Gi17]. Besides
stability, this barrier minimizes drifts over long simulation horizons. Furthermore, a DAE
network 𝑑

𝑁𝑁
(⋅, ⋅) is utilized to account for the hard state saturation, which is trained using

an additional penalty function 𝐿𝐷. It does not affect the forward model evaluation. The
optimization problem is given by

76 Chapter 5: Continuous-Time Neural Networks

min
𝜃

𝐿𝑆 + 𝐿𝑊 +
𝑁−𝐽
∑

𝑛=max(𝑛𝑎,𝑛𝑏)
(

𝐽−1
∑
𝑗=0

‖𝑦𝑛+𝑗 − ̂𝑦𝑛+𝑗|𝑛‖2
2 + 𝐿𝐷,𝑗)

s.t. ̂𝑦𝑛+𝑗|𝑛 = 𝑔
𝑁𝑁

(𝑥𝑛+𝑗|𝑛)

𝑥𝑛+𝑗+1|𝑛 = ODE_Solve (1
𝜏

𝑓
𝑁𝑁

(𝑥𝑛+𝑗|𝑛, 𝑢𝑛+𝑗), 𝑇𝑠)

𝑥𝑛|𝑛 = 𝑒
𝑁𝑁

(𝑢𝑛−1, ..., 𝑢𝑛−𝑛𝑏
, 𝑦𝑛−1, ..., 𝑦𝑛−𝑛𝑎

)

𝐿𝐷,𝑗 = 𝜆𝐷 (𝑑
𝑁𝑁

(𝑥𝑗|𝑗, 𝑢𝑗|𝑗))
2

𝐿𝑆 =
⎧{
⎨{⎩

0 if𝐴 < 0

𝜆𝑆 otherwise

𝐿𝑊 = 𝜆𝑊‖Θ‖2
2

(5.19)

with 𝜆𝑆 = 1012 and 𝜆𝐷 = 103. The bar notation 𝑥𝑛+𝑗|𝑛 reads as “The simulated state at
𝑥𝑛+𝑗 starting at 𝑛 with initial state 𝑥𝑛|𝑛”. The norm ‖ ⋅ ‖2

2 is the mean squared error. The
data sample time is 𝑇𝑆.

Effect of Normalization. The effect of the normalization factor 𝜏 given a fixed NN
configuration is analyzed in simulation mode (hidden states are recursively estimated),
and a fixed training pipeline throughout all experiments. Performance is measured in
terms of RMSE

𝑒𝑅𝑀𝑆𝐸 =
√√√
⎷

1
𝑁 − max(𝑛𝑎, 𝑛𝑏)

𝑁−1
∑

𝑛=max(𝑛𝑎,𝑛𝑏)
(𝑦𝑛 − ̂𝑦𝑛)2. (5.20)

Fig. 5.3 displays a grid search for different scalar values of 𝑇𝑠/𝜏 fixed prior to the ex-
periment on a log scale (𝑇𝑠 = 4 s for CTS). Each experiment is repeated 20 times to
account for and observe the effect of randomness in the initial weights. It can be observed
in Fig. 5.3 that both the performance and variance of the results get worse for large and
small values of 𝜏. Furthermore, Fig. 5.3 indicates that there exists a desirable optimum.
The optimum is different from the original sample time of the data, which would be at
𝑇𝑠/𝜏 = 4 for CTS. So without normalization, the expected RMSE lies between 𝑇𝑠/𝜏 = 2.3
and 𝑇𝑠/𝜏 = 9.5 in Fig. 5.3. While 𝑇𝑠/𝜏 = 2.3 reaches good results, the expected RMSE
for 𝑇𝑠/𝜏 = 9.5 degrades to 0.65 V, 3 times as much as the results with normalization.

For the trainable normalization method, a normalization vector 𝜏 is defined as a trainable
network parameter and implemented as in (5.13). It is not set with hyperparameter tuning
but jointly trained with all NN weights, with the same learning rate. The normalization
is initialized to 𝑇𝑠/𝜏 = 0.1. After training 20 models, an average normalized time 𝑇𝑠/𝜏 =
0.072±0.048 (mean±std) is obtained. For the cross-validation method, it can be observed
in Fig. 5.3 that the optimum value is 𝑇𝑠/𝜏 = 0.543. Using BLA and (5.14), a normalization

5.1 State Derivative Normalization 77

0.0001 0.0004 0.0020.007 0.03 0.1 0.5 2.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Normalized time 𝑇𝑠/𝜏 (unitless)

Er
ro

r
𝑒 𝑅

𝑀
𝑆

𝐸
(V

)

Figure 5.3: 200 independent experiments, each with the same configuration except for
the random weight initialization and a fixed scalar normalization factor. 10
different normalization factors repeated 20 times each are tested. The box
plot displays the median, lower quartile, upper quartile, minimum and max-
imum values. Experiments with a normalized time of 𝑇𝑠/𝜏 = 40 sometimes
lead to unstable results (despite the weak stability penalty method), with
RMSE > 109. Compare with [BST22; BST23].

78 Chapter 5: Continuous-Time Neural Networks

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

4

6

8

10

Time (s)

W
at

er
le

ve
l(

V
)

Target
Trained
Cross-Val
BLA

Figure 5.4: Simulation of the CTS setup [Sc16b]. Simulation of the best models gained
with the trained normalization factor (Trained), the cross-validation method
(Cross-Val), and the Best Linear Approximation (BLA).

factor 𝑇𝑠/𝜏 = 0.054 is estimated, which matches the results in Fig. 5.3.

Comparison to Literature. Since several methods have been applied to CTS, this
work can only refer to the ones with the best performance (in terms of RMSE on the
test data). The following methods beyond NN give a comparison of performance. [Re17]
estimates a BLA and develops an unstructured Nonlinear State-Space Model (NLSS) with
different initialization schemes. A nonparametric Volterra Series is designed in [BCS18]. A
nonlinear state-space model connected to a Gaussian process is applied in [SS17]. A Tensor
Network B-spline model is developed in [KB20]. As a direct comparison, continuous-time
NN on this task has been applied in [BST22; FP21; MFP20; WDR21]. These works
emphasize initial state estimation, fitting criteria, and model stability differently. Final
results of the presented method are shown in Fig. 5.4 and Tab. 5.1.

5.1 State Derivative Normalization 79

Table 5.1: Results for the CTS Benchmark. Values with brackets correspond to the
average over 5 runs, and values without brackets to the best model.

test data
𝑒𝑅𝑀𝑆𝐸 V

Best Linear Approximation [Re17] 0.75
Truncated Volterra Model [BCS18] 0.54
State-space with GP-inspired Prior [SS17] 0.45
Integrated Neural Networks [MFP20] 0.41
Soft-constrained Integration Method [FP21] 0.40
Stable Runge-Kutta Neural Network [WDR21] 0.39
Nonlinear State-Space Model [Re17] 0.34
Truncated Simulation Error Minimization [FP21] 0.33
Tensor B-splines [KB20] 0.30
Deep Subspace Encoder [BST22] 0.22
ours (SDN, Trained Parameter, best model) 0.2151
ours (SDN, Trained Parameter, mean ± std) 0.2977 ± 0.1259
ours (SDN, Cross-Validation, best model) 0.2054
ours (SDN, Cross-Validation, mean ± std) 0.2777 ± 0.052
ours (SDN, BLA, best model) 0.2253
ours (SDN, BLA, mean ± std) 0.2633 ± 0.0284

80 Chapter 5: Continuous-Time Neural Networks

5.2 Stability Constraints

This section applies the concept of ISS to Continuous-Time NN. The core result is con-
straints on the neural network parameters, which can guarantee stability. Stability is
enforced for all forecast horizons and all potential noise state and input measurements,
with remaining universal function approximation capabilities.

The results presented in this thesis originate from the Ph.D. Thesis of Michael Deflorian
[De11b]. There is one error in the proof of the result in [De11b]. Specifically, the origin
transformation does not hold. In a jointed work, we found an alternative proof which
fortunately leads to the same core results [WDR21]. Besides the alternative proof, this
chapter only contains minor differences compared to [De11b] and [WDR21].

A part of the results in [De11b] dropped, as it leads to a null-space solution in practical
applications. As many modern NN implementations, such as PyTorch [Pa19] and Ten-
sorFlow [Ma15] do not support constraint optimization, we explain how to use barrier
methods to be compliant with those libraries. Furthermore, we introduce weak stability
methods, which are less conservative and yet lead to quantifying and improving stability
measures of the model.

5.2.1 Empirical Stability Observation

Consider the EMPS benchmark [JGB19]. The EMPS is a standard component for robots
or machine tools and is pictured in Fig. 5.5. It is complicated to identify since it suffers
from nonlinear, asymmetric friction. The output is the horizontal car position. The input
is the force acting on the car, created by the electric motor. The raw data is displayed in
Fig. 5.6 and Fig. 5.7. As presented in Fig. 5.7, the input consists of several impulses and
therefore requires a high-resolution measurement.

As a consequence of the high-resolution measurements, this benchmark requires a long
simulation forecast of 24841 time steps. Applying such a long forecast horizon in the
loss function is computationally infeasible with current hardware. Therefore, the data
is pre-processed, taking every 10𝑡ℎ point and reducing the amount of data to 2485 time
steps. Regarding this benchmark, the interpolation error applying this technique is not too

Figure 5.5: Electro Mechanical Positioning System (EMPS) Setup. [JGB19]

5.2 Stability Constraints 81

0 0.5 1 1.5 2
0

0.05

0.1

0.15

Po
sit

io
n

(m
)

0 0.5 1 1.5 2
−2

0

2

4

Time (s)

Fo
rc

e
(N

)

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0 0.5 1 1.5 2

0

5

Time (s)

Figure 5.6: Data of the EMPS benchmark. Zoom on the first 2 s with a sample time
of 1 ms. Upper Row: Position output. Lower Row: Force input. Left side:
Training data. Right side: Test data.

82 Chapter 5: Continuous-Time Neural Networks

0 5 10 15 20
0

0.1

0.2

Po
sit

io
n

(m
)

0 5 10 15 20
−4

−2

0

2

4

Time (s)

Fo
rc

e
(N

)

0 5 10 15 20
0

0.1

0.2

0 5 10 15 20
−5

0

5

Time (s)

Figure 5.7: Data of the EMPS benchmark over the complete time horizon of 25 s. Upper
Row: Position output. Lower Row: Force input. Left side: Training data.
Right side: Test data.

5.2 Stability Constraints 83

0 0.5 1 1.5 2 2.5

0

0.1

0.2

Time (s)

Po
sit

io
n

(m
)

0 5 10 15 20 25

−0.2

0

0.2

Time (s)

Figure 5.8: Simulation results without stability barrier. Left: First batch of training.
Right: Simulation on test data. Black: Measured data. Red: Model predic-
tion.

large. However, further interpolation leads to errors, as the input data are high-frequency
impulses; compare Fig. 5.6 (bottom). Still, the model computationally requires to be
trained on smaller batches, which is set to 264 time steps in the loss function each.

Fig. 5.8 shows a representative solution using a continuous-time NN. A single training
batch with the trained model is displayed on the left side, with an absolute error magnitude
of 0.001 m. On the right side, as requested by the benchmark, the same trained model is
applied on the full trajectory of 2485 time steps in simulation mode. The absolute error
increases by a factor of more than 200. The graph shows that the error might increase
further over a longer horizon as the model appears unstable. At the end of this chapter, the
exact same model with the presented stability constraints is trained as a direct comparison.

Considering stability with continuous-time NN in general can be illustrated using two sim-
ple examples, accounting for the continuous-time stability and the discretization method,
as both aspects contribute to ISS. First, consider a learned continuous-time neural net-
work which is GAS, but its states tend to infinity in the presence of bounded inputs. This
example underlines the importance of ISS instead of GAS.

Consider a continuous-time neural network with one state 𝑥(𝑡) ∈ ℝ, one input 𝑢(𝑡) ∈ ℝ,
continuous-time 𝑡 ∈ ℝ, hyperbolic tangent activation function tanh(⋅), no bias weights and
two neurons in the hidden layer,

̇𝑥(𝑡) = [−1 10] tanh ([
1
0
] 𝑥(𝑡) + [

0
1
] 𝑢(𝑡)) . (5.21)

The network (5.21) is GAS as the autonomous system reduces to ̇𝑥(𝑡) = −tanh(𝑥) and

84 Chapter 5: Continuous-Time Neural Networks

0 0.5 1 1.5 2
−1

0

1

2

Time (s)

O
ut

pu
t

(u
ni

tle
ss

)

Figure 5.9: Step response of a stable and unstable time discretization. Circles and
squares represent each discrete-time step. Blue: Step input. Orange: Stable
discretization. Purple: unstable discretization.

converges to zero. But any given input 2 ≤ 𝑢(𝑡) ≤ 106 leads to

̇𝑥(𝑡) = −tanh(𝑥(𝑡)) + 10 tanh(𝑢(𝑡)) (5.22)

> −tanh(𝑥(𝑡)) + 9 > 8 (5.23)

and the system trajectory tends to infinity, although the input is bounded.

The second example shows that even an ISS neural network can become unstable if neural
network constraints do not account for the sample time ℎ (see section 3.3 for a definition
of the sample time). Consider a standard state-space neural network with Eigenfrequency
𝜔0 = 10 1

𝑠 , damping 𝐷 = 0.5 and input gain 𝐾 = 1. The network consists of two states,
one input, no bias terms, and no hidden layers,

̇𝑥(𝑡) = [
0 1

−𝜔2
0 −𝐷𝜔0

] 𝑥(𝑡) + [
0

𝐾𝜔2
0
] 𝑢(𝑡). (5.24)

Equation (5.24) is input-affine and the real parts of all eigenvalues are negative. As
a consequence, it is GAS and ISS in the continuous domain. Assume (5.24) is time
discretized by a 4𝑡ℎ-order Runge-Kutta method and a sampling frequency much greater
than the Eigenfrequencies. As shown exemplarily in Fig. 5.9 for a step response, the
discrete-time trajectory for (5.24) tends to infinity for ℎ = 0.3 s, although it is stable for
ℎ = 0.1 s. This trade-off between neural network weights and sample time generally is
non-trivial.

To the best of the author’s knowledge, the presented stability constraints are the only
ones that can enforce ISS in the given examples.

5.2 Stability Constraints 85

5.2.2 Preliminaries for Stability

Consider a continuous-time and a discrete-time system

̇𝑥(𝑡) = 𝑓𝐶(𝑥(𝑡), 𝑢(𝑡)) (5.25)

𝑥𝑛+1 = 𝑓𝐷(𝑥𝑛, 𝑢𝑛). (5.26)

The following ISS criterion for continuous-time neural networks builds upon previous
works. The concept of ISS is introduced in [So08]. It extends Lyapunov stability to
non-autonomous systems, e.g., 𝑢(𝑡) ≠ 0. Besides continuous systems, discrete-time ISS
criterion for (5.26) was developed in [JW01]. Additionally, it is known that if a system is
ISS and the point of equilibrium is the origin, it is also 0-GAS [Kh02].

For the sake of simplicity, the time dependency notation of state and input variables is
neglected, e.g., 𝑥(𝑡) = 𝑥, 𝑢(𝑡) = 𝑢. Consider an ISS-Lyapunov function

𝑉 (𝑥) = 1
2

⟨𝑥, 𝑥⟩𝑃1
(5.27a)

̇𝑉 (𝑥) = ̇𝑥T𝑃1𝑥 ≤ −𝛽1
2

⟨𝑥, 𝑥⟩𝑃1
+ 𝛾⟨𝑢, 𝑢⟩ (5.27b)

with a positive definite matrix 𝑃1 > 0, 𝛽 > 0 and 𝛾 ≥ 0. The scalar product for two
vectors 𝑣1, 𝑣2 is defined as ⟨𝑣1, 𝑣2⟩𝑉 = 𝑣T

1 𝑉 𝑣2. The identity matrix is applied for the scalar
product if not mentioned otherwise.
Definition 5.2.1 (Weakly B-ISS RK method [DR14]) A RK-method is called weakly B-
input-to-state stable if for each (5.25) satisfying (5.27) the numerical approximation (3.7)
is ISS for all sufficiently small ℎ.

The property is called weakly B-ISS because definition (5.2.1) depends on (5.25) and on
the sample time ℎ. In Butcher’s original terminology, the B-stability is a property of the
scheme (3.7), which is independent of (5.25) and ℎ. In [DR14] and the extended German
version [De11b], the following result is presented:
Theorem 5.2.2 (proof see [De11b; DR14]): A (𝑘, 𝑙, 𝑚)-algebraically stable RK method
with 𝑙 < 0, 𝑚 = 1, 0 < 𝑘 < 1, 𝛾 > 0 and a positive definite matrix 𝑃1 is weakly B-ISS, if
for system (5.25)

⟨𝑥, 𝑓𝐶(𝑥, 𝑢)⟩𝑃1
+ ℎ𝑚⟨𝑓𝐶(𝑥, 𝑢), 𝑓𝐶(𝑥, 𝑢)⟩𝑃1

< 𝛾⟨𝑢, 𝑢⟩ (5.28)

holds at any time.

86 Chapter 5: Continuous-Time Neural Networks

The coefficients 𝑘, 𝑙, 𝑚 depend on the explicit RK method. Various (𝑘, 𝑙, 𝑚)-algebraically
stable RK methods are discussed in [Co84]. For example, the classical 4 step RK is
(𝑘(𝑙), 𝑙, 𝑚)-algebraically stable with 𝑚 = 1 [Co84]. Two possibilities ensure B-ISS:

1. fix the sample interval ℎ and choose the model weights so that (5.28) holds, or

2. choose the model weights so that ⟨𝑥, 𝑓𝐶(𝑥, 𝑢)⟩𝑃1
< 0 and then search for every

sample interval the maximum ℎ so that (5.28) holds.

This work concentrates on the first condition and views the sample time as a fixed constant
within one data set.

5.2.3 Existence and Uniqueness of Equilibrium

To discuss the GAS and the ISS of the RKNN (3.6), the existence and uniqueness of the
trajectories are prerequisites. A sufficient condition for this is to satisfy the Lipschitz
condition [Kh02]

||𝑓𝑁𝑁(𝑥1, �̃�1) − 𝑓𝑁𝑁(𝑥2, �̃�1)|| ≤ 𝑙𝑋 ||𝑥1 − 𝑥2|| (5.29)

||𝑓𝑁𝑁(𝑥1, �̃�1) − 𝑓𝑁𝑁(𝑥1, �̃�2)|| ≤ 𝑙𝑈 ||�̃�1 − �̃�2|| (5.30)

for any two states 𝑥1, 𝑥2 ∈ ℝ𝑁𝑋 and for any two augmented inputs �̃�1, �̃�2 ∈ 𝑙𝑁𝑈+1
∞ . The

first condition can be estimated with

||𝑓𝑁𝑁(𝑥1, �̃�1) − 𝑓𝑁𝑁(𝑥2, �̃�1)|| (5.31)

= ∥𝑊 𝑙
𝑥𝑥1 + 𝑊 𝑙

𝑢�̃�1 + 𝑊 𝑜
𝑎 𝜎(𝑊 ℎ

𝑥 𝑥1 + 𝑊 ℎ
𝑢 �̃�1) (5.32)

−𝑊 𝑙
𝑥𝑥2 − 𝑊 𝑙

𝑢�̃�1 − 𝑊 𝑜
𝑎 𝜎(𝑊 ℎ

𝑥 𝑥2 + 𝑊 ℎ
𝑢 �̃�1)∥

≤ ∣∣𝑊 𝑙
𝑥∣∣ ||𝑥1 − 𝑥2|| + ||𝑊 𝑜

𝑎 || (5.33)

⋅ ∣∣𝜎(𝑊 ℎ
𝑥 𝑥1 + 𝑊 ℎ

𝑢 �̃�1) − 𝜎(𝑊 ℎ
𝑥 𝑥2 + 𝑊 ℎ

𝑢 �̃�1)∣∣

≤ ∣∣𝑊 𝑙
𝑥∣∣ ||𝑥1 − 𝑥2|| + ||𝑊 𝑜

𝑎 || (5.34)

⋅ ∣∣𝑊 ℎ
𝑥 𝑥1 + 𝑊 ℎ

𝑢 �̃�1 − 𝑊 ℎ
𝑥 𝑥2 − 𝑊 ℎ

𝑢 �̃�1∣∣

= ∣∣𝑊 𝑙
𝑥∣∣ ||𝑥1 − 𝑥2|| + ||𝑊 𝑜

𝑎 || ∣∣𝑊 ℎ
𝑥 𝑥1 − 𝑊 ℎ

𝑥 𝑥2∣∣ (5.35)

≤ ∣∣𝑊 𝑙
𝑥∣∣ ||𝑥1 − 𝑥2|| + ||𝑊 𝑜

𝑎 || ∣∣𝑊 ℎ
𝑥 ∣∣ ||𝑥1 − 𝑥2|| (5.36)

= 𝑙𝑋 ||𝑥1 − 𝑥2|| . (5.37)

Analogously, the equation

5.2 Stability Constraints 87

||𝑓𝑁𝑁(𝑥1, �̃�1) − 𝑓𝑁𝑁(𝑥1, �̃�2)|| ≤ 𝑙𝑈 ||�̃�1 − �̃�2|| (5.38)

holds. By defining

𝑙𝑋 = ∣∣𝑊 𝑙
𝑥∣∣ + ||𝑊 𝑜

𝑎 || ∣∣𝑊 ℎ
𝑥 ∣∣ (5.39)

𝑙𝑈 = ∣∣𝑊 𝑙
𝑢∣∣ + ||𝑊 𝑜

𝑎 || ∣∣𝑊 ℎ
𝑢 ∣∣ (5.40)

the Lipschitz condition is satisfied. Thus, the existence and uniqueness of the trajectories
of the RKNN (3.6) are ensured. It is a prerequisite that the action function 𝜎(⋅) fulfills
(5.29). This is the case for tanh and ReLU, among other activation functions.

0 ≤ tanh(𝑣)
𝑣

= 𝑒𝑣 − 𝑒−𝑣

(𝑒𝑣 + 𝑒−𝑣)𝑣
≤ 1 (5.41)

0 ≤ relu(𝑣)
𝑣

= 𝑧(𝑣) ≤ 1, 𝑧(𝑣) =
⎧{
⎨{⎩

0 𝑣 < 0

1 𝑣 ≥ 0.
(5.42)

5.2.4 Constraints on the Neural Network Parameters

It is a prerequisite for GAS and ISS of the RKNN (3.6) that its point of equilibrium is
the origin. This is the case for the state network, e.g., 𝑓𝑁𝑁(0, 0) = 0. However, note that
this prerequisite is not fulfilled if the bias terms of the network are not connected to an
augmented input �̃�. Defining the bias terms as additional input dimension fulfills the GAS
and ISS prerequisites while remaining full nonlinear modeling capabilities. Otherwise, a
complicated nonlinear coordinate transform is required if bias terms are defined as part of
the state network rather than depending on the input.

To simplify the derivation of the ISS criterion, the state network is reformulated with
a nonlinear Lipschitz matrix rather than nonlinear activation functions. Therefore, the
condition that the activation function 𝜎(⋅) is Lipschitz continuous and that 0 ≤ 𝜎(𝑣)

𝑣 ≤ 1,
∀ 𝑣 ∈ ℝ≠0 holds is utilized. This requirement is obligatory for the stability constraints.
As a result the Lipschitz constant is 0 ≤ 𝑙𝑖 = 𝜎(𝑣𝑖)

𝑣𝑖
≤ 1, ∀ 𝑖 ∈ {1, 2, … , 𝑁𝑁}. The

diagonal Lipschitz matrix can be defined as 𝐿(𝑥, �̃�) = 𝑑𝑖𝑎𝑔(𝑙1(𝑥, �̃�), 𝑙2(𝑥, �̃�), … , 𝑙𝑁𝑁
(𝑥, �̃�))

and get

̇𝑥 = 𝑓
NN

(̂𝑥, �̃�) = 𝑊 𝑙
𝑥𝑥 + 𝑊 𝑙

𝑢�̃� + 𝑊 𝑜
𝑎 𝐿(𝑥, �̃�)(𝑊 ℎ

𝑥 𝑥 + 𝑊 ℎ
𝑢 �̃�). (5.43)

Note that (5.43) is only used to derive the stabilization criterion. The prediction or

88 Chapter 5: Continuous-Time Neural Networks

simulation properties of the RKNN are not changed in any way. For the sake of simplicity,
the dependency of the Lipschitz matrix on the state and the augmented input is omitted
in the following, e.g., 𝐿 = 𝐿(𝑥, �̃�). Using Theorem 5.2.2 the weights have to be selected
such that

⟨𝑥, 𝑓
NN

(̂𝑥, �̃�)⟩𝑃1
+ ℎ𝑚⟨𝑓

NN
(̂𝑥, �̃�), 𝑓

NN
(̂𝑥, �̃�)⟩𝑃1

< 𝛾⟨�̃�, �̃�⟩ (5.44)

holds.
Theorem 5.2.3 (ISS of RKNN) The RKNN (3.6) using a (𝑘, 𝑙, 𝑚)-algebraically stable RK
method is ISS, if there exist two positive definite matrices 𝑃1, 𝑃3 and weighting variables
∑ 𝜆𝑖 = 1, 0 ≤ 𝜆𝑖 ≤ 1, ∀𝑖 ∈ {1, 2, … , 𝑁𝑁} such that

𝑇1 < 0 (5.45)

𝑇2,𝑖 + 𝜆𝑖𝑇1 ≤ 0 ∀𝑖 ∈ {1, 2, … , 𝑁𝑁} (5.46)

holds. The 𝑖th row vector of matrix 𝑊 ℎ
𝑥 is 𝑅𝑊ℎ

𝑖 and the 𝑖th column vector of matrix 𝑊 𝑜
𝑎

is 𝐶𝑊𝑜
𝑖 . The matrices 𝑇1 and 𝑇2,𝑖 are defined by

𝑇1 = 𝑃3 + 𝑃1𝑊 𝑙
𝑥 + ℎ𝑚 (𝑊 𝑙

𝑥
T𝑃1𝑊 𝑙

𝑥 (5.47)

+ ∣∣𝑊 𝑜
𝑎

T𝑃1𝑊 𝑜
𝑎 ∣∣ ∣∣𝑊 ℎ

𝑥 ∣∣2 𝐼)

𝑇2,𝑖 = (ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖 (5.48)

+ ℎ𝑚 (𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖)T 𝑃1𝑊 𝑙
𝑥.

Proof: See appendix A.

Readers who are only interested in GAS of the RKNN and not in ISS can see from the
proof that all terms associated with 𝑃3 vanish (appendix A, (4) and (9)).
Theorem 5.2.4 (GAS of RKNN) The RKNN (3.6) using a (𝑘, 𝑙, 𝑚)-algebraically stable
RK method is GAS, if there exists a positive definite matrix 𝑃1 and weighting variables
∑ 𝜆𝑖 = 1, 0 ≤ 𝜆𝑖 ≤ 1, ∀𝑖 ∈ {1, 2, … , 𝑁𝑁} such that

𝑇3 < 0 (5.49)

𝑇2,𝑖 + 𝜆𝑖𝑇3 ≤ 0 ∀𝑖 ∈ {1, 2, … , 𝑁𝑁} (5.50)

5.2 Stability Constraints 89

holds. The 𝑖th row vector of matrix 𝑊 ℎ
𝑥 is 𝑅𝑊ℎ

𝑖 and the 𝑖th column vector of matrix 𝑊 𝑜
𝑎

is 𝐶𝑊𝑜
𝑖 . The matrices 𝑇3 and 𝑇2,𝑖 are defined by

𝑇3 = 𝑃1𝑊 𝑙
𝑥 + ℎ𝑚 (𝑊 𝑙

𝑥
T𝑃1𝑊 𝑙

𝑥 (5.51)

+ ∣∣𝑊 𝑜
𝑎

T𝑃1𝑊 𝑜
𝑎 ∣∣ ∣∣𝑊 ℎ

𝑥 ∣∣2 𝐼) ,

𝑇2,𝑖 = (ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖 (5.52)

+ ℎ𝑚 (𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖)T 𝑃1𝑊 𝑙
𝑥.

Remark: For ℎ = 0, 𝜆𝑖 = 1
𝑁𝑁

, 𝑁𝑁 = 𝑁𝑋, 𝑊 𝑜
𝑎 = 𝐼, 𝑊 𝑙

𝑥 = diag (𝑑1, … , 𝑑𝑁𝑋
) , 𝑑𝑖 > 0,

𝑃3 = 0 and 𝑃1 a diagonal matrix the constraints (5.2.3) and (5.2.4) reduce to the results
presented in [HW02]. Therefore, the Theorems 5.2.3 and 5.2.4 generalize the result of GAS
for continuous-time neural networks presented in [HW02] as different network structures,
various sample times, more options in the stability criterion and ISS can be ensured.

5.2.5 Weak Stability Method

Recall the main idea of the provided ISS stability criterion. A linear model is introduced
for which stability properties are well-known in literature and can be explicitly quantified.
Then a nonlinear term is added to the model in parallel to ensure universal function
approximation capabilities. Based on the Lipschitz continuity of the model, an upper
bound regarding the stability of the nonlinear term can be computed. The algorithm
ensures that the safety margin of the linear term is greater than the uncertainty about the
nonlinear term.

Deriving the conditions on the nonlinear model terms is elaborate and requires to be
derived for each model class. For instance, using relu(⋅) or tanh(⋅) activation functions
is obligatory for the presented results. Relaxing the prerequisite regarding the activation
function, that 0 ≤ 𝜎(𝑣)/𝑣 ≤ 1 holds, is rather difficult. Furthermore, the proof only
holds for one hidden layer. Extensions to additional hidden layers are possible, yet require
considerable expenses.

From a practical point of view, a flexible approach for many model classes that still en-
courages stability would be desirable. For non-safety critical applications, one can achieve
this by trading off guaranteed stability for constraints flexibility. The idea is to ensure the
stability properties of the linear model terms without considering the bounded uncertainty
of the nonlinear terms by simply implementing the constraint

𝑊 𝑙
𝑥 ≤ 0. (5.53)

90 Chapter 5: Continuous-Time Neural Networks

Equation (5.53) ensures negative definiteness of the nonlinear kernel. The weak stability
criterion can be applied to a wide range of nonlinear models without deriving the complete
stability criterion for each specific nonlinear kernel. It can be included in the training
pipeline using a barrier function (see section 3.5.2). Specifically,

𝐿𝑊𝑒𝑎𝑘𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) =

⎧{{
⎨{{⎩

𝐿𝐹𝑖𝑡(⋅) if max(eig(𝑊 𝑙
𝑥)) ≤ 𝜆2

𝐿𝐹𝑖𝑡(⋅) + 𝐿𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) if 𝜆2 < max(eig(𝑊 𝑙
𝑥)) ≤ 0

∞ otherwise
(5.54)

𝐿𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐵𝑎𝑟𝑟𝑖𝑒𝑟(⋅) = 𝜆1relu(max(eig(𝑊 𝑙
𝑥)) + 𝜆2) (5.55)

Instead of the maximum eigenvalue, negative definiteness can be guaranteed using
Sylvester’s criterion [Gi17]. Sylvester’s criterion, in contrast to formulations using an
Eigenvalue function, is beneficial for the AD algorithm as it is fully differentiable. Some
implementations of eig(⋅) are differentiable, yet some in libraries differentiation through
eig(⋅) is challenging. The following Python code E.4 written for the PyTorch library imple-
ments the weak stability method with a barrier function using Sylvester’s criterion. The
constants in the code refer to 𝛾1 ≈ stability_scaling = 106, 𝛾2 ≈ stability_offset = 10−2

and ∞ ≈ stability_barrier = 1012. Infinity is limited to 1012 for numerical reasons. The
neural network weight matrix 𝑊 𝑙

𝑥 is A. The constant stability_offset can be adapted to the
specific application, the constants stability_scaling = 106 and stability_barrier = 1012

are reasonable for a wide variety of data sets. The code is given in appendix E.4.

5.2.6 Empirical Stability Results

The proposed constraints are discussed using the EMPS benchmark in section 5.2.1. As
the network consists of multiple hidden layers, only the weak stability method is applied.
Using the PyTorch [Pa19] framework, the constraints are implemented as a progressive
barrier in the loss function as recommended in section 3.5.2, with a scaling of 𝛾2 = 106

and stability offset of 𝛾1 = 10−2. Besides the additional barrier, no changes have been
applied. The network architecture, data preprocessing, and training configuration remain
unchanged.

The empirical result using the progressive barrier method is depicted in Fig. 5.10. This
result can be directly compared to the simulation without the stability constraints in
Fig. 5.8.

The performance utilizing a maximum absolute error of 0.001 m is comparable for each
training batch. For the simulation over the complete test data, the model’s error with

5.2 Stability Constraints 91

0 0.5 1 1.5 2 2.5
0

0.1

0.2

Time (s)

Po
sit

io
n

(m
)

0 5 10 15 20 25
0

0.1

0.2

Time (s)
Figure 5.10: Results on the Electro-Mechanical Positioning System benchmark with sta-

bility barrier. Besides the additional barrier in the loss function, the model
and training configuration are identical. Left: First batch of training.
Right: Simulation on test data. Black: Measured data. Red: Model pre-
diction.

stability constraints raises by a factor of 10 to 0.01 m. This might be due to an overfit
to the training data. Note that the absolute error on the test data does not increase over
time, comparing a first (0 s to 5 s) and a last (20 s to 25 s) interval.

The direct comparison for the model without a stability barrier is significant. On the test
data, the error increases by a factor of 200, from 0.001 m to 0.2 m. The error increases over
time, comparing the first and last intervals. For a longer experiment, likely, the absolute
error will increase further.

5.2.7 Additional Methods to Improve Model Stability

Constraints on the NN weights have been presented, based on [De11b; WDR21]. These
constraints can enforce ISS and GAS stability.

Other possibilities can also lead to high-performance, stable models. The presented weak
stability constraints are only one possible indigent. Regarding safety-critical applications
requiring a provable ISS stability, the other methods discussed in the following are not
sufficient.

First, stability issues arise when inference requires extrapolation in the value or time do-
main. Therefore, the longer the forecast horizon in the loss function, the less extrapolation
is required and the better the model performance. As a consequence, within the applica-
tion’s demands and computational limitations, stability can be encouraged by decreasing
the inference horizon and increasing the training horizon.

Enforcing the observable output as a subset of the hidden states improves stability, too.
The main idea is to restrict the hidden state flexibility by explicitly enforcing prior knowl-

92 Chapter 5: Continuous-Time Neural Networks

edge. This can be achieved by setting the linear output terms to constant, non-trainable
parameters and disabling the nonlinear output function in (3.2).

Stability accounts for two aspects, model stability, and ODE solver stability. Regarding
the ODE solver, there are three options:

• increasing the numerical order of the solver,

• using a variable-step solver with error control,

• or decreasing the sample time for a fixed-step solver.

5.3 Demonstration of Continuous-Time Memory Ef-
ficiency

In this section, we compare discrete-time and continuous-time NN on the same data. The
theoretical outcome of this comparison is already known in literature [Ki22]. However, it
is worth testing on the application of robot identification if the effort for a continuous-time
NN is justified.

For direct comparability of discrete-time and continuous-time models, advanced techniques
are dismissed for both variants. Two identical Multi Layer Perceptron (MLP) networks
are applied, and the continuous-time solution only embeds the MLP in an Eulerscheme.
Other than adding the Eulerscheme, no changes are incorporated. The data and data
preprocessing are identical, as the network architecture, and the training pipeline.

Both models are tested on the complete working space. The design of experiments is
described in section 6.1.

5.3.1 Discrete-Time Baseline

A discrete-time MLP network is developed for system identification, which is capable of
universal function approximation. In theory, given sufficiently rich data, it is capable of
approximating (2.2) with arbitrary accuracy. To improve the gradients and additionally
to make the MLP network better comparable with the linear baseline, a linear and a
nonlinear module are added,

𝜏𝑛 = 𝐵𝑁𝑁
⎡
⎢⎢
⎣

𝑞𝑛

̇𝑞𝑛

̈𝑞𝑛

⎤
⎥⎥
⎦

+ 𝑊1𝜎
⎛⎜⎜⎜
⎝

𝑊2𝜎
⎛⎜⎜⎜
⎝

𝑊3
⎡
⎢⎢
⎣

𝑞𝑛

̇𝑞𝑛

̈𝑞𝑛

⎤
⎥⎥
⎦

+ 𝑏3
⎞⎟⎟⎟
⎠

+ 𝑏2
⎞⎟⎟⎟
⎠

+ 𝑏1 (5.56)

with the linear module 𝐵𝑁𝑁 ∈ ℝ𝑁𝑄×3𝑁𝑄 , output and two hidden weight matrices 𝑊1 ∈

5.3 Demonstration of Continuous-Time Memory Efficiency 93

ℝ𝑁𝑄×𝑁𝐹 , 𝑊2 ∈ ℝ𝑁𝐹×𝑁𝐹 , 𝑊3 ∈ ℝ𝑁𝐹×3𝑁𝑄 , and bias vectors 𝑏1 ∈ ℝ3𝑁𝑄 , 𝑏2 ∈ ℝ𝑁𝐹 , 𝑏3 ∈
ℝ𝑁𝐹 , with 𝑁𝐹 ∈ ℕ hidden units.

Recall the complexity of the inertia, Coriolis, and centripetal matrices, 𝑀(𝑞), 𝐶(𝑞, ̇𝑞),
as well as the gravitational load including HWC 𝑔(𝑞). As discussed in section 4.1.3,
the symbolic representation of the physical model consists of more than ten thousand
arithmetic operations:

• 2000 constants,

• 10000 multiplications,

• 2500 additions,

• 2000 subtractions,

• 50 cosine,

• 60 sine, and

• 30 square functions.

As a consequence, a relatively large MLP 5.56 is anticipated with a nonlinear kernel
consisting of two hidden layers 𝑊2, 𝑊3, 𝑏2 and 𝑏3. It features LeakyReLU activation
functions, and 𝑁𝐹 = 128 hidden units. The linear model core 𝐵𝑁𝑁 consists of 108, and
the nonlinear core contains ≈ 59000 parameters. The performance of the MLP on the
training data is presented in Fig. 5.11 and Fig. 5.12.

As to be expected for a flexible model such as a MLP with universal function approxima-
tion capabilities, the model can represent the training data accurately, see Fig. 5.11 and
Fig. 5.12. The results for all joints are presented in appendix D. However, applying the
trained model to the test data reveals severe drawbacks of the discrete-time model, see
Fig. 13. Indeed, the performance differences of the models presented in this chapter are
sufficiently large to be visible without any numerical validation performance metrics.

Note that only the sequence from 5 s to 45 s is relevant for training and test evaluation.
Before and after this period, the robot is at a standstill, and positioning accuracy is not
subject to dynamic effects. Feed-forward torque estimation in the standstill phases of the
robot is not relevant to improve the robot’s accuracy. However, the motor torques in the
standstill phases of the robot are very difficult to estimate.

Furthermore, note that training on a sequence from 5 s to 45 s only contains 450 data
points for each joint. This is a restriction of the benchmark data to test the model for
data efficiency explicitly. The discussion of the implications of this restriction is postponed
to section 5.3.3.

94 Chapter 5: Continuous-Time Neural Networks

5.3.2 Continuous-Time Baseline

The expected robot model (2.2) is a static model in the sense that feed-forward torques do
not depend on previous motor torques. The model does not contain any time-dependent
memory. However, as a dynamical system including a feedback control loop, the torque
time series is not completely independent but strongly auto-correlated.

It can be advantageous to apply continuous-time models, even in a context where a static
model would be sufficient. In this section, the MLP model is transformed from a discrete-
time to a continuous-time setting. Advanced continuous-time options, such as DAE and
stability penalty methods, state derivative normalization, or higher-order ODE solvers,
are not applied yet. This makes the simple discrete-time and continuous-time versions of
the MLP directly comparable. In section 6.2.2, the full potential and all recommendations
for continuous-time NN as given in chapter 3 are used.

From a physical point of view, as the expected model (2.2) is static, it must be lifted into
a derivative formulation to apply a continuous-time model.

𝑑𝜏
𝑑𝑡

= 𝑑𝑈−1 (𝑀(𝑞) ̈𝑞 + 𝐶(𝑞, ̇𝑞) ̇𝑞 + 𝑔(𝑞) + 𝜏𝐻(𝑞) + 𝜏𝐹(̇𝑞))
𝑑𝑡

(5.57)

𝑑𝜏
𝑑𝑡

= 𝑈−1 (𝑑𝑀(𝑞) ̈𝑞
𝑑𝑡

+ 𝑑𝐶(𝑞, ̇𝑞) ̇𝑞
𝑑𝑡

+ 𝑑𝑔(𝑞)
𝑑𝑡

+ 𝑑𝜏𝐻(𝑞)
𝑑𝑡

+ 𝑑𝜏𝐹(̇𝑞)
𝑑𝑡

) (5.58)

𝑑𝜏
𝑑𝑡

= 𝑈−1(𝑑𝑀(𝑞)
𝑑𝑡

̈𝑞 + 𝑀(𝑞) ⃛𝑞 + 𝑑𝐶(𝑞, ̇𝑞)
𝑑𝑡

̇𝑞 + 𝐶(𝑞, ̇𝑞) ̈𝑞 (5.59)

+ 𝑑𝑔(𝑞)
𝑑𝑡

+ 𝑑𝜏𝐻(𝑞)
𝑑𝑡

+ 𝑑𝜏𝐹(𝑞)
𝑑𝑡

)).

Consequently, the continuous-time NN does not model the physical robot as represented
in (4.36). Instead, the continuous-time NN represents the physical equations (5.60a). The
derivative of the inertia matrix 𝑑𝑀(𝑞)

𝑑𝑡 , Coriolis and centripetal 𝑑𝐶(𝑞, ̇𝑞)
𝑑𝑡 , gravitational loads

𝑑𝑔(𝑞)
𝑑𝑡 and HWC 𝑑𝜏𝐻(𝑞)

𝑑𝑡 is complex as none of those depend linear on the link angle 𝑞 or
its derivatives ̇𝑞, ̈𝑞. Only the inverse gearbox ratio 𝑈−1 is linear concerning the joint an-
gle 𝑞. Furthermore, (5.60a) depends on the joint angle jerk ⃛𝑞, information which is not
directly supported using the input data of the benchmark. It could be estimated using
Finte-Difference methods and appropriate filtering. As presented in the following, the
continuous-time NN can derive this information, even in the non-advanced MLP configu-
ration.

To demonstrate the capabilities of the most simple version of a continuous-time NN, an
Euler-Backward as ODE solver and the constant time step ℎ = 1 (without unit) is applied.
An output network is not enabled. Indeed, the output is equal to the state, which is not

5.3 Demonstration of Continuous-Time Memory Efficiency 95

augmented. The resulting NN formulation is

𝑑𝜏𝑛
𝑑𝑡

= 𝐴𝑁𝑁 𝜏𝑛 + 𝐵𝑁𝑁
⎡
⎢⎢
⎣

𝑞𝑛

̇𝑞𝑛

̈𝑞𝑛

⎤
⎥⎥
⎦

+ ̃𝑓
𝑁𝑁

⎛⎜⎜⎜
⎝

𝜏𝑛,
⎡
⎢⎢
⎣

𝑞𝑛

̇𝑞𝑛

̈𝑞𝑛

⎤
⎥⎥
⎦

⎞⎟⎟⎟
⎠

(5.60a)

𝜏𝑘+1 = 𝜏𝑛 + 𝑑𝜏𝑛
𝑑𝑡

(5.60b)

𝜏𝑘+1 = (𝐼 + 𝐴𝑁𝑁) 𝜏𝑛 + 𝐵𝑁𝑁
⎡
⎢⎢
⎣

𝑞𝑛

̇𝑞𝑛

̈𝑞𝑛

⎤
⎥⎥
⎦

+ ̃𝑓
𝑁𝑁

⎛⎜⎜⎜
⎝

𝜏𝑛,
⎡
⎢⎢
⎣

𝑞𝑛

̇𝑞𝑛

̈𝑞𝑛

⎤
⎥⎥
⎦

⎞⎟⎟⎟
⎠

. (5.60c)

The test data results are depicted in Fig. 5.11 and Fig. 5.12. Additional experiments are
presented in the appendix D. Results on the training data for the Euler model are not
displayed as the performance on this data is satisfying. Otherwise, an accurate solution
using the test data would be impossible.

The comparison of the Euler NN and the discrete-time MLP in Fig. 5.11 and Fig. 5.12 is
decisive. The data-based model changed from a type that performs worse than applying
no feed-forward model to one that can fairly represent the data. The only difference is
the change of the formulation from a discrete-time to a continuous-time formulation. The
parts with identical configurations are listed in the following.

• training pipeline (ADAM optimizer, learning rate, and learning rate scheduler, early
stopping criteria, parameter weight decay, and MSE regression loss function),

• data set preprocessing (no filtering, data set reduction, coherent validation data
definition, and z-score normalization with mean offset), and

• model architecture (number of layers, activation function type, number of hidden
units, number of states, inputs and outputs, linear plus nonlinear kernel, omitted
output network, weight initialization, initial state estimation).

Note that (5.60) depends on the previous motor torque 𝜏𝑛. Therefore, the feed-forward
control needs to be estimated at run time, in contrast to the static robot model (5.56). The
static model only depends on the reference trajectory and can be computed online or offline.
Computing the feed-forward torque in the trajectory planning phase enables the feedback
control to be computed faster as less online computing is required. Furthermore, offline
computation increases robot safety because the feed-forward torque can be extensively
validated before execution. However, there are possibilities to compute the torque offline.

• Use a simulation model.

• Configure the NN model in simulation mode and estimate the torque recursively.

96 Chapter 5: Continuous-Time Neural Networks

For initial torque estimation, see section 3.2.

• If the robot task is repeatable, torque measurements of previous runs can be applied.

5.3.3 Baseline Comparison

Memory efficiency is defined in this work as the parameter memory 𝑚𝑝 ∈ ℝ required to
achieve comparable performance in terms of prediction accuracy. A number of 𝑁𝑝 ∈ ℕ
model parameters with a size of 𝑠 ∈ ℕ, depending on the data type, and a model accuracy
𝐿 ∈ ℝ leads to

𝑚𝑝 = 𝐿
∑𝑁𝑝

𝑖=1 𝑠𝑖
. (5.61)

For example, a single floating point number in C requires 𝑠 = 64 bit. Typical loss functions
𝐿 are given in Tab. 3.3 and Tab. 3.3. The definition (5.61) is broader than BIC or AIC,
which only account for 𝐿 and 𝑁𝑝. Memory efficiency in the definition (5.61) captures the
information contained relative to the required disk storage. In other words, it indicates
the efficiency of the model representation.

Memory efficiency is beneficial for four reasons. First, the required disk storage can be
reduced and thus model deployment is facilitated. Second, model training is possibly
computationally faster. Third, the model can be trained on fewer data, as demonstrated
for example in this section. An optimization problem is simplified when a lower parameter
accuracy of the objective variables is required. And finally, following the idea of BIC or
AIC, model overfit is aggravated.

Recall the discrete-time MLP and compare the training data to the test data of the same
NN in Fig. 5.11 and Fig. 5.12. Note that the training data is represented properly. For the
robot feed-forward control application, only the performance on the test data is relevant
and not the training. Nevertheless, the direct comparison of training and test appears
to contain overfitting. A network with ≈ 59000 parameters is trained on 6 ⋅ 450 = 2700
target data points. Decreasing the number of model parameters does not improve the
model performance, as the expected physical effects are too complicated, see section 2.2.

The question is whether more training data improves the performance of the discrete-time
MLP. Therefore, the full training data set is applied, with 6 ⋅ 39988 = 239928 target data
points. The result is presented in Fig. 5.11 and Fig. 5.12 for training data and test data
respectively. For a direct comparison, only the number of training data points increased,
from 2700 data points to 239928, and all other configurations were unmodified. Still, the
discrete-time NN trained on 239928 data points perform worse on the test data than the
continuous-time counterpart trained on 2700 data points. Nevertheless, the improvement

5.3 Demonstration of Continuous-Time Memory Efficiency 97

resulting only from additional data for the MLP is significant. While 2700 data points
resulted in a non-applicable model, training on 239928 data points resulted in a useful
model, see Fig. 5.11 and Fig. 5.12 respectively.

The continuous-time model performed even better using only the few data points. The
continuous-time model consists of 124231 model parameters more due to the additional
state information than the discrete-time counterpart with 59496 parameters. More model
parameters increase the model’s flexibility, leading to more model variance and increasing
the risk of a bad generalization.

98 Chapter 5: Continuous-Time Neural Networks

0 5 10 15 20 25 30 35 40 45 50 55 60

−5
0
5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

Discrete-time Training Data

0 5 10 15 20 25 30 35 40 45 50 55 60

−5
0
5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

Continuous-Time Training Data

0 5 10 15 20 25 30 35 40 45 50 55 60
−40

−20

0

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

Discrete-time Test Data

0 5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

Continuous-time Test Data

Figure 5.11: Empirical memory efficiency of joint 1. Training and test data are recorded
and two models, a continuous-time and a discrete-time model are fitted.
The upper figures present the model performance on the training data and
the lower figures on the test data. Models and data are directly comparable,
see the main paragraph. The continuous-time model can better generalize
from training to test data.

5.3 Demonstration of Continuous-Time Memory Efficiency 99

0 5 10 15 20 25 30 35 40 45 50 55 60
−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

Discrete-time Training Data

0 5 10 15 20 25 30 35 40 45 50 55 60
−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

Continuous-Time Training Data

0 5 10 15 20 25 30 35 40 45 50 55 60
−50

0
50

100

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

Discrete-time Test Data

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

Continuous-time Test Data

Figure 5.12: Empirical memory efficiency of joint 2. Training and test data are recorded
and two models, a continuous-time and a discrete-time model are fitted.
The upper figures present the model performance on the training data and
the lower figures on the test data. Models and data are directly comparable,
see the main paragraph. The continuous-time model can better generalize
from training to test data.

100 Chapter 5: Continuous-Time Neural Networks

The main statement is presented in Fig. 5.11 and Fig. 5.12. On the given example, the
continuous-time model with 124231 parameters trained on only 2700 target data points
performed better on the test data than the 59496 parameter discrete-time model.
Besides embedding the same NN architecture in an Eulerscheme, both results are
directly comparable.

Memory efficiency can be backed up from several perspectives beyond the field of system
identification. Regarding NODE, both [Ki22] and [Ch18] directly comment on improved
memory efficiency using a continuous-time representation. In the field of image recognition,
ResNet [He16] is multiple times as efficient as AlexNet [KSH17]. ResNet performs better
using a smaller NN, both applied to the same Image Net Benchmark.

5.4 Originality and Background

To clarify intellectual property, background information is given in this section. This
section is exclusively for background information and can be skipped for all readers only
interested in the methods and results.

In chapter 3, Foundations of Continuous-Time Neural Networks, the section 3.2 to sec-
tion 3.5 represent state-of-the-art. Parts of the work are literally taken from or inspired
by the publications [WDR21; We16; We17; WVR20a]. The bachelor thesis [We16] and
master thesis [We17] are original works, including modeling, implementation, and writing.
The concept and idea of the Bachelor’s and Master’s thesis are from Sebastian Stemmler.
The publication [WVR20a] is conceived, modeled, implemented, and written by Jonas
Weigand. Magnus Volkmann contributed to the physical robot model, proofread the pub-
lication, and presented the paper at the conference. Martin Ruskowski provided scientific
guidance.

Section 5.1, State Derivative Normalization, is based on the publication [We23]. Gerben
Beintema and Jonas Weigand independently and simultaneously identified that state nor-
malization is possible and beneficial. Jonas Weigand et. al. published [WDR21], which
was received by the International Journal of Control on 04.01.2021 and published online
on 08.11.2021. It contains the idea of Time Domain Normalization, which states that
it is possible and beneficial to estimate the model on a normalized time grid. Indepen-
dently, Gerben Beintema et. al. uploaded the paper [BST22] on 20.04.2022 on arxiv.
In searching for co-authors to give an analytic insight into the phenomena, contact with
Maarten Schoukens lead to a collaboration. A third Ph.D. candidate has been acquired,
Jonas Ulmen. Collaboration stated at the 6th Edition of the Workshop on Nonlinear Sys-
tem Identification Benchmarks, beginning on 25.04.2022. Gerben Beintema, Roland Tóth

5.4 Originality and Background 101

and Maarten Schoukens published the paper [BST23] on the International Conference on
Learning Systems (ICLR) 2023, and uploaded it on the 23.01.2023 to arxiv. The main
publication the section 5.1 is based on the publication [We23], which was submitted to
the IEEE Control Systems Letters (L-CSS) Journal on 31.01.2023. Gerben Beintema de-
veloped the BLA method and developed the DeepSI Toolbox [BTS21b]. The toolbox was
not applied to the results presented in the paper, yet it was an excellent way to double-
check the results with an independent code. For example, the observation of the analogy
between state derivative normalization and hidden layer initialization methods was a re-
sult of comparing both source codes. Jonas Ulmen developed the link to the Contraction
Theory. The data-driven cross-validation method, the optimization-based method, im-
plementation, and experiments were provided by Jonas Weigand. [We23] was written by
Jonas Weigand, Gerben Beintema, and Jonas Ulmen. Publication supervision is given
by Maarten Schoukens, Roland Tóth, Daniel Görges, and Martin Ruskowski. All authors
contributed to the discussions and proofread the publication.

Section 5.2, Stability Constraints for continuous-time Neural Networks, is based on the
publication [WDR21]. The publication itself is based on the Ph.D. thesis of Michael
Deflorian [De11b]. The Ph.D. thesis of Michael Deflorian was a major source of the
master thesis [We17], and out of this, a collaboration between Michael Deflorian and
Jonas Weigand emerged. Michael Deflorian already provided the stability constraints
method, a code base written in MATLAB, and a complete publication draft. However,
the proof of the constraints was incorrect. It was based on a coordinate transform, in
which an inequality equation using the Lipschitz Norm was incorrectly substituted in an
equality equation. Vassilios Yfantis recognized this. Jonas Weigand developed the correct
proof. The coordinate transform was a requirement in the version of [De11b] and could not
be fixed, as a nonlinear part remaining that could not be estimated. However, lifting the
complete proof into a higher dimension resolves the requirement for a coordinate transform,
as the higher dimensional space already provides the correct equilibrium point. Besides
correcting the proof, Jonas Weigand developed a new code base meeting recent software
development requirements and conducted new experiments. The draft was completely
rewritten and extended from 8 pages to 32. Jonas Weigand made two further add-ons.
First, introducing a penalty and barrier method enables modern deep learning frameworks
such as TensorFlow [Ma15] or PyTorch [Pa19] to incorporate the stability constraints
even without a constraint optimization interface. Secondly, weak stability methods are
introduced. Weak stability methods preserve the main idea of the stability constraints,
yet they are enabled without adaption to a much more flexible range of NN models.
However, it should be emphasized that this contribution would not have been possible
without the outstanding work of Michael Deflorian, who developed and implemented the
stability constraints for continuous-time NN in the first place. Martin Ruskowski gave
scientific supervision of the publication. Furthermore, two students’ theses contributed to

102 Chapter 5: Continuous-Time Neural Networks

the continuous-time NN topic, namely Julian Raible and Nico Zantopp.

Section 5.3 presents unpublished work.

103

6 Comparison of Physical,
Data-based, and Hybrid Models

In this chapter, the physical, data-based, and hybrid models are compared on the task of
robot identification and control. First, the design of experiments is explained in section 6.1.
Then, specific model configurations are presented in section 6.2. Finally, experimental
results for all three models are presented and directly compared in section 6.3.

6.1 Design of Experiments

The presented methods are applied on a public benchmark dataset of the industrial robot,
see Fig. 6.1. It is a robot with a nominal payload capacity of 300 kg, a weight of 1120 kg,
and a reach of 2500 mm. It exhibits 12 states accounting for position and velocity for
each of the 6 joints. The number of states increases to 24 states when elastic joints
are considered. Joint elasticity models deformations of the gearboxes and introduces an
independent position and velocity of each side of the robot joint. The robot encounters
backlash in all joints, pose-dependent inertia, pose-dependent gravitational loads, pose-
dependent hydraulic forces, pose- and velocity-dependent centripetal and Coriolis forces
as well as nonlinear friction, which is temperature-dependent and therefore potentially
time-varying.

The task of the development of a sophisticated control is considered. To compare this
work with the literature, the training and test trajectories have already been published
and described in detail in [We22]. The same public data set is applied for the physical,
data-based, and hybrid models.

A sophisticated model-based design of experiments is utilized for parameter identification
of the physical model. This specialized data is explained in detail in section 4.2. However,
the public data set defined in the section does not rely on a model-based design of exper-
iments. To test for various applications, more general experiment design principles have
been utilized, such as consideration of the frequency and the amplitude spectrum.

The experiments are designed as 36 different trajectories with a duration of 60.6 s each.
All movements start and end in homing position, see Fig. 6.1. Each trajectory is executed

104 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

Figure 6.1: Picture of the industrial robot KUKA KR300 R2500 ultra SE at the Chair
of Machine Tools and Control Systems, RPTU Kaiserslautern-Landau.

twice so that repeatability is explicitly tested.

The design of experiments for each trajectory is formulated as an optimization problem
to incorporate all physical constraints such as position, velocity, acceleration, and jerk
limits. Each trajectory is formulated as the sum of sine and cosine functions to ensure
continuous differentiability. Furthermore, optimizing for the sine and cosine coefficients
A ∈ ℝ𝑉 ×𝑁𝑄 , B ∈ ℝ𝑉 ×𝑁𝑄 reduces the number of optimization variables compared to a
discrete-time formulation by multiple orders of magnitude. The sum of sine and cosine
functions is defined as

𝑞𝑖,𝑛 =
𝑉

∑
𝑣=1

(
𝐴𝑣,𝑖

𝜔𝑣
sin(𝜔𝑣𝑛) −

𝐵𝑣,𝑖

𝜔𝑣
cos(𝜔𝑣𝑛)) (6.1)

with a base frequency 𝜔 ∈ ℝ, a number of 𝑣 ∈ [1, .., 𝑉] sine and cosine functions, and
𝑛 ∈ [1, .., 𝑁] discrete time steps for each joint 𝑖 ∈ [1, ..., 𝑁𝑄].

For each frequency, 𝑉 = 10 coefficients and 𝑁 = 60 equally spaced time steps are chosen
for computing the sine and cosine coefficients. The frequency grid in the design of exper-
iments ranges from the base frequency 𝜔 = 1/60 ≈ 0.0166 Hz to a maximum frequency
of 1 Hz. The sample rate Δ𝑡 = 𝑡𝑛+1 − 𝑡𝑛 and therefore the number of time steps 𝑁 vary
depending on the task, as the trajectory time remains unchanged at 𝑡𝑁 = 60.6 s. For esti-
mating the sine and cosine coefficients are set to Δ𝑡 ≈ 1 s, 𝑁 = 60 for fast computation.
The high-frequency reference trajectory is set to Δ𝑡 = 4 ms, 𝑁 = 15147 to match the
feedback controller.

6.1 Design of Experiments 105

The optimization problem is implemented in MATLAB using CasADi with the IPopt
solver [An19; MA21]. The optimization problem is given by

A∗, B∗ = argmin
A,B

𝐽(qn) (6.2a)

s.t. q(m)
lb,n ≤ q(m)

n ≤ q(m)
ub,n ∀𝑛 ∈ [1, 2, ..., 𝑁], ∀𝑚 ∈ {0, 1, 2, 3} (6.2b)

q(m)
n = 0, ∀𝑛 ∈ {1, 𝑁}, ∀𝑚 ∈ {0, 1, 2, 3} (6.2c)

with the joint upper and lower joints limits q(m)
ub,n, q(m)

lb,n for each time step 𝑛 and each
derivative 𝑚. Applied limits are documented in the appendix in Tab. 1. The applied
objective criterion is empty, e.g., 𝐽(⋅) = 0. The optimizer mainly ensures that all trajectory
derivatives start and end at zero (6.2c). Each new trajectory is different as the initial
values of the sine and cosine coefficients are created randomly Different objective criteria
have been tested, such as maximizing velocity or acceleration, e.g., 𝐽(qn) = ∑𝑁

𝑛=1 ̇q2
𝑛, or a

following discontinuous reference, e.g., 𝐽(qn) = ∑𝑁
𝑛=1(q𝑛 −q𝑅,𝑛)2. It is easier, to identify

a robot model in the high-velocity range only, as some stationary nonlinear effects can
almost be omitted. Preliminary examinations revealed that the empty objective function
captures both stationary and high-velocity effects well.

The first constraint (6.2b) ensures that limits of the trajectory including the first three
derivatives (velocity, acceleration, and jerk) are ensured for all time steps 𝑛. The second
constraint (6.2c) ensures that all derivatives are zero at the start and the end of each
trajectory. Choosing the same initial and final pose for all experiments is optional, yet it
ensures that the data can be shuffled and combined without the loss of physical feasibility.

For robot feed-forward controllers, an inverse model of the robot is required, which takes
the desired or actual position and its derivatives as input and outputs the feed-forward
torque. A time-shift of 4 ms of the input signals is required to compensate for the feedback
controller computation time. The input consists of the time-shifted position, velocity, and
acceleration, and the outputs are the measured motor torques, as summarized in Tab. 6.1.

The data set is collected in single trajectories, raw data is sampled in 4 ms. For black-box
model identification, the data is low pass filtered with a cut-off frequency of 2 Hz and is
upsampled to 100 ms.

Three trajectories are provided as test data, each repeated twice to measure repeatability
directly. A part of the test data, the robot position, and the motor torques are depicted in
Fig. 6.2 and in Fig. 6.3 respectively. The short duration of the test data with only 6 min
is chosen to make model effects better visible. In parts of this work, only the first 60 s of
the test data are presented for even better visibility.

The training data, which is required for the data-based and hybrid model, consists of 35

106 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

Table 6.1: Summary for the inverse model identification datasets.

Inverse Model

Input

Joint Position 𝑞 (deg)
Joint Velocity ̇𝑞 (deg/s)
Joint Acceleration ̈𝑞 (deg/s2)
(All time-shifted)
18 Channels

Output Motor torque 𝜏 (Nm)
6 Channels

trajectories. Each trajectory is repeated twice to account for repeatability. The training
data is based on independent reference trajectories. Besides the reference trajectories,
the training and test data’s definition and post-processing are identical. Extrapolation is
tested implicitly, as the training data cannot cover the whole state-space. The training
data is presented in Fig. 6.4 and in Fig. 6.5.

6.1 Design of Experiments 107

0 50 100 150 200 250 300 350
−50

0
50

q 1
(d

eg
)

0 50 100 150 200 250 300 350

0
20

q 2
(d

eg
)

0 50 100 150 200 250 300 350
−100
−50

0

q 3
(d

eg
)

0 50 100 150 200 250 300 350
−50

0
50

100

q 4
(d

eg
)

0 50 100 150 200 250 300 350
−50

0
50

q 5
(d

eg
)

0 50 100 150 200 250 300 350
−50

0
50

100

Time (s)

q 6
(d

eg
)

Figure 6.2: Measured joint positions as test data. Each row corresponds to one joint.

108 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 50 100 150 200 250 300 350
−5

0
5

𝜏 1
(N

m
)

0 50 100 150 200 250 300 350
−10
−5

0
5

𝜏 2
(N

m
)

0 50 100 150 200 250 300 350
−5

0
5

10

𝜏 3
(N

m
)

0 50 100 150 200 250 300 350
0
2

𝜏 4
(N

m
)

0 50 100 150 200 250 300 350
−4−2

02
4

𝜏 5
(N

m
)

0 50 100 150 200 250 300 350
0
1
2
3

Time (s)

𝜏 6
(N

m
)

Figure 6.3: Measured motor torques as benchmark test data. Each row corresponds to
one joint.

6.1 Design of Experiments 109

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−100
−50

0
50

100
q 1

(d
eg

)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−20

0
20
40

q 2
(d

eg
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−100

−50

0

q 3
(d

eg
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−100

0

100

q 4
(d

eg
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−100
−50

0
50

100

q 5
(d

eg
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−100
−50

0
50

Time (s)

q 6
(d

eg
)

Figure 6.4: Measured joint positions as benchmark training data in deg. Each row cor-
responds to one joint.

110 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−10
−5

0
5

10

𝜏 1
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0
5

10
15
20

𝜏 2
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−20
−10

0
10

𝜏 3
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4
−2

0
2

𝜏 4
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0
2
4
6

𝜏 5
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

Time (s)

𝜏 6
(N

m
)

Figure 6.5: Measured motor torques as benchmark training data in Nm. Each row cor-
responds to one joint.

6.2 Model Configuration 111

6.2 Model Configuration

Technical details of the robot, used for all three models, are given in appendix B. In
particular, appendix B.1 describes the geometry of the robot as well as the position and
velocity limits used in all cases. Appendix B.2 documents the robot controller layout,
including hardware details and software architecture. Robot sensor details, including the
motor resolvers and SE, are presented in appendix B.3.

6.2.1 Physical Model Configuration

The physical model is defined in chapter 4. The identified robot parameters are given in
appendix B.4.

6.2.2 Data-based Model Configuration

The general recommendations for the data-based model are discussed in chapter 3. A
summary of the concrete design choices for the best-performing continuous-time NN is
given in the following.

A fixed-step Runge-Kutta ODE solver is applied. It delivers a trade-off between accuracy
and computational complexity. Furthermore, as a fixed-step solver, the backpropagation
algorithm does not require coping with failed steps. The fixed-step solver further encour-
ages a smooth gradient of the loss function for parameters. The nonlinear state-space
network is utilized with an enforced linear output. The output torque is an explicit part
of the augmented hidden state. The nonlinear network consists of two hidden layers, with
LeakyReLU activation functions and 128 hidden units each, to account for the complexity
of the physical model.

The model input is extended with the 3𝑟𝑑 and 4𝑟𝑑 derivative of the robot position, 𝑑3𝑞(𝑡)
𝑑𝑡3

and 𝑑4𝑞(𝑡)
𝑑𝑡4 . This input extension increases the number of model parameters and their

model flexibility. The main argument for this extension is the direct comparability of the
data-based and physical models. As the flatness-based feed-forward model requires the 3𝑟𝑑

and 4𝑟𝑑 derivative to estimate the joint elasticity, the same input data is provided for the
NN. Prior experiments did not present any detrimental model accuracy when prohibiting
access for the NN model to this data. Furthermore, the model evaluation does not require
many computational resources, especially as the model is continuous-time and in a one-
step-ahead prediction setting. Therefore, the additional number of model parameters is
not a significant disadvantage. It makes the NN and physical model better comparable.
The complete derivative estimation is given by

112 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

𝑢(𝑡) = [𝑞(𝑡), 𝑑𝑞(𝑡)
𝑑𝑡

, 𝑑2𝑞(𝑡)
𝑑𝑡2 , 𝑑3𝑞(𝑡)

𝑑𝑡3 , 𝑑4𝑞(𝑡)
𝑑𝑡4]

𝑇

(6.3a)

[
𝑑𝜏(𝑡)

𝑑𝑡
𝑑𝑥𝐴(𝑡)

𝑑𝑡
] = 𝐴𝑁𝑁 [

𝜏(𝑡)
𝑥𝐴(𝑡)

] + 𝐵𝑁𝑁 𝑢(𝑡) + ̃𝑓
𝑁𝑁

⎛⎜⎜⎜
⎝

⎡
⎢⎢
⎣

𝜏(𝑡)
𝑥𝐴(𝑡)

𝑢(𝑡)

⎤
⎥⎥
⎦

⎞⎟⎟⎟
⎠

(6.3b)

𝜏(𝑡) = 𝐶𝑁𝑁 [
𝜏(𝑡)

𝑥𝐴(𝑡)
] + 𝐷𝑁𝑁 𝑢(𝑡) + ℎ̃

𝑁𝑁

⎛⎜⎜⎜
⎝

⎡
⎢⎢
⎣

𝜏(𝑡)
𝑥𝐴(𝑡)

𝑢(𝑡)

⎤
⎥⎥
⎦

⎞⎟⎟⎟
⎠

(6.3c)

̃𝑓
𝑁𝑁

= 𝑊1𝜎
⎛⎜⎜⎜
⎝

𝑊2𝜎
⎛⎜⎜⎜
⎝

𝑊3
⎡
⎢⎢
⎣

𝜏(𝑡)
𝑥𝐴(𝑡)

𝑢(𝑡)

⎤
⎥⎥
⎦

+ 𝑏3
⎞⎟⎟⎟
⎠

+ 𝑏2
⎞⎟⎟⎟
⎠

+ 𝑏1 (6.3d)

ℎ̃
𝑁𝑁

= 𝑊4𝜎
⎛⎜⎜⎜
⎝

𝑊5𝜎
⎛⎜⎜⎜
⎝

𝑊6
⎡
⎢⎢
⎣

𝜏(𝑡)
𝑥𝐴(𝑡)

𝑢(𝑡)

⎤
⎥⎥
⎦

+ 𝑏6
⎞⎟⎟⎟
⎠

+ 𝑏5
⎞⎟⎟⎟
⎠

+ 𝑏4 (6.3e)

Training data is coherently split into a training and a validation set. Early stopping is
engaged if the validation loss cannot be improved for a given number of solver iterations,
accounting for high-variance loss functions. Furthermore, the user interface allows for a
manual training stop, and a maximum number of overall iterations is defined, too. Training
is accelerated using a multistep learning rate scheduler. To ensure appropriate gradients
and to use the model’s relatively few parameters, Disc-Opt is used instead of Opt-Disc.

A model ensemble with 10 submodels is applied to reduce outliers and decrease output
variance. It also improves the repeatability of the experiments. Output is composed using
the mean function.

The data is directly applied for initial hidden state estimation. Augmented states are
initialized as zero. As a result of the one-step-ahead prediction setting, augmented states
do not develop a dynamic over time.

MSE is applied as the main loss function. The evaluation metric is RMSE. Neither a
stability penalty function nor a DAE penalty function is utilized.

6.2 Model Configuration 113

6.2.3 Hybrid Model Configuration

According to [Sj95], three types of models can be distinguished in system identification
(quoted literally):

• White-Box Models: This is the case when a model is perfectly known; it has
been possible to construct it entirely from prior knowledge and physical insight.

• Gray-Box Models: This is the case when some physical insight is available but
several parameters remain to be determined from observed data. It is useful to
consider two subcases:

→ Physical Modeling: A model structure can be built on physical grounds,
which has a certain number of parameters to be estimated from data. This could,
e.g., be a state-space model of given order and structure.

→ Semi-physical Modeling: Physical insight is used to suggest certain nonlin-
ear combinations of measured data signal. These new signals are then subjected
to model structures of black box character.

• Black-Box: No physical insight is available or used but the chosen model struc-
ture belongs to families that are known to have good flexibility and have been
“successful in the past”.

Using this definition, the physical robot model explained in chapter 4 is a gray-box physical
model, as its parameters are derived from data. The classification of the data-based model
depends on the application. Regarding the CTS and the EMPS benchmark, the NN’s ODE
structure itself is related to the expected physical models. Physical insight is used for the
choice of the input and output signals. Therefore, it can be classified as a gray-box semi-
physical model. Nevertheless, the continuous-time NN is a very flexible structure. As
explained in section 5.3.2, the feed-forward robot benchmark is not expected to be a ODE
structure. Regarding the robot benchmark, the data-based model can be classified as a
black-box model, using a ODE structure which contradicts the expected physical model.

This work defines hybrid models as models which combine different submodel types. An-
other formulation is that hybrid models combine expert knowledge with data-driven meth-
ods, inserting different degrees of physical knowledge. For example, a gray-box physical
model and a black-box model are combined in the robot case.

As a further distinction, hybrid models can be separated into three block structures. Note
that all the following structures are capable of a multi-output, multi-model, or recursive
formulation as discussed in section 3.5.5. Furthermore, all structures are capable of model
ensembles, see section 3.4.2. In both cases, a submodel of the hybrid model can contain
several layers of subsequent submodels. Finally, for advanced readers, an excellent intro-

114 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

duction to several structures of nonlinear, block-oriented models is given in [ST17]. A
discussion of parallel, serial, and submodel structures is presented in the following.

• Parallel structure. The structure is depicted in Fig. 6.6. The physical and data-
based models are configured in parallel, receiving the same input 𝑢(𝑡), combined at
the output 𝑦(𝑡). Full universal function approximation capabilities are given using
a sufficiently flexible data-based model. Any NN structure with at least one hidden
layer and a nonlinear activation function fulfills this requirement [Ha19; ST98]. No
parameters are shared. Consequently, full independence of both models can be
acquired, depending on the mode. Both models can be designed independently in
the development process, possibly using different software packages. For example,
the robot’s physical inverse model parameters are identified in MATLAB using a
global optimization toolbox. In contrast, the data-based model is written in Python
using the PyTorch library. For software developers, this modularity is a major
advantage. Validation and testing are facilitated as both models share identical
input and output definitions. Two training modes can be distinguished.

→ In a surrogate mode, the data-based model is trained to predict the measured
output 𝑦(𝑡). Full independence of the data-based and physical model is gained.

→ In an error correction mode, the data-based model is trained to reduce the
remaining prediction error of the physical model, 𝑦(𝑡) − 𝑦𝑝ℎ𝑦𝑠(𝑡). Error correction
mode requires a sequential software development strategy. The physical model is
a prerequisite for training the data-based model. Furthermore, the error signal
𝑦(𝑡) − 𝑦𝑝ℎ𝑦𝑠(𝑡) can be more complicated to predict than the output signal 𝑦(𝑡), as it
contains additional model errors. The amplitude of 𝑦(𝑡)−𝑦𝑝ℎ𝑦𝑠(𝑡) is typically smaller
than 𝑦(𝑡), and thus data normalization is required. Nevertheless, the error correction
mode’s advantage is obtaining an even better hybrid model performance. Errors in
the physical model can be diminished using the universal function approximation.

Furthermore, a parallel structure extends safety features. For example, the physical
model extrapolation is often explainable, based on first principles. On the other
hand, a safe extrapolation is cumbersome to guarantee in the data-based model.
In the parallel structure, extrapolation of the data-based model can be explicitly
quantified by comparing both models. Furthermore, the contribution of uncertain
extrapolation can be reduced. Therefore, the parallel structure in a surrogate mode
is recommended and applied.

• Serial structure. The serial structure is pictured in Fig. 6.7. An expert model
computes the input for a data-based model or vice versa. The parameters and
structure of both models are not shared. Designing the physical model downstream

6.2 Model Configuration 115

Physical Model

Data Based Model

𝑢(𝑡) 𝑦(𝑡)

Figure 6.6: Hybrid model in parallel structure.

often increases the model safety concerning extrapolation so that all outputs can
be explicitly checked and limited by the developer. The expense of development
and validation depends on the intermediate state 𝑧(𝑡) definition and whether it is
human-interpretable. On the one hand, it is often a requirement for physical models
to utilize human-interpretable inputs. Interpretable inputs enable independent de-
velopment and validation of both models. On the other hand, human-interpretable
states can create an information bottleneck, making universal function approxima-
tion capabilities cumbersome. The universal function approximation of the data-
based submodel cannot guarantee the universal function approximation capabilities
of the hybrid model. The internal estimations of the physical model can restrict the
representation capabilities. For example, suppose a dominant physical effect is not
modeled, and the required information is not included in the intermediate state 𝑧(𝑡).
In that case, the hybrid model cannot represent the impact of this physical effect.
As another example, assume the physical model is downstream, and its output range
and change rate are limited. This case prohibits universal function approximation
capabilities.

Physical Model Data-based Model
𝑢(𝑡) 𝑧(𝑡) 𝑦(𝑡)

Data-based Model Physical Model
𝑢(𝑡) 𝑧∗(𝑡) 𝑦(𝑡)

Figure 6.7: Hybrid model in serial structure. Above: Physical first, then data-based
model. Below: Data-based first, then physical model.

• Submodel structure. This structure is presented in Fig. 6.8. The data-based
model is a submodel and is embedded in a larger, physical model. The structure of
both models is directly coupled. For example, the data-based model can represent
a friction model embedded in a larger dynamic process model. As another example,
the data-based model can be applied to perform object detection and passes this
information to a controller for autonomous driving. Universal function approxima-
tion capabilities are not given per se, as the universal data-based model is strictly

116 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

embedded. Independent validation and testing are not possible in general. Valida-
tion of the data-based model requires internal knowledge (or even measurements)
of internal states. Independent software development is cumbersome. Training of
the submodel contains the risk of unintentional modeling. For example, assume the
data-based model is contemplated to model the friction of a dynamical process and
not modeled elastic behavior leads to significant deviations from the model predic-
tions. If the loss function only accounts for the overall model prediction accuracy,
it will encourage the data-based model, intended for friction, to model elasticity.
Additionally, it is difficult to predict how the failure of the submodel will influence
overall model performance. This structure is only recommended if the data-based
model can be trained and validated independently of its embedding.

Regarding real world applications, many algorithms are “hidden” submodel struc-
tures. For example, data acquisition, command execution, database access, web in-
terface, and software error management are typically human-developed, pure white-
box algorithms. The model scope is decisive. It depends on the definition of the
input and output signals whether the superordinate submodel structure is explicitly
included (“visible”) or excluded (“hidden”).

The opposite that the physical model is a submodel of the data-based model is rare.
This infusion of expert knowledge can strengthen the training process regarding
training time, memory and parameter efficiency, or data efficiency. Nevertheless,
this case is challenging for analytical development and validation. The impact of
the embedded physical model is hard to predict. Additionally, the physical model
requires additional development effort.

Physical Model

Data Based Model

𝑢(𝑡) 𝑦(𝑡)

Figure 6.8: Hybrid submodel structure.

The implemented hybrid structure is defined as follows. A parallel structure is chosen, as
it enables universal function approximation capabilities and direct comparison of the data-
based and physical model. The data-based model is the continuous-time model defined
in section 6.2.2 and the physical model is applied as derived in section 4.1. A surrogate
mode rather than an error-correction mode is utilized. Both models contribute to the
feed-forward torque 𝜏𝐹𝐹(𝑡) as defined by a blending parameter 𝛾𝐵 ∈ ℝ, with 0 ≤ 𝛾𝐵 ≤ 1.
In the case of 𝛾𝐵 = 1, the hybrid model reduces to the flatness-based control. In the case
of 𝛾𝐵 = 0, it simplifies to the data-based feed-forward control. An equal contribution with

6.3 Experimental Results 117

Flatness-based
feed-forward Model

𝛾𝐵

State-Space
Runge-Kutta

Neural Network Committee
1 − 𝛾𝐵

𝑞𝑅(𝑡), ̇𝑞𝑅(𝑡), ̈𝑞𝑅(𝑡),
⃛𝑞𝑅(𝑡), ⃜𝑞𝑅(𝑡)

𝜏𝐹𝐵−𝐹𝐹(𝑡)

𝜏𝐷𝐵−𝐹𝐹(𝑡)

𝜏𝐹𝐹(𝑡)

Figure 6.9: Implemented hybrid model in parallel structure.

𝛾𝐵 = 0.5 is applied in the succeeding experiments. The implemented hybrid structure is
presented in Fig. 6.9.

6.3 Experimental Results

6.3.1 Comparison of Robot Model Accuracy

The advanced physical model is applied to the benchmark. Fig. 6.10 shows the motor
torque from the feed-forward control, compared to the measured torque. The measured
torque is given in high-resolution measurement (gray line) and as a low-pass filtered signal
(black line). The filter is a butterworth filter with order 4 and cut-off-frequency of 5 Hz
[MA21]. Especially during stand-still or low-velocity periods of the trajectory (less than
≈ 7.5 s and more than ≈ 52.5 s) model errors are visible. As the robot is not or only
slowly moving, these do not lead to significant position errors. From an application point
of view, stand-still or low-velocity periods are seldom relevant for dynamic path accuracy.

Fig. 6.11 presents the final model accuracy on the test data of the data-based model. The
torque prediction is, in most cases, smaller than the high-frequency bandwidth. Even the
standstill phases of the robot, although not required for robot control, can be predicted
accurately. The torque prediction accuracy of the hybrid surrogate model is depicted in
Fig. 6.12. The performance is in between the pure physical and the pure data-based model,
see Fig. 6.10 and Fig. 6.11 respectively.

All in all, the data-based model delivers the best torque prediction accuracy on test data.
This indicates that overfitting of the model to the training data is limited to a reasonable
level and the underlying continuous-time dynamics are accurately identified. The perfor-
mance of the data-based model is followed by the hybrid model, and the lowest torque
prediction accuracy of the three models is generated by the physical model. Yet, the
improvements of the physical model, comparing [WGR20] and this thesis, are significant.

118 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2

0

2

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2

0

2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 6.10: Performance of the linear baseline on the benchmark test data. Physical
model parameters have been adapted to independent experiments. The
torque estimation is based on the actual robot position. Red: Flatness-
based model prediction. Gray: Motor torque measurements. Black: Fil-
tered motor torque measurements.

6.3 Experimental Results 119

0 5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5
M

ot
or

To
rq

ue
𝜏 1

(N
m

)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 6.11: Performance of the continuous-time advanced RKNN model on the bench-
mark test data. Trained on many data points. Red: Model prediction.
Gray: Motor torque measurements. Black: Filtered motor torque measure-
ments.

120 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

2

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 6.12: Performance of the hybrid model on the benchmark test data. The data-
based model is trained on many data points. Red: Model prediction. Gray:
Motor torque measurements. Black: Filtered motor torque measurements.

6.3 Experimental Results 121

6.3.2 Comparison of Robot Path Accuracy

The robot feed-forward control task is to improve the robot path accuracy. Figures 6.14,
6.13 and 6.15 present the results on the test data for the physical, data-based, and hybrid
models respectively. On the left side, the reference and actual robot position is displayed,
and on the right side, the absolute position error is presented. On all joints and in most
parts of the presented trajectory, the final path accuracy, in terms of joint accuracy, is less
than ±0.1 deg. In direct comparison, figures 6.16 and 6.17 present the absolute position
and absolute position error of all three methods in the same figure respectively.

The results indicate a high similarity between the three methods regarding path accuracy.
The main difference occurs on joint 2, possibly due to the HWC modeling. The exper-
iments further indicate that the path deviation is systematic and deterministic. Given
the difference of the methods in the model identification, section 6.3.1, the feed-forward
method is an unlikely source of this similarity. It follows that the remaining path accu-
racy deviation is a consequence of other components in the robot control architecture.
This suggests, that the closed-loop position error cannot be improved by models, e.g., the
source of error is only a small fraction in the feed-forward model with a large fraction in
the feedback structure, or it depends on other data acquisition effects.

All in all, no significant difference in path accuracy using the data-based, physical, and
hybrid model can be observed. Given the different torque prediction accuracies in sec-
tion 6.3.1, this outcome indicates that all three model torque predictions are sufficiently
precise to be no significant source of path deviations. The remaining path deviations are
out of scope of this thesis.

122 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 20 40 60
−50

0

50

Po
sit

io
n

𝑞 1
(d

eg
)

0 20 40 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 1
(d

eg
)

0 20 40 60

0
10
20
30

Po
sit

io
n

𝑞 2
(d

eg
)

0 20 40 60

0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 2
(d

eg
)

0 20 40 60

−50

0

Po
sit

io
n

𝑞 3
(d

eg
)

0 20 40 60

−0.1

0

0.1
Po

sit
io

n
Er

ro
r

Δ
𝑞 3

(d
eg

)

0 20 40 60
−50

0
50

100

Po
sit

io
n

𝑞 4
(d

eg
)

0 20 40 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 4
(d

eg
)

0 20 40 60
−40
−20

0
20
40

Po
sit

io
n

𝑞 5
(d

eg
)

0 20 40 60

−0.05

0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 5
(d

eg
)

0 20 40 60
−50

0
50

100

Time (s)

Po
sit

io
n

𝑞 6
(d

eg
)

0 20 40 60

−0.1

0

0.1

Time (s)

Po
sit

io
n

Er
ro

r
Δ

𝑞 6
(d

eg
)

Figure 6.13: Robot accuracy using the continuous-time State-Space Runge-Kutta. It is
trained on the 5 s to 45 s of the public training data. Each row represents
one joint. Left: Reference position (black line) and measured position (red
dotted line). Right: position error of each joint (blue line).

6.3 Experimental Results 123

0 20 40 60
−50

0

50
Po

sit
io

n
𝑞 1

(d
eg

)

0 20 40 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 1
(d

eg
)

0 20 40 60

0
10
20
30

Po
sit

io
n

𝑞 2
(d

eg
)

0 20 40 60
−0.1

−0.05

0

Po
sit

io
n

Er
ro

r
Δ

𝑞 2
(d

eg
)

0 20 40 60

−50

0

Po
sit

io
n

𝑞 3
(d

eg
)

0 20 40 60

−0.1

0

0.1
Po

sit
io

n
Er

ro
r

Δ
𝑞 3

(d
eg

)

0 20 40 60
−50

0
50

100

Po
sit

io
n

𝑞 4
(d

eg
)

0 20 40 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 4
(d

eg
)

0 20 40 60
−40
−20

0
20
40

Po
sit

io
n

𝑞 5
(d

eg
)

0 20 40 60

−0.05

0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 5
(d

eg
)

0 20 40 60
−50

0
50

100

Time (s)

Po
sit

io
n

𝑞 6
(d

eg
)

0 20 40 60
−0.1

0

0.1

Time (s)

Po
sit

io
n

Er
ro

r
Δ

𝑞 6
(d

eg
)

Figure 6.14: Robot accuracy using the flatness-based feed-forward control. Each row
represents one joint. Left: Reference position (black line) and measured
position (red dotted line). Right: position error of each joint (blue line).

124 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 20 40 60
−50

0

50

Po
sit

io
n

𝑞 1
(d

eg
)

0 20 40 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 1
(d

eg
)

0 20 40 60

0
10
20
30

Po
sit

io
n

𝑞 2
(d

eg
)

0 20 40 60
−0.05

0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 2
(d

eg
)

0 20 40 60

−50

0

Po
sit

io
n

𝑞 3
(d

eg
)

0 20 40 60

−0.1

0

0.1
Po

sit
io

n
Er

ro
r

Δ
𝑞 3

(d
eg

)

0 20 40 60
−50

0
50

100

Po
sit

io
n

𝑞 4
(d

eg
)

0 20 40 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 4
(d

eg
)

0 20 40 60
−40
−20

0
20
40

Po
sit

io
n

𝑞 5
(d

eg
)

0 20 40 60

−0.05

0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 5
(d

eg
)

0 20 40 60
−50

0
50

100

Time (s)

Po
sit

io
n

𝑞 6
(d

eg
)

0 20 40 60
−0.1

0

0.1

Time (s)

Po
sit

io
n

Er
ro

r
Δ

𝑞 6
(d

eg
)

Figure 6.15: Robot accuracy using the hybrid model. The data-based submodel is
trained on the 5 s to 45 s of the public training data. Each row repre-
sents one joint. Left: Reference position (black line) and measured position
(red dotted line). Right: position error of each joint (blue line).

6.3 Experimental Results 125

0 5 10 15 20 25 30 35 40 45 50 55 60
−50

0

50
Po

sit
io

n
𝑞 1

(d
eg

)

0 5 10 15 20 25 30 35 40 45 50 55 60

0
10
20
30

Po
sit

io
n

𝑞 2
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−50

0

Po
sit

io
n

𝑞 3
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−50

0
50

100

Po
sit

io
n

𝑞 4
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−40
−20

0
20
40

Po
sit

io
n

𝑞 5
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−50

0
50

100

Time (s)

Po
sit

io
n

𝑞 6
(d

eg
)

Figure 6.16: Robot accuracy comparison of the physical, data-based, and hybrid model.
The data-based submodel is trained on the 5 s to 45 s of the public training
data. Each row represents one joint. Red: physical model, green: data-
based model, blue: hybrid model.

126 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 1
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.1

−0.05
0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 2
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 3
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−0.1

0

0.1

Po
sit

io
n

Er
ro

r
Δ

𝑞 4
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−0.05

0

0.05

Po
sit

io
n

Er
ro

r
Δ

𝑞 5
(d

eg
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−0.1

0

0.1

Time (s)

Po
sit

io
n

Er
ro

r
Δ

𝑞 6
(d

eg
)

Figure 6.17: Robot accuracy error comparison of the physical, data-based, and hybrid
model. The data-based submodel is trained on the 5 s to 45 s of the public
training data. Each row represents one joint. Red: physical model, green:
data-based model, blue: hybrid model.

6.3 Experimental Results 127

6.3.3 Comparison of Robot Model Safety

This work defines robot safety as the risk of damaging the industrial robot itself, the
surrounding inventory, or the injury of persons. Most safety issues are solved with addi-
tional measures, for example, the risk of injury of persons is excluded using a fence and
locking the robot cell door when the robot is energized. The robot cell is depicted in
Fig. 6.18. Robot cell management is exclusively handled by safety-certified Programmable
Logic Controller (PLC).

Damaging surroundings are ruled out by the kinematic pose limitations of the robot.
Damage to the robot is, in the last instance, handled by an error monitoring module,
which can trigger an emergency stop in critical cases. This error monitoring module
permanently checks for

• joint pose, velocity, torque, and torque derivative limitations,

• redundancy checks, for example, using the motor resolver and SE,

• redundancy of modules, for example, estimation of the feed-forward torque using
different models,

• smoothness and derivatives of all sensor signals, feed-forward channels, and reference
trajectory,

• error messages of all submodules,

• external client connection (OPC-UA), manual movement interface, and state ma-
chines of all joints,

• and messages from safety PLC.

This list amounts to 37 error cases for each joint and 222 in total. The cases account only
for errors that trigger an emergency stop, not warnings. Operation technology warnings
and errors are additional. The error monitoring is designed to avoid false negatives strictly.
It is not prioritized for a detailed root-cause analysis. For instance, a model error would
likely trigger several error messages, such as model redundancy check fail, torque derivative
overstep, and lack of feed-forward smoothness.

However, it is desired that these hard emergency stop limits are not enabled in the first
case. Consequently, robot model safety is discussed in the following, defined as the risk
of damaging the robot and its surroundings or injure of persons, explicitly caused by
the generalization capabilities of the feed-forward control. The following discussion is
about preventing critical model predictions in the first place without triggering the error
monitoring module.

From an engineering perspective, the model safety of the physical feed-forward control

128 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

Figure 6.18: Picture of the robot machining cell.

is beneficial, as the model is completely explainable. Caution is required for handling
non-flat effects, such as Coulomb friction of backlash. The data-based module, as trained
NN is critical. Recall the very good performance of the tapped-delay MLP network on
the training data and the critical performance on the test data in Fig. 5.11 and Fig. 5.12.
Applying such a data-based module would very likely trigger error monitoring as the
model is overfitted to the training data and generalizes poorly. A proper training pipeline
validation and test are essential for data-based models.

Additionally, for hybrid models, the contributions of the data-based module and the phys-
ical module can be explicitly quantified using a parallel hybrid model architecture. Using
the assumption that the physical module is quantifiable entirely, the less the overall hybrid
output is contributed by the data-based module, the better the model safety assessment.

However, the data-based module can significantly reduce the required engineering effort to
achieve the presented accuracy. A very similar model architecture was applied in chapter 5
on two completely different real world applications, the CTS and the EMPS benchmark,
achieving results comparable to literature beyond NN. In conclusion, given data of similar
industrial robots, the NN can easily adapt to other model variants.

In combination with that argument, the less the data-based module contributes to the
prediction, the better the safety assessment. It can be desirable to constrain the data-
based model output. For discrete-time models, only an output constraint can be applied.
Using continuous-time NN, the dynamics of the hidden state and its derivative can be
limited directly in a continuously differentiable manner

𝑑𝑥(𝑡)
𝑑𝑡

= 𝜆𝐵tanh(𝑓
𝑁𝑁

(𝑥(𝑡), 𝑢(𝑡))) (6.4)

6.3 Experimental Results 129

with a proper boundary vector 𝜆𝐵 ∈ ℝ𝑁𝑋 .

All in all, the physical model offers the best model safety as it is entirely explainable. The
hybrid model encounters a reduced safety evaluation, depending on the fraction of torque
contribution of the data-based model. The data-based model is not completely physically
explainable, therefore it requires additional caution. However, the torque output range of
the data-based model can be explicitly limited using (6.4). In addition, as presented in
section 5.3, continuous-time NN can better generalize on robot identification tasks than
discrete-time NN, as the continuous-time model is closer to the underlying continuous-time
dynamics.

As explained in this section, all three models are embedded in a complete safety concept.
Therefore, even if the models would cause critical predictions, the impact of model pre-
dictions will be caught and limited by the downstream safety concept. As a result, all
three model types are safe to operate. Yet, it is important to discuss which model type
can potentially produce critical predictions in the first place.

130 Chapter 6: Comparison of Physical, Data-based, and Hybrid Models

131

7 Summary and Outlook

A custom robot controller enabled the implementation of sophisticated feedback and feed-
forward control. To engage full access to the robot control, from the low-level motor
control and sensor integration to high-level path planning and simulation, a new robot
control based on components by B&R Automation has been developed from scratch, see
appendix B.

To account for gearbox deformations in the feedback control, high accuracy Secondary
Encoders have been applied and integrated into the control loop. Subsequently, the robot
path accuracy could be improved significantly using this controller. For additional material
on this topic, please refer to the publication [WGR20] and student thesis [Be19; Di19;
He19].

A decent feed-forward control improves path accuracy in two ways: First, it can com-
pensate for deterministic physical path deviations. Second, it enables the developers to
specialize and focus the feedback control on the few path deviations remaining. Special-
ized feedback control can tackle a few path errors much better than a general-purpose
feedback controller.

Several model choices for the feed-forward control are possible. This work develops not
only different model types but also applies different development methodologies. The
physical model is developed in an iterative methodology, whereas the data-based model
utilized a theoretical, general-purpose approach.

On the one hand, the physical model is designed with an iterative approach. A nonlinear
model is developed based on physical knowledge and evaluated in simulation. Conclusions
from simulations refine the model. The next iteration is tested on the real robot. Again,
conclusions are made, resulting in another model improvement. This iterative approach
uses the full modularity and explainability of the model. It is an analytical approach,
bringing the simulated model and the real world closer together.

On the other hand, the data-based model starts with theory and a general understanding
of the model class; only in the last stage is it applied to the robot. For example, the
robot benchmark is utilized to demonstrate memory efficiency. Nevertheless, this could
have been almost any continuous-time benchmark. Two main advances, state derivative
normalization, and Input to State Stability stability are evaluated on the Cascaded Tank

132 Chapter 7: Summary and Outlook

System and Electro Mechanical Positioning System data, not on the robot. This method-
ology highlights one of the main benefits of data-based models: They are highly flexible,
enabling fast adoption across different physical domains. This methodology is reflected
in the development of the continuous-time NN model, as a general model, based on a
literature review and applied to different domains. General recommendations for system
identification tasks with continuous-time Neural Network are given in section 3.2 to sec-
tion 3.5. This work might facilitate the knowledge of engineers and researchers new to the
field of system identification with Neural Network. However, this methodology is quite in
contrast to the iterative method applied for the physical robot model.

A model for flexible joints in a novel, continuously differentiable formulation has been
derived. The continuous differentiability enables the model to integrate into downstream
applications: Fast model execution using Automatic Differentiation tools by generating
symbolic and optimized code representations E.3. Automatic Differentiation tools are at
the core of many gradient-based algorithms; it facilitates global optimization for parameter
identification. Furthermore, the flexible joint model enables advanced simulation, see
section C.1, which can analyze high-order oscillations of the gearboxes.

Hydraulic Weight Counterbalance modeling is rare in the robotic’s community. However,
experiments in the second iteration of the robot presented severe deviations on the pre-
dicted and measured torques for joint 2. With the Hydraulic Weight Counterbalance
model, the robot model accuracy could be significantly improved.

Experiments of the second iteration of the robot indicated friction parameter errors. There-
fore, the nonlinear friction model is extended to increase its flexibility. Global optimization
has been applied to design friction parameter experiments in the first step. In the second
step, the friction has been optimized parameters using these measurements.

Finally, developing a flatness-based feed-forward control enables the advanced model to
improve the robot path accuracy. This incorporates the complete, nonlinear model as
presented above. Symbolic code representation is enabled by a continuously differentiable
formulation of all terms and Automatic Differentiation tools.

The properties of continuous-time Neural Network for system identification have been
analyzed and discussed. This discussion includes the Ordinary Differential Equations
configuration required for continuous-time models, the Neural Network configuration, and
the training pipeline configuration. Recommendations and design choices are given for
engineers and researchers new to the field of system identification with Neural Network.
The final performance of the Neural Network model applied to the robot control task
is based primarily on these recommendations; the continuous-time model has not been
designed in several iterations.

Data normalization is a key ingredient for machine learning algorithms. However, normal-

133

ization is applied exclusively to the discrete-time Neural Network properties in literature.
It was shown that for continuous-time models, a normalization of the time dimension,
state, and state derivative is possible in general. Concrete methods are presented to nor-
malize a given application in the time, state, and state derivative domain. The method
has been compared to system identification methods beyond Neural Network and achieved
some of the best results reported yet.

Using constraint optimization, and based on [De11b; WDR21], a method to guarantee
Input to State Stability stability has been developed. Especially for industrial applications,
it is important to prove that all predicted states remain bounded in every potential use case
and under all possible circumstances. The main improvements compared to [De11b] are
threefold: The proof of the method has been corrected. A weak stability method has been
developed, capturing a much broader model class. It applies to a wide range of continuous-
time Neural Network with linear and any nonlinear terms. Furthermore, to integrate into
modern deep learning frameworks, such as TensorFlow or PyTorch, both the Input to State
Stability and the weak stability method have been enhanced with penalty and barrier
functions. This way, constraint optimization problems can be cast into unconstrained
optimization frameworks like TensorFlow or PyTorch. The performance results have been
shown on the Electro Mechanical Positioning System benchmark.

The memory efficiency of continuous-time Neural Network has been demonstrated. Many
sources already recognized this property in the system identification community. In the
machine learning community, recognition improved over the last years, for example, in
[Ch18; He16; Ki22]. Memory efficiency is a core advantage of continuous-time Neural
Network compared to discrete-time Neural Network. This property was demonstrated
in real experiments on the robot, directly comparing discrete-time and continuous-time
models. It was further analyzed on the model parameter level.

Hybrid models, combining data-based and expert models, have been discussed. Different
structures have been analyzed with their respective advantages and disadvantages. A
particular focus has been given to model safety. Hybrid models can explicitly trade off
exceptional data-based prediction accuracy for model safety.

This work addressed two communities, robotics and machine learning. Two possible future
research directions are discussed.

The continuously differentiable flexible joint model enables Automatic Differentiation
tools, which are prerequisites for many gradient-based algorithms. Automatic Differen-
tiation tools have been used to derive high-performance code, improve the feed-forward
control’s real-time capabilities, and facilitate global parameter identification. However,
the differentiability of the model combined with Automatic Differentiation tools supports
integration into Model Predictive Control using flexible joint models. Model Predictive

134 Chapter 7: Summary and Outlook

Control defines a control task as an optimization problem, explicitly including a model,
constraints on actuation, state, and other (nonlinear) considerations. It optimizes the ac-
tuation to a reference trajectory, incorporating future events in advance. Future research
might address integrating a continuously-differentiable flexible joint model within a Model
Predictive Control.

The robot software is deployed on the B&R Automation real-time system. High-level tasks,
such as parameter identification, are implemented via an Open Platform Communications
Unified Architecture server connection to external, non-real-time clients. However, to
better integrate the research results into the robot community, it is worth considering
using Robot Operating System as middleware. At the time of publication, no robot control
hardware in this electrical power class with native Robot Operating System support was
available. However, those components could be integrated in the future, making the
results comparable and openly transferable to the robotics community. Even without
Robot Operating System native hardware, a server-client connection via Open Platform
Communications Unified Architecture or B&R Powerlink is possible. In this case, the
high-level software components would be implemented in Robot Operating System and
sent to the real-time system. Especially regarding the flexible parameter identification
procedure, this is worth considering.

Regarding machine learning, not all applications can be solved by prediction only. Some
require control. In this work, a model was trained as an inverse controller, achieving ex-
ceptional path accuracy results. However, not all applications can be solved by inverting
the dynamic system. For advanced optimization applications, approaches such as Model
Predictive Control and Reinforcement Learning already show promising results. It would
be interesting to follow the path of [Uç19; Uç20; WVR20a] and integrate continuous-
time Neural Network models with control applications. In [Uç19; Uç20], the combination
of Model Predictive Control and a continuous-time Neural Network is investigated. In
[WVR20a], a Runge-Kutta Neural Networks model is applied in a model-based Reinforce-
ment Learning setting training a second network intended for robot control.

Inspired by [Ch18; He16; Ki22; Sm20], an application of continuous-time Neural Network
to other, non-technical domains is very promising. [He16], the ResNet architecture, is
applied to image classification and does not mention dynamical systems or even Ordi-
nary Differential Equations configurations once. The mechanisms applied are called skip
connections. Nevertheless, skip connections are mathematical equivalent to an Euler dis-
cretization method [HR18]. [Ch18], Neural Ordinary Differential Equations, gained much
attention in the machine learning community. Nevertheless, it does not mention dynamical
systems at all. [Sm20], the winning concept of the M4 competition, achieves outstanding
results on various time series forecasting applications. Dynamic systems are not men-
tioned. It does not directly apply an explicit Ordinary Differential Equations scheme. It

135

refers to a hybrid model consisting of Long Short Term Memory network and an exponen-
tial smoothing method. Exponential smoothing methods are mathematically equivalent to
continuous-time low-pass filters of first-order. Therefore, the approach in [Sm20] is similar
to a continuous-time state-space Neural Network. These examples illustrate the effective-
ness of the continuous-time Neural Network, even in other domains. It will be interesting
what other exciting applications will emerge in the future with continuous-time Neural
Network.

136 Chapter 7: Summary and Outlook

137

Appendix

A Proof of Stability Theorem

This proof is presented in [WDR21]. It is similar to the proof presented in [De11b], with the
difference that an augmented model input is defined. This eliminates the requirement of a
coordinate transformation in [De11b]. For details of the contributions, see appendix 5.4.

The idea of the proof is to find an estimation for (5.44), such that Linear Matrix Inequalities
(LMI) only depend on the network weights and fixed parameters. First, the terms 𝑋 and
𝑈 are estimated. Then, 𝐿 is eliminated. For the sake of simplicity, 𝑋 = 𝑊 𝑙

𝑥 + 𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥

and 𝑈 = 𝑊 𝑙
𝑢 +𝑊 𝑜

𝑎 𝐿𝑊 ℎ
𝑢 is set to define 𝑓

NN
(̂𝑥, �̃�) = 𝑋𝑥+𝑈�̃�. The left-hand side of (5.44)

can be estimated by

⟨𝑥, 𝑓
NN

(̂𝑥, �̃�)⟩𝑃1
+ ℎ𝑚⟨𝑓

NN
(̂𝑥, �̃�), 𝑓

NN
(̂𝑥, �̃�)⟩𝑃1

(1)

= 𝑥T𝑃1 (𝑋𝑥 + 𝑈�̃�) + ℎ𝑚 ((𝑋𝑥 + 𝑈�̃�)T 𝑃1 (𝑋𝑥 + 𝑈�̃�)) (2)

= 𝑥T (𝑃1𝑋 + ℎ𝑚𝑋T𝑃1𝑋) 𝑥 + 𝑥T(𝑃1𝑈 + 2ℎ𝑚𝑋T𝑃1𝑈)�̃� (3)

+ �̃�T(ℎ𝑚𝑈T𝑃1𝑈)�̃�

with a positive definite matrix 𝑃1 ∈ ℝ𝑁𝑋×𝑁𝑋 . To estimate the term 𝑥T(𝑃1𝑈 +
2ℎ𝑚𝑋T𝑃1𝑈)�̃� general relation is applied

2𝑧T
1 𝑧2 ≤ 𝑧T

1 𝑃2𝑧1 + 𝑧T
2 𝑃 −1

2 𝑧2, (4)

which is valid for any vectors 𝑧1, 𝑧2 ∈ ℝ𝑁𝑋 and for any positive definite matrix 𝑃2 > 0,
𝑃2 ∈ ℝ𝑁𝑋×𝑁𝑋 [HJ12].

138 Appendix

𝑥T(𝑃1𝑈 + 2ℎ𝑚𝑋T𝑃1𝑈)�̃� (5)

= 2(1
2

𝑥)T (𝑃1𝑈�̃�) + 2(𝑥)T (ℎ𝑚𝑋T𝑃1𝑈�̃�) (6)

≤ (1
2

𝑥)T𝑃2(1
2

𝑥) + (𝑃1𝑈�̃�)T 𝑃 −1
2 (𝑃1𝑈�̃�) (7)

+ 𝑥T𝑃2𝑥 + (ℎ𝑚𝑋T𝑃1𝑈�̃�)T 𝑃 −1
2 (ℎ𝑚𝑋T𝑃1𝑈�̃�)

= 5
4

𝑥T𝑃2𝑥 (8)

+ �̃�T (𝑈T𝑃 T
1 ⋅ (𝑃 −1

2 + ℎ2𝑚2𝑋𝑃 −1
2 𝑋T) 𝑃1𝑈) �̃�.

Substituting (9) in (4) leads to

⟨𝑥, 𝑓
NN

(̂𝑥, �̃�)⟩𝑃1
+ ℎ𝑚⟨𝑓

NN
(̂𝑥, �̃�), 𝑓

NN
(̂𝑥, �̃�)⟩𝑃1

(9)

≤ 𝑥T (5
4

𝑃2 + 𝑃1𝑋 + ℎ𝑚𝑋T𝑃1𝑋) 𝑥 (10)

+ �̃�T (𝑈T (ℎ𝑚𝑃1 + 𝑃 T
1 𝑃 −1

2 𝑃1

+ ℎ2𝑚2𝑃 T
1 𝑋𝑃 −1

2 𝑋T𝑃1) 𝑈) �̃�.

< 𝛾⟨�̃�, �̃�⟩. (11)

Equation (11) is fulfilled and thereby Theorem 5.2.2 (proof see [De11b; DR14]) in two
steps. First, it is shown that all terms in (11) associated with �̃� are lower bounded by a
function 𝛾⟨�̃�, �̃�⟩ ≥ 0. Second, it must be ensured that the terms associated with 𝑥 are
strictly negative. The positive function for any input �̃� and any state 𝑥 is given by

𝛾⟨�̃�, �̃�⟩ = min
𝑥,�̃�

‖(𝑈(𝑥, �̃�))T (ℎ𝑚𝑃1 + 𝑃 T
1 𝑃 −1

2 𝑃1 (12)

+ ℎ2𝑚2𝑃 T
1 𝑋(𝑥, �̃�)𝑃 −1

2 (𝑋(𝑥, �̃�))T𝑃1) 𝑈(𝑥, �̃�)‖ ≥ 0.

Equation (12) always holds as the norm is by definition greater than or equal to zero. To
ensure that the terms in (11) associated with the state 𝑥 are strictly less than zero,

𝑍1 = 5
4

𝑃2 + 𝑃1𝑋 + ℎ𝑚𝑋T𝑃1𝑋. (13)

Re-substitution of 𝑋 and calculation leads to

A Proof of Stability Theorem 139

𝑋T𝑃1𝑋 = (𝑊 𝑙
𝑥 + 𝑊 𝑜

𝑎 𝐿𝑊 ℎ
𝑥)T𝑃1(𝑊 𝑙

𝑥 + 𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥) (14)

= 𝑊 𝑙
𝑥

T𝑃1𝑊 𝑙
𝑥 + 𝑊 𝑙

𝑥
T𝑃1𝑊 𝑜

𝑎 𝐿𝑊 ℎ
𝑥 (15)

+ (𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥)T𝑃1𝑊 𝑙
𝑥

+ (𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥)T𝑃1𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥 .

Next, 𝐿 is eliminated in two steps. It is ensured that ||𝐿|| ≤ 1 holds and the positive
definite term

𝑥T(𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥)T𝑃1𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥 𝑥 ≤ 𝑥T𝑄𝑥, (16)

𝑄 = ∣∣𝑊 𝑜
𝑎

T𝑃1𝑊 𝑜
𝑎 ∣∣ ∣∣𝑊 ℎ

𝑥 ∣∣2 𝐼. (17)

can be estimated. Using (17) in (16) leads to

𝑋T𝑃1𝑋 ≤ 𝑊 𝑙
𝑥

T𝑃1𝑊 𝑙
𝑥 + 𝑊 𝑙

𝑥
T𝑃1𝑊 𝑜

𝑎 𝐿𝑊 ℎ
𝑥 (18)

+ (𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥)T𝑃1𝑊 𝑙
𝑥 + 𝑄.

Substitution of (19) in (13) results in

𝑥T𝑍1𝑥 (19)

≤ 𝑥T (𝑃3 + 𝑃1𝑊 𝑙
𝑥 + 𝑃1𝑊 𝑜

𝑎 𝐿𝑊 ℎ
𝑥 (20)

+ ℎ𝑚 (𝑊 𝑙
𝑥

T𝑃1𝑊 𝑙
𝑥 + 𝑊 𝑙

𝑥
T𝑃1𝑊 𝑜

𝑎 𝐿𝑊 ℎ
𝑥

+ (𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥)T 𝑃1𝑊 𝑙
𝑥 + 𝑄)) 𝑥

= 𝑥T (𝑇1 + (ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥 (21)

+ ℎ𝑚 (𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥)T 𝑃1𝑊 𝑙
𝑥)) 𝑥

= 𝑥T𝑍2𝑥 (22)

with

𝑇1 = 𝑃3 + 𝑃1𝑊 𝑙
𝑥 + ℎ𝑚 (𝑊 𝑙

𝑥
T𝑃1𝑊 𝑙

𝑥 + 𝑄) . (23)

The approach in [HW02] is utilized to estimate the other terms independently of 𝐿. The
𝑖th row vector of matrix 𝑊 ℎ

𝑥 is defined as 𝑅𝑊ℎ
𝑖 and the 𝑖th column vector of matrix 𝑊 𝑜

𝑎

is defined as 𝐶𝑊𝑜
𝑖 . This results in

140 Appendix

𝑊 𝑜
𝑎 𝐿𝑊 ℎ

𝑥 =
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖 . (24)

Consequently, this leads to

𝑥T𝑍2𝑥 (25)

= 𝑥T (𝑇1 + (ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1

𝑁𝑁

∑
𝑖=1

𝑙𝑖𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖 (26)

+ ℎ𝑚 (
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖)
T

𝑃1𝑊 𝑙
𝑥
⎞⎟
⎠

𝑥

= 𝑥T (𝑇1 +
𝑁𝑁

∑
𝑖=1

𝑙𝑖 ((ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖 (27)

+ ℎ𝑚 (𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖)T 𝑃1𝑊 𝑙
𝑥)) 𝑥

= 𝑥T𝑍3𝑥. (28)

Introducing the weighting variables 𝜆, with ∑𝑁𝑁
𝑖=1 𝜆𝑖 = 1, 0 ≤ 𝜆𝑖 ≤ 1, ∀𝑖 ∈ {1, … , 𝑁𝑁},

reformulation of 𝑇1 results in

𝑇1 = (1 −
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝜆𝑖) 𝑇1 + (
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝜆𝑖) 𝑇1. (29)

Incorporating (29) into the sum leads to

𝑥T𝑍3𝑥 (30)

= 𝑥T (1 −
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝜆𝑖) 𝑇1𝑥 (31)

+
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝑥T((ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖

+ ℎ𝑚 (𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖)T 𝑃1𝑊 𝑙
𝑥 + 𝑇1𝜆𝑖)𝑥

= 𝑥T (1 −
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝜆𝑖) 𝑇1𝑥 +
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝑥T (𝑇2,𝑖 + 𝑇1𝜆𝑖) 𝑥 (32)

with

B Technical Robot Details 141

𝑇2,𝑖 = (ℎ𝑚𝑊 𝑙
𝑥

T + 𝐼) 𝑃1𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖 (33)

+ ℎ𝑚 (𝐶𝑊𝑜
𝑖 𝑅𝑊ℎ

𝑖)T 𝑃1𝑊 𝑙
𝑥.

By the definition of the weight variables 𝜆𝑖 and the fact that 0 ≤ 𝑙𝑖 ≤ 1 holds, it is ensured
that

(1 −
𝑁𝑁

∑
𝑖=1

𝑙𝑖𝜆𝑖) ≥ 0 (34)

holds, and the proof is completed.

B Technical Robot Details

B.1 Dimensions and Limits

The robot workspace is presented in Fig. 1 and Fig. 2. All lengths are given in mm and
angles are given in deg. Please note that Fig. 1 and Fig. 2 applies a different zero-pose
notation than the measurements. The angular difference is given by

q = [0, −90, 90, 0, 0, 0] deg. (35)

The position and velocity limits are presented in Tab. 1, using the measurement position
convention. As the velocity limits are all symmetrical, only the upper limits are presented,
as ̇𝑞𝑙𝑏,𝑛 = − ̇𝑞𝑢𝑏,𝑛 holds.

142 Appendix

Figure 1: KUKA KR300 R2500 ultra SE robot dimensions (top view) in mm and absolute
angular limits in deg. Different zero angle definitions. Copyright by [KU21].

Figure 2: KUKA KR300 R2500 ultra SE robot dimensions (side view) in mm and ab-
solute angular limits in deg. Different zero angle definitions. Copyright by
[KU21].

B Technical Robot Details 143

Table 1: Joint position and velocity limits. Velocity limits are symmetrical. Absolute
limits are caused by electrical and mechanical constraints [KU21]. In the exper-
iments, a reduced subset is applied.

Absolute Limits Applied Limits
𝑞𝑙𝑏 𝑞𝑢𝑏 ̇𝑞𝑢𝑏 𝑞𝑙𝑏 𝑞𝑢𝑏 ̇𝑞𝑢𝑏

deg deg deg/s deg deg deg/s

Joint 1 -147 147 84.6 -90 90 63.4
Joint 2 -50 85 82.3 -30 40 61.7
Joint 3 -202 63 79.3 -110 40 59.5
Joint 4 -350 350 122 -180 180 91.5
Joint 5 -122.5 122.5 113 -90 90 84.8
Joint 6 -350 350 175 -180 180 131.3

B.2 Robot Controller Layout

Figure 3 presents the basic robot controller layout. Starting at the top right, an in-
dustrial real-time computer performs the main robot tasks: the process state machine,
the measurement handling, the diagnose system, the web-based human-machine-interface,
the hand-held operating device, parts of the control loop, as well as error-detection and
machine supervision. The real-time computer hosts an Open Platform Communications
Unified Architecture (OPC-UA) server, which communicates bidirectionally with a Matlab
OPC-UA client. The Matlab code performs non-real-time tasks such as trajectory gen-
eration, robot model identification, or machine learning applications. Matlab is also the
interface for measurement post-processing and file management. The industrial computer
also hosts a second non-real-time operating system, Windows 10, on which the program-
ming and diagnosis can be done. Other than for diagnosis, the Windows-based operating
system does not interfere with the run-time tasks of the robot. Cycle time of main tasks
is given in Tab. 2. The main components presented in Fig. 3 are listed in Tab. 3.

The industrial controller features a bus protocol, called POWERLINK by B&R Automa-
tion, over which all run-time information is communicated. The green lines on the bottom
represent the motor signals, such as the motor temperature sensor, motor brake control,
and motor position and velocity signal.

Following the industrial bus from the real-time computer, a safety PLC is connected. This
PLC is safety-certified, independent of all other hard- and software, and can shut down
the main power supply in all cases. It explicitly handles hardware emergency stops and
supervises the robot cell. It is the only component that cannot be reconfigured without
advanced authorization.

144 Appendix

Figure 3: Picture of the Custom-made controller of the Industrial robot KUKA KR300
R2500 ultra SE manipulator at the Chair of Machine Tools and Control Sys-
tems, RPTU Kaiserslautern-Landau.

B Technical Robot Details 145

Table 2: (Deterministic) computation time of main software components [BR21b].

Task Deterministic Time

OPC-UA server no between 4 ms and 10 s,
depending on task requirements
and data volume. Bidirectional.

State machine yes 4 ms
Diagnose system yes 4 ms
Measurement handling yes 4 ms, can be set to 0.8 ms
Position feedback control yes 0.8 ms
Velocity feedback control yes 0.2 ms
Motor current feedback control yes 0.05 ms

The bus signal is sent from the safety PLC to the main power supply, which transforms
the laboratory power supply corresponding to the motor inverter requirements. Parallel
to the main power, the industrial bus signal is sent to all motor inverters, which locally
compute the position, velocity, and current feedback control, record measurements, and
read the secondary encoders. The code of the motor inverters, as well as the information
which is sent over the bus system, can be adopted.

All motor inverters are designed for a double-axis. For joints 1, 2, and 3, only one high-
power output is used. The other side of the double-axis is required for additional sensor
integration and applied for software computation directly on the inverter. Joints 4, 5, and
6 operate on a double-axis, with Joint 4 and 5 on a single device. The other side of the
double-axis device for joint 6 is unused.

146 Appendix

Table 3: Main components of the robot control [BR21a; BR21b].

Component Description

1x Real-Time Computer Automation PC 910 series with Intel Core i7 6820EQ,
QM170 chipset, 128 GB CFast memory, 8 GB DDR4 RAM,
POWERLINK managing node, 2 MB SRAM battery buffered

1x Power Supply ACOPOSmulti series with 3x 400 VAC input voltage,
750 𝑉𝐷𝐶 link voltage, 60 kW continuous power

3x Inverter Joint 1, 2, 3 ACOPOSmulti3 series dual-axis module
with 750 𝑉𝐷𝐶 bus voltage, 55 A peak current,
22 A continuous current, 16 kW continuous power,
24 𝑉𝐷𝐶 and 2.1 A for holding brake

2x Inverter Joint 4, 5, 6 ACOPOSmulti3 series dual-axis module
with 750 𝑉𝐷𝐶 bus voltage, 18.9 A peak current,
7.6 A continuous current, 5.5 kW continuous power,
24 𝑉𝐷𝐶 and 1.1 A for holding brake

B.3 Sensor Specification

Table 4 shows the sensor types and corresponding resolutions for all joints. This work
refers to the software resolution as the smallest incremental change that can be detected
in the software. The real sensor uncertainty is greater: First of all, the sensor head, the
measurement ring, and the resolver depend on manufacturing tolerances. Considering the
manufacturer’s specifications, however, these uncertainties are not significant. Second,
for both sensors, this work defines the resolution on the link side. This implies for the
motor-side mounted resolvers, that the effective resolution depends on the gearbox factors.
So this estimated effective resolution is corrupted by gearbox deformation and backlash,
which sums up to an approximate error range of 0.01 deg to 0.05 deg (depending on the
trajectory and payload, see [We22; WGR20]). All sensors are low pass filtered in the first
order, with a cutoff frequency of 1000 Hz for both the secondary encoders and the motor
resolves.

B Technical Robot Details 147

Table 4: Secondary encoders (SE) [AM21] and motor resolvers (RE) [SI06]. All resolu-
tions are given for the link side. Software resolution is the smallest incremental
change that can be detected. Effective resolution accounts for additional uncer-
tainties, see main text.

Sensor Type Software Effective
Resolution Resolution
deg deg

SE Joint 1 WMR-301-0507-01-S03 (Ring) 4.33 ⋅ 10−6 5 ⋅ 10−6

WMR-301.12-0507-0.20-9-S01 (Head)
SE Joint 2 WMR-301-0413-01-S03 (Ring) 5.32 ⋅ 10−6 6 ⋅ 10−6

WMR-301.12-0413-0.10-9-S01 (Head)
SE Joint 3 WMR-301-0339-01-S03 (Ring) 6.48 ⋅ 10−6 7 ⋅ 10−6

WMR-301.12-0339-0.125-9-S01 (Head)
RE Joint 1 1FK7-101-5AY71-1SY3-Z 85.5 ⋅ 10−6 5 ⋅ 10−2

RE Joint 2 1FK7-103-5AY71-1SY3-Z 82.2 ⋅ 10−6 5 ⋅ 10−2

RE Joint 3 1FK7-103-5AY71-1SY3-Z 87.1 ⋅ 10−6 5 ⋅ 10−2

RE Joint 4 1FK7-063-5AF71-1SY3-Z 99.4 ⋅ 10−6 5 ⋅ 10−2

RE Joint 5 1FK7-063-5AF71-1SY3-Z 91.7 ⋅ 10−6 5 ⋅ 10−2

RE Joint 6 1FK7-063-5AF71-1SY3-Z 240 ⋅ 10−6 5 ⋅ 10−2

148 Appendix

B.4 Physical Robot Model Parameters

Tab. 5 shows the parameters utilized of the KUKA KR300 R2500 ultra SE robot.

Table 5: Model parameters of KUKA Quantec KR300 Ultra SE robot.

description symbol joint 1 joint 2 joint 3 unit

asymmetrical friction 𝑓𝑎𝑠𝑦𝑚 54.02 −255.55 −200.53 Nm
viscous friction 𝑓𝑣 2050.35 2306.7 2024.4 Nms/rad
Coulomb friction 𝑓𝑐 285.36 10 29.86 Nm
degressive friction A 𝑓𝑎 70.14 232.33 264.63 Nm
degressive friction B 𝑓𝑏 530 28994 31572 s/rad
friction smoothness factor 𝑠𝐹 500 300 100 s/rad
proportional speed gain 𝐾𝑉 0.015 0.015 0.015 Nms/rad
proportional position gain 𝐾𝑃 20 20 20 1/s
backlash angle 𝜙𝐵 0.15 0.15 0.15 10−3 rad
lost motion angle 𝜙𝐿𝑀 0.15 0.15 0.15 10−3 rad
torsional rigidity stiffness 𝑐𝑇 𝑅 8.4225 8.9381 5.5691 106 Nm/rad
stiffness smoothness factor 𝑠𝐸2 0.02 0.015 0.015 1/Nm
gearbox ratio 𝑢𝐺 256.86 267.43 252.33 −
motor inertia 𝐽 0.0138 0.0177 0.0177 kgm2

joint 4 joint 5 joint 6

asymmetrical friction 𝑓𝑎𝑠𝑦𝑚 −2.12 0.49 0.37 Nm
viscous friction 𝑓𝑣 453.66 1000 458.8 Nms/rad
Coulomb friction 𝑓𝑐 34.34 10 15.45 Nm
degressive friction A 𝑓𝑎 16.05 36.73 60.68 Nm
degressive friction B 𝑓𝑏 837.45 4855.06 2465.3 s/rad
friction smoothness factor 𝑠𝐹 200 200 200 s/rad
proportional speed gain 𝐾𝑉 0.015 0.015 0.015 Nms/rad
proportional position gain 𝐾𝑃 20 20 20 1/s
backlash angle 𝜙𝐵 0.15 0.15 0.15 10−3 rad
lost motion angle 𝜙𝐿𝑀 0.15 0.15 0.15 10−3 rad
torsional rigidity stiffness 𝑐𝑇 𝑅 1.6845 1.6845 1.0726 106 Nm/rad
stiffness smoothness factor 𝑠𝐸2 0.015 0.015 0.015 1/Nm
gearbox ratio 𝑢𝐺 221.00 239.62 154.32 −
motor inertia 𝐽 0.0150 0.0150 0.0150 kgm2

C Additional Experiments Physical Model 149

C Additional Experiments Physical Model

This section presents additional experiments for the intermediate versions of the physical
robot model. First, additional insight regarding flexible joints is given using simulations.
Then, experiments on the real robot are presented. These two discussions are similar to
previously published contribution [WGR20]. Using these simulations and real experiments,
the final subsection motivates the additional advancements presented in chapter 4.

C.1 Simulation Results

In the following, the feed-forward and feedback algorithms are analyzed in simulation.
The flatness-based feed-forward controller is compared with a nonlinear rigid model feed-
forward controller. Perfect model knowledge, neglecting of sensor noise, and neglecting
of any disturbances are assumed in order to focus on pure modeling differences. Unlike
on the real robot, the feedback controller can be disabled if needed in simulation. The
presented algorithm is compared with a nonlinear feed-forward control law without elastic
joints, e.g., 𝜃 = 𝑈 𝑞. As a result, the model in (4.1b) and 4.1a reduces to the rigid joint
model (2.1). Consequently, the model-based feed-forward control reduces to (2.2).

For compact notation, abbreviations of control structures are defined in the following.

• Conventional Feedback Controller (C-FB). Feedback controller neglecting
joint elasticity. Motor reference velocity is ̇𝜃 = 𝑈 ̇𝑞.

• Model-Based Feedback Controller (MB-FB). Model-based feedback controller
accounting for joint elasticity. Motor reference velocity is estimated with (4.39).

• Rigid-Model Feed-Forward Controller (R-FF). Nonlinear rigid joint feed-
forward control. See (2.2).

• Flatness-Based Feed-Forward Controller (FB-FF). Nonlinear elastic joint
feed-forward control. See (4.36).

Both feedback controllers, C-FB and MB-FB apply the structure using SE as explained
in 4.3.1. A comparison without SE is not comprehensive. Furthermore, the feed-forward
control, in both cases, applies the advanced nonlinear robot model - except that one
is neglecting joint elasticity. Advanced nonlinear friction, HWC, and all other model
parameters are identical. There is no comparison with the robot control toolbox supplied
by the industrial partner B&R Automation. So the experiments focus on the effect of the
elastic joint model and focus on the model-based feedback control.

For an unbiased comparison, the same nonlinear friction (2.3), Coriolis, centripetal, and
gravity torque are applied as in the flatness-based controller. All model parameters are

150 Appendix

identical, including the pose-dependent inertia matrix. Consequently, the only difference
between the flatness-based and nonlinear rigid model feed-forward control law is neglecting
the joint elasticity. Both feed-forward controllers are simulated independently on the
same model, (4.1a) and (4.1b). For a compact notation, Flatness-Based Feed-Forward
Controller (FB-FF) and Rigid-Model Feed-Forward Controller (R-FF) are defined and
presented in (4.36) and (2.2) respectively.

Fig. 4 presents the simulation’s reference trajectory, velocity, and acceleration. For a
clear overview, the jerk and the jerk derivative are not illustrated, although both are
continuously differentiable. Furthermore, for a comprehensive simulation, the acceleration
profile is shown in Fig. 4 rather than a polynomial-based acceleration and deceleration
phase.

Theoretically, since the simulation does not contain noise, model errors, or external dis-
turbances, the flatness-based feed-forward controller should follow an arbitrary trajectory
perfectly. As presented in Fig. 5, this can be achieved in simulation. Fig. 5 shows the an-
gular error, e.g., 𝑞Δ,𝑖 = 𝑞𝑅,𝑖 − 𝑞𝑖, for the FB-FF and R-FF in simulation. For comparison,
the range of the backlash angle 𝜙𝐵 is displayed as a gray area in Fig. 5. As expected, the
R-FF is slightly worse than the FB-FF. Fig. 5 validates the FB-FF control, as it shows
in the simulation that the inverse model almost perfectly matches the forward model. It
also validates the assumptions in section 4.3.3, as the forward model does not neglect
parameter changes during FB-FF computation time. However, a core insight of Fig. 5 is
the performance of the R-FF controller on the elastic joint model.

1. Considering the dynamic trajectory, angular errors can be expected significantly
greater than 0.06 deg. Fig. 5 is representative of many simulations confirming this
result. If a model error is simulated, e.g., the feed-forward model parameters do not
match the simulation model parameters, the angular error easily exceeds > 1 deg. In
conclusion, the model accuracy matters regarding the model structure and parameter
identification.

2. Note that the simulation presented in Fig. 5 does not apply any feedback control.
If an additional feedback controller is applied, which does not account for elastic
joints, the angular error increases by an order of magnitude. Therefore, it is very
important to implement MB-FB instead of C-FB as explained in section 4.3.2.

Fig. 6 compares the feed-forward torque of R-FF and FB-FF. Due to the identical friction,
inertia, gravity, Coriolis, and centripetal terms of FB-FF and R-FF, the computed motor
torques in Fig. 6 are broadly similar. Differences only occur in the sections where the
model traverses backlash or Coulomb friction.

3. Besides compensating backlash, see Fig. 5, these minor changes in motor torque have
huge effects on the elastic torque of the model. As presented in Fig. 7, oscillations

C Additional Experiments Physical Model 151

induced by backlash within the joint are compensated. Note that a SE feedback
controller is not employed in the simulations, which would be able to dampen these
oscillations. However, it is beneficial if these oscillations are not induced in the first
place by proper flatness-based control.

Nevertheless, some detrimental aspects during the analysis in simulation can be observed.

4. Modeling backlash as a flat function yields increased motor torque change rates.
Generally, the less flat a system is, the more dynamic the input variable should
be. On a real robot, a dynamic input is not desirable. As presented in Fig. 6, the
torque change rates can be reduced to a reasonable level for the robot. However, the
demanded torque change rate is the algorithm’s bottleneck. This affects the change
rate only, and the absolute limit of the motor torque was not problematic in any
analysis.

5. The backlash is only one source of positional errors. Model errors, sensor noise,
external disturbances, and conventional feedback controllers significantly impact po-
sitioning accuracy. Neither the nonlinear nor the flatness-based feed-forward torque
can account for these effects. To achieve a high positioning accuracy, a model-based
feedback controller with SE, is necessary.

152 Appendix

0 1 2 3 4 5

50

0

−50

−100

Time (s)

R
ef

er
en

ce
𝑞 𝑅

̇𝑞 𝑅
̈𝑞 𝑅

(d
eg

)
(d

eg
/s

)
(d

eg
/s

2)

Reference Position
Reference Velocity
Reference Acceleration

Figure 4: Reference trajectory with angular position, velocity, and acceleration used for
simulation.

0 1 2 3 4 5

0

0.02

0.04

0.06

Time (s)

A
ng

ul
ar

er
ro

r
𝑞 Δ

,1

(d
eg

)

Error R-FF
Error FB-FF
Backlash Angle

Figure 5: Angular error in simulation with perfect model knowledge, without noise, feed-
back controller, or any disturbances. The Gray area represents the backlash
angle for comparison. FB-FF refers to the flatness-based controller and R-FF
to the nonlinear rigid model controller. In the case of FB-FF, the forward and
inverse models are identical.

C Additional Experiments Physical Model 153

0 1 2 3 4 5

20

10

0

−10

−20

Time (s)

M
ot

or
to

rq
ue

𝜏 𝑀
(N

m
)

R-FF Motor Torque
FB-FF Motor Torque

3.05 3.15

8

10

1.4 1.5

0
−2
−4

Figure 6: Feed-forward motor torque in simulation. FB-FF refers to the flatness-based
controller and R-FF to the nonlinear rigid model controller.

0 1 2 3 4 5

4

2

0

−2

−4

Time (s)

El
as

tic
to

rq
ue

𝜏 𝐸
(k

N
m

)

R-FF Elastic Torque
FB-FF Elastic Torque

3 3.1 3.2
0

1

2

Figure 7: Elastic joint torques in simulation. FB-FF refers to the flatness-based controller
and R-FF to the nonlinear rigid model controller.

154 Appendix

C.2 Experimental Results

The presented feed-forward and feedback control laws are validated on an industrial robot,
pictured in Fig. 6.1. The hardware and robot operating system is based on components
from KUKA and industrial supplier B&R Automation. It is depicted in Fig. 3. The B&R
Automation robot operating system allows implementation of the control algorithms as
described in section 4.3.

A full robot movement in Cartesian space was chosen as an experimental scenario. The
movement of joints 1, 2, and 3 can be measured using the same SE applied for position
control. Technical details of the sensors are given in appendix B.3. All experiments are
carried out on the cold robot, where both gearboxes and motors have approximately a
temperature of 24.7°C, measured before and after the experiments. This leads to a signif-
icant effect of nonlinear friction in the base, shoulder, and elbow joints. The experiment
has been carried out 10 times in a row, and the measurements are representative and
reproducible. In order to account for a milling spindle in a robot machining application
and to increase the dynamical loads on each joint, a payload of 150 kg on the robot’s TCP
is applied as presented in Fig. 6.1.

The trajectory is based on the Lemniscate of Gerono, which can be parametrized as

𝑥(𝑡) = 𝑎 cos(𝜑(𝑡)) (36)

𝑦(𝑡) = 𝑏 sin(𝜑(𝑡)) cos(𝜑(𝑡))

with the horizontal and vertical length parameters 𝑎, 𝑏. The Cartesian angle 𝜑(𝑡) per-
forms a 7𝑡ℎ-order continuously differentiable acceleration and deceleration trajectory. An
additional joint space filter is applied after estimating the inverse kinematics. In order
to explicitly test the effects of backlash, lost motion, and Coulomb friction, a Cartesian
movement is chosen, with several changes in direction and parts with link velocities close
to zero. The joint space reference trajectory is shown in Fig. 8. For a detailed discus-
sion, the following argumentation utilizes the measured joint angles and measured motor
torques instead of the estimated Cartesian coordinates with potential errors in the kine-
matic model.

The angular position improvements are shown in Fig. 9, which present the angular dis-
placement 𝑞Δ,𝑖 = 𝑞𝑅,𝑖 −𝑞𝑖 of joint 1, 2 and 3 for three cases. The same control parameters,
filter constants, and dynamic model parameters are applied in all cases. A movement with
a C-FB law is analyzed as a baseline. The subsequent measurement shows that a Model-
Based Feed-Forward Controller (MB-FF) leads to an improvement for all joints. A further
improvement can be achieved by applying the FB-FF and MB-FF. For joints 1, 2 and 3,

C Additional Experiments Physical Model 155

0 1.5 3 4.5 6 7.5
−40

−20

0

20

R
ef

er
en

ce
𝑞 𝑅

,1
̇𝑞 𝑅

,1
̈𝑞 𝑅

,1
in

de
g

de
g/

s
de

g/
s2

0 1.5 3 4.5 6 7.5

−10

0

10

20

R
ef

er
en

ce
𝑞 𝑅

,2
̇𝑞 𝑅

,2
̈𝑞 𝑅

,2
in

de
g

de
g/

s
de

g/
s2

0 1.5 3 4.5 6 7.5

−50

0

50

Time (s)

R
ef

er
en

ce
𝑞 𝑅

,3
̇𝑞 𝑅

,3
̈𝑞 𝑅

,3
(d

eg
)

(d
eg

/s
)

(d
eg

/s
2)

Figure 8: Joint space reference trajectories for each joint. Angular position in black,
velocity in blue, and acceleration in red.

156 Appendix

Table 6: Measured mean angular errors for all presented methods.

Method Joint 1 Joint 2 Joint 3 Unit

C-FB 0.087 0.020 0.106 deg
MB-FB 0.081 0.019 0.101 deg
Improvement −6.9 −5 −4.7 %

R-FF 0.052 0.018 0.034 deg
FB-FF 0.044 0.023 0.024 deg
Improvement −15.4 27.8 −29.4 %

the maximum path angular error does not exceed ±0.08 deg. Note that the angular reso-
lution of the SE is only ±0.017 deg. Therefore, the achieved performance of the feedback
control law is based only on 5 measurement increments. All in all, the FB-FF and MB-FB
improve the mean error of joint 1 by 49 % and of joint 3 by 77 % compared to C-FB. A
detailed analysis of this improvement is presented in Tab. 6. The mean angular error is
mean(abs(𝑞Δ,𝑖)) and the maximum angular error is max(abs(𝑞Δ,1)) in Tab. 6.

As a comprehensive validation, a nonlinear R-FF with C-FB is compared to FB-FF with
MB-FB on the same trajectory. Model-based feedback control is not applicable if the
rigid joint model neglects elasticity. The experimental result is shown in Fig. 10. The
flatness-based controller leads to better performance for joints 1 and 3 than the nonlinear
rigid model feed-forward control law. The mean error for joint 1 is improved by 15 % and
for joint 3 by 29 %. The detailed analysis is given in Tab. 6. Regarding joint 2, both
controllers achieve a similar performance of less than 0.073 deg angular error.

C Additional Experiments Physical Model 157

0 1.5 3 4.5 6 7.5

0.2
0.1

0
−0.1
−0.2A

ng
ul

ar
er

ro
r

𝑞 Δ
,1

in
de

g

0 1.5 3 4.5 6 7.5

0.2
0.1

0
−0.1
−0.2A

ng
ul

ar
er

ro
r

𝑞 Δ
,2

in
de

g

0 1.5 3 4.5 6 7.5

0.2
0.1

0
−0.1
−0.2

Time (s)

A
ng

ul
ar

er
ro

r
𝑞 Δ

,3
(d

eg
)

Figure 9: Measured angular error 𝑞Δ,𝑖 for each joint in the second robot iteration. Error
with C-FB in blue, MB-FB in green and FB-FF in red.

158 Appendix

0 1.5 3 4.5 6 7.5

0.1
0.05

0
−0.05
−0.1A

ng
ul

ar
er

ro
r

𝑞 Δ
,1

(d
eg

)

0 1.5 3 4.5 6 7.5

0.1
0.05

0
−0.05
−0.1A

ng
ul

ar
er

ro
r

𝑞 Δ
,2

(d
eg

)

0 1.5 3 4.5 6 7.5

0.1
0.05

0
−0.05
−0.1

Time (s)

A
ng

ul
ar

er
ro

r
𝑞 Δ

,3
(d

eg
)

Figure 10: Measured angular error 𝑞Δ,𝑖 for each joint in the second robot iteration.
FB-FF in red and R-FF in black.

C Additional Experiments Physical Model 159

C.3 Improvements Based on Experimental Results

To evaluate the feed-forward controller, the most dynamic measurements of the robot, the
torque measurements are investigated. Fig. 11 shows the measured motor torque for the
proposed flatness-based controller, including a modified feedback controller for all major
joints. For comparison, the pure feed-forward torque is added in the same figure. An
ideal robot model applied in the robot controller would reduce the contribution of the
feedback controller, making the predicted and measured torque identical. In this scenario,
the feedback controller could focus solely on external disturbances (not model errors) and
be tuned in a stiffer configuration.

This measurement in Fig. 11 demonstrates that the elastic joint model captures the major
dynamics of joint 1. However, regarding joints 2 and 3, the measured motor torque
significantly differs from the flatness-based calculation.

Note that in standstill phases, the measured motor torques at the beginning of the move-
ment (0 s) and at its end (7.5 s) differ significantly. The measured joint angles, see Fig. 9,
confirm that the end pose is identical to the start pose within the measurement reso-
lution of ±0.017 deg. Hence, gravitational and hydraulic spring loads on joint 2, which
depend only on the pose, should be identical at the beginning and end. Inertia, Coriolis,
centripetal, and friction forces are zero at a standstill. This leads to the conclusion that
significant asymmetrical friction is present in joint 2 and 3.

For joint 2, the hydraulic counterbalance reduces the gravity torque. Unfortunately, it is
not common in the robotic’s community to model hydraulic loads. Therefore, the gravity
torque and the HWC are neglected for joint 2 in the results of the second iteration.
However, joint 2 in Fig. 11 demonstrates significant structural differences in the dynamic
torque. Hence, a HWC model is included in the next robot model iteration.

The feed-forward torque error in joint 1 and 3 can be caused by

1. inertia, Coriolis, centripetal effects,

2. gravitational loads,

3. asymmetrical friction, Coulomb friction, degressive friction, or

4. backlash, lost motion, and linear joint elasticity.

Regarding the first group, the parameters are based on the CAD model. Therefore, the
parameter uncertainty is low. Furthermore, errors in the inertia, Coriolis, and centripetal
part of the model would lead to a different signature of torque errors, for example, modi-
fication of the error frequency or introducing additional changes in error direction, which
cannot be observed in Fig. 11. Moreover, gravitational loads cannot affect joint 1 by
definition. Regarding joint 3, the gravitational model parameters are based on the CAD

160 Appendix

0 1.5 3 4.5 6 7.5

−5

0

5

To
rq

ue
𝜏 𝑀

,1
(N

m
)

0 1.5 3 4.5 6 7.5
−10

−5

0

To
rq

ue
𝜏 𝑀

,2
(N

m
)

0 1.5 3 4.5 6 7.5
−20

−10

0

Time (s)

To
rq

ue
𝜏 𝑀

,3
(N

m
)

Figure 11: Measured motor torque 𝜏𝑀,𝑖 of each joint in black. The stand-alone flatness-
based feed-forward torque (FB-FF) executed is presented for comparison in
red.

D Additional Experiments Data-based Model 161

model, with only a minor uncertainty. The final group, backlash, lost motion, and lin-
ear elasticity, cannot cause the observed torque errors, as those effects occur only during
backlash with a high amplitude. This leads to the conclusion that an advanced friction
model is required to optimize the feed-forward controller.

D Additional Experiments Data-based Model

The following presents additional figures related to section 5.3.

162 Appendix

0 5 10 15 20 25 30 35 40 45 50 55 60

−5
0
5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2

0

2

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2
0
2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 12: Performance of the discrete-time MLP model on the benchmark training data.
Trained on a small dataset. Red: Model prediction. Gray: Motor torque
measurements. Black: Filtered motor torque measurements.

D Additional Experiments Data-based Model 163

0 5 10 15 20 25 30 35 40 45 50 55 60
−40

−20

0

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−50

0
50

100

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−50

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−30
−20
−10

0

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

0

50

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−50

0

50

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 13: Performance of the discrete-time MLP model on the benchmark test data.
Trained on a small dataset. Red: Model prediction. Gray: Motor torque
measurements. Black: Filtered motor torque measurements.

164 Appendix

0 5 10 15 20 25 30 35 40 45 50 55 60

−5
0
5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2

0

2

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2
0
2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 14: Performance of the continuous-time MLP model on the benchmark training
data. Trained on a small dataset. Red: Model prediction. Gray: Motor
torque measurements. Black: Filtered motor torque measurements.

D Additional Experiments Data-based Model 165

0 5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−2

0

2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 15: Performance of the continuous-time MLP model on the benchmark test data.
Trained on a small dataset. Red: Model prediction. Gray: Motor torque
measurements. Black: Filtered motor torque measurements.

166 Appendix

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−5
0
5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−10

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
−20

−10

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−2
0
2

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

−2
0
2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 16: Performance of the discrete-time MLP model on the benchmark training data.
Trained on many data points. Red: Model prediction. Gray: Motor torque
measurements. Black: Filtered motor torque measurements.

D Additional Experiments Data-based Model 167

0 5 10 15 20 25 30 35 40 45 50 55 60
−5

0

5

M
ot

or
To

rq
ue

𝜏 1
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−10

−5

0

M
ot

or
To

rq
ue

𝜏 2
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60

−15
−10
−5

0

M
ot

or
To

rq
ue

𝜏 3
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

2

M
ot

or
To

rq
ue

𝜏 4
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−4
−2

0
2

M
ot

or
To

rq
ue

𝜏 5
(N

m
)

0 5 10 15 20 25 30 35 40 45 50 55 60
−2

0

2

Time (s)

M
ot

or
To

rq
ue

𝜏 6
(N

m
)

Figure 17: Performance of the discrete-time MLP model on the benchmark test data.
Trained on many data points. Red: Model prediction. Gray: Motor torque
measurements. Black: Filtered motor torque measurements.

168 Appendix

E Source Code

E.1 Dynamic Model Update

Listing 1: Dynamic model update (Python).

1 ””” Update the robot model i f the r e i s a change in p o s i t i o n
2 or v e l o c i t y exceeds a th re sho ld . Parameters must be p e r s i s t e n t .
3 This can be achieved us ing g l o b a l v a r i a b l e s or c l a s s member
4 v a r i a b l e s (recommended) .
5 Norm() r e f e r s to the L2 norm d e f i n i t i o n .
6

7 q cur rent vec to r o f j o i n t ang l e s
8 qd cur rent vec to r o f j o i n t v e l o c i t i e s
9 f i r s t _ e v a l boolean i n d i c a t o r o f a f i r s t f unc t i on c a l l

10 q_last l a s t vec to r o f j o i n t ang l e s
11 qd_last l a s t vec to r o f j o i n t v e l o c i t i e s
12 q_threshold th r e sho ld vec to r o f j o i n t ang l e s
13 qd_threshold th r e sho ld vec to r o f j o i n t v e l o c i t i e s
14 M i n e r t i a matrix
15 C c o r i o l i s and c e n t r i p e t a l matrix
16 g g r a v i t a t i o n a l load vec to r
17 tau_hyd hydrau l i c counter weight torque vec to r
18 ”””
19

20 def update_model (q : f l oa t_vector ,
21 qd : f l oa t_vector ,
22 f i r s t _ e v a l : bool ,
23) −> tuple [f loat_matr ix ,
24 f loat_matr ix ,
25 f l oa t_vector ,
26 f l o a t_vec to r] :
27

28 if f i r s t _ e v a l \
29 or norm(q − q_last) > q_threshold \
30 or norm(qd − qd_last) > qd_threshold :
31

32 M, C, g , tau_hyd = model_core (q , qd)
33 q_last , qd_last = q , qd
34

35 return M, C, g , tau_hyd

E Source Code 169

E.2 Advanced Friction Flatness-based Feed-forward Control

Listing 2: Advanced friction flatness-based feed-forward control (Matlab).

1 f unc t i on [tau_ff , qm_ref , qm_d_ref] = FeedForward (t , para)
2 %#codegen
3

4 % t time (auto generated , not used)
5 % J motor i n e r t i a
6 % Mii l i n k i n e r t i a
7 % c t o r s i o n a l gearbox s t i f f n e s s
8 % f_a d e g r e s s i v e f r i c t i o n parameter A
9 % f_b d e g r e s s i v e f r i c t i o n parameter B

10 % f_coul Coulomb f r i c t i o n parameter
11 % f_vis v i s c ou s f r i c t i o n parameter
12 % q0 j o i n t ang le
13 % q1 j o i n t v e l o c i t y
14 % q2 j o i n t a c c e l e r a t i o n
15 % q3 j o i n t j e r k
16 % q4 j o i n t j e r k d e r i v a t i v e
17 % qB backlash ang le
18 % sE e l a s t i c j o i n t smoothness
19 % sF Coulomb f r i c t i o n smoothness
20 % tau_a a c c e l e r a t i o n torque
21 % tau_c c o r i o l i s and c e n t r i p e t a l torque
22 % tau_g g r a v i t a t i o n a l and hydrau l i c torque
23 % u transmi s s i on f a c t o r
24

25 % This func t i on was generated by the
26 % Symbolic Math Toolbox ve r s i on 8 . 5 .
27 % 03−Aug−2022 08 : 55 : 31
28

29 J = para . J ;
30 Mii = para . Mii ;
31 c = para . c ;
32 f_a = para . f_a ;
33 f_b = para . f_b ;
34 f_asym = para . f_asym ;
35 f_coul = para . f_coul ;
36 f_v i s = para . f_v i s ;
37 q0 = para . q0 ;
38 q1 = para . q1 ;
39 q2 = para . q2 ;
40 q3 = para . q3 ;

170 Appendix

41 q4 = para . q4 ;
42 qB = para . qB ;
43 sE = para . sE ;
44 sF = para . sF ;
45 tau_a = para . tau_a ;
46 tau_c = para . tau_c ;
47 tau_g = para . tau_g ;
48 u = para . u ;
49

50 t2 = Mii . ∗ q2 ;
51 t3 = Mii . ∗ q3 ;
52 t4 = Mii . ∗ q4 ;
53 t5 = f_b . ∗ q1 ;
54 t6 = f_vi s . ∗ q1 ;
55 t7 = f_vi s . ∗ q2 ;
56 t8 = f_vi s . ∗ q3 ;
57 t9 = q1 . ∗ sF ;
58 t10 = f_b . ^ 2 ;
59 t11 = q2 . ^ 2 ;
60 t12 = sF . ^ 2 ;
61 t15 = 1 . 0 . / c ;
62 t13 = tanh (t5) ;
63 t14 = tanh (t9) ;
64 t16 = t13 . ^ 2 ;
65 t17 = t14 . ^ 2 ;
66 t18 = f_a . ∗ t13 ;
67 t19 = f_coul . ∗ t14 ;
68 t20 = t16 −1.0 ;
69 t21 = t17 −1.0 ;
70 t32 = f_asym+t2+t6+t18+t19+tau_a+tau_c+tau_g ;
71 t22 = f_a . ∗ f_b . ∗ q2 . ∗ t20 ;
72 t23 = f_a . ∗ f_b . ∗ q3 . ∗ t20 ;
73 t24 = f_coul . ∗ q2 . ∗ sF . ∗ t21 ;
74 t25 = f_coul . ∗ q3 . ∗ sF . ∗ t21 ;
75 t30 = t10 . ∗ t11 . ∗ t18 . ∗ t20 . ∗ 2 . 0 ;
76 t31 = t11 . ∗ t12 . ∗ t19 . ∗ t21 . ∗ 2 . 0 ;
77 t33 = sE .∗ t32 ;
78 t26 = −t22 ;
79 t27 = −t23 ;
80 t28 = −t24 ;
81 t29 = −t25 ;
82 t34 = tanh (t33) ;
83 t35 = t34 . ^ 2 ;
84 t37 = t3+t7+t26+t28 ;

E Source Code 171

85 t38 = t4+t8+t27+t29+t30+t31 ;
86 t36 = t35 −1.0 ;
87 tau_ff = t32 . / u+J . ∗ u . ∗ (q2+t15 . ∗ t38−q_back . ∗ sE . ∗ t36 . ∗ . . .
88 t38+q_back . ∗ sE . ^ 2 . ∗ t34 . ∗ t36 . ∗ t37 . ^ 2 . ∗ 2 . 0) ;
89 i f nargout > 1
90 qm_ref = u . ∗ (q0+q_back . ∗ t34+t15 . ∗ t32) ;
91 end
92 i f nargout > 2
93 qm_d_ref = u . ∗ (q1+t15 . ∗ t37−q_back . ∗ sE . ∗ t36 . ∗ t37) ;
94 end
95 end

E.3 Feed-Forward Controller Code

The flatness-based control algorithm, obtained by MATLAB Symbolic Toolbox with addi-
tional manual modifications and transferred into C is presented. All exponential functions
are limited to exp(⋅) ≤ 1𝑒30 to avoid Not-A-Number and infinity errors when using divi-
sion. The code is extended for estimating all robot joints. In [WGR20] there is a minor
formatting error, which is corrected here, it must be 𝑡[13] and 𝑡[14] instead of 𝑡13 and 𝑡14.

Listing 3: Flatness-based feed-forward controller(C++).

1 double [3] [6] r e s = feed forward (
2 double [6] q0 , double [6] q1 ,
3 double [6] q2 , double [6] q3 ,
4 double [6] q4 , double [6] qB ,
5 double [6] J , double [6] M,
6 double [6] sE , double [6] sF ,
7 double [6] f_v , double [6] f_c ,
8 double [6] u , double [6] c ,
9 double [6] tau_c , double [6] tau_g ,

10 double [6] tau_a)
11 {
12

13 /∗ Descr ip t i on ∗/
14 // Computes the f l a t n e s s −based torque
15 // and motor r e f e r ence v a r i a b l e s f o r
16 // each a x i s o f an i n d u s t r i a l robo t .
17

18 // The equa t ions are de f ined in Sec t ion 4 . 3 . 3 .
19

20 /∗ Input ∗/
21 // Var iab l e s and parameters o f

172 Appendix

22 // the curren t s t a t e f o r a l l 6 a x i s .
23 // Type doub le .
24

25 /∗ Output ∗/
26 // Resu l t matrix . F i r s t column i s
27 // the f l a t n e s s −based torque in Nm,
28 // second column i s the motor r e f e r ence
29 // ang le in rad , t h i r d column i s
30 // the motor r e f e r ence v e l o c i t y in rad/ s .
31 // Type doub le .
32

33 /∗ d e f i n e v a r i a b l e s ∗/
34 // d e f i n e a x i s index
35 int i_ax ;
36 // d e f i n e temporary v a r i a b l e s
37 double t [3 6] ;
38 // l i m i t e xponen t i a l f unc t i on
39 double exp_max = 1e30 ;
40 // d e f i n e v a r i a b l e s f o r each a x i s
41 double M_i, J_i , tau_c_i , tau_g_i , tau_a_i ,
42 c_i , qB_i , sF_i , sE_i , f_v_i , f_c_i ,
43 u_i , q0_i , q1_i , q2_i , q3_i , q4_i ;
44

45 /∗ f o r each a x i s ∗/
46 for (i_ax = 0 ; i_ax < 6 ; i_ax++)
47 {
48

49 /∗ ge t parameters f o r each a x i s ∗/
50 // l i n k i n e r t i a , kgm^2
51 M_i = M[i_ax] ;
52 // motor i n e r t i a , kgm^2
53 J_i = J [i_ax] ;
54 // back l a sh angle , rad
55 qB_i = qB [i_ax] ;
56 // c o r i o l i s and c e n t r i p e t a l torque , Nm
57 tau_c_i = tau_c [i_ax] ;
58 // g r a v i t y torque , Nm
59 tau_g_i = tau_g [i_ax] ;
60 // a c c e l e r a t i o n torque , Nm
61 tau_a_i = tau_a [i_ax] ;
62 // t ransmiss ion fac to r , w i thou t un i t
63 u_i = u [i_ax] ;
64 // s t i f f n e s s f ac to r , Nm/rad
65 c_i = c [i_ax] ;

E Source Code 173

66 // f r i c t i o n smoothness f ac to r , s / rad
67 sF_i = sF [i_ax] ;
68 // e l a s t i c torque smoothness f ac to r ,
69 // rad/Nm
70 sE_i = sE [i_ax] ;
71 // v i s c o u l f r i c t i o n c o e f f i c i e n t , Nms/rad
72 f_v_i = f_v [i_ax] ;
73 // coulomb f r i c t i o n c o e f f i c i e n t , Nm
74 f_c_i = f_c [i_ax] ;
75

76 /∗ ge t v a r i a b l e s f o r each a x i s ∗/
77 q0_i = q0 [i_ax] ; // l i n k ang le
78 q1_i = q1 [i_ax] ; // l i n k v e l o c i t y
79 q2_i = q2 [i_ax] ; // l i n k a c c e l e r a t i o n
80 q3_i = q3 [i_ax] ; // l i n k j e r k
81 q4_i = q4 [i_ax] ; // l i n k j e r k d e r i v a t i v e
82

83 /∗ compute feed−forward torque ,
84 motor ang le and motor v e l o c i t y ∗/
85 t [0] = M_i∗q2_i ;
86 t [1] = M_i∗q3_i ;
87 t [2] = M_i∗q4_i ;
88 t [3] = f_v_i∗q1_i ;
89 t [4] = f_v_i∗q2_i ;
90 t [5] = f_v_i∗q3_i ;
91 t [6] = q1_i∗sF_i ;
92 t [7] = q2_i∗q2_i ;
93 t [8] = sE_i∗sE_i ;
94 t [9] = sF_i∗sF_i ;
95 t [1 0] = −f_c_i ;
96 t [1 1] = 1 .0/ c_i ;
97 t [1 2] = t [6] ∗ 2 . 0 ;
98 t [1 3] = −t [6] ;
99 t [1 4] = −t [1 2] ;

100 t [1 5] = fmin (exp (t [1 3]) , exp_max) ;
101 t [1 6] = fmin (exp (t [1 4]) , exp_max) ;
102 t [1 7] = t [1 5] + 1 . 0 ;
103 t [1 8] = 1 .0/ t [1 7] ;
104 t [1 9] = t [1 8] ∗ t [1 8] ;
105 t [2 0] = t [1 8] ∗ t [1 8] ;
106 t [2 1] = f_c_i∗ t [1 8] ∗ 2 . 0 ;
107 t [2 2] = f_c_i∗q2_i∗sF_i
108 ∗ t [1 5] ∗ t [1 9] ∗ 2 . 0 ;
109 t [2 3] = f_c_i∗q3_i∗sF_i

174 Appendix

110 ∗ t [1 5] ∗ t [1 9] ∗ 2 . 0 ;
111 t [2 4] = f_c_i∗ t [7] ∗ t [9]
112 ∗ t [1 5] ∗ t [1 9] ∗ 2 . 0 ;
113 t [2 5] = f_c_i∗ t [7] ∗ t [9]
114 ∗ t [1 6] ∗ t [2 0] ∗ 4 . 0 ;
115 t [2 6] = t [0]+ t [3]+ t [10]+ t [2 1]
116 +tau_c_i+tau_g_i+tau_a_i ;
117 t [2 7] = −t [2 4] ;
118 t [2 8] = sE_i∗ t [2 6] ;
119 t [2 9] = t [1]+ t [4]+ t [2 2] ;
120 t [3 0] = −t [2 8] ;
121 t [3 1] = t [2 9] ∗ t [2 9] ;
122 t [3 2] = t [2]+ t [5]+ t [23]+ t [2 5]
123 +t [2 7] ;
124 t [3 3] = fmin (exp (t [3 0]) , exp_max) ;
125 t [3 4] = t [3 3] + 1 . 0 ;
126 t [3 5] = 1 . 0/ (t [3 4] ∗ t [3 4]) ;
127

128 /∗ feed−forward torque in Nm ∗/
129 r e s [0] [i_ax] = t [2 6] / u_i+J_i∗u_i∗
130 (q2_i+t [1 1] ∗ t [3 2]
131 +qB_i∗sE_i∗ t [3 3]
132 ∗ t [3 5] ∗ t [3 2] ∗ 2 . 0
133 −qB_i∗ t [8] ∗ t [3 1]
134 ∗ t [3 3] ∗ t [3 5] ∗ 2 . 0
135 +qB_i∗ t [8] ∗ t [3 1]
136 ∗1 .0/ (t [3 4] ∗ t [3 4]
137 ∗ t [3 4]) ∗ fmin (exp (t [2 8]
138 ∗ −2.0) , exp_max) ∗ 4 . 0) ;
139

140 /∗ motor r e f e r ence ang le in rad ∗/
141 r e s [1] [i_ax] = u_i ∗(q0_i−qB_i
142 +t [1 1] ∗ t [2 6]
143 +(qB_i ∗2 . 0)/ t [3 4]) ;
144

145 /∗ motor r e f e r ence v e l o c i t y in rad/ s ∗/
146 r e s [2] [i_ax] = u_i ∗(q1_i+t [1 1]
147 ∗ t [29]+qB_i∗sE_i
148 ∗ t [2 9] ∗ t [3 3]
149 ∗ t [3 5] ∗ 2 . 0) ;
150 }
151 }

E Source Code 175

E.4 Weak Stability Barrier

Listing 4: Weak Stability Barrier (Python).

1 def s t a b i l i t y _ b a r r i e r (self) −> torch . Tensor :
2 ”””Compute the weak s t a b i l i t y b a r r i e r .
3

4 Returns :
5 torch . Tensor : Sca l a r b a r r i e r va lue f o r l o s s func t i on .
6 ”””
7

8 # get l i n e a r weight matrix o f neura l network
9 A = self . net_dx_linear [0] . weight

10

11 # get number o f s t a t e s
12 n_states = A. shape [0]
13

14 # c r e a t e empty l i s t f o r a l l c o e f f i c i e n t s
15 must_be_positive = []
16

17 # d e f i n e cons tant s f o r b a r r i e r func t i on
18 s t a b i l i t y _ o f f s e t = torch . t enso r (1 . 0 e−2)
19 s t a b i l i t y _ s c a l i n g = torch . t en so r (1 . 0 e+6)
20 s t a b i l i t y _ b a r r i e r = torch . t enso r (1 . 0 e+12)
21

22 # est imate S y l v e s t e r c r i t e r i o n f o r a l l submatr ices
23 for idx in numpy . arange (n_states) :
24

25 # get submatrix
26 submatrix = A[0 : idx + 1 , 0 : idx + 1]
27

28 # est imate determinant o f submatrix
29 det = torch . det (submatrix)
30

31 # add c o e f f i c i e n t to l i s t
32 must_be_positive . append ((−1)∗∗(idx + 1) ∗ det)
33

34 # get minimum value o f l i s t ,
35 # mult ip ly with −1 f o r l o s s f u n c t i o n s g r e a t e r than zero
36 must_be_negative = −1 ∗ min (must_be_positive)
37

38 # i f bound i s exceeded , re turn l a r g e value
39 if must_be_negative >= 0 . 0 :
40 return s t a b i l i t y _ b a r r i e r

176 Appendix

41

42 # i f c l o s e to bound , l i n e a r i n c r e a s e pena l ty value
43 if must_be_negative >= −1 ∗ s t a b i l i t y _ o f f s e t :
44 return s t a b i l i t y _ s c a l i n g \
45 ∗ torch . r e l u (must_be_negative + s t a b i l i t y _ o f f s e t)
46

47 # i f c o n s t r a i n t i s s t a t i s f i e d , r e turn zero
48 return t enso r (0 . 0)

E.5 Differential Algebraic Equation Barrier

Listing 5: Differential Algebraic Equation Barrier (Python).

1 def dae_barr ier (self , input : torch . Tensor) −> torch . Tensor :
2 ”””Compute a d i f f e r e n t i a l −a l g eb ra i c −equat ion b a r r i e r .
3

4 Args :
5 input (torch . Tensor) : Network input data .
6 Contains s ta te , augmented s tate ,
7 and exogenous in fo rmat ion .
8 3 Dimensions , de f in ed as
9 [n_batches

10 x (n_states + n_aug + n_exo_input)
11 x n_time_steps]
12

13 Returns :
14 torch . Tensor : Sca l a r b a r r i e r
15 value f o r l o s s func t i on .
16 ”””
17

18 # get number o f time s t ep s
19 nt = input . shape [−1]
20

21 # i n i t i a l i z e mean squared e r r o r
22 mse = tenso r (0 . 0)
23

24 # constant
25 sca l ing_dae = torch . t en so r (1 e−3)
26

27 # f o r a l l time s t ep s t
28 for t in numpy . arange (nt) :
29

30 # compute net_dae f o r each time step

E Source Code 177

31 out = self . net_dae (input [: , : , t])
32

33 # compute MSE l o s s f o r each time step , sum up
34 mse += nn . f u n c t i o n a l . mse_loss (
35 out , 0 ∗ out , r educt i on=’mean ’)
36

37 return sca l ing_dae ∗ mse / nt

178 Appendix

179

Bibliography

Articles and Monographs

[21] ISO 8373 : 2021 Robotics, tech. rep., ISO, 2021.

[Ah10] Ahmed, N. K.; Atiya, A. F.; Gayar, N. E.; El-Shishiny, H.: An Empirical Com-
parison of Machine Learning Models for Time Series Forecasting. Econometric
Reviews 29/5-6, pp. 594–621, 2010, issn: 0747-4938.

[AM21] AMO Automatisierung Messtechnik Optik, St. Peter am Hart, Austria: Mod-
ulare Winkelmessgeräte nach dem induktiven AMOSIN® – Messprinzip,
https://www.amo-gmbh.com/, 2021.

[Am93] Amari, S.-i.: Backpropagation and stochastic gradient descent method. Neu-
rocomputing 5/4-5, pp. 185–196, 1993.

[An19] Andersson, J. A. E.; Gillis, J.; Horn, G.; Rawlings, J. B.; Diehl, M.: CasADi –
A software framework for nonlinear optimization and optimal control. Math-
ematical Programming Computation 11/1, pp. 1–36, 2019.

[An23] Ansari, A. F.; Heng, A.; Lim, A.; Soh, H.: Neural Continuous-Discrete State
Space Models for Irregularly-Sampled Time Series./, 2023, arXiv: 2301.11308
[cs.LG].

[AOH07] Albu-Schäffer, A.; Ott, C.; Hirzinger, G.: A Unified Passivity-based Control
Framework for Position, Torque and Impedance Control of Flexible Joint
Robots. The International Journal of Robotics Research 26/1, pp. 23–39,
2007, issn: 0278-3649.

[BCS18] Birpoutsoukis, G.; Csurcsia, P. Z.; Schoukens, J.: Efficient multidimensional
regularization for Volterra series estimation. Mechanical Systems and Signal
Processing 104/, pp. 896–914, 2018, issn: 08883270.

[BDS21] Beise, H.-P.; Da Cruz, S. D.; Schröder, U.: On decision regions of narrow deep
neural networks. Neural Networks 140/, pp. 121–129, 2021.

[BIS06] Bona, B.; Indri, M.; Smaldone, N.: Rapid Prototyping of a Model-Based Con-
trol With Friction Compensation for a Direct-Drive Robot. IEEE/ASME
Transactions on Mechatronics 11/5, pp. 576–584, 2006, issn: 1083-4435.

https://www.amo-gmbh.com/
https://arxiv.org/abs/2301.11308
https://arxiv.org/abs/2301.11308

180 BIBLIOGRAPHY

[BKH16] Ba, J. L.; Kiros, J. R.; Hinton, G. E.: Layer Normalization, 2016, url: http:
//arxiv.org/pdf/1607.06450v1.

[Bo12] Bottou, L.: Stochastic gradient descent tricks. In: Neural networks: Tricks of
the trade. Springer, pp. 421–436, 2012.

[BP02] Barabanov, N. E.; Prokhorov, D. V.: Stability analysis of discrete-time recur-
rent neural networks. IEEE transactions on neural networks 13/2, pp. 292–
303, 2002, issn: 1045-9227.

[Br16] Brüning, J.; Denkena, B.; Dittrich, M.; Park, H.-S.: Simulation Based Plan-
ning of Machining Processes with Industrial Robots. Procedia Manufacturing
6/December, pp. 17–24, 2016, issn: 23519789.

[Br18] Brunete, A.; Gambao, E.; Koskinen, J.; Heikkilä, T.; Kaldestad, K. B.;
Tyapin, I.; Hovland, G.; Surdilovic, D.; Hernando, M.; Bottero, A.; An-
ton, S.: Hard material small-batch industrial machining robot. Robotics and
Computer-Integrated Manufacturing 54/April 2018, pp. 185–199, 2018, issn:
07365845.

[BR21a] BR Automation, Bad Homburg, Germany: ACOPOSmulti user’s
manual, https://www.br-automation.com/en/products/motion-
control/acoposmulti/, 2021.

[BR21b] BR Automation, Bad Homburg, Germany: APC910 user’s manual,
https://www.br-automation.com/en/products/industrial-pcs/automation-
pc-910/, 2021.

[BST22] Beintema, G. I.; Schoukens, M.; Tóth, R.: Deep subspace encoders for
continuous-time state-space identification, 2022, arXiv: 2204 . 09405v1
[cs.LG].

[BST23] Beintema, G. I.; Schoukens, M.; Tóth, R.: Continuous-time identification of
dynamic state-space models by deep subspace encoding, 2023, arXiv: 2204.
09405v2 [cs.LG].

[BTC18] Bahloul, A.; Tliba, S.; Chitour, Y.: Dynamic parameters identification of
an industrial robot with and without payload. IFAC-PapersOnLine 51/15,
pp. 443–448, 2018.

[BTS21a] Beintema, G.; Tóth, R.; Schoukens, M.: Nonlinear state-space identification
using deep encoder networks./, pp. 241–250, 2021.

[BTS21b] Beintema, G. I.; Tóth, R.; Schoukens, M.: Nonlinear State-space Model Iden-
tification from Video Data using Deep Encoders, 2021, url: http://arxiv.
org/pdf/2012.07721v3.

http://arxiv.org/pdf/1607.06450v1
http://arxiv.org/pdf/1607.06450v1
https://www.br-automation.com/en/products/motion-control/acoposmulti/
https://www.br-automation.com/en/products/motion-control/acoposmulti/
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
https://www.br-automation.com/en/products/industrial-pcs/automation-pc-910/
https://arxiv.org/abs/2204.09405v1
https://arxiv.org/abs/2204.09405v1
https://arxiv.org/abs/2204.09405v2
https://arxiv.org/abs/2204.09405v2
http://arxiv.org/pdf/2012.07721v3
http://arxiv.org/pdf/2012.07721v3

ARTICLES AND MONOGRAPHS 181

[Bu16] Butcher, J. C.: Numerical methods for ordinary differential equations. Wiley,
Chichester, UK, 2016, isbn: 9781119121534.

[BWS15] Brahma, P. P.; Wu, D.; She, Y.: Why deep learning works: A manifold disen-
tanglement perspective. IEEE transactions on neural networks and learning
systems 27/10, pp. 1997–2008, 2015.

[CBG90] Chen, S.; Billings, S. A.; Grant, P. M.: Nonlinear system identification using
neural networks. International Journal of Control 51/6, pp. 1191–1214, 1990,
issn: 0020-7179.

[Ch14] Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y.: Empirical Evaluation of Gated
Recurrent Neural Networks on Sequence Modeling./, 2014, arXiv: 1412.3555
[cs.NE].

[CH17] Cordes, M.; Hintze, W.: Offline simulation of path deviation due to joint
compliance and hysteresis for robot machining. The International Journal of
Advanced Manufacturing Technology 90/1-4, pp. 1075–1083, Apr. 2017, issn:
0268-3768, url: http://link.springer.com/10.1007/s00170-016-9461-z.

[Ch18] Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D.: Neural Ordi-
nary Differential Equations. Advances in neural information processing sys-
tems/31, 2018, url: http://arxiv.org/pdf/1806.07366v5.

[Co14] Correia, A.; Matias, J.; Mestre, P.; Serodio, C.: Comparison of Some Penalty
and Barrier Techniques in Direct Search Methods. In: 2014 14th International
Conference on Computational Science and Its Applications. IEEE, pp. 191–
195, 2014, isbn: 978-1-4799-4264-0.

[Co17] Corke, P.: Robotics, vision and control: fundamental algorithms in MATLAB.
Springer, 2017, isbn: ISBN 978-3-319-54413-7.

[Co84] Cooper, G. J.: A Generalization of Algebraic Stability for Runge-Kutta Meth-
ods. IMA Journal of Numerical Analysis/, 1984.

[DB16] De Luca, A.; Book, W. J.: Robots with Flexible Elements. In: Springer Hand-
book of Robotics. Springer International Publishing, Cham, pp. 243–282,
2016.

[DDT19] Dupont, E.; Doucet, A.; Teh, Y. W.: Augmented Neural ODEs. Advances in
neural information processing systems/32, 2019, url: http://arxiv.org/pdf/
1904.01681v3.

[De10] Deflorian, M.: On Runge-Kutta neural networks: Training in series-parallel
and parallel configuration. 49th IEEE Conference on Decision and Control/,
2010.

https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
http://link.springer.com/10.1007/s00170-016-9461-z
http://arxiv.org/pdf/1806.07366v5
http://arxiv.org/pdf/1904.01681v3
http://arxiv.org/pdf/1904.01681v3

182 BIBLIOGRAPHY

[De11a] Deflorian, M.: Runge-Kutta Neural Networks for identification of dynamic
models at the testbed. In: Proceedings of the 6th Conference Design of Ex-
periments (DoE) in Engine Development. 2011.

[De11b] Deflorian, Michael: Versuchsplanung und Methoden zur Identifikation
zeitkontinuierlicher Zustandsraummodelle am Beispiel des Verbrennungsmo-
tors, Ph.D. Thesis, München: Technische Universität München, 2011.

[De11c] Devlieg, R.: High-Accuracy Robotic Drilling/Milling of 737 Inboard Flaps.
SAE International Journal of Aerospace 4/2, pp. 1373–1379, 2011, issn:
19463855.

[De20] Demeester, T.: System identification with time-aware neural sequence models.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34. 04,
pp. 3757–3764, 2020.

[Di18] Ding, L.; Li, X.; Li, Q.; Chao, Y.: Nonlinear Friction and Dynamical Identi-
fication for a Robot Manipulator with Improved Cuckoo Search Algorithm.
Journal of Robotics 2018/, pp. 1–10, 2018, issn: 1687-9600.

[DK11] Deflorian, M.; Klöpper, F.: Schnelles Training neuronaler Netze zur Iden-
tifikation nichtlinearer dynamischer Systeme. at - Automatisierungstechnik
59/, pp. 75–83, 2011.

[DKR10] Deflorian, M.; Klöpper, F.; Rückert, J.: Online Dynamic Black Box Modelling
and Adaptive Experiment Design in Combustion Engine Calibration. IFAC
Proceedings Volumes 43/7, pp. 703–708, 2010, issn: 14746670.

[DL98] De Luca, A.; Lucibello, P.: A general algorithm for dynamic feedback lin-
earization of robots with elastic joints. Proceedings - IEEE International
Conference on Robotics and Automation 1/May, pp. 504–510, 1998, issn:
10504729.

[DR14] Deflorian, M.; Rungger, M.: Generalization of an input-to-state stability pre-
serving Runge–Kutta method for nonlinear control systems. Journal of Com-
putational and Applied Mathematics 255/, pp. 346–352, 2014, issn: 03770427.

[EK00] Efe, M. O.; Kaynak, O.: A comparative study of soft-computing method-
ologies in identification of robotic manipulators. Robotics and Autonomous
Systems/30: 221–230, 2000.

[EK99] Efe, M. O.; Kaynak, O.: A comparative study of neural network structures in
identication of nonlinear systems. Mechatronics/9(3):287–300, 1999.

[FN93] Funahashi, K.-i.; Nakamura, Y.: Approximation of dynamical systems by
continuous time recurrent neural networks. Neural Networks 6/6, pp. 801–
806, 1993, issn: 08936080.

ARTICLES AND MONOGRAPHS 183

[FP21] Forgione, M.; Piga, D.: Continuous-time system identification with neural
networks: Model structures and fitting criteria. European Journal of Control
59/, pp. 69–81, 2021, issn: 09473580.

[Fr14] Freising, M.; Kothe, S.; Rott, M.; Susemihl, H.; Hintze, W.: Increasing Accu-
racy of Industrial Robots in Machining of Carbon Fiber Reinforced Plastics.
In: Lecture Notes in Production Engineering. September, pp. 115–121, 2014,
isbn: 978-3-319-01964-2.

[Fr17] Frommknecht, A.; Kuehnle, J.; Effenberger, I.; Pidan, S.: Multi-sensor mea-
surement system for robotic drilling. Robotics and Computer-Integrated
Manufacturing 47/January, pp. 4–10, 2017, issn: 07365845.

[GB10] Glorot, X.; Bengio, Y.: Understanding the difficulty of training deep feedfor-
ward neural networks. International Conference on Artificial Intelligence and
Statistics (AISTATS)/, 2010.

[GDH01] Grotjahn, M.; Daemi, M.; Heimann, B.: Friction and rigid body identification
of robot dynamics. International journal of solids and structures 38/10-13,
pp. 1889–1902, 2001.

[Gi17] Giorgio, G.: Various Proofs of the Sylvester Criterion for Quadratic Forms.
Journal of Mathematics Research 9/6, p. 55, 2017, issn: 1916-9795.

[GJV13] Gautier, M.; Janot, A.; Vandanjon, P. O.: A New Closed-Loop Output Error
Method for Parameter Identification of Robot Dynamics. IEEE Transactions
on Control Systems Technology 21/2, pp. 428–444, Mar. 2013, issn: 1063-
6536.

[GK92] Gautier, M.; Khalil, W.: Exciting Trajectories for Robot Inertial Parameters
Identification. IFAC Proceedings Volumes 25/15, pp. 585–590, 1992, issn:
14746670.

[Ha18b] Hasani, R. M.; Lechner, M.; Amini, A.; Rus, D.; Grosu, R.: Liquid Time-
constant Recurrent Neural Networks as Universal Approximators, 2018, url:
http://arxiv.org/pdf/1811.00321v1.

[Ha19] Hanin, B.: Universal function approximation by deep neural nets with
bounded width and relu activations. Mathematics 7/10, p. 992, 2019.

[Ha20] Hasani, R.: Interpretable Recurrent Neural Networks in Continuous-time
Control Environments, Ph.D. Thesis, TU Wien, 2020.

[Ha21] Hasani, R.; Lechner, M.; Amini, A.; Rus, D.; Grosu, R.: Liquid time-constant
networks. 35/9, pp. 7657–7666, 2021.

http://arxiv.org/pdf/1811.00321v1

184 BIBLIOGRAPHY

[Ha22b] Hasani, R.; Lechner, M.; Amini, A.; Liebenwein, L.; Ray, A.;
Tschaikowski, M.; Teschl, G.; Rus, D.: Closed-form continuous-time
neural networks. Nature Machine Intelligence/, pp. 1–12, 2022.

[Ha90] Haykin, S.: Neural Networks - A Comprehensive Foundation. Prentice hall,
1990.

[He16] He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recogni-
tion. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. Pp. 770–778, 2016.

[HEV18] Huynh, H. N.; Edouard Riviere-Lorphevre; Verlinden, O.: Multibody mod-
elling of a flexible 6-axis robot dedicated to robotic machining. The 5 th
Joint International Conference on Multibody System Dynamics/July, pp. 1–
18, 2018.

[HGG15] Hamon, P.; Gautier, M.; Garrec, P.: New dry friction model with load- and
velocity-dependence and dynamic identification of multi-DOF robots. IEEE
International Conference on Robotics and Automation (ICRA)/, pp. 1077–
1084, 2015.

[HJ12] Horn, R. A.; Johnson, C. R.: Matrix analysis. Cambridge University Press,
Cambridge and New York, 2012, isbn: 9780521839402.

[Ho91] Hornik, K.: Approximation capabilities of multilayer feedforward networks.
Neural Networks 4/2, pp. 251–257, 1991, issn: 08936080.

[HR18] Haber, E.; Ruthotto, L.: Stable architectures for deep neural networks. Inverse
Problems 34/1, p. 014004, 2018, issn: 0266-5611.

[HS97] Hochreiter, S.; Schmidhuber, J.: Long Short-Term Memory. Neural Compu-
tation/9, pp. 1735–1780, 1997.

[Hu20] Huynh, H. N.; Assadi, H.; Rivière-Lorphèvre, E.; Verlinden, O.; Ahmadi, K.:
Modelling the dynamics of industrial robots for milling operations. Robotics
and Computer-Integrated Manufacturing 61/March 2019, p. 101852, 2020,
issn: 07365845.

[HW02] Hu, S.; Wang, J.: Global stability of a class of continuous-time recurrent
neural networks. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 49/9, pp. 1334–1347, 2002, issn: 10577122.

[IF22] IFR: World Robotics, tech. rep., 2022.

[ISA15] Iglesias, I.; Sebastián, M. A.; Ares, J. E.: Overview of the State of Robotic
Machining: Current Situation and Future Potential. Procedia Engineering
132/, pp. 911–917, 2015, issn: 18777058.

ARTICLES AND MONOGRAPHS 185

[JGB19] Janot, A.; Gautier, M.; Brunot, M.: Data Set and Reference Models of EMPS.
2019 Workshop on Nonlinear System Identification Benchmarks, Eindhoven,
The Netherlands/, 2019.

[Ji18] Jin, L.; Li, S.; Yu, J.; He, J.: Robot manipulator control using neural networks:
A survey. Neurocomputing 285/, pp. 23–34, 2018, issn: 0925-2312, url:
https://www.sciencedirect.com/science/article/pii/S0925231218300158.

[JL92] Johnson, C. T.; Lorenz, R. D.: Experimental identification of friction and its
compensation in precise, position controlled mechanisms. IEEE Transactions
on Industry Applications 28/6, pp. 1392–1398, 1992, issn: 0093-9994.

[JW01] Jiang, Z.-P.; Wang, Y.: Input-to-state stability for discrete-time nonlinear
systems. Automatica/37, pp. 857–869, 2001, issn: 00051098.

[JW21] Janot, A.; Wensing, P. M.: Sequential semidefinite optimization for physically
and statistically consistent robot identification. Control Engineering Practice
107/, p. 104699, 2021.

[KB14] Kingma, D. P.; Ba, J.: ADAM: A Method for Stochastic Optimization, 2014,
url: http://arxiv.org/pdf/1412.6980v9.

[KB20] Karagoz, R.; Batselier, K.: Nonlinear system identification with regularized
Tensor Network B-splines. Automatica 122/, p. 109300, 2020, issn: 00051098.

[KC19] Kim, J.; Croft, E. A.: Full-state tracking control for flexible joint robots with
singular perturbation techniques. IEEE Transactions on Control Systems
Technology 27/1, pp. 63–73, 2019, issn: 1558-0865.

[KF18] Khodabandehlou, H.; Fadali, M. S.: Nonlinear System Identification using
Neural Networks and Trajectory-Based Optimization./, 2018, arXiv: 1804.
10346 [eess.SP].

[KG13] Kammerer, N.; Garrec, P.: Dry friction modeling in dynamic identification
for robot manipulators: Theory and experiments. In: 2013 IEEE International
Conference on Mechatronics (ICM). IEEE, pp. 422–429, 2013.

[KG97] Kircanski, N. M.; Goldenberg, A. A.: Experimental study of nonlinear stiff-
ness, hysteresis, and friction effects in robot joints with harmonic drives and
torque sensors. International Journal of Robotics Research 16/2, pp. 214–239,
1997, issn: 02783649.

[KGL07] Khalil, W.; Gautier, M.; Lemoine, P.: Identification of the payload inertial pa-
rameters of industrial manipulators. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation. IEEE, pp. 4943–4948, 2007.

[Kh02] Khalil, H. K.: Nonlinear Systems. Prentice hall Englewood Cliffs, 2002.

https://www.sciencedirect.com/science/article/pii/S0925231218300158
http://arxiv.org/pdf/1412.6980v9
https://arxiv.org/abs/1804.10346
https://arxiv.org/abs/1804.10346

186 BIBLIOGRAPHY

[KH91] Krogh, A.; Hertz, J.: A simple weight decay can improve generalization. Ad-
vances in neural information processing systems 4/, 1991.

[Ki22] Kidger, P.: On Neural Differential Equations, 2022, url: http://arxiv.org/
pdf/2202.02435v1.

[Kl14] Klimchik, A.; Bondarenko, D.; Pashkevich, A.; Briot, S.; Furet, B.: Com-
pliance Error Compensation in Robotic-Based Milling. In: Lecture Notes in
Electrical Engineering. Vol. 283, October, pp. 197–216, 2014, isbn: 978-3-
319-03499-7.

[KPM07] Kermani, M. R.; Patel, R. V.; Moallem, M.: Friction Identification and Com-
pensation in Robotic Manipulators. IEEE Transactions on Instrumentation
and Measurement 56/6, pp. 2346–2353, 2007, issn: 0018-9456.

[KSH17] Krizhevsky, A.; Sutskever, I.; Hinton, G. E.: Imagenet classification with deep
convolutional neural networks. Communications of the ACM 60/6, pp. 84–90,
2017.

[Ku08] Kurze, M.: Modellbasierte Regelung von Robotern mit elastischen Gelenken
ohne abtriebseitige Sensorik, Dissertation, Technische Universität München,
2008.

[KU21] KUKA Aktiengesellschaft, Augsburg, Germany: KR QUANTEC KR300
R2500 ultra SE Operating Manual, https://www.kuka.com/en-de, 2021.

[Lä09] Längkvist, M.: Online Identification of Friction Coefficients in an Industrial
Robot, Examensarbete, Linköpings universitet, 2009.

[LC13] Ljung, L.; Chen, T.: What can regularization offer for estimation of dynam-
ical systems? IFAC International Workshop on Adaptation and Learning in
Control and Signal Processing/, 2013.

[Le17] Lee, J. H.: Relaxing coherence for modern learning applications, PhD thesis,
Georgia Institute of Technology, 2017.

[LH20] Lechner, M.; Hasani, R.: Learning Long-Term Dependencies in Irregularly-
Sampled Time Series, June 2020, arXiv: 2006.04418v4.

[Lo99] Lohmiller, W.: Contraction Analysis of Nonlinear Systems, Ph.D. Thesis,
Massachusetts Institute of Technology, 1999.

[LS17] Liang, S.; Srikant, R.: Why Deep Neural Networks for Function Approxima-
tion?/, 2017, arXiv: 1610.04161 [cs.LG].

[LS97] Lohmiller, W.; Slotine, J.-J. E.: Applications of Contraction Analysis. Con-
ference on Decision and Control 36/, 1997.

http://arxiv.org/pdf/2202.02435v1
http://arxiv.org/pdf/2202.02435v1
https://www.kuka.com/en-de
https://arxiv.org/abs/2006.04418v4
https://arxiv.org/abs/1610.04161

ARTICLES AND MONOGRAPHS 187

[LZD17] Lin, Y.; Zhao, H.; Ding, H.: Posture optimization methodology of 6R indus-
trial robots for machining using performance evaluation indexes. Robotics and
Computer-Integrated Manufacturing 48/April 2016, pp. 59–72, 2017, issn:
07365845.

[Ma12] Malzahn, J.: Robotics Toolbox, RST, Technische Universität Dortmund,
2012.

[Ma15] Martin Abadi; Ashish Agarwal; Paul Barham; Eugene Brevdo; Zhifeng Chen;
Craig Citro; Greg S. Corrado; Andy Davis; Jeffrey Dean; Matthieu Devin;
Sanjay Ghemawat; Ian Goodfellow; Andrew Harp; Geoffrey Irving; Michael
Isard; Yangqing Jia; Rafal Jozefowicz; Lukasz Kaiser; Manjunath Kud-
lur; Josh Levenberg; Dandelion Mané; Rajat Monga; Sherry Moore; Derek
Murray; Chris Olah; Mike Schuster; Jonathon Shlens; Benoit Steiner; Ilya
Sutskever; Kunal Talwar; Paul Tucker; Vincent Vanhoucke; Vijay Vasudevan;
Fernanda Viégas; Oriol Vinyals; Pete Warden; Martin Wattenberg; Martin
Wicke; Yuan Yu; Xiaoqiang Zheng: TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems, 2015, url: https://www.tensorflow.org/.

[Ma19] MathWorks, I.: Symbolic Math Toolbox, 2019, url: https : / / www .
mathworks.com/help/symbolic/.

[MA21] MATLAB: MATLAB (R2021a), Natick, Massachusetts, 2021.

[MAS03] Meireles, M. R.; Almeida, P. E.; Simões, M. G.: A comprehensive review for
industrial applicability of artificial neural networks. IEEE transactions on
industrial electronics 50/3, pp. 585–601, 2003.

[Me20] Mesmer, P.; Neubauer, M.; Lechler, A.; Verl, A.: Drive-Based Vibration
Damping Control for Robot Machining. IEEE Robotics and Automation Let-
ters 5/2, pp. 564–571, 2020, issn: 23773766.

[MFP20] Mavkov, B.; Forgione, M.; Piga, D.: Integrated Neural Networks for Nonlinear
Continuous-Time System Identification. IEEE Control Systems Letters/, p. 1,
2020.

[MH08] Moberg, S.; Hanssen, S.: On Feedback Linearization for Robust Tracking Con-
trol of Flexible Joint Robots. 41/2, pp. 12218–12223, 2008, issn: 14746670.

[Ne01] Nelles, O.: Nonlinear system identification. Springer Verlag, Heidelberg, Ger-
many, 2001.

[NH10] Nair, V.; Hinton, G. E.: Rectified linear units improve restricted boltzmann
machines./, pp. 807–814, 2010.

https://www.tensorflow.org/
https://www.mathworks.com/help/symbolic/
https://www.mathworks.com/help/symbolic/

188 BIBLIOGRAPHY

[NP90] Narendra, K.; Parthasarathy, K.: Identification and Control of Dynamical
Systems Using Neural Networks. IEEE transactions on neural networks 1/1,
pp. 4–27, 1990, issn: 1045-9227.

[NSP08] Nguyen-Tuong, D.; Seeger, M.; Peters, J.: Computed torque control with non-
parametric regression models. In: 2008 American Control Conference. IEEE,
pp. 212–217, 2008.

[Og10] Ogasawara, E.; Martinez, L.; de Oliveira, D.; Zimbrão, G.; Pappa, G.; Mat-
toso, M.: Adaptive Normalization: A Novel Data Normalization Approach for
Non-Stationary Time Series. IJCNN/, 2010.

[Og16] Ogunmolu, O.; Gu, X.; Jiang, S.; Gans, N.: Nonlinear Systems Identification
Using Deep Dynamic Neural Networks./, 2016, arXiv: 1610.01439 [cs.NE].

[Ol12] Olabi, A.; Damak, M.; Bearee, R.; Gibaru, O.; Leleu, S.: Improving the accu-
racy of industrial robots by offline compensation of joints errors. 2012 IEEE
International Conference on Industrial Technology, ICIT 2012, Proceedings/,
pp. 492–497, 2012.

[OR20] Onken, D.; Ruthotto, L.: Discretize-Optimize vs. Optimize-Discretize for
Time-Series Regression and Continuous Normalizing Flows, 2020, arXiv:
2005.13420v2.

[Pa19] Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.;
Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; Desmaison, A.; Kopf, A.;
Yang, E.; DeVito, Z.; Raison, M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.;
Fang, L.; Bai, J.; Chintala, S.: PyTorch: An Imperative Style, High-
Performance Deep Learning Library. Advances in neural information pro-
cessing systems/32, pp. 8024–8035, 2019, url: http://papers .neurips.cc/
paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

[PKC11] Pashkevich, A.; Klimchik, A.; Chablat, D.: Enhanced stiffness modeling of
manipulators with passive joints. Mechanism and Machine Theory 46/5,
pp. 662–679, 2011, issn: 0094114X.

[Pr98] Prechelt, L.: Early Stopping - But When? In (Orr, G. B.; Müller, K.-R., eds.):
Neural Networks: Tricks of the Trade. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 55–69, 1998, isbn: 978-3-540-49430-0, url: https://doi.org/
10.1007/3-540-49430-8_3.

[RCD19] Rubanova, Y.; Chen, R. T.; Duvenaud, D. K.: Latent ordinary differential
equations for irregularly-sampled time series. Advances in neural information
processing systems 32/, 2019.

https://arxiv.org/abs/1610.01439
https://arxiv.org/abs/2005.13420v2
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1007/3-540-49430-8_3
https://doi.org/10.1007/3-540-49430-8_3

ARTICLES AND MONOGRAPHS 189

[Re17] Relan, R.; Tiels, K.; Marconato, A.; Schoukens, J.: An Unstructured Flex-
ible Nonlinear Model for the Cascaded Water-tanks Benchmark. IFAC-
PapersOnLine 50/1, pp. 452–457, 2017, issn: 2405-8963.

[RH20] Ruthotto, L.; Haber, E.: Deep Neural Networks Motivated by Partial Differ-
ential Equations. Journal of Mathematical Imaging and Vision 62/3, pp. 352–
364, 2020, issn: 0924-9907.

[RHB09] Ruderman, M.; Hoffmann, F.; Bertram, T.: Modeling and Identification of
Elastic Robot Joints With Hysteresis and Backlash. IEEE Transactions on
Industrial Electronics 56/10, pp. 3840–3847, 2009, issn: 0278-0046.

[Sc14] Schneider, U.; Momeni-K, M.; Ansaloni, M.; Verl, A.: Stiffness modeling of
industrial robots for deformation compensation in machining. IEEE Inter-
national Conference on Intelligent Robots and Systems/Iros, pp. 4464–4469,
2014, issn: 21530866.

[SC15] Sergey Ioffe; Christian Szegedy: Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. International conference
on machine learning/, 2015.

[Sc16a] Schneider, U.; Drust, M.; Ansaloni, M.; Lehmann, C.; Pellicciari, M.; Leali, F.;
Gunnink, J. W.; Verl, A.: Improving robotic machining accuracy through ex-
perimental error investigation and modular compensation. The International
Journal of Advanced Manufacturing Technology 85/, pp. 3–15, 2016.

[Sc16b] Schoukens, M.; Mattsson, P.; Wigren, T.; Noel, J. P.: Cascaded tanks bench-
mark combining soft and hard nonlinearities. Workshop on Nonlinear System
Identification Benchmarks, Brussels, Belgium/, 2016.

[Sc22] Schüssler, M.: Machine learning with nonlinear state space models. at-
Automatisierungstechnik 70/11, pp. 1027–1028, 2022.

[Sh20] Sherstinsky, A.: Fundamentals of Recurrent Neural Network (RNN) and Long
Short-Term Memory (LSTM) Network. Physica D: Nonlinear Phenomena
404/8, p. 132306, 2020, issn: 0167-2789, arXiv: 1808.03314v9.

[SI06] SIEMENS AG, München, Germany: Projektierungshandbuch Ausgabe
12/2006, Synchronmotoren 1FK7, SINAMICS S120, https://support.indus-
try.siemens.com/cs/document/28683106/sinamics-s120-synchronmotoren-
1fk7-?dti=0&lc=de-WW, 2006.

[Sj95] Sjöberg, J.; Zhang, Q.; Ljung, L.; Benveniste, A.; Deylon, B.; Gloren-
nec, P.-Y.; Hjalmarsson, H.; Juditsky, A.: Nonlinear Black-Box Modeling in
System Identification: a Unified Overview./, 1995.

https://arxiv.org/abs/1808.03314v9
https://support.industry.siemens.com/cs/document/28683106/sinamics-s120-synchronmotoren-1fk7-?dti=0&lc=de-WW
https://support.industry.siemens.com/cs/document/28683106/sinamics-s120-synchronmotoren-1fk7-?dti=0&lc=de-WW
https://support.industry.siemens.com/cs/document/28683106/sinamics-s120-synchronmotoren-1fk7-?dti=0&lc=de-WW

190 BIBLIOGRAPHY

[SL19] Schoukens, J.; Ljung, L.: Nonlinear System Identification: A User-Oriented
Roadmap. IEEE Control Systems Magazine/39, pp. 28–99, 2019, url: http:
//arxiv.org/pdf/1902.00683v1.

[Sm20] Smyl, S.: A hybrid method of exponential smoothing and recurrent neural
networks for time series forecasting. International Journal of Forecasting 36/
1, pp. 75–85, 2020, issn: 01692070.

[So08] Sontag, E. D.: Input to State Stability: Basic Concepts and Results. Nonlinear
and optimal control theory: lectures given at the CIME/1932:163–220, 2008.

[Sp87] Spong, M. W.: Modeling and control of elastic joint robots. Journal of Dy-
namic Systems, Measurement and Control, Transactions of the ASME 109/4,
pp. 310–319, 1987, issn: 15289028.

[SP99] Sanchez, E. N.; Perez, J. P.: Input-to-state stability (ISS) analysis for dynamic
neural networks. IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applications 46/11, pp. 1395–1398, 1999, issn: 1057-7122.

[Sr14] Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. The jour-
nal of machine learning research 15/1, pp. 1929–1958, 2014.

[SS17] Svensson, A.; Schön, T. B.: A flexible state–space model for learning nonlinear
dynamical systems. Automatica 80/, pp. 189–199, 2017, issn: 00051098.

[SS97] Sola, J.; Sevilla, J.: Importance of input data normalization for the application
of neural networks to complex industrial problems. IEEE Transactions on
Nuclear Science 44/3, pp. 1464–1468, 1997, issn: 0018-9499.

[ST17] Schoukens, M.; Tiels, K.: Identification of block-oriented nonlinear systems
starting from linear approximations: A survey. Automatica 85/, pp. 272–292,
2017.

[ST20] Schoukens, M.; Tóth, R.: On the Initialization of Nonlinear LFR Model Iden-
tification with the Best Linear Approximation, 21st IFAC World Congress,
2020, url: https : / / www . sciencedirect . com / science / article / pii /
S2405896320304006.

[ST98] Scarselli, F.; Tsoi, A. C.: Universal approximation using feedforward neural
networks: A survey of some existing methods, and some new results. Neural
networks 11/1, pp. 15–37, 1998.

[SVS07] Swevers, J.; Verdonck, W.; de Schutter, J.: Dynamic Model Identification
for Industrial Robots. IEEE Control Systems 27/5, pp. 58–71, 2007, issn:
1066-033X.

http://arxiv.org/pdf/1902.00683v1
http://arxiv.org/pdf/1902.00683v1
https://www.sciencedirect.com/science/article/pii/S2405896320304006
https://www.sciencedirect.com/science/article/pii/S2405896320304006

ARTICLES AND MONOGRAPHS 191

[TB97] Tsoi, A. C.; Back, A. D.: Discrete time recurrent neural network architectures:
A unifying review. Neurocomputing 15/3-4, pp. 183–223, 1997.

[TPA16] Tran, T. L.; Pham, A. D.; Ahn, H.-J.: Lost motion analysis of one stage cycloid
reducer considering tolerances. International Journal of Precision Engineering
and Manufacturing 17/8, pp. 1009–1016, Aug. 2016, issn: 2234-7593.

[TUB20] Tika, A.; Ulmen, J.; Bajcinca, N.: Dynamic Parameter Estimation Utiliz-
ing Optimized Trajectories. In: 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, pp. 7300–7307, 2020.

[Uç19] Uçak, K.: A Runge–Kutta neural network-based control method for nonlinear
MIMO systems. Soft Computing 23/17, pp. 7769–7803, 2019, issn: 1432-7643.

[Uç20] Uçak, K.: A Novel Model Predictive Runge–Kutta Neural Network Controller
for Nonlinear MIMO Systems. Neural Processing Letters 51/2, pp. 1789–1833,
2020, issn: 1370-4621.

[VD94] Van Overschee, P.; De Moor, B.: N4SID: Subspace algorithms for the iden-
tification of combined deterministic-stochastic systems. Automatica 30/1,
Special issue on statistical signal processing and control, pp. 75–93, 1994,
issn: 0005-1098, url: https://www.sciencedirect.com/science/article/pii/
0005109894902305.

[Ve15] Vemula, B. R.: Evaluation of robot structures: For applications that re-
quire high performance, safety and low energy consumption, PhD thesis,
Mälardalen University, 2015.

[VKL17] Vieler, H.; Karim, A.; Lechler, A.: Drive based damping for robots with
secondary encoders. Robotics and Computer-Integrated Manufacturing 47/
February, pp. 117–122, 2017, issn: 07365845.

[We90] Werbos, P. J.: Backpropagation Through Time: What It Does and How to
Do It. Proceedings of the IEEE 78/10, pp. 1550–1560, 1990.

[WKK18] Wu, K.; Krewet, C.; Kuhlenkötter, B.: Dynamic performance of industrial
robot in corner path with CNC controller. Robotics and Computer-Integrated
Manufacturing 54/, pp. 156–161, Dec. 2018, issn: 07365845, url: https://
linkinghub.elsevier.com/retrieve/pii/S0736584516303775.

[WKS18] Wensing, P. M.; Kim, S.; Slotine, J.-J. E.: Linear Matrix Inequalities for Phys-
ically Consistent Inertial Parameter Identification: A Statistical Perspec-
tive on the Mass Distribution. IEEE Robotics and Automation Letters 3/
1, pp. 60–67, 2018.

https://www.sciencedirect.com/science/article/pii/0005109894902305
https://www.sciencedirect.com/science/article/pii/0005109894902305
https://linkinghub.elsevier.com/retrieve/pii/S0736584516303775
https://linkinghub.elsevier.com/retrieve/pii/S0736584516303775

192 BIBLIOGRAPHY

[WL92] Wang, W. S.; Liu, C. H.: Controller Design and Implementation for Industrial
Robots with Flexible Joints. IEEE Transactions on Industrial Electronics 39/
5, pp. 379–391, 1992, issn: 15579948.

[WL98] Wang, Y.-J.; Lin, C.-T.: Runge-Kutta Neural Network For Identification Of
Dynamical Systems In High Accuracy. IEEE transactions on neural networks/
9(2):294–307, 1998, issn: 1045-9227.

[WWY10] Wu, J.; Wang, J.; You, Z.: An overview of dynamic parameter identification
of robots. Robotics and Computer-Integrated Manufacturing 26/5, pp. 414–
419, 2010, issn: 07365845.

[WX06] Wang, L.; Xu, Z.: Sufficient and necessary conditions for global exponential
stability of discrete-time recurrent neural networks. Circuits and Systems I:
Regular Papers, IEEE Transactions on 53/6, pp. 1373–1380, 2006.

[WZ89] Williams, R. J.; Zipser, D.: A Learning Algorithm for Continually Running
Fully Recurrent Neural Networks. Neural Computation/1(2):270–280, 1989.

[WZF09] Wang, J.; Zhang, H.; Fuhlbrigge, T.: Improving machining accuracy with
robot deformation compensation. 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2009/, pp. 3826–3831, 2009.

[XJ02] Xiong, Q.; Jutan, A.: Grey-box modelling and control of chemical processes.
Chemical Engineering Science/, 2002.

[Ya16] Yang, T.; Yan, S.; Ma, W.; Han, Z.: Joint dynamic analysis of space manipu-
lator with planetary gear train transmission. Robotica 34/5, pp. 1042–1058,
May 2016, issn: 0263-5747.

[YP18] Yin, X.; Pan, L.: Enhancing trajectory tracking accuracy for industrial robot
with robust adaptive control. Robotics and Computer-Integrated Manufac-
turing 51/, pp. 97–102, June 2018, issn: 07365845.

[Yu04] Yu, W.: Nonlinear system identification using discrete-time recurrent neural
networks with stable learning algorithms. Information sciences 158/, pp. 131–
147, 2004.

[Yu18] Yuan, L.; Pan, Z.; Ding, D.; Sun, S.; Li, W.: A Review on Chatter in Robotic
Machining Process Regarding Both Regenerative and Mode Coupling Mecha-
nism. IEEE/ASME Transactions on Mechatronics 23/5, pp. 2240–2251, 2018,
issn: 10834435.

[YYH15] Yang, T.; Yan, S.; Han, Z.: Nonlinear model of space manipulator joint con-
sidering time-variant stiffness and backlash. Journal of Sound and Vibration
341/, pp. 246–259, 2015, issn: 10958568.

ARTICLES AND MONOGRAPHS 193

[Zh20] Zhang, B.; Wu, J.; Wang, L.; Yu, Z.: Accurate dynamic modeling and
control parameters design of an industrial hybrid spray-painting robot.
Robotics and Computer-Integrated Manufacturing 63/, p. 101923, June 2020,
issn: 07365845, url: https : / / linkinghub . elsevier . com / retrieve / pii /
S0736584519300043.

https://linkinghub.elsevier.com/retrieve/pii/S0736584519300043
https://linkinghub.elsevier.com/retrieve/pii/S0736584519300043

194 BIBLIOGRAPHY

Own Publications

[WDR21] Weigand, J.; Deflorian, M.; Ruskowski, M.: Input-to-state stability for system
identification with continuous-time Runge–Kutta neural networks. Interna-
tional Journal of Control/, pp. 1–17, 2021, issn: 0020-7179.

[We16] Weigand, J.: Integration of Physically-Motivated Dynamical Models into It-
erative Learning Controllers: Bachelorthesis, RWTH Aachen University, In-
stitute for Control, supervised by Sebastian Stemmler, 2016.

[We17] Weigand, J.: Systemidentification of a CNC-Milling Center Using Artificial
Neural Networks: Masterthesis, RWTH Aachen University, Institute for Con-
trol, supervised by Sebastian Stemmler, 2017.

[We21] Weigand, J.; Raible, J.; Zantopp, N.; Demir, O.; Trachte, A.; Wagner, A.;
Ruskowski, M.: Hybrid Data-Driven Modelling for Inverse Control of Hy-
draulic Excavators. In: 2021 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS). IEEE, pp. 2127–2134, 2021, isbn: 978-1-
6654-1714-3.

[We22] Weigand, J.; Götz, J.; Ulmen, J.; Ruskowski, M.: Dataset and Baseline for an
Industrial Robot Identification Benchmark. Workshop on Nonlinear System
Identification Benchmarks/, 2022.

[We23] Weigand, J.; Beintema, G.; Ulmen, J.; Görges, D.; Tóth, R.; Schoukens, M.;
Ruskowski, M.: State Derivative Normalization for Continuous-Time Neural
Networks. In: Publication unter review. 2023.

[WGR20] Weigand, J.; Gafur, N.; Ruskowski, M.: Flatness Based Control of an In-
dustrial Robot Joint Using Secondary Encoders. Robotics and Computer-
Integrated Manufacturing. 68/, p. 102039, 2020, issn: 07365845.

[WVR20a] Weigand, J.; Volkmann, M.; Ruskowski, M.: Neural Adaptive Control of a
Robot Joint Using Secondary Encoders. In (Berns, K.; Görges, D., eds.):
Advances in Service and Industrial Robotics. Vol. 980, Advances in Intelligent
Systems and Computing, Springer International Publishing, Cham, pp. 153–
161, 2020, isbn: 978-3-030-19647-9.

[WVR20b] Weigand, J.; Volkmann, M.; Ruskowski, M.: Roboter in der autonomen Pro-
duktion der Zukunft. Sammelband Smart Factory/, 2020.

SUPERVISED STUDENT THESIS 195

Supervised Student Thesis

[As21] Asao, T.: Development of a Mobile Robot with Robot Operating System
(ROS), Studienarbeit, Chair of Machine Tools and Control Systems, TU
Kaiserslautern, supervised by Jonas Weigand, 2021.

[As22] Asao, T.: Development and Implementation of an Exploration Algorithm for
a Mobile Robot, Masterthesis, On-Going, Chair of Machine Tools and Control
Systems, TU Kaiserslautern, supervised by Jonas Weigand, Leonhard Kuntz,
2022.

[Be18] Belz, S.: Nonlinear Modeling and Flatness-based Control of an Robot Joint,
Studienarbeit, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, supervised by Jonas Weigand, 2018.

[Be19] Belz, S.: Development of Compliant Robot External Structures for the Ab-
sorption of Collision Energy During Human-Robot-Collaboration, Masterthe-
sis, Chair of Machine Tools and Control Systems, TU Kaiserslautern, carried
out externally at KUKA AG, supervised by Jonas Weigand, Markus Wünsch,
2019.

[Bl21] Blumhofer, B.: Development of a Visual Inertial Simultaneous Localization
and Mapping based Navigation for a Mobile Robot, Projektarbeit, Chair of
Machine Tools and Control Systems, TU Kaiserslautern, supervised by Jonas
Weigand, 2021.

[Bl22] Blumhofer, B.: Diagnosis of Rare Fault Cases for a Mobile Robot, Masterthe-
sis, On-Going, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, supervised by Jonas Weigand, Leonhard Kuntz, 2022.

[Di19] Diederichs, B.: Design of an Adaptive Cascade Control System for a KUKA
Industrial Robot, Studienarbeit, Chair of Machine Tools and Control Sys-
tems, TU Kaiserslautern, supervised by Jonas Weigand, 2019.

[Ga20] Gassen, E.: Configuration and Operation of a UR3 Robot with Robot Operat-
ing System ROS, Projektarbeit, Chair of Machine Tools and Control Systems,
TU Kaiserslautern, supervised by Jonas Weigand, 2020.

[Ge18] Gertje, S.: Nonlinear Optimization Algorithms for a Model Predictive Con-
trol of a KUKA Industrial Robot, Masterthesis, Chair of Machine Tools and
Control Systems, TU Kaiserslautern, supervised by Jonas Weigand, 2018.

[Gö19] Götz, J.: Conception and Development of a Control Application with User
Interface for an Industrial Robot, Projektarbeit, Chair of Machine Tools and
Control Systems, TU Kaiserslautern, supervised by Jonas Weigand, 2019.

196 BIBLIOGRAPHY

[Gö20] Götz, J.: Realization of a Robot Control with Modular Hardware and Self-
Developed Software for an Industrial Robot Mechanics, Masterthesis, Chair
of Machine Tools and Control Systems, TU Kaiserslautern, supervised by
Jonas Weigand, 2020.

[Ha18a] Harttig, S.: Modeling Dynamics of the KUKA Quantec Industrial Robot for
Use in the Milling Process, Masterthesis, Chair of Machine Tools and Control
Systems, TU Kaiserslautern, supervised by Jonas Weigand, 2018.

[Ha22a] Hagen, N.: Development of a Robot Controller with OPCUA Data Trans-
fer, Masterthesis, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, supervised by Jonas Weigand, 2022.

[He19] Hensel Leon; Wendling, F.: Influence of Dead Time on the Control Quality
of an Industrial Robot Drive, Studienprojekt, Chair of Machine Tools and
Control Systems, TU Kaiserslautern, supervised by Jonas Weigand, 2019.

[Kl18] Kleber, T.: Human-Robot-Collaboration: Safety and Challenges for Machin-
ing Applications, Studienarbeit, Chair of Machine Tools and Control Sys-
tems, TU Kaiserslautern, supervised by Jonas Weigand, Indujan Sivanesara-
jah, 2018.

[Ku20] Kuntz, L.: Swinging-Up of an Inverted Pendulum using Reinforcement Learn-
ing, Bachelorthesis, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, supervised by Jonas Weigand, 2020.

[La19a] Lafuente Larrañaga, J. S.: Design and Development of a Digitally Controlled
Magnetic Levitation System, Masterthesis, Chair of Machine Tools and Con-
trol Systems, TU Kaiserslautern, supervised by Jonas Weigand, Indujan
Sivanesarajah, 2019.

[La19b] Lamoth, S.: Realization of an Industrial Drive Train on an Inverted Pendu-
lum, Projektarbeit, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, supervised by Jonas Weigand, 2019.

[Le19] Leffler, C.: Control for Active Vibration Damping for Milling Machines, Pro-
jektarbeit, Chair of Machine Tools and Control Systems, TU Kaiserslautern,
supervised by Jonas Weigand, Indujan Sivanesarajah, 2019.

[Lu19] Lumpp, J.: Miniaturization of a Grinding Arm for Machining Internal Gears,
Bachelorthesis, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, carried out externally at KLINGELNBERG AG, supervised by
Jonas Weigand, Alois Mundt, Leif Heckes, 2019.

SUPERVISED STUDENT THESIS 197

[Mi19] Mirgel, J.: Conception and Realization of an Inverted Pendulum, Bachelorthe-
sis, Chair of Machine Tools and Control Systems, TU Kaiserslautern, super-
vised by Jonas Weigand, 2019.

[Mi21] Mirgel, J.: Development of a Test System for the Determination of Techno-
logical Limits of Tactile Robot-based Assembly, Masterthesis, Chair of Ma-
chine Tools and Control Systems, TU Kaiserslautern, carried out externally at
AUDI AG, supervised by Jonas Weigand, Thomas Schraml, Wilhelm Hacker,
2021.

[Ra19] Raible, J.: Development of Stability Criteria for Neural Adaptive Controllers,
Studienarbeit, Chair of Machine Tools and Control Systems, TU Kaiser-
slautern, supervised by Jonas Weigand, 2019.

[Ra20] Raible, J.: Development of Data-based Control for Assistance and Automa-
tion Functions for an Hydraulic Excavator, Diplomarbeit, Chair of Machine
Tools and Control Systems, TU Kaiserslautern, carried out externally at
Robert Bosch GmbH, supervised by Jonas Weigand, Ozan Demir, 2020.

[St20] Steinmetz, F.: Spatio Temporal Object Detection in Videos, Projektarbeit,
Chair of Machine Tools and Control Systems, TU Kaiserslautern, supervised
by Jonas Weigand, 2020.

[Wa19] Wang, X.: Parameter Identification of a Single Joint of a KUKA Indus-
trial Robot, Projektarbeit, Chair of Machine Tools and Control Systems,
TU Kaiserslautern, supervised by Jonas Weigand, 2019.

[Za18] Zantopp, N.: Using Runge-Kutta Neural Networks for Systemidentification
of a KUKA Industrial Robot, Studienarbeit, Chair of Machine Tools and
Control Systems, TU Kaiserslautern, supervised by Jonas Weigand, 2018.

Curriculum Vitae

Personal Information
Name: Jonas Benjamin Weigand
Nationality: German

Education
11.2017 - 10.2023 Doctoral student, Chair of Machine Tools and Control

Systems, RPTU Kaiserslautern-Landau
09.2011 - 10.2017 Mechanical Engineering Studies, RWTH Aachen University
07.2008 - 10.2008 Glenfield College, New Zealand, School Exchange
08.2002 - 03.2011 Leibniz Gymnasium, Neustadt a. d. Weinstraße

Advanced Level Subjects: Physics, Math and English

Work Experience
since 09.2022 Senior Data Scientist, Siemens AG, Karlsruhe
01.2021 - 08.2022 Researcher, German Research Center for

Artificial Intelligence (DFKI), Kaiserslautern
11.2017 - 08.2022 Researcher, Chair of Machine Tools and Control

Systems, RPTU Kaiserslautern-Landau
03.2016 - 03.2017 Student assistant at the Institute of Automatic

Control (IRT), RWTH Aachen
03.2015 - 10.2015 ZF Friedrichshafen, internship
02.2014 - 06.2014 Teaching assistant at German University of Technology,

Muscat, Oman
10.2013 - 03.2014 Student assistant at the Institute of General Mechanics,

RWTH Aachen
05.2011 - 07.2011 RONAL, Landau, internship

	Abstract
	Kurzfassung
	List of Abbreviations
	Introduction
	Problem Definition
	Objectives
	Approach

	Foundations of Physical Robot Modeling and Control
	State-of-the-Art Literature Robotic Modelling and Control
	Robot Machining
	Nonlinear Flexible Joint Model
	Robot Parameter Identification
	Nonlinear Robot Control

	Nonlinear Robot Model
	Kinematic Model
	Rigid Joint Model
	Rigid Joint Feed-Forward Controller
	Friction Model
	Inertia, Coriolis, Centripetal, and Gravitational Model

	Foundations of Continuous-Time Neural Networks
	State-of-the-Art Literature Neural Networks
	System Identification with Neural Networks
	Discrete-Time Neural Networks

	General Form of Continuous-Time Neural Networks
	ODE Configuration
	Explicit Fixed-step Runge-Kutta Solvers
	Euler Neural Networks
	Runge-Kutta Neural Networks
	Neural Ordinary Differential Equations

	Neural Network Configuration
	Activation Functions
	Model Ensemble

	Training Configuration
	Loss Functions
	Inequality Barrier Methods
	Equality Barrier Methods
	Reduction of Overfitting
	Forecast Horizon
	Discretize-then-Optimize vs. Optimize-then-Discretize

	Physical Robot Model and Control
	Advanced Nonlinear Robot Model
	Elastic-Joint Model
	Stiffness Model
	Advanced Inertia, Coriolis, Centripetal and Gravitational Model
	Hydraulic Weight Counterbalance
	Advanced Friction Model

	Friction Parameter Estimation
	Identification Algorithm
	Design of Experiments
	Experimental Setup
	Single Batch Identification
	Computational Efficiency of Multi Batch Identification

	Robot Control
	Control Structure
	Feedback Controller using Secondary Encoders
	Flatness-based Feed-Forward Controller

	Originality and Background

	Continuous-Time Neural Networks
	State Derivative Normalization
	Normalization Definition
	Normalization Factor Estimation
	Empirical Normalization Results

	Stability Constraints
	Empirical Stability Observation
	Preliminaries for Stability
	Existence and Uniqueness of Equilibrium
	Constraints on the Neural Network Parameters
	Weak Stability Method
	Empirical Stability Results
	Additional Methods to Improve Model Stability

	Demonstration of Continuous-Time Memory Efficiency
	Discrete-Time Baseline
	Continuous-Time Baseline
	Baseline Comparison

	Originality and Background

	Comparison of Physical, Data-based, and Hybrid Models
	Design of Experiments
	Model Configuration
	Physical Model Configuration
	Data-based Model Configuration
	Hybrid Model Configuration

	Experimental Results
	Comparison of Robot Model Accuracy
	Comparison of Robot Path Accuracy
	Comparison of Robot Model Safety

	Summary and Outlook
	Appendix
	Proof of Stability Theorem
	Technical Robot Details
	Dimensions and Limits
	Robot Controller Layout
	Sensor Specification
	Physical Robot Model Parameters

	Additional Experiments Physical Model
	Simulation Results
	Experimental Results
	Improvements Based on Experimental Results

	Additional Experiments Data-based Model
	Source Code
	Dynamic Model Update
	Advanced Friction Flatness-based Feed-forward Control
	Feed-Forward Controller Code
	Weak Stability Barrier
	Differential Algebraic Equation Barrier

	Bibliography
	Articles and Monographs
	Own Publications
	Supervised Student Thesis

	Curriculum Vitae

