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Abstract

Many discrepancy principles are known for choosing the param-
eter « in the regularized operator equation (T*T + ol )x‘; = T*y°,
lly —4°|| < 4, in order to approximate the minimal norm least-squares
solution of the operator equation Tz = y. In this paper we consider a
class of discrepancy principles for choosing the regularization param-
eter when T*T and T™*y° are approximated by A4,, and z,‘i respectively
with A,, not necessarily self-adjoint. This procedure generalizes the
work of Engl and Neubauer (1985), and particular cases of the results
are applicable to the regularized projection method as well as to a
degenerate kernel method considered by Groetsch (1990).

1 Introduction

We are concerned with the problem of finding approximations to the minimal
norm least-squares solution z of the operator equation

Tz =y, (1.1)

where T': X — Y is a bounded linear operator between Hilbert spaces X
and Y, and y belongs to D(T") := R(T) + R(T)*, the domain of the Moore-
Penrose inverse T of T'. It is well known [8] that if the range R(T') of T is
not closed, then the operator 7" which associates y € D(T7) to & := Ty,
the unique least-squares solution of minimal norm, is not continuous, and
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consequently the problem of solving (1.1) for Z is ill-posed. A prototype of
an ill-posed problem is the Fredholm integral equation of the first kind

/01 k(s D)z(t) dt = y(s), 0<s<1, (1.2)

with nondegenerate kernel k(.,.) € L%*([0,1] x [0,1]), where X = YV =
L?[0,1]. Regularization methods are employed to find approximations to
Z. In Tikhonov regularization one looks for the unique z,, a > 0, which
minimizes the functional

z = [Tz —y|I* + allz[’, =z €X,
equivalently, one solves the well-posed equation
(T"T 4+ al)x, =Ty (1.3)
for each o > 0. Since T*Tz = T*y, it follows that
12 = zall = (T*T + ad) 2] < ||2]]- (1.4)
It is known ([8], [16]) that
|2 —za]| =0 as a—0 (1.5)
and
€ R(T*T)"), 0<wv<1, implies [|Z— z4] =0(a"). (1.6)

In practical applications the data y may not be available exactly, instead
one may have an approximation y° with say ||y — %°|| < 6, § > 0. Then one
solves the equation

(T*T + ol)z? = T*y° (1.7)

instead of (1.3) and requires ||Z — 2%|| — 0 as & — 0 and § — 0. It follows
from (1.3) and (1.7) that

lza — 220> = (T*T+ od)™'T*(y — )|
= ((T*T+ o) 'T*(y — y°), (T*T + o) 'T*(y — y°))
= ((ITT* +al)*TT*(y — ), (y — "))

< @7+ o)7?TT| Iy - ¥°II?
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S DNE]
(6



so that
12 — 2ol < 1|2 — @all + 6/ Ve (1.8)
Now let R, = (T*T + ol)~'T* for @ > 0. Then by (1.5) we have

IRy — Ty =0 as a—0

for y € D(TT). Therefore, if R(T) is not closed, then the family {R,}a>0 is
not uniformely bounded so that, as a consequence of Uniform Boundedness
Principle, there exists v € Y such that {R,v}4>0 is not bounded in Y. In
particular, if y° = y+d6v/||v||, then |ly—°|| < § and {R,¥°}aso is unbounded
in Y. Therefore, the problem of choosing the regularization parameter o
depending on y° is important. Many works in the literature are devoted to
this aspect (c.f. [7], [17], [1], [2], [3], [6], [14], [4])-

In order to solve (1.7) numerically, it is required to consider approxima-
tions of 7T and of T*y°. So the problem actually at hand would be of the
form

(A, +al)zl,, =2, (1.9)

where (A,) and (2)) are approximations of T*T and of T*y° respectively.
In the well known regularized projection methods (c.f. [10], [2], [3]),

A, =P, T*TP, and 2= P,T*y’,

where (P,) is a sequence of orthogonal projections on X such that P, — I
pointwise. In this case we have

|T*T — A,|| =0 as n — oo,

and discrepancy principles are known for choosing the regularization param-
eter « in (1.9) (See e.g. [2], [3], [13], [3]).

In the degenerate kernel methods for the integral equation (1.2), A, is
obtained by approximating the kernel k(.,.) of the integral operator T*T by
a degenerate kernel k,(.,.) so that ||k —ky|ls — 0 as n — co. Then it follows
that

IT*T — An|| < ||k = Enll2 < ||k — Enllo = 0 as n — oo.

(See [11] and [12] for a discussion on degenerate kernel methods for integral
equations). In a degenerate kernel method considered by Groetsch [9] the
approximation k,/(.,.) is obtained from

1
k(s,t) :=/0 k(r,s)k(T,t) dt, a<s,t<b.
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by using a convergent quadrature rule. In this case one has ||k — kp||oc — 0
as n — oo for nice enough kernels (., .).

Moreover, for the degenerate kernel method of Groetsch [9] as well as for
the regularized projection methods, the operators A, are non-negative and
self-adjoint.

In this paper we consider the generalized form of a class of discrepancy
principles in [1], namely,

5P
||An3:‘;,n — z2|| = P > 0,9 >0, (1.10)

for large enough n, to choose the regularization parameter @ = «a(n,d) in
(1.9), where (A,) is a sequence of bounded linear operators on X and (22)
in X such that

|IT*T — Ayl =0 and || T*y° —2°|| =0 as n— oo.

It has to be observed that we do not assume the operators A, to be
non-negative and self-adjoint. The consideration of a general A,, as has
been done recently by Nair [15], is important from a computational point of
view, because even if one starts with a non-negative self-adjoint operator as
approximation of 77", due to truncation errors etc., one actually may not
be dealing with a non-negative self-adjoint operator.

With « chosen according to (1.10), we show the convergence of the
solution $6a,n of (1.9) to & as § — 0, n — oo, and also obtain estimates for
the error ||z — 7, || whenever z € R((T*T)”), 0 < v < 1. Our result on
error estimates shows that if 1y is an estimate for the possibly unknown v,
with 0 < v < 1y < 1, then taking p/(q + 1) = 2/(2vy + 1) one obtains the
rate O(6%/@»+1)). In particular, prior knowledge of v enables us to yield
the optimal rate O(52/*+1)) (c.f. Schock [16]).

If A, = P,T*TP, and 20 = P,T*y’ then (1.10) coincides with a dis-
crepancy principle considered by Engl and Neubauer [2] and we recover the
optimal result in [2] as a particular case. Thus this paper generalizes the
type of results in [2] and [9] for projection methods and degenerate kernel
method for integral equations respectively, providing also a parameter choice
strategy in the latter case.



2 Approximate Solution and Convergence

Let X and Y be Hilbert spaces and 7' : X — Y be a bounded linear operator
with its range R(T) not necessarily closed in Y. Let y € D(T") := R(T) +
R(T)*, y # 0, so that there exists a unique # € X of minimal norm such
that

172 — yl| = inf{|| Tz — y[| : = € X}.

Let (A,,) be a sequence of bounded linear operators on X and for § > 0, let
Yy’ €Y, (2) in X such that

IT°T — Anl| < €n,
ly =yl <4,
IT*y" = 23l < mp,
where (¢,) and (n?) are sequences of nonnegative real numbers such that
€, >0 as n— o0

and
n”—0 as n—oo and §— 0. (2.1)

Throughout the paper we denote the operator T*T by A, and ¢, ¢, ¢,
o, etc., denote positive real constants which may assume different values at
different contexts.

THEOREM 2.1 Ife, < coax with 0 < ¢g < 1, then A, + ol is bijective and

(A, + )t < 1/a(l — ).

More over, if 2%, and 3, , are the unique solutions of (1.7) and (1.9) re-
spectively, then

5 s M €
i — < i — LA 2.2
o= afll < (e - bl + T+ ) 22)
In particular, if o := a6, n) is chosen in such a way that
0 n J
a(é,n) -0, ———0, " L0 and m__
Ck(é, TL) ()1(5, ’I’L) a(61 n)

as 6 — 0 and n — oo, then

||§U—x‘;’n||—>0 as §—0 n— oo.



Proof. Since A is nonnegative and self-adjoint, it follows from spectral the-
ory that for each o > 0, (A + o)™} exists as a bounded linear operator on
X and

1
A+al)7Y < =
l(A+an™ <=

Therefore, if ||A — A,|| < 1/||(A + al)~!|| then, by results on perturbation
of operators, (A, + aI)™! exists and is a bounded operator, and

) 1A +aD)|
A, +al)7Y <
It s A=A AT el
< 1/«
~ 1l-¢/a
o1
~— a(l—-c)

Now let wg,n be the unique solution of the equation (1.9) with 7T*y° in place
of 2 i.e.,
(An + oz])wg,n =Ty (2.3)

Then from (1.7), (1.9) and (2.3), we have
T —wh, = (An +al) 7 (2 = T*y°)

and
=) = (A, +al) (A - A,)2°.

’U)a’

Since €, < ¢oa, it follows that

ladn = whall < 12
and
lohn = 3l < e (112 = bl + ).
so that

1)
o X U €
o= abal < 1o - ol + 2+ 2).

Now the assumptions on « := «(d, n) together with (1.6) and (1.8) imply the
convergence || —z? || = 0 as d — 0 and n — oo.
O



3 The Discrepancy Principle
By our assumption (2.1) on (n?) and the fact that 0 # y € D(T'), we have
1 < ol < e

for all large enough n, say n > ny(d) and for each § € (0, ] for some dy.
Therefore by Theorem 2.1

| = lla(An + o) "zl < m (3.1)

1A4n, — 2l = llowgy|

for some constant v, and for all & > €,/cy. Moreover, if
a >y :=max{e,/co:n=1,2,...} and 6 <y,

then

[AnTan — Znll 2 la(An + o) "z = ” (3.2)

— = >
A +a =T

for some 5 > 0, since (A,) is uniformly bounded.

Now to choose the regularization parameter « in (1.9), we consider the
discrepancy principle (1.10).

For simplicity of presentation we assume that

n’ <36 and €, < cy6F (3.3)
for some positive reals 7 and k&, and for all n > ny(4).

THEOREM 3.1 Let p and q be positive integers. Then for each 6 € (0, dy),
there ezists a positive integer ny(6) and for each n > ny(d), there exists
a = «(d,n) such that (1.10) is satisfied. More over,

5P
a < ¢ 6P gnd — < e, n > mny(0), (3.4)
a

where
,uzmin{r, ﬁ, 1+ﬁ}.
Proof. Let § € (0,dy]. For a > ¢,/co and n =1,2,..., define
fala) = af]| Anzg, ,, — zll-
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Then from (3.1) it follows that f,(a) < y;a? so that
fn(€n/co) >0 as n — oo.

Let n1(d) > no(J) be the smallest positive integer such that for all n > ny(9),

5]) 1/q 51) 1/q
€, < Ccomin (—) , (—) .
Y2 !

Then taking o, = max{~, (6?/72)/9}, we obtain
en < coy and g > Y
so that by (3.1) and (3.2), we have

fn(en/co) S (5]] S fn(ao)-

Therefore by the Intermediate Value Theorem, there exists o := «(d, n) such
that 5

€
é S (6] S (o)) and ||Anxi,n - z;;z“ = &

for all n > n(6). We also note that

376 =

a,n (Z;‘;L - Anxda,n)

QI+

so that for all n > n,(d) and a = a(d, n),

§ oP J ) §
||Zn|| - & = ”Zn” - ||Anxa,n - Zn”
< [ Anzy,,|

oP
< ||An||m-

Therefore
o™t < 8 (o + || Al /N2 || < co?

and consequently
a(d,n) < ¢/ n > (6).



Now, using the estimates in (1.4), (1.8) and (2.2), we have

51) ) )
a = ||A”$a,n_zn||
= of|zl,l
< a|@] +11& = 22 ,0)
)
€
< (||f||+||f—xi||+"—"+—”)
(8] ()]
< ¢ (a+ova+m)
S 625ﬂa

where p = min{r, p/(¢+1), 1+ p/2(¢+ 1)}. This completes the proof of
the theorem.
a

4 Error Estimates under the Discrepancy Prin-
ciple

In order to prove the convergence of :r‘sa,n to £ and to obtain the estimates
for the error ||& — xinH under the discrepancy principle (1.10), we impose
certain restrictions on the parameters p and ¢ appearing in the discrepancy
principle (1.10) in terms of the error levels ? and e, of the data A, and z°
respectively. More precisely, we assume that

o i - < min{2,r, k}, (4.1)
where 7 and k as in (3.3).

THEOREM 4.1 Let o := «(d,n) be chosen according to (1.10). Then we
have the following.

(i). |z —a,ll =0 asn— oo and d — 0.

(). If € R((AY), 0 < v < 1, then for all large enough n and small
enough ¢,
||i - ‘,L'(sa,n“ < 655a



where

—minl 21— _P T—L __bp .
0= {(q+1)’1 2+ @+ (q+1)}

(#i). In particular, if

. 2v 4+ 2 P 2
k) > _
min{r,k} > 5= od Ty T 55

Y

then
1 — ad,, || < 67D,

Proof. Using (3.4), we have

P

¢ m/q
o = gt—mp/q (5_> < ct-mle—m/a

am at ’
for every £ > 0 and m > 0, where y is as in Theorem 3.1. But by the
assumption (4.1), u = p/(g + 1), so that it follows that

512
— < ct—mp/(a+1)

«

Therefore

)
i < ¢y 817P/2a+D) "h cod™ P/t and En ca0k—P/(a+D),
o oo T o

Using this, the result i

n (i) follows from (1.5),(1.8) and (2.2), the estimate in
(ii) follows from (1.6), (1

.8) and (2.2), and that (iii) is a consequence of (ii).
|
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