A DISCREPANCY PRINCIPLE FOR TIKHONOV REGULARIZATION WITH APPROXIMATELY SPECIFIED DATA

M. Thamban Nair¹ and Eberhard Schock

Abstract

Many discrepancy principles are known for choosing the parameter α in the regularized operator equation $(T^*T + \alpha I)x_{\alpha}^{\delta} = T^*y^{\delta}$, $||y - y^{\delta}|| \leq \delta$, in order to approximate the minimal norm least-squares solution of the operator equation Tx = y. In this paper we consider a class of discrepancy principles for choosing the regularization parameter when T^*T and T^*y^{δ} are approximated by A_n and z_n^{δ} respectively with A_n not necessarily self-adjoint. This procedure generalizes the work of Engl and Neubauer (1985), and particular cases of the results are applicable to the regularized projection method as well as to a degenerate kernel method considered by Groetsch (1990).

1 Introduction

We are concerned with the problem of finding approximations to the minimal norm least-squares solution \hat{x} of the operator equation

$$Tx = y, (1.1)$$

where $T: X \to Y$ is a bounded linear operator between Hilbert spaces X and Y, and y belongs to $D(T^{\dagger}) := R(T) + R(T)^{\perp}$, the domain of the Moore-Penrose inverse T^{\dagger} of T. It is well known [8] that if the range R(T) of T is not closed, then the operator T^{\dagger} which associates $y \in D(T^{\dagger})$ to $\hat{x} := T^{\dagger}y$, the unique least-squares solution of minimal norm, is not continuous, and

¹The work of this author is partially supported by a project grant from National Board for Higher Mathematics, Department of Atomic Energy, Govt. of India

consequently the problem of solving (1.1) for \hat{x} is ill-posed. A prototype of an ill-posed problem is the Fredholm integral equation of the first kind

$$\int_0^1 k(s,t)x(t) \ dt = y(s), \quad 0 \le s \le 1, \tag{1.2}$$

with nondegenerate kernel $k(.,.) \in L^2([0,1] \times [0,1])$, where $X = Y = L^2[0,1]$. Regularization methods are employed to find approximations to \hat{x} . In Tikhonov regularization one looks for the unique x_{α} , $\alpha > 0$, which minimizes the functional

$$x \to ||Tx - y||^2 + \alpha ||x||^2, \quad x \in X,$$

equivalently, one solves the well-posed equation

$$(T^*T + \alpha I)x_{\alpha} = T^*y \tag{1.3}$$

for each $\alpha > 0$. Since $T^*T\hat{x} = T^*y$, it follows that

$$\|\hat{x} - x_{\alpha}\| = \|\alpha (T^*T + \alpha I)^{-1} \hat{x}\| \le \|\hat{x}\|. \tag{1.4}$$

It is known ([8], [16]) that

$$\|\hat{x} - x_{\alpha}\| \to 0 \quad \text{as} \quad \alpha \to 0$$
 (1.5)

and

$$\hat{x} \in R((T^*T)^{\nu}), \quad 0 \le \nu \le 1, \quad \text{implies} \quad ||\hat{x} - x_{\alpha}|| = O(\alpha^{\nu}).$$
 (1.6)

In practical applications the data y may not be available exactly, instead one may have an approximation y^{δ} with say $||y - y^{\delta}|| \leq \delta$, $\delta > 0$. Then one solves the equation

$$(T^*T + \alpha I)x_{\alpha}^{\delta} = T^*y^{\delta} \tag{1.7}$$

instead of (1.3) and requires $\|\hat{x} - x_{\alpha}^{\delta}\| \to 0$ as $\alpha \to 0$ and $\delta \to 0$. It follows from (1.3) and (1.7) that

$$||x_{\alpha} - x_{\alpha}^{\delta}||^{2} = ||(T^{*}T + \alpha I)^{-1}T^{*}(y - y^{\delta})||^{2}$$

$$= \langle (T^{*}T + \alpha I)^{-1}T^{*}(y - y^{\delta}), (T^{*}T + \alpha I)^{-1}T^{*}(y - y^{\delta}) \rangle$$

$$= \langle (TT^{*} + \alpha I)^{-2}TT^{*}(y - y^{\delta}), (y - y^{\delta}) \rangle$$

$$\leq ||(TT^{*} + \alpha I)^{-2}TT^{*}|| ||(y - y^{\delta})|^{2}$$

$$\leq \frac{\delta^{2}}{\alpha},$$

so that

$$\|\hat{x} - x_{\alpha}^{\delta}\| \le \|\hat{x} - x_{\alpha}\| + \delta/\sqrt{\alpha}. \tag{1.8}$$

Now let $R_{\alpha} = (T^*T + \alpha I)^{-1}T^*$ for $\alpha > 0$. Then by (1.5) we have

$$||R_{\alpha}y - T^{\dagger}y|| \to 0 \quad \text{as} \quad \alpha \to 0$$

for $y \in D(T^{\dagger})$. Therefore, if R(T) is not closed, then the family $\{R_{\alpha}\}_{\alpha>0}$ is not uniformely bounded so that, as a consequence of Uniform Boundedness Principle, there exists $v \in Y$ such that $\{R_{\alpha}v\}_{\alpha>0}$ is not bounded in Y. In particular, if $y^{\delta} = y + \delta v / \|v\|$, then $\|y - y^{\delta}\| \leq \delta$ and $\{R_{\alpha}y^{\delta}\}_{\alpha>0}$ is unbounded in Y. Therefore, the problem of choosing the regularization parameter α depending on y^{δ} is important. Many works in the literature are devoted to this aspect (c.f. [7], [17], [1], [2], [3], [6], [14], [4]).

In order to solve (1.7) numerically, it is required to consider approximations of T^*T and of T^*y^{δ} . So the problem actually at hand would be of the form

$$(A_n + \alpha I)x_{\alpha,n}^{\delta} = z_n^{\delta}, \tag{1.9}$$

where (A_n) and (z_n^{δ}) are approximations of T^*T and of T^*y^{δ} respectively. In the well known regularized projection methods (c.f. [10], [2], [3]),

$$A_n = P_n T^* T P_n$$
 and $z_n^{\delta} = P_n T^* y^{\delta}$,

where (P_n) is a sequence of orthogonal projections on X such that $P_n \to I$ pointwise. In this case we have

$$||T^*T - A_n|| \to 0$$
 as $n \to \infty$,

and discrepancy principles are known for choosing the regularization parameter α in (1.9) (See e.g. [2], [3], [13], [5]).

In the degenerate kernel methods for the integral equation (1.2), A_n is obtained by approximating the kernel $\tilde{k}(.,.)$ of the integral operator T^*T by a degenerate kernel $\tilde{k}_n(.,.)$ so that $\|\tilde{k}-\tilde{k}_n\|_{\infty} \to 0$ as $n \to \infty$. Then it follows that

$$||T^*T - A_n|| \le ||\tilde{k} - \tilde{k}_n||_2 \le ||\tilde{k} - \tilde{k}_n||_{\infty} \to 0 \text{ as } n \to \infty.$$

(See [11] and [12] for a discussion on degenerate kernel methods for integral equations). In a degenerate kernel method considered by Groetsch [9] the approximation $\tilde{k}_n(.,.)$ is obtained from

$$\tilde{k}(s,t) := \int_0^1 k(\tau,s)k(\tau,t) \ dt, \quad a \le s, t \le b.$$

by using a convergent quadrature rule. In this case one has $\|\tilde{k} - \tilde{k}_n\|_{\infty} \to 0$ as $n \to \infty$ for nice enough kernels k(.,.).

Moreover, for the degenerate kernel method of Groetsch [9] as well as for the regularized projection methods, the operators A_n are non-negative and self-adjoint.

In this paper we consider the generalized form of a class of discrepancy principles in [1], namely,

$$||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| = \frac{\delta^p}{\alpha^q}, \quad p > 0, q > 0,$$
 (1.10)

for large enough n, to choose the regularization parameter $\alpha = \alpha(n, \delta)$ in (1.9), where (A_n) is a sequence of bounded linear operators on X and (z_n^{δ}) in X such that

$$||T^*T - A_n|| \to 0$$
 and $||T^*y^{\delta} - z_n^{\delta}|| \to 0$ as $n \to \infty$.

It has to be observed that we do not assume the operators A_n to be non-negative and self-adjoint. The consideration of a general A_n , as has been done recently by Nair [15], is important from a computational point of view, because even if one starts with a non-negative self-adjoint operator as approximation of T^*T , due to truncation errors etc., one actually may not be dealing with a non-negative self-adjoint operator.

With α chosen according to (1.10), we show the convergence of the solution $x_{\alpha,n}^{\delta}$ of (1.9) to \hat{x} as $\delta \to 0$, $n \to \infty$, and also obtain estimates for the error $\|\hat{x} - x_{\alpha,n}^{\delta}\|$ whenever $\hat{x} \in R((T^*T)^{\nu})$, $0 < \nu \le 1$. Our result on error estimates shows that if ν_0 is an estimate for the possibly unknown ν , with $0 < \nu \le \nu_0 \le 1$, then taking $p/(q+1) = 2/(2\nu_0 + 1)$ one obtains the rate $O(\delta^{2\nu/(2\nu_0+1)})$. In particular, prior knowledge of ν enables us to yield the optimal rate $O(\delta^{2\nu/(2\nu+1)})$ (c.f. Schock [16]).

If $A_n = P_n T^* T P_n$ and $z_n^{\delta} = P_n T^* y^{\delta}$ then (1.10) coincides with a discrepancy principle considered by Engl and Neubauer [2] and we recover the optimal result in [2] as a particular case. Thus this paper generalizes the type of results in [2] and [9] for projection methods and degenerate kernel method for integral equations respectively, providing also a parameter choice strategy in the latter case.

2 Approximate Solution and Convergence

Let X and Y be Hilbert spaces and $T: X \to Y$ be a bounded linear operator with its range R(T) not necessarily closed in Y. Let $y \in D(T^{\dagger}) := R(T) + R(T)^{\perp}$, $y \neq 0$, so that there exists a unique $\hat{x} \in X$ of minimal norm such that

$$||T\hat{x} - y|| = \inf\{||Tx - y|| : x \in X\}.$$

Let (A_n) be a sequence of bounded linear operators on X and for $\delta > 0$, let $y^{\delta} \in Y$, (z_n^{δ}) in X such that

$$||T^*T - A_n|| \le \epsilon_n,$$

$$||y - y^{\delta}|| \le \delta,$$

$$||T^*y^{\delta} - z_n^{\delta}|| \le \eta_n^{\delta},$$

where (ϵ_n) and (η_n^{δ}) are sequences of nonnegative real numbers such that

$$\epsilon_n \to 0$$
 as $n \to \infty$

and

$$\eta_n^{\delta} \to 0 \quad \text{as} \quad n \to \infty \quad \text{and} \quad \delta \to 0.$$
(2.1)

Throughout the paper we denote the operator T^*T by A, and c, c', c_1 , c_2 , etc., denote positive real constants which may assume different values at different contexts.

THEOREM 2.1 If $\epsilon_n \leq c_0 \alpha$ with $0 < c_0 < 1$, then $A_n + \alpha I$ is bijective and $\|(A_n + \alpha I)^{-1}\| \leq 1/\alpha(1 - c_0)$.

More over, if x_{α}^{δ} and $x_{\alpha,n}^{\delta}$ are the unique solutions of (1.7) and (1.9) respectively, then

$$\|\hat{x} - x_{\alpha,n}^{\delta}\| \le c \left(\|\hat{x} - x_{\alpha}^{\delta}\| + \frac{\eta_n^{\delta}}{\alpha} + \frac{\epsilon_n}{\alpha} \right). \tag{2.2}$$

In particular, if $\alpha := \alpha(\delta, n)$ is chosen in such a way that

$$\alpha(\delta, n) \to 0, \quad \frac{\delta}{\sqrt{\alpha(\delta, n)}} \to 0, \quad \frac{\epsilon_n}{\alpha(\delta, n)} \to 0 \quad and \quad \frac{\eta_n^{\delta}}{\alpha(\delta, n)} \to 0$$

as $\delta \to 0$ and $n \to \infty$, then

$$\|\hat{x} - x_{\alpha,n}^{\delta}\| \to 0 \quad as \quad \delta \to 0 \quad n \to \infty.$$

Proof. Since A is nonnegative and self-adjoint, it follows from spectral theory that for each $\alpha > 0$, $(A + \alpha I)^{-1}$ exists as a bounded linear operator on X and

$$\|(A + \alpha I)^{-1}\| \le \frac{1}{\alpha}.$$

Therefore, if $||A - A_n|| < 1/||(A + \alpha I)^{-1}||$ then, by results on perturbation of operators, $(A_n + \alpha I)^{-1}$ exists and is a bounded operator, and

$$||(A_n + \alpha I)^{-1}|| \leq \frac{||(A + \alpha I)^{-1}||}{1 - ||A - A_n|| ||(A + \alpha I)^{-1}||}$$
$$\leq \frac{1/\alpha}{1 - \epsilon_n/\alpha}$$
$$\leq \frac{1}{\alpha(1 - c_0)}.$$

Now let $w_{\alpha,n}^{\delta}$ be the unique solution of the equation (1.9) with T^*y^{δ} in place of z_n^{δ} , i.e.,

$$(A_n + \alpha I)w_{\alpha,n}^{\delta} = T^* y^{\delta}. \tag{2.3}$$

Then from (1.7), (1.9) and (2.3), we have

$$x_{\alpha,n}^{\delta} - w_{\alpha,n}^{\delta} = (A_n + \alpha I)^{-1} (z_n^{\delta} - T^* y^{\delta})$$

and

$$w_{\alpha,n}^{\delta} - x_{\alpha}^{\delta} = (A_n + \alpha I)^{-1} (A - A_n) x_{\alpha}^{\delta}.$$

Since $\epsilon_n \leq c_0 \alpha$, it follows that

$$||x_{\alpha,n}^{\delta} - w_{\alpha,n}^{\delta}|| \le c_1 \frac{\eta_n^{\delta}}{\alpha}$$

and

$$\|w_{\alpha,n}^{\delta} - x_{\alpha}^{\delta}\| \le c_2 \left(\|\hat{x} - x_{\alpha}^{\delta}\| + \frac{\epsilon_n}{\alpha}\right),$$

so that

$$\|\hat{x} - x_{\alpha,n}^{\delta}\| \le c \left(\|\hat{x} - x_{\alpha}^{\delta}\| + \frac{\eta_n^{\delta}}{\alpha} + \frac{\epsilon_n}{\alpha} \right).$$

Now the assumptions on $\alpha := \alpha(\delta, n)$ together with (1.6) and (1.8) imply the convergence $\|\hat{x} - x_{\alpha,n}^{\delta}\| \to 0$ as $\delta \to 0$ and $n \to \infty$.

3 The Discrepancy Principle

By our assumption (2.1) on (η_n^{δ}) and the fact that $0 \neq y \in D(T^{\dagger})$, we have

$$c_1 \le ||z_n^{\delta}|| \le c_2$$

for all large enough n, say $n \geq n_0(\delta)$ and for each $\delta \in (0, \delta_0]$ for some δ_0 . Therefore by Theorem 2.1

$$||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| = ||\alpha x_{\alpha,n}^{\delta}|| = ||\alpha (A_n + \alpha I)^{-1} z_n^{\delta}|| \le \gamma_1$$
 (3.1)

for some constant γ_1 and for all $\alpha \geq \epsilon_n/c_0$. Moreover, if

$$\alpha \geq \gamma_0 := \max\{\epsilon_n/c_0 : n = 1, 2, \ldots\}$$
 and $\delta \leq \delta_0$,

then

$$||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| \ge ||\alpha (A_n + \alpha I)^{-1} z_n^{\delta}|| \ge \frac{\gamma_0 ||z_n^{\delta}||}{||A_n|| + \alpha} \ge \gamma_2$$
 (3.2)

for some $\gamma_2 > 0$, since (A_n) is uniformly bounded.

Now to choose the regularization parameter α in (1.9), we consider the discrepancy principle (1.10).

For simplicity of presentation we assume that

$$\eta_n^{\delta} \le c_3 \delta^r \quad \text{and} \quad \epsilon_n \le c_4 \delta^k$$
(3.3)

for some positive reals r and k, and for all $n \geq n_0(\delta)$.

THEOREM 3.1 Let p and q be positive integers. Then for each $\delta \in (0, \delta_0]$, there exists a positive integer $n_1(\delta)$ and for each $n \geq n_1(\delta)$, there exists $\alpha := \alpha(\delta, n)$ such that (1.10) is satisfied. More over,

$$\alpha \le c_1 \delta^{p/(q+1)}$$
 and $\frac{\delta^p}{\alpha^q} \le c_2 \delta^\mu$, $n \ge n_1(\delta)$, (3.4)

where

$$\mu = \min \left\{ r, \ \frac{p}{(q+1)}, \ 1 + \frac{p}{2(q+1)} \right\}.$$

Proof. Let $\delta \in (0, \delta_0]$. For $\alpha \geq \epsilon_n/c_0$ and $n = 1, 2, \ldots$, define

$$f_n(\alpha) = \alpha^q ||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}||.$$

Then from (3.1) it follows that $f_n(\alpha) \leq \gamma_1 \alpha^q$ so that

$$f_n(\epsilon_n/c_0) \to 0$$
 as $n \to \infty$.

Let $n_1(\delta) \geq n_0(\delta)$ be the smallest positive integer such that for all $n \geq n_1(\delta)$,

$$\epsilon_n \le c_0 \min \left\{ \left(\frac{\delta^p}{\gamma_2} \right)^{1/q}, \left(\frac{\delta^p}{\gamma_1} \right)^{1/q} \right\}.$$

Then taking $\alpha_o = \max\{\gamma_0, (\delta^p/\gamma_2)^{1/q}\}$, we obtain

$$\epsilon_n \le c_0 \alpha_0$$
 and $\alpha_0 \ge \gamma_0$

so that by (3.1) and (3.2), we have

$$f_n(\epsilon_n/c_0) \le \delta^p \le f_n(\alpha_0).$$

Therefore by the Intermediate Value Theorem, there exists $\alpha := \alpha(\delta, n)$ such that

$$\frac{\epsilon_n}{c_0} \le \alpha \le \alpha_0$$
 and $||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}|| = \frac{\delta^p}{\alpha^q}$

for all $n \geq n_1(\delta)$. We also note that

$$x_{\alpha,n}^{\delta} = \frac{1}{\alpha} (z_n^{\delta} - A_n x_{\alpha,n}^{\delta})$$

so that for all $n \geq n_1(\delta)$ and $\alpha = \alpha(\delta, n)$,

$$||z_n^{\delta}|| - \frac{\delta^p}{\alpha^q} = ||z_n^{\delta}|| - ||A_n x_{\alpha,n}^{\delta} - z_n^{\delta}||$$

$$\leq ||A_n x_{\alpha,n}^{\delta}||$$

$$\leq ||A_n|| \frac{\delta^p}{\alpha^{q+1}}.$$

Therefore

$$\alpha^{q+1} \le \delta^p(\alpha + ||A_n||)/||z_n^{\delta}|| \le c\delta^p$$

and consequently

$$\alpha(\delta, n) \le c_1 \delta^{p/(q+1)}, \quad n \ge n_1(\delta).$$

Now, using the estimates in (1.4), (1.8) and (2.2), we have

$$\frac{\delta^{p}}{\alpha^{q}} = \|A_{n}x_{\alpha,n}^{\delta} - z_{n}^{\delta}\|
= \alpha \|x_{\alpha,n}^{\delta}\|
\leq \alpha (\|\hat{x}\| + \|\hat{x} - x_{\alpha,n}^{\delta}\|)
\leq c\alpha \left(\|\hat{x}\| + \|\hat{x} - x_{\alpha}^{\delta}\| + \frac{\eta_{n}^{\delta}}{\alpha} + \frac{\epsilon_{n}}{\alpha}\right)
\leq c' \left(\alpha + \delta\sqrt{\alpha} + \eta_{n}^{\delta}\right)
\leq c_{2}\delta^{\mu},$$

where $\mu = \min\{r, \ p/(q+1), \ 1+p/2(q+1)\}$. This completes the proof of the theorem.

4 Error Estimates under the Discrepancy Principle

In order to prove the convergence of $x_{\alpha,n}^{\delta}$ to \hat{x} and to obtain the estimates for the error $\|\hat{x} - x_{\alpha,n}^{\delta}\|$ under the discrepancy principle (1.10), we impose certain restrictions on the parameters p and q appearing in the discrepancy principle (1.10) in terms of the error levels η_n^{δ} and ϵ_n of the data A_n and z_n^{δ} respectively. More precisely, we assume that

$$\frac{p}{q+1} \le \min\{2, r, k\},$$
 (4.1)

where r and k as in (3.3).

THEOREM 4.1 Let $\alpha := \alpha(\delta, n)$ be chosen according to (1.10). Then we have the following.

- (i). $\|\hat{x} x_{\alpha,n}^{\delta}\| \to 0 \text{ as } n \to \infty \text{ and } \delta \to 0.$
- (ii). If $\hat{x} \in R((A^{\nu}), \ 0 < \nu \leq 1$, then for all large enough n and small enough δ ,

$$\|\hat{x} - x_{\alpha,n}^{\delta}\| \le c\delta^s,$$

where

$$s = \min \left\{ \frac{p\nu}{(q+1)}, \ 1 - \frac{p}{2(q+1)}, \ r - \frac{p}{(q+1)}, k - \frac{p}{(q+1)} \right\}.$$

(iii). In particular, if

$$\min\{r, k\} \ge \frac{2\nu + 2}{2\nu + 1}$$
 and $\frac{p}{(q+1)} = \frac{2}{2\nu + 1}$,

then

$$\|\hat{x} - x_{\alpha n}^{\delta}\| \le c\delta^{2\nu/(2\nu+1)}$$
.

Proof. Using (3.4), we have

$$\frac{\delta^{\ell}}{\alpha^m} = \delta^{\ell - mp/q} \left(\frac{\delta^p}{\alpha^q} \right)^{m/q} \le c \delta^{\ell - m(p - \mu)/q},$$

for every $\ell \geq 0$ and $m \geq 0$, where μ is as in Theorem 3.1. But by the assumption (4.1), $\mu = p/(q+1)$, so that it follows that

$$\frac{\delta^{\ell}}{\alpha^m} \le c\delta^{\ell - mp/(q+1)}.$$

Therefore

$$\frac{\delta}{\sqrt{\alpha}} \le c_1 \delta^{1-p/2(q+1)}, \quad \frac{\eta_n^{\delta}}{\alpha} \le c_2 \delta^{r-p/(q+1)} \quad \text{and} \quad \frac{\epsilon_n}{\alpha} \le c_3 \delta^{k-p/(q+1)}.$$

Using this, the result in (i) follows from (1.5),(1.8) and (2.2), the estimate in (ii) follows from (1.6), (1.8) and (2.2), and that (iii) is a consequence of (ii).

Acknowledgement. The first version of this paper was written while M.Thamban Nair was a Visiting Professor at the Fachbereich Mathematik, Universität Kaiserslautern, Germany. The support received is gratefully acknowledged.

References

- [1] ENGL, H.W., Discrepancy principles for Tikhonov regularization of ill-posed problems leading to optimal convergence rates, *J. Optim. Th. and Appl.*, **52** (1987) 209-215.
- [2] ENGL, H.W., and A. NEUBAUER, An improved version of Marti's method for solving ill-posed linear integral equations, *Math. Comp.* **45** (1985) 405-416.
- [3] ENGL, H. W., and A.NEUBAUER, Optimal parameter choice for ordinary and iterated Tikhonov regularization, In: *Inverse and Ill-Posed Problems*, Eds.: H.W.Engl and C.W.Groetsch, Academic press, Inc. London, 1987, Pages: 97-125.
- [4] GEORGE, S., and M.T.NAIR, Parameter choice by discrepancy principles for ill-posed problems leading to optimal convegence rates, *J. Optim. Th and Appl.*. 13 (1994) 217-222.
- [5] GEORGE, S., and M.T.NAIR, On Arcangeli's mthod for Tikhonov regularization with inexact data, *Research Report*, CMA-MR 43-93, SMS-88-93, Australian National University.
- [6] GFRERER, H., Parameter choice for Tikhonov regularization of ill-posed problems, In: *Inverse and Ill-Posed Problems*, Eds.: H.W.Engl and C.W.Groetsch, Academic Press, Inc. London, 1987, Pages: 127-149.
- [7] GROETSCH, C.W., Comments on Morozov's discrepancy principle, In: *Improperly Posed Problems and Their Numerical Treatment*, Eds.: G. Hammerline and K.H.Hoffmann, Birkhauser, 1983, Pages: 97-104.
- [8] GROETSCH, C.W., The Theory of Regularization for Fredholm Integral Equations of the First Kind, Pitman, London, 1984.
- [9] GROETSCH, C.W., Convergence analysis of a regularized degenerat kernel method for Fredholm integral equations of the first kind, *Integr. Equat. and Oper. Th.*, **13** (1990) 67-75.
- [10] GROETSCH, C.W., and J. GUACANEME, Regularized Ritz approximation for Fredholm equations of the first kind, Rocky Moutain J. Math. 15, 1 (1985) 33-37.

- [11] KRESS, R., Linear Integral Equations, Springer-Verlag, Heidelberg, New York, 1989.
- [12] LIMAYE, B.V., Spectral Perturbation and Approximation with Numerical Experiments, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 13, 1986.
- [13] NEUBAUER, A., An à posteriori parameter choice for Tikhonov regularization in the presence of modelling error, *Appl. Numer. Math.*, **14**(1988) 507-519.
- [14] NAIR, M.T., A generalization of Arcangeli's method for ill-posed problems leading to optimal convergence rates, *Integr. Equat. and Oper. Th.*, **15** (1992) 1042-1046.
- [15] NAIR, M.T., A unified approach for regularized approximation method for Fredholm intergral equations of the first kind, *Numer. Funct. Anal. and Optimiz.*, **15** (3&4) (1994) 381-389.
- [16] SCHOCK, E., On the asymptotic order of accuracy of Tikhonov regularizations, J. Optim. Th. and Appl., 44 (1984) 95-104.
- [17] SCHOCK, E., Parameter choice by discrepancy principle for the approximate solution of ill-posed problems, *Integr. Equat. and Oper. Th.*, 7 (1984) 895-898.

Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, INDIA E-Mail: mtnair@acer.iitm.ernet.in

Fachbereich Mathematik Universität Kaiserslautern Kaiserslautern, GERMANY

E-Mail: schock@mathematik.uni-kl.de