A short note on functions of bounded semivariation and
countably additive vector measures

P. Vieten

1. Introduction and an example

Let ¥ denote the o-field of Borel subsets of the interval [0,1]. If p: ¥ —
C is a complex Borel measure then the function ¢ : [0,1] — C given by

0 i 1=0,
o(1) = { u([0,0)) if 0<t<1, (1)
p(l0.1]) it t=1

has bounded variation, since g has bounded variation (see e.g. [3, Theorem
6.4]. Moreover, ¢ is normalized in the sense that ¢(0) = 0 and ¢(17) = ¢(¢)
forall 0 < < 1.

Conversely, if ¢ : [0, 1] — C is a normalized function of bounded variation

then there exists a unique complex Borel measure p such that ¢ and p are
connected by (1). This can be seen as follows: For 0 < a < b <1 let [a,b]

denote the interval : )
a,b) ifb<1,
[a’b[:{ [a,1] ifb=1.
Let

Yo = {U [ak, bk : n € N, [ag, b[C [0, 1] pairwise disjoint} . (2)
k=1

Then ¥4 is a field of subsets of [0,1] and we can define an additive set
function po on g by

n

" (U[b[) _ S [6(b) — dlan)]

k=1
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Then ¢(t) = ¢(t) — #(0) = po([0,¢]) for all 0 < ¢ < 1. Moreover, pg has
a unique extension to a measure y : ¥ — C (see e.g. [2, Theorem 1, page
358]). Hence, there exists a one-to-one correspondence between complex
Borel measures on [0, 1] and normalized functions of bounded variation on
[0, 1].

In this note we want to study the connection (1) for Banach space valued
measures and functions. In the sequel, X denotes a complex Banach space
and X* its dual. We recall the following definitions: Let S be a field of
subsets of a set 0. A function p : Y — X is called vector measure if it is an
additive set function. A vector measure p is called countably additive if

7 (;Q Ek) = g:l e

for all sequences (Fy) of pairwise disjoint members of ¥ with Ui, Fr € v.If
>r2, p(FEy) converges for every sequence (Ey) of pairwise disjoint members
of ¥ then w is called strongly additive. A function ¢ : [0, 1] — X has bounded
variation if

Var(¢) := supkzi: | &(tk) — d(Lr-1)]|

is finite, where the supremum is taken over all finite sequences 0 < tg <
ty < ...<t, <1. The function ¢ has finite semivariation if x* o ¢ has finite
variation for all z* € X* (for equivalent formulations of finite semivariation
see [4, Lemma 1.12]). We call a function ¢ of bounded semivariation to be
weakly normalized if x* o ¢ is normalized for all z* € X*.

Now, let p: ¥ — X be a countably additive vector measure, and define
¢ :]0,1] = X by (1). Then it follows by the scalar case that ¢ is a weakly
normalized function of bounded semivariation.

But, if conversely ¢ : [0,1] — X is a weakly normalized function of
bounded semivariation then there does not necessarily exist a countably
additive vector measure y with (1). Example 1 below shows that such a
vector measure need not exist even if ¢ is a continuous function of bounded
semivariation.

In the sequel we say that ¢ : [0,1] — X generates the vector measure
p: X — X if ¢ and p are connected by (1). In section 2 we give necessary
and sufficient conditions for ¢ generating a countably additive vector measure
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Example 1 Let ¢y be the Banach space of complex valued null-sequences.
We construct a continuous function ¢ : [0, 1] — ¢g of bounded semivariation
which does not generate a countably additive vector measure.

Define a sequence (z,,) in ¢q as follows:

= (1,0,0,0,...) = (~1,0,0,0,...)
=(0,1/2,0,...) 24 =(0,-1/2,0,...)
=(0,1/2,0,..)  wz5=(0,—1/2,0,...)
;c7—(001/4...) = (0,0,—1/4,...)
=(0,0,1/4,...) 210 = (0,0, —1/4,...)
211 = (0,0,1/4,...) 212 = (0,0,—1/4,...)
213 = (0,0,1/4,...) 214 = (0,0,—1/4,...),

and so on. To be more precise, x, = (—1)""12 ¢, forn € {2F—1,...,2(2F -
1)}, where ¢ denotes the k-th unit vector in ¢g. Then the (formal) series
>0 | «p has the following properties:

(i) The series converges towards zero: This is immediately clear, because
Hanzl x,|| = 0 if N is even, and Hanzl zpl| = 27% if N is odd and
contained in {2% —1,...,2(2% — 1)}.

(ii)) The series is weakly unconditionally convergent: This follows from the

fact that >-°° | |z,ex| = 2 for all & € N.

(iii) The series does not converge unconditionally: Let 7 : N — N be the
permutation which acts on each of the sets {2% — 1,2(2¥ — 1)} in the
following way: m “collects” first the 2871 odd numbers, and then the
2k=1 even numbers which are contained in this set. More precisely, put

(n) = 28 —142(n—2%+1), n € {28 —1,3.251 -2},
TZ Y 2k p2(n—3-261 4 1), ne{3-2¢1 —1,2(25 — 1)}

Then

3.2k—1_2
Z Trn) = € forall k€ N.

n=1

Hence 3,7 | x, 1s not unconditionally convergent.



Now, let ¢ : [0,1] — ¢o be defined in the following way:

1 1 N
¢(§—m) =nz::1wn for N ¢ N
#(0) =0, ¢(1/2) =0 and ¢(1) =0,

and let ¢ be linear in the intervals [1/2 — 1/(2N),1/2 — 1/(2N + 2)] for
N € N, and in [1/2,1]. The function ¢ has the following properties:

(iv) ¢ is continuous: It is a trivial consequence of the definition that ¢ is
continuous in the intervals [0,1/2) and (1/2,1]. Moreover,

N
Jim o) = Jim 3 =0 = 6(1/2),
and limy_q/2+ ¢(t) = 0 = ¢(1/2). Hence ¢ is continuous in the whole
interval [0, 1].

(v) ¢ is of bounded semivariation: For each natural number k the real
valued function ¢ = (ex, ), where e, is considered as unit vector in
the dual space [ of cg, is easily seen to have variation equal to 2.

(vi) ¢ does not define a countably additive vector measure p : ¥ — ¢o: To
prove this, assume the converse to be true. Then pu([a,b)) = ¢(b) —
¢(a) for all 0 < a < b < 1. Consequently, it follows that the series
Yoo m([1/2 —=1/2n,1/2 — 1/(2n 4 2)) is unconditionally convergent
(see [1, page 7]). But this series is equal to the series > ;~, x,, which
is not unconditionally convergent by the first step. This contradiction
makes clear that such a vector measure does not exist.

2. Functions of unconditional bounded semivariation

If ¢ generates a countably additive vector measure then we see from [1, page
7] that 3272 [¢(bx) — ¢(ar)] should converge unconditionally for every choice
of countably many pairwise disjoint intervals [ay, b;). Therefore, we have the
following definition.



Definition 2 A function ¢ : [0,1] — X is of unconditional bounded semi-

variation if for each choice of countably many pairwise disjoint intervals
[a,,b,) C [0,1] the series

Z[qb(bn) — ¢(ay)] is unconditionally convergent.

n=1

In this section (see Theorem 4 below) we show that ¢ generates a countably
additive vector measure p if and only if ¢ is a weakly normalized function
of unconditional bounded semivariation.

Before we prove Theorem 4 we show that the set of functions of uncon-
ditional bounded semivariation contains the functions of bounded variation
and is contained in the set of functions of bounded semivariation. This will
be immediately clear from the following

Proposition 3 Let ¢: [0,1] = X be any function.
(i) ¢ is of bounded variation if and only if for each choice of countably
many pairwise disjoint intervals [a,,b,) C [0, 1] the series

Z dlan)] is absolutely convergent.

(11) ¢ is of bounded semivariation if and only if for each choice of count-
ably many pairwise disjoint intervals [an,b,) C [0,1] the series

Z ¢(an)] is weakly unconditionally convergent.

Proof. We denote by T the collection of all sequences ([an,by,)) of pairwise
disjoint subintervals of [0,1]. If I C [0, 1] is an interval then Var;(¢) denotes
the variation of ¢ on I. Note that a function ¢ has bounded variation on
[0, 1] iff it has bounded variation on [0, 1).

(i) Assume that ¢ is of bounded variation. Let ([a,,b,)) € Z. Then, for
all N € N, there exist 0 <ty < t; < ... <ty < 1 so that {a,,b, : n =
L...,N}={t; : j =0,...,k}. Since the [ay,b;)’s are pairwise disjoint it
follows that

Z_:l 16(bn) — B(an)]| < Z_; [6(t;) = B(tj-1)|| < Var(¢).



Assume now that ¢ does not have bounded variation. We construct first
a sequence [, of pairwise disjoint intervals. In that construction we use the
following fact: If ¢ has unbounded variation on an interval K then one can
find disjoint intervals I,.J C K with Var;(¢) > 1 and Var;(¢) = oco.

Since ¢ has unbounded variation on [0, 1] we can find disjoint intervals
I, J; € [0,1) such that Vary, (¢) > 1 and Vary (¢) = co. Assume Iy,..., 1,

and Jy, ... J, are intervals with the following properties:
(a) I, NI =0 for k #1.
(b) Iy C Jyfork=1,....n—1.

() kNU I =0for k=1,.
(d) Var(l;) > 1for k=1,...n and
(e) Var(Jy) = oo fork=1,...,n

If we take disjoint intervals

Lit1, Juy1 C J, with Varg,(¢) > 1 and Vary, (¢) = oo

then it is easily verified that Iy, Ji, k= 1,...,n 4 1 also satisfy (a)-(e).
We can now find intervals [agk), bgk)), e [ai]z),c), bgz)k)) C I foreach k € N
such that

(ii) It follows from (i) that
Z ¢(ay) is weakly unconditionally convergent

for all sequences [ag, by) € T if and only if 2* 0 ¢ is of bounded variation for

all 2* € X™*. =



Theorem 4 A function ¢ : [0,1] — X generales a countably additive vector
measure u if and only if ¢ is a weakly normalized function of unconditional
bounded semivariation.

Proof. TLet p: ¥ — X be a countably additive vector measure which is
generated by ¢. Then it follows immediately that ¢ is weakly normalized.
Now take a sequence of pairwise disjoint intervals ([a,,b,)) € Z. Then

3 [6(6) — )] = 3 b)) = (f_]l[an,bw)

converges. Consequently, ¢ is of unconditional bounded semivariation.
Conversely, assume that ¢ is a weakly normalized function of uncondi-
tional bounded semivariation. Define ug : g — X by

[o (kg [ax, br [) =

Then po is a vector measure, and z* o p is countably additive for every
z* € X* (see the introduction).

We claim that ug is strongly additive. By [1, Theorem 1.1.18] it is suffi-
cient to show that

B(br) — o(ag).

n
=1

k

nh_}rgo po(Fy) exists

for each monotone nondecreasing sequence (F,) in ¥q. If (E,,) is a monotone
nondecreasing sequence in g then, for each n € N, there exist pairwise

disjoint intervals [aﬁ”), bﬁ”)[, ey [(J,](CT(LEL), bg&)[ such that
k(n) k(n)

E,=FE,_;U U [a,(gn),bggn)[ , and F,_1 N U [agn),b,(cn)[: 0,
k=1 k=1

where Fy = (). Tt follows that [a,,(cn), b,(cn)[ and [a]", bl(m)[ are disjoint if (k,n) #
(I,m). Consequently,

n k() n k()
po(Fn) =323 o ([ b)) = 3257 6(b))) — ¢(af)
=1 k=1 =1 k=1

converges as n — 00, since ¢ is of unconditional bounded semivariation.
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Now we are in the position to apply the Caratheodory-Hahn-Kluvanek
extension theorem to o (see [1, Theorem 1.5.2]). This theorem states that
there exists a countably additive extension p of ug to the o-field ¥y generated
by ¥o. Since ¥y = ¥ we proved the existence of a countably additive vector

measure g : X — X with ¢(t) = () — ¢(0) = u([0,t]). =

Remark 5 (i) By the Bessage-Pelczinsky theorem [1, Corollary 1.4.5] every
weakly unconditionally convergent series in X converges unconditionally iff
X does not contain an isomorphic copy of ¢g. Consequently, if X does not
contain ¢g every X-valued function of bounded semivariation is of uncon-
ditional bounded semivariation. Conversely, if ¢y is contained in X then
it is easy to construct a function of bounded semivariation which is not of
unconditional bounded semivariation. Consequently, by Theorem 4, every
X-valued function of bounded semivariation generates a countably additive
vector measure if and only if ¢y is not contained in X.
(ii) We finally ask the following questions: Is it true that ¢ is of

- bounded variation if the series Y-[¢(1x) — ¢(t5—1)] is absolutely conver-
gent

- unconditional bounded semivariation if the series 3 [p(1) — ¢(1x—1)] is
unconditionally convergent

- bounded semivariation if the series >[¢(tx) — ¢(tg—1)] is weakly un-
conditionally convergent

for every increasing sequence (tx) in [0,1]?
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