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Abstract

The feature interaction problem in telecommunications systems increasingly ob-
structs the evolution of such systems. We develop formal detection criteria which
render a necessary (but less than sufficient) condition for feature interactions. It
can be checked mechanically and points out all potentially critical spots. These
have to be analysed manually. The resulting resolution decisions are incorporated
formally. Some prototype tool support is already available. A prerequisite for
formal criteria is a formal definition of the problem. Since the notions of feature
and feature interaction are often used in a rather fuzzy way, we attempt a formal
definition first and discuss which aspects can be included in a formalization (and
therefore in a detection method). This paper describes on-going work.
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1 Introduction

Telephone switching systems are a classical example for long-lived and perpet-
ually evolving software in the telecommunications domain. The first software
controlled switching exchanges essentially still provided the plain old telephone
service (POTS). Step by step, new features have been added since then which
were supposed to offer added value to the customer (e.g. by call forwarding)
and/or to the service provider (e.g. by improved accounting).!

Up to now a large number of features has been developed (several hundred,
[Bo"89]), especially by the American telephone companies. Therefore the prob-
ability is high that augmenting such a system by one more feature will influence
another feature, especially in an undesired way. This is called a feature interac-
tion. Both the notion of feature and the notion of feature interaction are used
quite fuzzily and informally most of the time. This does not make a solution of
the problem easier. The formalization in this report is intended as an attempt to
improve this situation.

Since we do not know how to awvoid feature interaction problems in telecommu-
nications systems altogether, we need to detect and resolve them ([BoVe94|).
Detection of feature interactions may be done in different ways, for example by
simulation or by online behaviour analysis, but we will concentrate on an off-line
verification approach here. Usually, a verification approach works like this (com-
pare, e.g., the contributions at the Feature Interaction Workshop at Amsterdam
[BoVe94], the work of Faci [Fac95], and the SCORE project [SCO95]): we write a
high-level, property oriented description for each feature and for the basic system
(e.g., in temporal logic), and we write a lower-level, constructive? description for
them (e.g., in Estelle or SDL). Then we define an “implements” relation and prove
mathematically that the combined system built from the constructive description
of the basic system and the added features still implements all high-level prop-
erties. If we cannot prove this “implements” relation, we may get hints instead
in which situations the properties do not hold anymore, depending on the actual
verification method used.

This approach surely is promising, and it needs to be studied further. But it also
has some limitations and prerequisites. If the proof is done by logical reasoning,
the work is painstaking even with tool support, and the method is only applicable
to small systems. Symbolic model checking, used, e.g., in the tools of Holzmann
(see, e.g., [HoPe94, LiLi94]), has brought some progress with this respect, lately.
Furthermore, one can only verify those properties that are explicitly specified.
And in general, it is practically impossible to formalize all expectations at the
system which the service provider or the customer may have.

!Example: the features defined in the ITU-T recommendations for Intelligent Networks (IN)
[ITU93D).
2“Constructive” means “executable” or that an implementation can be derived directly.



A \/B \/C >>>7

callerto B forward to C ::=

. reject A ::=
if callee then if caller = A then
become caller to C exception(reject)

Figure 1: Feature interaction between call forwarding and terminating call screen-
ing.

Even worse, existing property descriptions may become “incomplete” or “inac-
curate” by a later addition of a new feature: Imagine that you have expressed all
relevant properties concerning a “caller” in a telephone system. Then, add a new
call forwarding feature to this system. When a caller A calls a callee B, then B
may forward this call to a user C (compare Figure 1). This way B may become a
caller, too, in a sense. Who is the caller for C? Therefore, the notion of “caller”
has become a little muddy, and our carefully written formulae on properties of a
caller may not denote the meaning anymore which we wanted them to have.

In this report, we propose a different verification approach which may help finding
feature interactions that could go unnoticed by other verification approaches. In
Section 2, we propose formal definitions for the terms “feature” and “feature
interaction”. In Section 3, we describe detection criteria for feature interactions;
in Section 4, we sketch a way to resolve the detected interactions; in Section 5
we discuss briefly how our generic formalism can be mapped onto real formal
description techniques (FDTs); in Section 6 we present the tools developed up to
now and outline the practical applications done so far; and the report is concluded
by a summary and an outlook.

2 Definition of “Feature Interaction”

2.1 What to Define and What to Leave Out

Before we tackle the feature interaction problem, we will give our definitions of the
terms “feature” and “feature interaction”. As has been pointed out by Cameron
and Velthuijsen [CaVe93], it is crucial to define the problem before trying to solve
it. Our formal definitions surely do not cover all the aspects which are commonly
associated with the informal terms, as no formal definition probably ever will
be able to. But they state more clearly what the achievements are and which
limitations have to be taken into account while they are used.

Cameron and Velthuijsen [CaVe93] describe two views on the problem. In the
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business view, “a feature is a tariffable unit”, and “a feature interaction occurs
when the behaviour of one feature is altered by the use of another”. “A second
kind of interaction occurs when the use of one feature should alter the behaviour
of another, but does not.” In the implementor’s view, “a feature is any increment
of functionality added to an existing system”. “Just as in the business view, a
feature interaction occurs when one feature’s behaviour is altered by the use of a
second.” Other authors provide similar descriptions, compare e.g. Kimbler and
Velthuijsen [KiVe95, page 2] and Aho and Griffeth [AhGr95].

Even if there does not exist a clear (formal) concept of what a feature and a feature
interaction are, the notion of “behaviour of a feature” is surely a central one. It is
a necessary precondition for a feature interaction that this behaviour is changed.
In this report, we disregard the case where an interaction occurs because a change
in behaviour does not take place when a change in the intentions requires it to do
so, since the notion of intended behaviour is still a topic of research ([CaVe93]).
Maybe a property oriented approach (compare Section 1) will be able to handle
it. In the remainder of this section, we will develop a formal definition which is
based on the central notion of the change in behaviour.

When we have to decide if the behaviour is still the same as before, there are
different aspects of the behaviour. First, there are the functional aspects. This
concerns the sequences of possible states/events. But the non-functional aspects
can become important, too. This concerns any real time or performance aspects.
Also, there can be important properties on knowledge, e.g. security properties.
Unfortunately, the formal treatment of non-functional aspects is much harder
than that of functional aspects, and much less well understood [BCN95]. There-
fore, we restrict our notion of feature interactions to functional aspects. This
excludes, for example, the treatment of a case where one feature is impaired
because another feature causes an overload on some shared resource.

We will not define what a service is. Commonly, it is some collection of features,
but only if this collection is somehow self-contained. Since we will concentrate
on functional aspects anyway, we have no need to take the pains with designing
a formal definition of a service; we will stick to the task of defining a feature and
its interactions.

For the formalization of the functional aspects of the behaviour, we advocate
the use of automata [HoUI79]. The computations (execution sequences) of an
automaton are a good and formal way to capture this kind of behaviour. There
are many variants on the exact definitions; we will present a suitable one in the
following.

2.2 Suitable System Architectures

We will decide first how we describe concurrency. One may choose to use a
collection of explicitely concurrent communicating automata, or a single global
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automaton (comprising different local automata which, again, have some form of
implicit concurrency and communication). If we take the first alternative, we still
have to define formally what concurrency and communication is. Since a mod-
elling of concurrency by interleaving is sufficient for our purposes, this question
will inevitably lead to an answer that equals the second alternative. Therefore,
and since the semantics of the standardized formal description technique Estelle
([ISO89]) is defined in a very similar way, we take the second alternative. As
soon as we want to apply our results to practical system specifications, we have
to transfer the results to practical specification languages; a similarity in the
underlying semantics will facilitate this.

The computations of an automaton can be formalized by a tree of reachable states
or by a set of linear sequences of reachable states. Since we are not interested in
terminating computations, we take the simpler second alternative.

Existing telecommunications systems are huge and have a long history of devel-
opment and uncounted modifications. In the effort of opening up these telephone
systems to allow the addition of new features, even by third party providers,
abstract models have been developed, e.g. the intelligent network (IN) concep-
tual model [ITU92, DuVi92|] by the ITU-T. This model tries to formalize a basic
telecommunications system on a very abstract level and includes only those as-
pects that are relevant for the addition of new features.

The basic call state machine (BCSM) in the IN conceptual model (INCM) is
designed in a way that the control flow remains as much as possible in the BCSM.
Among others, this results from the communication overhead involved in passing
away the control. On the other hand, this system design results in a rather
complex semantics of the detection points (DPs) where control may be given
away. It turned out that such a complicated architecture obstructs the formal
analysis of the system. Therefore, we use a simplified IN architecture. We do
not use explicit detection points, we just specify a homogenous automaton, and
extensions result in the addition of more transitions and states of the same kind as
the old ones. A closer adaption to the IN architecture (or of the IN architecture?)
is a topic for future research.

2.3 Basic Definitions

We start by defining our state space. Informally, the idea is that we have a fixed
set of components which each have a fixed set of variables. This implies that we
make two important simplifications:

e We disallow the dynamic creation and termination of components®.

3In the FDT Estelle, one may do this with module instances, and in the FDT SDL, one may
do this with processes.



e We disallow the dynamic allocation of local variables inside a component®.

Therefore, we reduce the expressive power of our formalism. On the other hand,
we trade in a much simpler formalism which seems us worth the sacrifice. Dy-
namic memory allocation makes it hard to talk about objects because they do
not have static names. This complicates reasoning. And the dynamic creation
and termination of components is just a special case of this, with the same prob-
lems. For the application area we have in mind, a set of pre-allocated module
instances / processes will do just fine.

After we have demanded that the structure of the variable state inside a compo-
nent be static, we also demand that it be flat, i.e. a straight tuple. (Example: no
use of “records”, just several individual variables.) From the point of usability,
this is a reduction in readability, of course. But our formalism is only intended for
the definition of a problem and for the description of a solution approach. If one
wants to apply this approach, he needs to map it to his specific FDT. And then it
is trivial to give a bijective mapping between a static hierarchical structure and
a linear structure.

Definition 2.1 (local state) A local state is a (finite) tuple s' = (s;)7"
= (s1,...,Sm) of atomic states s;, with m > 1.

Example 2.1.1 s' = (waitForAck, 42, >abcdef?)

Definition 2.2 (global state) A global state is a (finite) tuple s¢ = (sﬁ)n L=
1=
(s4,...,8L) of local states s!, with n > 1.

r¥n

Example 2.2.1

s¢ = ((WaitForAck,42,’abcdef’),
(connected, 41, *hijklm?),
(idle, 0))

Definition 2.3 (global state space) A global state space S¢ is a (possibly in-
finite) set of global states s which each have a fixed length n, and where
each local state s, 1 < i < n, has a fixed length m,.

The restriction on the length n implies a static structure of components of the
system, and the fixed length m,; implies a static structure of local variables inside
a component.

4Estelle allows this.



Definition 2.4 (simple global automaton) A simple global automaton is a
tuple A® = (s, T%, sy) with a global state space S, a (possibly infinite) set
of simple transitions 7° C S¢ x S, and an initial state s, € S©.

This is our basic definition of a global automaton. Simple transitions have the
disadvantage that their number can become infinite as soon as the domain of
a variable is infinite, e.g., like for the natural numbers. Therefore, we allow to
specify many simple transitions at the same time by a “transition”. The number
of these must be finite. The same concept to achieve a finite representation can
be found in Estelle and SDL specifications, too. The most important example is
the case when a transition only depends on the major state® of a module instance
and not on the extended state space, i.e., there is a simple transition for every
value combination of the extended state space.

Definition 2.5 (transition) A transition t of a simple automaton A* =
(SY, T3, s50) is a tuple t = (S¢ 0,)) with a set of enabled states S¢ C S¢,
a state transition relation o C S¢ x S¢ such that for all s; € S¢ holds
sy € SY : 510 59, and a transition name .

Now we can define a global automaton which has a finite representation of its
transitions.

Definition 2.6 (global automaton) A global automaton is a tuple A =
(SE, T, sy) where A® = (S T, sg) is a simple global automaton and T is a
non-empty, finite set of transitions of A% with different transition names \!
for every transition ¢ € T such that T equals the union

U o (S¢x 89

(Sf,dt,)\t)ET
of all state transition relations oy.

Note that two transitions may have the same set of enabled states, and they may
have the same state transition relation, but they must not have the same name.

Definition 2.7 (computation) A computation ¢ of a global automaton A is a
(possibly infinite) sequence of states (s;),_, = (so, 51, - . .) which starts always
with the initial state sy of A and where for all s;, 5,11 € ¢, © > 0, holds that
(8i, 8i41) € T*. If ¢ is finite and of length n, there exists no state s such that
(Sn,s) € T".

5In this section, we do not distinguish a major state. Later in Definition 3.6 and in Theo-
rem 3.4 we will use the convention that the first component of a local state is called the major
state, and that there may be only a finite number of different atomic states for it.



The last restriction implies that we extend a computation as far as possible.
(Other formalisms have been presented which count all the incomplete prefixes
(s0,...,5;) of a computation as a “computation”, too.) Here, a sequence of
global states is only a computation if it is either infinite or there is no more
simple transition by which it could be extended. Each global automaton defines
a set of possible computations:

Definition 2.8 (set of possible computations) The set of possible computa-
tions of an automaton A is the set C' = {c | ¢ is a computation of A}.

2.4 Adding to an Existing System

Now we come to the part of the formalism that will define what a feature is.
For this, we describe how we add something to a global automaton. In our
formalism, it is a prerequisite for the detection of interactions between features
that the different features are specified separately. We assume (in the spirit of the
IN conceptual model [ITU92, DuVi92]) that such a partitioning is possible, and
we are not concerned in this report about optimization steps that could lead to a
(re-)integration of features.® Since we model the entire system by computations,
it must be possible in our formalism to associate each transition with a single
feature”. For this, every transition must contain only functionality of a single
feature. This implies that we have to use a specific specification style when we
specify the system and its extensions. Two basic rules we adopt here are that we
modify only on a coarse-grained level, and that we only add to the specification.
This means for the behaviour part that we never modify an existing transition to
achieve the behaviour of a new feature, but we only add an entirely new transition.
Also, we do not delete any obsolete transition (see Section 4 for how they can be
treated). The only way to extend a global automaton in our formalism is to add
new possible computations.

We will design our formalism in such a way that it supports these stylistic rules
for the state space part, too. In a first step, we only add to the state space,
without modifying the way in which the computations evolve. A state extension
function defines where something is added to a state.

Definition 2.9 (local state extension function)

A local state extension function ¢ is a function ¢ : {1,...,m} — {1,...,n}
such that m,n € N* and ¢ is injective.

6Currently, the telecommunications community is much more concerned about the feature
interactions problem than about execution speed. Due to the staggering development of com-
puting hardware, they only came into the position to introduce so many new features in so
short time.

"For orthogonality, we consider the basic system as just another feature, too.
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Figure 2: The local state extension function may rearrange the local state tuple.

Note that the injectiveness of the state extension function ¢ implies that the
resulting state cannot shrink (m < n). Now we can augment a local state by
something new:

Definition 2.10 (local state extension) The local state b = (b;);_, is a local
state extension of the local state a = (aj)gn:1 with respect to the local state
extension function ¢ : {1,...,m} — {1,...,n}, written b =%a, iff Vk : 1 <
k S m b¢(k) = ag.

Note that a local state is a local state extension of itself with respect to the
identity function. Note further that we do not require that the state extension
function maps the old parts of the local state onto the first m elements of the
extended local state (i.e., Vk: 1 < k <m: ¢(k) = k), and we do not even require
that the state extension function ¢ be monotonic. This means that the state
extension function may insert the extended parts in arbitrary places, and that
the order of the old parts may be rearranged (compare Figure 2). Nevertheless,
soon we will demand that this rearrangement is done the same way all over the
lifetime of the system. Next, we carry the idea of the state extension from the
local states on to the global states.

Definition 2.11 (global state extension function) A global state exten-
sion function is a tuple ¢¢ = (¢;);", such that ¢1,..., ¢, are local state
extension functions and ¢g is a function ¢ : {1,...,m} — {1,...,n} such
that m,n € Nt and ¢, is injective.

Element ¢ describes where new system components are introduced, and the other
¢; are the local state extension functions for all the hitherto existing components.

Definition 2.12 (state extension) The global state b = (b;);_, is a state ez-

tension of the global state a = (aj);nzl with respect to the global state ez-

8



Figure 3: The complementary local state extension function qﬁ picks all the indices
where an extension part was inserted.

tension function ¢C, written b= a, iff ¢y : {1,...,m} — {1,...,n} and
Vk 1 S k S m: b¢0(k) i(i’k Qg

Below we will need a function which picks all the indices of an extended local
state where an extension part was inserted (compare Figure 3):

Definition 2.13 (complementary local state extension function)
The complementary local state extension function é to a local state extension
function ¢ : {1,...,m} — {1,...,n}, m <n, is the function b : {1,...,n—
m} — {1,...,n} with

e Vj:1<j<n—m:Vi:1<i<m:d(j)# ¢(i), and

e ¢ is strictly monotonic.

When we have extended a local state, we not only want to know where it was
extended (compare the local state extension function above); we also want to
know what values the new parts have:

Definition 2.14 (state extension part of a local state)
The state extension part A(s', @) of a (previously extended) local state s =

(sﬁ)n ) with respect to a local state extension function ¢ : {1,...,m} —
1=

{1,...,n}, m < n, is the tuple A(s', ¢) = <A(Sl,¢)i)j_1m with A(s!, ¢); =
l =

s

(i)’
This can be generalized to global states:

9



Definition 2.15 (state extension part of a global state) The state exten-
sion part A(s%,¢%) of a (previously extended) global state s¢ = (SZG)

i=1
with respect to a global state extension function ¢¢ = (&), with ¢y :
{1,....,m} = {1,...,n}, m < n, is the tuple A(s%, ¢%) = (A(sG,qu),-)T.1 .

1=
with

A(SG,¢G)i:{ AG(SzG’¢j) llej i1 §]§m¢0(j)22

s; otherwise
Now we can define what a state-extended computation is.

Definition 2.16 (state-extended computation) A computation d is a state-
extended computation of a computation c with respect to the state extension
function ¢¢, written d =% ¢, iff d and ¢ have the same length n € N U {co}
and Vi: 0 <i < n:d;>=% ¢; AA(d;, ¢%) = Ado, ¢9).

Note that the last conjunction requires that the state extension part remains the
same all over the run of the computation. We want to achieve that the extension
of the state space is redundant as long as it is not explicitely modified by a
newly added transition (see below). We want to introduce new behaviour only
by explicitely adding more transitions, and these new transitions should have
variables of their own.

In the next section, we will need the notion of state extension for sets of possible
computations, too:

Definition 2.17 (state-extended set of possible computations) A set of
possible computations Cy is a state-extended set of possible computations of
a set of possible computations C, with respect to the state extension function
¢C, written C, =%° C,, iff there exists a bijective function YC : C, — C,
with T(c) =% ¢ for all computations ¢ € C,.

In Definition 2.16, as well as in all the other definitions, we took care that there is
only a single global state extension function ¢¢ for the entire set of computations.
As soon as we introduce extended automata, this will render a static and uniform
kind of state extension.

Based on the notion of the state-extended computation, we can define the exten-
sion of a global automaton:

Definition 2.18 (extension of a global automaton) A global automaton B
is an extension of a global automaton A with respect to the global state ex-
tension function ¢, written B =% A, iff for every computation ¢ of A there
is a computation d of B with d = ¢.

10



Note that the extended global automaton B may have more computations than A,
and Cp t"’G C4 does not necessarily hold. This extension does not only comprise
the state space, but also the behaviour.

For the definition of a feature, we have to define first the state extension of a
transition:

Definition 2.19 (state extension of a transition)
The transition t, = (S¢, 04, A), 0y € SE x SZ, is a state extension of the
transition t, = (S¢,04,)), 04 € S& x SC, with respect to the state extension
function ¢%, written t, =99 1., iff

e there exists a bijective function Y5 : S¢ — S¢ with
T5(s) =% 5 and
s € 8¢ Y9(s) € S¢ for all global states s € S¢, and

e there exists a bijective function Y7 : 0, — 03 with
Y7((s1,82)) = (Y9(s1), Y9(s2)) for all simple transitions (s1, s9) € 0.

Definition 2.20 (state extension of a set of transitions) The set of tran-
sitions Ty, is a state extension of the set of transitions T, with respect to the
state extension function ¢C, written Ty =*° T,, iff there exists a bijective
function YT : T, — T, with YT(t) =¢“ ¢ for all transitions ¢ € T}.

Since we want to associate every transition to a specific feature, we do this by
structuring the transition name appropriately.

Definition 2.21 (transition name) A transition name X is a pair (¢, ) of a
feature name ¢ and a local name 7.

Now, we have completed the basic definitions so we can define a feature itself,
finally.

Definition 2.22 (feature) A feature for a global automaton A = (S,T,sq) is
a tuple f = (¢%,T¢ d°) where T¢ is a set of transitions which have all the
same feature name ¢, and ¢ is a global state extension function for S such
that there exists a global automaton A’ = (S,7", s;,) with

o A'=%° 4, and
o d° = A(s), %), and
there exists a 7" with 7" = T such that 7" = T" U T¢, and

no transition in 7" has the feature name ¢.

11
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Figure 4: A global automa-

ton with two local compo-
nents.

Figure 5: Adding the feature f of dialling numbers
to the global automaton.

Note that we are allowed to add a feature f to a global automaton A only
if A does not contain any transition with the feature name ¢ of the new
feature f.

Example 2.22.1 Figure 4 shows an original automaton which only contains
transitions of a simple basic system B; in Figure 5, a (simple) feature f has
been added. The state space has been extended by a new local component
for the dialled number (via ¢“), the initial state has got a value for this
number (via d°), and there are new transitions (7).

Definition 2.23 (global automaton with feature f) A global automaton
with feature f is A’ from Definition 2.22, written A & f.

In the way it is defined above, a feature is an increment in the possible behaviour.
It only allows for more computations, but it does not allow to remove any com-
putation which was possible for the global automaton without the feature. This
is a deliberate restriction which we designed into our formalism. This way, we
still have all the computations of the other features and can find deviations (see
Section 2.5). If the purpose of the new feature is to remove the other computa-
tion, then this is certainly an interaction, and it should be handled explicitely.
In Section 4, we will discuss how this resolution may take place.

Definition 2.24 (simple transition belongs to feature)
A simple transition (s1,s2) of a global automaton A belongs to the feature
f = (¢9,T¢,d% for A iff there exists a transition ¢t = (S¢ 0,)) € T¢ such
that s; € S€ and 31 0 $9.

12



Note that a simple transition may belong to more than one feature. We will need
this notion in several definitions below.

Definition 2.25 (feature mapping) A feature mapping for a global automaton
A= (S,T,sp)is afunction F : T +— N where N is a set of feature names such
that each transition ¢ is mapped onto the feature name ' in its transition
name \’.

We consider only global automata with at least one transition (see Definition 2.6)
so that there is at least one feature name. By convention, the “basic system” of
the global automaton which is always present carries the feature name B.

Definition 2.26 (feature in a global automaton)
A feature in a global automaton A is a feature f = (¢%, T¢ d°) such that
there is a global automaton A’ with A = A’ & f, and there is no transition
in A" which has the same feature name as the transitions in f.

Definition 2.27 (global automaton without feature f)
The global automaton without feature f of a global automaton A is the global
automaton A\ f for which A = (A\f) @ f, and there is no transition in A\ f
which has the same feature name as the transitions in f.

Note that there is always a feature mapping for a global automaton which maps
all its transitions to a finite set of feature names. An automaton is determined
entirely by its features, except for the order of its state tuples. (The proof of
this is left to the reader.) Some other authors allow for different instances of the
same feature, resulting in the possibility that a feature may interact with itself.
We renounce this because it makes necessary a distinction between a feature and
its instances. If this is really needed, it can be expressed by explicit repetition.

Definition 2.28 (set of possible computations of a feature)
The set CT of possible computations of a feature f for a global automaton
A is the set of all possible computations ¢ of A for which exists a simple
transition (¢;, ¢;41) € ¢ which belongs to feature f.

Note that a computation may belong to more than one feature’s set of possible
computations.

13
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Figure 6: A computation ¢ which is only possible if both features f and g are
present.

2.5 Formal Definition of “Feature Interaction”

In Section 2.1, we stated that it is a necessary precondition for a feature interac-
tion that the behaviour of a feature is changed. Using the formalism introduced
up to now, we are now able to formalize this notion. A feature f interacts with
a feature g if the set of possible computations of g depends on wether f is in the
automaton or not (modulo the state space extension performed by f). Or more
formally:

When we have a feature f and a feature g in the global automaton A, and f # g,
and it holds for the set C% of possible computations of feature g in A, and for
the set C’f‘\ s of possible computations of feature g in A without feature f that

-36° : €4 =7 O,

then f interacts with g.

We will illustrate this by an example: think of a computation ¢ which is a pos-
sible computation of feature f as well as of feature ¢.% i.e., ¢ € C/ and ¢ € CY,
and where a simple transition belongs to feature f (Def. 2.24) exclusively (and
therefore belongs to neither g nor B), and where a second simple transition be-
longs to feature g exclusively. Compare Figure 6. Then this computation c is
only possible if both features f and g are present in the global automaton. In
the example in Figure 6, a system made up only out of features B and f would
generate only the computation (cy, ¢, ce,c3). The addition of feature g to this
system renders the computation (cy, ¢, ¢o, €3, ¢4), shown in Figure 6, thus modi-
fying a computation which is associated with feature f, and therefore changing
the behaviour of f. On the other hand, if the system is made up only out of
features B and g, there would be only the computation {cy, ¢1), and the addition
of feature f would modify it with the same result as before. Therefore, both
features mutually interact.

But there is also another way in which the behaviour of feature g can be changed
by feature f, even without changing the set of possible computations of g. There
may be a computation ¢? in the global automaton A\ f which contains a simple
transition (cf, ¢},) that belongs to feature g (and not to B). From a certain point
in this computation on, let us call it ¢/, it becomes inevitable that the automaton
will eventually execute the simple transition (cg- , cg- +1), because there is no more

8with f #g and f # B and g # B

14
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Figure 7: Feature f may divert the execution away from computation ¢9 of fea-
ture g.

non-determinism between ¢ and ¢}, in the automaton A\f. Then, we add the
feature f to A\ f. This may introduce a computation ¢/ which does not contain
any simple transition belonging to g, but which has a common prefix with ¢ up
to the global state ¢ = ¢/, and which continues differently at c/,,. (Compare
Figure 7.) Now, there is suddenly a non-deterministic choice in the automaton at
the global state ¢, and the simple transition (cf, ¢J,,) is not necessarily executed.
Imagine, e.g., a payphone where a customer has inserted some coins, but where he
suddenly doesn’t get connected through because of some interaction with a new
feature (and there is no refund). The customer righteously expects that there is
no such alternative in this case. In Figure 7, there are two such computations
¢ and ¢/, and feature f interacts with feature g in the way described. (But not

vice versa, therefore this relation is not symmetric.)

All of the above cases are subsumed formally by Definition 2.29.

Definition 2.29 (feature f interacts with feature g)
A feature f in the global automaton A interacts with a feature g in A iff
f # g and there exists a computation ¢/ € C/ and a computation ¢/ € CY
and an index i € [N such that the prefixes of ¢/ and ¢? up to the i-th state
are equal, i.e, (c},...,c]) = (c},...,¢!), and the simple transition (¢!, czfﬂ)
belongs to feature f but neither to feature g nor to B, and there exists a
simple transition (¢}, ¢}, ) which belongs to feature g but neither to feature

f nor to B.

Note that ¢/ may be equal to ¢/, covering the first case described in the informal
part above.

Every useful feature which is added on top of the basic system will of course
modify its behaviour. This is the intention behind adding the feature. Therefore,
for practical purposes we do not count such a feature interaction in the following
definition.

Definition 2.30 (feature interaction among features)
A feature interaction among the features of a global automaton A occurs iff

15



there exist two features f, g in A such that f interacts with ¢ and where
both are not the basic system B.

3 Automatic Detection of Potential Feature
Interactions

In Definition 2.30, we have defined what a feature interaction among the features
of a global automaton is. Since computations are of infinite length in general,
the criterion in Definition 2.29 cannot be used constructively (and efficiently).
Therefore we have to find criteria for feature interactions which

1. can be computed efficiently,
2. are still necessarily fulfilled for feature interactions (wide enough), and

3. do include as few as possible potential interactions (specific as possible).

From Theorem 3.2 on (see below), we will present a sequence of criteria which all
fulfill the first two items and which become increasingly better at the third item.

3.1 Necessary Conditions for Feature Interactions

Under the assumption of infinite computations®, there may be some feature in-
teraction only if there is a reachable state s in which there is a non-deterministic
choice between at least two transitions belonging to different features.

Theorem 3.1 Be A a global automaton such that for all features h, h # B,
holds that the set of all possible computations C4\;, contains only infinite
computations.

A feature interaction among the features of A may occur only if there exist
a feature f = (¢%,TF,d}) in A, f # B, a transition t; = (S%, 0y, \s) € T, a
feature g = (¢S, T¢,dJ) in A with g # f, a transition t, = (S¢, 0, \g) € T¢
and a global state s such that s € ¢ for some computation ¢ € C and s € 5}
and s € S7.

Note that g may equal B in Theorem 3.1.

9The assumption that the basic system for itself is free of deadlocks can be justified by the
applications in mind, which are reactive systems. A first feature interaction may invalidate the
above assumption for a second, but we can always detect the first one and after a resolution
also the second one.
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Proof: a feature interaction among the features of A implies that a feature f in A
interacts with a feature g in A (Definition 2.30). So it remains to prove that this
plus the premise that every computation is infinite implies the existence of the
items enumerated in the end of Theorem 3.1. The global state s of Theorem 3.1 is
identical with czf = ¢ of Definition 2.29; the transition ¢; of Theorem 3.1 is pro-
vided through the existence of the simple transition (c{ , c{ +1) of Definition 2.29.
Now we have to distinguish two cases, depending on if (cfc , czf +1) belongs to some
other feature h, h # f, too, or not.

no: If we look at A\ f, we won’t find (¢/,c/ +1) (modulo state space extension)
there, since (c/, ¢/ +1) belongs exclusively to f. We assume without restric-
tion of generality that there is no simple transition in (cg - .,ch ) which
belongs to f. Since there are no finite computations in Cy\, and since it
must contain at least one computation because of feature B, there must be
another continuation simple transition (c;f ,Ciq) with ¢ # czf 11, and there-
fore a corresponding transition t, = (S§, 04, Ay) exists with s = ¢/ € S¢,
and for feature g holds that g # f. (g may be equal to B.)

yes: For (c],cl.,), there must be a corresponding transition t, = (S, o4, Ap)

with s = ¢/ € S¢, and for feature h holds that g # f. O

The “yes” case was so easy to prove because there may be non-determinism
between two transitions of different features even without a feature interaction,
when those two transitions do exactly the same. But this is a pathological case,
since the new feature f does nothing that was not done before by other features.
Theorem 3.1 detects these cases too, and that seems to be rather an advantage
since they are probably also some case of design error.

The condition of non-determinism is necessary for feature interactions, but (in
general) less than sufficient for another reason, too: we did not count the in-
teractions with the basic feature B. If a feature f interacts with B, then there
may or may not be an interaction with another feature g, as shown in Figure 7.
Therefore, if some feature f interacts with B, we are warned and have to check
manually if there are transitions of ¢ later in the affected computations. (We will
give more specific criteria on this in the following subsections.)

Furthermore, the criterion in Theorem 3.1 is still not efficiently applicable because
of the condition that s must be reachable. This would imply a complete state
space search. Therefore we weaken the condition further and drop that condition:

Theorem 3.2 Be A a global automaton such that for all features h, h # B,
holds that the set of all possible computations C4\; contains only infinite
computations.

A feature interaction among the features of A may occur only if there exist
a feature f = (¢%,Tf,d}) in A, f # B, a transition t; = (55,07, As) € T§, a
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Figure 8: The firing order of these transitions is irrelevant.

feature g = (¢S, Ty, dJ) in A with g # f, a transition t, = (S¢, 04, \y) € T

and a global state s such that s € 5% and s € 5¢.

Informally, Theorem 3.2 says that we can find any feature interaction if we com-
pare all pairs of transitions from different features and check if their enabling sets
overlap. If no such pair exists, then no feature interaction can occur. The proof
is a straightforward extension of the above one.

A simple example for a situation as described in Theorem 3.2 may be found in
Figure 5. The global state s is ((null, “00007), (null)). Due to our very abstract
modelling, you find in this state a non-deterministic choice between the normal
setup transition ¢ and the newly added transition ¢/ which aborts the setup in
case of a wrong dialled number. This means that the new feature f of dialling
numbers may possibly interfere with the basic system B. It was impossible that
a call could fail in our very simple basic system.

3.2 Excluding Concurrent Transitions

The above criteria warn us of potential feature interactions. But even if the
computations of a feature are affected by another feature, this may be harmless
in some cases. E.g., think of two transitions belonging to different features which
are enabled in the same states and where the resulting state when both have fired
does not depend on the order of firing. (Compare Figure 8.)

Definition 3.1 (independent transitions) Two transitions t; = (S%,04, As)
and ty = (S;, 04, Ag) of a global automaton A are independent iff

e for all enabled states s; € S¢ and for all simple transitions (si, s2) € oy
holds that s; € Sg S 59 € Sg,

e for all enabled states s; € Sy and for all simple transitions (51,82) € 04
holds that s; € 5§ < s2 € 5%, and

o for 7 =(S¢N5S¢) x S and 57 = 0;NT and 5, = 0, N T holds that

afoag:a_go [
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Informally, this means that two transitions are independent if and only if firing
one of them does not disable or enable the other one, and if both can fire then
the firing order is irrelevant.

Definition 3.2 (harmless potential feature interaction)
A potential feature interaction as determined by the criterion of Theorem 3.2
is harmless iff the interacting transitions ¢; and ¢, are independent.

This declares non-determinism as harmless if it, e.g., results from our modelling
of concurrency of the local automata by interleaving. The condition of Defi-
nition 3.2 is usually hard to decide for two given transitions. Thus, we will
reformulate it based on the local state components modified by one transition
and the local state components used by the other transition. As soon as we start
to use a specific (constructive) formal description technique, these two notions
are quite straightforwardly applied to specific language constructs. For example,
an assignment to a local variable will lead to a modification of this local state
component, and the use of the value of a local variable will be a use of this local
state component.

The output modification pattern O (Definition A.1 on page 38) describes which
local state components can possibly be modified by transition ¢. We print the
actual formal definition of this notion and of the following two in Appendix A.1
since they are long but not essential to get the idea of what a state space depen-
dence is.

The output dependence pattern D' (Definition A.2 on page 39) describes for each
output local state component (k,[) on which input local state components (i, 7)
it depends.

The input pattern I' (Definition A.3 on page 40) describes which local state
components (7, j) are used at all by transition ¢. This comprises both the enabling
conditions and the computation of the output. Output dependences on the input
in the fashion of the identity function are not counted.

The output modification pattern and the input pattern allow us to define the
notion of a state space dependence.

Definition 3.3 (state space dependence) A transition ty of a global automa-
ton A has a state space dependence on a transition t; of A, iff n is the tuple
length of the global states and

Jie{l,...,n}: 0" NI2#0

Example 3.3.1 We use the same setting as in Examples A.1.1 to A.3.1 of Ap-
pendix A.1.
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ont = {}
o;nn; = {1}

Because of the second row, ¢ has a state space dependence on itself.

Now we can write a criterion which implies a harmless potential feature inter-
action and which should be easier to check for any specific formal description
technique.'?

Theorem 3.3 A feature interaction as determined by the criterion of Theo-
rem 3.2 is harmless if the interacting transitions ¢y and ¢, mutually have no
state space dependence.

The proof is left to the reader.

3.3 Excluding Interactions with the Basic System

Theorem 3.2 from Section 3.1 is a criterion that warns us of all possible feature
interactions. As already mentioned there, it also warns us if a feature f interacts
with the basic system B, because there may be situations like the one in Figure 7
where this influences another feature g indirectly. But since a feature which does
not interact with the basic system at all is rather useless, we have to differentiate
further cases when f interacts with B.

To this end, we use our knowledge of the typical structure of a telecommunications
system (compare, e.g., [[TU93b, ITU93al). Call processing is described there by
one extended finite state automaton (EFSA) (if we take a global view) or by two
EFSAs (in a distributed view). These typically have a null state where no call is
established and which is reached again after the processing of one call has been
completed. Usually, this is also the initial state. This allows us to reduce the
analysis of the computations ¢/ and ¢f in Definition 2.29 to the end of the prefix
where the null state has been reached the next time.

Definition 3.4 (returned-to state) A global state s of a global automaton A
is a returned-to state, iff there exists a computation ¢ € C' and there exist
two indices i, j € IN such that s¢ = ¢; = ¢; A1 < j. The above indices 7 are
called return indices of the returned-to state.

10This criterion is slightly weaker, the condition given in Theorem 3.3 is sufficient but not
necessary for being harmless.
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Definition 3.5 (global null state) A global state s¢ of a global automaton A
18 a global null state, iff it is a returned-to state and there exists a return
index ¢ for it such that there is no other returned-to state which has a smaller
return index.

Informally, this definition means that a global null state is the first state after a
possible system initialization phase. This is marked by the fact that the system
can return to this state after it has done some work.!! Note that there could be
more than one global null state.

In order to reflect the use of EFSA in our formal modelling, we adopt the conven-
tion that the first component of the local state tuple describes the major state.
Any sensible specification of a system will not only have a finite, but also a small
domain of values for each major state.

Definition 3.6 (major state) The major state of a local state s* = (s1, ..., 8m)
is the first component s;.

This allows us to do an abstraction step and reduce a global automaton to a
simpler one with the same number of local components, but where these local
components only have a major state and no extended state.

Definition 3.7 (abstraction of a global state) The abstraction function“+”
renders for any global state s = ((81,1, ey Sma)y ey (Snts ey snmn)) the

abstracted global state s¢* = ((31,1), e (Sn,1))-

Example 3.7.1
A global state: Its abstraction:

s¢ = ((WaitForAck, 42, >abedef?), s = ((WaitForAck),
(connected, 41, *hijklm’), (connected),

(idle, 0)) (idle))

The transitions of the abstracted global automaton are derived from the full au-
tomaton: if and only if there is a transition from a major state to another major

11 Tt is debatable if this is the only sensible definition of a global null state. The important
part is the fact that this state can be reached again. The rest of the definition has been chosen
to be as simple as possible, it could be extended if this would be needed.

It may be difficult to achieve such a reset for some systems: if a call forwarding number has
been set, it has to be reset first, and if accounting is modelled, the bill has to be mailed so
that the account can be reset. Generally, all data base operations that don’t have a clear local
null state should be excluded from the modelling in order to make this theorem applicable. See
also Definition 3.11 on page 24 (“null-resetting”). The modelling and analysis of long-lasting
data-dependences is a topic for future research.
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state for any value combination of the extended state part of the other local com-
ponents, there is a transition in the abstracted global automaton. Accordingly,
for any computation of the full automaton there will be a corresponding compu-
tation of the abstracted one, and maybe some more because we disregarded the
dependence of transitions on the extended state part.

Definition 3.8 (abstraction of a transition) The abstraction function“+”

renders for any transition t = (S 0,)) the abstracted transition #+ =
(S, 0%, ), where

o S ={s%]s°€ S, and

o ot = {(Sié’%) | 51083 }

Definition 3.9 (abstraction of a global automaton) The abstraction
function “*” renders for any global automaton A = (S¢, T, sy) the abstracted

global automaton At = (SGJ’, T*, s§), where

o SO = {SGi | ¢ € S¢Y}, and
o TH={tr|teT}

This abstraction step to major states and a limitation of the analysis up to the
next global null state allow us to do an exhaustive reachability analysis without
the tractability problems that a state space explosion imposes.

We start a reachability analysis at the state s where a transition of a feature f
shows non-determinism with a transition of the basic system B, and we follow
all transitions from this state. If we cannot find any transition belonging to
some other feature than B or f before we reach the global null state again, it
is impossible that the detected non-determinism signifies a feature interaction
among the features of the global automaton (Definition 2.30). If we can find such
a transition, there may be a harmful feature interaction and we have to analyse
this situation manually. The manual analysis is supported with the information
where the non-determinism showed up, which was the offending computation
(prefix) and which were the possibly interacting transitions, these in turn provide
information on the features which are concerned.

Definition 3.10 (feature f interacts with feature g cross-reset) A fea-
ture f in the global automaton A interacts with a feature g in A cross-reset iff
feature f interacts with feature g as described in Definition 2.29 on page 15
and for the computations ¢/, ¢¢ and the index i from this definition exists
an index j > 4 such that c? is a global null state and there is no simple
transition between c§ and ¢/ that belongs to feature g but neither to f nor
to B.
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Figure 9: A cross-reset and therefore not harmful feature interaction due to a
global null state inbetween.

Compare Figure 9. We will assume that such cross-reset feature interactions are
never harmful. If a telephone system returns to a global null state, all state
components are reset to their original values, and therefore “the system loses all
knowledge on its history”. If we additionally assume that the humans using the
system at least lose all interest in this history as soon as they have reset the
system, we can conclude that the cross-reset feature interactions can never be
harmful.

Theorem 3.4 Be A = (S% T, s) a global automaton such that for all features
h, h # B, holds that the set of all possible computations C4\; contains only
infinite computations. Furthermore, every computation ¢ € C4 shall contain
a global null state and for every computation this global null state shall be
reached again a second time.!?

A feature interaction among the features of A which is not cross-reset may
occur only if there exist a feature f # B in A, a transition ¢y € T¥, a feature
g in A with g # f, a transition ¢, € T and a global state s such that s € 5%
and s € S, and additionally:

e g#Bor

e (if g = B :) for the global automaton A’ = (S% T, s)'3, there exists a
computation which contains a simple transition (S, Sm+1) that belongs
to some other feature than B or f and no state in (s, ..., s,,) is a global
null state of the original global automaton A.

The proof is based on Theorem 3.2, of which this theorem is an extension, and is
left to the reader. Figure 10 shows a global automaton for which the condition

12This implies that the set of all possible computations C4 of A itself contains only cyclic
and therefore infinite computations.
13je., A’ is the same as A but starts at s instead of sg
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Figure 10: A global automaton with only a cross-reset feature interaction.

in the second paragraph of Theorem 3.4 is always false which means that there
is only a cross-reset feature interaction.

Since an implementation of the implied algorithm still may have to cope with a
large state space, for a certain class of systems we can abstract away all state
components except for the major states. In order to do this, we have to add that
the domain of all major states be finite, and we need that the investigated global
automaton is “very consequent on forgetting earlier sessions”, as in the following
definition:

Definition 3.11 (null-resetting global automaton) A global automaton A
1s null-resetting iff for all global states s;, sy holds that if their abstrac-
tions are equal, i.e. sf = s%, and s; is a global null state, then also s; is a

global null state.

Informally, this means that all extended state space components are always reset
as soon as all the local major states return to a null state. For such null-resetting
automata, we can reduce the complexity of the state space search considerably
through a modification of Theorem 3.4:

Theorem 3.5 Be A = (S%, T, sy) a global automaton such that for all features
h, h # B, holds that the set of all possible computations C4\}, contains only
infinite computations. Furthermore, every computation ¢ € Cy4 shall contain
a global null state and for every computation this global null state shall be
reached again a second time; and be A null-resetting.

A feature interaction among the features of A which is not cross-reset may
occur only if there exist a feature f # B in A, a transition ¢y € T§, a feature
g in A with g # f, a transition ¢, € T and a global state s such that s € S}
and s € S¢, and additionally:
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e g# Bor

e (if g = B :) for the abstracted automaton A" of the global automaton
A" = (SY T, s), there exists a computation which contains a simple
transition (s}, sin +1) that belongs to some other feature than B or f
and no state in (s¥,...,s’ ) is a an abstraction of a global null state of
the original global automaton A.

The proof is trivial. Since all major states have finite domains, and the local
states only comprise the major state, the search implied by the quantification
operators is now always finite. If these domains are additionally small, as in
usual specifications, the search is even not costly.

Note that the null-resetting property of A is needed: otherwise we might stop our
search too early which looks for a transition that belongs to some other feature
than B or f. We might stop at a global state of A" which is an abstraction of a
global null state of A but where this global null state would not be reached by
A because some part of the extended state space has not been reset yet. E.g., a
call forwarding number might not have been reset.

This need for the null-resetting property has consequences for a suitable speci-
fication style that supports the detection of feature interactions. Any transition
which leads into a null state should explicitely re-initialize the state space. Usual-
ly, one just doesn’t care for state components which contain some old data which
will never be used again. But here, we have to reset them to some constant val-
ues. In a practical FDT, this style rule means that a transition which leads into
a null state must assign some constant values to all variables that are defined.
Such a transition also terminates any indirect data dependences.

3.4 Excluding Independently Inserted Features

We may use another criterion that reduces the class of potential feature inter-
actions further which have to be analysed manually. For this, we partially take
into account the extended state space, again. A common situation in a local call
processing FSA is shown in Figure 11. Two short automata extensions/features
are inserted into the mostly sequential control flow of the basic local automaton.
Examples for such a feature may be “abbreviated dialling” which translates a
single digit into a full directory number, or “reverse charging” which changes
some charging control variables. The first extension can never disable the second
because it returns control back to nearly the same point where it took it away.
This return situation may be detected easily during our exploration of the major
state space, and be treated accordingly.

Definition 3.12 (major state preserving)
A transition t = (S 0,)) of a global automaton A = (S¢,T,sy) is magjor
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Figure 11: A typical situation with two new features.

state preserving iff for all (abstracted) simple transitions (s}, s5) € o+ with
st € S¢ holds that st = s§ and/or the simple transition (st, s3) belongs also
to the basic system B.

Informally, this means that transition ¢ either does not modify the major states at
all or that there exists a transition ¢g of the basic system such that ¢z modifies
the major states in exactly the same way as . Note that this definition does
not comprise the case depicted in Figure 11. There, more than one transition is
inserted before control is returned to the basic system. Such patterns are only
sensibly defined for a local atomaton (see Section 3.5).

Of course, a situation where two short automata extensions/features are inserted
into the control flow is still a feature interaction in the sense of Definition 2.29,
since there are computations which are possible only if both features are present
in the automaton. But often those features act on different parts of the state
space so that each feature still “does the same” on the part of the state space it
uses as without the other feature. This leads us to an extension of the notion of
state space dependence. We define an indirect state space dependence. And if
two features interact as in the scenarios above, but without such an indirect state
space dependence, we call this a minor feature interaction (see Definition 3.14
below). We suppose that we should scrutinize manually minor feature interactions
only after the more interesting cases have been handled, since the cases without
an even indirect state space dependence probably present no harmful feature
interaction.

An example of an indirect state space dependence is the case where the effects of
a transition tp associated with the basic system B depend on a state component
which was modified by the first transition ¢, and where in turn a second transition
tn depends on these effects of tg (compare Figure 12, left side). To resolve this
situation, we need to do some simple data flow analysis.

But we have to watch out for another pattern of dependence, too (compare Fig-
ure 12, right side): in the beginning of a computation, transition ¢; modifies some
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Figure 12: Two examples of indirect data dependences.

part of the state space (let us call it ), later, transition ¢, modifies another, dif-
ferent part (y), and even later, a transition ¢p of the basic system depends on
both z and y. An example is the case where the first feature f changes the clock
rate by which the charge is incremented, and where the second feature g changes
the customer who is charged. The dependence shows up only when the analy-
sis reaches the transition of the basic system which acutally charges a specific
customer. The following definition comprises both cases.

Definition 3.13 (indirect state space dependence)
A sequence (ti,...,tn) of transitions contains an indirect state space depen-
dence on a transition ty iff ty belongs to a feature f, f # B, and there exists
a transition ¢;, 1 < j < m, which does neither belong to feature f nor to the
basic feature B such that

o for the a transition'* t = (5¢,0,\) with S¢ = Sf and 0 =0y, 0... 00y,
and a new A holds that ¢ has a (direct) state space dependence of
(Def. 3.3), or

e there exists another transition t;, 7 < £ < m in the sequence such that
for the the transitions ¢t = (5S¢ 0, A) and ¢’ = (S¢,0’, X') with S¢ = S§
and S¢ = 5§, and 0 =0y 0...00y and o' =0y, 0...004 and a
new A and a new )\ holds that ¢ has a (direct) state space dependence
of tp and ¢’ has a (direct) state space dependence of ¢,.

14This transition ¢ does not need to belong to the global automaton!
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Figure 12 shows examples of indirect data dependences for both cases.

As mentioned before, such state space dependences are quite easy to determine
for the language constructs of any specific (constructive) formal description tech-
nique. This extends naturally for indirect state space dependences, we only have
to perform some kind of sequential concatenation of the transition relations. E.g.
for the FDT Estelle, we mainly have to concatenate the Pascal-style transition
body code.

Based on the definition of an indirect state space dependence, we are able to
define the notion of a minor feature interaction formally, which was introduced
already above.

Definition 3.14 (minor feature interaction) A feature interaction as de-
fined in Definition 2.29 on page 15 is minor iff ¢/ = ¢ and j > ¢ and
for the computation ¢, holds additionally that there exists a sequence of
transitions (t;, . ..) such that (cf, cf,,) is one of the simple transitions of ¢;'°
for all £ > 4, and the sequence (t;;1,...) contains no indirect state space
dependence on transition ;.

Now, we can strengthen Theorem 3.5 for the major state preserving case.

Theorem 3.6 Be A = (S%, T, sy) a global automaton such that for all features
h, h # B, holds that the set of all possible computations C4\; contains only
infinite computations. Furthermore, every computation ¢ € Cy4 shall contain
a global null state and for every computation this global null state shall be
reached again a second time; and be A null-resetting.

A feature interaction among the features of A which is not cross-reset and
not minor may occur only if there exist a feature f # B in A, a transition
ty € Tf, a feature g in A with g # f, a transition ¢, € T and a global state
s such that s € 57 and s € Sy, and additionally:

e g#Bor
e (ifg=1B:)
— ty is major state preserving, and

— for the abstracted automaton A™ of the global automaton A’ =
(SG, T, s), there exists a computation (si,...,s%,...) with sf = s*
and s, being a global null state of the original global automaton A
and no state sgL with 1 < ¢ < n is such an abstraction of a global

null state, and

YBor, more formally: ¢, = (S§, 0k, Ax) and cj € SE A ¢, o Ci+1

28



— there exists a sequence of transitions (ti,...,¢, 1) such that
(s7,51.1) is one of the simple transitions of #/'¢ for all 1 < i < n,
and this sequence of transitions contains an indirect state space
dependence on feature f (Def. 3.13).

The proof follows directly from Theorem 3.5. Note that we did not require
the sequence of transitions (¢1,...,%,_1) to be executable by A, but only the
sequence (tf,...,t' ) be executable by its abstracted counterpart A%. This
makes Theorem 3.6 weaker than it could be, but it saves us from exploring the
full state space.

3.5 Analysis on a Local Level

Since we describe distributed and concurrent systems, the specified systems con-
sist of local components (modules/processes) which operate with a certain degree
of independence. (Except for descriptions on the global functional plane.) Many
transitions have effects only on one local component. This is supported by most
of the specific formal description techniques. Their syntax of transitions allows
only local effects except for some special communication commands. This can be
exploited by performing individual checks for feature interactions on a local level
first. Due to the more restricted state space and the usually smaller degree of
concurrency, this allows a deeper and more thorough automatic analysis without
a state space explosion.

All detection criteria from the preceding subsections may as well be applied on-
ly to one local component. This can already discover those feature interactions
which happen only locally. For example, an interaction may be discovered (and
resolved) which results from an unspecified order of originating call screening
and abbreviated dialling, in an appropriate local setting. We can determine if a
transition has only local effects by the output modification pattern introduced in
Section 3.2. In Sections 3.3 and 3.4, we proposed some (major state) data flow
analysis after the detection of non-determinism between two transitions of differ-
ent features. This analysis may be restricted to a single local component as long
as only transitions with local effects are involved. If we reach a transition with
non-local effects we have three options: we can study the consequences manually;
we can apply the following analysis globally, as described in the preceding sub-
sections; or we can continue with another local analysis. These secondary level
local analyses start with any transition that depends on the state component in
question, as determined by the input pattern defined in Section 3.2.

A local analysis has a further advantage: in Section 3.4 we discussed major state
preserving transitions. On a global level, we could include only those transitions
into the definition which either didn’t modify the major states at all or for which

16or, more formally: ¢f = (S*,07,\;) and s7 € Sf* A s} of 87y,

k2
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existed a “similar” transition of the basic system. This did not comprise the case
depicted in Figure 11. On a local level, we can sensibly extend the notion of major
state preserving to entire groups of transitions. We replace the single transition
of above by a sub-automaton consisting of several transitions and states, and we
only require that the entry and exit of this sub-automaton exposes the properties
described above.!”

4 Resolution of Feature Interactions

To resolve detected feature interactions, generally high-level design decisions on
the policy of the service provider or on the needs of the users have to be made
(compare, e.g., [Sri95]). And since the detected interactions are the typical cases
nobody had thought of before, it is quite probable that a satisfactory answer
cannot be deduced from any existing behavioural description (compare Section 1).
Even if some solution can be deduced, we do not know if it also really satisfies
the implicit and unexpressed requirements of the users and the provider.

But even if an automatic resolution is impossible in many cases, several man-
ual resolution approaches are used [Cai92, CGL"93]: one can define fixed pri-
orities for the set of features, one can define precedences among features, and
one can introduce a dedicated feature manager®. A completely different resolu-
tion approach is the negotiating agents approach based on artificial intelligence
[GrVe93, GrVe94, Vel93].

In our approach, we employ two different methods to resolve the interactions:
precedences and dedicated “resolution features”.

In the simple case, we have detected direct non-determinism between two transi-
tions associated with different features. This is also the case when a new feature
is “plugged” into the old system since, up to now, we do not have introduced a
way to disable the old transition. We simply get this non-deterministic choice
instead.

So, after the detection methods have been applied, and after we are sure that it is
the right thing to override the old transition, we specify corresponding precedences
between the transitions. Each transition of a feature is given the same precedence,
therefore we only have to decide which feature takes precedence over which. This
is done by setting up a precedence matrix for features. The matrix does not
need to contain an entry for every pair of features, it is sufficient to enter the

17Some more details have to be considered, e.g., there must not be a deadlock, and the
notions of input pattern and output modification pattern have to be extended suitably.

18The latter can be used when the basic call process and the features are strictly separated
entities and can communicate only by exchanging messages. The feature manager monitors this
communication channel and allows a more complex interaction handling in this architecture
than the preceding two approaches.
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Table 1: Example of a precedence matrix from [BrGo94a]

BCS SCRT CF SCRT&CF SAFE LUQE
BCS -
SCRT - -
CF >~ >~ -
SCRT&CF | » - > -
SAFE
LUQE -

explicit design decisions we actually made. An example for such a matrix can be

found in Table 1, it is taken from a case study in an earlier technical report of us
[BrGo94al.

Here is a sketch of how the precedences are incorporated into our formalism.
We define a global automaton with priorities A? = (S%, TP, sy, p) for the hitherto
existing global automaton A = (S T, sq), where p is a partial order on the set of
feature names. Since each transition name A is already associated unambigiously
to a feature name ¢ by Definition 2.21, this renders a partial order on the set of
transitions 7. This allows us to construct the new global automaton AP which
is identical to A except that we remove any simple transition from 7" where all
the corresponding transitions ¢ were overridden by other transitions with a higher
priority.

Of course, there may be other cases where precedences are not sufficient. Then,
we need to specify additional behaviour which resolves the conflict. We specify
this behaviour formally like any other new feature, and we add it to the system
if and only if both of the interacting features are added. This approach for the
integration of the resolving behaviour allows us to investigate even interactions
which may happen between this newly introduced behaviour and a third feature.

More details on the resolution of feature interactions may be found in our tech-
nical report [BrGo94al. There, we apply our ideas to the formal description
technique Estelle.

It has to be stressed that the analysis of feature interactions as discussed in
Sections 2 and 3 requires that there are no precedences in the global automaton.
Nevertheless, we would like to apply our approch in an iterative manner: adding
a feature, analysing for FI, resolving the FI, adding again, analysing again, ...If
we “switch off” the precedences for the second round of analysis, we will be told
all the potential feature interactions that we already know from the first round,
and which we have resolved since long.

Therefore, we need to maintain a matrix of pairs ' of features which already have

19This approach does not take care of feature interactions which only happen among three
or more features. But these seem to be so rare that no example is known up to now.
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been analysed. This “checked”-matrix can be integrated into the precedence
matrix. The existence of an entry simply indicates that an analysis has been
performed already. We only need an additional symbol that marks those pairs
for which no precedence is needed, but which have been analysed. And we need
the convention that we only enter entries where an analysis has taken place, and
don’t enter them only because we know that the precedence relation is transitive.
This is necessary because the “checked” relation is not transitive. Nevertheless,
it seems sensible to integrate both matrices into a single one because of the strong
semantic dependence of the “checked”-matrix on the precedence matrix.

5 Using Existing FDTs

Up to now, we introduced a generic formalism for the specification of telecom-
munications systems, and we included only those language aspects which were
necessary for our discussion. To make our ideas applicable, we need a full-fledged
formal description technique which offers the appropriate expressive power that
allows a system developer to specify real systems. Our ideas have to be adapted
for such a FDT. But we designed our generic formalism in such a way that this
adaption is supported well. E.g., the FDT Estelle is rather rich in language con-
structs, but its semantic model ([ISO89]) is very similar to our global automaton.
Therefore it is possible to find syntactic criteria in Estelle for possible feature
interactions that correspond to our definitions in the generic formalism. We have
already investigated the notion of non-determinism between Estelle transitions in
depth [The95]. The richness of Estelle provided a rather large number of special
cases to consider, but this only justified our decision to investigate appropriate
feature interaction criteria in a simpler formalism first and to apply them to real
FDTs later.

An application to the FDT SDL should pose no fundamental problems as well
since the semantic models of SDL and Estelle are very similar. Concerning the
FDT LOTOS, our simple global automaton A® is basically already a labelled
transition system which is the semantic model of LOTOS.

6 Tools and Case Studies

A number of tools for the FDT Estelle is in use now:

e a preprocessor which allows to extract a specification consisting of exactly
the desired features from a common definition,

e a tool to compute priority values from a precedence matrix and to generate
the appropriate Estelle code for the value definitions,
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e a tool to detect non-determinism between Estelle transitions of different
features (CONFINE, [ThBr95, The96)),

e a tool to detect and automatically eliminate Estelle transitions which have
become non-executable because they are completely overlapped by new,
higher-priorized Estelle transitions (CONFINE again), and

e a toolset to automatically generate executable code from an Estelle speci-
fication, and to animate the execution (Pet/Dingo from NIST, [SiSt93]).

A first case study [BrGo94a]*® used a simple global service specification of a
telephone switching system. Our detection tool CONFINE did not only find the
already known feature interactions but also two interferences which escaped us
while we specified this simple example. A manual analysis led to the conclusion
that both cases are harmless if an implementation is sufficiently fast. Never-
theless, we achieved a deeper understanding of some underlying problems. Fur-
thermore, CONFINE detected and removed automatically the inactive transitions
which had become obsolete through the resolution procedure for the known fea-
ture interactions. Currently, we are working on a second case study which is
based on a simplified version of the IN conceptual model [ITU92|, specified in
Estelle again, which takes into account the distribution aspect, too [I1195, Jer96].
Parallely, we work on incorporating more criteria into our detection tool [Bar96].

7 Summary and Future Work

The feature interaction problem in telecommunications systems currently ob-
structs the evolution of such systems more and more. We presented an approach
for the offline detection of feature interactions which is different from other verifi-
cation approaches. It does not rely on a high-level, property oriented description
against which a lower-level, constructive description is checked. We observed that
the behaviour of a feature is a central notion, and that feature interactions are
indicated by a change in this behaviour. We formalized the notion of change in
a definition of feature interactions. From this, we derived a necessary (but less
than sufficient) condition for feature interactions. It can be checked mechanically
and points out all potentially critical spots. These have to be analysed manu-
ally. We proposed further criteria to exclude some cases where the interactions
are harmless, and we made use of our knowledge of typical telecommunications
systems to define criteria for more cases in which there cannot be any negative
influence even if the basic criterion indicates a possible problem. This led to a
restricted reachability analysis.

20 An overview of this study is more widely available [BrGo94b].
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Since the notions of feature and feature interaction, as they are widely used,
had been too fuzzy to have hope for a resolution of the problem, we had to
start out with a formal definition, and we discussed which aspects have been
included in the formalization (and therefore in the detection method). E.g., we
restricted ourselves to the functional aspects of a system. This allowed us to use
the computations (possible execution sequences) of a global automaton to catch
the notion of behaviour formally. We formalized a feature as an increment in
the possible behaviour of a global automaton. A specific specification style was a
prerequisite to construct an unambiguous association of the state transitions to
the different features.

The result of our analysis is a list of pairs of transitions from different features
which may possibly interact. This list may be condensed to a list of pairs of
features which may possibly interact. Such a condensed list is of value for the
management of detected possible feature interactions: for each entry, we need to
find an expert who knows both features and can determine how the interaction is
resolved best. This is an improvement to the current situation, where we need an
expert who knows all features in the system if we want to add one new feature.
And the larger the system becomes, the harder it is to find such an overall expert.

Next, we sketched an approach for the resolution of detected feature interactions,
which we have detailed in [BrGo94a]. We put up a precedence matrix for features
and thereby specify a partial order on them. This allows us to disable unwanted
transitions. There is also the possibility to specify new behaviour to resolve an
interaction. Furthermore, we discussed how our generic formalism can be mapped
onto real FDTs.

Some of the detection criteria are already supported by an automated tool. A first
case study based on the FDT Estelle used a simple global service specification
of a telephone switching system. Our detection tool did also find two (relatively
harmless) interferences which escaped us while we specified this simple example.
Currently, we are working on a second case study which takes into account the
distribution aspect, too.

This report describes on-going work. We are working on even more detailed
detection criteria. They would reduce the manual work of, e.g., dismissing cer-
tain classes of harmless interactions. Parallely, we work on incorporating more
criteria into our detection tool, and we will continue to perform case studies.
The application of our method to other FDTs than Estelle (e.g., SDL) should be
straightforward.
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A Auxiliary Definitions

This appendix contains some definitions which are necessary for a strict formal-
ization in the main part but for which the idea should be clear anyway. So
the actual, long formalization would only distract the casual reader from more
important aspects.

A.1 For “State Space Dependence”

The definition of a state space dependence (Def. 3.3 on page 19) depended on
three auxiliary notions which were left out there:

The output modification pattern shall describe which local state components can
possibly be modified by a transition.

Definition A.1 (output modification pattern)

The output modification pattern O' of a transition t = (S¢,0,)\) of a global
automaton A = (SY,T,sy), t € T, is a tuple like a global state (Def. 2.2),
but the local states are replaced by subsets of index ranges. For all 7,
with 1 <7< nand 1< j < m; holds that j € Of iff there exists a simple
transition (s1, s3) € o with s; € S such that sy, ; # s, ; (i.e., the component
j of the first local state slli differs from the component j of the second local
state sb ).

Example A.1.1

We illustrate this definition by a very simple automaton
A= (SG’ {t}’ 50)

with a global state space

S ={(#), (0)} x ({4, 0} x {#,0})

an initial state

so = ((&), (N, W))

and a (single) transition

t= (SGaTs: (Ba C))

which has got a set of simple transitions

T ((2), (y,2)) = ((2), (V,y)) for z € {0}, y,2 € {M,O}

For clarification of the above notation, we repeat the definitions of the global
state space S¢ and the set of simple transitions T in long form:

; (%), (V. ), (&), (V,9)),
((€), (V. #)), ((©), (V,9))) }



In this simple example automaton, the resulting output modification pattern
of the above defined transition ¢ is:

O'=({} {1,2})

|

The output dependence pattern shall describe for each output local state compo-
nent (k,!) on which input local state components (i, j) it depends.

Definition A.2 (output dependence pattern) The output dependence pat-
tern D' of a transition t = (S¢,0, ) of a global automaton A = (S¢, T, sy),
t € T, is structured like a global state (Def. 2.2), but the local state com-
ponents are replaced by subsets of pairs of indices. For all 7,7 and &, [ with
1<i<mnand1 <j<myand1 <k <nand 1 <1 < mg holds that
(4,5) € Dy, iff there exist two global states s1, s; € S¢such that: s} is equal
to s; except for the component j of the local state 7 and there exists a global
state s, € S¢ with sy0s, such that for all?! global states s, € S¢ with s|os),
holds that s5  # 53, ;.

Example A.2.1 We reuse the global automaton A and the transition ¢ of the
previous Example A.1.1. The resulting output dependence pattern of tran-
sition ¢ is:

D' = (({(1,1)})’ (‘[}’{(2’1)}))

|

Note that there are cases where Definition A.2 may behave differently as expected:
e.g., if the enabling condition of a transition is such that two local state space
components (i1,j1) and (42, jo) have to be equal for the transition to fire, then
there cannot be any state space dependence on these components. But this does
not matter since both components will be part of the input pattern defined below
anyway.

21 This universal quantification with the following negation of the equality is necessary because
of the possible non-determinism of the transition.
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The input pattern shall describe which local state components (i, j) are used at all
by a transition. This comprises both the enabling conditions and the computation
of the output. Output dependences on the input in the fashion of the identity
function are not counted.

Definition A.3 (input pattern)
The input pattern I' of a transition t = (S 0,\) of a global automaton
A= (SYT,s),teT,is a tuple like a global state (Def. 2.2), but the local
states are replaced by subsets of index ranges. For all 4, j with 1 <17 <n
and 1 < j < m, holds that j € I! iff:

e there exist two global states s1,s0 € S% where s; € S¢ and s ¢ S°
which are equal except for the component j of the local state 7, which
is not equal,

and/or
e there exists a local state component (k,l) such that
— (i,7) € D, and
— (k,1) # (i,7) or there exists a simple transition (s1,s2) € o with
s1 € S° such that s1, ; # so, ;-

Example A.3.1 We reuse the global automaton A and the transition ¢ of the
previous Examples A.1.1 and A.2.1. The resulting input pattern of transition
tis:

I'=({}, {1})
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