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Abstract

It 1s of basic interest to assess the quality of the decisions of a statistician, based
on the outcoming data of a statistical experiment, in the context of a given model
class {Py : 6 € ©} of probability distributions. The statistician picks a particular
distribution P, suffering a loss by not picking the ’true’ distribution Ps-. There are
several relevant loss functions, one being based on the the relative entropy function or
Kullback Leibler information distance. In this paper we prove a general 'minimax risk
equals maximin (Bayes) risk’ theorem for the Kullback Leibler loss under the hypothesis
of a dominated and compact family of distributions over a Polish observation space
with suitably integrable densities. We also find that there is always an optimal Bayes
strategy (i.e. a suitable prior) achieving the minimax value. Further, we see that every
such minimax optimal strategy leads to the same distribution P* in the convex closure
of the model class. Finally, we give some examples to illustrate the results and to
indicate, how the minimax result reflects in the structure of least favorable priors.

*This paper is mainly based on parts of this author’s doctorial thesis.
'This author is now at: Bertelsmann Club GmbH, Postbox 1109, D-33339 Rheda—Wiedenbrueck
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There are several means of measuring the divergence of the decision of a statistician from
the truth provided by nature. Mathematically, this divergence is usually modelled by a loss
function. There are several important examples, maybe the most prominent in statistical
estimation theory being the square—distance function and the Kullback Leibler information
quotient. The statistician has to choose a particular one fitting into his given context.
Then, the expected loss under the true distribution is the risk the statistician is taking.

In many cases, the Kullback Leibler information distance (KL-distance) is an appropriate
choice of a risk functional. It was first introduced by S. Kullback and R.A. Leibler in 1951,
see [KL51], as a directed measure of the distance of two probability distributions. Let P
and @) be distributions over a measurable space X with densities f and g with respect to
a o—finite measure . Then

. fz) fz)
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With the convention 0log0 := 0 we have that I > 0 with IK(P,Q) = 0iff P = Q. The
KL—distance has several interpretations in information theory and statistics, here it will be

used as a risk functional in a parameter estimation context.

In 1956 D.V. Lindley adapted the concept of the information theoretic transmission or
information rate to the theory of statistical experiments, see [Lin56]. An experiment, i.e. a
family of probability distributions { P : § € ©} over an observation space X, is considered
as a Shannon information transmitting channel, the true parameter being the unknown
character sent, and the data being the characters observed after some trials. A prior’s
transmission or information rate measures the expected information gain of the experi-
ment given a prior. It is quite natural to choose a prior maximizing this information rate.
This choice leads to non subjectivistic priors that contain as little as possible information
about the parameter relative to the information provided by the data. In information the-
ory, and we will adapt this here, the maximum information rate of a channel is often called
the capacity, and those priors achieving capacity are called optimal. The capacity of a
statistical experiment is closely linked to the grade of ‘orthogonality’ inherent in the given
family. We will learn much more about the true parameter if the distributions have largely
disjoint areas of support. In this case the capacity will also be large, and vice versa. If the
distributions are very similar then we will have a small information gain, regardless which
prior we choose. Thus, the capacity will be small. So, the concept of capacity is a useful
tool to compare the ‘orthogonality’ of different experiments, as it doesn’t depend on the
choice of priors, spaces or dimensionality. But of course, in many practical situations the
calculation of the capacity of a given experiment as well as the determination of optimal
priors can only be done numerically.

We can characterize optimal priors in terms of a Bayes strategy: If we use the Kullback
Leibler information quotient as loss function, then the Shannon information rate Z can be
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seen to be the minimal Bayes risk for the statistician’s picked distribution P under a chosen
prior:

I\ = m];n/gjzf(P@,P)A(de).

After rigorously introducing the mentioned quantities, we will show in the next section of
this paper, that P := Py := [y PyA(df), the mixture distribution under the prior, minimizes
the Bayes risk, so that

T(A) = /@I((P@, PyA(d8).

We will also give conditions on the model family P := {Ps : § € O}, which guarantee that
the information rate is continuous. If we finally assume P as being compact, then we always
find a convex set of optimal priors achieving capacity. It turns out that all optimal priors
lead to the same mixture distribution. This mixture distribution minimizes the maximal
value of the Kullback Leibler risk funtional, thus leading to a minimax equals maximin
equals capacity characterization. The mentioned results mainly base on parts of J. Krob’s
doctorial thesis, which was done in 1992 at the Department of Mathematics of the Uni-
versity of Kaiserslautern, Germany, under the supervision of H. v. Weizsicker, see [Kro92].
Finally, the last section of this paper gives some numerical examples to illustrate the results.

2 The Capacity of a Statistical Experiment

The first part of this section will introduce the already mentioned quantities and objects on
a rigorous basis, in order to switch from a general conceptual framework to a mathematical
theory.

With ProbX or Prob® we will respectively denote the space of all probability measures
over the (measurable) spaces (X, X'), and (0, B).

Definition 1: A statistical experiment is a triple (X, X), P, Q) consisting of a meas-
urable space (X,X) which we will additionally assume to be Polish, and a family P :=
(Py)oco of probability distributions over (X, X) with parameter space ® C R?,d € IN.
If additionally P is compact in the topology of the variational distance, and © is compact
in the usual topology on R®, then the experiment is called compact.
If all Py,0 € O, are dominated by a o—finite measure p € ProbX then there exist p-
densities fy for all 8 € O. In this situation the experiment is called dominated. [Let
fo = Jo fow(dB) denote the density of the mizture distribution with respect to the prior ¢.
If the family

(falog fr)reProbe

s uniformly p—integrable then we will say that the experiment is uniformly integrable.

In most cases, just P will be called experiment, as an abbreviation. For instance, let P be
any d-dimensional standard exponential family, like the Normal family, the Gamma family,
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the Binomial family or the Poisson family for suitable d € IV. If ©® is a compact subset
of the natural parameter space, then P is a dominated, compact and uniformly integrable
experiment in the sense of definition 1.

Lindley defined the average amount of information provided by the experiment
with prior knowledge ¢ € Prob® to be

I(p) = EL(H(p) = H(g(:]2))), (1)

whenever the entropy of the prior and the posterior distribution, i.e. integrals of the form
1) = [ e(0)log ¢(0)dt,

exist, both distributions ¢ and ¢(-|z) having a Lebesgue-density. Thus, the mean loss of
entropy by observing the data gives the amount of information we gain about the parameter,
being the quantity of interest. We will use another definition, putting all integrability
assumptions into the experiment rather than into the prior distributions. This seems to be
useful here as the statistician then has full access to all kinds of priors. Following the concept
of least favourable or non informative priors this degree of freedom is desirable as examples
show that in many typical cases non informative priors are discrete (see the examples at
the end of this paper, and [Ber89] and [Zha94]) on one hand, whereas Bernardo’s reference
priors, e.g. Jeffreys’ prior, typically have Lebesgue densities (see [Ber79] and [BS93]).

Definition 2: For a compact, p—dominated and uniformly integrable experiment ((X,X), P, 0)
with P :={Py : 6 € O} having densities {fg : § € O} the quantity

T(¢) = ~ [ pu@)logpo(o)u(dz)+ [ [ fa(w)log fola)u(de)e(ds)
= 1R~ [ H(P)e(ds)

defines the information rate or average amount of information provided by the prior
distribution ¢ € Prob®.

Again, P, := [, Pyp(df) is the mixture distribution with respect to ¢, having the y—density
fo. If the given experiment is uniformly integrable we are guarantueed that 7 is well defined
and continuous!. Since ©® and thus Prob® are compact there is a set of priors (maybe just
containing one element) which achieve the maximum information rate. These priors are
called optimal and their information rate is called the capacity of the experiment:

= I(p).
¢ apEI%?g%)@ (SO)

The following lemma gives some identities, whose classical analoga are well known in in-
formation theory.

!Examples show that the integrability assumption cannot be dropped easily.
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Lemma 1: Let P be a compact, dominated and uniformly integrable experiment. Then
the following holds for any ¢ € Prob0®:

1 (9) = fo I (Po, P )old6).
2. I(p) = [o IK(Py, P\)p(df) — IK(P,, Py\) for any A € Prob0®.

3. Let ¢ ), .,go(N) € Prob® with N € N and let s := (sq,... SN) € SN 1 be a
pmbabzlzty vector in the N — 1-dimensional unit simplex. Let ¢ Zk 1 skap( ),
Then for every A € Prob®:

N N
ST sZ(e") + 37 s K (P, Pr) = I(0©) + K (P, Py).
k=1

As the Kullback Leibler distance may be interpreted as the information gain when we
switch from P, to Py, the first statement characterizes 7 as mean information gain given
a prior. From a Bayesian point of view the statement says that Z is the Bayes risk of the
prior distribution ¢. The second statement tells us then that 7 even is the minimal Bayes
risk, taking P\ := P, in this situation.

Proof: By our assumption of uniform integrability we find that

1(¢) = — [ pole)logpa@utdr) + [ [ falz)log fa(w)n(da)e(a0)
=[] (a(z)log ) = o) log fola) () o)
_ / K(Ps, P,)e(db),
which proves the first statement. The second equality will be proved in two steps. First,

we assume that K (P,, P\) = oo for a prior A € Prob®. This means that we have for the
densities

0= fi(2) < fo(2)

on a set of positive pg—measure. For these z € X we also have 0 < fz(z), and thus also
IK(Py, Py) = 0o on a set of parameters of positive ¢p—measure. So

[ K (Pr, P(d8) =
®

For the second step let IK(P,, P\) < co. We have
() + K(Py, Pr) = / K (P, P,)p(db) +/ K(P o(dy)

Jo(z) fw( ) RNV
//f{, ) fA(w))u(dx))w(dH)
= /GJK(Pe,PA)@(dH)a
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prooving the second assertion. The third statement is just ‘a convex combination’ of state-
ments 1 and 2, thus the lemma is proved. [ |

The next lemma’s classical analogon is a core result for computing the channel capacity.
It is due to Shannon (1948) and to Eisenberg and Gallager (1962), see [Gal68]. The early
proofs of the classical version involved Kuhn—Tucker criteria which are hardly to use here.
So we adapt an elementary proof given by F. Topsge in [Top74].

Lemma 2: Let P be a compact, dominated and uniformly integrable experiment with
capacity C. Then the following holds:

If ¢ € Prob® is a prior with corresponding mizture distribution P, € ProbX, then the
following condition is sufficient and necessary for ¢ being optimal:

There is a constant C' < oo so that

1. K(Py, Py) = C for p—almost all § € O,
2. IK(Py,P,) < C forall € 0.

If the condition holds then C' = Z(p) = C.

Proof: The ‘sufficient’ part follows directly by the previous lemma 1. For the proof of the
‘necessary’ part, we first note, that if condition (2) holds for an optimal prior ¢ € Prob®,
then also condition (1)is valid. Next, we choose C' :=Z(¢) = C. If there was a fy € © with
K (Py,,P,) > C, then it would be possible to increase the information rate by sending 6
with a slightly higher rate. Modifying ¢ by

pri=1-0g + (1 1) @,
with ¢ € (0,1) and applying lemma 1 leads to
() = tZ(bg,) + (1 = 1)C + tIK( Py, Pp,) + (1 — 1) IK(P,, Py,).
Thus we have the inequality
I(pt) > (1 = t)C + tIK ( Py, Py,).

Ast— IK(Py,, P, ) is a continuous function, we find a 0 < t* < 1 such that K (P,, P,,.) >
C, and thus

I(ew) > (=) +EK(Py Py.)
> C.

But this is impossible as Z(¢) = C' = C = max eprobo Z(A) is maximal. Hence, it must be
K (Py,, P,) < C forall 8 € Q. Therefore the conditions hold with C' = C. |

Interpreting the lemma geometrically, we can say the following: C is the radius of the
smallest Kullback Leibler ‘circle’ around the mixture distribution induced by optimal priors,
such that all elements Py of the experiment are inside or on the circle. In Bayesian terms
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we can say that if we choose an optimal prior ¢ and take P, as our guess of nature’s
behaviour, we will never suffer a risk higher than C, not depending on the true 6y, with
C being the smallest value with this attribute. In the next section we will provide some
examples illustrating the lemma. These interpretations motivate the following theorem,
which is the main result of this paper.

Theorem 1: Minimax—Theorem
Let P be a compact, dominated and uniformly integrable experiment.

1. Fach Shannon optimal prior ¢ € Prob® mazimizes the minimal Bayes risk. The set
of all optimal ¢ € Prob® is a non emptly convex subset of Prob®.

2. There is a unique distribution P € convexhull(P) C ProbX, which minimizes the
mazimal value of the Bayes risk function. It is P = P, for any optimal prior ¢ €

Prob®.

3. If C is the capacity of the experiment, then

C = min max K(FPy, P,)
pEProb® €6

= i K (P, Py) o(df).
wé%fg{)@m%gb@/@ C(Py, P2) (df)

Proof: By definition, a Shannon optimal prior ¢ maximizes the information rate Z(¢) of
an experiment, which is, by lemma 1, the corresponding minimal Bayes risk. The minimax
value equals the capacity of the experiment by lemma 2.

Item (3) of lemma 1 implies the strict concavity of Z: Using the same notation as above
we see, that the Kullback Leibler terms vanish if and only if P o) = Py = P ) for all &

with sy > 0. Thus, the mixtures P 1) and P, of two optimal priors 0 and ¢ must
be the same. The concavity of the information rate/minimal Bayes risk also implies that
the set of all priors maximizing it, is convex. Note that the continuity of K in its first
variable is implied by our condition of uniform integrability. Then, lemma 2 implies that
the maximum value of the Bayes risk is minimized by the (unique) mixture P, of optimal
priors. [

This means that C is both minimax and maximin risk value for a Bayes strategy with
I as risk function. In other words: Optimal priors are least favorable under Kullback
Leibler risk. For a related minimax result, see also D. Haussler’s [Hau95]. It is inter-
esting to relate our statement with an asymptotic analogon: In 1994 B. Clarke and A.
Barron proved that Jeffreys’ prior, which is Bernardo’s reference prior in this situation, is
asymptotically least favorable under Kullback Leibler risk, see [CB94]. Both results are
linked together by a theorem proved in [Sch97], which shows that any sequence of Shannon
optimal priors converges weakly to Jeffreys’ prior. Thus, for large sample sizes, Shannon
optimal priors have a very similar ‘mass—distribution’ like Jeffreys’ prior, approximately re-
vealing the same invariance properties. On the other hand, Jeffreys’ prior can be used as a
ready at hand approximation of finite sample priors, which would be hard to derive exactly.
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We will illustrate our result in this section by the following examples: Given an experiment,
we calculate (numerically) an optimal prior ¢ by the algorithm of Arimoto and Blahut.
This algorithm was introduced independently by the two authors in 1972 (see [Ari72] and
[Bla72]). It also leads us to the (approximative) optimal mixture distribution P,. To get a
numerically treatable family, we take a discretization of the parameter interval with ¢t = 33
points. Then, we plot the distance function

k:0 — [0,00],0 — IK(Py, P,).

This function tells us which loss we suffer by using P, instead of the ‘true’ Py. The maxima
are (modulo numerical noise) all of the same value, which is the capacity of the experiment.
The maximum points of this function correspond to the points of support of optimal priors
by lemma 2. Any optimal prior is supported on the set of the maximum points of k.

The Binomial curve in the unit simplex The distance function & for n = 2

K (B(n,p), a)

Figure 1: The Binomial family for 2 outcomes.

The first diagram displays the Binomial family (B(n,p))yejo1] as a curve in the two-
dimensional unit simplex. The big blop in the convex hull of the curve represents the
calculated mixture distribution P,. This distribution is the centre of the minimax Kull-
back Leibler ‘circle’ with radius C. All family distributions are inside this circle. Further,
it is apparent in the present example that an optimal prior must be of discrete support, as
k has only isolated maximum points.

The next two diagrams show the analogue situation for a truncated Poisson family. In the
example, the Poisson sequence with parameter A is truncated after the third entry, which
is replaced by 1 — Y 1_q P(A)(k), to get a three-dimensional probability vector. In the first
picture the ‘inner’ curve displays the resulting probability family for A € [0, 10]. The other
curve is the Binomial curve. Again, the maximum points give the capacity and the points
of support of optimal priors.
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Truncated Poisson and the Binomial curve in the unit simplex The distance function & for n = 2

K (P(p). Q)

0.7
0.6

Figure 2: Truncated Poisson family and the Binomial family.

The Geometric and the Binomial curve in the unit simplex The distance function & for n = 2

K(Qn.p),

Figure 3: Truncated Geometric and the Binomial family.

The third figure shows the Geometric distribution family, analogously truncated, together
with the Binomial curve, and the distance function . Again, all distributions of the family
have a Kullback Leibler distance to the optimal mixture distribution equal to or smaller
than the capacity of the experiment.

The last figure shows s for the three example families, now for n = 10. Increasing the
sample size (and thus the dimensionality) just increases the number of isolated maximum
points.

The examples show that, due to the minimax characterization of the capacity, the structure
of finite sample least favorable priors can be studied, at least numerically. In the above ex-
amples, all least favorable priors have a discrete structure, which is apparent from the fact,
that the distance function k has only isolated maxima. The methods based on information
theory presented in this paper also allow to investigate the ‘orthogonality’ structure of a
statistical experiment. As already indicated in the introduction, capacity, and of course
also the structure of least favorable priors, are closely connected to the diversity of the
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x for the Binomial family with n = 10. « for the Poisson family with n = 10.

K (B(n,p). q) n K (P(p). a)

125
0.8

« for the Geometric family with n = 10.

K (ap). o)

Figure 4: The example families’ & for n = 10.

model family. Optimal priors favour those parameters 6;,80,,... with P, being as ortho-
gonal as possible to all other P, ,i # j. Further, the induced optimal mixture distribution
P, represents the ‘information theoretic centre’ of the family’s convex hull. Families with
distributions near to the extreme points of the simplex have a convex hull which is large,
measured by the Kullback Leibler distance from this ‘centre’. Thus, a statistically more
informative structure reflects in larger value of the experiment’s capacity. This can be
observed in the presented examples: the Binomial family has the largest capacity, followed
by the (truncated) Poisson and the Geometric family.

10
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