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Abstract

Let (&) be a sequence of experiments with the same finite parameter set. Sup-
pose only that identification of the parameter is possible asymptotically. For large
classes of information functionals we show that their exponential rates of conver-
gence towards complete information coincide. As a special case we obtain the rate
of the Shannon capacity of product experiments.

1 Introduction

There are various measures of the information content of a statistical experiment £, among
others the decision theoretic deficiency distance to the most informative experiment and
the Shannon capacity (which was introduced in the statistical context by D.V. Lindley
[9] and J.M. Bernardo [1]). These numbers are not easily computed. Therefore it is de-
sirable to describe at least their asymptotic behaviour when the experiments get more
and more informative. To our knowledge the asymptotics of the Shannon capacity has
not been studied for finite parameter situations. We do this using the framework of f-
(dis)similarities in the sense of Gyorfi and Nemetz [5].

The main message of our paper is the following observation: Let & (k € IN) be a sequence
of experiments with a common finite parameter set. The only assumption about these
experiments is that they allow asymptotically the identification of the parameter, i.e. that
they converge to an experiment with complete information. Then the exponential rate of
the information gain does not depend on the special choice of the information functional,
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at least in a very wide class of functions f. In particular the capacity and the deficiency
always have the same rate.

For product experiments E. Torgersen ([12]) extended the large deviation theorem of H.
Chernoff ([2]) in order to identify the deficiency rate. Thus our result gives in particular
the asymptotic rate of the Shannon capacity for finite parameter product experiments.
For another model where these rates can be computed explicitly see the forthcoming pa-
per [10] which treats finite Markov chain experiments.

The paper is organized as follows: Section 2 introduces f-similarities, discusses some ex-
amples and extends the concepts of equivocation, information gain and capacity to the
more general setting. Section 3 collects a few useful facts about concave functions on
the simplex of n-ary probability vectors. Section 4 discusses the convergence of the f-
similarities if the identification of the parameters is possible. Section 5 contains the main
results. Roughly speaking they say: Exponentially equivalent f have the same exponen-
tial rate for the similarity.

Notations. Let £ = { Py, ..., P,} be a statistical experiment with parameter set {1,...,n},
i.e. a finite family of probability distributions on the common measurable space X. The
set of all probability vectors of length n is denoted by Prob,,. Let A € Prob,, be considered
as a prior distribution on the parameter space. We write P, = -7 | \;P; and for every

z € X the associated posterior distribution (%(m), e d;;;f" (z)) € Prob, is denoted by
1

St %) is denoted A,,;¢. For 1 <1 < n the symbol e; denotes
the :-th unit vector which corresponds to the point mass at .

5\(:13) The uniform prior (

2 f-Similarities

Extending an idea of 1. Csiszar [4], .. Gyorfi and T. Nemetz introduced (see the references
in [5]) the concept of f-dissimilarities as a way to measure the degree of mutual singularity
of a family of n probability distributions P, ..., P, on the same observation space. Here f
is a convex function on Prob,. In order to include the entropy functional we change signs
and consider 7 f-similarities” for concave functions f. Actually for our main results we
shall weaken the concavity requirement considerably. However, for us it is essential that
the function f is bounded which excludes some cases studied by Csiszar. It turns out to
be helpful to introduce a prior distribution as an additional parameter.

Definition 2.1 Let € = { Py, ..., P,} be a finite family of probability distributions on the
measurable space X. Let f : Prob, — IR be a continuous function. Let A € Prob, be a
prior distribution on {1,...,n}. The f -Similarity of & w.r.t. A is given by

dA\ Py dA, P,
HAEN) = [ F(G5 () S (@) Pi(de)




Remark 2.2 Since f is evaluated at the posterior distribution 5\(:1:) corresponding to the
prior A and the observation x the number H¢(E,\) can be considered as the expected
posterior value of f. The value H¢(E, Aynip) is denoted by f(€) in decision theoretic
literature, see e.g. [12], p.640.

Remark 2.3 If f is affine then one has H;(E, ) = f(A) = X1, A; f(e;). Thus for affine
f this number contains no information about the experiment.
We are interested mainly in the asymptotic behaviour of

Hy(Ek, A) — Hp(Ma, A) (1)

for sequences of experiments &, = {Pl(k), .-+, P} where the measures P,i(k) become more
and more singular to each other and the experiment M, is one with complete information,
i.e. with pairwise singular measures ;. For M, one has PZ{):Z = ¢;} = 1 for each 7 and
hence Hy(M,,A) = Y7y Aif(e;) is just the affine part of the function f. Thus the
difference (1) will not be changed if we change the affine part of f. Therefore we shall
assume in many cases f(e;) = 0 or equivalently H¢(M,, ) = 0. As £ approaches M, the
posterior distributions are close to the extreme points e; and, thus, what really matters
for the asymptotics of the above difference is the asymptotic behaviour of f(A) as A
approaches these extreme points. In particular we shall see that changing f by, say, a
factor of logarithmic order does not change the exponential rate of H¢(E,X). Therefore
this rate depends very little on the explicit ’parametric’ form of f.

If f is concave then Jensen’s inequality implies the inequality
Hy(E ) < f(/ dep,\,...,/}ndg) — [y M)

Hence for concave f the number Hs(E, A) as a function of £ has the maximal value f())
which is attained if P, = ... = P,, i.e. if £ is the least informative experiment.

Like the dissimilarity (cf. [5]) the similarity includes for particular choices of f several
known functionals.

Example 2.4 Let f: Prob, — IR; be the entropy functional given by

n

f(z) = Z —z;log z;.

i=1
Then H¢(E,A) is the conditional entropy of the parameter given the observation where
the parameter and the observation are considered as random variables on the probability

space ({1,...,n} x X,>°7, A\ie; @ P;). In information theory the number H¢(E,A) in this
case is sometimes called equivocation.



Example 2.5 Let b : Prob, — IR, be defined by b(z1,...,2,) = 1 — (max; z;). Then
Hy(E, ) is the Bayes-risk for the prior A (and 0 — 1 loss function). As is shown e.g. in
[13],p.255, the deficiency 6(€, M,) of the experiment £ to the most informative exper-
iment M, in which all P; are mutually singular, is equal to 2 maxy H;(E,X). If Q is the
observation space of the experiment £, the number 6(£, M) can be defined as

1
1£f 1%”? — || BK — ¢ |1,

where K varies over all transition kernels K : Q — Prob,, cf. [8], p. 8.

Example 2.6 For a € Prob, consider the (concave) function f, given by f.(z) =
[Ti=; z7*. Then the number Hy, (&, Aynis) is the Hellinger transform of the experiment
at the point a.

Example 2.7 In [12] the rate of (1) is determined for product experiments where f(z) =
—1(z) and ¢ is a sublinear map on the whole space IR" (i.e. ¢ satisfies ¥(z 4+ y) <
(x) + (y) and Y(ax) = ap(x) for all @ > 0 and z,y € R"). Clearly every sublinear ¢
is convex and hence the induced f on Prob, is concave. The function b in example 2.5
is of this type: Take ¢(2) =|| z ||oc — > i=; 2z:. However, not every concave function f on
Prob,, is of this form. Neither the entropy functional of example 2.4 nor the functions f,
in example 2.6 can be extended to concave functions on IR" because on any line through
an extreme point e; their slope near e; becomes infinite.

1
Example 2.8 Let us specialize ton = 2. Fix 1 <r < oco. Let f(z1,22) =1 — |27
Because of b(z1,22) = 1 — max(z1,22) = min(z,22) and the general relation a + b —
la — b] = 2min(a,b) one has f(z) = 2b(z) in the special case r = 1. Moreover writing

Q= (P + Py)/2 we get

1 1 dp, r dP2
——=I"d
2’ 2 /| @

Here the integral is for r = 1 the total variation distance and for r = 2 the square of the
Hellinger distance between P; and P,. So in particular

Hy (€, (5,

11
o e, (L =2 - p
22
Example 2.9 For n = 2 one can also consider the function f(z1,2) = zlf(z—;) for a

function f on IRy. This formally gives the f-divergence of Csiszéar [4]. However our
boundedness restriction (which is enforced by the continuity) excludes interesting convex
examples like the Kullback-Leibler number which corresponds to the function f(:u) =
log z. Of course one could symmetrize and rescale, taking

fz122) = exp(=af(2) = /().

This function is not concave. The corresponding similarity then is related in a weak sense
to the Kullback-Leibler distance and it fits into our framework.



(&1

For some purposes it is convenient to pass from Prob, to the full cone IRY.

Definition 2.10 Given a real function f on Prob, we extend it to f on the cone RY} by

setting
z

7(0)=0 and }Xz)zy\zulf(ﬂzjﬁ)
where || z |l1= X, |zl

Remark 2.11 Clearly f is positively homogeneous, i.e. it satisfies f(az) = af(z) for all
a > 0 and z € R},. Moreover f is continuous if f is continuous. If we replace f by f in
the definition of Hf(E, A) the P, could be replaced by any measure dominating the A; P;.
In this connection we note (but shall not use) the fact that the number H;(E, A) is the
value mg(f,) of the conical measure mg associated with the experiment € at the positively
homogeneous function f, : 2z + f(A21,..., A\o2,) (cf. [7],ch.3). So in this sense our paper
deals with ’large deviations of conical measures’.

Extending the approach of D.V. Lindley [9] from entropy to general similarities one intro-
duces the expected amount of information (measured in terms of the functional f) which
one gains by passing from the prior to the posterior distribution. This corresponds to the
transmission rate in Shannon theory. The maximal information gain corresponds to the
Shannon capacity.

Definition 2.12 The number
I(E,N) = f(A, ooy An) — Hf(E,N)

is called the f-information gain of the experiment £ w.r.t. the prior A\. The symbol
C¢(&) denotes the mazimal f-information gain

Ce(E) = max I4(E,N).

AEProby,

The following lemma implies in particular that indeed on the compact set Prob,, the value
I+(€, ) attains its maximum.

Lemma 2.13 If f : Prob, — R is continuous then H¢(E,X) and I;(E,X) are continuous
m X € Prob,.

Proof: Let () = 37_, P;. We use the representation from remark 2.11
dP, dpP,
dQ "dQ

In this integral the argument of f is a continuous function of X for each z and by the

Hﬂ&ﬂ:/?@l (), s A

(z)) dQ(z).

special choice of () it is uniformly bounded in each component as a function of x and A.
Since f is also continuous the continuity of Hs(€, A) and hence also of 1¢(&€,X) follows by
dominated convergence. qg.e.d.



Remark 2.14 It should be kept in mind that the prior A,,; which attains C'(€) typically
is different from the prior A which maximizes f. For the entropy functional f(z) =
— Y z;log z; one has A= Aunif Whereas this is not true for A,,;. For example let P, =
Bin(k, n"?) for 1 <7 < n. Then one can compute numerically (e.g. by the algorithm
of Arimoto-Blahut) the optimal prior and it turns out that it gives greater weight to the
parameters near the boundary of (0,1). For a theoretical explanation of this phenomenon
see e.g. [3] and more explicitely the recent paper [11]. However a simple observation is

the following

Lemma 2.15 Assume that [ altains its mazimal value on Prob, at the prior X. Then
the following estimates hold

I5(&,2) < C4(&) < f(V),

3 Some properties of concave functions on Prob,

In our main results we shall need less than concavity for the function f which defines the
similarity. Nevertheless comparison with concave functions is important. The following
proposition collects a couple of useful and presumably known facts about nonnegative
concave functions on Prob,. For the readers’ convenience we give all proofs.

Proposition 3.1 Let f: Prob, — IRy be concave. Then

a) the positively homogencous extension [ of [ to IR is concave and monotone for the
coordinatewise ordering of RY.

b) Let a > 0 and A\, i € Prob,, be such that a™ p; < X\; < ap; for all i € {1,....,n}. Then
for every experiment with parameter set {1,---,n} and all observations x we have at the
posterior distributions the inequality f(j\(:r:)) < a*f(ji(z)).

¢) For every X € Prob,, and every experiment € one has Hg(E,X) < nH(E, A\ynig) where
Munif = (755 7)-

d) Let b(z) = 1 —max]_, z;. If f vanishes precisely at the extreme points e; then f satisfies
v b < f for some positive constant ~.

e) If f can be extended to a finite concave function on the whole space R™ and if f(e;) =0
for all i € {1,---.n} then there is some constant o such that f < a b on Prob,.

Proof: a) To see the concavity of f,let o € (0,1) and y,z € IR} be given. Then y = aX
and z = by for some a,b > 0 and A,y € Prob,. Write v instead of aa + (1 — a)b. Then

Tlay +(1—a)2) = v f( X0+ T2 s af(0) + (1 — @)/ ()

~ ~ B B
= af(y) + (1 - ) T(2).

Next we verify the monotonicity: Let y, z € IRY} be such that y; < z; forevery: € {1,...,n}.
Then z —y € IR} and hence

Ty + 2z —y)) _ J(2y)
9 9

() = ALY

) >

= [(y)-



b) It is easily verified that for all observations the posterior distributions satisfy the
inequalities A(z); < a?fi(z); for i € {1,...,n}. Then the desired estimate follows from part
a).

c¢) Let Q@ = 3 P.. Then by the monotonicity of f and remark 2.11 we have

— d\ Py d)\ P, dP1 dP,
Hy(E0) = [T T ag Q< /f 501 = nH (€. Nunis).

d) (cf. p. 38 in [6].) For each ¢ let D; = {# € Prob, : z = max;z;}. Then Prob,
is the union of the polytopes D;. The set D; has only finitely many extreme points, one
of them being the point e; at which f(e;) = 0 = b(e;). At the other extreme points f is
strictly positive. Hence there is some v; > 0 such that f > ~; b on exD;. But on D; the
function b is and hence the function f — ~;b is concave. Since a concave function attains
its infimum at an extreme point of D; we have f —~; b > 0 on D; and thus f > v b on
Prob,, for v = min; ~;.
e) Let us denote the concave extension again by f. For each i there is a vector y' € R™
and a number §; such that the affine function g(x) = (y', z) + f3; satisfies f(z) < g(z) for
all z € R and g(e;) = f(e;) = 0. In particular 3; = —(y', e;) = —y!. Thus we get for all
z € Prob,

Z Yz —yi = E(% —yi)z < i)z = ol — z)

=1 j=1 J#i
where «; = max;y; y; — y!. Choosing o = max; o; we get f(z) <amin(1 — z) = a b(2).
g.e.d.

4 Convergence

We are interested in the asymptotic behaviour for large k of the quantities H¢(&, A) and
C¢(&) for various f and a sequence of experiments & = {Pl(k), .oy P¥)Y with the same
parameter set {1,...,n}. The classical example of course is the case of product experi-
ments &, = & = {Pf, ..., PF}.

We assume that the measures Pi(k) are almost mutually singular for large k, with the idea
in mind of measuring the speed of this process with our quantities.

(k)
Assumption A For all 7 # j and ¢ > 0 we have limg_ ., P-(k){di(k) >e} =0.

There are many alternative ways to express this condition. It means that asymptotically
the true parameter can be estimated with arbitrarily small error probabilities. Obviously
it is implied by the condition that for 7 # j one has for some s > 0

dp
lim E* )[ 0
pm B

k3

I = 0.



In the terminology of the theory of comparison of experiments the assumption A says
that (the standard measure of) & converges weakly to (the standard measure Y1, 4.,
of) the most informative experiment M, which in turn is equivalent to the fact that the
minimal Bayes risk H,(E,X) converges to 0 (cf. e.g. [13],p. 395f). For our quantities one
gets

Proposition 4.1 Suppose that A holds. Let f: Prob, — IRy be continuous with f(e;) =
0 for all v € {1,....,n}. Then limy_o H¢(Ex, A) = 0 uniformly in X € Prob, and
limk_,_oo Cf(gk) = Mf where Mf = IMaXxeProb, f()\)

Proof: Rather than deducing this from the abstract theory of standard measures of
experiments quoted above we give a direct argument. Note that under assumption A for
any ¢ € {1,...,n} the posterior distributions converge under the :—th hypothesis to the
vector e; in the following sense: For every 6 > 0 and every > 0 there is some kg such
that for k£ > kg we have
PEIA = el > 63 <

uniformly in the set {\ € Prob, : \; > n}. Given ¢ > 0 choose 5 = 4n§\/1f and 6 > 0 such
that f(z) < &/2 whenever || z —¢; ||< 6 for some ¢ € {1,---,n}. Choose ko as above.

Then we get for all A € Prob,, and k > kg the estimate

PR > e/2) < 30 i+ S0 MPPYIIA — el > 6} < 2np

1A <7 A >m

and hence
Hy(&,)) = /f(j\) dPM <cppr [ My PP < c
{F(N)>e/2}
which proves the first assertion. For the second part let f attain its maximal value My
at X\. Then we have by lemma 2.15

0 < My — Cy(&) < fN) = 1€, X) = Hy(E,X) =5 0.

5 Comparing exponential rates

In many situations one can expect that the convergence in proposition 4.1 is exponentially
fast. We want to show that in a wide class of functions f actually the exponential rate
of convergence does not depend on the particular choice of f. For this consider the fol-
lowing definition. It is concerned with the comparison of the small values of two bounded
nonnegative functions f,g.



Definition 5.1 Let f and g be two nonnegative bounded real functions on a set 7. We
say that f is exponentially dominated by ¢ if for each ¢ € (0,1) there is a constant
C(e) < oo such that

f(z) < Cle)g(2)' "

for all z € Z. If f and g are exponentially dominaled by each other we call f and g
exponentially equivalent.

Here is an alternative description of this concept.

Remark 5.2 Let f, g be bounded nonnegative functions. Then f is exponentially domin-
ated by g iff {g =0} C {f =0} and

log f(2)

liminf ———~= > 1.
a()~0 logg(z) ~

For us the most interesting examples are given by the following lemma.

Lemma 5.3 For every n € IN the the entropy functional f(z) = Y, —z;logz; is expo-
nentially equivalent on Prob, to the function b(z) =1 — max’_, z;. The same is true for
every function f on Prob, which has a finite concave extension to IR™ and which vanishes
precisely at the extreme points e;.

The verification of the first part is straightforward calculus. The second statement follows
from proposition 3.1, parts d) and e). In example 2.7 it is shown that the first part is
not a special case of the second part. In the case n = 2 the functions f given in example
2.8 are exponentially equivalent to b even for r > 1. However, it is easily seen that the
functions f, from example 2.6 are not exponentially dominated by b whereas f, dominates
b exponentially by proposition 3.1 d).

Now we come to our main results.

Theorem 5.4 Let f and g be nonnegative bounded functions on Prob, and let [ be ex-
ponentially dominated by g. Lel (Ex)ren be any sequence of experiments and let A be a
prior. Then
a) We have

lim sup (yﬂf(gk, N — H, (&, ,\)) <. (2)

k—oo

b) If either f or g is exponentially equivalent to a concave function then for every number
a > 0 the relation

lim sup <\k/Hf(5k7,u) - C/Hg(gk,)\» <0 (3)

k—oo

holds uniformly in the set of all u € Prob, which salisfy a™*X < pu < aX in the coordin-
atewise ordering.
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¢) In particular, if limg_oo /Hs(Ek, A) exists then this limit still exists with the same
value if we replace f by an exponentially equivalent function g. If f is exponentially
equivalent to a concave function then the limit has the same value for all strictly positive
Priors.

Proof: a) Jensen’s inequality for the concave function x — x'~¢ gives for every experi-
ment &

H(EN) /f dP\</C A)i—2dP,
/g )P\~ = C(e) H,y(E, )"

Given the sequence (& )rew write H, = H, (&, \) and H] = H¢ (&, X). We want to show
that limsup,({/H] — v/Hr) < 0. Since the sequences (Hy) and (H}) are bounded, we
may pass to a suitable subsequence and assume that H = limy v/ Hy, and H' = limy, / H],

exist. Since the k-th roots of the constant converge to 1 we get the estimate H' < H'~®
for every € € (0,1) and hence H' < H. This proves part a).

b) If f is exponentially equivalent to a concave function & then we have by proposition
3.1 b) for all experiments and uniformly in {y € Prob, : a='A < y < a) } the estimate

(&) = [ WP, < a [ W(@)dPy < a® [ R(A)dP = a*Hy(€,))
and also by exponential equivalence for every & > 0
Hy(&, p) < Cr(e)Hu(E, )"~

These two estimates give as in the proof of a) the inequality (3) with % instead of g,
uniformly in g. Since h is also exponentially dominated by ¢ one then can apply a) to
replace h by ¢. If ¢ rather than f is exponentially dominated by a convex function one
argues similarly.

¢) is indeed a direct consequence of a) and b). qg.e.d.

The next theorem shows that the rates given by the previous result also apply to the
capacity under the assumption A. In order to motivate it let us recall the remark 2.14
that the prior which attains C¢(&) is in general not close to the prior A which maximizes

f.

Theorem 5.5 Let the continuous nonnegative function f on Prob, be exponentially equi-
valent lo a concave function. Suppose thal [ vanishes at e; for all v € {1,...,n} and that
[ does not attain its maximum My = maX.ecpro, f(2) on the geometric boundary of the
simplex Prob,. In addition assume that the sequence (&) satisfies assumption A. Then

lim (\/Mf —Ci(&n) — {H (& )) —0

k—o0

for every strictly positive prior .
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Proof: Let X be a point at which f attains its maximum M;. Let A®) be the optimal prior
at which the transmission rate 1;(E, \) attains its maximum, i.e. f(AF) — H (&, A*)) =
C¢(&E). We can choose n > 0 according to the assumption on f such that every prior A
with f(A) > My — n satisfies A; > n for all «. Since the sequence (&) fulfils assumption

A we can choose by proposition 4.1 an index ko such that H¢(E, A) < n for all k& > k.
Therefore for k& > ko,

FOW) = FOO) = Hy(&,09) = f(X) = Hy(E,3) = My —

and hence, by the choice of 7, A S n for all 7. Similarly X; > 5 for all 7. Letting a = 5~

this gives a='X < A®) < @) for all k > ko. Since f is exponentially equivalent to itself,
we have by the preceding theorem

1

lim <{“/Hf(5k,/\(k)) _ \Vﬂf(gk,X)) 0. (4)

k—oo

In this equation H;(E,, A#)) can be replaced by My — C¢(&) since

He(E, \By < f(X) = OB 4 Hp (&, AP))
= M;—Cs(&) < My — f(X) + Hy(E,N)

= Hi(& ).

Finally again by the preceding theorem we may pass in (4) from the prior A to any other
strictly positive prior A. This completes the proof. q.e.d.

In [6], theorem 3.37 a similar result is shown for functionals which are allowed to attain
their maximum on the boundary of the simplex. However in that result the sequence of
experiments is assumed to be of the product type.

The following result shows in particular that the rate of convergence of the Shannon capa-
city is the same as the rate of the deficiency 6(&, M, ) to the most informative experiment.
It extends to general experiments the fact which is known for product experiments that
this rate is determined by the worst pair of parameters. By lemma 5.3 it even extends
to general experiments the result of [12] that the deficiency rate equals the rate of the
difference (1) for sublinear (resp. superlinear) functionals.

Corollary 5.6 Let f be the entropy functional or any other exponentially equivalent
Junction on Prob,. Letl the sequence (E)ren of experiments satisfy assumption A. Lel
A € Prob, be a strictly positive prior. Consider for each k the following five numbers:

Mg — Cp(E)i {88 Mu); Y H (e, N5 Hy(Ex, V);
max {/2— | P — PH) |,

1<i<g<n
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If one of these expressions converges as k — oo then the others converge as well and all
have the same limit.

Proof: By the result mentioned in example 2.5 and lemma 3.1¢) one has
QHb(ga )‘u'mf) < Qm/\aXHb(g, )\) = 5(5,4)\/{&) < ng(E, /\u'mf)

Since by the above theorems the rate does not depend on the choice of the prior the
second and the fourth expression have the same rate. Since f and b are exponentially
equivalent according to lemma 5.3 we can include the third and then by the preceding
result also the first expression.

In order to include the last expression we introduce the function

s(z) = Z min(z;, z;)

1<i<j<n

on Prob,. This sum defines a concave function on IR™ and the extreme points e; are
precisely the points in Prob, at which all terms in the sum vanish. So the function s is,
according to lemma 5.3, exponentially equivalent to 6. Thus in the following sequence of
quantities each has the same exponential rate as its neighbours. The symbol &’ denotes

the two parameter experiment (’dichotomy’) {Pi(k), P]-(k)}.

Hy(&, Auniy );
_dp® ap®
/ Z mlﬂ(w, dQ ) dQ,

Z Hb(g;c]v(_v_));
1<i<j<n 272

max Hy (&, (

1<i<j<n

11
25))

By the representation given in example 2.5 this completes the proof. q.e.d.

Combining this result with either [12], theorem 4.2 (see also [14]) or directly the classical
result of Chernoff [2] we get the following explicit result. As mentioned before in [10] a
similar result is proved for Markov chains.

Corollary 5.7 Let € = {Py,..., P,} be a fired experiment. Then the Shannon capacities
C;(EF) of the k-fold product EF = { P}, ..., P*} satisfy

lim \Vlog n— Cy(EF) = max inf [ dP/dP~".

k—oo i£; 0<i<1
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Example. At least in the following numerical example for moderate size of k£ the numbers
G He(EF X)) and {/ Hy(EF, \) are actually much nearer to each other than to the limit. So
it would be interesting to prove that the deficiency and the Shannon capacity are close
even in the sense of a more refined asymptotic analysis. In this example £ is the Bernoulli
experiment with the three parameters 0.3, 0.5, 0.7, the prior A is (0.3, 0.3, 0.4) and the
limit rate equals approximatively 0.9789.

k 10 50 100 500 1000

H (%)) | 0.8229 | 0.8428 | 0.8444 | 0.9122 | 0.954536

Y Hy(EF,X) | 0.7295 | 0.8113 | 0.8239 | 0.9122 | 0.954536

Clearly in the continuous paramater situation the capacity converges to infinity but with
much slower speed because of the overlap of parameter which are very close to each other.
This question requires more subtle arguments, see [3],[11].

Acknowledgement. As already mentioned we owe much to the helpful discussions with
Erik Torgersen. Also we are indebted to the referees for a couple of clarifying comments.
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