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Abstract

The observation of an ergodic Markov chain asymptotically allows perfect identification
of the transition matrix. In this paper we determine the rate of the information contained
in the first n observations, provided the unknown transition matrix belongs to a known
finite set. As an essential tool we prove new refinements of the large deviation theory of the
empirical pair measure of finite Markov chains.
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1 Introduction

The observation of an ergodic Markov chain asymptotically allows perfect identification of the
transition matrix. In this paper we determine the rate of the information contained in the first
n observations, provided the unknown transition matrix belongs to a known finite set.

In the case of iid. sequences and two parameters this question was in a certain sense answered
by Chernoff [Che52]. Later Torgersen (e.g. [Tor81]) extended Chernoff’s Theorem to a finite
parameter set using the frame of abstract decision theory. In [KW93] it was shown that in finite
parameter problems generally the decision theoretic rate and the Shannon theoretic rate coincide,
where the former is measured by the minimal Bayes risk or equivalently by the deficiency distance
to the most informative experiment and the latter is the rate of the entropy risk under the optimal
('reference’) prior. This concept has been studied in Bayesian analysis starting with [Lin56] and
[Ber79].

Our main results in this paper are stated in sections 3, 4 and 6. In analogy to Chernoff we
show (Theorem 1) for the simple alternative of two irreducible transition matrices mg, 71 with
the same zeroes that the rate of the risk R,, after n observations is given by

lim /R, = oiﬂlgl p(me)

n—oo

where p denotes the spectral radius and m; is the nonnegative matrix with entries

mo(i, §) = mo(i, §)" m (i, 5)! .
The proof in section 5 is based on a minimax argument and on the large deviation theorem for
the empirical pair measure. Theorem 1 is a special case of Theorem 2 in section 4 which gives
the asymptotic rate for general g and 7. In order to estimate the probability of paths which
are possible for both Markov chains in this case we have to prove some refinements of the known



large deviation theorem for the empirical pair measure. These large deviation results are given
in section 6. They are of independent interest. The main point there is to get lower bounds for
sets which have empty interior in the usual topology of the stationary measures.

The formulation of Theorem 2 and of the crucial large deviation result Theorem 4 are based on
the concept of A-strings (introduced in section 4) which is related to the classification of states
for general nonnegative but not necessarily stochastic matrices.

2 Notations

Let S be a finite set which will be fixed throughout this paper. IN is the set of integers and
INg = INU{0}.We denote by M the set of all probability distributions on S?, by M, the set of all
stationary distributions on S?, i.e. those probability distributions Q = (Qij)ijes on S? whose
two marginal distributions coincide. For Q) = (Q;;): jes € M, the marginal ( i.e. the vector of
row -or equivalently column- sums) is denoted by (Q;)es. If Q € M and 7 = (7(7,7)): jes is a
transition matrix the symbol @) X 7 denotes the element of M defined by (@ x 7);; = Q7 (%, 7).
For a nonnegative S x S—matrix A let M* :={Q € M|Q < \}.

We call an S x S-matrix ) irreducible if there exists a set I C S with @;; = 0 whenever ¢ € I or
J & 1, such that for all 7, j € I there exists an n € IN with Q7; > 0. By M,; we denote the set
of all stationary irreducible probability distributions on S2. According to this definition even
the matrix

Q=

(el R
(el S
o o O

is irreducible. For transition matrices our definition of irreducibility is equivalent to the usual
one since in this case there are no zero rows.

To every () € M there corresponds a unique law of a stationary Markov chain with state space
S whose two dimensional marginal is ). (Note that the law is unique whereas the rows of the
transition matrix corresponding to states with ); = 0 are arbitrary.)

The ’entropy’ of this stationary Markov chain is given by

Hy(Q) = =) QijlogQij +>_ QilogQ:
7,7€S €S
QZ]
= Qijlog
de:s Qs

For @) € M and a transition matrix = we also consider the relative entropy (Kullback-Leibler
distance) of @ to @ x 7

Qi;
H = il
Q@ xm) mze:SQ 178 Qi

= —H,(Q)— Y Qijlogm

i,jES




Remark 1:

i) By the representation of H(Q|Q x 7) it is easily seen that for two matrices 7y and 7y the
difference H (Q|Q X mo) — H(Q|Q x m1) is a linear function in ).

ii) Let Q1,Q2 € M, be concentrated on Iy X I resp. Iy x Iy with 1y NIy = ( and let
Q = a1 + Q2. Then

H(Q|Q x 7) = ay H(Q1]|@Q1 X 7) + g H(Q2]| Q2 X 7).

For w € Q = SNo define 1y (w) € M by My, (w);; = %Zz;é 1=, wk+1:j}(w) for 7,7 € S.
Note that 7, (w) € My if and only if wg = w,. The vector m, (w) is the empirical distribution

of the one step transitions of the Markov chain, it is called the empirical pair measure ([ElI85]
(1.22)).

Let © = {1,...,1} be a finite parameter set. For § € © let P be a probability measure on
Q = SN, Let (X,)nen, be the coordinate process. For w = (wp,...,w,) € S™ we write
Pp(w) = Pp(Xo = wo,..., Xy, = wy). If @ = (aq,...,qp) is a prior distribution then P2 de-
notes the mixed distribution "ycq agF;'. We introduce the posterior distribution &"(w) by the

equation .
" (w) = <7aj3]:9(£3j) ) .

o

Definition 1: Let (X;),.y and Py, 0 € © be as before. The entropy risk of a given (Xo, ..., Xy,)
is defined by

HyolX) = Y Prw) (—Zd’;(w) log@;f(w)).

wesntl 0€0©
Similarly
B = " — Q)
JalX) = X P2 (1- max d5()
wES"‘H
is called minimal Bayes risk given Xg, ..., X,.
Remark 2:

i) In the case ® = {0, 1} of two parameters one has 2B, ((%, %)|X) =2 —||Py — PJ|| where
|| - || is the total variation.
ii) Observe that both B, («|X) and H, (a|X) can be written as [E(f(&")) where f is a concave

function and (&"),en is a martingale, so that (f(&")).en is a super-martingale. This
implies that B, (a|X) and H,(a|X) are decreasing functions in n.

In order to be able to allow zero entries in the transition matrices it is convenient to equip M
with two topologies, the topology 7 of coordinatewise convergence and the following topology



7o which is finer than 7 : A set U C M is rg-open iff for every ) € U there is a § > 0 such that
the set

Us(Q) ={PeM:P<KQand |P; —Q;;| <9, forall i,j}
is contained in U. Thus every point () € M has a Tg—neighbourhood of points which have the
same zeroes as ().
The 7—neighbourhood will be denoted by the letter V, i.e. V5(Q) :={P e M : |P; —Q;;| <
§ for all i,j}. Further we set VNQ) == Vs5(Q) N M™. So Us(Q) = V5Q (@Q).

3 The risk rates

The following result is the starting point of this paper. It is a special case of the main result of

[KW93].

Proposition 1: Let @ = (aq,..., 1) be any strictly positive prior. Suppose that for every
6 € © ={1,...,l} the process (X;)ien, forms under Py a Markov chain with the irreducible
transition matrix wg where 8 — 7y is injective. Then

a) limy oo Bp(a|X) =lim,e Hu(a| X) =0

b) lim, 00 %log H,(a|X) =lim,—e %log By (| X) = lim,00 %log B, (/| X)
for every other positive prior o, provided one of these limils exist.

c) Let r(Py,...,P,) denote the limit in b). Then r(Py,...,P) is determined by the two
parameter subexperiments as follows

(P ..., ) = mazi<opn<r(Po, Py)

Proof: a) This follows e.g. from Proposition 4.1 in [KW93] and the ergodic theorem.
b) follows from Theorem 5.4 and Cor. 5.6 in [KW93].
c) follows also from Cor. 5.6 in [KW93]. g.e.d.

Remark 3: Proposition 1 a) shows that the rate r(F%, P) of a binary experiment may be
computed either by the help of the minimal Bayes risk, or the entropy risk. Moreover by b)
it is independent of the prior and according to c) the following Theorem has a straightforward
extension to finitely many parameters.

Here is our main result in a special case.

Theorem 1: Let (Fo, P1) be a binary experiment of irreducible Markov chains with two different
equivalent transition matrices mo, w1 and two initial distributions ug, 1 which are not mutually
singular. For simplicity we write Kg(Q) = H(Q|Q x mg) for 8 = 0,1. Then for any strictly
positive prior o the rate r(Fy, Py) is given by
1 1
lim —log B, (a|X) = lim —log H,(a|X) = —Qinj“[:[ Ko(Q)V K1(Q)
eMs

n—oo n n—oo n

= Inf logp(m),

where p denotes the spectral radius and 7 = (7o(7,7)'m1(2,7) 7")ijes-



Remark 4: In the special case of iid. observations the corresponding transition matrices mg, 71
have identical rows m¢(7,7) = pr(j). Then the matrix 7;(7,7) = po(j)*~'p1(j)" has the largest

eigenvalue
Zpo 1 p1
JES

the infimum of which in ¢ yields precisely Chernoff’s rate ([Che52]).

4 Extensions

Theorem 1 will be shown by using large deviation results for the pair empirical measure which
can be found for example in [DZ93]. Using the somewhat refined large deviation methods of
section 6 it is possible to apply Theorem 1 to binary experiments of irreducible Markov chains
whose transition matrices need no longer be equivalent but where m; has to be irreducible for
0<t<l.

Now what happens if 7; is no more irreducible? Can we still apply Theorem 1?7 Let us have a
look at the following example.

Example 1: Lete > 0, % < 8 < 1 and consider the binary experiment induced by the pair

0 1-6 4 1-6 6 0
me)=] 1-§ -2 € |, T = b 0 1-96
e 1-é6-¢ ¢ b 0 1-9¢

with arbitrary positive initial distribution. Then

0 (1-4)tst-1 0
m(e) =] (1—-8ts0-9 0 et (1—4§)1=9
ot 5(1-1) 0 5t (1 —8)-1)

For e > 0 the matriz m,() is irreducible. So we can apply Theorem 1 according to our remark
and obtain as risk rate infociq log p(me(€)). Now

lim inf logp(m(e)) < lim log p(my (¢

(€)) = log p(m1(0))

B =

which follows because the spectral radius depends continuously on the matriz, and on the other

hand
(0))

since m(e) > m(0) > 0 implies with the help of the Theorem of Perron-Frobenius (see e.g.
[Sen81] Theorem 1.5) that p(mi(e)) > p(m:(0)). We get

lim inf logp(m(e)) > lim inf logp(m(0)) = logp(r

B =

lim inf logp(mi(e)) = 10g5+ log(l— 8).

But either a direct computation or Theorem 2 shows that the rate of the Bayes risk according
to the matrices my(0) and my equals log(1 — 6). This implies in particular that Theorem 1 does
not hold for e = 0, i.e. when 7 is no longer irreducible. It also shows a somewhat surprising
discontinuity of the rate.



As the example shows we have to find a more appropriate rate function in general. In the
proof of Theorem 2 we will see that the Bayes risk B, (a|X) gets a nonnegative contribution
only from that subset of  on which 7, (w) € M7, for # = 7y A 71, i.e. from those paths whose
transitions are possible for both 7y and 7. Since 7 is in general no longer irreducible these
paths w have to spend a certain time in the irreducible blocks of 7. To describe this process we
introduce the concept of strings.

Let A be a nonnegative S X S-matrix. We write ¢ X J (and say i leads to j) iff A™(¢,7) > 0 for
some n € IN and ¢ ~ j (i communicates with j) iff ¢ = j or (¢ ~ Jjand j i). An equivalence
class E of the relation T8 called nontrivial if it contains at least two elements or F = {i}

with A(7,7) > 0.

Definition 2:  We call a set I C S a A—string if the following holds: there exist a tuple
(F1,..., Ex) of nontrivial A-equivalence classes with I = Fy U ...U Ey, such that for every
le{l,...,k— 1} there are points iy € Fy, ji41 € Fiy1 with 4 ¥ Ji1-

Since no state i € Fi4q leads to a state j € Ej the order of (Fy,..., E}) is uniquely determined.
So a string is the union of a sequence of Y -equivalence classes which can be visited successively
by a single path. We want to make clear our definition by the following example.

Example 2
i) Consider the following 7 X T-matriz (x denotes a positive entry)

0 00 0 0

o OO ¥ ¥
O * x OO ¥
* OO OO
* O x O O

>

Il
ox cooc oo
co oo * %
o x x ¥ O

0 0

o

0

The nontrivial ~ -equivalence classes are Ey = {2,3}, Ey = {4,5}, E5 = {6} ({1} and {7}
would be a trivial classes). As A-strings we get Fy U Fy = {2,3,4,5} because \(3,4) > 0,
F3U Ey ={6,4,5} since A2(6,5) = A\(6,1)\(1,5) > 0 and of course E1, F3 and Fs.

ii) Next we give an example of a matriz X\ without any strings. Let

0 = 00
0 00O
A= x % 0 0
*x 0 0 O

No string can exist since all paths end in the state 2 and cannot leave the state 2 anymore.

For z € S let SMz):={I C S|I = E;U...UE}, is a A — string, with z ~¢ y for some y €
E1}. For a measure g on S let S*(u) = {I|I € S*(=), u(z) > 0}. For I C S we define further
M) as the set {Q € M,NM?*|Q is concentrated on [ x I}, MSN(z) := U{MN(D)|I € S*(z)}
and MS*(p) == U{MSE ()| pu(z) > 0}.



Remark 5: ./\/lS/\(,u) is the set of those stationary probability measures () € M which can
be dominated by the empirical pair measure of a path of a Markov chain whose transitions are
possible according to A and which starts in a point of positive u-measure. Of course MS* (1) =
if there are no A-strings.
I is an element of S*(u) if there exist a path starting in z, u(z) > 0 whose transitions are
allowed by A and which reaches every Y -equivalence class Fy in 1.

For a A-string [ = Fy U...U By we set AT := S°F_ | APt where AP is the S x S matrix which
equals A on Ej x Ej and is zero otherwise.

Now we are able to formulate our main result. The functions Ky and K; are defined in
Theorem 1.

Theorem 2: Let (Fy, P1) be a binary experiment of irreducible Markov chains with different
transition matrices mo, w1 and initial distributions po, pt1. Let

™= A = (min(mo(7, ), 71(2, 5)))i jes

and
poi= po A pa = (min(po (i), pa (7)) )ies-
Then the rate of the entropy risk is given by

.1 .1
nh_)rlgo ;loan(odX) = nh_l)rgo ;loan(odX) (1)
= — inf K Vv K 2
S K@V (@) @)
= max inf logp(n)) (3)

187 () 0<t<1

where m(i, j) = mo(4, j)im1(i, 7)1~ and p denotes the spectral radius.

Example 3: Let us consider the two matrices

o = T =

¥ * O ¥
O ¥ ¥ ¥
* O ¥ O
S ¥ O ¥
¥ ¥ ¥ O
¥ * O ¥
S ¥ O ¥
* O *x O

Then m = mg A 71 is equivalent to the matriz X in example 2 ii). Thus no w-string exists and
therefore MS™(u) = 8™(u) = 0. This implies that both (2) and (3) are —co.

The Bayes risk measures how orthogonal the laws F§ and P are. Now since there is no path
of length n > 4 which is possible for P} and Pj* the Bayes risk B,(a|X) equals 0 for n > 4 and
(1) is also —co.



Remark 6: [t is easily seen that Theorem 1 is a special case of Theorem 2: In the setting of
Theorem 1, 7 is concentrated on S x S and irreducible. So S itself is a m-equivalence class and
for any p one has MS™(p) = MZ(S) = MZ. Since Ko(Q) = co = K1(Q) on M A\MT we have
- ianeMSﬂ-(#) I(()(Q) vV I(l (Q) = — ianEMs Aro(Q) vV I(l (Q)

Example 4: Consider example 1 for e = 0. We get

0 (1—8)ts0t=0 0
m(0) = | (1-98)ts0-9 0 0
0 0 §t(1—6)-1

So we have two m¢(0)-strings: Ey = {1,2} and Ey = {3} and the rate according to Theorem 2
equals
MaTie(F By} inf log p(rf) = log(1 - d).

5 Proofs of Theorems 1 and 2

Theorem 1 is a special case of Theorem 2. So we need to prove only Theorem 2. However we
indicate those points in the proof at which a more direct argument is sufficient for Theorem
1 in order to make clear the difficulties which arise by allowing zero entries in the transition
matrices. These direct arguments are given in brackets [ |. In particular the known large
deviation result stated as Theorem 6 in section 6 is sufficient for the proof of Theorem 1.
I. We first prove the first equality.

1. As noted above we may consider the minimal Bayes risk instead of the entropy risk. Also
the rate does not depend on the particular prior. So we may assume o = (2, 2) By definition
of the minimal Bayes risk and by the explicit form of the Markov chain probabilities one has

B(a|Xo, ..., X,) =2 ( min ézZ(w)) P (w)
;H 6e{0,1}

= 2 E min l]39()

wegner FEL01Y 2
= B B <P+ P (wi PPe) < B @).

Let By and BT be the two terms of the last expression. Then

By = 1w L log PR < 1 log (@)
_ prfy o op T007) 1 pi(wo)
= K ( de:s (W )wl g (i, 9) < nl guo(wo))

A
|
<)
0

_ pr (w Ky (1 (@) — Ko (@) <

o 1
_ r%m P0r<w (i (@) = Kol (<) < log £



where S, :={s € S| p(s) > 0} and Fy, is Fy conditioned on start in z, and similarly

By = P} (w : Ko(n(w)) — Ky (n(w)) < ~ log HO(wo))

S
=

©
o

IN
3| =
5}
R

= 3 mle) P (w5 Koliina (@) = K (i )

c€5, p1(z)
With these notations we have

max{lim inf — long,hmlnf logB”} < liminflloan(OAX)
n

IA

1
lim sup — log B, (| X)
n

IN

max{lim sup — log B§, lim sup — log BT}

We show that the first and the last term of this inequality (and therefore the Bayes risk) are
equal to the righthand side of the first equality of the Theorem.

2. Let us first look at the lower bound which is more involved. For ¢ > 0 consider the
relatively open subset M_. = {Q € M™: K1(Q) — Ko(Q) < —¢} of M™. Theorem 4 yields

hm 1nf logBO > suphm 1nf—log Z w(z) Py (1, € M_.)

n—00
e>0 €S,

> sup — inf K,

- s>IO) QEM_.NMS™ (1) (@)

= —  inf Ko@)
QEMST™ (1)

Ki(Q)<Ko(Q)

For the last step note that the functions Ky are continuous even for the coordinatewise topology
on the set M™. By symmetry we obtain

liminf — log B, (A X)

> max | — inf Ko(Q), — inf K1(Q)
QEMST (1) QEMST ()
Ki(Q)<Ko(Q) Ko(Q)<K1(Q)
= — inf Ko(Q) V K1(Q)
QEMS™(p)
Ko(Q)#K1(Q)
T restn QelArAlgu) Ko@)V K:(Q)- )
Ko(Q)#£K1(Q)

[ For the proof of Theorem 1 one gets by the help of Theorem 6

liminf Slog ByAX)> =  inf Ko(Q)V K1(Q).
n QEMT

Ko(Q)#K1(Q)

The condition K1(Q) # Ko(Q) can be omitted since for example Fy is an element of M7 with
0 = Ko(Fo) # K1(Fo). Thus by the convexity of M7 and the linearity of Ko(Q) — K1(Q) it is
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possible to approach every element ¢ € M7 by an element Q; = (1 — ¢)Q + tF% that fulfills the
condition K1(Q:) # Ko(Q4). ]

Similarly we have to remove the condition K¢(Q) # K;(Q) in (4). For this we distinguish
two kinds of strings I € S™ (). In the first case the set {Q € MT(I) : Ko(Q) # K:(Q)} is
nonempty. Then it is dense in the convex set M](I), since the difference Ko(Q) — K1(Q) is
linear in Q. Therefore the condition can be removed by continuity.

In the second case
Ko(@) = K1(Q) for all Q € MZ(1). (5)

This holds e.g. in example 4 for § = % In this case the estimate (4) is useless and we apply the
large deviation Theorem 5 instead of Theorem 4. If [ = F; U...U E; Remark 1 ii) implies

— inf K K =— inf K = — inf K .
Qeiaﬁ(l) (@) VK@) Qei\l}f_f(l) (@) kr:rlﬁfl Qeﬁll?(El) f0(@)

Therefore it is sufficient to prove for every class F; C S the inequality

N | . .
hnrglor(l)f - log B, (A|X) > ergtl;f(El) Ko(Q).

Choose wy € S, with 7™ (FE|wg) > 0 for at least one m € IN. Let z € Ej and @ =
(wo,...,w, = z) be a path of length r 4+ 1 with FPy(©) > p > 0 and Py (@) > p. Without loss of
generality we assume r (K1 (. (@) — Ko(m,(@))) < log(p1(wo)/po(wo)). If the reverse inequality
holds interchange the parameters # = 0 and # = 1 in the following. Then we have for all n by
the linearity of Ky — Ky

_—r _r 1 Hl(wo))
B > PWO<K n) — K n) < —1
0o Z Ho(wo) 0, 1(m ) o(m ) >0 og ,uo(wo)

= po(wo) Fow (% <Kl - K0> (e (@) + % (Kl - KO) (1itn—r (@r; .., wn))
Ml(MO))

to(wo)

1
< —log
n
> o) Poe (K i0nr) = o) = 0)
> puo(wo)Po s <’fhn_r € M?(E;)) with the help of (5)
Z pMO(WO)PO,x <mn—r € Mg(El) N Ms,i) .

Note that the risk B, (A|X) and hence its logarithm is decreasing in n as a consequence of
Jensen’s inequality (see Remark 2). So we get for every d

lim inf 1 log B, (A|X) = lim inf

n—oo 1 n—co nd 4+ r

log Brg4r (A|X). (6)
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The set M7 (E;) N M, is relatively to—open in M ;. Thus by Theorem 5 there is a d such that

linrrl)ioréf nd T log Bpat+r (A X) > hnrrl)loréf @ log Py » (mnd e M (E)N ./\/lM)
> — inf Ko(Q).
QGMZQT(EZ)”MS,L‘
Qz>0

Since for all z € Ej there is an r for which this holds we get from (6)

liminf ~log B,(\X) > —  if K
1nrri>g<1) n og ( | ) = QEMQTI(I};“Z)OMS,Z‘ O(Q)

= Qe/{/rllgt:(El) Ko(Q) V Kl(Q)
for all [ = 1,...,k. The last equality follows from the fact that MT7(FE)) is the closure of
MT(E) N Mg, in the topology of coordinatewise convergence and the assumption (5). This
proves the lower estimate.
3. For the upper estimate we proceed in a similar but simpler way. Consider for € > 0 the
closed set M, =4{Q € M7|K1(Q) — Ko(Q) < e}. Then we get by Theorem 4 and the continuity
of Kg and K,

< . . _ . .
lim sup — log By < 111%( Mgﬁi‘r/llfg‘sﬂ'(,u) KO(Q)) thnsfwm Ko(Q)
K1(Q)<Ko(Q)

and the same with K instead of Kg. By symmetry this yields

1
limsup —log B, (A|X) < max| — inf Ko(Q), — inf K1(Q)
n—oo N QEMST () QEMST ()
K1(Q)<Ko(Q) Ko(Q)<K:1(Q)
= — inf K VvV K
oetnl () Ko@)V KA Q).

[ Similarly one gets together with Theorem 6 for the Bayes risk of Theorem 1

n—o0

li 1 B,(A|X) < — inf K VK =— inf K vV K
imsup = log BL(AX) < = it Ko(@)V K1(@) = - inf, Ko(Q) v Ki(Q)
since Ko(Q) V K1(Q) = co on M\ MT. ]
So the first equality in the Theorem is proved.

I1. For the proof of the second identity let us first discuss the case that the exponential risk
rate equals —oo. This means that MS™(p) = 0 since KoV K; < oo, on that set. Then there
is no I € §(u). This is equivalent to the assertion that the maximum in the second equality
of the Theorem is taken over an empty set and hence is —oco. Therefore we may assume in the
following for some I = Fy U ... U E, € §7 (i) the set M7 ([) is not empty.

Observe that by the variational principle of relative entropy (see e.g. [DS89], p. 68 ) the
functions Ky : MT — [0,00) are convex, since they are suprema of convex functions. We
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consider the compact convex set M7 (/). Note that M7 (/) C M™ and hence Ky and K; are
finite and continuous on M7 (I). The map k : [0,1] x MT(I) — (—o0,0] given by k(t,Q) =
—(t Ko(®) + (1 —t) K1(Q)) is affine in ¢ and concave in . Thus we can apply the minimax
Theorem (e.g. [ET85],prop. VI.2.1) to get
— inf Ko(Q)V K1(Q) = sup min(—Ko(Q), —K:1(Q))
ME(I) MT(I)

= ;gg)ogglk(t,@

= ogﬁilj‘gg)k(t’@

= oi?£1j§g)k(t’Q)
where the last equality follows from the continuity of k. The proposition below applied to the
matrices 7rtEl gives together with Remark 1 ii).

sup k(t,Q) = sup — > Qy <10g Q” —tlogmo(i,7) — (1 —t)log ﬂl(i7j))
Mz (1) MI(I)  er Qi
e sup <H5(Q) + E Q” log ﬂ-t(i7j)>
M) i€l
= max su H, + logm i, )
121,...,kM§(gl)( (@) WZQQ] g (i, )

= Max log p(ri)

I=1,...,

= logp(r)).
Maximizing over all 7 — strings I € §™(p) we arrive at
— inf K Vv K = max — inf K Vv K
oetid () @V Q) piax = ol Ko@)V K (@)

_ - T
T 1est(w) 02}21 log p(y).

[ The same calculation applied to the rate of Theorem 1 gives
— inf K K = inf 1 .
oinf Ko(@)VE:(Q)= inf logp(m). ]

This completes the proof. q.e.d.

In the proof of the last equality in the Theorem we made use of the following variational
representation of the spectral radius of a nonnegative matrix. The proof in Ellis ([ElI85], p. 284),
Theorem 1X.4.4 is applicable even though the statement of the Theorem there is formally weaker.

Proposition 2: Let (7(7,)): jer be a real nonnegative irreducible matriz. Then

log p(7) = sup{H,(Q) + Y _Qijlog (i, 5)}

where the sup is taken over all () € M, with Q;; = 0 if w(i,j) = 0. The sup is attained at a
matriz of the form (u;m (i, j)v;) where w and v are left and right eigenvectors of m. In particular
the optimal () has the same zero entries as w.
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6 Large Deviations for the Empirical Pair Measure of Finite
State Markov Chains

In this section we prove some refinements of the large deviation Theorem for the empirical pair
measure of finite Markov chains (for the standard result see e.g. [DZ93]). The main point is to
get lower bounds for sets which have empty interior in the standard topology of M. As a first
step (Theorem 3) we consider open sets in the finer topology 7o, which was introduced in section
2. This implies the large deviation Theorem 4 based on the A-strings introduced in section 4.
Moreover in Theorem 5 we get large deviation estimates for the probability that the empirical
pair measure is in certain subsets of the set of stationary measures.

Theorem 3: Let P™ be the law of a Markov chain with the irreducible transition matriz ©. Let
U C MT™ be open in the topology To. Then for allz € S

liminf — log P (m, e U) > inf  H(Q|Q x )

oo QetnM,

where U, = {Q € U|Q, > 0}.

Proof: Let Q € U, N M,; and let 5 > 0. Let P? be the law of the ergodic Markov chain
which corresponds to (). Choose § > 0 such that Us(Q) C U which is possible since U is o-
open. Applying either the Large Deviation Theorem for the standard topology (see Theorem 6)
or simply the classical coding Theorem of Shannon Theory it is also possible to choose § small
enough such that

lim inf llog Pl(m, € V5(Q)) > —n (7)

n—oo 1

where V(@) is the é-neighbourhood of @) in the standard topology. Since however every Q' € M
with PZ(m,, = Q') > 0 for some n is absolutely continuous with respect to @ we get

N nQ:
Pl(m, € V5(Q)) = Z Nn,x(Ql) qu']‘ ! (8)
Q'eUs(Q) 1]
where ¢;; = Q” and N, ,(Q') = #{w € S"*! : 1, (w) = Q',wo = =} . The number of nonzero
terms in the sum grows only polynomially in n as n — oo. Therefore (7) implies

1
lim inf ~log Nyp.o (Q ' log i | > 9
it Q/gll%s)((Q) <n °8 +Z]:Q] qu]) = )

Replacing in (8) the transition matrix (¢;;) by = we have

1 1
—log Pl (hy, € Us(Q)) > max <— log N, -(Q") + ZQ log ﬂ'”>
n

QIEUs(Q) \ 1
> max log Ny, - (Q )) + i log m;;
Z <Q’EU5(Q)< g EQ] gmi; — 1

if ¢ is sufficiently small. Then together with (9) and the fact that @ < 7 we get

- e
lﬁrl}géf - logP (T, € Us(Q)) > ZQ” log
7]
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Since Us(@) C U this completes the proof. g.e.d.
In the proof of the next Theorem we need the following straightforward fact.

Lemma 1: Let Q € My. Then there exists a unique representation Q = > ;o @ with
Q1 € Ms,;.

Proof: This Lemma reflects the general ergodic decomposition of stationary processes. Here is
a direct proof.

For @ € M, we can write ();; = p;m;;, where (7;;); jes is a transition matrix and (g;)ies a
stationary distribution according to the matrix m, defined by p; = 3, Qi; = >°;Qji. Let P
denote a Markov chain with initial distribution y and transition matrix 7. The renewal Theorem
tells us that for transient states ¢ we have

Pi(X,=1i)"=%0 for every j

So, since

wi = P(X,=1)= Z,u] (Xn=1)

holds for every n, it follows that u; = 0 for all transient states . Thus @;; = 0 = @;; for s
transient and all j. This means that @ is a block matrix consisting of irreducible blocks. So we

can write Q) =37 Qg xp, With ap =37, (cp Qrs and Qg x5, € M, g.e.d.
The following Theorem shows the use of strings in connection with large deviations.

Theorem 4: Let P™ be the law of a Markov chain with the irreducible transition matriz ©. Let
A be a matriz with A << 7w, x € S.
a) If U is a relatively open subset of M in the topology of coordinatewise convergence then

1
liminf —log PT (i, € U) > — inf  H(Q|Q x 7).
iminf —log P (1, € U) > o (QIQ x )

b) IfU C M? is closed in the topology of coordinatewise convergence then

lim sup — logP (m, eU)<— inf H(Q|Q x 7).

n—oo N UnMSEX ()

Proof: First of all we want to show what happens if MS*(z) = (. If this happens, no
A-possible path w longer than #S with m, € U exists since otherwise w would visit at least
one state a several times, which means that this state would belong to a A-equivalence class and
MS?*(z) could not be empty. Therefore P (1, € U) = 0if n > #S and liminf and lim sup are
both equal to —oco. Thus the Theorem is true in this case since the infimum over an empty set
is co.

a) Let U C M* be relatively open. Choose @ € UNM(I) where I = F; U---U F}, is some
A-string in $*(z) and let 7 > 0. We want to show that

lim inf — logP”(mnEU)> —H(Q|Q x m) —n.

n—oo 1
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Since () is stationary it has a finite representation ) = ZZL:I o with @ € M, ; according to
the preceeding lemma.

Choose the sets J; minimal such that @); is concentrated on J; x J;. Each J; is contained in
exactly one of the X -equivalence classes F), because if .J; meets F,, and F,, then due to the
irreducibility of ¢); a (;- Markov chain could pass between F,, and FE,, in both directions with
positive probability in contradiction to ¢ < A and the definition of A-strings. In particular
L>k.

Since the F; form a A—string and A < 7 there are numbers m € IN and p > 0 such that
P (X € J1, M € M*) > p and

P™ (X € Jip1, i € MY) > p (10)

whenever 7 € Jyand [ € {1,..., L — 1}.
Applying Theorem 3 we can choose ¢ > 0 such that for every [ € {1,---, L} and every z € .J;
we have

1
liminf —log P7 (1, € Us(Q1)) > —H(QilQu x ™) = 5. (11)
In the following we assume that n is a sufficiently large integer. We can choose for [ € {1,---, L}
indices t,,; € {1, -+, n} such that
i tn,l . 12
am == (12)
and
L
Ztn,l <n— Lm. (13)
=1
We partition {0,...,n} into L segments ({s,; — m,...,s,; +t,; — 1} for [ = 1,...,L — 1

and {s, . — m,...,S, 1+t = n}) by setting s,1 = m and s,; = 215—211 (tn,s + m) + m for

l €{2,---,L}. Consider the empirical pair measure 7} which is induced by the first ¢, ; steps

after s, 7, i.e.
5n,l+tn,l -1

. 1
(il (w))ij = - > Xij(ws, wsg1).

5:571,1

Moreover let B; be the set of all paths for which the first part of the [-th segment is A-possible,

i.e.
Sn,l_l

- 1
By = {w Db = (= D) Xij(wsws1))iges € M’\}-

S=Sp—m

Consider the set N, B; N {m} € Us(Q:)}. For every element of this set the empirical pair

measure is given by
L

() = 3 (i) + Zhie))

=1 n

Because of (12) and (13) we have uniformly on that set

n—oo

L
lim |, (w) — Z apiy (w)| = 0. (14)
=1
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Moreover we know that if 7} (w) € Us(Q:) for every [, then for sufficiently large n

L
Z mi' (w ZazQz| < 6.
4)

=1
Thus we have together with (1

(w)-Ql<3é

for all w € ﬂ{;l Byn{m} € Us(Q:)}. Since the transitions of every such path w are possible
with respect to A (this is clear in the sets .J; since there 7} (w) < Q; < A and outside those sets
it is guaranteed by the condition B;) and because Q € U and U is a relatively open subset of
M?* in the topology of coordinatewise we have for sufficiently small §

lim inf —log PT(m, € U) > liminf —log P < ﬂ Bin{m; € Ug(Ql)}) (15)
=1

In order to estimate the probability of this intersection let 72 be any element of the set J;_;
with P7 (X, ,—m =1) > 0. Then

Pz (B € Us(@0}H X om = 1)
= Z P <B17Xsn,z = Z|Xsn,l—m = Z) -P’T(m? € U5(Ql)|X5n,l = Z)

z€J;
> Pr(fy, € MM X, €.J) igg PT (1, , € Us(Q)))-
zZEJy ’

Now let A;_y € o{Xo,.. -van,z—m} be such that X, ,_m € Ji—1 PJ-a.s. on A;_1. From (10) we
can now conclude that

P (Bt € U@} A

> Y PI(Xspom = ilA1) - p- inf P7 (1w, € Us(@Q1)) = p inf P7 (1, € Us(Qu)).
iedy z€J; z€J;

By induction we get

L
Pz o i € Us@i}) > » H inf P71, € Us(Qu)

=1 ZE !

and using (11),(12) and (15)

L
1
lim inf — logP my, € U) ; im mf—alog 2%1}1]3 (1, € Us(Q1))

= Zaz lim mf—log rrélnP (e, L€ Us(Q1)) ZazH QilQ1 x m) —
1=1 &

= —H(ZalQn(ZazQz) xm)—n=-H(@Q|Qxm)—n.
=1 =1
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Here we have used the linearity of remark 1 ii). This proves part a) of the theorem.

b) Let U C M?* and § > 0 be given. Let w be a path such that 7, (w) € U and wy = z. Then
Mws,ws41) > 0 for s =0,...,n — 1. This implies that there are a A-string [ = F; U...UF} €
S*(z) and numbers 0 = sy,..., 5,41 = n —m, with m € IN fixed, such that w;, 4, .. Wy €
E,. for r = 1,...,k. Let (like in the proof of part a) m denote the empirical pair measure
corresponding to the part ws, 4pm,...,ws, ., of the path. Since F. is a Y -equivalence class this
part of the path can be extended by #5 steps to a closed loop of A-possible steps in F,.. The
empirical pair measure J, of this loop is stationary and concentrated on F,. x F,. Hence it is
an element of MS*(z) and it differs from 7m? at most by # < 6 if n > ng where ng can be
chosen independently of w. Thus the measure 7, (w) differs at most by § from a suitable convex
combination of the @,. This combination is also in MS*(z). Hence for sufficiently large n

PT (1, € U) = PT (1, € U, N V5(MS*(2))).

Therefore by Theorem 6 we get

1
limsup —log P} (7, € U) < inf — inf H(Q|Q x )
n—co 1 8>0 T, AVs(MS (x))
< inf — inf H(Q|Q x =)
8>0 AV MS* (7))
= — inf H X ),
Um\lxrtlsk(z) (@I@ )
since M8*(z) is closed and the rate function is continuous on that set. g.e.d.

Similarly one gets new bounds if the set U is contained in M, ;. The set of irreducible measures
is o open in contrast to the set M, ;. Therefore the estimates of the next result do not follow
directly from Theorem 3. Since the empirical pair measure can be stationary only if the path
has completed a loop the probability in the following result is nonzero only on a periodic set of
times. Therefore the liminf has to be taken along a suitable subsequence of the integers.

Theorem 5: Let P™ be the law of a Markov chain with irreducible transition matriz .
a) Let U be a relatively Tg-open subset of M, ; and let d be the least common multiple of the set
of periods {dg : Q € U}. Then with U, ={Q € U|Q, > 0} we have

1
liminf—dlong(mnd el)> —ill}fH(Q|Q X 7).

n—oo nd

b) Let U be a subset of M ;. Then

1
limsupglogP;T(mn el) < —ilrjlfH(Q|Q X 7).

n—00

Proof: a) Let ) € U, be such that P] (7, (w) = Q) > 0 for some w and n and 7 > 0. Then
according to Theorem 3 there is some § > 0 such that

lim inf llong’;(mn € U%(Q)) > -H(QQ x7)—n.

n—oo 1
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Choose m € IN and I C S such that Q™ consists of strictly positve blocks. Then every
path wo,...,wpe With Mh,q(w) € Us(Q) can be extended to a closed path w’ by md additional
2

m—possible steps. Then Q' := 1, 1m)4(w') € My, and |Q" — myg(w)| < % for sufficiently large
n. Therefore Q' € Us(Q) N M,,; C U. If p is the minimal probability of these extensions we get

1
lim inf py log P (1,q € U) = liminf log P (M (n4mya € U)

n—oo nd n—00 (n+ 'rn)d

1
> liminf —log P7 (rng € Us (@) p 2 —H(QIQ x 7) =7
2

n—oo 1

proving part a).

For b) note that the usual large deviation result (Theorem 6) below implies

limsup P (i, € U) = limsup Py (1, € U, N M)

n—oo n—oo

< —_inf H(Q|Q x7)=—inf H(Q|Q X )
UyNM™ Uz

where the last equality uses that MT™ is the set where the rate function is finite and that this
function is continuous on M7, g.e.d.

The following Theorem will be given without proof. It can be found as remark (a) to Theorem
3.1.13 in [DZ93]

Theorem 6: Let P™ be the law of an irreducible Markov chain with nonnegative transition
matriz © and x € S.
a) For a relatively MT-open set U C M™ we have

el o .
lgzrrl}{)%fglong (i, € U) > —U}jnAfASH(Q|Q X 7).
b) For a closed set C' C M7 it holds

1
lim sup Elong(Thn eC)< _O;%\f;t H(Q|Q x ).

n—oo

7 Conclusion

We considered in this paper a finite family of laws of irreducible Markov chains on the same
finite state space with pairwise different transition matrices. We obtained the rate at which
these laws become singular as the number of observations increases. We use the fact that this
rate can be expressed as the rate alternatively of the entropy risk or of the minimal Bayes
risk. The main reason why this rate can be computed for Markov chains is the existence of a
sufficient statistic namely the empirical pair measure which can be treated by large deviation
theory for each parameter. In the case the transition matrices are strictly positive we can use
known results from the theory of large deviatons, whereas for the general case we refine the
corresponding classical results. The ideas of this paper will be extended to more general random
processes.
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