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Abstract

The following two norms for holomorphic functions £, defined on the
right complex half-plane {z € C : ®(z) > 0} with values in a Banach
space X, are equivalent:

00 l/p
1Pl = sup ([ IF@+ ) ab) ", and

HFHHP(E,,/Q) — |0|SETI?/2 (/000 HF(T‘@ZP)HP dT‘) 1/p.

As a consequence, we derive a description of boundary values of sec-
torial holomorphic functions, and a theorem of Paley-Wiener type for
sectorial holomorphic functions.

1 Two equivalent norms for vector-valued
holomorphic functions

In this note we study holomorphic functions F' defined on the open right
complex half-plane C;y = {z € C : R(z) > 0} with values in a complex
Banach space X. To such functions we assign the following extended real

numbers:

00 . 1/10
1Pl = sup </_OOHF(a+zb)Hp db) . and

a>0

HFHHP(EW/Q) = sup </OOO HF(rew)Hp dr) 1/29.

|6]<m/2
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Let H,(Cy,X) and H,(X:/2, X) be the respective normed spaces of those
functions F' for which HFHHP(CJr) and HFHHP(EW/?) are finite.

Drzbasjan and Martirosjan [1] proved that, for p = 2, H,(C4,C) is
isomorphic to H,(X;/2,C), and Sedleckii [10] showed that this result holds
for all 0 < p < oo. Luxemburg [6] gave a new prove of Sedleckii’s result.
Our main Theorem 1 states that, for all 1 < p < oo and every Banach

space X, the norms H-HHP(C+) and H-HHP(E are equivalent, and the spaces

W/Q)
H,(Cy, X) and H,(X:/2, X) are isomorphic. As a consequence, we derive in
the second section a description of boundary values of sectorial holomorphic
functions, and we give in the third section a theorem of Paley-Wiener type
for sectorial holomorphic functions.

Throughout this note we use the following notations. The letter X stands
for a complex Banach space, and we write X* for its dual. We denote
by L,(R,X) the usual Bochner L,-space, and L,(R,C) is abbreviated by
L,(R). For z = a4+ 1b € C; the Poisson kernel P, is given by

1 a
Pl)y=————7— — <l < .
(t) T (b—1)? 4 a?’ > >
We say that I : C; — X is the Poisson integral of some function [ €
L,(R, X)if
o0
F(z)= [ P(O)f()dt, = €Cy.

—00

THEOREM 1 Let 1 < p < oo and let F: C;y — X be holomorphic. Then
F e Hy,(C,,X) if and only if F € Hy(X;/5, X). Moreover,

27 |l gy ey < WMl pryqs, ) < 277 1P iy )

Proof.  There is nothing to prove if p = co. Let 1 < p < oo, take F' €
H,(C4, X), and assume that F is the Poisson integral of some function
f € LR, X). Let —n/2 < 0 < w/2, r > 0, and take z* € X* with
||z*|| < 1. From the proof of Theorem (3.3) in [6] it follows that

Sﬁ;ﬂ/“ P(t,0)|a" f(rt)|?/2 di.,

where P(t,@) = (1 + 12 — 2t COS(0>>_1. Hence

|$*F<T6i0>|p/2 S

HF(WZ'@)H?”/2 < sin®9) /_Z P(t,0) || f(rt)]|"? dt.

'
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We conclude from this estimate (see the proof of Theorem (3.3) in [6])

2

/ HF(TGM)”p i < (sm( ) / \/Tp (t,6 dt) A7, < 201FI, c,)
0 00 P

If Fe H(Cy4, X) is not the Poisson integral of a function in L,(R, X) then

we proceed as follows. For a > 0 and z € Cy put F,(z) = F(a+z). Then F,

belongs to H,(C4, X) with HFaHHP(C+) < HFHHP(C+)’ and F), is the Poisson

integral of f, € L,(R,X), where f,(t) = F(a + it). This follows from the

corresponding scalar-valued result (see e.g. the proof of Theorem 1.3.5. in

[2]) by applying linear functionals. Now, the first part of the proof yields for
all —m/2 <0 < 7w/2

r

Hence it follows for all 0 < A < B < >

i P
(e dr <20\ Fulhy cyy < 20 F I oy

/AB HF(TGM)HP dr = lim

a—0t JA

i P
e dr <20 IR o))

Now, letting A — 0 and B — oo yields the second inequality.
Conversely, let F' € H,(X,/3,X). For /2 < a <7 and z € Cy put

SE

l/p 1 T
Fa(z):<%> A ED (),

Then F, € Hy(X:/2, X) and

1ol i,y < W M y5,,0)

On the other hand, we know from [6] that z* o F, belongs to H,(Cy) for
all z* € X*. Hence z* o F,, is the Poisson integral of its boundary function

"o fy € Ly(R), where f,(t) = F,(it) for t # 0. Since f, is p-integrable we

conclude o
Fo(z) = /_OO P.(4) [ (1) dt
Put g.(t) = [|fa(t)]|. Then

g, = I fallr, < 2HFallm, (s, ) < 20F e

w/2 '

ﬂ/2)
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We now distinguish the cases p > 1 and p = 1.

If p > 1 then, by the reflexivity of L,(R), there exists a sequence (o)
in (7/2,7) with lim,,,, &, = 7/2 and a function g € L,(R) so that g is the
weak limit of (g,,) in L,(R). This implies for all z € C;

IF()] = lim [[Fa, ()] < hmsup/ O fan (O] dt
_ /_Z P,(1)g(t) dt =: G(2).

If p = 1 then, by Helly’s theorem, there exists a sequence (o) in (7/2, )
with lim, ., o, = 7/2 and a function ¢ : R — R of bounded variation so
that ¢ is the weak* limit of (g,, ) in Co(R)*. Consequently,

IEGN = Jim ||Fa, ()] < hmsup/ ) | fon (D] dt
- /_0; P.(1) do(1) =: G(=).

It follows e.g. from [2], I.3. that, in either case, G : C; — R is a harmonic
function with

sup | |G(a+1b)[P db < sup |lga,|l7, < 27| Fll4,

a>0 _ 7r/2

We finally conclude

sup [ F(a+ )P db < sup [ Gilat B db < 2 | F s

7r/2 '

2 Boundary values of vector-valued holomorphic functions

We investigate now the boundary behavior of vector-valued functions being
holomorphic in a sector

Y, ={re? :r>0,0] <a}.
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Similar to Hp(E,r/Q,X) we introduce for each 0 < a < m/2 the space
H,(X,, X) which consists of holomorphic functions F': ¥, — X such that

HFHHP(EQ) = sup </OO HF(T6M>Hp dT)l/p < 0o
6] <o \JO

if p < oo, and such that

17 by = sup [1F(2)]] < o0
if p = oco. We start with a study of the boundary behavior of harmonic
functions F' : C, — X, and than use this result for a description of the
boundary values of H,(X,, X)-functions. For this reason, let us introduce the
following spaces of functions and classes of operators: The space h,(Cy, X)
consists of harmonic functions F': C4 — X for which the following norm is
finite:

0o 1/p
1Pl = sup ([ PG+ in)? )

if p < oo, and ||F||,_ := Sup.ec, |F(2)]| if p = co. We say that F' has a
boundary function f € L,(R, X) if F' is the Poisson integral of f.

Let 1 <p<ooand 1/p+1/g=1. Put Y (R):= L,(R) if ¢ < oo, and
let Y, (R) be the space of complex-valued continuous functions on R which
vanish at infinity. An operator T : Y;(R) — X is called p-bounded, p > 1,
if there exists a function f € L,(R) such that

ITgl < [~ lglrtyde, g€ Vi(R),

and T is called 1-bounded if there exists a function ¢ : R — R of bounded
variation such that

ITgl < [ lg(v]de(t), g€ Vau(R).

It follows from [3]. TV.4, Theorem 8, that for p > 1 an operator T is
p-bounded if and only if it is order summing, and [9], Proposition 1.3.22
states that an operator 7' : Y, (R) — X is I1-bounded if and only if it is
absolutely summing. We say that 7' is represented by g € L,(R, X) if

Th= /_°° h(D)g(t)dl, heY,(R).
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If p > 1 and if X has the Radon-Nikodym property then it follows from [3],
IV.4, Theorem 8, that every p-bounded operator can be represented by an
L,(R, X)-function.

THEOREM 2 Let 1 < p < oc. A harmonic function F : Cy — X belongs to
hy(Cy, X) if and only if there exists a p-bounded operator T : L,(R) — X
such that

F(z)=T(P.) = lim /OO P.(1)F(a +it)dt, =€ C,.
a—0 —00

If 1 < p < oo and if X has the Radon-Nikodym property then F has a

boundary function f € L,(R,X).

Proof. Let F € H,(Cy, X). Then, for every a > 0, the function F, : C; —
X defined by F,(z) = F(a+ z) belongs to h,(C4, X), and HFath < HFth
Since F, is bounded and continuous in the closed right half-plane C (this
follows e.g. from [2], 1.3.) F, is the Poisson integral of its boundary function
(see 2], Lemma 1.3.4. for the scalar case). It follows that

F(z)= lim F,(z) = lim P,(t)F,(it) dt.

a—0t a—0t J—no
Collecting these informations yields:

1. For all h in the total subset {P, : z € Cyi} of Y, (R) the limit of
Toh := [ h(1)F,(t) dt exists, as a — 0%,

2. The family (T,) of operators from Y,(R) into X is uniformly bounded
by ITall < 11F 1 ey

Hence, by the Banach-Steinhaus-Theorem, there exists an operator T :

L,(R) — X with ||T]| < HF||HP(C+), and such that

Th=lim [ h(t)F(t)dt = lim [ h(t)F(a+it)dt. (1)

a—0t —00 a—0t —00

Moreover, the operator T' is p-bounded. To see this, consider the functions
9o € L,(R) defined by g,(t) = ||F.(:t)||. Then the family {g, : a« > 0}
is bounded in L,(R). Consequently, if p > 1, there exists a positive null-
sequence (a,) so that (g,,) has a weak limit g € L,(R), if p < oo, and so
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that (g,,) has a weak* limit g € Lo(R), if p = co. If p =1 then, by Helly’s
theorem, (a,) can be chosen so that (g,,) has a weak* limit ¢ : R — R of
bounded variation. Consequently,

ITh|| < hmsup/ (O Fa, (1)]| dt
= timsup [ hOlga, (D dt = [ Ih(0)lg() de
if p>1, and

el < [ 6] dw(0)

if p=1.
If X has the Radon-Nikodym property, then, according to [3], IV.4, The-

orem 8, for 1 < p < oo every p-bounded operator can be represented by a

function f € L,(R, X). =

The above considerations for h,(C4, X)-functions clearly hold also for
H,(C4, X)-functions. Our next goal is to show that for p > 1 similar as-
sertions are true for functions G € H,(X,,X). Therefore, we exchange
the cartesian coordinates “a 4 it” by polar coordinates “te’"”, and for each
0 < n < a we introduce the function G, (1) = G(|t|e®s®), ¢ € R. We say
that (G has a boundary function g € L,(R, X) if

im [ h(0)G, (1) dt = /°° h(tg(t)dt, h e L,(R).
n—a= J—o0o —00
THEOREM 3 Let 1 < p < oo and 0 < o < m. For every G € H,(X,,X)
there exists a p-bounded operator T : L,(R) — X such that
Th=1lim [ h(t)G,(t)dl, he L,(R).
n—a~ J—00
If1 < p < oo and if X has the Radon-Nikodym property then GG has a
boundary function g € L,(R, X).

Proof. The proof is divided into two steps. In the first step we consider the
case a = m/2, and in the second step we prove the assertion for general a.
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Step 1: Let G € Hy(X/2,X) and for ¢ € R define x; = x[o,) if t > 0,
Xt = —X[t,0) if t <0 and xo = 0. We show first that the limit

¢
Tx::= lim [ G,(u)du (2)

n—a~= JO

exists for every real number {. We know by Theorem 1 that G belongs
to H,(C4, X). Hence, by Theorem 2 there exists a bounded operator T :
L,(R) — X with

Th=1lim [ h(t)G(c+it)dt. (3)

=0t J—o

Let z = a+1b € C,. Then there exists t € R and 0 < 5 < 5 SO that

z = |t|eisg“(t)”. We define three paths I'1(z), I';(2) and I'3(z) in the following

way:

I(z) = (Jseisgno‘t)77 (0 <s <)),
Iy(z) = (s:0<s<a),
Is3(z) = (a+sgn(t)s:0<s<b)).
Then (T(z),T2(2),T5(2)) is a closed path in Cy. Since G is holomorphic

in C,, and since |G(2)| < KRe(z)~/? (for the scalar case see [4], Lemma
on page 149) we infer from Cauchy’s theorem

¢
— —isgn(t)n
/0 Gy(s)ds sgn(t)e /l“l(z) G(v)dv

= sgn(t)e_isgn(t)” (/ G(v)dv + G(v) dl/)

Iy (z2) Ts(z)

- sgn(t)e—isgn(t)n</a G(s)ds + z'/ob Gla+1s) ds). (4)

0

Let ¢ € R and put 2(n) = [t|e™"O" = qa(n) + ib(n). If y converges towards
m/2 then b(n) converges towards ¢. Consequently, equation (3) yields

: b(n)
lim isgn(t)e_zsgn(t)”/ ! Gla(n) +1s) ds
0

n—m/2
¢ "
= lim [ G(a(n)+1is)ds — lim G(a(n)+1s)ds
n—Z Jo n—+% Jb(n)

- TXta
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because

/b(n) G(a(’r]) + i.s) ds

< [t =) |G|y, and Tim [t = b(n)| = 0.

The first part foa(n) G/(s)ds in the sum of equation (4) converges towards
zero for 1 — 7/2, because ||G(s)|| < Ks~'/?. Hence, equation (2) is proved
for « = m/2. Since the set {yx; : ¢ € R} is total in L, (R), and since the
family {G, : —7/2 < n < 7/2} is bounded in L,(R, X), there exists, by the
Banach-Steinhaus-Theorem, a bounded operator 7" : L,(R) — X such that,
for all h € L,(R)

Th= lim [ h(1)G,(1)di.

n=m/27 J—oo

Step 2: Now let 0 < oo < . Let G € H,(X,,X) and put

R = () HEG(E),

Then, by straightforward calculations, F' belongs to H,(X,/3, X), and for
0 <n<aandtéeR it follows that

o T \1/p isgn(t)
Go(t) = (57) " (el
T \1/p isen 1(zm _ o
= (55) " (tlese O ETIE, 2 (sgn (1)),
If h: R —Y,Y a Banach space, is a function then define Bh: R — Y by

) BE i sen (1)),

1

bR

(%—I)F(Oﬂeisgn(t)n)%)

Bh(t) = (QQ

and define Ch: R — Y by

Ch(t) = (22) 03 n(san(0) %),

It is easy to see that the operators B and (' are isometric isomorphisms on

L,(R,Y). Moreover, put d,(t) = =321 Then for h € L,(R)

[ nwe@d = [ )dy(2) (BF,z)(0) d
7 ) (ChY(w) Py ()
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By Step 1,
Sh:= lim h(t)Fy(t)dt
6—)7‘!‘/2_ —_00

defines a bounded operator S : Ly(R) — X. Consequently, since nJ- con-
verges towards 7/2 from below, as n — a~, the result of the Step 1 implies
that the following limit exists:

lim [ h(1)G,(1)dt = Th, he L,(R).

n—a~ J—o0o
Clearly, T': L,(R) — X is a bounded operator. In order to show that 7" is p-
bounded, put g,(t) = ||G,(¢)||. Then there exists a sequence (1,,) converging
towards a from below, so that (g,,) has a weak limit g € L,(R), if p < oo,

and so that (g,,) has a weak* limit g € Lo (R), if p = co. Consequently, for
h € L,(R)

IThI < Timsup [ |A(8)] Gy (iD)]] dt

n— 0o —o0
= timsup [ [h(O)lgn, (0 dt = [ B(0]g(t) dt

If X has the Radon-Nikodym property it follows from [3], TV.4, Theorem 8,
that 7" can be represented by a function g € L,(R, X). =

3 A Paley-Wiener-type theorem for H>(X,, X)

The classical Paley-Wiener-Theorem [7] states that the complex Laplace
transform F(z) = [5° e " f(t)dt is an isometric isomorphism between the
spaces L2([0,00)) and Hy(C;,C) (see also [8], Chapter 19). The proof of
this theorem uses heavily the Plancherel theorem for the Fourier transform.
By Kwapien’s theorem [5] a Banach space valued version of Plancherel’s the-
orem does not exist, in general, but the Fourier transform maps Ly(R, X)
isomorphically onto Ly(R, X)) if and only if X is isomorphic to a Hilbert
space. Hence, for Hilbert spaces X, the following vector-valued version
of the Paley-Wiener-Theorem theorem can be proved (see [9], Proposition

2.2.14).
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THEOREM 4 If X is isomorphic to a Hilbert space then the X -valued com-
plex Laplace transform

F(Z) = /OO G_th(t>7 S C+,
0
is an isomorphism from Ly([0,00), X) onto Hy(Cy, X).

The following corollary is an immediate consequence of this vector-valued
version of the Paley-Wiener-Theorem together with Theorem 1.

COROLLARY 5 If X is isomorphic to a Hilbert space then the vector-valued
complex Laplace transform

F(z)= /OO e f(t), ze€Cy,
0
is an isomorphism from Ly([0,00), X') onto Hy(X,/, X).

We now want give the outline of a proof for a theorem of Paley-Wiener
type for the complex Laplace transform of functions belonging to Hy(X,, X);
more precise:

THEOREM 6 Let 0 < a < 7/2, and let X be isomorphic to a Hilbert space
Then the complexr Laplace transform of any function [ € Hy(Xs, X) can
be extended holomorphically to a unique function F € Hy(Y¥o4n/2,X), and
every I € Hy(Xaqn/2, X) is the extension of the complex Laplace transform

of a unique f € Hy(X,, X).
Proof. (an outline) If f belongs to Hy(X,, X) then one defines a holomorphic

function F' : ¥/, — X in the following way: For —a < < o define the
path Ty = (re’? : 0 < r < c0). Now, given z € e7"?C,. put

Fi(z) = [ e F () dn.
Ts
Then Fy : e=**C, — X is a holomorphic function, and by Corollary 5

&0 : 2
sup HFe(re’(e"'ﬁ))H dr < M*? Hf”f%(zmx) 7 (5)
|Bl<m/2/0
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where M denotes the norm of the vector-valued complex Laplace trans-
form from Ly([0,00), X) into Hy(X,/2, X). Moreover, one can show that
Fy(2) = F,(z) whenever —a < 0,7 < a and z € eC, N e "C,. Since
Ujgj<a e~C, = Yotn/2 we can define F': ¥,y 15 — X by F(z) = Fy(2),
where @ is chosen so that z belongs e~ C,. Then it follows from (5) that
F belongs to Hy(X,4r/2, X) with HFHHz(E y <M HfHHZ(EQ), and Fic, is
the complex Laplace transform of f.

Conversely, assume F' to belong to Hy(X,1r/2, X). Then, by [9], Satz
2.3.7, F' is the complex Laplace transform of a holomorphic function f :
Yo — X, and F(z) can be evaluated by

u+7r/2

F@) = [ e fn)dn, = ecC..

It remains to be shown that f belongs to Hz(X,,X). Let || < «, and, for
z € Cy, put Fy(z) = F(ze™*%). Then, by Corollary 5, Fy is the complex
Laplace transform of a function f; € Ly([0,00), X). Hence, for z = re=* it
follows that

[T e ey dt = [ e () dp
— F(z) = Fy(r) =/0°° T fo(1) dt.

By uniqueness of the Laplace transform it follows that e f(te'?) = fo(t)
almost everywhere in [0, 00). Consequently,

[ ar = 1gall2, < 22 1P

a+7‘r/2) ’

where L denotes the norm of the inverse complex Laplace transform from

Hy(C4, X) into Ly([0,00), X). =
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