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Kurzfassung

Diese Arbeit befasst sich mit der verteilten Optimierung von Restriktions-gekoppelten

Systemen. Diese Problemklasse tritt häufig in Systemen auf, die aus mehreren einzel-

nen Teilsystemen bestehen, die durch geteilte begrenzte Ressourcen gekoppelt sind. Das

Ziel ist es, jedes Teilsystem verteilt zu optimieren und gleichzeitig sicherzustellen, dass

die systemübergreifenden Restriktionen eingehalten werden. Durch die Einführung dualer

Variablen für die systemübergreifenden Restriktionen kann das systemweite Problem in

seine einzelne Teilprobleme zerlegt werden. Diese resultierenden Teilprobleme können

dann durch iterative Anpassung der dualen Variablen koordiniert werden. In dieser Ar-

beit werden zwei neue Algorithmen vorgestellt, die die Eigenschaften des dualen Op-

timierungsproblems ausnutzen. Beide Algorithmen bestimmen in jeder Iteration eine

quadratische Surrogatfunktion der dualen Funktion, die zur Anpassung der dualen Vari-

ablen optimiert wird. Der Quadratically Approximated Dual Ascent (QADA) Algorith-

mus bestimmt die Surrogatfunktion durch die Lösung eines Regressionsproblems, während

der Quasi-Newton Dual Ascent (QNDA) Algorithmus die Surrogatfunktion iterativ über

ein Quasi-Newton-Schema aktualisiert. Beide Algorithmen verwenden Schnittebenen, um

die Nichtdifferenzierbarkeit der dualen Funktion zu berücksichtigen. Die vorgeschlage-

nen Algorithmen werden mit Algorithmen aus der Literatur für eine große Anzahl ver-

schiedener Benchmark-Probleme verglichen und zeigen in den meisten Fällen ein besseres

Konvergenzverhalten. Zusätzlich zu generischen konvexen und gemischt-ganzzahligen

Optimierungsproblemen wird die verteilte Optimierung basierend auf dualer Zerlegung

auf verteilte modellprädiktive Regelungs- und verteilte K-Means Clustering-Probleme

angewendet.
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Abstract

This thesis deals with the distributed optimization of constraint-coupled systems. This

problem class is often encountered in systems consisting of multiple individual subsys-

tems, which are coupled through shared limited resources. The goal is to optimize each

subsystem in a distributed manner while still ensuring that system-wide constraints are

satisfied. By introducing dual variables for the system-wide constraints the system-wide

problem can be decomposed into individual subproblems. These resulting subproblems

can then be coordinated by iteratively adapting the dual variables. This thesis presents

two new algorithms that exploit the properties of the dual optimization problem. Both

algorithms compute a quadratic surrogate function of the dual function in each iteration,

which is optimized to adapt the dual variables. The Quadratically Approximated Dual As-

cent (QADA) algorithm computes the surrogate function by solving a regression problem,

while the Quasi-Newton Dual Ascent (QNDA) algorithm updates the surrogate function

iteratively via a quasi-Newton scheme. Both algorithms employ cutting planes to take the

nonsmoothness of the dual function into account. The proposed algorithms are compared

to algorithms from the literature on a large number of different benchmark problems, show-

ing superior performance in most cases. In addition to general convex and mixed-integer

optimization problems, dual decomposition-based distributed optimization is applied to

distributed model predictive control and distributed K-means clustering problems.
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1

1 Introduction

The solution of optimization problems, i.e., making optimal decisions with respect to a

specified objective while satisfying a number of constraints, has been of interest for many

years [DPW09]. These problems are dealt with in the area of operations research, the his-

tory of which can be traced back to George B. Dantzig and the development of the simplex

algorithm for linear programming [Dan51], even though earlier work on the topic exists, e.g.

by Kantorovich [Kan39]. The terms ”operations” and ”programming” in the context of op-

timization refer to their origins within military applications, on which Dantzig was working

during World War II [Dan90]. It did not take long for commercial optimization software

to be developed [Bix12]. Through the ever-increasing hardware capabilities as well as due

to continuous algorithmic developments, the performance of state-of-the-art optimization

solvers has been drastically increasing in recent years [AW13, KBP+22]. Fig. 1.1 illustrates

the performance increase of the commercial optimization solver Gurobi [Gur23] from ver-

sion to version for mixed-integer linear programming (MILP) problems1 (v1.1/2009 –

v10.0/2022). The figure also shows that more and more problems can be solved within ac-

ceptable computation times. In addition to commercial solvers, many open-source projects,

like the Computational Infrastructure for Operations Research (COIN-OR) [Lou03], pro-

vide state-of-the-art optimization algorithms to the scientific community. However, some

problems might still be unsolvable, either from a computational or a structural point of

view.

Many industrial applications of optimization require the solution of a system-wide problem

over a network of agents [NL18]. Solving a system-wide optimization problem in a central-

ized fashion in such a setting can become computationally intractable if a large number of

agents are involved. Furthermore, in production systems there has been a trend towards

increased modularity and autonomy of subsystems in recent years [RHH+20]. This gives

rise to distributed decision structures where the involved subsystems have a certain auton-

omy and pursue individual goals while only having access to local information [YYW+19].

In these cases the exchange of information between the subsystems or between the sub-

systems and a coordinating unit is often restricted as the subsystems do not want to share

private information, e.g., their objective functions, local constraints, production parame-

1The benchmark set includes 4535 models that can be solved by at least one version with a 10000 second
time limit. Unsolved models are assigned a 100000 seconds solution time. Speed-up is only measured for
models that take longer than 100 seconds to solve. All computations were performed on Intel Xeon CPU
EE3-1240 v5 @ 3.50Ghz, 4 cores, 32 GB RAM. Source: gurobi.com (last visited 24.03.2023)

gurobi.com
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Figure 1.1: Version-to-version performance evolution of the commercial optimization solver

Gurobi for MILP benchmark problems. Source: gurobi.com (last visited 24.03.2023)

ters, etc. [HTP17, LZ18]. This is often the case in industrial complexes where production

systems are coupled through interconnected networks of materials and energy [WPS+16].

The involved subsystems may not be willing or able to exchange the information required

for the centralized solution of a system-wide optimization problem, e.g., because they be-

long to different business units or different companies. Another area necessitating the

solution of large-scale optimization problems is machine learning [SCZ+19, GGN21]. In

addition to the size of the underlying optimization problems, data sovereignty plays an

important role in many machine learning applications [LFT+20]. Training data may be

distributed over multiple nodes of a network. Sharing this data between different nodes

or between the nodes and a coordinator can be prohibitive due to bandwidth limitations

or due to privacy concerns [KMR15].

Distributed optimization methods offer a way to circumvent the aforementioned issues

by splitting the aggregated optimization problem into smaller subproblems2, solving the

subproblems locally, and coordinating these solutions by suitable mechanisms such that

the coordinated solutions for the subproblems converge to the system-wide solution and

system-wide constraints are met. The design of distributed optimization algorithms in-

volves the choice of the decomposition method and of the synchronization mechanism and

depends on the possible communication of data between subproblems and the coordinating

instance.

2The terms subsystem and subproblem are used interchangeably throughout this thesis. A subproblem
describes the optimization problem associated with a subsystem.

gurobi.com
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Figure 1.2: Decentralized MPC.

Figure 1.3: Example of an integrated production network (adapted from [WRE20,

Wen20]).

Maxeiner [Max21] provides an overview of applications for distributed optimization, re-

ferring to it as cross-entity optimization, including the coordination of cars [JLW+15,

ZLL+16, GMM14], trains [SGK17, YTY+17] or unmanned aerial vehicles (UAVs)

[LMZ+18, PLF+18], distributed optimization of energy systems, both in an industrial and

residential setting [NFN16, RNF23, SGC+22, YMB+22, JT16, ZGG13, ZGG12, ALT19,

AD14, WYW13, JI13, NSH15, BCC+15] and digital infrastructure [ZLG+15]. One of the

main possible application areas for distributed optimization is the coordination of produc-

tion systems. It can be applied in a natural way to production plants that are coupled

through shared limited resources. An example of an integrated production network, where

different subsystems are coupled through shared resources is depicted in Fig. 1.3. A com-

mon shared resource is the available electricity in the case of demand-side management

(DSM). General reviews for industrial applications of DSM are provided by Wang et al.

[WZD+15], Shoreh et al. [SSS+16] and Siano [Sia14]. Motsch et al. present an architecture

for the application of price-based DSM for autonomous cyber-physical production modules

(CPPMs) [MDS+20]. Yfantis et al. employ dual decomposition-based distributed opti-

mization for the integrated load control and scheduling of flexible manufacturing plants

with shared energy [YMB+22]. Motsch et al. use a game theoretic approach to distribut-

edly adapt production schedules based on energetic considerations [MYW+23]. A general

overview of distributed optimization in the context of energy systems is presented by

Yang et al. [YYW+19]. Shared energy does also play an important role in the distributed

optimization of smart buildings (cf. [ZTL+11, ZGG13, PAL14, ESK+22]).

Other frequently shared resources are gases or steam. Che et al. employ dynamic pricing of

gas transmission capacities for optimal resource allocation [CWS18]. Gunnerud and Foss

present the optimal operation of an oil field [GF10]. He et al. simultaneously schedule

electricity and natural gas systems [HWL+17]. Mouret et al. apply distributed optimiza-

tion for the integration of refinery planning and crude-oil scheduling [MGP11]. Mart́ı et
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Node NodeNodeNode

Server

Figure 1.4: Example of a distributed machine learning problem with nodes training models

on private data while being coordinated by a server training a global model.

al. coordinate decentral controllers within an oxygen distribution network [MSN+13]. Van

den Heever and Grossmann integrate the production planning and reactive scheduling of

a hydrogen supply network via a decomposition approach [vdHG03]. Wenzel et al. also

employ price-based coordination to manage the steam among three large petrochemical

plants [WPS+16].

Naturally, distributed optimization is not only encountered in industrial applications. A

major field of research in recent years has been federated learning, which describes the

distributed solution of machine learning problems [LFT+20]. Machine learning models are

trained on data, which is often confidential and cannot be shared if it is stored in different

nodes of a larger network. Fig. 1.4 illustrates a setting in which a global model has to be

trained without access to locally stored data. Federated learning aims at training a model

over the entire dataset by coordinating the training of local models in each node. Hegiste

et al. demonstrate the application of federated learning in the context of manufacturing

[HLR22]. Other applications include healthcare [XGS+21] or user behavior prediction in

social networks [KMR15]. Several applications are reviewed by Li et al. [LFT+20].

Even though distributed optimization offers a multitude of benefits, its application still

faces many challenges. Wenzel [Wen20] analyzes the coordination landscape in the process

industries and classifies the challenges into organizational frameworks, awareness and ac-

ceptance, legal aspects, technical limitations, information technology infrastructure, pres-

ence of uncertainties, and availability of suitable models and algorithms. While all of these

aspects are equally important for the successful application of distributed optimization,

this thesis focuses on the last point, i.e., the availability of suitable algorithms.

The main issue arising from the decomposition of an optimization problem into several

smaller subproblems is the resulting slow rate of convergence toward the system-wide op-

timum. While the subproblems are usually much easier to solve than the original problem,

many communication rounds might be required until an optimal or even just feasible so-

lution can be found for the original problem. The rate of convergence can generally be
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accelerated by increasing the amount of information shared by the subproblems. However,

if certain information is confidential, like in many of the applications mentioned above,

this might not be a viable option. Then the only way to improve the rate of convergence

is to employ distributed optimization algorithms that take advantage of the available in-

formation as efficiently as possible.

This thesis focuses on dual decomposition where system-wide constraints that couple the

subproblems are relaxed by introducing additional variables into the subproblems, solving

the modified subproblems in a distributed fashion, and coordinating the solution process

by iteratively adapting the additional variables. This makes it possible to realize a high

degree of privacy, as no or little sensitive information has to be shared between the sub-

problems. The coordination of the subproblems can be performed by a central coordination

algorithm that exchanges information with the subproblems (hierarchically), by directly

exchanging information between the subproblems (networked optimization), or by solving

the subproblems in a completely decentralized manner (non-cooperative games) [YJ10]. In

this work, hierarchical algorithms are considered that coordinate the solutions of the sub-

problems by iteratively adapting and broadcasting the additional variables that result from

the relaxation of the system-wide coupling constraints. On the one hand, the hierarchical

structure ensures that no sensitive information has to be shared between subproblems, as

communication is only established between the coordinator and the subproblems. On the

other hand, the presence of the central coordinator enables to converge to the system-

wide optimum of the aggregated problem which is usually not possible through a fully

decentralized approach if system-wide coupling constraints must be satisfied.

The type and the amount of information shared between the subproblems and the co-

ordinator influence the efficiency of distributed optimization algorithms. The exchanged

information may include the contributions of the subsystems to the system-wide constraint

functions [ME20] or the residual of the system-wide constraints [WRE20], the optimal ob-

jective function values of the subsystems in each iteration, gradients of the subsystems’

objective functions and constraints, and the Hessians of the Lagrange functions of the

subsystems [HFD16]. The first two choices lead to a high degree of privacy of the subsys-

tems whereas algorithms that exchange the full information on the subsystem solutions are

motivated by reducing the memory demand or computation time compared to the system-

wide solution rather than assuring privacy. In the iterations of a hierarchical distributed

optimization algorithm all subproblems are solved in parallel and return information to the

coordinator, i.e., they are optimized synchronously. In contrast, asynchronous algorithms

only require the solution of a subset of the subproblems in each iteration, leading to a

trade-off between collected information and computational efficiency [BLY+15]). Usually,

fewer iterations are required if all subproblems are solved in each iteration.
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As mentioned before, dual decomposition-based algorithms generally exhibit a slow rate of

convergence. This issue was addressed by, e.g., Maxeiner and Engell [ME20] and Wenzel

et al. [WRE20] where efficient use of information from previous iterations was made. In

this thesis, a new algorithm is proposed that uses some of the elements of the quadratic

approximation coordination (QAC) algorithm proposed byWenzel et al. [WRE20, Wen20].

In contrast to the QAC algorithm, the new algorithm approximates the dual function of

the system-wide optimization problem by a quadratic function by solving a regression

problem in each iteration. This requires to exchange the values of the Lagrange functions

of the subproblems at each iteration but still maintains the privacy of the local constraints

and of the contributions to the system-wide constraints. As will be shown, this improves

the rate of convergence for convex problems with real-valued decision variables and in

particular leads to an efficient distributed solution of integer programs. A regression-based

approximation of the dual function requires an initialization phase where the necessary

number of initial data points are collected. This is avoided by a second presented algorithm

that approximates the dual function based on quasi-Newton updates.

The remainder of this thesis is organized as follows: Chapter 2 introduces general con-

cepts of optimization as well as some important optimization problem classes that will

be encountered throughout the thesis. Subsequently, distributed optimization is exten-

sively discussed, mainly focusing on dual decomposition while still providing overviews of

alternative approaches. Several distributed optimization algorithms which will serve as

references for the newly proposed approaches are discussed in Chapter 3. The discussion

focuses on algorithms that employ a hierarchical coordination structure where only first-

order information is shared between the subproblems and the coordinator. Other related

algorithms which employ different communication structures, exchanged information, and

synchronization strategies, are also discussed briefly. Chapter 4 discusses algorithms that

update the dual variables based on an optimization of a smooth surrogate function. This

includes the QAC algorithm introduced by Wenzel et al. [WRE20] as well as the newly

proposed algorithms which compute a quadratic surrogate function of the dual function.

The convergence properties of these algorithms are discussed at the end of the chapter

for different classes of problems in a semi-formal manner, based on known results for the

same type of problems and similar algorithms.

A large part of the thesis is devoted to the evaluation of the performance of the proposed

algorithms in comparison to known approaches for a large set of benchmark problems for

different problem classes and applications. Chapter 5 demonstrates the application of dis-

tributed optimization with an illustrative example of the coordination of a small fictitious

resource network. Chapter 6 provides numerical comparisons for a large set of general

benchmark problems within different problem classes. Chapters 7 and 8 show how dual

decomposition-based distributed optimization can be applied to distributed model predic-

tive control and distributed machine learning respectively. The thesis is concluded with
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an extensive discussion of potential future applications and algorithmic improvements, as

well as with some practical considerations in Chapter 9.

Notation

Boldfaced upper-case letters are used to denote matrices (X) and boldfaced lower-case

letters to denote vectors (x). The notation [x]l denotes the l-th element of a vector

x. Similarly, [X]l,j denotes the (l, j)-th element of a matrix X. The vector containing

only ones is denoted by 1 while the vector containing only zeros is denoted by 0. I

denotes the identity matrix of appropriate dimensions. Vector inequalities x ▷◁ y with

▷◁∈ {<,>,≤,≥} are interpreted component-wise. The iteration index of the distributed

optimization algorithms is denoted by t. The value of a variable x in iteration t is denoted

by x(t) while xi indicates that a variable belongs to subproblem i. The Euclidean norm

is denoted by ∥x∥2 =
√
xTx while ∥X∥F =

√∑n
l=1

∑n
k=1 |[X]l,k|2 denotes the Frobenius

norm of a matrix. SRn×n denotes symmetric matrices with n rows/columns. The notation

x∗ indicates the optimum of an optimization problem. The domain of a function f(x) is

denoted by dom f .
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2 Optimization

This thesis deals with the distributed optimization of constraint-coupled problems via dual

decomposition. To this end, this chapter presents some general concepts of optimization,

namely, the necessary conditions of optimality as well as the notion of convexity, which

play an essential role in dual decomposition-based distributed optimization. Through-

out this thesis different classes of optimization problems are solved, both as part of the

distributed optimization algorithms and as subproblems of the constraint-coupled system-

wide problems. Therefore, the solution of major optimization problem classes encountered

throughout this thesis, namely, linear programming (LP), quadratic programming (QP),

nonlinear programming (NLP), and mixed-integer programming (MIP) are discussed. Fi-

nally, dual decomposition-based distributed optimization is introduced and subsequently

compared to other distributed optimization methods, focusing on the structure of problems

these methods can be applied to.

2.1 Fundamentals of optimization

The field of mathematical optimization deals with the solution of optimization problems.

Definition 1: Constrained optimization problem

A problem of the form

min
x∈Knx

f(x), (2.1a)

s. t. g(x) ≤ 0, (2.1b)

h(x) = 0, (2.1c)

with an objective function f : Knx → R, component-wise inequality constraints

g : Knx → Rng and component-wise equality constraints h : Knx → Rnh is called

a constrained optimization problem. The set

X = {x ∈ Knx | g(x) ≤ 0 ∧ h(x) = 0} (2.2)

denotes the feasible set of problem (2.1).
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Throughout this thesis both K = R and K = R × Z are considered, i.e., continuous and

mixed-integer problems. The goal of the optimization problem (2.1) is to find the values

of the decision variables x∗ which minimize the objective function f(x) while satisfying

the constraints (2.1b) and (2.1c).

Definition 2: Optimum

The vector x∗ ∈ X̂ ⊂ Rnx is a local optimum (minimum) of the optimization problem

(2.1) in the region X̂ ⊂ X , if

f(x∗) ≤ f(x), ∀x ∈ X̂ . (2.3)

If condition (2.3) holds for all x ∈ X , i.e., for the entire feasible set, then x∗ is a

global optimum (minimum) of problem (2.1).

2.1.1 Conditions of optimality

A locally optimal point x∗ is also called a solution to the optimization problem (2.1). A

necessary condition of optimality (NCO) for unconstrained optimization problems with

real-valued decision variables (X = Rnx) is that the gradient of the objective function

vanishes at the optimum, i.e.,

x∗ is a local optimum⇔ ∇f(x∗) = 0.

The same does not apply to constrained optimization problems like (2.1). To formulate

the NCO the Lagrange function must be defined.

Definition 3: Lagrange function [BV04]

The function

L(x,λ,ν) := f(x) + λTg(x) + νTh(x), (2.4)

with x ∈ Rnx , λ ∈ Rng and ν ∈ Rnh is called the Lagrange function or Lagrangian of

the optimization problem (2.1). The variables λ and ν are called Lagrange multipliers

or dual variables. In contrast, the variables x are called primal variables.

The Lagrange function and the dual variables form the basis for dual decomposition-based

distributed optimization and will be discussed more thoroughly in Sec. 2.2.2. Furthermore,

they can be used to formulate the NCO for constrained optimization problems, the so-

called Karush-Kuhn-Tucker (KKT) conditions [Kar39, KT51].



10 Chapter 2: Optimization

Definition 4: Karush-Kuhn-Tucker conditions [BV04]

If a pair of primal and dual variables x∗ and (λ∗,ν∗) are (locally) optimal, they have

to satisfy the following conditions:

∇xL(x∗,λ∗,ν∗) = 0, (Stationarity) (2.5a)

g(x∗) ≤ 0, h(x∗) = 0, (Primal feasibility) (2.5b)

λ∗ ≥ 0, (Dual feasibility) (2.5c)

[λ∗]l · [g(x∗)]l = 0, l = 1, . . . , ng. (Complementarity) (2.5d)

Note that the KKT conditions are necessary conditions, not sufficient ones. A sufficient

condition is the positive definiteness of the Hessian of the Lagrange function, i.e.,

∇2
xxL(x∗,λ∗,ν∗) > 0. (2.6)

The KKT conditions are necessary if some additional constraint regularity conditions,

called constraint qualifications, are satisfied [NW06]. Many optimization algorithms aim

at finding a solution that satisfies the KKT conditions.

2.1.2 Convexity

The problem formulation (2.1) corresponds to a generic nonlinear programming (NLP)

problem (cf. Sec. 2.1.5). Depending on the properties of the objective function and

constraints different subclasses of optimization problems can be defined. One of the most

important classes is that of convex optimization problems, which describe the minimization

of a convex function over a convex feasible set.

Definition 5: Convex set [BV04]

A set C is convex if the line segment between any two points in C also lies in C, i.e.,

θx1 + (1− θ)x2 ∈ C, ∀x1,x2 ∈ C ⊂ Rnx , θ ∈ [0, 1]. (2.7)

The concept of convexity of a set is illustrated in Fig. 2.1. The definition of a convex

function is similar.
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x1
x1

x2

x2

Convex Not Convex

Figure 2.1: Illustration of convex sets. In the left case, the line segment between any two

points of the set also lies in the set. This does not hold for the right case.

Definition 6: Convex function [BV04]

A function f : dom f → R is convex, if dom f is a convex set and

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), ∀x1,x2 ∈ dom f, θ ∈ [0, 1] (2.8)

holds.

Geometrically condition (2.8) implies that all points belonging to the line segment

connecting any two points on the graph of the function f(x) always lie above the graph

of f(x). This is illustrated in Fig. 2.2.

Using the Definitions 5 and 6 a convex optimization problem can be defined.

Definition 7: Convex optimization problem

Problem (2.1) is a convex optimization problem if the objective function f(x) and the

inequality constraints [g(x)]l, l = 1, . . . , ng, are convex and the equality constraints

h(x) are affine, i.e., if f(x) is a convex function and X is a convex set.

The most important property of convex optimization problems is that if a local optimum

x∗ is found, it is also a global optimum, even though it might not be a unique one [BV04,

NW06].
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f1 f2

x1 x2 x1 x2
x x

Convex Not Convex

Figure 2.2: Illustration of convex functions. In the left case, the line segment between any

two points on the graph lies above the graph. This does not hold for the right case.

2.1.3 Linear programming

One of the earliest studied problem classes of constrained optimization is linear program-

ming (LP).

Definition 8: Linear program

An optimization problem of the form

max
x∈Rnx

cTx, (2.9a)

s. t. Ax = b, (2.9b)

x ≥ 0 (2.9c)

with c ∈ Rnx , A ∈ Rnb×nx and b ∈ Rnb is called a linear program.

The most important properties of LPs are that they are always convex and that their

optimal solution (if one exists) lies at a vertex of the feasible set X = {x ∈ Rnx | Ax ≤
b∧x ≥ 0}. This is exploited by the simplex algorithm, which moves from vertex to vertex

in the direction of the biggest objective improvement until the optimal vertex is found

[Dan51].

Fig. 2.3 depicts the constraints and the feasible set X for the following linear program:

max
x1,x2

x1 + 2x2, (2.10a)

s. t. 2x1 + 3x2 ≤ 12, (2.10b)

x1 + x2 ≤ 5, (2.10c)

0 ≤ x1 ≤ 4 (2.10d)

0 ≤ x2 ≤ 3. (2.10e)

The feasible set in Fig. 2.3 is convex and the optimal solution lies on one of its vertices.
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x1 = 4

x2 = 3

Figure 2.3: Graphic representation of the LP (2.10).

At a vertex, some of the inequality constraints are active while others are inactive.

Definition 9: Active constraints

If x̃ is a feasible solution for the general optimization problem (2.1), i.e., g(x̃) ≤ 0

and h(x̃) = 0, then the constraints

h(x̃) = 0 and [g(x̃)]l = 0, l ∈ A ⊆ {1, . . . , ng},

for which the equality holds, are called active constraints. The set of all active con-

straints is called the active set.

The simplex algorithm for linear programming is a so-called active set method, as it

changes the active set of constraints in each iteration until the optimum is found.

An alternative class of algorithms are interior point or barrier methods, which start from

a point in the interior of the feasible set and move within the set on a central path until a

solution is found. The earliest interior point method for LPs is Karmakar’s projective al-

gorithm [Kar84]. The idea of logarithmic barrier-based interior point methods is discussed

for quadratic programs in the next section.
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2.1.4 Quadratic programming

Another important class of convex optimization problems are quadratic programs.

Definition 10: Quadratic program

An optimization problem of the form

min
x∈Rnx

1

2
xTHx+ cTx, (2.11a)

s. t. Ax ≤ b (2.11b)

with a symmetric positive (semi-)definite matrix H ∈ SRnx×nx , c ∈ Rnx , A ∈ Rnb×nx

and b ∈ Rnb is called a quadratic program (QP).

Note that equality constraints have been omitted in problem (2.11) since they can easily

be transformed into inequality constraints:

h(x) = 0 ≡ h(x) ≥ 0 ∧ h(x) ≤ 0.

While active set methods can be used to solve QPs, interior point algorithms have been

shown to be very efficient. Let al be the l-th row vector of the matrix A, i.e.,

A = [a1, . . . , anb
]T .

Then the QP (2.11) can be reformulated as

min
x∈Rnx

1

2
xTHx+ cTx, (2.12a)

s. t. [b]l − aTl x ≥ 0, l = 1, . . . , nb. (2.12b)

The inequality-constrained problem (2.12) can now be transformed into an unconstrained

one by defining a barrier function

B(x, µ) :=
1

2
xTHx+ cTx− µ

nb∑
l=1

log([b]l − aTl x), (2.13)

with a barrier parameter µ > 0. Computing the gradient of the barrier function yields

∇xB(x, µ) = Hx+ c+ µ

nb∑
l=1

1

[b]l − aTl x
al. (2.14)

Then, dual variables ν ≥ 0 similar to the Lagrange multipliers with

[ν]l([b]l − aTl x) = µ, l = 1, . . . , nb (2.15)

can be introduced. Using the dual variables the optimality condition for the barrier func-

tion can be rewritten as

Hx+ c+ATν = 0. (2.16)
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Eq. (2.15) and eq. (2.16) form a system of equations that can be solved, e.g., using

Newton’s method. Each iteration of the optimization algorithm gives a solution (x̃∗, ν̃∗),

where x̃∗ is a feasible solution of the QP (2.11). While the barrier parameter µ is decreased

the found solutions converge towards the optimum of the QP. The interested reader is

referred to the textbooks by Boyd and Vandenberghe [BV04] or Nocedal and Wright

[NW06] for further details on interior point methods.

2.1.5 Nonlinear programming

If the objective function and/or constraints of the optimization problem (2.1) are general

nonlinear functions, it is referred to as a nonlinear programming (NLP) problem. NLPs

can generally be solved by using interior point methods or active set methods. Throughout

this thesis, the solver IPOPT (Interior-Point Optimizer) [WB06] is used for solving general

nonlinear programs. It is based on a primal-dual barrier method, similar to the one

discussed in the previous section. In its general formulation, problems of the form

min
x

f(x), (2.17a)

s. t. h(x) = 0, (2.17b)

x ≥ 0 (2.17c)

are solved. Note that general inequality constraints can be handled by introducing positive

slack variables y

g(x) ≤ 0 ≡ g(x) + y = 0 ∧ y ≥ 0.

By defining the barrier function

B(x, µ) := f(x)− µ
nx∑
l=1

log([x]l), (2.18)

the algorithm computes (approximate) solutions for a sequence of barrier problems

min
x

B(x, µ), (2.19a)

s. t. h(x) = 0, (2.19b)

for decreasing values of the barrier parameter µ. By defining the Lagrange function of

problem (2.19),

L(x,λ) = f(x) + λTh(x)− µ
nx∑
l=1

log([x]l), (2.20)

and the dual variables ν the KKT conditions can be formulated

∇f(x) +∇h(x)λ− ν = 0, (2.21a)

h(x) = 0, (2.21b)

[ν]l · [x]l = µ, l = 1, . . . , nx. (2.21c)
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x1

x2

(a) Continuous feasible set.

x1

x2

(b) Integer feasible set.

Figure 2.4: Illustration of the feasible sets for a continuous optimization problem and its

integer counterpart.

The system of equations (2.21) can then be solved by using Newton’s method. More

details on the implementation of IPOPT can be found in [WB06].

The main characteristic of NLPs is whether they are convex or not. As discussed pre-

viously, if a solution satisfying the KKT conditions is found, it is the global optimum

of the NLP if it is convex. The Hessian of the Lagrange function is positive definite for

convex problems. Thus the sufficient condition is also satisfied. If the NLP is nonconvex

usually only a locally optimal solution can be found. The textbooks by Bertsekas [Ber99]

and Nocedal and Wright [NW06] give an extensive overview of nonlinear programming

methods.

2.1.6 Mixed-integer programming

The optimization problems discussed in the previous section only included continuous

variables x ∈ Rnx . However, many practical applications require that some or all variables

only take integer values. This gives rise to mixed-integer programming problems.

Definition 11: Mixed-integer program

An optimization problem of the form

min
x,z

f(x, z), (2.22a)

s. t. g(x, z) ≤ 0, (2.22b)

x ∈ Rnx , z ∈ Znz (2.22c)

with f : Rnx × Znz → R and g : Rnx × Znz → Rng is called a mixed-integer program

(MIP).
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Different classes of MIPs can be defined according to the objective function and con-

straints, e.g., mixed-integer linear programs (MILP) if both the objective and constraints

are linear, mixed-integer quadratic programs (MIQP) if the objective is quadratic and the

constraints are linear, etc. An important property for all MIPs is that they are nonconvex,

independent of the convexity of the objective function f(x, z) and the constraints g(x, z).

The nonconvexity is a result of the integrality constraints. This is illustrated in Fig. 2.4.

Fig. 2.4a shows a convex feasible set formed by linear (inequality) constraints with contin-

uous decision variables. If integrality constraints are added to the variables, the feasible

set is comprised of integer values, as depicted in Fig. 2.4b. Points on the line segment

connecting two feasible points are not integer, i.e., not feasible. Thus the feasible set and

hence the corresponding optimization problem is nonconvex (cf. Def. 5 and Def. 7)

MIP problems are usually harder to solve than their continuous counterparts. If both

the objective function f(x, z) and the constraints g(x, z) are convex, the branch-&-bound

algorithm can be employed to solve them [LD60]. To this end, the integrality constraints

are first relaxed and the solution of a continuous convex problem is obtained,

(x̃∗, z̃∗) = argmin
x,z

f(x, z), (2.23a)

s. t. g(x, z) ≤ 0, (2.23b)

x ∈ Rnx , z ∈ Rnz . (2.23c)

The MIP problem (2.22) and its continuous relaxation (2.23) differ in the omission of the

integrality constraints z ∈ Znz . Usually, some components of the obtained solution z̃∗ will

violate the integrality constraints. A fractional component of the obtained solution [z̃∗]l /∈
Z is then selected and branching is performed, i.e., two new relaxed problems are generated:

min
x,z

f(x, z), (2.24a)

s. t. g(x, z) ≤ 0, (2.24b)

x ∈ Rnx , z ∈ Rnz , (2.24c)

[z]l ≤ ⌊[z̃∗]l⌋, (2.24d)

min
x,z

f(x, z), (2.25a)

s. t. g(x, z) ≤ 0, (2.25b)

x ∈ Rnx , z ∈ Rnz , (2.25c)

[z]l ≥ ⌈[z̃∗]l⌉. (2.25d)

The relaxation (2.23) is referred to as the root node. Since the feasible sets of the child

nodes (2.24) and (2.25) have been reduced compared to the root node (2.23), the latter’s

optimal objective f(x̃∗, z̃∗) is a lower bound on the objectives of the former. If the solutions

of the nodes violate the integrality constraints, new child nodes are created again by

branching on the fractional-valued variables. Once a feasible solution to problem (2.22)

has been found it constitutes an upper bound on the optimal objective. The branch-&-

bound algorithm prunes branches whose objectives become worse than the best current

upper bound. Additionally, the objective value of a node provides a lower bound for

the objectives of all subsequent child nodes. The branching continues until the upper

and lower bounds are equal (global optimum) or until their relative difference reaches a
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[z]1=3.5

[z]1 ≤ 3 [z]1 ≥ 4

[z]2 ≤ 2 [z]2 ≥ 3

[z]3 ≤ 0 [z]2 ≥ 1

[z]2=2.3

Integer [z]3=0.7
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Lower Bound
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G
ap

Figure 2.5: Illustration of the branch-&-bound algorithm. Each node in the branch-&-

bound tree corresponds to a continuous optimization problem. When an integer variable

takes a fractional value, two new nodes are created.

specified tolerance. The difference between the best upper and lower bounds is referred to

as the integrality gap. An exemplary branch-&-bound tree is depicted in Fig. 2.5.

The branch-&-bound algorithm is usually computationally expensive since a continuous

subproblem has to be solved at each node of the resulting tree. Nevertheless, the per-

formance of commercial solvers like Gurobi [Gur23], CPLEX [IBM22] or Xpress [FIC22]

has significantly improved in recent years, enabling the solution of large-scale mixed-

integer programs [AW13]. These solvers employ multiple other techniques, e.g., cutting

planes [MMW+02], presolve reductions [ABG+20], branching rules [AKM05], and heuris-

tics [DRP05, BFL07, Rot07] that significantly enhance the performance of the branch-&-

bound algorithm.

2.2 Distributed optimization

The following section provides an overview of distributed optimization. After presenting a

classification of distributed optimization architectures, dual decomposition is discussed in

detail. Afterward, related distributed optimization approaches are discussed and compared

to dual decomposition. This section has been partially published in [YWW+23].
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2.2.1 Classification

Subproblem

Subproblem Subproblem

(a) Decentral

Coordinator

Subproblem

Subproblem Subproblem

(b) Central

Subproblem

Subproblem Subproblem

Coordinator

(c) Hierarchical

Subproblem

Subproblem Subproblem

(d) Network

Figure 2.6: Different architectures for optimization problems consisting of multiple sub-

problems. The dashed lines indicate the solution of an optimization problem.

The choice of a distributed optimization approach for problems consisting of multiple

subproblems strongly depends on their communication architecture. Fig. 2.6 depicts the

most common architectures (cf. [YJ10, Max21]).

If the subproblems are not coupled or if the coupling is weak, i.e., if it does not affect

the feasibility of the overall problem, the optimization can be performed in a decentral

manner (Fig. 2.6a). In this case, no information is exchanged between the subproblems.

Fig. 2.6b depicts the case where the information of each subproblem is gathered by a

central coordination instance which performs a monolithic optimization of the system-

wide problem.

Distributed optimization can be employed if a certain degree of autonomy of and confi-

dentiality between the subproblems is desired. In a distributed optimization setting each

subproblem is solved independently and shares information either with a coordinator or

with the other subproblems. The hierarchical architecture is depicted in Fig. 2.6c. In this

case, the subproblems only share information with the coordinator who is responsible for

the satisfaction of system-wide constraints. This ensures a high degree of confidentiality

between the subproblems. In contrast, Fig. 2.6d shows the case where no coordinator

is present. The subproblems directly communicate with their neighbors and exchange

information. This setting is often referred to as network optimization.

In addition to the communication architecture, distributed optimization algorithms can

also be classified according to their formulation structure. Tosserams et al. propose the

distinction between nested and alternating formulations [TER09]. Nested formulations are
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bilevel problems, where the subproblems are nested in the function of a master problem

(e.g. Benders decomposition). Alternating formulations alternate between the solution of

a coordinator problem and the subproblems sequentially (e.g. dual and primal decompo-

sition).

This thesis focuses on distributed optimization problems with a hierarchical communica-

tion structure and alternating formulations. The following subsections provide an overview

of relevant distributed optimization approaches.

2.2.2 Dual decomposition

This thesis deals with optimization problems of the form

min
x1,...,xNs

∑
i∈I

fi(xi), (2.26a)

s. t.
∑
i∈I

Aixi ≤ b, (2.26b)

xi ∈ Xi, ∀i ∈ I. (2.26c)

(2.26) describes an optimization problem consisting of Ns subproblems

i ∈ I = {1, . . . , Ns}. Each subproblem has its own set of decision variables xi ∈ Knxi and

an objective function fi : Knxi → R, with K ∈ {R,R × Z}, i.e., continuous or mixed-

integer optimization problems. The subproblems are coupled through the system-wide

constraints (2.26b), also referred to as coupling, complicating, or network constraints.

The terms Aixi, with Ai ∈ Rnb×nxi can be interpreted as the utilization of shared limited

resources depending on the decision variables xi, while b ∈ Rnb represents the availability

of these resources. In addition to the system-wide constraints, each subproblem i contains

individual constraints xi ∈ Xi ⊂ Knxi , where Xi is a non-empty compact set. The

system-wide objective function is assumed to be additive in the subproblem objective

function values. The goal is to minimize the sum of the objective functions of all

subproblems (2.26a), also called a social welfare objective [SZ19], while satisfying the

system-wide constraints (2.26b) as well as the individual constraints (2.26c).

Problem (2.26) is separable in its objective function and the subproblems are only coupled

through constraints. This class of problems is referred to as constraint-coupled opti-

mization problems [NNC19]. The system-wide or central problem can be decomposed by

introducing dual variables λ ∈ Rnb for the coupling constraints. With the dual variables,

the Lagrange function can be formulated (cf. Def. 3),

L(x,λ) =
∑
i∈I

fi(xi) + λ
T
∑
i∈I

Aixi − λTb, (2.27)

where x = [xT1 , . . . ,x
T
Ns
]T . In the Lagrange function (2.27) the system-wide constraints are

relaxed and weighed by the dual variables. The optimal value of the Lagrange function

for a given value of the dual variables corresponds to the value of the dual function, which
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is a key component of dual decomposition-based distributed optimization.

Definition 12: Dual function

The function d : Rnb → R mapping the dual variables λ to the corresponding optimal

objective value of the Lagrange function (2.27), i.e.,

d(λ) := inf
xi∈Xi,∀i∈I

L(x,λ), (2.28)

is called the dual function of the system-wide optimization problem (2.26).

The dual function is a function of the dual variables λ. The domain of the dual variables

is λ ≥ 0, stemming from the KKT conditions (2.5) and from the fact that the system-wide

constraints (2.26b) are inequalities [NW06]. Generally, the domain of the dual variables

λ are all values for which the Lagrange function (2.27) is bounded from below, i.e., all

values for which d(λ) > −∞.

An important property of the dual function (2.28) is that its values always provide a lower

bound for the objective value of the system-wide problem (2.26). This is easily verifiable

(cf. [BV04]). Suppose that x̃ is a feasible solution to problem (2.26). Then, since we have∑
i∈I Aix̃i − b ≤ 0 and λ ≥ 0,

λT

(∑
i∈I

Aix̃i − b

)
≤ 0 (2.29)

holds. This implies that

L(x̃,λ) =
∑
i∈I

fi(x̃i) + λ
T

(∑
i∈I

Aix̃i − b

)
≤
∑
i∈I

fi(x̃i). (2.30)

Therefore,

d(λ) = inf
xi∈Xi,∀i∈I

L(x,λ) ≤ L(x̃,λ) ≤
∑
i∈I

fi(x̃i) (2.31)

holds for any feasible primal and dual solution x̃ and λ. Since the dual function provides

a lower bound for the objective values of the system-wide problem for any feasible solution

x̃, it also does so in the case of the optimal solution x∗. Naturally, one would be interested

in the best attainable lower bound, corresponding to the maximum of the dual function.

Finding this maximum is referred to as the dual problem.
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Definition 13: Dual problem

The optimization problem

max
λ∈Rnb

d(λ), (2.32a)

s. t. λ ≥ 0, (2.32b)

i.e., the problem of finding the dual variables that provide the best lower bound for

the system-wide problem (2.26) is referred to as its dual problem. In contrast, the

system-wide problem (2.26) is called the primal problem.

The optimal solution of the dual problem (2.32) is denoted by λ∗. The optimal solution

of the dual problem (2.32) always provides a bound on the optimal solution of the pri-

mal problem (2.26). In the case of convex primal problems solving the dual problem is

equivalent to solving the primal problem, i.e., optimizing the Lagrange function with the

optimal dual variables yields the optimal primal variables and the same objective value.

These properties are referred to as weak and strong duality.

Definition 14: Weak and strong duality and duality gap

Due to the lower bound property of the dual function the relation∑
i∈I

fi(x
∗
i ) ≥ d(λ∗) (2.33)

holds between the primal and dual optimal solutions. Inequality (2.33) is referred to

as weak duality. The difference between the objective values of a feasible primal and

a feasible dual solution is called the duality gap,

DG =
∑
i∈I

fi(xi)− d(λ). (2.34)

If the primal problem, i.e., the system-wide problem (2.26), is convex and a constraint

qualification condition is satisfied, the optimal duality gap is zero. This implies, that∑
i∈I

fi(x
∗
i ) = d(λ∗). (2.35)

This condition is referred to as strong duality.

Constraint qualifications are regularity conditions that express whether an optimal solution

of the primal problem has to satisfy the KKT conditions [NW06]. A commonly used

constraint qualification condition is Slater’s condition.
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Definition 15: Slater’s condition [BV04]

Assume that the individual constraints (2.26c) of the system-wide optimization prob-

lem have the general structure Xi = {xi ∈ Rnxi | gi(xi) ≤ 0, hi(xi) = 0}, ∀i ∈ I.
Then, if there exists a strictly feasible solution x̃ to problem (2.26), i.e.,

∃ x̃ ∈

{
x ∈ Rnx | gi(xi) < 0, hi(xi) = 0, ∀i ∈ I,

∑
i∈I

Aixi < b

}
, (2.36)

then problem (2.26) satisfies Slater’s constraint qualification condition.

Note that R is used in Def. 15 instead of K, since mixed-interger programs are inherently

nonconvex.

Another important property of the dual problem (2.32) is that the dual function is always

concave, regardless of whether or not the primal problem is convex. This is also easily

verifiable (cf. Theorem 12.10, [NW06]). For any feasible λ̃, λ̂ and θ ∈ [0, 1] we have

L(x, (1− θ)λ̃+ θλ̂) = (1− θ)L(x, λ̃) + θL(x, λ̂). (2.37)

By taking the infimum of both sides in this expression, using the definition of the dual

function (2.28), and using the result that the infimum of a sum is greater or equal to the

sum of the infima we get

d((1− θ)λ̃+ θλ̂) ≥ (1− θ)d(λ̃) + θd(λ̂), (2.38)

which proves concavity of d(λ). Since the dual problem (2.32) is a maximization of a

concave function over a convex feasible set, it is a convex optimization problem.

Dual decomposition-based distributed optimization algorithms rely on the solution of the

dual problem (2.32). Its solution is amendable to distributed computations since the

Lagrange function (2.27) is separable due to the relaxation of the system-wide constraints

(2.26b). This means that the dual function can be evaluated by solving the individual

optimization problems

min
xi∈Rnxi

Li(xi,λ), (2.39a)

s. t. xi ∈ Xi (2.39b)

in a distributed manner for a given value of the dual variables λ. In the case of nonconvex

primal problems strong duality (2.35) does not hold. Upon convergence, a feasible primal

solution is usually recovered through the use of problem-specific heuristics [BLY+15] or by

modifying the primal problem a priori [VEG+16]. Note that the lower bound of problem

(2.39) is assumed to be attainable, therefore replacing the infimum with the minimum.
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Example: Consider the following optimization problem:

min
x1,x2∈R

0.5x21 + 0.5(x2 − 1)2, (2.40a)

s. t. x1 + x2 = 0, (2.40b)

x1 ≤ 1. (2.40c)

The Lagrange function of problem (2.40) is

L(x1, x2, λ) = 0.5x21 + 0.5(x2 − 1)2 + λ(x1 + x2) (2.41)

and the dual function

d(λ) = min
x1,x2∈R

0.5x21 + 0.5(x2 − 1)2 + λ(x1 + x2), (2.42a)

s. t. x1 ≤ 1. (2.42b)

Note that since the system-wide constraint (2.40b) is an equality, the domain of the dual

variable is R. The value of the dual function now depends on whether or not the individual

constraint (2.40c) is active. Two cases can be distinguished:

Case 1: x1 < 1 (inactive constraint)

For a given value of λ the value of the dual function (2.42) can be computed by setting

the gradient of the Lagrange function (2.41) to zero:

∇L(x1, x2, λ) =

(
x1 + λ

x2 − 1 + λ

)
= 0⇒ x1 = −λ, x2 = 1− λ. (2.43)

Substituting the values of x1 and x2 in (2.41) gives

d(λ) = −λ2 + λ, ∀λ > −1. (2.44)

Case 2: x1 = 1 (active constraint)

Setting the gradient of the reduced Lagrange function to zero gives

∇L(1, x2, λ) = x2 − 1 + λ = 0⇒ x2 = 1− λ. (2.45)

Again, substituting the values for x1 and x2 into (2.41) gives

d(λ) = −λ2 + 1.5λ+ 0.5, ∀λ ≤ −1. (2.46)

The dual function for problem (2.40) is given by

d(λ) =

−λ2 + λ, ∀λ > −1,

−λ2 + 1.5λ+ 0.5, ∀λ ≤ −1.
(2.47)

It is easy to see that the dual function is continuous as

lim
λ→−1+

d(λ) = lim
λ→−1−

d(λ) = −2. (2.48)
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However, the dual function does not have continuous derivatives,

lim
λ→−1+

∇d(λ) = lim
λ→−1+

−2λ+ 1 = 3, (2.49a)

lim
λ→−1−

∇d(λ) = lim
λ→−1−

−2λ+ 1.5 = 4.5, (2.49b)

which means that it is not smooth. Hence, as the dual function is always concave, the

dual problem

max
λ∈R

d(λ) (2.50)

is a convex, but nonsmooth optimization problem. Generally, a nonsmooth optimization

problem can be defined as follows:

Definition 16: Nonsmooth optimization problem

An optimization problem

min
x∈X

f(x). (2.51)

is called nonsmooth, if the gradient of the objective function exhibits discontinuities,

i.e.,

∃x̃ ∈ X , s ∈ Rnx , lim
α→0+

∇f(x̃+ αs) ̸= lim
α→0−

∇f(x̃+ αs). (2.52)

Nonsmoothness is typical for dual optimization problems and is caused by a changing set of

active constraints for different values of the dual variables. Algorithms that aim to solve the

nonsmooth dual problem are reviewed in Chapter 3 in the context of dual decomposition-

based distributed optimization. These algorithms rely on a hierarchical communication

structure, where a coordinator sends the dual variables λ to each subproblem and in turn

receives the corresponding responses of the subproblems. Dual decomposition-based dis-

tributed optimization is often interpreted as a market mechanism, where the coordinator

acts as an auctioneer for shared limited resources [Wen20]. In this context, the dual vari-

ables can be interpreted as prices for these resources. The subproblems then decide on

their resource production or consumption depending on their current price and communi-

cate this decision to the coordinator. The coordinator then adjusts the prices depending

on the resource imbalance.

A main advantage of this hierarchical structure is that only limited information has to

be shared between the subproblems and the coordinator while no information has to

be directly exchanged between the subproblems. This is desirable in a setting where

confidentiality between the subproblems has to be maintained, e.g., because they belong

to different companies.

Depending on the communication structure and the availability of shared information,

different decomposition, and distributed optimization approaches can be utilized. Some
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algorithms are briefly discussed in the following section.

2.2.3 Other distributed optimization approaches

This section briefly discusses distributed optimization algorithms other than dual decom-

position, namely primal decomposition, Dantzig-Wolfe decomposition, Benders decompo-

sition, and the Jacobi and Gauss-Seidel algorithms.

Primal decomposition

In dual decomposition, prices for shared limited resources are introduced to decouple the

subproblems. Thus, this method is also referred to as price coordination. The inverse

approach is primal decomposition or resource coordination. Instead of assigning prices

to the resources and communicating them to the subproblems, the coordinator directly

assigns available resources ui to the subproblems. This leads to the definition of the primal

function,

p(u) = min
x1,...,xNs

∑
i∈I

fi(xi), (2.53a)

s. t. Aixi ≤ ui, ∀i ∈ I (2.53b)

xi ∈ Xi, ∀i ∈ I, (2.53c)

which represents the optimal value of the system-wide problem (2.26) for a given re-

source distribution u, where u = [uT1 , . . . ,u
T
Ns
]T ∈ RNs·nb is the amount of resources made

available to each subsystem. Similar to dual decomposition, primal decomposition-based

distributed optimization algorithms rely on the solution of the problem

min
u1,...,uNs

p(u), (2.54a)

s. t.
∑
i∈I

ui ≤ b, (2.54b)

which is also amendable to distributed computations. For a given resource distribution u

the value of the primal function can be computed by solving the subproblems

min
xi

fi(xi), (2.55a)

s. t. Aixi ≤ ui, (2.55b)

xi ∈ Xi (2.55c)

in a distributed manner.

The main advantage of primal compared to dual decomposition is that if a suitable update

scheme for the variables u is used, such that constraint (2.54b) is satisfied, the correspond-

ing obtained solution to the system-wide problem (2.26) will always be feasible, as long

as a feasible solution to the subproblems (2.55) can be found. This is not the case for
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dual decomposition, as the system-wide problem (2.26) is generally only feasible once the

solution λ∗ of the dual problem (2.32) has been found. Nevertheless, finding a suitable

update scheme for the variables u such that feasibility is guaranteed is not trivial.

A drawback of primal decomposition is that the subproblems lose their autonomy to a

certain extent, as the coordinator directly assigns available resources to them. In contrast,

when dual decomposition is employed the subproblems can make completely autonomous

decisions and only react to the price signals from the coordinator. From a mathematical

point of view, the primal function (2.53) is only convex if the system-wide problem (2.26)

is also convex. In contrast, the dual function is always concave. Furthermore, the dual

problem (2.32) contains fewer variables (nb) than problem (2.54) (Ns ·nb), which improves

the scalability for a large number of subproblems. More details on primal decomposition

and its relation to dual decomposition are provided by, e.g., Palomar and Chiang [PC06]

and Yang and Johansson [YJ10].

Dantzig–Wolfe decomposition

One of the early decomposition-based optimization algorithms is the Dantzig-Wolfe de-

composition [DW60], which can be used to solve block diagonal LPs of the form

min
x1,...,xNs

∑
i∈I

cTi xi, (2.56a)

s. t.
∑
i∈I

Aixi = b, (2.56b)

Dixi ≤ di, ∀i ∈ I, (2.56c)

xi ≥ 0, ∀i ∈ I, (2.56d)

with I = {1, . . . , Ns}, ci,xi ∈ Rnxi , Ai ∈ Rnb×nxi , b ∈ Rnb , Di ∈ Rndi
×nxi and di ∈ Rndi .

In the Dantzig-Wolfe decomposition method problem (2.56) is decomposed into a master

problem andNs subproblems. The solution of the master problem provides a new objective

function to the subproblems and ensures that the coupling constraints (2.56b) are satisfied.

In turn, the solutions of the subproblems are sent to the master problem, and new columns

(new variables) are added to the master problem if they improve the overall objective. This

process is repeated until no further improvements can be made.

Dual decomposition-based algorithms consider similar problem structures as the Dantzig-

Wolfe decomposition method. However, the size of the master problem, i.e., the dual

problem, does not increase throughout the iterations, as the number of dual variables

remains fixed.

Benders decomposition

The Dantzig-Wolfe decomposition method relies on column generation. The inverse ap-

proach is row generation, i.e., the generation of new constraints for the master problem.
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This is the case in the Benders decomposition method [Ben62]. It can be used to solve

problems of the form

min
x1,...,xNs ,z

cTz z+
∑
i∈I

cTxi
xi, (2.57a)

s. t. Aziz+Axi
xi = bi, ∀i ∈ I (2.57b)

Dz = d, (2.57c)

xi ≥ 0, (2.57d)

z ∈ Knz , xi ∈ Knxi , ∀i ∈ I (2.57e)

with K ∈ {R,Z}, cxi
∈ Rnxi , cz ∈ Rnz , Axi

∈ Rnbi
×nxi , Azi ∈ Rnbi

×nz , bi ∈ Rnbi ,

D ∈ Rnd×nz and d ∈ Rnd . The variables z are called complicating variables. The problem

structure (2.57) is often encountered in multistage stochastic programming, where the

first stage decisions (here-and-now) are modeled by the complicating variables z, while

the variables xi model the decisions on the nodes of the uncertainty scenario tree [BL11].

For a fixed value of the complicating variables z̃ ∈ Z = {z ∈ Knz| Dz = d} the residual

problem

min
x1,...,xNs

∑
i∈I

cTxi
xi, (2.58a)

s. t. Axi
xi = bi −Azi z̃, ∀i ∈ I, (2.58b)

xi ≥ 0, ∀i ∈ I (2.58c)

can be defined. Problem (2.58) can be decomposed and solved in a distributed manner

for a fixed value of the complicating variables z̃. With the feasible set of each subproblem

in problem (2.58) Xi(z̃) = {xi ∈ Knxi | Axi
xi = bi−Azi z̃∧xi ≥ 0} problem (2.57) can be

reformulated as

min
z̃∈Z

{
cTz z̃+ min

xi∈Xi(z̃),∀i∈I

∑
i∈I

cTxi
xi

}
. (2.59)

The outer optimization problem in (2.59) is the master problem while the inner problem is

the subproblem. In the Benders decomposition algorithm, the dual formulation of the inner

problem is used to formulate constraints (cuts) for the master problem. Rahmaniani et al.

provide an extensive literature review of the Benders decomposition algorithm [RCG+17].

Benders decomposition is suitable for problems that are coupled through complicating vari-

ables while dual decomposition considers complicating constraints. Dual decomposition

can also be applied to problems with complicating variables by introducing local copies

of these variables in each subproblem and coupling the subproblems through consensus

constraints.



2.2 Distributed optimization 29

Jacobi and Gauss-Seidel algorithms

Dual and primal decomposition as well as the Dantzig-Wolfe and Benders decomposition

algorithms exploit a special structure of the constraints of the overall problem with sepa-

rable objective functions. In contrast, the Jacobi and Gauss-Seidel algorithms deal with

problems that are coupled in their objective function,

min
x1,...,xNs

f(x1, . . . ,xNs), (2.60a)

xi ∈ Xi. (2.60b)

In the Jacobi algorithm, all variables are updated simultaneously in each iteration t ac-

cording to

x
(t+1)
i = argmin

xi∈Xi

f(x
(t)
1 , . . . ,xi, . . . ,x

(t)
Ns
). (2.61)

After all variables have been updated they are shared among all subsystems.

In the Gauss-Seidel algorithm, also called block-coordinate descent, the variables are up-

dated sequentially while fixing the previously updated variables,

x
(t+1)
i = argmin

xi∈Xi

f(x
(t+1)
1 , . . . ,x

(t+1)
i−1 ,xi,x

(t)
i+1 . . . ,x

(t)
Ns
). (2.62)

More details on these algorithms are provided in the textbook by Bertsekas and Tsitsiklis

[BT89] or by Palomar and Chiang [PC06].
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3 Dual Decomposition-based
Distributed Optimization Algorithms

The general idea of dual decomposition was introduced by Everett in the early 1960s

[Eve63]. Dual decomposition can be regarded as a hierarchical scheme where a coor-

dination algorithm computes values of the dual variables, which are communicated to

the subproblems. The subproblems solve their individual optimization problems for the

received values of the dual variables and communicate their results back to the coordina-

tor. What information is communicated to the coordinator depends on the specific dual

decomposition-based algorithm. Dual decomposition-based distributed optimization can

also be interpreted as a market mechanism where an auctioneer sets prices for shared re-

sources and the subproblems compute their optimal resource utilization according to these

prices [Wal87, WRE20]. In this context the dual variables are called prices or shadow prices

[GKW07].

In this chapter, those dual decomposition-based distributed optimization algorithms which

are used as a reference for comparison of the proposed algorithms are discussed. This in-

cludes the subgradient method, the bundle trust method (BTM), and the alternating

direction method of multipliers (ADMM). Other related dual decomposition-based algo-

rithms are also briefly reviewed. The contents of this chapter have been published in

[YWW+23].

3.1 Subgradient method

The simplest distributed optimization algorithm that is based on dual decomposition is

the subgradient method. Methods based on subgradients were originally developed in the

Soviet Union and used to solve nonsmooth optimization problems [SKR85]. In this algo-

rithm, the dual variables are updated along a subgradient direction of the dual function.
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Definition 17: Subgradient [BKM14]

A vector ξ ∈ Rnχ is a subgradient of a concave function ϕ : Rnχ → R at the point

χ0 ∈ Rnχ , if

ϕ(χ) ≤ ξT (χ− χ0) + ϕ(χ0) (3.1)

holds for all χ ∈ dom ϕ. The set of all subgradients is called the subdifferential

∂ϕ(χ0) of the function ϕ(χ) at the point χ0.

The subgradient is a generalization of the gradient for nonsmooth (non-differentiable)

convex functions. Note that (3.1) technically defines a supergradient of a concave func-

tion. However, the term subgradient is commonly used in the literature for both convex

and concave functions. Geometrically the subgradient/supergradient is a normal vector

to a supporting hyperplane of a convex/concave function. Fig. 3.1 illustrates different

subgradients both for differentiable (χ0) and non-differentiable (χ′
0) points.

y

χ

ϕ(χ)

χ′
0 χ0

y = ξT0 (χ− χ0) + ϕ(χ0)

y = ξT1 (χ− χ′
0) + ϕ(χ′

0)

y = ξT2 (χ− χ′
0) + ϕ(χ′

0)
ξ1, ξ2 ∈ ∂ϕ(χ′

0)

ξ0 ∈ ∂ϕ(χ0)

Figure 3.1: Geometric interpretation of subgradients for differentiable (χ0) and non-

differentiable (χ′
0) points (from [YWW+23]).

In the subgradient method for distributed optimization, the primal variables xi and the

dual variables λ are updated according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

Li(xi,λ(t)) (3.2a)

λ(t+1) =
[
λ(t) + α(t)g(λ(t))

]+
(3.2b)

in each iteration t, where g(λ(t)) is a subgradient of the dual function at λ(t) and [·]+

denotes the projection onto the positive orthant. Note that the update of the primal

variables (3.2a) can be performed in a distributed fashion by solving the local optimization

problems for the given values of the dual variables. A subgradient of the dual function

can be computed by evaluating the system-wide constraints for the primal variables x(t+1)

[YJ10], i.e.,
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g(λ(t)) :=

(∑
i∈I

Aix
(t+1)
i − b

)
∈ ∂d(λ(t)). (3.3)

It can be shown that (3.3) describes a subgradient of the dual function at λ(t):

gT (λ(t))(λ− λ(t)) + d(λ(t)) =(∑
i∈I

Aix
(t+1)
i − b

)T

︸ ︷︷ ︸
=gT (λ(t))

(λ− λ(t)) +
∑
i∈I

fi(x
(t+1)
i ) + λ(t),T

(∑
i∈I

Aix
(t+1)
i − b

)
︸ ︷︷ ︸

=d(λ(t))

=

∑
i∈I

fi(x
(t+1)
i ) + λT

(∑
i∈I

Aix
(t+1)
i − b

)
≥ min

xi∈Xi, ∀i∈I
L(x,λ) = d(λ) (3.4)

The update step (3.2b) updates the dual variables in the direction of the subgradient

of the dual. The step size parameter α(t) plays an important role in the convergence of

the algorithm. If it is chosen too large, the algorithm might diverge. If it is chosen too

small, no substantial progress is made. The optimal step size can be defined utilizing the

Lipschitz constant of the gradient of the dual function [Nes04]. However, this information

is usually not available in a distributed optimization setting. For practical applications,

the step size is adapted throughout the iterations [Ber99].

In this thesis, the condition that both the Euclidean norm (2-norm) of the primal resid-

ual ∥w(t)
p ∥2 and of the dual residual ∥w(t)

d ∥2 lie below pre-defined thresholds or that the

maximum number of iterations is reached is used as the termination criterion, i.e.,(
∥w(t)

p ∥2 ≤ ϵp ∧ ∥w(t)
d ∥2 ≤ ϵd

)
∨ (t = tmax). (3.5)

The primal residual indicates the satisfaction of the system-wide constraints. If these

constraints (2.26b) are posed as inequalities, the primal residual is defined component-

wise as

[w(t)
p ]l := max

{[∑
i∈I

Aix
(t)
i − b

]
l

, 0

}
, l = 1, . . . , nb. (3.6)

If they are posed as equalities it is defined as

w(t)
p :=

∑
i∈I

Aix
(t)
i − b, (3.7)

i.e., equal to the subgradient. The dual residual indicates the convergence of the dual

variables to a stationary value and is defined as

w
(t)
d := λ(t+1) − λ(t). (3.8)

Algorithm 1 summarizes the subgradient method (SG). Note that steps 5–8 can be per-

formed in a distributed manner, while steps 9–23 are performed by the coordinator.
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Algorithm 1 Subgradient Method (SG)

Require: λ(0), α(0), ϵp, ϵd, tmax

1: t← 0

2: repeat

3: t← t+ 1

4: Send λ(t) to all subproblems

5: for all i = 1, . . . , Ns do

6: x
(t+1)
i ← argminxi∈XiLi(xi,λ(t))

7: Send Aix
(t+1)
i to the coordinator

8: end for

9: g(λ(t))←
∑

i∈I Aix
(t+1)
i − b

10: if Constraints (2.26b) are inequalities then

11: for all l = 1, . . . , nb do

12: [w
(t)
p ]l ← max

{[
g(λ(t))

]
l
, 0
}

13: end for

14: else if Constraints (2.26b) are equalities then

15: w
(t)
p ← g(λ(t))

16: end if

17: α(t) ← Update(α(t−1))

18: if Constraints (2.26b) are inequalities then

19: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+

20: else if Constraints (2.26b) are equalities then

21: λ(t+1) ← λ(t) + α(t)g(λ(t))

22: end if

23: w
(t)
d ← λ(t+1) − λ(t)

24: until (∥w(t)
p ∥2 ≤ ϵp ∧ ∥w(t)

d ∥2 ≤ ϵd) ∨ (t = tmax)

25: return λ(t)

3.2 Bundle trust method

The subgradient method described in Sec. 3.1 only employs the subgradient of the previous

iteration to update the dual variables. However, in contrast to the gradient, a subgradient

does not necessarily provide an ascent direction for the dual function. This often leads

to a slow rate of convergence. A generally more efficient class of algorithms is that of

bundle methods [Mäk02]. Bundle methods are among the most efficient algorithms for

nonsmooth optimization [BKM14]. As such they have been employed in the context of

dual decomposition-based distributed optimization to solve the nonsmooth dual problem,

e.g., for distributed model predictive control [PAL15] or for the coordination of energy

networks [ZGG13]. Furthermore, bundle methods are also widely used in other areas where

nonsmooth problems have to be solved, such as machine learning, where nonsmoothness

is often encountered due to regularization terms [LSV07]. In the following, the bundle

trust method (BTM) according to Bagirov et al. [BKM14], as described by Yfantis and

Ruskowski in [YR22], is presented.
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d

λ

(a) Dual function and cutting planes de-

fined by its subgradients.

d d̂(t)(λ)

λ

(b) Resulting cutting plane model.

Figure 3.2: Illustration of the cutting plane model (from [YWW+23]).

The idea of bundle methods is to employ subgradient information collected from multiple

previous iterations to construct a piece-wise linear over-approximator, a so-called cutting

plane model, of the nonsmooth concave dual function d(λ). To this end, the data

B(t) = {(λ(j), d(λ(j)),g(λ(j))) ∈ Rnb × R× Rnb| 1 ≤ j ≤ t} (3.9)

is stored in each iteration. B is referred to as a bundle. As shown in the previous section,

the hyperplane defined by the subgradient is an over-approximator of its corresponding

function. The cutting plane model d̂(t)(λ) of the dual function in iteration t is defined as

d̂(t)(λ) := min
j∈J (t)

{d(λ(j)) + gT (λ(j))(λ− λ(j))}, (3.10)

where J (t) ⊆ {1, . . . , t} denotes the subset of the used data points. As storing the dual

variables, dual values, and subgradients for all past iterations might require a significant

storage memory, only the bundle information up to a certain iteration age τ is stored,

J (t) := {max{1, t− τ + 1}, . . . , t}. (3.11)

Fig. 3.2 illustrates the cutting plane model for a nonsmooth dual function. The approxi-

mation can be written in an equivalent form as

d̂(t)(λ) = min
j∈J (t)

{d(λ(t)) + gT (λ(j))(λ− λ(t))− β(j,t)}, (3.12)

with the linearization error

β(j,t) = d(λ(t))− d(λ(j))− gT (λ(j))(λ(t) − λ(j)), ∀j ∈ J (t). (3.13)

The bundle trust method computes a search direction s(t) in each iteration, by solving the

direction finding problem
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max
s∈Rnb

d̂(t)(λ(t) + s), (3.14a)

s. t. ∥s∥22 ≤ α(t), (3.14b)

λ(t) + s ≥ 0. (3.14c)

The constraint (3.14b) represents a trust region, preventing too aggressive update steps.

Throughout this thesis the step size parameter of the subgradient method is also used to

define this trust region to provide a better basis for comparison. The constraint (3.14c)

ensures the feasibility of the updated dual variables and can be omitted if the system-wide

constraints (2.26b) are equalities. It replaces the projection onto the feasible set used in

(3.2b). Problem (3.14) is still nonsmooth and can be rewritten as a smooth quadratic

direction-finding problem

max
v∈R, s∈Rnb

v, (3.15a)

s. t. ∥s∥22 ≤ α(t), (3.15b)

gT (λ(j))s− β(j,t) ≥ v, ∀j ∈ J (t), (3.15c)

λ(t) + s ≥ 0. (3.15d)

To summarize, the bundle trust method (BTM) updates the primal and dual variables in

each iteration according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

Li(xi,λ(t)), (3.16a)

s(t) = arg max
v∈R, s∈Rnb

v, (3.16b)

s. t. (3.15b)− (3.15d),

λ(t+1) = λ(t) + s(t). (3.16c)

Bundle methods often employ a null step, i.e., λ(t+1) = λ(t), to compute a new subgradient

at the current iterate and to improve the approximation. In the case of dual decomposition-

based distributed optimization, the same subgradient would be obtained after a null step.

The dual variables are therefore updated according to (3.16c) in each iteration. Note

that in the case of BTM in addition to the contributions to the subgradient gi(λ
(t)) the

subproblems have to also communicate their contribution to the dual function

di(λ
(t)) = fi(x

(t+1)
i ) + λ(t),TAix

(t+1)
i = Li(x(t+1)

i ,λ(t)). (3.17)

Algorithm 2 summarizes the bundle trust method (BTM).

3.3 Alternating direction method of multipliers

Another approach to solving the nonsmooth dual problem is to smoothen the problem

by convexifying the Lagrange function. This is used in augmented Lagrangian methods
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Algorithm 2 Bundle Trust Method (BTM)

Require: λ(0), α(0), τ , ϵp, ϵd, tmax

1: t← 0

2: B(0) ← {}
3: repeat

4: t← t+ 1

5: Send λ(t) to all subproblems

6: for all i = 1, . . . , Ns do

7: x
(t+1)
i ← argminxi∈XiLi(xi,λ(t))

8: Send Aix
(t+1)
i and Li(x(t+1)

i ,λ(t)) to the coordinator

9: end for

10: g(λ(t))←
∑

i∈I Aix
(t+1)
i − b

11: d(λ(t))←
∑

i∈I Li(x
(t+1)
i ,λ(t))− λ(t),Tb

12: B(t) ← B(t) ∪ {(λ(t), d(λ(t)),g(λ(t)))}
13: if Constraints (2.26b) are inequalities then

14: for all l = 1, . . . , nb do

15: [w
(t)
p ]l ← max

{[
g(λ(t))

]
l
, 0
}

16: end for

17: else if Constraints (2.26b) are equalities then

18: w
(t)
p ← g(λ(t))

19: end if

20: α(t) ← Update(α(t−1))

21: J (t) ← {max{1, t− τ + 1}, . . . , t}
22: if Constraints (2.26b) are inequalities then

23: s(t) ← arg max
v∈R, s∈Rnb

v, s. t. (3.15b)-(3.15d)

24: else if Constraints (2.26b) are equalities then

25: s(t) ← arg max
v∈R, s∈Rnb

v, s. t. (3.15b), (3.15c)

26: end if

27: λ(t+1) ← λ(t) + s(t)

28: w
(t)
d ← λ(t+1) − λ(t)

29: until (∥w(t)
p ∥2 ≤ ϵp ∧ ∥w(t)

d ∥2 ≤ ϵd) ∨ (t = tmax)

30: return λ(t)

[AHU58]. The issue with augmented Lagrangian methods is that separability is lost. The

alternating direction method of multipliers (ADMM) is an extension of the augmented

Lagrangian methods, whereby separability is maintained. It was first introduced by Gabay

and Mercier [GM76] and Fortin and Glowinski [FG83] where it was applied to find the

solution of differential equations. It has gained significant attention in recent years since

it was popularized by Boyd et al. [BPC+11]. In its standard form, the ADMM algorithm

solves problems of the form
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min
x1∈Rnx1 ,x2∈Rnx2

f1(x1) + f1(x2) (3.18a)

s. t. A1x1 +A2x2 = b, (3.18b)

by defining an augmented Lagrange function

L̂ρ(x1,x2,λ) := f1(x1) + f1(x2) + λ
T (A1x1 +A2x2 − b)

+
ρ

2
∥A1x1 +A2x2 − b∥2. (3.19)

The last term in the augmented Lagrange function (3.19) is a regularization term that

results in a convexification of the optimization problem. The primal variables are then

updated in an alternating manner according to

x
(t+1)
1 = arg min

x1∈Rnx1
L̂ρ(x1,x

(t)
2 ,λ

(t)), (3.20a)

x
(t+1)
2 = arg min

x2∈Rnx2
L̂ρ(x(t+1)

1 ,x2,λ
(t)), (3.20b)

λ(t+1) = λ(t) + ρ(A1x
(t+1)
1 +A2x

(t+1)
2 − b). (3.20c)

The update of the primal variables (3.20a) and (3.20b) cannot be performed in parallel.

In this thesis, problems where multiple subsystems are connected through shared limited

resources are considered (2.26). This case suits the use of the optimal exchange version of

ADMM, as described in [BPC+11] (Sec. 7.3.2) and [Wen20] (Sec. 3.5.4). This formulation

relies on the introduction of auxiliary variables zi ∈ Rnb , which can be interpreted as a

feasible resource utilization for subproblem i, similar to primal decomposition (cf. Sec.

2.2.3). Using the auxiliary variables problem (2.26) can be reformulated,

min
x1,...,xNs

∑
i∈I

fi(xi), (3.21a)

s. t. Aixi ≤ zi, ∀i ∈ I, (3.21b)∑
i∈I

zi = b, (3.21c)

xi ∈ Xi, ∀i ∈ I. (3.21d)

The individual augmented Lagrange functions for problem (3.21) are defined as,

L̂ρ,i(xi,λ, zi) := fi(xi) + λ
T (Aixi − zi) +

ρ

2
∥Aixi − zi∥22 . (3.22)

In each iteration t, the primal, auxiliary, and dual variables are updated according to

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

L̂ρ,i(xi,λ(t), z
(t)
i ) (3.23a)

∀i ∈ I, z(t+1)
i = Aix

(t+1)
i − ave(Ax(t+1) − b) (3.23b)

λ(t+1) = [λ(t) + ρ(t)ave(Ax(t+1) − b)]+ (3.23c)

where

ave(Ax(t+1) − b) :=
1

Ns

∑
i∈I

(
Aix

(t+1)
i − b

)
(3.24)
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denotes the average of the system-wide constraints. Note that the update of the primal

variables (3.23a) can now be performed in parallel. The update step of the auxiliary

variables (3.23b) ensures the satisfaction of (3.21c) [Wen20],∑
i∈I

z
(t+1)
i =

∑
i∈I

Aix
(t+1)
i −

∑
i∈I

ave(Ax(t+1) − b) (3.25a)

=
∑
i∈I

Aix
(t+1)
i −Nsave(Ax(t+1) − b) (3.25b)

=
∑
i∈I

Aix
(t+1)
i −

∑
i∈I

(
Aix

(t+1)
i − b

)
(3.25c)

= b. (3.25d)

ADMM can be interpreted as a proximal algorithm. These algorithms employ the proximal

operator.

Definition 18: Proximal operator [PB14]

The (scaled) proximal operator is defined as

x = proxρ,f (χ) := argmin
y

f(y) +
1

2ρ
∥y − χ∥22. (3.26)

For a better interpretation of ADMM, [Wen20] defined a modified scaled proximal operator

as

x = prox′ρ,f (χ) := argmin
y

f(y) +
1

2ρ
∥L(y)− χ∥22, (3.27)

which differs only in the first term of the regularization term, where a linear mapping L(y)

is used. Using the definition (3.27) and omitting the constant term −λ(t),Tzi the update

of the primal variables (3.23a) can be rewritten as

∀i ∈ I, x(t+1)
i = arg min

xi∈Xi

f(xi) + λ(t),TAixi +
ρ

2
∥Aixi − z

(t)
i ∥22 (3.28a)

= arg min
xi∈Xi

Li(xi,λ(t)) +
ρ

2
∥Aixi − z

(t)
i ∥22 (3.28b)

= prox′1/ρ,Li
(z

(t)
i ). (3.28c)

Using eq. (3.28) the update step of ADMM can be interpreted as a proximal mapping onto

a feasible resource utilization.

Note that while the dual variables λ are still common among the subsystems, the auxiliary

variables zi are formulated for each subproblem individually. The update of the auxiliary

variables is performed on the coordinator level.

ADMM is an efficient algorithm for dual decomposition-based distributed optimization

and it outperforms other algorithms for a variety of benchmark problems [KCD15]. It

converges under milder assumptions than the subgradient method for convex primal prob-
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lems [BPC+11]. While convergence can be proven for constant values of the regularization

parameter ρ, a variation of the parameter throughout the iterations works well in practice.

In this work, the adaptation strategy reported in [HYW00] and [WL01] is employed:

ρ(t+1) =


τ incrρ(t), if ∥w(t)

p ∥2 > µ∥w(t)
d ∥2,

ρ(t)/τdecr, if ∥w(t)
d ∥2 > µ∥w(t)

p ∥2,

ρ(t), otherwise.

(3.29)

The parameters µ, τ incr, τdecr > 1 are tuning parameters. In contrast to the subgradient

method and the bundle trust method, the dual residual in ADMM is defined as

w
(t)
d := z(t+1) − z(t), (3.30)

where z = [zT1 , . . . , z
T
Ns
]T ∈ Rnb·Ns denotes the collection of the auxiliary variables.

ADMM leads to a slightly increased communication overhead between the subproblems

and the coordinator, as the auxiliary variables have to be communicated to each subprob-

lem as well. Furthermore, the coordinator has to know the contribution to the coupling

constraints of each subproblem to update the auxiliary variables (3.23b), whereas the

subgradient method and BTM only require the knowledge of the aggregated value of the

coupling constraints. In the context of distributed optimization of interacting autonomous

units, a drawback is also that the structure of the subproblems is altered due to the ad-

dition of the regularization term, which makes the objective functions lose their original

meaning as, e.g., the local profit. The ADMM algorithm is summarized in Algorithm 3.

Steps 5–8 are performed in parallel by the subproblems while steps 9–25 are performed by

the coordinator.

3.4 Other related dual decomposition-based methods

Several algorithms have been proposed that aim at improving the performance of the sub-

gradient method. The only parameter that can be tuned in the subgradient method is

the step size. Nedić and Bertsekas [NB01] provide several dynamic step size adjustment

strategies. In contrast to the gradient, the subgradient does not always provide an ascent

direction for the dual variables [Mäk02]. Bragin et al. [BLY+15] address this via the sur-

rogate Lagrangian relaxation (SLR) method, also providing convergence proofs. Instead

of updating the dual variables in the direction of the subgradient, a surrogate subgradient

direction that forms an acute angle towards the optimal dual values is used. The algo-

rithm was extended in [BLY+19] by introducing an additional absolute value penalty in

the objective function of the primal problem (surrogate absolute value Lagrangian relax-

ation, SAVLR) and in [LLB+20] by employing ordinal optimization. These methods were

used to solve mixed-integer linear programming (MILP) problems with the main concern

being computational scalability. However, the recovery of a primal feasible solution is
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Algorithm 3 Alternating Direction Method of Multipliers (ADMM)

Require: λ(0), z(0), ρ(0), µ, τincr, τdecr, ϵp, ϵd, tmax

1: t← 0

2: repeat

3: t← t+ 1

4: Send λ(t), z
(t)
i and ρ(t) to all subproblems

5: for all i = 1, . . . , Ns do

6: x
(t+1)
i ← prox′1/ρ,L(z

(t)
i )

7: Send Aix
(t+1)
i to the coordinator

8: end for

9: for all i = 1, . . . , Ns do

10: z
(t+1)
i ← Aix

(t+1)
i − ave(Ax(t+1) − b)

11: end for

12: if Constraints (2.26b) are inequalities then

13: for all l = 1, . . . , nb do

14: [w
(t)
p ]l ← max

{[∑
i∈I Aix

(t+1)
i − b

]
l
, 0
}

15: end for

16: else if Constraints (2.26b) are equalities then

17: w
(t)
p ←

∑
i∈I Aix

(t+1)
i − b

18: end if

19: if Constraints (2.26b) are inequalities then

20: λ(t+1) ← [λ(t) + ρ(t)ave(Ax(t+1) − b)]+

21: else if Constraints (2.26b) are equalities then

22: λ(t+1) ← λ(t) + ρ(t)ave(Ax(t+1) − b)

23: end if

24: w
(t)
d ← z(t+1) − z(t)

25: ρ(t+1) ← Update(3.29)

26: until (∥w(t)
p ∥2 ≤ ϵp ∧ ∥w(t)

d ∥2 ≤ ϵd) ∨ (t = tmax)

27: return λ(t)

not explicitly addressed. The algorithms based on SLR do not require the solution of

each subproblem in each iteration. This generally results in a larger number of iterations,

each of which requires less computation time. Therefore these algorithms are suitable

for problems where the solution of the subproblems poses the main bottleneck. A com-

mon approach to improve the rate of convergence for gradient-based algorithms is to use

acceleration methods.

Uribe et al. [ULG+20] adapt the fast gradient method (FGM) proposed by Nesterov

[Nes83] and apply it to distributed optimization over networks. They study different

problem classes for the subproblems, where the degree of convexity and smoothness is

varied. However, the system-wide problem is a consensus problem, where no individual

or system-wide constraints are considered. Similar consensus problems are considered

in Eisen et al. [EMR16], where consensus constraints are introduced and subsequently
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relaxed through dual decomposition. The authors propose a quasi-Newton method that

relies on decentralized computations to update the approximated Hessians locally. The

same algorithm is further studied in [EMR17], where it is directly applied to the primal

problem without introducing dual variables. Nevertheless, no constraints are considered,

except for consensus constraints, and direct neighbor communication with an exchange of

gradients is necessary in each iteration.

Zargham et al. [ZRO+14] locally approximate the inverse of the Hessian matrices by allow-

ing direct communication between the subproblems. Notarnicola and Notarstefano [NN20]

allow communication of auxiliary variables between the subproblems and employ a relax-

ation and successive distributed decomposition (RSDD) approach. Direct communication

between the subproblems is also not intended in this work.

The aim of dual decomposition-based distributed optimization algorithms usually is to find

a set of primal-dual variables that satisfy the Karush-Kuhn-Tucker (KKT) conditions. The

Lagrange multiplier method and the KKT conditions are generalized by Li [Li18] to a wider

class of functions that still satisfy the strong duality condition. These generalizations are

subsequently applied to distributed optimization.

Goldstein et al. [GOS+14] extend ADMM to improve its rate of convergence by employing

a predictor-corrector–type acceleration step. However, this step is only stable for strongly

convex problems. To improve the rate of convergence second-order information can be

exploited. Houska et al. [HFD16] extend ADMM into the augmented Lagrangian-based

alternating direction inexact Newton method (ALADIN). In this approach, the Hessians of

the Lagrangians of the subproblems are approximated, which requires the communication

of the constraint Jacobian matrices. This kind of second-order information is assumed to

be inaccessible in this thesis.

Chatzipanagiotis et al. [CDZ15] introduce an acceleration step into the augmented La-

grangian method and propose the accelerated distributed augmented Lagrangian method

(ADAL), which is used to solve distributed convex problems. The convergence of ADAL

for nonconvex problems is further studied in [CZ17]. ADMM is also generalized to non-

convex problems by Li in [LFT+20], where nonconvex equality constraints are considered.

As discussed in Sec. 3.3, ADMM belongs to the class of proximal algorithms. Other

proximal algorithms can also be applied to distributed optimization, e.g., the Douglas-

Rachford splitting method [HH16]. These methods rely on the addition of a penalty term

to the objective function. A similar idea forms the basis of interior point methods, where

a barrier term is added to the objective function to handle constraints [WB06]. Necoara

and Suykens [NS09] combine dual decomposition with interior point methods by adding

self-concordant barrier terms to the Lagrange function.

Maxeiner and Engell [ME20] propose an approximation of the dual function by performing
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subgradient update steps with a constant step size and then using the collected data to

extrapolate the update steps toward the optimal dual variables. This extrapolation is

based on the analytic solution of the dual problem for unconstrained quadratic programs

and requires adjustments if individual constraints are added or if other problem classes

are considered.
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4 Algorithms Based on Smooth
Approximations

Dual decomposition-based distributed optimization can be interpreted as a blackbox op-

timization approach since it aims to maximize the dual function whose closed analytical

form is unknown. In each iteration the distributed optimization algorithms can query

the dual function and obtain its value and a subgradient. One of the main concepts in

derivative-free optimization, a field dealing with blackbox optimization problems, is that

of a surrogate function obtained by sampling the original unknown objective function

[CSV09]. The previously presented bundle methods follow this idea by constructing a

piece-wise linear function as a surrogate of the dual function from previously sampled

objective values and subgradients. However, the resulting cutting plane model (3.10) is

still nonsmooth. This chapter presents three different algorithms that rely on the compu-

tation of a smooth surrogate function ψ(t)(λ). The parameters of the surrogate function

are obtained by minimizing a loss function depending on previously collected information

B(t),

ψ(t)(λ) := arg min
ψ : Rnb→R

∑
j∈J (t)

L(ψ(λ(j)),B(t)). (4.1)

Once the surrogate function is obtained, the dual variables are updated by solving an

optimization problem, subject to constraints on the dual variables,

λ(t+1) = arg min
λ∈M

ψ(t)(λ). (4.2)

First, two algorithms based on the solution of a regression problem are presented. These

are the quadratic approximation coordination (QAC) algorithm presented in [WRE20] and

the new quadratically approximated dual ascent (QADA) algorithm. The algorithms share

some components, in particular, the strategy to select regression data and the constraints

on the step size. After the introduction of these components, the QAC and QADA algo-

rithms are presented. The QAC algorithm was proposed by Wenzel [WRE20, Wen20] and

approximates the squared Euclidean norm of the primal residual ∥wp(λ)∥22 by a quadratic

function. The QADA algorithm, first presented in [YGW+22], expands upon the ideas of

the QAC algorithm and approximates the dual function d(λ), which is advantageous for

several reasons, as explained below. Furthermore, bundle information and cutting planes

are used to handle the nonsmoothness of the dual function, which cannot be used within

the QAC algorithm. Finally, this thesis also deals with nonconvex problems in the form of
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mixed-integer programs. In these cases, the value of the dual function, which is not used

or sampled in the QAC algorithm, is essential to assess the quality of a feasible primal

solution via the duality gap (2.34).

In addition to the regression-based approximation of the dual function, an algorithm based

on quasi-Newton updates is presented. The quasi-Newton dual ascent (QNDA) algorithm,

first presented in [YR22], also approximates the dual function as a quadratic function.

However, the approximation of the Hessian is based on Broyden-Fletcher-Goldfarb-Shanno

(BFGS) updates. This addresses the issue of the quadratically growing size of the regres-

sion data set of the QAC and QADA algorithms.

A discussion of the convergence of the proposed algorithms is provided at the end of the

section. The contents of this chapter have been published in [YWW+23].

4.1 Regression-based approximations

This section presents the algorithms in which the surrogate function is obtained as the

solution to a regression problem. First, the underlying regression problem is introduced,

followed by a description of the regression data selection strategy. As the quadratic ap-

proximations are only valid locally, a trust region constraint based on the used regression

data is presented, which prevents the dual variables from moving too far away from the

range of validity of the surrogate function. Afterward, the QAC algorithm is summarized

briefly and the QADA algorithm is presented.

4.1.1 Fitting the parameters of a quadratic model

The regression-based algorithms follow the basic idea of derivative-free optimization ac-

cording to Conn et al. [CSV09], where locally a surrogate, in this case quadratic, model

is fitted to previously collected data. To this end, a set of data points,

D(t) = {(λ(j), ψ̂(λ(j)))| 1 ≤ j ≤ t} (4.3)

collected from previous iterations is chosen, where λ(j) is a value of the dual variables and

ψ̂(λ(j)) the corresponding observed value of the approximated function. The surrogate

function considered in this thesis is a quadratic function of the form

ψ(t)(λ) :=
1

2
λTQ(t)λ+ q(t),Tλ+ q

(t)
0 , Q(t) ∈ SRnb×nb ,q(t) ∈ Rnb , q

(t)
0 ∈ R. (4.4)

The parameters of the quadratic model (4.4) can be computed as the solution to the

regression problem

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

∥ψ(t)(λ(j))− ψ̂(λ(j))∥22. (4.5)
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To obtain the solution (4.5) in a closed form, eq. (4.4) can be rewritten as

ψ(t)(λ) =

nb∑
l=1

nb∑
k=1

[Q(t)]l,k[λ]l[λ]k +

nb∑
l=1

[q(t)]l[λ]l + q
(t)
0 . (4.6)

The parameters of the surrogate function can be summarized in a vector p(t),

p(t),T := [[Q(t)]1,1, . . . , [Q
(t)]1,nb

, [Q(t)]2,2, . . . , [Q
(t)]nb,nb

, [q(t)]1, . . . , [q
(t)]nb

, q
(t)
0 ]. (4.7)

Let n
(t)
j := |J (t)| be the number of used regression points in iteration t and

ψ̂(t) := [ψ̂(λ(1)), . . . , ψ̂(λ(n
(t)
j ))]T (4.8)

the vector of observed values of the approximated function. Then, by defining the

Vandermonde-matrix [Wen20]

M(t) :=
[
l◦21 , l1 ◦ l2, . . . , l1 ◦ lnb

, l◦22 , . . . , l
◦2
nb
, l1 . . . , lnb

,1
]
, (4.9)

with ll := [[λ(1)]l, . . . , [λ
(n

(t)
j )]l]

T and the element-wise vector multiplication ◦, the param-

eters of the surrogate function can be obtained as

p(t) =
(
M(t),TM(t)

)−1
M(t)ψ̂(t). (4.10)

Note that λ(1) in equations (4.8) and (4.9) denotes the first dual variables in the regression

set (4.3), not the dual variables in the first iteration of the dual decomposition-based

algorithm.

To perform a quadratic approximation at least

nreg,min := (nb + 1)(nb + 2)/2 (4.11)

data points are necessary, i.e., n
(t)
j ≥ nreg,min, since p(t) ∈ Rnreg,min [CSV09, Wen20]. This

shows that the approximations cannot be used in the first iterations of regression-based

algorithms. Instead, an initial sampling phase is required, e.g., using the subgradient

method, until at least nreg,min data points have been collected. Furthermore, the choice of

the data used in the regression problem, i.e., J (t) ⊆ {1, . . . , t}, plays an important role in

the performance of the algorithms and is discussed in the next section.

4.1.2 Regression data selection strategy

The selection of suitable points for the quadratic approximation has been studied exten-

sively in the context of derivative-free optimization [CSV09]. The following criteria are

usually considered [GWE16, WRE20]: spread, distance, number of points, and age.

The points should be spread in different directions to provide enough information on the

approximated function. For a good local approximation, the majority of the data points

should not lie too far away from the current iterate to keep the approximation local. A

minimum number of points (4.11) has to be used for the quadratic approximation, but
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Figure 4.1: Illustration of the regression data selection using the nearest axis point sepa-

ration algorithm. (from [YWW+23], adapted from [WGE15])

too many points might result in a poor quality of the approximation if the approximated

function is not quadratic and the points that are considered are far away from the current

iterate, e.g., in the case of a changing set of active individual constraints of the subprob-

lems. Finally, only recent points should be used for the approximation. This is essential

if the parameters of the optimization problems change over time, e.g., in the context of

modifier adaptation in real-time optimization [GWE16, WGE15].

Different algorithms have been proposed for data selection in the context of quadratic

approximation. Two different algorithms from Wenzel et al. [WGE15] and Gao et al.

[GWE16] were compared by Wenzel et al. in [WYG17]. Throughout this work, the nearest

axis point separation (NAPS) algorithm from Wenzel et al. is used as it yields comparable

results to the selection algorithm proposed by Gao et al. at a lower computational cost.

The NAPS algorithm was developed in the context of modifier adaptation for real-time

optimization with quadratic approximation, and later also applied to distributed optimiza-

tion [WE19, Wen20, WRE20]. The algorithm aims at selecting recent points that lie close

to the current iterate λ(t) as well as evenly spread points lying further away to stabilize

the approximation. The algorithm is illustrated in Fig. 4.1 for a two-dimensional example

and its steps are summarized in Algorithm 4.

First, all data points that are too old are excluded from the data set, depending on a user-

defined age parameter τ . The matrix containing all previously stored points is denoted by

Λ := [λ(0), . . . ,λ(t)]. These points are divided into inner points ΛI and outer points ΛO.

A point is classified as an inner point it if lies within a distance ∆λ of the current iterate.

All inner points are added to the set of regression points Λ(t). The space of dual variables

Rnb is then divided into segments according to their sign configuration (in reference to
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λ(t)) and their nearest axis. For instance, in Fig. 4.1 the segment S(+,+)
1 contains all points

λ where [λ]1, [λ]2 > 0 lying closest to the [λ]1 axis. The algorithm then cycles through all

segments, always selecting the point closest to the current iterate λ(t). The cycling process

is repeated until at least nreg,min points have been added to the regression set Λ. Finally,

the values of the approximated function ψ̂(λ) corresponding to the selected dual variables

are selected. The regression data used for the subsequent quadratic approximation is

D(t) = {(λ(j), ψ̂(λ(j)))| j ∈ J (t)}, (4.12)

where J (t) contains the indices of the selected data points. The NAPS algorithm is

summarized in Algorithm 4.

Algorithm 4 Nearest Axis Point Separation (NAPS, adapted from [WRE20])

Require: λ(t), Λ, Ψ̂, τ , ∆λ, nreg,min

1: Λ(t) ← ∅, J (t) ← ∅
2: Λ← Λ\{λ(j)| j < t− τ} ▷ Remove old points.

3: ΛI ← {λ(j)| ∥λ(j) − λ(t)∥2 ≤ ∆λ} ▷ Inner points.

4: J (t) ← J (t) ∪ {j ∈ {1, . . . , t}| λ(j) ∈ ΛI} ▷ Select all indices of inner points.

5: Λ(t) ← Λ(t) ∪ΛI ▷ Select all inner points.

6: ΛO ← Λ\ΛI ▷ Outer points.

7: while |Λ(t)| < nreg,min do

8: for S(·)l ∈ {S
(·)
1 , . . . ,S(·)nb} do ▷ Go through all segments

9: j ← arg min
j∈{j| λ(j)∈S(·)

l ∩ΛO}
∥λ(j) − λ(t)∥2

10: J (t) ← J (t) ∪ {j}
11: Λ(t) ← Λ(t) ∪ {λ(j)}
12: S(·)l ← S

(·)
l \{λ

(j)}
13: ΛO ← ΛO\{λ(j)}

14: end for

15: end while

16: ψ̂(t) ← {ψ̂(λ(j)) ∈ Ψ̂| j ∈ J (t)} ▷ Match observations to selected points

17: return Λ(t), ψ̂(t), J (t)

4.1.3 Covariance-based step size constraint

Wenzel and Engell [WE19] proposed a covariance-based ellipsoidal step size constraint for

the update of the dual variables. The constraint prevents too aggressive steps and leads

to updates that are in the region where the local approximation is valid.

First, the covariance matrix of the approximation data is computed,

C(t) = cov(Λ(t)). (4.13)

The orientation of the ellipsoid is determined by the eigenvectors of the covariance matrix

while the corresponding eigenvalues are related to the lengths of its axes. They proposed

to bound the axes of the ellipsoid so that the search space does not become too small,
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hindering the progression of the algorithm, or too big, possibly leading to a numerically

unbounded problem. This scaling of the axes is performed using a singular value decom-

position, which preserves the original orientation. The singular value decomposition is

performed for the covariance matrix,

C(t) = U(t)Σ(t)V(t),T , Σ(t) = diag(σ
(t)
l ), (4.14)

where σ
(t)
l , l = 1, . . . , nb denote the singular values. Subsequently, the singular values are

scaled according to

σ̂
(t)
l := max{sl,min{σ(t)

l , sl}}, (4.15)

where sl and sl are user defined element-wise lower and upper bounds. Note that in this

way each axis can be scaled independently, even though using the same lower and upper

bounds is usually more convenient in practice. Using the scaled singular values, the scaled

covariance matrix can be computed,

Ĉ(t) = U(t)Σ̂(t)V(t),T , Σ̂(t) = diag(σ̂
(t)
l ). (4.16)

The updated dual variables λ(t+1) are then constrained to lie within an ellipsoid which is

defined by the scaled covariance matrix,

E(Λ(t)) := {λ ∈ Rnb|(λ− λ(t))T Ĉ(t),−1(λ− λ(t)) ≤ (γ(t))2}. (4.17)

Wenzel et al. [WRE20] propose to update γ(t) according to

γ(t) = max{log ∥wp(λ
(t))∥2, γ}, (4.18)

where γ is a user-defined lower bound to prevent the ellipsoid from collapsing to a single

point. This choice of γ(t) allows bigger steps when the current point is far away from the

optimum and reduces the step size if the point is near the optimum.

4.1.4 Quadratic approximation coordination

The quadratic approximation coordination (QAC) algorithm was first proposed by Wen-

zel et al. in [WPK+16]. It was motivated by the distributed optimization of quadratic

programs (QPs) without local constraints

min
x1,...,xNs

∑
i∈I

1

2
xTi Hixi + cTi xi, (4.19a)

s. t.
∑
i∈I

Aixi = b, (4.19b)

with symmetric positive definite matrices Hi ∈ SRnxi×nxi , ci ∈ Rnxi , Ai ∈ Rnb×nxi and

b ∈ Rnb . This problem can be summarized as

min
x

1

2
xTHx+ cTx, (4.20a)

s. t. Ax = b. (4.20b)
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Algorithm 5 Quadratic Approximation Coordination (QAC)

Require: λ(0), α(0), τ , ∆λ, si, si, γ, nreg,start, ϵp, ϵd, tmax

1: t← 0

2: repeat

3: t← t+ 1

4: Send λ(t) to all subsystems

5: for all i = 1, . . . , Ns do

6: x
(t+1)
i ← argminxi∈XiLi(xi,λ(t))

7: Send Aix
(t+1)
i to the coordinator

8: end for

9: g(λ(t))←
∑

∀i∈I Aix
(t+1)
i − b

10: if Constraints (2.26b) are inequalities then

11: for all l = 1, . . . , nb do

12: [w
(t)
p ]l ← max

{[
g(λ(t))

]
l
, 0
}

13: end for

14: else if Constraints (2.26b) are equalities then

15: w
(t)
p ← g(λ(t))

16: end if

17: if j < nreg,start then ▷ Perform SG updates until enough points are collected

18: α(t) ← Update(α(t−1))

19: if Constraints (2.26b) are inequalities then

20: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+

21: else if Constraints (2.26b) are equalities then

22: λ(t+1) ← λ(t) + α(t)g(λ(t))

23: end if

24: else ▷ Perform QAC Updates

25: D(t) ← NAPS(Λ, ∥wp(Λ)∥22, τ,∆λ)
26: E(Λ(t))← ComputeEllipsoid(Λ(t), si, si, γ) (4.17)

27: r(t)(λ)← Regression(D(t)) (4.28)

28: if Constraints (2.26b) are inequalities then

29: λ(t+1) ← argminλ r
(t)(λ), s. t. λ ∈ E(Λ(t)), λ ≥ 0

30: else if Constraints (2.26b) are equalities then

31: λ(t+1) ← argminλ r
(t)(λ), s. t. λ ∈ E(Λ(t))

32: end if

33: end if

34: w
(t)
d ← λ(t+1) − λ(t)

35: until (∥w(t)
p ∥2 ≤ ϵp ∧ ∥w(t)

d ∥2 ≤ ϵd) ∨ (t = tmax)

36: return λ(t)

where H := diag(H1, . . . ,HNs), c
T := [cT1 , . . . , c

T
Ns
], A = [A1, . . . ,ANs ]. It is easy to show

that the squared Euclidean norm of the primal residual ∥wp∥22 = ∥Ax−b∥22 is a quadratic

function of the dual variables. The Lagrange function of problem (4.20) is

L(x,λ) = 1

2
xTHx+ cTx+ λT (Ax− b) . (4.21)
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Since the matrices Hi are symmetric and positive definite, i.e., problem (4.20) is convex,

the optimal primal solution x∗ can be computed as a function of the dual variables by

applying the Karush-Kuhn-Tucker conditions [BV04]:

∇xL(x,λ)
!
= 0⇒ x∗(λ) = −H−1(c+ATλ). (4.22)

Thus, the primal residual wp can be formulated as a function of the dual variables,

wp(λ) = Ax∗(λ)− b = −AH−1(c+ATλ)− b. (4.23)

Computing the squared Euclidean norm of the primal residual leads to

∥wp(λ)∥22 =
1

2
λT 2AH−1ATAH−1AT︸ ︷︷ ︸

=:Q̂

λ+ 2(cTH−1AT + bT )AH−1AT︸ ︷︷ ︸
=:q̂T

λ+

(cTH−1AT + bT )(AH−1c+ b)︸ ︷︷ ︸
=:q̂0

. (4.24)

This shows that the squared Euclidean norm of the primal residual is a quadratic function

of the dual variables [WRE20],

∥wp(λ)∥22 =
1

2
λT Q̂λ+ q̂Tλ+ q̂0. (4.25)

The QAC algorithm is based on local quadratic approximations of the squared Euclidean

norm of the primal residual, i.e., of

ψ̂(λ) = ∥wp(λ)∥22 =

∥∥∥∥∥∑
i∈I

Aix
∗
i (λ)− b

∥∥∥∥∥
2

2

. (4.26)

The surrogate function is quadratic

r(t)(λ) =
1

2
λTQ(t)λ+ q(t),Tλ+ q

(t)
0 (4.27)

with the parameters

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

∥∥r(t)(λ(j))− ∥wp(λ
(j))∥22

∥∥2
2
. (4.28)

The regression data

D(t) = {(λ(j), ∥wp(λ
(j))∥22)| j ∈ J (t)}, (4.29)

is selected using the NAPS algorithm. After obtaining the surrogate function, the dual

variables are updated through a minimization problem, subject to the covariance-based

step size constraint

λ(t+1) = arg min
λ∈Rnb

r(t)(λ), (4.30a)

s. t. λ ∈ E(Λ(t)), (4.30b)

λ ≥ 0. (4.30c)
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The QAC algorithm is summarized in Algorithm 5. Again, steps 5–8 are performed by

the subproblems in parallel, while steps 9–34 are performed by the coordinator.

A key feature of the QAC algorithm is that it only requires the communication of the

contribution to the system-wide constraints from the individual subproblems. Therefore,

no sensitive information has to be shared, preserving the privacy of the subsystems. This

is essential, e.g., in the case of coupled production systems which might share limited

resources while belonging to different companies. Through the quadratic approximation,

the QAC algorithm can infer second-order information of the dual problem, thereby im-

proving the rate of convergence compared to the subgradient method, which has access to

the same information.

Nevertheless, the QAC algorithm also faces some drawbacks. First, the squared Euclidean

norm of the primal residual, which will be also referred to as primal residual in the fol-

lowing for the sake of brevity, is only quadratic for the special case of distributed QPs

without individual constraints (4.19). Wenzel et al. [WRE20] showed that the primal

residual is a piece-wise quadratic function of the dual variables for distributed QPs with

individual constraints. The quadratic approximation in this case depends on the set of

active individual constraints. If the set of active individual constraints changes, the primal

residual is not smooth [WRE20]. It was shown in the example in Sec. 2.2.2 that this is

also the case for the dual function d(λ). However, while the dual function always retains

concavity, the same does not hold for the convexity of the primal residual. Thus, in a more

general distributed optimization setting the QAC algorithm tries to approximate a non-

smooth and nonconvex function as a smooth quadratic function, which might reduce its

efficiency. The issue of the changing sets of active constraints was addressed in [WRE20]

by employing a fallback strategy, if an insensitivity of the primal residual to changes of the

dual variables was detected. However, the numerical experiments described in Chapter 6

showed that the QAC algorithm performed better without the fallback strategy. Therefore

its discussion is omitted at this point.

4.1.5 Quadratically approximated dual ascent

As discussed in the previous section, approximating the primal residual as a quadratic

function suffers from some drawbacks, mainly the loss of convexity and nonsmoothness.

The problem of nonconvexity of the primal residual can be circumvented by approximating

the dual function, i.e.,

ψ̂(λ) = d(λ) = min
xi∈Xi, ∀i∈I

∑
i∈I

Li(xi,λ)− λTb, (4.31)

which is always concave. For the special case of distributed QPs without individual con-

straints (4.19) it is also easy to show that the dual function is quadratic. By inserting the

optimal values of the primal variables x∗(λ) (4.22) into the Lagrange function (4.21) the
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dual function computes to

d(λ) =
1

2
λT
(
−AH−1AT

)︸ ︷︷ ︸
=:Q̃

λ+
(
−cTH−1AT − bT

)︸ ︷︷ ︸
=:q̃T

λ+

(
−1

2
cTH−1c

)
︸ ︷︷ ︸

q̃0

. (4.32)

While the primal residual can become nonconvex, even for convex primal problems, the

dual function is always concave, regardless of whether or not the primal problem is convex.

In the new proposed algorithm, the dual function is approximated by a quadratic function,

d
(t)
Q (λ) =

1

2
λTQ(t)λ+ q(t),Tλ+ q

(t)
0 (4.33)

with the parameters

Q(t),q(t), q
(t)
0 = arg min

Q,q,q0

∑
j∈J (t)

∥d(t)Q (λ(j))− d(λ(j))∥22. (4.34)

The regression data

D(t) = {(λ(j), d(λ(j)))| j ∈ J (t)}, (4.35)

is selected using the NAPS algorithm. Once the quadratic approximation has been per-

formed, the dual variables can be updated by maximizing the approximated dual func-

tion. The update step of the dual variables can be interpreted as an ascent step for the

dual function using a quadratic approximation. Therefore the algorithm is referred to as

Quadratically Approximated Dual Ascent (QADA).

A difference between the QAC and QADA algorithms is the amount of information col-

lected from the subproblems in each iteration. While the QAC algorithm only requires

information about the violation of the system-wide constraints, the QADA algorithm ad-

ditionally requires information about the contributions of the subproblems to the dual

function,

di(λ) = min
xi∈Xi

Li(xi,λ). (4.36)

This essentially means that the QADA algorithm collects the same information as bun-

dle methods (3.9), consisting of the dual variables, the corresponding values of the dual

function, and the subgradients. This bundle information can be used to better handle

the nonsmoothness of the dual function. Furthermore, the values of the dual function are

necessary to compute the duality gap (2.34), i.e., to obtain a lower bound on the objective

value of the primal optimization problem. While in the case of convex primal problems

optimality can be guaranteed upon convergence of the QAC algorithm, this does not hold

for nonconvex problems where the primal residual does not vanish at the dual optimum.

As this thesis also deals with nonconvex problems in the form of mixed-integer programs,

the value of the dual function is necessary to assess the quality of a found feasible primal

solution.
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λ

d
(t)
Q (λ)

λ(t+1)

(a) QADA update without bundle cuts. The approximated dual function dQ(λ) de-

viates from the actual dual function. Updating the dual variables by maximizing the

approximated dual function leads to a solution that is further away from the optimum

than the previous points.

d(λ)

λ

d
(t)
Q (λ)

λ(t+1)

(b) QADA update with bundle cuts. The constructed cutting planes prevent an update

step to a point where the quadratic approximation is not valid.

Figure 4.2: Illustration of the effect of bundle cuts (from [YWW+23]).

Bundle cuts

The core idea of the QADA algorithm is that a quadratic surrogate model of the dual

function is computed and optimized to update the dual variables. However, a quadratic

function can exhibit a significant approximation error, especially if the optimum is at or

near a point of nondifferentiability. This situation is illustrated in Fig. 4.2a. The available

points (blue circles) are used to compute the quadratic approximation of the dual function

dQ(λ). The maximum of the quadratic approximation (green cross) is far from the actual

optimum of the dual function. Updating the dual variables based on this approximation

results in a deterioration of the objective value.

To alleviate this issue, the collected subgradients can be used to formulate cutting planes.

According to the definition of the subgradient (3.1) the following relation holds between

the dual function d(λ) and a subgradient g(λ(j)) at a point λ(j):

d(λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)). (4.37)
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This implies that a quadratic approximation of the dual function is not valid if it does

not satisfy condition (4.37). Therefore, the collected subgradients are used to formulate

additional constraints on the updated dual variables λ(t+1).

Definition 19: Bundle cuts

The constraints on the update of the dual variables,

d
(t)
A (λ(t+1)) ≤ d(λ(j)) + gT (λ(j))(λ(t+1) − λ(j)), ∀j ∈ {t− τ + 1, . . . , t}, (4.38)

based on an approximation of the dual function d
(t)
A (λ) and previously collected bundle

data B(t) (3.9) are referred to as bundle cuts. The cuts are summarized as

BC(t)dA := {λ ∈ Rnb| d(t)A (λ) ≤ d(λ(j)) + gT (λ(j))(λ− λ(j)), ∀j ∈ {t− τ + 1, . . . , t}}
(4.39)

in the following.

The bundle cuts are formulated by using the data points that are not older than the age

parameter τ . This usually includes more points than selected by the NAPS algorithm,

since the bundle cuts are constructed using subgradient information of the dual function,

which is globally valid. In contrast, the approximated dual function based on the regression

points selected by the NAPS algorithm is only locally valid.

Fig. 4.2b illustrates the effect of the bundle cuts on the QADA update step. Constraining

the quadratic approximation of the dual function to have a value lying below the cutting

planes results in an update that is closer to the optimum of the actual dual function.

(4.38) constitutes a quadratic inequality constraint on the update of the dual variables,

similar to the covariance-based step size constraint. Note that no additional parameters

have to be defined by the user for these constraints, except for the age parameter.

QADA update

The dual variables are updated in each iteration of the QADA algorithm by maximizing

the approximated dual function, subject to the covariance-based step size constraints and

the bundle cuts,

λ(t+1) = arg max
λ∈Rnb

d
(t)
Q (λ), (4.40a)

s. t. λ ∈ E(Λ(t)) ∩ BC(t)dQ , (4.40b)

λ ≥ 0. (4.40c)

The QADA algorithm is summarized in Algorithm 6. Note that the initial sampling steps

in Algorithm 6 are performed using the subgradient method, similar to the QAC algorithm
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Algorithm 6 Quadratically Approximated Dual Ascent (QADA)

Require: λ(0), α(0), τ , ∆λ, si, si, γ, nreg,start, ϵp, ϵd, tmax

1: t← 0

2: repeat

3: t← t+ 1

4: Send λ(t) to all subproblems

5: for all i = 1, . . . , Ns do

6: x
(t+1)
i ← argminxi∈XiLi(xi,λ(t))

7: Send Aix
(t+1)
i and Li(x(t+1)

i ,λ(t)) to the coordinator

8: end for

9: g(λ(t))←
∑

∀i∈I Aix
(t+1)
i − b

10: d(λ(t))←
∑

∀i∈I Li(x
(t+1)
i ,λ(t))− λ(t),Tb

11: if Constraints (2.26b) are inequalities then

12: for all l = 1, . . . , nb do

13: [w
(t)
p ]l ← max

{[
g(λ(t))

]
l
, 0
}

14: end for

15: else if Constraints (2.26b) are equalities then

16: w
(t)
p ← g(λ(t))

17: end if

18: if j < nreg,start then ▷ Perform SG updates until enough points are collected

19: α(t) ← Update(α(t−1))

20: if Constraints (2.26b) are inequalities then

21: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+

22: else if Constraints (2.26b) are equalities then

23: λ(t+1) ← λ(t) + α(t)g(λ(t))

24: end if

25: else ▷ Perform QADA Updates

26: D(t) ← NAPS(Λ, d(Λ), τ,∆λ)

27: E(Λ(t))← ComputeEllipsoid(Λ(t), si, si, γ) (4.17)

28: d
(t)
Q (λ)← Regression(D(t)) (4.34)

29: if Constraints (2.26b) are inequalities then

30: λ(t+1) ← argmaxλd
(t)
Q (λ), s. t. λ ∈ E(Λ(t)) ∩ BC(t)dQ , λ ≥ 0

31: else if Constraints (2.26b) are equalities then

32: λ(t+1) ← argmaxλd
(t)
Q (λ), s. t. λ ∈ E(Λ(t)) ∩ BC(t)dQ

33: end if

34: end if

35: w
(t)
d ← λ(t+1) − λ(t)

36: until (∥w(t)
p ∥2 ≤ ϵp ∧ ∥w(t)

d ∥2 ≤ ϵd) ∨ (t ≥ tmax)

37: return λ(t)

(Algorithm 5). However, since the QADA algorithm also uses bundle information, BTM

could also be used for the initial sampling. Steps 5–8 are performed in parallel by the

subproblems while steps 9–37 are performed by the coordinator.
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Figure 4.3: Flowchart of the regression-based coordination algorithms (from [YWW+23],

adapted from [WRE20]).

4.1.6 Summary of regression-based algorithms

Fig. 4.3 shows a flowchart of the regression-based algorithms (QAC and QADA). The

algorithm is initialized with the dual variables λ(0). In each iteration, the subproblems are

solved for the current values of the dual variables and the subgradient and, in the case of

the QADA algorithm, the dual value are communicated to the coordinator. If not enough

iterations have been performed, the dual variables are updated using the subgradient

method or BTM. Otherwise, the data for the approximation is selected and the regression

problem is solved. After updating the covariance-based step size constraint and, in the

case of QADA, the bundle cuts, the dual variables are updated by optimizing the surrogate

function.

4.2 Quasi-Newton dual ascent

The main drawback of both the QAC and the QADA algorithms is their reliance on

the availability of sufficient regression data. The number of required data points for a

regression nreg,min increases quadratically with the number of dual variabls (cf. eq. 4.11).

Therefore, an algorithm that quadratically approximates the dual function without solving

a regression problem is presented in the following.

Quasi-Newton methods have proven to be very efficient for smooth convex optimization

problems. The idea is to approximate the Hessian of the objective function by only

using first-order information, i.e., objective values and gradients. In this thesis, the same

principle is applied to the dual optimization problem (2.32). If no individual constraints
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Algorithm 7 Quasi-Newton Dual Ascent (QNDA)

Require: λ(0), B(0), α(0), τ , ϵp, ϵd, tmax

1: t← 0

2: repeat

3: t← t+ 1

4: Send λ(t) to all subproblems

5: for all i = 1, . . . , Ns do

6: x
(t+1)
i ← argminxi∈XiLi(xi,λ(t))

7: Send Aix
(t+1)
i and Li(x(t+1)

i ,λ(t)) to the coordinator

8: end for

9: g(λ(t))←
∑

∀i∈I Aix
(t+1)
i − b

10: d(λ(t))←
∑

∀i∈I Li(x
(t+1)
i ,λ(t))− λ(t),Tb

11: if Constraints (2.26b) are inequalities then

12: for all l = 1, . . . , nb do

13: [w
(t)
p ]l ← max

{[
g(λ(t))

]
l
, 0
}

14: end for

15: else if Constraints (2.26b) are equalities then

16: w
(t)
p ← g(λ(t))

17: end if

18: α(t) ← Update(α(t−1))

19: if j = 1 then ▷ Perform SG update in first iteration.

20: if Constraints (2.26b) are inequalities then

21: λ(t+1) ← [λ(t) + α(t)g(λ(t))]+

22: else if Constraints (2.26b) are equalities then

23: λ(t+1) ← λ(t) + α(t)g(λ(t))

24: end if

25: else ▷ Perform QNDA Updates

26: y(t) ← g(λ(t))− g(λ(t−1))

27: B(t) ← BFGS(B(t−1),y(t), s(t)) (4.46)

28: if Constraints (2.26b) are inequalities then

29: λ(t+1) ← argmaxλd
(t)
B (λ), s. t. ∥λ− λ(t)∥22 ≤ α(t), λ ∈ BC(t)dB , λ ≥ 0

30: else if Constraints (2.26b) are equalities then

31: λ(t+1) ← argmaxλd
(t)
B (λ), s. t. ∥λ− λ(t)∥22 ≤ α(t), λ ∈ BC(t)dB

32: end if

33: end if

34: s(t+1) ← λ(t+1) − λ(t)

35: w
(t)
d ← s(t+1)

36: until (∥w(t)
p ∥2 ≤ ϵp ∧ ∥w(t)

d ∥2 ≤ ϵd) ∨ (t = tmax)

37: return λ(t)

(2.26c) are considered, the dual function is smooth and the subgradient is equal to the

gradient. In the case of individually constrained subproblems, nondifferentiabilities of the

dual function occur at the points where the set of active constraints changes. However,
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quasi-Newton update steps can still be employed to compute a search direction of the dual

function.

A decentralized quasi-Newton algorithm was presented by Eisen et al. in [EMR16] and

[EMR17]. There the subproblems use the curvature of their objective function and estimate

that of their neighbors. The proposed decentralized Broyded-Fletcher-Goldfarb-Shanno

(D-BFGS) method relies on local communication between the subproblems without aggre-

gating information through a central coordinator. However, this network topology requires

the exchange of objective gradients, which is not considered in this thesis. Furthermore,

no individual constraints were considered, which would result in a nonsmoothness of the

dual problem. In contrast, the algorithm presented in the following section estimates the

curvature of the dual function, while taking the nonsmoothness into account through the

previously discussed bundle cuts.

The idea of Newton methods is to approximate the objective function d(λ) by a quadratic

function around the current iterate λ(t) through its Taylor series,

d(λ) ≈ 1

2
(λ− λ(t))T∇2d(λ(t))(λ− λ(t)) +∇Td(λ(t))(λ− λ(t)) + d(λ(t)). (4.41)

As the dual function is nonsmooth, i.e., ∇d(λ) and ∇2d(λ) do not exist for every value of

λ, if the set of active constraints changes, the quadratic approximation (4.41) cannot be

used in practice. Even for distributed problems without local constraints, i.e., for smooth

dual functions, the Hessian ∇2d(λ) is usually not readily available in a distributed setting.

Therefore, instead of using the analytical gradient and Hessian, approximations are used,

resulting in the following approximation of the dual function:

d
(t)
B (λ) =

1

2
(λ− λ(t))TB(t)(λ− λ(t)) + gT (λ(t))(λ− λ(t)) + d(λ(t)), (4.42)

where the gradient is replaced by a subgradient g(λ(t)) and the Hessian is approximated

in each iteration by the matrix B(t), leading to a quasi-Newton method. The update of

the approximated Hessian B(t) can also be interpreted as the solution to an optimization

problem based on previous data. Thus, the surrogate function dB(λ) is obtained through

the solution of an optimization problem (4.1). However, unlike in the case of the QAC or

QADA algorithms, no regression is performed. To compute an update of the approximated

Hessian, the variations of the dual variables,

s(t) = λ(t) − λ(t−1) (4.43)

and of the subgradients

y(t) = g(λ(t))− g(λ(t−1)) (4.44)

are defined. The approximated Hessian is then updated according to [NW06],

B(t) = arg min
B∈SRnb×nb

∥B−B(t−1)∥F (4.45a)

s. t. B−1y(t) = s(t), (4.45b)
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were ∥ · ∥F denotes the (weighted) Frobenius norm. The approximated Hessian has to

be symmetric since the actual Hessian is also always symmetric. Constraint (4.45b) is

called the secant condition and captures the local curvature of the objective function. The

solution of (4.45) can be written in a closed form as [NW06]

B(t) = B(t−1) +
y(t)y(t),T

y(t),T s(t)
− B(t−1)s(t)s(t),TB(t−1),T

s(t),TB(t−1)s(t)
. (4.46)

Eq. (4.46) is the well-known BFGS-update scheme. The surrogate function d
(t)
B (λ) is a

smooth approximation of the dual function. To perform the approximation of the dual

function the same amount of information as in the BTM and QADA algorithms is collected.

Therefore the bundle cut constraints can be employed to address the nonsmoothness of

the actual dual function. However, the approximation is not based on multiple regression

points, as in the case of the QADA algorithm. Thus, the covariance-based step size

constraint should not be employed, as it is not representative of the range of validity of

the approximation. Instead, the same trust region as in BTM can be used. The dual

variables are updated in each iteration by solving the optimization problem

λ(t+1) = argmax
λ

d
(t)
B (λ), (4.47a)

s. t. ∥λ− λ(t)∥22 ≤ α(t), (4.47b)

λ ∈ BC(t)dB , (4.47c)

λ ≥ 0. (4.47d)

The proposed algorithm performs an ascent step of the dual function using a quasi-Newton

method. Hence it is referred to as Quasi-Newton Dual Ascent (QNDA). The algorithm is

summarized in Algorithm 7. Steps 5–8 are performed in parallel by the subproblems while

steps 9–36 are performed by the coordinator.

4.3 Convergence of the QADA and QNDA algo-

rithms

In this section, a preliminary analysis of the convergence properties of the QADA and

QNDA algorithms is provided for different cases, distributed quadratic and general convex

problems without constraints, distributed quadratic and general convex problems with

individual constraints, and distributed mixed-integer quadratic programs. The arguments,

as usual, resort to applying sufficiently small step sizes which assures convergence but is

not advantageous for the performance of the algorithms, which is demonstrated in the

next chapters. In the real implementation and parameterization, the algorithms include

heuristic components which can only be validated by tests for well-designed benchmark

problems.
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First, the case of distributed quadratic programs without individual constraints is consid-

ered,

min
x1,...,xNs

∑
i∈I

1

2
xTi Hixi + cTi xi, (4.19a)

s. t.
∑
i∈I

Aixi = b. (4.19b)

As was shown in Sec. 4.1.5, the dual function of problem (4.19) is

d(λ) =
1

2
λT (−AH−1AT )λ+ (−cTH−1AT − bT )λ+

(
−1

2
cTH−1c

)
, (4.32)

where the matrices and vectors H, c and A contain the parameters of the subproblems. In

a dual decomposition-based distributed optimization algorithm a subgradient of the dual

function in iteration t can be computed as

g(λ(t)) = Ax(t+1) − b, (4.49)

with

x(t+1) = arg min
x∈Rnx

1

2
xTHx+ cTx+ λ(t),T (Ax− b) (4.50)

= −H−1(c+ATλ(t)). (4.22)

Inserting (4.22) into (4.49) yiels

g(λ(t)) = −AH−1(c+ATλ)− b = ∇d(λ(t)), (4.51)

which shows that in the case of distributed QPs without individual constraints the sub-

gradient is equal to the gradient of the dual function. This implies that the corresponding

dual problem is an unconstrained smooth convex problem.

In this special case, the subgradient method is equivalent to the steepest ascent method

with a step size α(t) and a search direction s(t) = ∇d(λ(t)),

λ(t) = λ(t) + α(t)s(t). (4.52)

Quasi-Newton methods generally provide better search directions, by accounting for the

curvature of the objective function. The search direction for the BFGS method is given

by

s(t) = B(t),−1∇d(λ(t)), (4.53)

where B(t) denotes the approximation of the Hessian computed by (4.46). Using this

search direction is equivalent to the QNDA algorithm, if bundle cuts are omitted and a

line search is used instead of a trust region. Note that since the dual problem is smooth

for this special case, bundle cuts are not required. Convergence in this case can be proven

by a suitable selection of the step size, e.g., by requiring the satisfaction of the Wolfe

conditions [NW06],
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d(λ(t) + α(t)s(t)) ≥ d(λ(t)) + β1α
(t)∇Td(λ(t))s(t), (4.54a)

∇Td(λ(t) + α(t)s(t))s(t) ≥ β2∇Td(λ(t))s(t), (4.54b)

β1 ∈ (0, 1), β2 ∈ (β1, 1). (4.54c)

However, the problem with finding a suitable step size through conditions (4.54) is that

the closed form of the objective function d(λ) is not known to the coordinator. Thus, the

step size has to be adjusted heuristically. The same issue arises when using a trust region

approach, as a certain degree of centralized information is necessary to compute optimal

hyperparameters. The same convergence properties can be transferred for distributed

general convex problems without local constraints, as the subgradient is equal to the

gradient of the dual function.

In the case of the QADA algorithm, a quadratic surrogate function is computed by solving

a regression problem. In the special case of distributed QPs without individual constraints

(4.19) the dual function is quadratic but unknown to the coordinator. For enough data

points, assuming a well-conditioned Vandermonde matrixM(t) (4.9) and except for numer-

ical errors, the surrogate function will be equal to the actual dual function. This means

that the update of the dual variables in the QADA algorithm computes the solution to

the dual problem. However, the employed trust region will usually prevent convergence

within a single iteration.

The situation is more complicated if individual constraints of the subproblems are consid-

ered. In the case of distributed QPs with individual constraints Wenzel et al. [WRE20]

showed that the primal residual for QAC is piece-wise quadratic, depending on the set of

active constraints. The same holds for the dual function. The arguments made above for

the case without individual constraints can then be made locally once a point sufficiently

close to the optimum has been reached, employing a suitable (small) step size. As long

as the step size is small, the dual function can be approximated locally by a quadratic

function. If the set of active constraints changes, the quadratic form of the dual function

also changes. Again, assuming small update steps, a good approximation can be obtained

after a few steps. Note that since the dual function is (globally) concave, moving towards

the optima of the piece-wise quadratic regions of the dual function will eventually guide

the search toward the global optimum of the dual function.

Similar arguments can be made for more general problems, e.g., distributed convex prob-

lems. Many convex optimization algorithms with provable convergence employ a quadratic

approximation of the objective function, e.g., sequential quadratic programming (SQP)

methods, Newton methods, or quasi-Newton methods. As the dual problem is a convex

optimization problem, the same principles can be applied locally. In a region where the

active constraints do not change, the arguments made for distributed problems without in-

dividual constraints hold, as the subgradient is equal to the gradient. The main difference

to more general convex optimization problems is that the dual function exhibits nons-
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moothness when the set of active individual constraints changes. Therefore, the QADA

and QNDA algorithms combine smooth convex optimization with bundle methods for

nonsmooth optimization. As described above, a cutting plane model is defined as,

d̂(t)(λ) := min
j∈J (t)

{d(λ(j)) + gT (λ(j))(λ− λ(j))}. (3.10)

The cutting plane model will exactly match the concave nonsmooth dual function if all

dual variables in its domain were included [BKM14],

d(λ) = min
λ̂∈dom d

{d(λ̂) + gT (λ̂)(λ− λ̂)}. (4.55)

This is the basis of the proof of the (theoretical) convergence of bundle methods as t

goes to ∞. In the QADA and QNDA algorithms, the cutting plane model is used as an

upper bound of the new objective value. For instance, the QNDA update (4.47) can be

equivalently reformulated as

λ(t+1) = arg max
λ∈Rnb

d
(t)
B (λ), (4.56a)

s. t. ∥λ− λ(t)∥22 ≤ α(t), (4.56b)

d
(t)
B (λ) ≤ d̂(t)(λ), (4.56c)

λ ≥ 0. (4.56d)

As t tends to ∞, the constraints (4.56c) prevent the algorithm from moving in the wrong

direction, eventually leading to convergence. The same holds for the QADA algorithm.

From a practical point of view, it is not desirable to store all previously collected informa-

tion in the bundle, as this would necessitate a possibly infinite storage memory. Therefore

only recent data is stored in the bundle, both for BTM and the two proposed algorithms,

with the age parameter τ being an important parameter. If sufficient data is kept in the

bundle good performance can be observed in practice.

In this work distributed mixed-integer quadratic programs are also considered. In this

case, the dual problem essentially does not differ from the case of distributed general

convex problems. However, the convergence arguments made above apply only to the

dual problem, i.e., to the convergence of the dual variables. For convex problems, the

optimal primal solution can be obtained at the dual optimum, since strong duality holds

(assuming a constraint qualification condition is satisfied). This is however not the case

for integer problems. It can generally not be guaranteed that a feasible primal solution

will be obtained, even at the dual optimum. Vujanic et al. [VEG+16] propose tightening

the right-hand side of the system-wide constraints and prove that a feasible solution of

the original primal problem is obtained at the dual optimum of the modified problem,

additionally providing some performance guarantees. The same tightening is applied in

this work and discussed in more detail in Sec. 6.2. Feasibility is proven for mixed-integer

linear programming problems in [VEG+16]. The transfer of these results to mixed-integer
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quadratic programming problems is an open research question.

From a practical point of view, a key issue when considering distributed integer problems

(or nonconvex problems in general) in a dual decomposition-based distributed optimization

setting is that all subproblems have to be solved to global optimality. Recall that the

dual function is defined as the infimum of the Lagrange function for a value of the dual

variables (2.28). Global optimality of mixed-integer programming problems with convex

relaxations can be assessed through the obtained integrality gap. Prematurely terminating

the optimization of the subproblems at a suboptimal solution, or converging to a local

minimum of the subproblems for continuous nonconvex problems can lead to the loss of

convexity of the sampled response surface of the dual function or the computation of wrong

subgradients. Applying the proposed algorithms to nonconvex problems where global

optimality of the subproblems cannot be guaranteed is also an open research question, but

not one related to the proposed algorithms specifically.

Note that all discussions on convergence consider the case that the dual optimum is found

for t→∞. This however does not guarantee the efficiency of the algorithms. For instance,

the general ADMM algorithm for problem (3.18) provably converges to the dual optimum

under certain convexity assumptions. The application of ADMM in practice shows that

it converges fast to a solution with modest accuracy (in terms of the primal residual)

near the optimum, but that finding a high-accuracy solution can be very time-consuming

[BPC+11]. The practical efficiency of the newly proposed algorithms in comparison to the

benchmark algorithms, both in terms of the number of required iterations and solution

accuracy, is demonstrated in the next chapters.
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5 Small Fictitious Resource
Network

Constraint-coupled optimization problems can be interpreted as a collection of subsystems

coupled by constraints on shared limited resources. These resources can be both produced

and consumed by the different subsystems. In this context, dual decomposition-based

distributed optimization is often referred to as a market-based mechanism, where a coor-

dinator adjusts the prices for the shared resources until the supply matches the demand

[Wen20]. After presenting several algorithms in Chapters 3 and 4, Chapter 6 describes

extensive numerical benchmarks for these algorithms. To motivate these benchmarks, this

chapter deals with the distributed optimization of a small fictitious production network

as an illustrative example of the application of dual decomposition for subsystems cou-

pled through limited resources. The study is based on the network considered by Wenzel

[Wen20] and is extended to include individual constraints, leading to nonsmoothness of

the dual function.

5.1 Model of the network

The considered network is depicted in Fig. 5.1. It consists of three plants that produce

and/or consume two shared resources. Additionally, one resource is withdrawn from the

network while the other one is procured from an external network. The amount leaving

and entering the network is assumed to be constant.

Each plant i optimizes its objective function of the form

fi(ui) = [ci]1 · [ui]1 + [ci]2 · [ui]2︸ ︷︷ ︸
revenues and raw material costs

+([ui]1 − [uref
i ]1)

2 + ([ui]2 − [uref
i ]2)

2︸ ︷︷ ︸
demand tracking

. (5.1)

Fig. 5.1 also depicts the individual optima of the plants, which are infeasible for the system-

wide problem due to the shared limited resources, i.e., they would result in an unbalanced

network. The resource utilization ri of each subsystem i is modeled as

ri = Aiui. (5.2)

To keep the network balanced the produced and consumed amount, i.e., the total resource

utilization r has to match the amounts of resources leaving and entering the network. The
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Figure 5.1: Schematic depiction of the fictitious resource network with three plants and

two shared resources. The individual optima violate the constraints on the shared limited

resources. The optima of the system-wide problem with (Constr.) and without (Uncostr.)

individual constraints are also shown (adapted from [Wen20]).

system-wide model for the resource network has the form

min
u1,u2,u3∈R2

3∑
i=1

fi(ui), (5.3a)

s. t.
3∑
i=1

Aiui = re, (5.3b)

where re denotes the external resource flow. The parameters of the model are summarized

in Tab. 5.1.

The system-wide problem (5.3) can be decomposed by introducing prices λ ∈ R2 for each

shared resource, i.e., dual variables. The Lagrange function for problem (5.3) is

L(u,λ) =
3∑
i=1

fi(ui) + λ
T

(
3∑
i=1

Aiui − re

)
. (5.4)

Each plant then solves its individual optimization problem

min
ui∈R2

fi(ui) + λ
TAiui. (5.5)

5.2 Distributed optimization without individual con-

straints

The prices for the shared limited resources were adapted by using the subgradient method

(SG), the bundle trust method (BTM), the alternating direction method of multipliers

(ADMM), the quadratic approximation coordination (QAC) algorithm, the quadratically
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Table 5.1: Parameters of the plant models in the fictitious resource network [Wen20].

Negative prices denote sales prices.

[ci]1 [ci]2 [uref
i ]1 [uref

i ]2

Plant 1 -10 8 30 18

Plant 2 12 -14 20 12

Plant 3 11 -13 5 6

Coupling A1 =

[
−1 0

0 1

]
, A2 =

[
1 0

0 −1

]
, A3 =

[
1 0

0 −1

]
External re = [5,−6]T

approximated dual ascent (QADA) algorithm and the quasi-Newton dual ascent (QNDA)

algorithm. The parameter settings for the algorithms are summarized in Tab. 5.2.

Fig. 5.1 shows the individual optima of the system-wide problem without individual con-

straints (Unconst. optima). Each plant adjusts its resource utilization according to the

prices of the shared resources to satisfy the system-wide constraints. The results of the

coordination for the used algorithms are shown in Fig. 5.2. The system-wide problem (5.3)

is a quadratic program without individual constraints, thus both the squared Euclidean

norm of the primal residual ∥wp(λ)∥22 and the dual function d(λ) are quadratic func-

tions. This can be seen in Fig. 5.2a, which depicts the contour plots of the two functions.

Fig. 5.2b shows the evolution of both the primal and dual residuals for the considered

algorithms. All algorithms manage to converge within the allowed number of iterations.

BTM requires the most iterations as it moves slowly toward the optimum and then exhibits

oscillations. This issue could probably be alleviated by adaptively decreasing the size of

the trust region. The subgradient method, ADMM, and QNDA require a similar number

of iterations. Most notably the QAC and QADA algorithms converge very quickly after

the initial sampling phase. Finally, Fig. 5.2c depicts the evolution of the dual variables,

i.e., the prices. All algorithms converge to the same optimal prices. It can be seen that

the systems react sensibly to price changes, as the prices of BTM are almost constant at

the optimum for many iterations without finding the optimum.

5.3 Distributed optimization with individual con-

straints

To further assess the performance of the distributed optimization algorithms, individual

constraints are added to the optimization problem of each plant:

Plant 1: [u1]1 + [u1]2 ≤ 42, (5.6a)

Plant 2: [u2]1 + [u2]2 ≥ 40, (5.6b)

Plant 3: [u3]1 ≤ 8, [u3]2 ≥ 9. (5.6c)
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(c) Evolution of the dual variables.

Figure 5.2: Results of the distributed optimization of the fictitious resource network with-

out individual constraints.

The constraints are depicted in Fig. 5.1. The previously computed solutions are now

infeasible, thus the plants have to adjust their resource utilization. Fig. 5.3 shows the

results for the distributed optimization of the resource network with individual constraints.
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Table 5.2: Parameter settings of the distributed optimization algorithms for the coordi-

nation of the fictitious resource network.

Value Description Algorithms

λ(0) 0 initial dual variables All

α(t) 0.25 step size/trust region parameter SG, BTM, QAC,

(constant) QADA, QNDA

tmax 100 maximum number of iterations All

ϵp, 10−4 primal residual convergence tolerance All

ϵd 10−4 dual residual convergence tolerance All

ρ(0) 1 initial regularization parameter ADMM

τincr 1.5 see (3.29) ADMM

τdecr 1.25 see (3.29) ADMM

µ 10 see (3.29) ADMM

z(0) 0 initial auxiliary variables ADMM

nreg,start nreg,min collected points before QAC/QADA QAC, QADA

are initialized

τ 10× nreg,min allowed age of data points QAC, QADA

∆λ 10−3 radius of inner circle for data selection QAC, QADA

si 0.03× nb ellipsoid parameter (4.15) QAC, QADA

si 4.5× nb ellipsoid parameter (4.15) QAC, QADA

γ(t) 3.0 ellipsoid parameter (constant) 4.18) QAC, QADA

B(0) −I initial approximated Hessian QNDA

The responses of the plants change due to the presence of the constraints, which can be

seen in the different orientations of the contour plots in Fig. 5.3a compared to Fig. 5.2a.

Furthermore, the squared Euclidean norm of the primal residual becomes nonconvex.

Fig. 5.3b shows that only the algorithms based on smooth approximations manage to

converge within the allowed number of iterations. The QAC and QADA algorithms show

the best performance out of the examined algorithms. Fig. 5.3c also shows that the

algorithms converge to significantly different prices compared to the unconstrained case.

Note that the other algorithms eventually also converge to the optimal dual variables, but

require more iterations than the maximum number set in this comparison.

5.4 Conclusion

This chapter illustrated the concept of dual decomposition-based distributed optimization

on an example of a small fictitious resource network. Each shared limited resource is

assigned a price and the prices are communicated to the optimizers of the individual

plants. The plants compute their resource utilization and the coordination algorithm
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Figure 5.3: Results of the distributed optimization of the fictitious resource network with

individual constraints.

adjusts the prices until the network is balanced. Adding individual constraints to the

plants’ optimization problems significantly affects their responses to the price signals and in

turn, influences the performance of the distributed optimization algorithms. The resulting
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response surfaces are nonsmooth and in the case of the primal residual also nonconvex.

The algorithms based on smooth approximations exhibited the best convergence behavior

in the case of individually constrained subproblems. A large number of similarly structured

benchmark problems are examined in the next chapter.
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6 Numerical Analysis for General
Optimization Problems

In this chapter, the performance of the proposed new QADA and QNDA algorithms is

compared to the subgradient method, BTM, ADMM, and the QAC algorithm for different

benchmark problems. Three different problem classes are considered, distributed quadratic

programs (QP), distributed mixed-integer quadratic programs (MIQP), and distributed

convex programs (Conv). The contents of the chapter have been partially published in

[YWW+23].

All algorithms and subproblems were implemented in the programming language Julia

[BEK+17] using the optimization toolbox JuMP [DHL17]. All affine, QP, and MIQP

subproblems were solved using the commercial solver Gurobi [Gur23], while general convex

problems were solved using the interior point solver IPOPT [WB06]. The update problem

of BTM is guaranteed to be a linear program with affine and convex quadratic constraints,

therefore it was solved using Gurobi. The update problems of QAC, QADA, and QNDA

were solved using IPOPT. All computations throughout this thesis were performed on a

standard Laptop PC (Intel(R) Core(TM) i5-6200U CPU @ 2.30 GHz, 8 GB RAM).

To assess the efficiency of the different algorithms the computation time required for the

solution of a distributed optimization problem was computed as [PAL15]

Tcomp = Niter · Tcomm +

Niter∑
t=1

(T
(t)
update +max

i∈I
T

(t)
sub,i), (6.1)

where Niter is the number of required iterations, Tcomm is the required communication time

between the coordinator and the subproblems, which is assumed to be constant, T
(t)
update is

the time required by the coordinator to update the dual variables in iteration t and T
(t)
sub,i is

the solution time of subproblem i in itereation t. In a distributed optimization setting the

subproblems can be solved in parallel. Since the coordinator needs to collect the responses

of all subproblems the time for updating the primal variables in each iteration is dictated

by the slowest subproblem. The communication time is set to Tcomm = 800 ms in the

following. All algorithms were terminated if the Euclidean norms of the primal and dual

residuals lied below a threshold ϵp and ϵd respectively, or when the maximum number of

iterations tmax was reached.
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6.1 Distributed QPs

A large number of distributed QP benchmark problems were defined in [WE19] and

[WRE20] with the following structure:

min
x1,...,xNs

∑
i∈I

1

2
xTi Hixi + cTi xi, (6.2a)

s. t.
∑
i∈I

Aixi = 0, (6.2b)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (6.2c)

with xi ∈ Rnxi . The system-wide constraints (6.2b) can be interpreted as a resource

network balance, where Ns subsystems share resources. The goal is to optimize the overall

system in a distributed manner while ensuring that the network is balanced, i.e., that the

resource production and consumption match.

The matrices Hi were generated randomly as symmetric positive definite matrices,

Hi = NT
i Ni, Ni ∈ Rnxi×nxi , (6.3)

where the elements ofNi were drawn from a normal distribution [Ni]l,j ∈ N (µ = 0, σ = 1).

The elements of the vectors ci were drawn from the same normal distribution. The el-

ements of the matrices of the coupling constraints Ai were first drawn from a uniform

continuous distribution Uc(1, 2). Afterward, they were altered such that their sign was

flipped or they were set to zero through the uniform discrete distribution Ud[−1, 0, 1],

Ai = Bi ◦Ci ∈ Rnb×nxi , [Bi]l,j ∈ Uc(1, 2), [Ci]l,j ∈ Ud[−1, 0, 1], (6.4)

where ◦ denotes element-wise multiplication. This is done so that not every subsystem

contributes to every coupling constraint, similar to the setting of production systems

coupled by shared limited resources. In this interpretation, a positive sign of the resource

utilization indicates consumption while a positive sign indicates production. If a row in

Ai only contained zeros, a correction step was performed that creates at least one nonzero

entry. Box constraints (6.2c) were used as individual constraints for each subproblem. In

all cases [xLB
i ]l = −10 and [xUB

i ]l = 10 holds.

The number and size of the subproblems were varied as follows:

Number of subproblems: Ns = 2m,m ∈ {2, 3, . . . , 8},

Number of variables: nxi
∈ {2, 3, . . . , 10}, Ns ≥ nxi

.

All subproblems contain the same number of primal variables (nxi
= nx, ∀i ∈ I) and the

number of coupling constraints was set equal to the number of variables, i.e., nb = nx.

Fifty problem instances were generated for each pair of number of subproblems and num-

ber of coupling constraints/variables (Ns, nb). In the following, the notation QP
(R)
(Ns,nb)

is

used, where R indicates the number of the problem instance. For example, QP
(7)
(256,2) refers



6.1 Distributed QPs 73

to the seventh problem instance containing 256 quadratic programs, each with 2 variables,

connected through 2 coupling constraints. In [WE19] and [WRE20] nx ∈ {2, . . . , 5} was
considered, resulting in a total of 1400 problem instances. By increasing the number of

primal variables/ system-wide constraints an additional 1400 problems were generated, re-

sulting in a total of 2800 distributed QPs. It should be noted that all benchmark problems

are strongly convex and satisfy Slater’s constraint qualification, since xi = 0, ∀i ∈ I is a

strictly feasible solution. Therefore, strong duality holds, and solving the dual problem is

equivalent to solving the primal problem. Furthermore, since the system-wide constraints

are equalities, no nonnegativity constraints have to be imposed on the dual variables.

Table 6.1: Detailed parameter settings of the distributed optimization algorithms for the

solution of the benchmark problems.

QP/Conv MIQP Description Algorithms

λ(0) 0 0 initial dual variables All

α(0) 2× 10−3 3× 10−4 initial step size/trust region SG, BTM,

parameter QAC, QADA,

QNDA

tmax 500 500 maximum number of iterations All

ϵp, 10−2 10−2 primal residual convergence All

tolerance

ϵd 10−2 – dual residual convergence All

tolerance

ϵb 0.6 0.6 bundle cuts threshold QADA, QNDA

ρ(0) 1/Ns 10−3/Ns initial regularization parameter ADMM

τincr 1.5 1.5 see (3.29) ADMM

τdecr 1.25 1.25 see (3.29) ADMM

µ 10 10 see (3.29) ADMM

z(0) 0 0 initial auxiliary variables ADMM

nreg,start nreg,min nreg,min collected points before QAC, QADA

QAC/QADA are initialized

τ 2× nreg,min 1.5× nreg,min allowed age of data points QAC, QADA

∆λ 5× 10−5 5× 10−5 radius of inner circle QAC, QADA

for data selection

si nb × 10−6 nb × 10−8 ellipsoid parameter (4.15) QAC, QADA

si nb × 10−3 nb × 10−4 ellipsoid parameter (4.15) QAC, QADA

γ 1 0.1 ellipsoid parameter (4.18) QAC, QADA

B(0) −I −I initial approximated Hessian QNDA



74 Chapter 6: Numerical Analysis for General Optimization Problems

6.1.1 Parameter settings for distributed QPs

For the subgradient method (SG) the initial step size parameter was set to α(0) = 2×10−3

and then varied according to

α(t) =
α(0)

max{∥w(0)
p ∥2, . . . , ∥w(t)

p ∥2}
, (6.5)

as proposed by Wenzel et al. [WRE20]. The same parameter was used for the trust region

of BTM. Furthermore, for BTM only recent points were used to construct the cutting

plane model, with an age parameter τ = 2×nreg,min. For ADMM the initial regularization

parameter was set to ρ(0) = 1/Ns and varied according to (3.29) with τdecr = 1.25, τincr =

1.5 and µ = 10. The parameters for the regression-based algorithms were chosen as in

[WRE20]. The age parameter of NAPS was set to τ = 2 × nreg,min, similar to the BTM

algorithm, while the radius of the inner sphere was set to ∆λ = 5× 10−5. The lower and

upper bounds for the covariance-based step size constraints were set to sl = nb×10−6 and

sl = nb × 10−3 respectively. The parameter γ(t) was updated according to (4.18), with

γ = 1. The regression data was selected using the NAPS algorithm. However, all recent

points according to the age parameter τ were used to construct the bundle cuts in the

case of the QADA algorithm. The same age parameter was used for the bundle cuts of

the QNDA algorithm, while the trust region was defined in the same way as for the BTM

algorithm. The approximated Hessian was initialized with the negative identity matrix

B(0) = −I.

The bundle cuts usually lead to more conservative update steps, especially during the

initial iterations. This issue can slow down the convergence of the QADA and QNDA

algorithms. Therefore, the bundle cuts were only enforced within a certain distance to the

optimum, i.e., when

∥wp(λ
(t))∥2 ≤ ϵb · ∥wp(λ

(0))∥2. (6.6)

The corresponding parameter was set to ϵb = 0.6. The dual variables, and the auxiliary

variables in the case of ADMM, were initialized with λ(0) = 0 and z
(0)
i = 0, ∀i ∈ I.

The maximum number of iterations was set to tmax = 500 and the convergence tolerances

to ϵp = ϵd = 10−2. All parameters were set by trial and error, to find the parameters

that result in the most converged benchmark problems. All parameters are summarized

in Tab. 6.1.

6.1.2 Effect of the bundle cuts

Before the results for the distributed QPs are presented, the effect of the bundle cuts

is illustrated on one of the benchmark problems. Fewer subproblems usually lead to a

higher degree of nonsmoothness. This is shown in Fig. 6.1 for problem QP
(2)
(2,2) using the

QNDA algorithm. The optimal dual variables lie at a nondifferentiable point, which is

located at the top of a nondifferentiable region. Deactivating the bundle cuts leads to
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Figure 6.1: Illustration of the effect of the bundle cuts with the QNDA algorithm for

problem QP
(2)
(2,2) (adapted from [YR22] © 2022 IEEE).

oscillations as the dual variables jump from one side of the nonsmooth region to the other.

In comparison, when bundle cuts are used, cutting planes are generated on both sides

of the nonsmooth region, which enforces a trajectory along this region. Note that one

jump across the nonsmooth region is performed (in the fifth iteration) which leads to

the construction of the corresponding cutting plane. Afterward, no further jumps and

oscillations occur, leading to fast convergence to the optimum. The example shows that

the bundle cuts play an essential role in handling the nonsmoothness of the dual function

in the QADA and QNDA algorithms.

6.1.3 Results for distributed QPs

The 2800 benchmark problems were solved using the subgradient method (SG), BTM,

ADMM, QAC, QADA, and QNDA. The QADA algorithm requires an initial sampling

phase until enough data points are available for a regression. These initial steps were

performed by the SG (QADA-SG), BTM (QADA-BTM), and QNDA (QADA-QNDA)

algorithms. In principle, the same algorithms could be used to initialize the QAC algo-

rithm. However, a main feature of the algorithm is that it only requires subgradients from

previous iterations. Therefore, the QAC algorithm was only initialized using SG updates.

A summary of the results is given in Tab. 6.2 and Fig. 6.2. A more extensive summary

is given in Tab. C.1 in the appendix. The results show that the subgradient method

performs poorly for the considered benchmarks. Only a small fraction of the problems

are solved within the allowed number of iterations. Additionally, the problems that do

converge require a large number of iterations and long computation times. BTM and

ADMM are significantly more robust, being able to solve most of the benchmark prob-
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Figure 6.2: Mean values of the primal residuals upon convergence for the distributed

quadratic programs. Each data point represents the mean values of the converged problem

instances for a pair Ns and nb (cf. Tab. C.1) (from [YWW+23]).

lems. While BTM solves more problems, ADMM requires fewer iterations and exhibits

faster computation times for its converged problems. The number of required iterations

and computation time for the QAC algorithm is comparable to BTM and ADMM. QAC

converges fast near the optimum, yielding the lowest values of the primal residual upon

convergence, but it is not very robust, solving only slightly more than half of the bench-

Table 6.2: Summary of the results for the distributed optimization of the QP benchmark

problems (mean values of the converged instances only), t: mean number of iterations

until convergence, Tcomp: mean computation time of converged runs (in s), ∥wp∥2: mean

primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax

iterations.

Algorithm t Tcomp ∥wp∥2 %c

SG 384.74 308.36 9.88 16.83

BTM 196.95 160.07 7.47 95.11

ADMM 179.55 145.54 6.81 82.3

QAC 199.24 167.73 2.15 57.32

QADA-SG 133.49 139.5 3.31 96.46

QADA-BTM 128.10 135.22 3.26 96.96

QADA-QNDA 127.23 135.47 3.29 96.57

QNDA 134.31 126.4 3.94 98.50
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Figure 6.3: Results of the distributed optimization of problem QP
(7)
(256,2) (from [YWW+23]).

mark problems. Note however, that all other algorithms except the subgradient method

use more information on the subproblems and that ADMM enforces that the subprob-

lems are modified which may have practical disadvantages in a fully distributed setting.

The QADA and QNDA algorithms show the best performance, both being able to solve
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Figure 6.4: Results of the distributed optimization of problem QP
(17)
(16,2) (from [YWW+23]).

almost all benchmark problems. Interestingly, while QADA requires fewer iterations to

converge, QNDA requires less computation time. This is because the update steps of the

dual variables are less expensive in the case of QNDA, as no regression and no singular

value decomposition are required for the updates of the approximated dual and the step
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size constraints respectively. However, if the required communication time is larger than

assumed in this study or if the solution of individual subproblems is a bigger bottleneck,

QADA might perform better. In terms of scalability, both ADMM and BTM perform

well for cases with relatively few subproblems where they tend to perform better than the

approximation-based algorithms. Their performance deteriorates as the problem size in-

creases. In contrast, the approximation-based algorithms scale well with the problem size.

The main influencing parameter for the performance of these algorithms is the number

of dual variables/ system-wide constraints. The proposed algorithms are especially well

suited for distributed optimization problems that consist of many subproblems which are

coupled by relatively few constraints.

Fig. 6.3 shows the results for the distributed optimization of benchmark problem QP
(7)
(256,2).

The contour plots in Fig. 6.3a demonstrate the advantage of the QADA and QNDA

algorithms compared to the QAC algorithm. The squared primal residual ∥wp(λ)∥22 (left)
is nonconvex and nonsmooth. In the shown problem instance, the optimum lies near a

point of nondifferentiability, making it difficult for the QAC algorithm to find a suitable

quadratic approximation. In contrast, the dual function d(λ) (shown on the right) is

concave. Additionally, the effect of the changing set of active constraints, which causes

the nonsmoothness, is less profound in the dual function. These effects lead to faster

convergence of the QADA and QNDA algorithms, even though QADA initially takes some

steps away from the optimum. Among the examined algorithms the ones approximating

the dual function (BTM, QADA, QNDA) exhibit the best performance. The subgradient

method and ADMM also converge but require more iterations.

While the bundle cuts can handle the nonsmoothness of the dual function in most cases,

this does not apply to all benchmark problems. Fig. 6.4 shows the results for benchmark

problem QP
(17)
(16,2), where the optimum lies at a point of nondifferentiability. No algorithm

manages to converge, except for ADMM, which smoothens the dual function via the

regularization term in the augmented Lagrange function. All other algorithms terminate

close to the optimum but are not able to reach it within the allowed number of iterations.

The QADA and QNDA algorithms manage to converge for most benchmark problems, even

for the ones where the optimum lies at a nondifferentiable point. From the tests, ADMM

is only able to reach an optimum at a nondifferentiable point if only a few subproblems

are involved.

6.2 Distributed MIQPs

In [WRE20] only convex QPs were considered. In this thesis, the computational results

are extended by also considering distributed MIQPs. The benchmark problems have the

following structure:
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min
x1,...,xNs

∑
i∈I

1

2
xTi Hixi + cTi xi, (6.7a)

s. t.
∑
i∈I

Aixi ≤ b, (6.7b)

Dixi ≤ di, ∀i ∈ I, (6.7c)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (6.7d)

xi ∈ Rnc
xi × Znd

xi , ∀i ∈ I, (6.7e)

with ncxi
= ⌈nxi

/2⌉ and ndxi
= ⌊nxi

/2⌋. The matrices and vectors Hi, ci, Ai, x
LB
i and xUB

i

were generated in the same way as for the distributed QPs. The elements for the individual

constraints (6.7c) were drawn from continuous uniform distributions [Di]l,j ∈ Uc(−5, 5)
and [di]l ∈ Uc(−1, 1). The elements of the right-hand side of the system-wide constraints

(6.7b) b were drawn from the same distribution as the elements of the matrices Ai.

Since the system-wide constraints are inequalities a situation might occur where the solu-

tions of the subproblems are completely decoupled, i.e., where λ = 0 results in a feasible

solution. This trivial solution is avoided by tightening the system-wide constraints. Once

all subproblems were generated, the decoupled subproblems

min
xi

1

2
xTi Hixi + cTi xi, (6.8a)

s. t. Dixi ≤ di, ∀i ∈ I, (6.8b)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I, (6.8c)

xi ∈ Rn̂xi × Zñxi ,∀i ∈ I, (6.8d)

were solved, obtaining the decoupled optimal primal variables x̃∗
i . The elements of b were

then tightened according to

[b]l = [b]l − (1 + [β]l)

∥∥∥∥∥∑
i∈I

Aix̃
∗
i

∥∥∥∥∥
2

, (6.9)

with [β]l ∈ Uc(0.1, 0.3). Finally, after generating all subproblem parameters the feasibil-

ity of the central problem was evaluated. If the problem was infeasible, the benchmark

problem was discarded and a new one was generated.

For the MIQPs large-scale problems with Ns ≫ nb were considered [VEG+16, CNN21].

The number and size of the subproblems were varied as follows:

Number of subproblems: Ns ∈ {100, 200, 300, 400, 500},

Number of variables: nxi
∈ {2, 3, 4, 5}.

All subproblems contain the same number of variables (nxi
= nx, ∀i ∈ I) and the number

of system-wide constraints is equal to the number of variables of each subproblem, i.e.,

nb = nx. Ten benchmark problems were generated for each combination (Ns, nb), resulting

in a total of 200 MIQP benchmark problems.
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6.2.1 Recovery of primal feasibility for distributed MIQPs

Due to the integrality constraints (6.7e) MIQPs are always nonconvex, i.e., strong duality

does not hold. This means that the primal problem might not be feasible at the opti-

mal dual solution. Vujanic et al. [VEG+16] proved that a feasible primal solution can

be obtained for large-scale mixed-integer linear programs (MILP) if the system-wide con-

straints are tightened via a contraction. The right-hand side of the system-wide constraints

is contracted as follows,∑
i∈I

Aixi ≤ b, (6.10a)

b = b− ζ, (6.10b)

[ζ]l = nb ·max
i∈I

{
max
xi∈Xi

[Ai]l,:xi − min
xi∈Xi

[Ai]l,:xi

}
, (6.10c)

where [Ai]l,: denotes the lth row of the matrix Ai. The same contraction was used in this

thesis. Therefore, in the first step, all subproblems have to solve the two inner optimization

problems in (6.10c) and communicate the results to the coordinator. The coordinator then

collects all responses and tightens the coupling constraints. It is important to note, that

the contracted right-hand side b is used to compute the subgradient and dual value within

the distributed optimization algorithm. However, the original right-hand side b is used to

compute the values of the primal residual for the termination criterion, as one is interested

in the feasibility of the original problem. As the coupling constraints are inequalities, the

primal residual is computed using eq. (3.6), and nonnegativity constraints are imposed on

the dual variables.

6.2.2 Parameter settings for distributed MIQPs

As noted earlier, the coupling constraints (6.7b) are inequalities for the MIQP benchmark

problems. In general, it is easier to find a feasible solution for inequality-constrained

problems using dual decomposition-based distributed optimization than for equality-

constrained ones. By selecting larger values for the dual variables, the corresponding

primal solution is ”pushed” towards primal feasibility. This can be achieved by using

an aggressive parametrization of the distributed optimization algorithms. However, even

though an obtained primal solution might be feasible, it tends to be further away from

the optimum, compared to a more conservative parametrization. This is illustrated in

Fig. 6.5 for problem MIQP
(1)
(300,3) using the subgradient method. By setting the initial step

size parameter α(0) to 5× 10−2 convergence is achieved within a single iteration. In com-

parison, setting the parameter to 3× 10−4 leads to convergence after 100 iterations where

the step size is updated according to (6.5). However, the more aggressive parameter leads

to a primal solution with a relative duality gap of 5.74 % while the conservative choice

leads to a gap of 0.48 % (cf. Sec 6.2.3, eq. (6.11)). This is due to the obtained values of
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Figure 6.5: Results of the distributed optimization of problem MIQP
(1)
(300,2) using the sub-

gradient method with different initial step size parameters α(0).

the dual variables. As seen in Fig. 6.5b and 6.5d the more conservative choice converges

with smaller values of the dual variables, which lie closer to the optimum. Similar effects

can be observed for all distributed optimization algorithms. Therefore, all algorithms are

parametrized more conservatively for the MIQP benchmark problems compared to the QP

problems to obtain better primal solutions.

The step size/ trust region parameter was set to α(0) = 3 × 10−4 and the regularization

parameter for ADMM was set to ρ(0) = 10−3/Ns. The age parameter of NAPS was set

to τ = 1.5 × nreg,min. The bounds for the covariance-based step size constraints were set

to sl = nb × 10−8, sl = nb × 10−4 and γ = 0.1. The remaining parameters remained

unchanged compared to the QP benchmark problems. All parameters were set by trial

and error, to find the parameters that result in the most converged benchmark problems

with the best primal objective values. All parameters are summarized in Tab. 6.1.

As discussed in Sec. 6.2.1, the distributed optimization algorithms try to solve a primal

problem with the contracted right-hand side b. However, the algorithms are terminated

prematurely when the original problem is feasible with respect to the original right-hand

side b. In this case, the dual variables might not have converged to a stationary value, as

they are updated based on the tightened problem. Therefore, only the primal residual is

used as a convergence criterion for the MIQP benchmark problems to avoid unnecessary

iterations. It should be noted that waiting for the dual variables to converge to a stationary

value can also deteriorate the primal solution, similar to an aggressive parametrization.
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Figure 6.6: Relative duality gaps (rel. DG) of the MIQP benchmark problems upon

termination for the examined algorithms. The value of the rel. DG for not converged runs

has no meaning, as it corresponds to an infeasible primal solution (cf. Tab. C.2) (from

[YWW+23]).

Table 6.3: Summary of the results for the distributed optimization of the MIQP benchmark

problems (mean values of the converged instances only), t: mean number of iterations

until convergence, Tcomp: mean computation time of converged runs (in s), rel. DG: mean

relative duality gap of converged runs (in %), %c: percentage of converged runs within

tmax iterations.

Algorithm t Tcomp rel. DG %c

SG 86.69 69.88 1.66 99.5

BTM 80.52 65.41 1.66 100

ADMM 25.06 21.16 2.22 100

QAC 59.40 52.83 2.13 86.0

QADA-SG 19.37 18.37 2.54 100

QADA-BTM 20.78 18.62 3.53 100

QADA-QNDA 22.20 22.76 2.86 100

QNDA 79.90 74.91 1.73 100

6.2.3 Results for distributed MIQPs

The MIQP benchmark problems were solved using the same algorithms as for the QP

problems. The results are illustrated in Fig. 6.6 and summarized in Tab. 6.3. Instead of
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depicting the primal residual (which is 0 for converged runs), Fig. 6.6 shows the relative

duality gap,

rel. DG = 100 ·
(
1− d(λ)∑

i∈I fi(x
∗
i (λ))

)
(6.11)

for all benchmark problems, i.e., the relative difference between the objective value of a

feasible primal solution obtained for a value of the dual variables λ and the corresponding

value of the dual function. As weak duality still holds, the value of the dual function

provides a lower bound on the global optimum of the primal problem. Thus, the relative

duality gap is useful to prove a worst-case distance of a found solution to the global

optimum. As can be seen, most algorithms can solve all benchmark problems, except

for the subgradient method (which solves all but one) and QAC. Out of the considered

algorithms, QADA exhibits the best performance, both in terms of computation time

and required iterations. QADA here shows a significantly superior performance when

compared to QNDA.

The results indicate that the primal residual cannot be approximated well as a quadratic

function in all cases, leading to poor performance of the QAC algorithm. One such instance

is shown in Fig. 6.7 for benchmark problem MIQP
(7)
(100,2). The surface plots in Fig. 6.7a

show that the primal residual ∥wp∥22, which is approximated by QAC, is nonsmooth and

nonconvex. In comparison, the dual function is always concave and the nonsmoothness is

less profound. Therefore, QADA and QNDA can compute a better smooth approximation

and handle the nonsmoothness through the bundle cuts. This is reflected in the conver-

gence of the algorithms. QADA converges quickly to a feasible primal solution. ADMM

converges in a similar number of iterations. While QNDA does also converge, it does so

in the same number of iterations as BTM and is slower than QADA and ADMM. Finally,

QAC is not able to converge within the allowed number of iterations.

For integer problems, the optimal duality gap tends to decrease as the number of subprob-

lems increases [VEG+16]. This also holds for the nonsmoothness of the response surfaces

[WRE20]. Thus, the performance of the approximation-based algorithms tends to improve

for larger problems. An example is shown in Fig. 6.8 for benchmark problem MIQP
(9)
(500,5)

where all algorithms converge to a feasible solution. The evolution of the primal residual

(Fig. 6.8a) and the dual variables (Fig. 6.8b) indicate that QAC tends to oscillate, lead-

ing to a slower convergence. Fig. 6.8 also shows that BTM and QNDA converge slower

than QADA and ADMM. This holds for the majority of the MIQP benchmark problems.

Interestingly, the increased number of subproblems also affects the subgradient method,

which tends to perform better for larger MIQP problem instances.

As discussed in Chapter 1, one reason for employing distributed optimization is to pre-

serve privacy between the subproblems. However, another reason might be the computa-

tional performance of the system-wide optimization problem. This aspect is relevant for

large-scale mixed-integer problems, where a centralized monolithic solution can become in-
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(right).
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(b) Evolution of the primal and dual residuals.
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Figure 6.7: Results of the distributed optimization of problem MIQP
(7)
(100,2) (from

[YWW+23]).
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Figure 6.8: Results of the distributed optimization of problem MIQP
(9)
(500,5) (from

[YWW+23]).

tractable. Decomposing a large-scale problem into smaller subproblems and solving them

in a distributed manner can lead to significant computational savings. A main appeal of

state-of-the-art MIP solvers is that even when the global optimum is not found within the

desired computation time, a worst-case distance to this optimum can be inferred through

the relative integrality gap (rel. IG). The same holds for dual decomposition-based dis-

tributed optimization algorithms, where the distance of a found feasible primal solution

to the global optimum is bounded by the duality gap. MIPs are always nonconvex due

to the integrality constraints, meaning that strong duality does not hold. However, weak

duality is always satisfied and provides bounds on the global optimum.

To assess the quality of the solutions obtained by the dual decomposition-based distributed

optimization algorithms, they were compared to solutions obtained through a central op-

timization of the system-wide problem using the commercial solver Gurobi for the bench-

mark problems with Ns = 500 and nx = 5. A time limit of one hour (3600 s) was set

for the central optimization. The results are shown in Tab. 6.4. Remarkably, Gurobi was
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Table 6.4: Computational results for all MIQP benchmark problems with Ns = 500 and

nx = 5.

rel. Gap [%] Tcomp [s] rel. Gap [%] Tcomp [s] rel. Gap [%] Tcomp [s]
Central SG BTM

MIQP
(1)
(500,5) 3.70 3600 0.77 22.67 0.82 50.55

MIQP
(2)
(500,5) 2.87 3600 0.43 12.97 0.35 30.91

MIQP
(3)
(500,5) 3.74 3600 0.31 29.18 0.83 56.29

MIQP
(4)
(500,5) 3.81 3600 1.22 2.42 0.03 6.48

MIQP
(5)
(500,5) 3.00 3600 0.05 148.11 2.52 200.63

MIQP
(6)
(500,5) 3.51 3600 0.03 162.75 3.42 208.11

MIQP
(7)
(500,5) 3.15 3600 4.78 20.23 0.36 43.17

MIQP
(8)
(500,5) 3.22 3600 5.36 137.68 2.01 181.13

MIQP
(9)
(500,5) 3.53 3600 3.41 33.23 0.81 61.12

MIQP
(10)
(500,5) 3.33 3600 0.59 66.4 0.96 106.82

Mean 3.39 1.21 63.56 1.21 94.52
ADMM QAC QADA-SG

MIQP
(1)
(500,5) 0.80 22.88 – 465.69 0.92 18.72

MIQP
(2)
(500,5) 0.55 27.07 0.37 12.98 0.37 12.98

MIQP
(3)
(500,5) 1.04 21.65 1.03 33.40 1.22 19.49

MIQP
(4)
(500,5) 0.04 18.93 0.05 2.43 0.05 2.48

MIQP
(5)
(500,5) 4.76 23.46 4.28 39.72 4.78 30.65

MIQP
(6)
(500,5) 5.36 23.45 5.15 41.83 5.89 26.76

MIQP
(7)
(500,5) 0.39 21.69 0.36 19.73 0.70 18.32

MIQP
(8)
(500,5) 4.85 23.40 0.75 46.61 5.29 26.45

MIQP
(9)
(500,5) 1.21 23.43 0.67 350.01 1.07 19.30

MIQP
(10)
(500,5) 1.79 23.7 2,75 67.61 1.15 21.53

Mean 2.08 22.97 1.71 68.26 2.14 19.67
QADA-BTM QADA-QNDA QNDA

MIQP
(1)
(500,5) 0.90 21.86 0.85 21.93 0.77 54.13

MIQP
(2)
(500,5) 0.50 19.37 0.43 21.38 0.31 33.34

MIQP
(3)
(500,5) 1.22 23.06 1.15 23.20 0.83 67.61

MIQP
(4)
(500,5) 0.03 6.48 0.03 4.46 0.03 4.39

MIQP
(5)
(500,5) 3.96 31.68 5.54 31.66 2.69 245.26

MIQP
(6)
(500,5) 4.10 35.24 9.02 30.56 3.43 249.38

MIQP
(7)
(500,5) 0.66 22.54 0.59 21.74 0.36 50.78

MIQP
(8)
(500,5) 9.18 31.95 6.03 31.05 2.01 217.67

MIQP
(9)
(500,5) 1.38 21.37 1.40 23.79 0.87 77.00

MIQP
(10)
(500,5) 5.86 32.19 2.23 29.46 0.95 124.96

Mean 2.78 24.57 2.73 23.92 1.22 112.45

not able to solve any problem to global optimality within the time limit. In contrast, the

dual decomposition-based algorithms all converge within much shorter computation times

(except for problem MIQP
(1)
(500,5) using QAC). Even though the found primal solutions are

not provably globally optimal, the relative duality gap is usually better than the rela-

tive integrality gap provided by Gurobi. Thus, distributed optimization provides better

bounds (and better primal solutions) for the examined benchmark problems. Among the
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dual decomposition-based distributed optimization algorithms QADA-SG exhibits the best

computation times, followed by ADMM. QADA-BTM and QADA-QNDA exhibit larger

computation times, since the initial sampling steps are computationally more expensive,

compared to simple subgradient updates.

6.3 General distributed convex problems

In Sec. 6.1 all of the subproblems were quadratic programs. In this section, more general

convex problems of the form

min
x1,...,xNs

∑
i∈I

fi(xi), (6.12a)

s. t.
∑
i∈I

Aixi = 0, (6.12b)

xTi Gixi ≤ p2i , ∀i ∈ I (6.12c)

xLB
i ≤ xi ≤ xUB

i , ∀i ∈ I. (6.12d)

are considered. The objective functions fi(xi) are all convex functions (inside the feasible

set of (6.12)) and are summarized in Tab. 6.5 alongside the bounds (6.12d) and the dis-

tributions from which their parameters were randomly drawn. The objective function for

each subproblem is chosen randomly out of the considered convex functions with a uniform

probability. The parameters of the system-wide constraints (6.12b) were drawn from the

Table 6.5: Used convex objective functions for the distributed convex programs.

Name fi(xi) Bounds/Parameters

Affine cTi xi + ai −10 · 1 ≤ xi ≤ 10 · 1
ai, [ci]l ∈ N (µ = 0, σ = 1)

Quadratic 1
2x

T
i Hixi + cTi xi −10 · 1 ≤ xi ≤ 10 · 1

See Sec. 6.1

Powers
∑nxi

l=1 ([xi]l + [ci]l)
[ai]l −1

2 min
l=1,...,nxi

[ci]l · 1 ≤ xi ≤ 10 · 1

[ai]l, [ci]l ∈ Uc(1, 5)

Exponential
∑nxi

l=1 exp([ci]l · [xi]l + [ai]l) −10 · 1 ≤ xi ≤ 10 · 1
[ai]l, [ci]l ∈ N (µ = 0, σ = 1)

Negative log −
∑nxi

j=1[ci]j log([xi]j + [ai]j) −1
2 min
j=l,...,nxi

[ci]l · 1 ≤ xi ≤ 10 · 1

[ai], [ci]l ∈ Uc(1, 5)

Negative entropy
∑nxi

j=1[ai]j [xi]j log([xi]j + [bi]j) −1
2 min
l=1,...,nxi

[ci]l · 1 ≤ xi ≤ 10 · 1

[ai], [ci]l ∈ Uc(1, 5)



6.3 General distributed convex problems 89

same distributions as for the distributed QP problems. Each subproblem is subject to

individual convex constraints in the form of an ellipsoid around the origin (6.12c), with

random parameters Gi = NT
i Ni, [Ni]l,j ∈ N (µ = 0, σ = 1) and pi ∈ Uc(1, 5). The number

and size of the subproblems were varied as follows:

Number of subproblems: Ns = 2m,m ∈ {2, 3, . . . , 8},

Number of variables: nxi
∈ {2, 3, . . . , 10}, Ns ≥ nxi

.

All subproblems contain the same number of primal variables (nxi
= nx, ∀i ∈ I) and the

number of system-wide constraints is equal to the number of variables of each subproblem,

i.e., nb = nx. Ten benchmark problems were generated for each combination (Ns, nb),

resulting in a total of 560 convex benchmark problems. Note that all benchmark problems

are convex and satisfy Slater’s condition, as x = 0 is a strictly feasible solution. As the

system-wide constraints (6.12b) are equalities, no nonnegativity constraints are imposed

on the dual variables.

6.3.1 Parameter settings for distributed convex problems

The parameters for the distributed convex benchmarks were set to be equal to the ones

for the distributed QPs (cf. Sec. 6.1.1 and Tab. 6.1). All parameters were set by trial and

error, to find the parameters that result in the most converged benchmark problems. As

the previous results showed that the performance of QADA is not heavily influenced by

the algorithm used for the initial sampling phase, only the initialization with QNDA is

considered in the following. For the sake of brevity, this is denoted by QADA instead of

QADA-QNDA.

6.3.2 Results for distributed convex problems

The results for the distributed optimization of the convex benchmark problems are il-

lustrated in Fig. 6.9 and summarized in Tab. 6.6. The mean computation time for a

single update step of the primal and dual variables (Tcomp/t) increases compared to the

distributed QPs. This is because the solution of the general convex subproblems is com-

putationally more expensive than that of the QPs. This is also because the problems with

an affine and quadratic objective function can be solved by the commercial solver Gurobi,

while the general convex problems are solved with IPOPT. This points to a benefit of

distributed optimization, namely, that arbitrary solvers can be used for each subproblem

[MKJ+17].

Tab. 6.6 shows that QNDA achieves the largest number of converged benchmark prob-

lems, requires the least number of iterations, and the second least computation time (after

ADMM). In comparison, QADA performs rather poorly, only outperforming the subgra-

dient method. Interestingly, QADA performs better for relatively few subproblems and
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Figure 6.9: Values of the primal residuals upon termination for the distributed convex

programs. Each data point represents an algorithm applied to a benchmark problem (cf.

Tab. C.3) (from [YWW+23]).

system-wide constraints. One such instance is depicted in Fig. 6.10 for benchmark prob-

lem Conv
(6)
(64,2). Here QADA requires the fewest iterations to converge. In contrast, QNDA

takes multiple steps away from the optimum, significantly deteriorating its performance.

Fig. 6.10a and 6.10c also show that ADMM overshoots in the beginning, which might

indicate that a less aggressive tuning could lead to better convergence.

The QNDA algorithm outperforms all other algorithms for large benchmark problems. One

such instance is depicted in Fig. 6.11 for problem Conv
(4)
(256,7). No algorithm converges,

Table 6.6: Summary of the results for the distributed optimization of the convex bench-

mark problems (mean values of the converged instances only), t: mean number of iterations

until convergence, Tcomp: mean computation time of converged runs (in s), ∥wp∥2: mean

primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax

iterations.

Algorithm t Tcomp ∥wp∥2 %c

SG 342.51 310.45 9.72 46.07

BTM 160.29 139.29 7.8 78.26

ADMM 117.44 104.97 7.44 93

QAC 207.16 186.9 6.55 81.52

QADA 123.52 149.39 6.95 75.1

QNDA 97.13 114.71 4.58 97.14
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Figure 6.10: Results of the distributed optimization of problem Conv
(6)
(64,2) (from

[YWW+23]).

except for the subgradient method and QNDA. QAC exhibits significant oscillations. The

remaining algorithms (BTM, ADMM, and QADA) all converge to the vicinity of the

optimum relatively quickly. However, they are not able to find the optimum. This is
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Figure 6.11: Results of the distributed optimization of problem Conv
(4)
(256,7) (from

[YWW+23]).

also illustrated in Fig. 6.11b, where it can be seen that all algorithms terminate close to

the optimal dual variables. This behavior is indicative of an optimal solution lying close

to or at a point of nondifferentiability. While the subgradient method converges after a

large number of iterations, QNDA computes the solution more efficiently. Initially, the

algorithm follows a similar path as BTM. However, while BTM is not able to converge,

QNDA does so within a few iterations.

6.4 Conclusion

This chapter provided extensive numerical tests on a large set of benchmark problems for

all previously discussed algorithms. The results show that algorithms based on smooth

approximations of the dual function generally outperform the other algorithms, both in

terms of the number of solved problems and the number of required iterations. While

the performance of the QADA and QNDA algorithms is similar for distributed QPs, the
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former shows superior performance for distributed MIQPs while the latter outperforms the

other algorithms for distributed convex problems. The QADA algorithm is usually able to

perform more aggressive update steps, leading to a faster convergence to a feasible primal

solution in the case of the MIQP benchmark problems. The resulting relative duality gaps

are larger than the ones obtained by the more conservative QNDA algorithm. However,

note that the duality gap just provides a worst-case distance to the global optimum,

while both algorithms converge to similar primal solutions in practice. In the case of

the general convex benchmark problems the QNDA algorithm outperforms QADA due

to the more local nature of its quadratic approximation. The QADA algorithm tries

to compute a surrogate quadratic function via a regression problem, even though the

underlying approximated dual function is not quadratic or even piece-wise quadratic. The

QNDA algorithm relies more on the local curvature information of the dual function and

is thus able to compute a better local approximation.
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7 Application: Distributed Linear
Model Predictive Control

Chapter 6 presented extensive numerical benchmarks for general distributed optimization

problems. However, real-world optimization problems usually exhibit a more structured

formulation. Therefore, this chapter presents how dual decomposition-based distributed

optimization can be applied to linear constraint-coupled model predictive control (MPC)

problems. These problems serve as an example of the application of distributed optimiza-

tion to continuous convex optimization problems. Following a brief introduction to model

predictive control different architectures and communication topologies for a distributed

setting are presented. After decomposing the system-wide control problem into multiple

subproblems by introducing dual variables a large number of randomly generated bench-

mark problems is solved using the subgradient method (SG), the bundle trust method

(BTM), the alternating direction method of multipliers (ADMM) and the quasi-Newton

dual ascent (QNDA) algorithm. The contents of this chapter have been partialy submitted

for review in [YWR24].

7.1 Model predictive control

Model predictive control is an optimization-based control method whereby a model of

the plant is used to predict its future behavior depending on its current state and the

computed control inputs. MPC algorithms usually employ a discrete-time model to predict

the evolution of the plant’s states x ∈ Rnx depending on the current states and control

inputs u ∈ Rnu . A typical linear3 MPC optimization problem is given by eq. (7.1),

min
x0:Np ,u0:Np−1

Jf (xNp) +

Np−1∑
k=0

J(xk,uk), (7.1a)

s. t. xk+1 = Axk +Buk, k = 0, . . . , Np − 1, (7.1b)

x0 = x̃(t0), (7.1c)

xk ∈ X ⊂ Rnx , k = 0, . . . , Np, (7.1d)

uk ∈ U ⊂ Rnu , k = 0, . . . , Np − 1. (7.1e)

3Linearity in this case refers to the dynamics of the plant, not the class of the underlying optimization
problem.
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Figure 7.1: Schematic illustration of model predictive control.

In MPC time is usually discretized into equal time intervals with a sampling time Ts,

i.e., into time points tk = t0 + k · Ts, where t0 is the current time. The notation xk and

uk refers to the states and inputs of the plant at time tk respectively. Constraint (7.1b)

represents a discrete-time model used to predict the state of the plant xk+1 at the next

sampling time from the current states xk and the used control input uk with A ∈ Rnx×nx

and B ∈ Rnx×nu . The future states and inputs are computed over a prediction horizon Np.

Note that the control inputs must not necessarily be computed over the entire prediction

horizon, especially if solving the MPC optimization problem is computationally expensive.

Instead, the control inputs can be computed over a control horizon Nc ≤ Np and then be

kept constant until the end of the prediction horizon, i.e., uNc = uNc+1 = · · · = uNp−1.

In this work Np = Nc is assumed. Constraint (7.1c) represents the initial conditions of

the plant, whereby x̃(t0) denotes the measured states at time t0. Depending on the plant

the actual states might not be measurable. In these cases, state estimation techniques

might be used to estimate the plant’s states from the measured output. However, state

estimation is outside the scope of this thesis. Necoara et al. provide an overview of state

estimation in a distributed setting [NND11]. A main advantage of MPC compared to other

control approaches is that constraints on the states and inputs can be explicitly considered

within the optimization problem [MRR+00]. These constraints are summarized by (7.1d)

and (7.1e) respectively. Fig. 7.1 schematically illustrates the concept of MPC.

At each time step an input trajectory is computed over a prediction horizon Np by solving

the open-loop optimal control problem (7.1). A common objective in MPC is to track a

given reference trajectory over the prediction horizon while also minimizing the control

inputs, i.e.,

J(xk,uk) = (xk − xref,k)THx(x
k − xref,k) + uk,THuu

k, (7.2)

where Hx ∈ Rnx×nx and Hu ∈ Rnu×nu are symmetric positive (semi-) definite weighting

matrices. Eq. (7.2) is often referred to as stage costs, while Jf (xNp) is referred to as
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terminal cost. A common terminal cost is the deviation of the states from their reference

at the end of the prediction horizon, i.e.,

Jf (xNp) = (xNp − xref,Np)THf
x(x

Np − xref,Np). (7.3)

The design of the terminal cost plays an important role regarding the control performance

and stability [MRR+00]. These aspects are also outside the scope of this thesis. Another

main appeal of MPC is that control objectives beyond classical reference tracking can be

incorporated into the optimization problem [Eng07]. For instance, the economic perfor-

mance of the process can be directly optimized, giving rise to economic MPC (EMPC).

An extensive review of EMPC is provided by Ellis et al. [EDC14].

After solving the open-loop optimal control problem the first input u0 is applied to the

system. At the next sampling point, the new state is measured (or estimated) and the

procedure is repeated.

7.2 Distributed linear model predictive control

MPC requires the solution of an optimization problem at each sampling point. However,

this might be impractical if the underlying optimization problem becomes too large and

therefore computationally too expensive to be solved within the available sampling time,

or if the overall system consists of multiple subsystems and not all required information

is centrally available. These issues can be addressed by decomposing a system-wide MPC

problem and solving it in a distributed manner.

Two types of distributed linear MPC (DMPC) problems are mainly examined in the

literature. In the first case, the system-wide MPC problem consists of I = {1, . . . , Ns}
subsystems coupled in their dynamics. These MPC problems can be expressed as

min
x0:Np ,u0:Np−1

∑
i∈I

[
Jfi (x

Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i )

]
, (7.4a)

s. t. xk+1
i =

∑
j∈I

Aijx
k
j +Biju

k
j , ∀i ∈ I, k = 0, . . . , Np − 1, (7.4b)

x0
i = x̃(t0), ∀i ∈ I, (7.4c)

xki ∈ Xi ⊂ Rnxi , ∀i ∈ I, k = 0, . . . , Np, (7.4d)

uki ∈ Ui ⊂ Rnui , ∀i ∈ I, k = 0, . . . , Np − 1, (7.4e)

where xi and ui denote the states and inputs of subsystem i respectively. The states and

inputs of all subsystems are summarized in x := [xT1 , . . . ,x
T
Ns
]T and u := [uT1 , . . . ,u

T
Ns
]T .

Each subsystem possesses its individual terminal and stage cost functions Jfi (x
Np

i ) and

Ji(x
k
i ,u

k
i ) respectively. The matrices Aij ∈ Rnxi×nxj and Bij ∈ Rnxi×nuj describe the

influence of the states and inputs of subsystem j on the dynamics of subsystem i.
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In the second case, the subsystems are coupled through their constraints

min
x0:Np ,u0:Np−1

∑
i∈I

[
Jfi (x

Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i )

]
, (7.5a)

s. t. xk+1
i = Aix

k
i +Biu

k
i , ∀i ∈ I, k = 0, . . . , Np − 1, (7.5b)

x0
i = x̃(t0), ∀i ∈ I, (7.5c)

xki ∈ Xi ⊂ Rnxi , ∀i ∈ I, k = 0, . . . , Np, (7.5d)

uki ∈ Ui ⊂ Rnui , ∀i ∈ I, k = 0, . . . , Np − 1, (7.5e)∑
i∈I

Riu
k
i ≤ rkmax, k = 0, . . . , Np − 1. (7.5f)

The dynamics of each subsystem (7.5b) are decoupled. The coupling of the subsystem is

represented by the system-wide constraints (7.5f), which can be interpreted as constraints

on the availability of shared limited resources. The matrices Ri ∈ Rnr×nui map the subsys-

tems inputs to the corresponding resource consumption or production, while rkmax ∈ Rnr

denotes the maximum availability of resources. Note that in the resource constraints, a

positive sign indicates consumption while a negative sign indicates the production of a

resource.

This thesis focuses on the second type of DMPC problems (7.5), which can be solved

within a dual decomposition-based distributed optimization framework. Note that DMPC

problems of the form (7.4) can also be solved by using dual decomposition, which will be

briefly discussed in Sec. 7.2.4.

7.2.1 DMPC architectures

Apart from the type of coupling between the subsystems, the employed DMPC method

strongly depends on the allowed communication. Several DMPC architectures are reviewed

by, e.g., Scattolini [Sca09] and Christofides et al. [CSdlP+13], some of which are depicted

in Fig. 7.2. For the sake of simplicity, the influence of the output of a DMPC controller on

other subsystems is omitted at this point, i.e., Bij = 0 for i ̸= j (cf. eq. 7.4b). Fig. 7.2a

depicts a setting in which the coupling of the subsystems is not explicitly considered by the

DMPC controllers, i.e., there is no communication between them. This is often referred

to as decentralized MPC. In this setting, the coupling between the subsystems can be

regarded as an external disturbance that can be compensated by the individual controllers.

If the coupling between subsystems is strong, decentralized control might exhibit poor

performance. Furthermore, decentralized DMPC is not suitable for constraint-coupled

problems as the satisfaction of system-wide constraints cannot be guaranteed without some

amount of information exchange. Christofides et al. provide an overview of decentralized

MPC [CSdlP+13].
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Figure 7.2: Different distributed model predictive control structures for two subsystems

with two controllers (adapted from [Sca09]).

If coupling between subsystems must be accounted for explicitly by the DMPC controllers

some information must be exchanged. Fig. 7.2b depicts a setting in which direct com-

munication between the DMPC controllers is allowed. In this setting, the controllers can

exchange information like predicted state and input trajectories, objective values, con-

straints, etc. DMPC algorithms relying on this architecture can be classified according

to the number of communication rounds per MPC iteration, i.e., how often information

is exchanged before a control action is applied to the subsystems. Camponogara et al.

provide a general overview of both types of communication [CJK+02]. The main factor

determining the possible number of communication rounds between the controllers is the

ratio between the computational cost of the solution of the individual DMPC problems

and the sampling time of the overall MPC problem. While DMPC with multiple commu-

nication rounds, often also referred to as agent negotiation [MdlPC+11b], usually results

in better control performance and under certain conditions enables the convergence to the

optimal solution of the system-wide MPC problem, it is usually computationally more

expensive than single communication DMPC since the subsystems have to solve multiple

optimization problems in each iteration. If short sampling times must be considered, per-

forming multiple communication rounds is usually not feasible. This is the case, e.g., in

the control of robotic manipulators with collision constraints, where only the predicted

state trajectory is communicated to the neighboring DMPC controllers [GKW+22].

Finally, Fig. 7.2c depicts a setting where no direct communication between the DMPC

controllers is allowed. This leads to a hierarchical control structure where the individual
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controllers share information with a coordinator. The coordinator aggregates the responses

and communicates price signals to the DMPC controllers. This setting is considered in

dual decomposition-based DMPC, where the coordinator communicates the dual variables

to the subsystems. Hierarchical DMPC is especially suitable for constraint-coupled prob-

lems where direct information exchange between the controllers is not intended, e.g., due

to confidentiality reasons. Furthermore, a hierarchical DMPC approach always requires

multiple communication rounds between the subsystems and the coordinator. Thus, this

approach is only suitable for systems with slow dynamics and large sampling times, where

the underlying MPC problems can be solved multiple times within one sampling period

until a feasible solution is found, e.g., for chemical plants.

The next section provides a brief overview of related work on DMPC, mainly in cooperative

and hierarchical settings.

7.2.2 DMPC literature review

Distributed control for large-scale systems has been an active field of research since the

1970s [SVA75]. Extensive reviews on DMPC are provided by, e.g., Scattolini [Sca09],

Necoara et al. [NND11], Chrisofides et al. [CSdlP+13], Negenborn and Maestre [NM14]

and Müller and Allgöwer [MA17].

Stewart et al. present a cooperative DMPC algorithm that can be interpreted as a sub-

optimal system-wide MPC, in turn proving stability [SVR+10]. Maestre et al. propose

a cooperative DMPC algorithm for two agents with two communication rounds per sam-

pling period [MdlPC11a]. They also propose a cooperative DMPC scheme with multiple

agents whereby in each communication round a random set of agents proposes a control

action, which is accepted by their neighbors if it improves the overall control objective

[MdlPC+11b]. Zheng et al. present a DMPC algorithm for a network of interacting

systems with direct communication between the controllers [ZLQ12].

Dual decomposition-based DMPC has been applied to systems coupled in their dynamics

and constraints. Giselsson and Rantzer employ dual decomposition for systems coupled in

their dynamics and present a stopping criterion that guarantees bounded suboptimality

and asymptotic stability [GR10]. Giselsson et al. also present an accelerated gradient

method for dual decomposition-based DMPC where the objective function includes L1-

norm penalty terms [GDK+13]. In [GR13] Giselsson and Rantzer present a stopping

criterion based on adaptive constraint tightening that allows for an early termination of

dual decomposition-based DMPC problems for dynamically coupled systems. Köhler et al.

examine recursive feasibility for premature termination of the dual decomposition-based

distributed optimization algorithm [KMA19]. Doan et al. employ dual decomposition and

use primal averaging and constraint tightening to ensure convergence of DMPC problems

with both coupled dynamics and constraints [DKD11].
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Biegel et al. show how MPC can be used for congestion management in an energy

grid comprised of intelligent consumers with energy storage capabilities [BSB+12]. This

problem is extended into a DMPC setting in [BAS+12]. Biegel et al. also show how

dual decomposition-based DMPC can be generally applied to constraint-coupled systems

[BSA14]. Pflaum et al. compare primal and dual decomposition-based DMPC for the dis-

tributed control in smart districts [PAL14]. In [PAL15] they examine the scalability of dual

decomposition-based DMPC using a bundle method based on the number of subsystems,

the number of constraints, and the maximum size of the bundle.

Razzanelli et al. use DMPC for the management of the energy flow within a network of

microgrids using a subgradient method [RCP+20]. Eser et al. use ADMM to distributedly

control building energy systems [ESK+22]. Maxeiner and Engell use ADMM for DMPC

of semi-batch reactors coupled in their inputs through shared limited resources [ME17].

This work is extended in [ME20], where the subgradient method, ADMM, and ALADIN

are extensively compared for these types of problems. Houska and Shi provide a tutorial

on how ALADIN can be employed for DMPC [HS22]. Yfantis et al. apply the QADA

algorithm to DMPC problems with shared limited resources, comparing its performance

to the subgradient method [YGW+22].

Conte et al. study computational aspects of dual decomposition-based DMPC using an

accelerated gradient method and ADMM [CSZ+12]. More specifically they examine the

influence of the coupling strength, stability, the initial state, and the network size and

topology on the computational performance of the DMPC. Stomberg et al. compare the

performance of six algorithms for DMPC of dynamically coupled systems, namely the

subgradient method, an accelerated subgradient method, ADMM, a distributed active

set algorithm, an essentially decentralized interior point method, and Jacobi iterations

[SEF22].

Other proximal algorithms, other than ADMM, can also be used for DMPC. Halvgaard

et al. use the Douglas-Rachford splitting method for the coordination of smart energy

systems [HVP+16]. An extensive collection of DMPC algorithms and applications can be

found in the textbook by Maestre and Negenborn [MN14].

7.2.3 Dual decomposition of linear constraint-coupled DMPC
problems

In this section, the system-wide constraint-coupled MPC problem is decoupled using dual

decomposition. By introducing dual variables λk ∈ Rnr at each sampling time k the

Lagrange function can be defined,
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L(x0:Np ,u0:Np−1,λ0:Np−1) =
∑
i∈I

[
Jfi (x

Np

i ) +

Np−1∑
k=0

[Ji(x
k
i ,u

k
i ) + λ

k,TRiu
k
i ]

]
︸ ︷︷ ︸

=:Li(x
0:Np
i ,u

0:Np−1

i ,λ0:Np−1)

−
Np−1∑
k=0

λk,T rkmax

(7.6)

The Lagrange function can then be decomposed into the individual Lagrange functions,

L(x0:Np ,u0:Np−1,λ0:Np−1) =
∑
i∈I

Li(x0:Np

i ,u
0:Np−1
i ,λ0:Np−1)−

Np−1∑
k=0

λk,T rkmax (7.7)

Thus the dual function

d(λ0:Np−1) := min
x0:Np ,u0:Np−1

∑
i∈I

Li(x0:Np

i ,u
0:Np−1
i ,λ0:Np−1)−

Np−1∑
k=0

λk,T rkmax, (7.8a)

s t. xk+1
i = Aix

k
i +Biu

k
i , ∀i ∈ I, k = 0, . . . , Np − 1, (7.8b)

x0
i = x̃(t0), ∀i ∈ I, (7.8c)

xki ∈ Xi ⊂ Rnxi , ∀i ∈ I, k = 0, . . . , Np, (7.8d)

uki ∈ Ui ⊂ Rnui , ∀i ∈ I, k = 0, . . . , Np − 1 (7.8e)

(7.8f)

can be evaluated by solving the individual DMPC problems

min
x
0:Np
i ,u

0:Np−1

i

Li(x0:Np

i ,u
0:Np−1
i ,λ0:Np−1), (7.9a)

s t. xk+1
i = Aix

k
i +Biu

k
i , k = 0, . . . , Np − 1, (7.9b)

x0
i = x̃(t0), (7.9c)

xki ∈ Xi ⊂ Rnxi , k = 0, . . . , Np, (7.9d)

uki ∈ Ui ⊂ Rnui , k = 0, . . . , Np − 1 (7.9e)

for each subsystem i in a distributed manner. A subgradient of the dual function (7.8) in

iteration t can be computed by evaluating the constraints on the shared limited resources

(7.5f), i.e.,

g(λ0:Np−1,(t)) :=


∑

i∈I Riu
0,(t+1)
i − r0max
...∑

i∈I Riu
Np−1,(t+1)
i − r

Np−1
max

 ∈ ∂d(λ0:Np−1,(t)). (7.10)

The algorithms presented in Chapter 3 and 4 can thus be used to distributedly solve the

system-wide constraint-coupled MPC problem (7.5). Note that in the case of ADMM

auxiliary variables zki have to be defined for each subsystem at each time point.
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7.2.4 Dual decomposition of dynamically coupled DMPC prob-
lems

For the sake of completeness, this section briefly demonstrates how dual decomposition

can be applied to distributedly solve linear DMPC problems with coupled dynamics (7.4).

Also for the sake of brevity, it is assumed that the subsystems are only coupled through

their states, i.e., Bij = 0 for i ̸= j. First the subset Ni ⊂ I is defined which contains

all neighbors of subsystem i, i.e., Aij ̸= 0, ∀j ∈ Ni. Each subsystem i can now be

augmented by additional decision variables vij which represent a local copy of the states of

a neighboring subsystem j. With this, the system-wide problem (7.4) can be reformulated

as

min
x0:Np ,u0:Np−1,v0:Np

∑
i∈I

[
Jfi (x

Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i )

]
, (7.11a)

s. t. xk+1
i = Aiix

k
i +

∑
j∈Ni

Aijv
k
ij +Biu

k
i , ∀i ∈ I, k = 0, . . . , Np − 1, (7.11b)

x0
i = x̃(t0), ∀i ∈ I, (7.11c)

xki ∈ Xi ⊂ Rnxi , ∀i ∈ I, k = 0, . . . , Np, (7.11d)

uki ∈ Ui ⊂ Rnui , ∀i ∈ I, k = 0, . . . , Np − 1, (7.11e)

vkij − xkj = 0, ∀i ∈ I, j ∈ Ni, k = 0, . . . , Np. (7.11f)

The subsystems in problem (7.11) are now coupled through the constraints (7.11f) for

which dual variables λkij, i ̸= j can be introduced. The resulting individual Lagrange

function for a subsystem i can then be defined as

Li(xk:Np

i ,u
0:Np−1
i ,v

0:Np

ij ,λ
0:Np

ij ) = Jfi (x
Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i ) +

Np∑
k=0

∑
j∈Ni

[λk,Tij vkij − λ
k,T
ji xki ].

(7.12)

The system-wide MPC problem (7.11) can then be solved in a distributed manner by

optimizing the individual Lagrange functions in parallel and coordinating the solution via

the dual variables.

7.3 Numerical analysis for DMPC problems

In this section, several linear DMPC benchmark problems are solved using the subgra-

dient method, BTM, ADMM, and QNDA. While the QAC and QADA algorithms could

theoretically be used to solve the DMPC problems, the number of involved dual variables

is prohibitive for a regression-based approach. For a DMPC problem (7.5) λ ∈ Rnr·(Np−1)

holds, hence the number of required data points for a regression rises quadratically both

with the number of resources and with the prediction horizon. For instance, a problem of

moderate size with nr = 3 resources and a prediction horizon of Np = 15 would require

0.5 · (nr · (Np− 1)+ 1)(nr · (Np− 1)+ 2) = 946 data points for a quadratic approximation.
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The generated benchmark problems have the structure of problem (7.5) with a reference

tracking objective (7.2) and a terminal cost (7.3). The objective function matrices were

generated randomly as symmetric positive definite matrices,

Hxi
= Hf

xi
= NT

xi
Nxi
∈ Rnxi×nxi , (7.13)

Hui
= NT

ui
Nui
∈ Rnui×nui , (7.14)

where the elements of Nxi
and Nui

were drawn from a normal distribution

[Nxi
]l,j, [Nui

]l,j ∈ N (µ = 0, σ = 1).

The system matrices Ai were generated such that the resulting subsystems are stable. A

discrete-time system is stable if all eigenvalues of the matrix Ai lie within the unit sphere

[Lun14]. The matrices were thus computed as

Ai = SiDiS
−1
i , (7.15)

where Di is a diagonal matrix containing the eigenvalues of the matrix Ai drawn from

a continuous uniform distribution [Di]l,l ∈ Uc(−1, 1) while the elements of the matrix Si

were drawn from the continuous uniform distribution Uc(−3, 3). The elements of the input

matrix Bi were drawn from the continuous uniform distribution Uc(−2, 2).

The individual constraints were generated as intersections of ellipsoids around the origin,

Xi = {xi ∈ Rnxi | xTi Gxi,lxi ≤ p2xi,l
, l = 1, . . . , nc}, (7.16)

Ui = {ui ∈ Rnui | uTi Gui,lui ≤ p2ui,l
, l = 1, . . . , nc}. (7.17)

The matricesGxi,l andGui,l were generated in the same way as the objective matrices while

the right-hand sided pxi,l and pui,l were drawn from the continuous uniform distribution

Uc(1, 5).

Ideally the reference trajectory x
ref,0:Np

i should be feasible. Therefore, the elements of the

reference trajectory were drawn from the continuous uniform distribution Uc(−2, 2) at

each time point until a feasible point was found, i.e., until xref,k
i ∈ Xi. The initial state

x̃(t0) was generated in the same way.

The elements of the resource matrix Ri were first drawn from the continuous distribution

Uc(1, 2). Afterward, they were altered such that their sign was flipped or they were set to

zero through the uniform discrete distribution Ud[−1, 0, 1],

Ri = Di ◦Ci ∈ Rnr×nui , [Di]l,j ∈ Uc(1, 2), [Ci]l,j ∈ Ud[−1, 0, 1]. (7.18)

The maximum resource utilization should be generated such that the decentralized solu-

tion, i.e., for λ = 0, is infeasible, while the system-wide problem is feasible. To this end,

the optimal input trajectory for the system-wide problem without the resource constraints

was first computed,
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u0:Np−1,∗ = arg min
x0:Np ,u0:Np−1

∑
i∈I

[
Jfi (x

Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i )

]
, (7.19a)

s. t. xk+1
i = Aix

k
i +Biu

k
i , ∀i ∈ I, k = 0, . . . , Np − 1, (7.19b)

x0
i = x̃(t0), ∀i ∈ I, (7.19c)

xki ∈ Xi ⊂ Rnxi , ∀i ∈ I, k = 0, . . . , Np, (7.19d)

uki ∈ Ui ⊂ Rnui , ∀i ∈ I, k = 0, . . . , Np − 1. (7.19e)

Using the found optimal solution the optimal unconstrained resource utilization can be

computed,

rk,∗ :=
∑
i∈I

Riu
k,∗
i , k = 0, . . . , Np − 1. (7.20)

The maximum resource utilization was then computed by tightening the optimal uncon-

strained resource utilization,

[rkmax]l = [rk,∗]l − βkl |[rk,∗]l|, k = 0, . . . , Np − 1, l = 1, . . . , nr, β
k
l ∈ Uc(0, 0.2). (7.21)

After the maximum resource utilization was generated, the feasibility of the decentralized

and the system-wide problem was verified.

The number and size of the subproblems were varied as follows:

Number of subproblems: Ns ∈ {5, 10, 20, 50},

Number of states: nx ∈ {2, 3, 4, 5},

Number of inputs: nu ∈ {2, 3, 4, 5}, nx ≥ nu

Number of resources: nr ∈ {2, 3, 4, 5}, nu ≥ nr

Prediction horizon: Np ∈ {10, 15, 20}.

Each subsystem contains the same number of states and inputs, i.e., nxi
= nx, nui

=

nu, ∀i ∈ I. The number of state and input constraints was set equal to the number

of states, i.e., nc = nx. Ten benchmark problems were generated for each combination

resulting in a total of 2400 DMPC problems. The subproblems were solved in each iteration

with the commercial solver Gurobi [Gur23].

7.3.1 Modifications of distributed optimization algorithms

For the DMPC benchmark problems, some modifications were made to the ADMM and

QNDA algorithms. These are presented in the following.
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ADMM

The ADMM algorithm as presented in Sec. 3.3 tends to push the subsystems towards

primal feasibility due to the added regularization term. For inequality-constrained prob-

lems, this can lead to a situation where the system-wide constraints are satisfied while the

regularization term does not vanish. However, the regularization term should vanish if the

optimal dual variables are found, i.e., the dual variables found using ADMM should result

in a primal feasible solution for the unaugmented Lagrange function. Maxeiner [Max21]

proposed to replace the update of the auxiliary variables (3.23b) by an optimization prob-

lem,

z(t+1) = argmin
z

Np−1∑
k=0

∥∥∥∥∥∑
i∈I

Riu
k,(t)
i − zki

∥∥∥∥∥
2

2

, (7.22a)

s. t.
∑
i∈I

zki ≤ rkmax, k = 0, . . . , Np − 1. (7.22b)

In the following the auxiliary variables are updated using (7.22).

Fig. 7.3 illustrates the effect of the update of the auxiliary variables. When using the

update strategy (3.23b) ADMM converges to a value of the dual variables where optimiz-
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Figure 7.3: Comparison of the resource utilization upon convergence of the ADMM al-

gorithm for DMPC benchmark problem with different update strategies of the auxiliary

variables. The plots show the aggregated resource utilization for a DMPC problem with

Ns = 20, nx = 3, nu = 2, nu = 2, Np = 15. The constraints on the shared resources are

violated when using the update strategy (3.23b).
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ing the augmented Lagrange function results in a feasible resource utilization. However,

when the same dual variables are used to optimize the unaugmented Lagrange function,

i.e., without the regularization term, the constraints on the shared limited resources are

violated. Thus, ADMM does not converge to the optimal dual variables. This case is

shown for two resources in Fig. 7.3a and 7.3b. When the auxiliary variables are updated

according to (7.22) ADMM converges to a dual optimal solution, i.e., a feasible solution

for both the augmented and unaugmented Lagrange function. This is depicted in Fig. 7.3c

and 7.3d.

QNDA

Preliminary numerical tests showed that the QNDA algorithm as presented in Sec. 4.2

tends to converge quickly to the vicinity of the optimum for the DMPC problems. However,

it tends to oscillate near the optimum resulting in poor overall performance. To avoid this

issue the update strategy of the dual variables is switched to a constrained line search

within a certain distance to the optimum,

s(t) = argmax
s,α̂

α̂, (7.23a)

s. t. λ(t) + s ∈ BC(t)dB , (7.23b)

s = α̂∇d(t)B (λ(t)), (7.23c)

α̂ ≤ α(t), (7.23d)

λ(t+1) = [λ(t)+s(t)]+. (7.23e)

The update (7.23) essentially describes an update step in the direction of the gradient

of the approximated dual function. Constraint (7.23b) ensures that the bundle cuts are

satisfied while constraint (7.23c) gives the search direction. The step size is limited by

constraint (7.23d), which replaces the trust region constraint. The dual variables are then

updated in the computed search direction and projected onto the positive orthant due to

the nonnegativity constraints on the dual variables. Note that in the case of the QNDA

algorithm, the gradient of the approximated dual function is simply the subgradient of the

actual dual function, i.e.,

∇d(t)B (λ(t)) = g(λ(t)) ∈ ∂d(λ(t)). (7.24)

The update steps (7.23) are used if

∥wp(λ
(t))∥2 ≤ ϵl · ∥wp(λ

(0))∥2. (7.25)

The effect of the line search strategy is illustrated in Fig. 7.4. The evolution of the primal

and dual residuals without a line search is shown in Fig. 7.4a. In comparison, the line

search strategy (7.23) is employed in Fig. 7.4b. This results in faster convergence in the

vicinity of the optimum.
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(a) Evolution of the primal and dual residuals without the line search strategy.
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(b) Evolution of the primal and dual residuals with the line search strategy.

Figure 7.4: Comparison of the convergence of the QNDA algorithm for a DMPC bench-

mark problem with and without the line search update (7.23). The plots show the evolu-

tions of the primal and dual residuals for a DMPC problem with Ns = 20, nx = 3, nu =

2, nu = 2, Np = 15. The line search is used once the algorithm reaches the vicinity of the

optimum.

7.3.2 Parameter settings for DMPC problems

The parameters for the DMPC problems were set by trial and error to achieve a good

compromise between robustness and rate of convergence. The initial step size parameter

(SG)/ trust region parameter (BTM, QNDA) was set to α(0) = 1 and updated according to

(6.5). The ADMM algorithm exhibited divergence when tuned too aggressively. Therefore

the initial regularization parameter was set ρ(0) = 10−3. The tuning parameters were set

to τincr = 1.25, τdecr = 1.1 and µ = 10. The bundle cuts threshold was set to ϵb = 0.6 (cf.
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Table 7.1: Parameter settings of the distributed optimization algorithms for the DMPC

benchmark problems.

Value Description Algorithms

λ(0) 0 initial dual variables All

α(0) 1 initial step size/trust region parameter SG, BTM, QNDA

tmax 500 maximum number of iterations All

ϵp 10−2 primal residual convergence tolerance All

ϵd 10−2 dual residual convergence tolerance All

ϵb 0.6 bundle cuts threshold QNDA

ϵl 10−2 line search threshold QNDA

ρ(0) 10−3 initial regularization parameter ADMM

τincr 1.25 see (3.29) ADMM

τdecr 1.1 see (3.29) ADMM

µ 10 see (3.29) ADMM

z(0) 0 initial auxiliary variables ADMM

τ 150 allowed age of data points BTM, QNDA

B(0) −I initial approximated Hessian QNDA

Table 7.2: Summary of the results for the distributed optimization of the DMPC bench-

mark problems (mean values of the converged instances only), t: mean number of iterations

until convergence, Tcomp: mean computation time of converged runs (in s), ∥wp∥2: mean

primal residual of converged runs (×10−3), %c: percentage of converged runs within tmax

iterations.

Algorithm t Tcomp ∥wp∥2 %c

SG 42.83 35.24 8.18 80.96

BTM 273.83 228.17 7.09 57.58

ADMM 62.24 51.92 7.65 99.21

QNDA 42.6 38.31 7.07 98.21

eq. (6.6)) and the threshold for the line search (7.23) was set to ϵl = 10−2 (cf. eq. (7.25)).

The age parameter for BTM and QNDA was set to τ = 150. All algorithms were initialized

with λ(0) = 0 and z
(0)
i = 0, ∀i ∈ I (for ADMM). The approximated Hessian for the QNDA

algorithm was initialized with the negative identity matrix. All algorithms were terminated

after tmax = 500 iterations or when the primal and dual residuals reached the threshold

ϵp = ϵd = 10−2. The communication time was set to Tcomm = 800 ms (cf. eq. (6.1)).

7.3.3 Results for DMPC problems

The results of the distributed optimization of the DMPC benchmark problems are depicted

in Fig. 7.5 and summarized in Tab. 7.2. The results show that the ADMM and QNDA
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Figure 7.5: Values of the primal residuals upon termination for the distributed MPC

problems. Each data point represents the mean values of the converged problem instances

for a tuple (Ns, nx, nu, nr, Np) (cf. Tab. C.4).

algorithms can solve almost all DMPC benchmark problems. While ADMM can solve

slightly more problems, the QNDA algorithm outperforms ADMM in terms of required

iterations, computation time, and quality of found solutions. The subgradient method

exhibits a similar number of required iterations for its converged runs as QNDA with a

better computation time due to the less expensive update steps. However, the subgradient

method solves far fewer problems than the ADMM and QNDA algorithms. The BTM

algorithm exhibits rather poor performance for the DMPC benchmark problems. A more

detailed summary of the results is given in Tab. C.4 in the appendix.

Fig. 7.6 shows the results for the distributed optimization of a benchmark problem with

three shared resources and a prediction horizon of 15. i.e., λ ∈ R42. The subgradient

method and the QNDA algorithm exhibit the fastest convergence. ADMM exhibits a small

oscillation but still converges quickly. The BTM algorithm exhibits significant oscillations

and converges very slowly compared to the other algorithms. However, Fig. 7.6b shows that

the oscillations mainly take place in the vicinity of the optimal dual variables, indicating

that the resource utilization is sensitive to the change of the dual variables.

Fig. 7.7 depicts the utilization of the shared limited resources upon the convergence of the

distributed optimization algorithms for the DMPC benchmark problem in Fig. 7.6. All

algorithms converge to the same resource utilization, i.e., to the optimal dual variables.

The results in Tab. 7.2 show that the subgradient method exhibits similar performance

to QNDA for its converged runs. However, aggressive tuning is necessary to obtain this
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(a) Evolution of the primal and dual residuals.
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Figure 7.6: Results for a DMPC benchmark problem with Ns = 10, nx = 5, nu = 5, nr =

3, Np = 15.

performance, which comes at the cost of robustness.

Fig. 7.8 shows the results for a DMPC benchmark problem with two shared resources and a

prediction horizon of 10, i.e., λ ∈ R18. The subgradient method is not able to converge as it

exhibits extreme oscillations due to the aggressive step size parameter. Compared to that,

all other algorithms converge, with the QNDA algorithm being the most efficient. Note

that both the QNDA and BTM algorithms employ the same parameter as the subgradient

method for their trust region and, in the case of the QNDA algorithm, for the line search

updates. As discussed in Chapter 6 the degree of nonsmoothness increases as the number

of subproblems decreases. The BTM and QNDA algorithms take this nonsmoothness into

account through the stored bundle information. Most notably, the bundle cuts of QNDA

prevent the oscillations shown by the subgradient method when the line search strategy

is employed.



7.3 Numerical analysis for DMPC problems 111

Time
5 10

SG

BTM

ADMM

QNDA

-3

-2

-1

0

1

2

R
es
o
u
rc
e
1

(a) Utilization of resource 1.

Time
5 10

SG

BTM

ADMM

QNDA

-3

-2

-1

0

1

2

R
es
o
u
rc
e
2

(b) Utilization of resource 2.

Time
5 10

SG

BTM

ADMM

QNDA

-3

-2

-1

0

1

R
es
o
u
rc
e
3

(c) Utilization of resource 3.

Figure 7.7: Resource utilization upon termination for a DMPC benchmark problem with

Ns = 10, nx = 5, nu = 5, nr = 3, Np = 15.
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(a) Evolution of the primal and dual residuals.
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Figure 7.8: Results for a DMPC benchmark problem with Ns = 50, nx = 4, nu = 4, nr =

2, Np = 10.

Fig. 7.9 shows the utilization of the shared limited resources for the DMPC benchmark

problem in Fig. 7.8. The BTM, ADMM, and QNDA algorithms converge to the optimal

resource utilization. Fig. 7.9b shows that the subgradient method terminates with an

infeasible resource utilization for resource 2.

7.4 Conclusion

This chapter demonstrated how dual decomposition-based distributed optimization can

be applied to solve distributed MPC problems that are coupled through shared limited

resources. A large number of benchmark problems validated the efficiency of the pro-

posed QNDA algorithm. While the ADMM algorithm was able to solve the most bench-

mark problems and the subgradient method showed similar performance to QNDA for
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its converged runs, the QNDA algorithm exhibits the best balance in terms of perfor-

mance and robustness. Future research could focus on the evaluation of the QNDA algo-

rithm for DMPC problems with coupled dynamics. Furthermore, the application of dual

decomposition-based DMPC on systems with nonlinear dynamics and constraints can be

investigated. Nonlinear model predictive control (NMPC) problems are usually nonconvex,

which poses challenges for dual decomposition, regardless of the used algorithm.
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Figure 7.9: Resource utilization upon termination for a DMPC benchmark problem with

Ns = 50, nx = 4, nu = 4, nr = 3, Np = 10.
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8 Application: Distributed
Clustering

While Chapter 7 dealt with the distributed optimization of continuous convex problems,

this chapter presents an application of distributed mixed-integer programming. As dis-

cussed in previous chapters, the use of distributed optimization can be motivated either

by the resulting preservation of privacy or the increase in computational efficiency. Both

aspects play a major role in machine learning. On the one hand, training data might be

stored across multiple devices. Training a global model within a network where each node

only has access to its confidential data requires the use of distributed algorithms. Even

if the data is not confidential, sharing it might be prohibitive due to bandwidth limita-

tions. On the other hand, the ever-increasing amount of available data leads to large-scale

machine learning problems. By splitting the training process across multiple nodes its

efficiency can be significantly increased. This chapter demonstrates the application of

dual decomposition to the distributed training of K-means clustering problems. After an

overview of distributed and federated machine learning, the mixed-integer quadratically

constrained programming-based formulation of the K-means clustering training problem

is presented. The training can be performed in a distributed manner by splitting the data

across different nodes and linking these nodes through consensus constraints. Finally, the

performance of the subgradient method, the bundle trust method, and the QNDA algo-

rithm are evaluated on a set of benchmark problems. The contents of this chapter have

been partially published in [YWR23].

8.1 Distributed and federated machine learning

Training a machine learning model of any kind on a large set of data usually involves the

solution of a challenging optimization problem. If the underlying data set becomes too

large, it might not be possible to solve the resulting optimization problem in a reasonable

amount of time. Distributed optimization methods can aid in rendering the optimization

problem tractable through the use of multiple computational resources. Peteiro-Barral

and Guijarro-Berdiñas provide an overview of methods for distributed machine learning

[PG13]. To train a global model in a distributed manner a consensus has to be established

between the involved nodes and their underlying optimization problems. Forero et al.

[FCG10, FCG11] and Georgopoulos and Hasler [GH14] demonstrate the distributed train-
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Figure 8.1: Examples of federated learning architectures.

ing of machine learning models using consensus-based distributed optimization. Tsianos

et al. discuss practical issues with a consensus-based approach that arise from the dif-

ference between synchronous and asynchronous communication [TLR12]. Nedić provides

an overview of distributed gradient methods for convex training problems [Ned20] while

Verbraeken et al. give a general survey of distributed machine learning [VWK+20].

While computational performance remains an issue for many machine learning problems,

the increase in computing power and the efficiency of optimization algorithms can render

many challenging problems tractable. However, the inability to share data due to confi-

dentiality reasons still necessitates the use of distributed algorithms. Fig. 8.1a shows a

setting in which training data is stored across two different nodes. Each node can use its

local data to train an individual machine learning model. By including a coordination

layer the two training processes can be guided in a way that a global model is trained,

without the need to share confidential data. If the underlying optimization problems are

still hard to solve, the training process can be further divided into subproblems. Fig. 8.1b
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depicts the situation in which models of different node clusters are trained in a distributed

manner which in turn are again coordinated to obtain a global model. Distributed training

of a global model without sharing individual training data is often referred to as federated

optimization or federated learning [KMR+16]. Most algorithms for federated learning

involve an averaging step of the model parameters of the individual nodes [MMR+17].

Federated learning methods have been applied in the context of manufacturing [HLR22],

healthcare [AAK+22], mobile devices [LLH+20], and smart city sensing [JKO+20]. Li et al.

[LFT+20] and Liu et al. [LHZ+22] provide surveys on federated learning while Chamikara

et al. examine the privacy aspects related to external attacks [CBK+21]. Applying feder-

ated learning to heterogeneous data sets can lead to the deterioration of the model quality

of individual nodes in regards to their training data, which might hinder their willingness

to participate in such a setting. This issue is addressed through personalized federated

learning [KKP20, TYC+22].

8.2 K-means clustering

K-means clustering describes an unsupervised machine learning problem in which a set

of observations/data is divided into K disjoint clusters according to a similarity measure

[GGN21]. Clustering problems can be found in many practical applications such as image

segmentation [DMC15], customer market segmentation [KBS+18], or the identification of

similar operating points in a production plant [RSB+19]. While K-means clustering is a

well-studied problem, federated clustering, i.e., clustering of data across multiple nodes,

has not been studied extensively in the literature yet. Dennis et al. present a one-shot

federated clustering algorithm with heterogeneous data, where the clustering problem of

each node is solved by Lloyd’s heuristic algorithm [DLS21, Llo82]. Kumar et al. apply

federated averaging to pre-trained models on separate devices and present an update

strategy when new data points are added [KKN20]. Li et al. address the security aspect

of federated clustering by encoding the data of each node and applying Lloyd’s algorithm

to the encoded data [LHB+22]. Stallmann and Wilbik extend fuzzy c-means clustering,

i.e., a clustering problem where each data point can be assigned to multiple clusters,

to a federated setting [SW22]. A similar approach to federated c-means clustering was

previously presented by Pedrycz [Ped21]. Wang et al. use model averaging and gradient

sharing for federated clustering of data in a smart grid [WJG+22].

A common feature of most federated clustering approaches described in the literature is

the use of a heuristic algorithm to solve the individual clustering problems. In this thesis,

mixed-integer programming is used to solve the individual clustering problems, and a

dual decomposition-based distributed optimization approach is employed to coordinate

the solutions of the different nodes. While an averaging step is still performed to obtain

feasible primal solutions, the use of duality enables the computation of valid lower bounds
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(a) Clustering of the complete dataset.

(b) Clustering of data-subset 1. (c) Clustering of data-subset 2.

Figure 8.2: Illustration of K-means clustering both in a centralized and a decentralized

setting.

on the objective of the global clustering problem. It should be noted that the mixed-

integer programming problems resulting from the K-means clustering problem are very

hard to solve due to their weak integer relaxations, which currently makes them intractable

in practice. Thus, the approach presented in this thesis can be regarded as preliminary

work that can become a viable option with the continuous improvement of mixed-integer

programming solvers [KBP+22].

This section presents the mixed-integer programming-based formulation of the training

problem. The formulation is subsequently extended to the case of distributedly stored

data, which gives rise to a federated learning problem. Consensus constraints are used

to couple the training problems of different nodes. These constraints can be dualized

such that the federated learning problem can be solved via dual decomposition-based

distributed optimization. Since the underlying optimization problem contains integrality

constraints it is not convex and thus strong duality does not hold. However, a feasible

primal solution can be computed in each iteration through an averaging heuristic.

8.2.1 Mixed-integer programming formulation

The goal of K-means clustering is to assign a set of observations yj ∈ Rny , j ∈ J =

{1, . . . , |J |} to a set of clusters K = {1, . . . , K} and to compute the centroids of each
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cluster. The number of clusters is a hyperparameter and is set a priori or in an iterative

manner. This problem can be formulated as a mixed-integer nonlinear programming

(MINLP) problem [AHL12, GGN21],

min
wjk,mk

∑
j∈J

∑
k∈K

wjk · ∥yj −mk∥22, (8.1a)

s. t.
∑
k∈K

wjk = 1,∀j ∈ J , (8.1b)

wjk ∈ {0, 1}, ∀j ∈ J , k ∈ K, mk ∈ Rny ∀k ∈ K. (8.1c)

The binary variables wjk indicate if observation yj is assigned to cluster k and mk is

the centroid of cluster k. Constraint (8.1b) enforces that each observation is assigned to

exactly one cluster, while the objective is to minimize the sum of the squared Euclidean

distances of all observations to the centroids of their assigned clusters. Problem (8.1) is a

nonconvex MINLP which is hard to solve. In practice, it is more efficient to use a linearized

formulation by introducing the variable djk, which describes the squared distance between

an observation j and the centroid of cluster k [GGN21],

min
wjk,djk,mk

∑
j∈J

∑
k∈K

djk, (8.2a)

s. t.
∑
k∈K

wjk = 1,∀j ∈ J , (8.2b)

djk ≥ ∥yj −mk∥22 −Mj · (1− wjk), ∀j ∈ J , k ∈ K, (8.2c)

wjk ∈ {0, 1}, djk ≥ 0, ∀j ∈ J , k ∈ K, mk ∈ Rny ∀k ∈ K. (8.2d)

Problem (8.2) is a mixed-integer quadratically constrained program (MIQCP) with a con-

vex integer relaxation. Constraint (8.2c) is an epigraph formulation of the squared Eu-

clidean distance if observation j is assigned to cluster k, i.e., when wjk = 1. Otherwise,

the parameter Mj has to be large enough so that the constraint is trivially satisfied for

wjk = 0. In theory, a common big-M parameter can be used for all constraints described

by (8.2c). However, the parameter should be chosen as small as possible to avoid weak

integer relaxations. In the following, the big-M parameter is set as

Mj = max
χ∈Y
∥yj − χ∥22, ∀j ∈ J , (8.3a)

Y = {y ∈ Rny | min
j∈J

[yj]l ≤ [y]l ≤ max
j∈J

[yj]l, l = 1. . . . , ny}. (8.3b)

Different approaches have been proposed to solve the clustering optimization problem.

Bagirov and Yearwood present a heuristic method based on nonsmooth optimization

[BY06], Aloise et al. propose a column generation algorithm [AHL12] and Karmitsa et

al. use a diagonal bundle method [KBT17]. Fig. 8.2a illustrates the concept of K-means

clustering. The unlabeled data (left) is split into 3 clusters according to their distance to

the computed cluster centroid (crosses).
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8.2.2 Distributed consensus formulation

Problem (8.2) describes the case in which the entire data set is accessible from a single

node. However, this might not always be the case, especially if the underlying data is

confidential. In the following it is assumed that the data set is split across several nodes

I = {1, . . . , Ns}, with each node having access to the data-subset Ji ⊂ J . The MIQCP

problem (8.2) can be extended to the case of multiple nodes,

min
wijk,dijk,mk

∑
i∈I

∑
j∈Ji

∑
k∈K

dijk, (8.4a)

s. t.
∑
k∈K

wijk = 1,∀i ∈ I, j ∈ Ji, (8.4b)

dijk ≥ ∥yj −mk∥22 −Mj · (1− wijk), ∀i ∈ I, j ∈ Ji, k ∈ K, (8.4c)

wijk ∈ {0, 1}, dijk ≥ 0, ∀i ∈ I, j ∈ Ji, k ∈ K, mk ∈ Rny ∀, k ∈ K. (8.4d)

The goal of problem (8.4) is again to compute a set of cluster centroidsmk and to assign the

observations of all nodes to these clusters. However, if the nodes cannot share their data,

problem (8.4) cannot be solved in a centralized manner. A simple distributed approach

would be to solve a clustering problem in each node i. This could lead to a situation as

depicted in Fig. 8.2b and Fig. 8.2c. If the data set is split across two nodes, each one can

solve a clustering problem. However, both nodes will compute different cluster centroids.

The goal of a federated learning approach is to train a global model, i.e., global cluster

centroids in the case of K-means clustering, without sharing the local data between the

nodes. To this end each node i can compute individual cluster centroids mik,

min
wijk,dijk,mik

∑
i∈I

∑
j∈Ji

∑
k∈K

dijk, (8.5a)

s. t.
∑
k∈K

wijk = 1, ∀i ∈ I, j ∈ Ji, (8.5b)

dijk ≥ ∥yj −mik∥22 −Mj · (1− wijk), ∀i ∈ I, j ∈ Ji, k ∈ K, (8.5c)

mik = mi′k, ∀i ∈ I, i′ ∈ Ni, k ∈ K, (8.5d)

wijk ∈ {0, 1}, dijk ≥ 0, ∀i ∈ I, j ∈ Ji, k ∈ K,

mik ∈ Rny ∀, i ∈ I, k ∈ K. (8.5e)

Since the goal is to obtain global cluster centroids, the individual cluster centroids are

coupled through consensus constraints (8.5d), where Ni contains the set of neighboring

nodes of node i. Problem (8.5) describes a set of Ns subproblems coupled through the

consensus constraints. In the following subsection dual variables are used to decouple the

clustering problems of the different nodes.
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Figure 8.3: Illustration of a linear network topology and the resulting consensus con-

straints.

8.2.3 Dual decomposition-based distributed clustering

Problem (8.5) can be rewritten as a general constraint-coupled optimization problem by

defining the matrix A describing the connections between the different nodes. In the

following, only linear network topologies as depicted in Fig. 8.3 are considered for the

sake of simplicity. Note that the discussion in the remainder of this chapter can be easily

extended to different network topologies.

By defining the vector of stacked cluster centroids of each node i,

m̂i :=


mi,1

...

mi,k

 ∈ RK·ny , (8.6)

the consensus constraints can be rewritten as

m̂1 − m̂2 = 0, (8.7a)

m̂2 − m̂3 = 0, (8.7b)

...

m̂Ns−1 − m̂Ns = 0. (8.7c)

Constraints (8.7) can subsequently be rewritten in matrix form
I −I 0 · · · 0 0

0 I −I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · I −I


︸ ︷︷ ︸

=:A∈RK·ny·(Ns−1)×K·ny·Ns

·



m̂1

m̂2

m̂3

...

m̂Ns


= 0, (8.8a)

or in a more compact way ∑
i∈I

Aim̂i = 0 (8.9)

with Ai ∈ RK·ny·(Ns−1)×K·ny . By introducing dual variables for the consensus constraints

(8.9) the Lagrange function
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L(wijk, dijk,mik,λ) =
∑
i∈I

(∑
j∈Ji

∑
k∈K

dijk + λ
TAim̂i

)
︸ ︷︷ ︸

=:Li(wijk,dijk,mik,λ)

(8.10)

and subsequently, the dual function of the clustering problem (8.5) can be defined,

d(λ) := min
wijk,dijk,mik

∑
i∈I

Li(wijk, dijk,mik,λ), (8.11a)

s. t.
∑
k∈K

wijk = 1,∀i ∈ I, j ∈ Ji, (8.11b)

dijk ≥ ∥yj −mik∥22 −Mj · (1− wijk), ∀i ∈ I, j ∈ Ji, k ∈ K, (8.11c)

wijk ∈ {0, 1}, dijk ≥ 0, ∀i ∈ I, j ∈ Ji, k ∈ K,

mik ∈ Rny ∀, i ∈ I, k ∈ K. (8.11d)

The resulting dual problem can be solved in a distributed manner by solving the individual

clustering problems for the current value of the dual variables.

8.2.4 Averaging heuristic

The K-means clustering problem involves integrality constraints and is therefore noncon-

vex. While the (optimal) value of the dual function (8.11) provides a lower bound on

the optimal value of the primal problem (8.5), the feasibility of the primal problem is not

guaranteed upon the convergence of a dual decomposition-based algorithm, i.e., the con-

sensus constraints may not be satisfied. Nevertheless, in the case of K-means clustering it

is straightforward to compute a feasible primal solution using an averaging step. In each

iteration t of a dual decomposition-based algorithm, the coordinator communicates the

dual variables λ(t) to the nodes. The nodes in turn solve their clustering problems and

communicate their computed cluster centroids m̂i(λ
(t)) to the coordinator. Based on this

response the coordinator can compute the average of the primal variables, i.e., the average

cluster centroids,

mk(λ
(t)) =

1

Ns

∑
i∈I

mik(λ
(t)) (8.12)

which are then communicated back to the nodes. Using the mean cluster centroids the

nodes can compute their resulting primal objective value

zi(λ
(t)) =

∑
j∈J

min
k∈K
∥yj −mk(λ

(t))∥22. (8.13)

The primal objective value can be used to compute the relative duality gap in each itera-

tion,

rel. DG = 100 ·
(
1− d(λ(t))∑

i∈I zi(λ
(t))

)
. (8.14)
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Figure 8.4: Communication process between the coordinator and the nodes in iteration t.

Since the value of the dual function provides a lower bound on the optimal primal objective

value the relative duality gap can be used to assess the distance of a found solution to

the global optimum. The entire communication process between the coordinator and the

nodes is illustrated in Fig. 8.4. Note that the average cluster centroids are only used to

compute the duality gap. They do not influence the update of the dual variables.

8.2.5 Symmetry breaking constraints

The clustering problem (8.5) is highly symmetric, i.e., it contains solutions with the same

objective values. This is because the index assigned to a cluster does not influence the

objective function. Fig. 8.5 illustrates the situation of two symmetric solutions. This sym-

metry can lead to problems for the averaging heuristic presented in the previous section,

as the computed cluster centroids of a single node can switch from one iteration to the

next. For instance, while some points are assigned to cluster k in iteration t, they could

be assigned to cluster k′ in iteration t + 1 by switching the centroids of clusters k and k′

without affecting the objective.

To prevent this behavior symmetry breaking constraints are added to the optimization

problems of the nodes. In the first iteration, one of the nodes acts as the reference node,

providing reference centroids mref
k . In the subsequent iterations the quadratic constraint

∥mik −mref
k ∥22 ≤ ∥mik′ −mref

k ∥22,∀k, k′ ∈ K, (8.15)

is added to each node i. This ensures that cluster k of each node i will be the one closest to
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Figure 8.5: Example of symmetric clustering solutions. In the two cases, the data points

are assigned to different clusters without affecting the objective function.

the reference centroid mref
k . The choice of the node which provides the reference centroid

can be performed arbitrarily, as it does not affect the optimization of the other nodes.

Furthermore, the added constraint also does not affect the optimal objective value while

rendering all symmetric solutions, except for one, infeasible.

8.3 Numerical analysis for distributed clustering

problems

The dual decomposition-based distributed clustering approach was evaluated on a set of

benchmark problems of varying sizes. The data for each benchmark problem was generated

randomly. First, initial cluster centroids m0
k were generated, with [m0

k]l ∈ Uc(−1, 1), l =
1, . . . , ny. Then, for each cluster k five random data points were added within a radius of

0.5 from the generated centroid. The parameters of the benchmark problems were varied

as follows:

Number of nodes: Ns ∈ {2, 3, 4},

Number of dimensions: ny ∈ {2, 3, 4},

Number of clusters: K ∈ {3, 4}.

Five benchmark problems were generated for each combination of nodes, dimensions, and

clusters, resulting in a total of 90 benchmark problems. A benchmark problem is char-

acterized by its number of nodes, dimension of the data, and number of clusters. For

instance, problem 3N2D4K5 is the 5th benchmark problem comprised of 3 nodes with

2-dimensional data sorted into 4 clusters.

The benchmark problems were solved using the subgradient method, the bundle trust

method, and the quasi-Newton dual ascent algorithm. The use of ADMM was omitted for

several reasons. First, in each communication round a feasible primal solution is obtained

through the averaging heuristic (cf. Sec. 8.2.4). This primal solution does not correspond

to the current dual variables. Due to the nonconvexity of the underlying MIP problem, no
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Table 8.1: Parameter settings of the distributed optimization algorithms for the clustering

benchmark problems.

Value Description Algorithms

λ(0) 0 initial dual variables All

α(0) 0.5 initial step size/trust region parameter All

tmax 150 maximum number of iterations All

ϵp 10−2 primal residual convergence tolerance All

ϵDG 0.25 % relative duality gap tolerance All

ϵb 1 bundle cuts threshold QNDA

τ 50 allowed age of data points BTM, QNDA

B(0) −I initial approximated Hessian QNDA

guarantee can be made that the consensus constraints will be satisfied at the dual optimum.

This in turn means that the regularization term in ADMM might not vanish, which would

result in different objective values of the Lagrange function and the augmented Lagrange

function, leading to an overestimation of the dual value and a subsequent underestimation

of the duality gap, Second, the regularization of ADMM introduces a bias towards the

mean cluster centroids. Note that the averaging heuristic does not affect the iterations

of the other distributed optimization algorithms. It merely serves to compute a feasible

primal solution, i.e., an upper objective bound, in each iteration. Introducing a bias

towards the mean centroids in the solution of the clustering problems of the nodes would

result in a stagnation of the algorithm. For badly chosen regularization parameters all

nodes would converge towards the initial mean centroids, which is not the case in general

for the other algorithms. The QADA algorithm could also be used to solve the clustering

problem. However, the numerical tests showed that the BTM and QNDA algorithms are

already efficient enough to converge within the sampling phase of QADA. Its inclusion in

the results was therefore omitted.

The initial step size (SG)/ trust region (BTM, QNDA) parameter was set to α(0) = 0.5

and varied according to

α(t) = α(0)/
√
t. (8.16)

The bundle cuts for QNDA were used in every iteration, i.e., ϵb = 1 and τ = 50 points

were used to construct the bundle in BTM and the bundle cuts in QNDA respectively.

All algorithms were initialized with λ(0) = 0 and the initial approximated Hessian of the

QNDA algorithm was set to the negative identity matrix. The algorithms were terminated

either when the Euclidean norm of the primal residual

∥wp∥2 =

∥∥∥∥∥∑
i∈I

Aim̂i

∥∥∥∥∥
2

, (8.17)
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Table 8.2: Summary of the results for the distributed optimization of the clustering bench-

mark problems, t: mean number of iterations until termination, rel. DG: mean relative

duality gap upon termination (in %), Tcomp: mean computation time (in s).

Algorithm t rel. DG Tcomp

SG 136.75 2.27 996.28

BTM 57.44 1.86 515.77

QNDA 54.48 1.81 483.22

i.e., the violation of the consensus constraints, lied below a threshold of ϵp = 10−2 or when

the relative duality gap (8.14) reached a value of ϵDG = 0.25 %. The used parameters for

the different algorithms are summarized in Tab. 8.1. The MIQCP clustering problems of

all nodes were solved using the commercial solver Gurobi and the total computation time

was obtained through eq. (6.1), with Tcomm = 800 ms.

The results for the clustering benchmarks are summarized in Tab. 8.2. Out of the exam-

ined algorithms, QNDA shows the best performance in terms of the required number of

iterations and computation time as well as in terms of the achieved relative duality gap.

The BTM algorithm shows similar performance in terms of the number of iterations and

the achieved duality gap. However, in the case of distributed clustering, each iteration is

costly due to the underlying MIQCP problems. Therefore, a slight improvement in the

number of iterations results in a more substantial performance improvement in terms of

computation times. More detailed results for the clustering benchmarks are summarized

in Tab. C.5 in the appendix.

Fig. 8.6 shows the evolution of the relative duality gap for benchmark problem 2N2D4K3.

The subgradient method converges rather slowly. In comparison, the BTM and QNDA

algorithms exhibit a faster rate of convergence. Between these two algorithms, BTM

exhibits an oscillatory behavior before converging. In contrast, the QNDA algorithm does

not exhibit oscillations and therefore converges earlier. Additionally, it should be noted
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Figure 8.6: Evolution of the relative duality gap for benchmark problem 2N2D4K3.
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Figure 8.7: Exemplary clusters in different iterations of the QNDA algorithm for bench-

mark problem 2N2D4K3.

that the QNDA algorithm achieves a relative duality gap of 0 %, i.e., it converges to a

proven global optimum.

Fig. 8.7 provides some further illustrations of the results. Fig. 8.7a and Fig. 8.7b show the

results of the clustering in the first iteration, i.e., the individual global optima. Fig. 8.7c

and Fig. 8.7d depict the solutions upon the convergence of the QNDA algorithm. It can

be seen that each node computes the same cluster centroids corresponding to the globally

optimal solution for the entire data set, but not to the individual data sets. It is therefore

possible to compute a global model locally in each node while only accessing local data.

8.4 Comparison to the central solution

As shown in the previous section, solving the MIQCP clustering problems is computation-

ally expensive. This is due to the weak integer relaxation of problem (8.2), which means

that the solution of the relaxed problem within the branch-and-bound algorithm is far

away from the integer solution. This results in slow-moving relative integrality gaps and

slow convergence of the solution algorithm. While the main motivation of the distributed
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Figure 8.8: Evolution of the relative duality gap of QNDA compared to the relative inte-

grality gap of the central solution using Gurobi for benchmark problem 4N4D4K3.

clustering approach is the training of a global model without the exchange of local data,

it can also be used to efficiently solve larger clustering problems. Fig. 8.8 depicts the

evolution of the relative duality gap of the QNDA algorithm as well as the evolution of

the relative integrality gap of Gurobi for the complete data set of benchmark problem

4N4D4K3. The clustering problems of the individual nodes were solved sequentially in

the case of QNDA, also using Gurobi. While the relative gap of the central solution

improves very slowly, the QNDA algorithm quickly converges to a solution close to the

global optimum. Note, that both relative gaps prove a worst-case distance to the global

optimum. Hence, decomposing a large clustering problem into smaller subproblems and

coordinating the solutions via a distributed optimization algorithm can offer significant

performance improvements compared to a central solution.

8.5 Conclusion

This chapter demonstrated how dual decomposition-based distributed optimization can be

applied to the solution of clustering problems. The approach ensures privacy, i.e., enables

federated learning, as each node only has access to its local data. A global model can still

be obtained by coordinating the solutions of the individual clustering problems. Numerical

tests on a set of benchmark problems demonstrated that the QNDA algorithm outperforms

the subgradient method and the BTM algorithm. Furthermore, the distributed optimiza-

tion approach exhibited superior performance compared to a central solution approach.

In the future, the developed algorithms can also be applied to other federated learning

problems, like the distributed training of support vector machines (cf. Sec. 9.2.1). Addi-

tionally, they can be integrated into mixed-integer programming solvers to obtain tighter

lower bounds for problems with weak integer relaxations within the branch-&-bound al-

gorithm.
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9 Conclusion and Outlook

In the following, the thesis is summarized. Afterward, an extensive, but not exhaustive,

overview of potential future research directions is provided.

9.1 Summary

The goal of this thesis was the development of dual decomposition-based distributed op-

timization algorithms with improved rates of convergence compared to existing methods,

without the need of sharing confidential information of the subsystems. Many contri-

butions in the literature focus on distributed optimization of problems without individ-

ual constraints. This leads to a dual optimization problem that is convex, smooth, and

whose gradients can easily be computed in a distributed manner. Furthermore, the bulk

of research on dual decomposition-based distributed optimization has focused on convex

problems, which exhibit desirable properties like strong duality. However, real-world ap-

plications often exhibit more challenges, like individual constraints of the subproblems,

integrality constraints on certain variables, or general nonconvexities. These issues can

deteriorate the performance of distributed optimization approaches or limit their applica-

bility.

Within this thesis, two new efficient dual decomposition-based distributed optimization

algorithms were presented that aimed at addressing the aforementioned issues. Both are

based on the approximation of the dual function by a quadratic function. The quadrati-

cally approximated dual ascent (QADA) algorithm solves a regression problem based on

information collected from previous iterations to estimate the parameters of the quadratic

surrogate function. The quasi-Newton dual ascent (QNDA) algorithm updates the ap-

proximated Hessian of the dual function through a BFGS update. The update of the

dual variables for both algorithms is subject to step size constraints. In contrast to the

primal residual which was approximated in previous work based on quadratic surrogates,

the dual function is concave, regardless of the problem class of the primal optimization

problem. However, the dual function is usually nonsmooth, if the set of active individual

constraints changes. This nonsmoothness was addressed by constructing cutting planes

using subgradients from previous iterations and incorporating them into the update of the

dual variables as additional constraints.

Results for a large number of general benchmark problems showed the efficiency of the
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proposed algorithms. A remarkable result is that dual decomposition-based distributed

optimization algorithms can be used to speed up the solution of mixed-integer programs

where a centralized solution does not converge in reasonable amounts of time. This is

especially true for problems with weak continuous relaxations, e.g., due to a large number

of big-M constraints or general integrality constraints4. In such cases decomposing the

system-wide optimization problems leads to much more tractable subproblems and the re-

sulting dual problems yield a tighter lower bound than the continuous relaxations within

shorter computation times. While the QADA algorithm showed superior performance for

distributed MIQPs, the QNDA algorithm outperformed other state-of-the-art algorithms

for general distributed convex problems. For distributed QPs the QADA and QNDA algo-

rithms showed a similar performance, outperforming other algorithms. In addition to the

general benchmark problems, two potential applications for dual decomposition-based dis-

tributed optimization were presented. Distributed linear model predictive control (DMPC)

is an active field of research that can greatly benefit from more efficient distributed op-

timization algorithms. Dual decomposition is especially suited for problems where the

involved subproblems cannot share their system models and constraints. Another applica-

tion where data sovereignty is critical is machine learning. Here, distributed optimization

can be employed to compute a global model with subproblems only needing access to lo-

cal data. Some further applications of distributed optimization as well as some proposed

algorithmic improvements are briefly reviewed in the following section.

9.2 Future research

Future research can progress in two directions, applications, and algorithmic improve-

ments. Some suggestions are provided in the following sections.

9.2.1 Applications

This section briefly discusses how the DMPC approach for linear systems presented in

Chapter 7 can be applied to systems with nonlinear dynamics. Furthermore, the appli-

cation of dual decomposition-based distributed optimization in an industrial environment

in the case of demand-side management is discussed. A federated learning application

in the form of distributed training of support vector machines is also presented. Finally,

an approach to integrate distributed optimization into the parallelized solution of mixed-

integer nonlinear programming (MINLP) problems and an embedding in branch-&-bound

algorithms is proposed.

4In this case this refers to variables being able to take integer values other than 0 and 1.
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Distributed nonlinear model predictive control

Chapter 7 dealt with the distributed optimization of MPC problems with linear dynamics.

Industrial applications of MPC traditionally relied on linear or linearized dynamic models,

which leads to favorable properties of the underlying optimization problem, e.g., convexity.

However, the improved performance of nonlinear programming algorithms renders the

inclusion of nonlinear dynamics in the form of constraints a viable option, leading to

nonlinear MPC (NMPC) applications. In the case of subsystems with nonlinear dynamics

coupled through shared limited resources, distributed NMPC problems of the form

min
x0:Np ,u0:Np−1

∑
i∈I

[
Jfi (x

Np

i ) +

Np−1∑
k=0

Ji(x
k
i ,u

k
i )

]
, (9.1a)

s. t. xk+1
i = Fi(x

k
i ,u

k
i ), ∀i ∈ I, k = 0, . . . , Np − 1, (9.1b)

x0
i = x̃(t0), ∀i ∈ I, (9.1c)

xki ∈ Xi ⊂ Rnxi , ∀i ∈ I, k = 0, . . . , Np, (9.1d)

uki ∈ Ui ⊂ Rnui , ∀i ∈ I, k = 0, . . . , Np − 1, (9.1e)∑
i∈I

Ri(x
k
i ,u

k
i ) ≤ rkmax, k = 0, . . . , Np − 1, (9.1f)

can arise, with nonlinear and possibly nonconvex functions Fi : Rnxi × Rnui → Rnxi and

Ri : Rnxi ×Rnui → Rnr . Dual decomposition-based distributed optimization can generally

be applied to distributed NMPC problems, therefore the performance of the proposed

algorithms could be compared to existing methods. Naturally, challenges like nonconvexity

and the resulting duality gap have to be addressed in this case. However, these issues are

related to dual decomposition in general, not only to the proposed algorithms.

Distributed demand-side management

One of the most commonly shared limited resources is electricity, or, more generally,

energy. Due to the increased penetration of renewables into the electricity grid, both

consumers and producers of electricity have to become more flexible due to the resulting

variability in the available energy.

This variability can lead to an over-utilization of the available energy. An example is

depicted in Fig. 9.1, where two consumers connected to the same grid decentrally plan

their load profiles. However, due to the limited availability of electricity in the grid, con-

straints on the maximum load might be violated. Demand-side management (DSM) or

demand response (DR) refers to the ability of energy consumers to adapt their operations

according to the current availability of energy [SSS+16]. This availability is usually re-

flected by prices set by the grid operator. The goal is to incentivize consumers to operate

during periods of high availability and discourage them from operating when availability is

low. Dual decomposition-based distributed optimization can be applied to this price-based
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Figure 9.1: Example of two consumers with decentrally optimized load profiles. Due to

the lack of coordination, the total load violates the constraint on the maximum available

energy.

coordination mechanism, with the grid operator acting as the coordinator and the indi-

vidual consumers as the subproblems. An extensive overview of DSM is given by Zhang

and Grossmann [ZG16].

Yfantis et al. [YMB+22] proposed an architecture for distributed demand-side manage-

ment, which is depicted in Fig. 9.2, extending the approach of Motsch et al. [MDS+20].

The consumers are depicted as cyber-physical production systems (CPPS), each of which

executes its load control and scheduling by solving a mixed-intger programming prob-

lem. The planning functions receive actual energy prices from the grid and try to min-

imize their cost and makespan. Furthermore, a distributed controller in the form of a

dual decomposition-based distributed optimization algorithm is added to compute shadow

prices for the available energy, which serves to coordinate the individual CPPSs.

Distributed energy management can also be performed on the process control level, which

results in MPC problems similar to the ones examined in Chapter 7. For instance, Biegel et

al. [BAS+12] apply dual decomposition-based DMPC to congestion management in a grid.
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Figure 9.2: Proposed architecture for distributed demand-side management (from

[YMB+22] © 2022 IEEE).
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Figure 9.3: Example of distributed training of support vector machines linked by consensus

constraints.

The goal of the approach for the subsystems is to minimize the deviation from previously

contractually agreed load profiles. If coordination is performed on the planning level, the

main challenge becomes the presence of integrality constraints and the resulting large-scale

MIP problems. It was shown throughout this thesis that the proposed algorithms can be

used to distributedly solve MIP problems, hence their application to distributed DSM

problems can provide an interesting research application.

Distributed training of support vector machines

Chapter 8 showed how dual decomposition-based distributed optimization can be applied

to machine learning. In this thesis, clustering problems were examined, which constitute

unsupervised learning problems modeled as mixed-integer programs. In the future, the

proposed algorithms could be applied to other machine learning problems. An example

of a supervised learning problem that can be tackled by distributed optimization is the

training of support vector machines [MRT18]. The training task is to compute a normal

vector w and a bias term b of a hyperplane wTy+ b = 0, so that a set of data points yj is

classified according to their labels zj ∈ {−1, 1}. The training problem can be formulated

as a convex quadratic program [MRT18]

min
w,b

1

2
∥w∥22, (9.2a)

s. t. zj · (wTyj + b) ≥ 1, ∀j ∈ J . (9.2b)

If data is distributed across several nodes, as shown in Fig. 9.3, the individual problems

can be linked through consensus constraints, which can then be dualized [FCG11]. Since

problem (9.2) is convex, solving the dual problem also leads to a globally optimal primal

solution.
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Parallelization of convex MINLPs

It was shown in Chapters 6 and 8, that dual decomposition-based distributed optimiza-

tion can be used to speed up the solution of mixed-integer programs. In the case of

mixed-integer linear programs, powerful commercial solvers like Gurobi [Gur23], CPLEX

[IBM22] or Xpress [FIC22] enable the solution of problems with millions of variables and

constraints. Furthermore, they can also handle more complex problem classes, e.g., mixed-

integer quadratic programs (MIQP) or mixed-integer quadratically constrained quadratic

programs (MIQCQP), both with convex and nonconvex integer relaxations. However,

mixed-integer nonlinear programming (MINLP) problems are still very challenging to

solve. Kronqvist et al. [KBL+19] provide a survey of both open-source and commer-

cial MINLP solvers.

In some cases, it might be possible to take advantage of the structure of an MINLP

problem to apply dual decomposition-based distributed optimization. For instance, an

MINLP problem of the form

min
xi,yi

∑
i∈Ic

fi(xi) +
∑
i∈Id

cTi yi, (9.3a)

s. t.
∑
i∈Ic

Aixi +
∑
i∈Id

Aiyi ≤ b, (9.3b)

xi ∈ Xi ⊂ Rnxi , ∀i ∈ Ic, (9.3c)

yi ∈ Yi ⊂ Znyi , ∀i ∈ Id, (9.3d)

with continuous variables xi, integer variables yi, convex individual continuous objective

functions fi(xi), convex continuous constraints Xi and a compact polyhedral constraint

set Yi can be decomposed by introducing dual variables for the system-wide constraints

(9.3b). This would result in two types of subproblems, convex problems

min
xi

∑
i∈Ic

fi(xi) + λ
TAixi, (9.4a)

s. t. xi ∈ Xi ⊂ Rnxi , (9.4b)

and integer problems

min
yi

cTi yi + λ
TAiyi, (9.5a)

s. t. yi ∈ Yi ⊂ Znyi , (9.5b)

which can be solved in a distributed manner. Problem (9.3) is still nonconvex due to the

integrality constraints, hence strong duality does not apply. The value of the dual function

still provides a lower bound on the primal objective. A feasible primal solution, i.e., one

that satisfies the system-wide constraints, could be obtained by fixing the results yi(λ
(t))

of the MILP subproblems in each iteration t of the dual decomposition-based algorithm

and re-solving the resulting convex problem,
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min
xi∈Xi, ∀i∈Ic

∑
i∈Ic

fi(xi), (9.6a)

s. t.
∑
i∈Ic

Aixi ≤ b−
∑
i∈Id

Aiyi(λ
(t)). (9.6b)

Problem (9.6) is a convex problem that can be efficiently solved centrally, or distributedly

using dual decomposition, i.e., by using an inner distributed optimization loop within the

outer loop of problem (9.3). If a feasible primal solution is obtained, the resulting duality

gap can be used to assess its distance to the globally optimal solution. Parallelizing the

solutions of problems (9.4), (9.5) and (9.6) on the same machine can help to quickly find

a good warm-start solution for the central problem, including a cutting plane through the

lower bound obtained from the dual value. Naturally, convergence cannot be guaranteed

in this case. Therefore, extensive numerical tests can be used to validate the proposed

approach.

Embedding in branch-&-bound algorithms

The results in Sec. 8.4 showed that solving the dual problem can yield significantly tighter

bounds for MIP problems with weak continuous relaxation. Klostermeier et al. compared

the lower bounds computed by the subgradient method, BTM and QNDA to the best

bounds obtained in the search tree of three commercial MIP solvers [KYW+24]. They

especially examined the influence of the parallelization of the solution of the subproblems

on the performance of the dual decomposition-based distributed optimization algorithms.

A bound computed by the dual problem prior to solving the root node of the branch-

&-bound tree can be used in a termination criterion as long as the best bound from the

continuous relaxations is weaker. Furthermore, the bound can be used to assess the quality

of a heuristically computed feasible solution.

Another way to embed the presented algorithms into a branch-&-bound tree is by solving

the dual problem within a parent node to compute a lower bound on a potential feasible

solution in one of its child nodes. If an incumbent, i.e., a feasible solution, has already been

found within the tree it provides an upper bound on the objective of the global optimum

of the MIP problem (in case of a minimization problem). If the continuous relaxations of

the MIP are weak, solving the dual problem may provide a tighter bound within a node.

If the computed dual bound is larger than the incumbent’s objective value, the node can

be pruned from the search tree, as a potential feasible integer solution in this node or one

of its child nodes could not improve the incumbent. Note that the bounds added to the

nodes of the search tree by branching do not affect the separability of the problem. Thus,

if the structure of the problem allows for it, the solution of the dual problem within a node

is highly parallelizable.
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Figure 9.4: Illustration of the pruning of a node in the branch-&-bound tree due to a

bound computed by a dual decomposition-based algorithm.

9.2.2 Algorithmic improvements

While the QADA and QNDA algorithms showed good performance in the conducted

numerical experiments, there is still potential for improvement. Some suggestions are

made in the following sections.

Combination of QADA and QNDA

The two algorithms were combined in this thesis by using the QNDA algorithm as an

initialization within the sampling phase of the QADA algorithm. Some benchmark prob-

lems showed, that while QADA converged quickly to the vicinity of the optimum, many

iterations were needed to finally converge to that optimum. In these instances, QNDA ex-

hibited a more robust behavior while requiring more iterations to reach the vicinity of the

optimum. The benefits of both algorithms could be exploited by switching back to QNDA

updates, once the QADA algorithm has quickly reached the vicinity of the optimum.

A drawback of the QADA algorithm is the long sampling phase. In total nreg,min iterations

are required to perform a regression. A regression problem could be solved before the

necessary number of data points have been collected, which would however lead to an

underdetermined system. One way to compute a surrogate quadratic function without

sufficient sampling points could be to use a convex combination of the approximations

computed by QNDA and by the underdetermined regression of QADA,

d(λ) ≈ β · dQ(λ) + (1− β) · dB(λ), β ∈ [0, 1]. (9.7)

As more sampling points are added, the parameter β could be gradually increased.
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Predictor-Corrector approach

Both the QADA and QNDA algorithms compute an approximation of the dual function

in each iteration. This surrogate dual function is then used to update the dual variables.

After the dual variables have been updated and sent to the subproblems, the coordinator

receives back the actual dual function value corresponding to the previously computed

dual variables. The deviation of the actual dual value from the predicted dual value could

be used as additional information to improve the approximation in the next iterations

within a predictor-corrector-type approach.

Enforced negative definiteness

Depending on the data used for the approximation, both QADA and QNDA can yield a

nonconvex surrogate dual function. This not only deteriorates the quality of the approxi-

mation since the underlying dual function is always concave but also renders the update

step computationally expensive due to the resulting nonconvex problem. In the case of

QADA, this situation could be avoided by solving the regression problem as a semi-definite

program and adding constraints on the definiteness of the approximated Hessian. In the

case of QNDA, negative definiteness can be enforced by adding a regularization term to

the BFGS-update, which would necessitate further tuning parameters [EMR16, EMR17],

or by computing the approximated Hessian via an update of its Cholesky factorization

[Pow87].

Sparsity

The network topology of the distributed optimization problem, i.e., the sparsity structure

of the system-wide constraint matrix A influences the structure of the dual function.

Plant 1 Plant 2 Plant 4Plant 3

[r]1 [r]2 [r]3

Figure 9.5: Example of a resource network with a sparsity structure.

Consider the resource network depicted in Fig. 9.5, consisting of 4 plants (subproblems)

connected through 3 shared limited resources. For the sake of simplicity, each plant i in-

cludes a single decision variable and minimizes x2i . The system-wide optimization problem

(without individual constraints) can be formulated as
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min
x1,...,x4

4∑
i=1

x2i , (9.8a)

s. t.
4∑
i=1

Aixi = b. (9.8b)

In the depicted examples the individual constraint matrices are

A1 =

10
0

 , A2 =

 1

−1
0

 ,A3 =

 0

1

−1

 ,A4 =

00
1

 (9.9)

which results in a sparse matrix for the system-wide constraints

A = [A1,A2,A3,A4] =

1 1 0 0

0 −1 1 0

0 0 −1 1

 . (9.10)

The system-wide objective matrix H of problem (9.8) is the identity matrix. Computing

the dual function of problem (9.8) results in the following Hessian:

Q = −AHAT = −AIAT =

−2 1 0

1 −2 1

0 1 −2

 . (9.11)

Note that [Q]1,3 = [Q]3,1 = 0 holds. This shows that the prices for resources 1 and 3 are

uncorrelated. This is because resource 1 is only connected to plants 1 and 2 and resource

3 only to plants 3 and 4, i.e., due to the structure of the network topology.

By exploiting the sparsity structure of the network the number of required sampling points

can be reduced in the case of QADA. The number of required sampling points is equal to

the number of unknown parameters in the quadratic surrogate function. If dual variables

are not correlated, the corresponding parameter has to be equal to 0. Therefore, for each

pair of uncorrelated dual variables, one fewer sampling point is needed. This can signif-

icantly enhance the performance of the QADA algorithm for specific network structures.

Note that this kind of sparse topology was used in Chapter 8 and is often encountered in

machine learning applications.

9.3 Practical considerations

Wenzel [Wen20] and Maxeiner [Max21] discuss different practical and organizational bar-

riers and issues related to dual decomposition-based distributed optimization in the con-

text of the coordination of interconnected production systems. These issues include legal

aspects regarding cross-entity and cross-company information exchange, availability of

suitable models and algorithms, willingness and economic incentives to implement novel
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coordination schemes, and trust in and fairness of the distributed optimization approach.

The interested reader is referred to [Wen20] and [Max21] and the references therein. In

the following, some related practical issues are discussed from a mathematical point of

view.

Problem class

As shown throughout this thesis the problem class plays an essential role in dual

decomposition-based distributed optimization. The most important property is the con-

vexity of the system-wide optimization problem. To successfully apply distributed opti-

mization, the coordinator must possess information on the problem classes of the individual

subproblems. If all subproblems are convex, the coordinator can run a dual decomposition-

based algorithm until the primal residual vanishes and the global system-wide optimum

is found. However, if some or all of the subproblems are nonconvex, e.g., MIP problems,

the primal residual might not vanish, even at the dual optimum. In this case, the coor-

dinator needs to apply heuristics or perform contractions of the system-wide constraints.

Hence, information on the class of the system-wide problem is required to apply dual

decomposition-based distributed optimization.

Global optimality of the subproblems

Throughout this thesis, all subproblems in each benchmark problem were solved to global

optimality. In the case of convex problems (QP, general convex, and DMPC benchmarks),

a found locally optimal solution is also globally optimal. The considered nonconvex prob-

lems (MIQP and clustering benchmark problems) can be solved to (provable) global opti-

mality using the branch-and-cut algorithms of commercial MIP solvers like Gurobi. Ob-

taining the global optimum of the subproblems is essential due to the definition of the

dual function (Def. 12)

d(λ) := inf
xi∈Xi,∀i∈I

L(xi,λ). (2.28)

The dual function is defined as the infimum of the Lagrange function, i.e., as the largest

lower bound. If some of the subproblems compute a suboptimal solution x◦
i with

Li(x◦
i ,λ) > Li(x∗

i ,λ), (9.12)

the resulting computed dual value would overestimate the actual dual value

d(λ) <
∑
i∈I

Li(x◦
i ,λ), (9.13)

resulting in incorrect values of the duality gap. This issue is especially relevant for non-

convex problems. While the dual function is still concave and proves a lower bound on

the primal objective value of a nonconvex problem, it might not be possible to compute

the required dual values if the subproblems are not solved to global optimality.
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Figure 9.6: Evolution of the optimal solutions of two subsystems in (9.14) for varying

weight parameters.

The objectives considered in this thesis are called utilitarian social welfare objectives

[SZ19]. The underlying assumption is that all involved subproblems weight their objectives

according to their actual goals, which requires a certain level of fairness. For instance,

consider the optimization problem

min
x1,x2

θ · (x1 − 5)2 + (x2 − 3)2, (9.14a)

s. t. x1 + x2 ≤ 6, (9.14b)

where two subsystems compete for limited resources, e.g., to satisfy their demand. The

objective function of the first subsystem is weighed by the parameter θ. For θ = 1 the

solution to this problem is x∗1 = 4 and x∗2 = 2, which shows a compromise that both

systems deviate from their target by the same amount. However, if the first subsystem

artificially increases the weight parameter θ it prioritizes its demand satisfaction compared

to the second subsystem. The weight does not influence the solution of a problem con-

taining only a single objective function, apart from possible numerical issues. However,

in a distributed optimization setting this would lead the coordinator to steer the price of

the shared resource favorably toward the first subsystem. The resulting optimal values

for increasing values of θ are depicted in Fig. 9.6. To successfully apply distributed opti-

mization in an industrial setting a certain level of fairness has to be guaranteed, e.g., the

subsystems should not artificially prioritize their objectives by increasing their weights.

9.4 Conclusion

Throughout this thesis, the potential of dual decomposition-based distributed optimiza-

tion was demonstrated for a large set of benchmark problems and applications. While
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the proposed algorithms showed significant performance improvements compared to other

state-of-the-art algorithms, room for further improvements still exists. In addition to

the numerical benchmarks, validation through real-world experiments is necessary for the

adoption of distributed optimization. Industrial demonstrator platforms, like the ones

provided by the SmartFactoryKL, are well suited to conduct further research on the appli-

cability and benefits of distributed optimization.5 Finally, it should always be kept in mind

that the underlying distributed optimization algorithms are only one part of a much larger

required framework. The availability of efficient communication channels, suitable system

architectures, hardware for the execution of control actions, etc., as well as previously

discussed organizational issues are all of similar importance for the successful applica-

tion of distributed optimization or even optimization in general. The goal of this thesis

could therefore be described as adding one piece towards the completion of this puzzle

and contributing to a future in which methods for the solution of large constraint-coupled

problems are readily available.

5https://smartfactory.de/ (last visited 25.04.2023)

https://smartfactory.de/
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Appendix

A Used software

Software Version Use

Gurobi 9.0.3 Solution of LP, QP and MIP problems

Julia 1.5.4 Programming language

Matlab R2020a Calling of the NAPS algorithm (implemented by Wenzel [Wen20])

Julia Package Version Use

JuMP.jl 0.21.10 Julia mathematical programming package

Gurobi.jl 0.9.14 Julia wrapper for the Gurobi optimizer

Ipopt.jl 0.7.0 Julia wrapper for the IPOPT solver

MATLAB.jl 0.8.2 Calling of Matlab functions

Distributions.jl 0.24.18 Computation of random numbers

Gadfly.jl 1.3.3 Plotting

Cairo.jl 1.0.5 Plotting

Fontconfig.jl 0.4.0 Plotting

LaTeXStrings.jl 1.2.1 Plotting

DataFrames.jl 1.1.1 Data storage and manipulation

XLSX.jl 0.7.8 Julia connection to Microsoft Excel

JLD2.jl 0.4.15 Exporting of benchmark problems

FileIO.jl 1.11.2 Reading of external files
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B Benchmark problems

All benchmark problems used throughout this thesis are available on GitHub:

Generic problems:

https://github.com/VaYf/EJCOMP_Benchmark_Problems

DMPC problems:

https://github.com/VaYf/DMPC-Benchmark-Problems

Clustering problems:

https://github.com/VaYf/Clustering-Benchmark-Problems

https://github.com/VaYf/EJCOMP_Benchmark_Problems
https://github.com/VaYf/DMPC-Benchmark-Problems
https://github.com/VaYf/Clustering-Benchmark-Problems
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C Summaries of computational results

C.1 Distributed QP problems

Table C.1: Results for the distributed optimization of the QP benchmark problems (mean

values of the converged instances only), t: mean number of iterations until convergence,

∥wp∥2: mean primal residual of converged runs (×10−3), Tcomp: mean computation time

of converged runs (in s), %c: percentage of converged runs within tmax iterations.

SG ADMM

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 384.74 9.88 308.36 16.83 179.55 6.81 145.54 82.3

(2, 2) 488.0 9.96 390.71 2 19.88 6.6 15.92 100

(4, 2) 435.6 9.93 348.76 10 32.22 5.93 25.81 100

(4, 3) – – – 0 44.62 5.73 35.75 100

(4, 4) – – – 0 49.22 6.14 39.43 100

(8, 2) 335.67 9.93 268.76 6 37.32 6.25 29.9 100

(8, 3) 344.0 9.98 275.45 2 57.84 6.28 46.33 100

(8, 4) – – – 0 69.96 6.41 56.05 100

(8, 5) – – – 0 80.42 5.29 64.43 100

(8, 6) – – – 0 97.48 5.58 78.14 100

(8, 7) – – – 0 117.02 5.25 93.83 100

(8, 8) – – – 0 143.42 4.34 115.02 100

(16, 2) 307.14 9.85 245.96 14 45.26 7.55 36.26 100

(16, 3) – – – 0 57.78 8.22 46.29 100

(16, 4) – – – 0 76.16 8.61 61.02 100

(16, 5) – – – 0 90.02 8.22 72.14 100

(16, 6) – – – 0 112.88 7.09 90.52 100

(16, 7) – – – 0 130.1 7.56 104.37 100

(16, 8) – – – 0 132.5 7.18 106.31 100

(16, 9) – – – 0 162.78 6.66 130.64 100

(16, 10) – – – 0 169.2 6.38 135.8 100

(32, 2) 407.57 9.9 326.43 14 62.68 7.98 50.24 100

(32, 3) 384.0 9.74 307.54 4 68.76 8.68 55.13 100

(32, 4) – – – 0 70.06 8.92 56.15 100

(32, 5) – – – 0 90.48 9.05 72.55 100

(32, 6) – – – 0 117.22 9.12 94.06 100

(32, 7) – – – 0 119.48 9.05 95.91 100

(32, 8) – – – 0 140.3 8.96 112.66 100

Continued on next page
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SG ADMM

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(32, 9) – – – 0 158.14 9.28 127.01 100

(32, 10) – – – 0 175.53 9.09 141.04 98

(64, 2) 269.73 9.81 216.11 30 119.82 7.55 96.14 100

(64, 3) 401.6 9.91 321.79 10 167.74 7.27 134.71 100

(64, 4) 232.0 9.94 185.91 2 154.4 7.12 124.04 96

(64, 5) 462.0 9.9 370.21 2 180.18 7.74 144.85 100

(64, 6) – – – 0 184.04 7.15 148.13 98

(64, 7) – – – 0 160.06 8.19 128.85 100

(64, 8) – – – 0 173.29 8.74 139.54 98

(64, 9) – – – 0 154.56 9.21 124.49 100

(64, 10) – – – 0 165.35 9.76 133.2 98

(128, 2) 336.5 9.74 269.66 60 195.11 6.21 156.95 94

(128, 3) 357.54 9.86 286.51 26 265.8 5.87 214.33 82

(128, 4) 396.5 9.89 317.75 16 297.69 6.26 240.2 78

(128, 5) 483.0 9.85 387.09 2 329.59 5.98 266.25 64

(128, 6) – – – 0 363.05 4.86 293.65 42

(128, 7) 430.5 9.91 345.11 4 388.74 4.2 314.79 38

(128, 8) – – – 0 393.42 5.29 318.96 24

(128, 9) – – – 0 379.73 5.41 308.82 22

(128, 10) – – – 0 347.78 5.51 283.17 18

(256, 2) 264.78 9.75 212.3 72 285.66 4.99 233.81 76

(256, 3) 346.23 9.87 277.61 52 309.54 4.76 254.01 56

(256, 4) 367.05 9.87 294.31 40 332.08 4.94 272.93 24

(256, 5) 413.67 9.9 331.73 18 365.67 4.16 301.43 24

(256, 6) 444.2 9.9 356.26 10 449.0 6.89 370.87 8

(256, 7) 356.5 9.92 285.94 4 446.5 4.47 369.52 4

(256, 8) 487.0 9.83 390.68 2 358.0 4.02 296.67 2

(256, 9) 483.0 9.93 388.06 2 0

(256, 10) – – – 0 – – – 0

BTM QAC

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 196.95 7.47 160.07 95.11 199.24 2.15 167.73 57.32

(2, 2) 90.24 5.68 72.7 100 71.59 1.7 59.78 98

(4, 2) 79.78 5.78 64.28 100 59.35 0.12 49.52 98

(4, 3) 146.82 6.52 118.31 100 133.77 0.61 111.15 88

(4, 4) 177.52 6.85 143.1 100 172.55 0.73 142.92 84

Continued on next page
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BTM QAC

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(8, 2) 65.1 6.33 52.45 100 61.18 0.13 50.89 100

(8, 3) 112.74 7.07 90.85 100 114.68 0.59 95.07 88

(8, 4) 167.06 6.99 134.69 100 198.28 0.57 164.05 72

(8, 5) 185.76 7.56 149.77 100 187.36 0.3 154.64 50

(8, 6) 239.9 7.45 193.63 98 232.47 1.18 191.63 38

(8, 7) 268.96 7.47 217.47 94 267.89 1.12 220.67 18

(8, 8) 320.42 7.46 260.22 86 283.17 1.59 233.67 12

(16, 2) 70.36 6.04 56.7 100 48.09 0.61 39.89 92

(16, 3) 103.48 6.96 83.39 100 90.12 0.18 74.5 82

(16, 4) 140.16 6.74 112.99 100 173.22 0.53 142.89 64

(16, 5) 177.34 8.02 143.0 100 212.15 1.27 174.71 54

(16, 6) 233.92 7.69 188.8 100 300.0 1.21 246.79 24

(16, 7) 246.31 7.81 199.12 96 262.0 4.5 215.46 8

(16, 8) 303.51 7.77 246.35 94 329.0 4.63 271.44 4

(16, 9) 356.37 7.77 291.76 92 412.0 0.0 342.64 2

(16, 10) 383.29 7.95 319.84 82 – – – 0

(32, 2) 65.5 6.16 52.8 100 42.54 0.21 35.13 92

(32, 3) 96.04 7.12 77.4 100 84.18 0.63 69.35 80

(32, 4) 130.08 7.12 104.88 100 143.88 1.45 118.33 82

(32, 5) 166.04 7.68 133.9 100 248.36 1.41 204.51 56

(32, 6) 207.43 8.06 167.42 98 253.23 0.85 208.03 26

(32, 7) 237.71 7.7 192.17 96 412.5 3.98 339.07 8

(32, 8) 291.64 7.82 236.7 100 244.0 – 201.09 2

(32, 9) 328.81 8.04 268.97 94 – – – 0

(32, 10) 352.24 8.09 292.34 92 – – – 0

(64, 2) 55.82 6.16 45.01 100 45.31 0.59 41.39 96

(64, 3) 80.36 6.73 64.82 100 85.67 1.21 77.27 90

(64, 4) 116.08 7.37 93.65 98 139.49 2.05 124.65 82

(64, 5) 155.72 7.76 125.68 100 220.75 1.68 197.5 48

(64, 6) 204.92 7.63 165.55 100 359.5 4.08 320.61 32

(64, 7) 225.84 7.91 182.7 98 429.0 5.58 381.52 8

(64, 8) 268.52 8.05 217.97 92 – – – 0

(64, 9) 297.57 8.19 243.03 98 – – – 0

(64, 10) 327.05 7.87 270.27 88 – – – 0

(128, 2) 47.18 6.18 38.05 100 33.55 0.91 27.63 98

(128, 3) 71.42 7.06 57.59 100 74.86 1.84 61.54 100

Continued on next page
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BTM QAC

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(128, 4) 107.2 7.74 86.48 100 144.81 3.16 119.0 84

(128, 5) 150.42 7.74 121.39 100 255.65 3.19 209.99 74

(128, 6) 184.9 7.95 149.3 100 317.08 3.64 260.34 26

(128, 7) 228.14 8.17 184.49 98 447.43 6.88 367.6 14

(128, 8) 270.06 8.21 219.05 94 – – – 0

(128, 9) 302.5 8.15 246.89 84 – – – 0

(128, 10) 328.77 8.44 271.64 86 – – – 0

(256, 2) 47.62 7.05 38.44 100 30.66 1.65 27.41 94

(256, 3) 79.18 6.99 63.92 100 65.47 3.01 53.86 68

(256, 4) 115.52 7.21 93.27 96 136.28 3.63 120.78 80

(256, 5) 161.58 8.1 130.5 96 214.71 4.14 189.67 68

(256, 6) 213.37 8.17 172.5 92 374.73 5.77 330.63 30

(256, 7) 275.6 8.2 223.0 90 354.0 7.29 311.04 8

(256, 8) 311.61 8.13 252.73 76 – – – 0

(256, 9) 317.19 8.61 258.52 62 – – – 0

(256, 10) 340.5 8.78 281.28 56 – – – 0

QADA-SG QADA-BTM

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 133.49 3.31 139.5 96.46 128.10 3.26 135.22 96.96

(2, 2) 92.1 1.48 94.36 98 79.29 1.16 81.5 98

(4, 2) 62.96 0.83 63.07 98 54.2 0.69 54.53 100

(4, 3) 98.19 0.84 94.21 96 83.78 1.0 80.78 100

(4, 4) 103.83 0.84 98.74 96 99.24 0.65 94.21 98

(8, 2) 55.68 0.34 54.11 100 50.18 0.75 49.0 100

(8, 3) 70.14 0.77 66.6 98 74.5 0.97 71.98 96

(8, 4) 102.63 2.0 96.3 98 90.65 1.52 85.24 96

(8, 5) 107.82 1.72 99.41 100 101.38 1.58 94.36 100

(8, 6) 135.53 2.73 126.11 98 126.63 3.07 118.89 98

(8, 7) 178.96 3.0 172.32 96 166.5 2.12 161.86 96

(8, 8) 217.6 2.75 219.73 94 204.39 2.61 207.13 92

(16, 2) 46.83 0.29 44.31 96 38.9 0.98 36.99 98

(16, 3) 72.41 1.4 68.11 98 77.4 1.04 73.76 100

(16, 4) 90.72 1.85 84.46 100 87.06 2.26 80.52 100

(16, 5) 106.08 3.24 96.94 100 99.9 2.19 92.27 100

(16, 6) 147.48 3.12 137.22 100 140.04 3.15 130.28 100

(16, 7) 181.55 4.18 174.51 94 169.7 3.15 163.62 92

Continued on next page
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QADA-SG QADA-BTM

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(16, 8) 203.02 4.0 203.03 92 191.09 4.52 189.8 92

(16, 9) 266.65 4.23 283.6 98 254.27 3.48 272.58 96

(16, 10) 298.77 4.33 347.32 86 287.04 4.55 331.77 90

(32, 2) 46.56 0.91 43.19 100 38.42 0.82 35.46 100

(32, 3) 62.56 1.89 58.2 100 57.86 1.16 54.2 98

(32, 4) 75.53 2.66 69.08 98 68.57 3.03 62.98 98

(32, 5) 118.35 4.32 107.45 96 105.58 3.75 96.52 96

(32, 6) 138.91 3.02 129.05 92 133.7 3.56 123.52 94

(32, 7) 169.02 3.28 160.11 96 164.98 3.43 158.62 96

(32, 8) 198.66 3.84 198.02 100 200.6 3.12 198.95 100

(32, 9) 241.02 3.83 255.18 92 229.2 4.03 243.75 90

(32, 10) 270.86 4.87 307.4 88 263.07 4.28 303.17 92

(64, 2) 31.62 1.02 43.44 100 33.58 1.55 44.82 100

(64, 3) 49.58 1.94 71.2 100 51.44 1.0 73.93 100

(64, 4) 69.34 3.83 93.72 94 68.62 3.43 94.95 96

(64, 5) 110.73 3.04 144.17 98 101.2 3.72 135.79 98

(64, 6) 130.98 4.59 174.69 98 121.0 4.6 160.05 98

(64, 7) 160.73 4.85 221.55 96 150.56 4.47 212.24 100

(64, 8) 187.64 4.01 246.8 90 183.59 4.49 257.16 92

(64, 9) 211.48 4.66 223.92 96 207.84 5.44 223.83 98

(64, 10) 248.17 5.04 285.49 96 243.56 5.43 282.29 96

(128, 2) 29.16 1.02 26.11 100 25.9 1.75 23.48 100

(128, 3) 56.67 1.64 52.49 98 40.96 1.77 38.04 98

(128, 4) 67.94 4.62 60.51 98 68.24 3.34 62.19 100

(128, 5) 91.12 4.59 81.62 100 88.96 4.44 80.45 100

(128, 6) 120.16 4.17 109.3 98 118.29 5.03 109.91 98

(128, 7) 155.96 5.05 150.04 94 151.77 6.01 146.24 96

(128, 8) 176.44 5.64 174.09 96 180.35 5.16 180.84 98

(128, 9) 216.81 5.78 229.86 96 216.63 5.68 232.67 98

(128, 10) 258.61 4.93 292.52 92 254.94 4.75 294.96 94

(256, 2) 24.26 2.26 31.32 100 24.92 2.11 31.03 100

(256, 3) 44.76 3.11 40.82 98 40.41 3.26 37.57 98

(256, 4) 64.12 4.62 57.22 100 63.68 5.26 57.08 100

(256, 5) 89.23 4.97 80.8 96 86.22 4.88 77.67 98

(256, 6) 111.79 5.25 104.01 94 109.28 4.76 102.81 92

(256, 7) 136.79 6.07 130.12 94 137.23 5.16 131.69 94

Continued on next page
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QADA-SG QADA-BTM

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(256, 8) 181.6 5.34 184.46 96 181.83 5.65 184.45 96

(256, 9) 223.89 5.85 240.29 94 228.23 6.11 248.18 94

(256, 10) 265.65 5.18 309.53 92 256.17 4.45 299.57 92

QADA-QNDA QNDA

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 127.23 3.29 135.47 96.57 134.31 3.94 126.4 98.5

(2, 2) 73.71 1.32 76.14 98 114.79 1.81 110.15 96

(4, 2) 58.92 0.88 59.72 100 107.0 1.24 98.03 100

(4, 3) 88.22 1.13 85.64 100 162.68 3.05 147.07 88

(4, 4) 99.66 0.85 93.68 100 183.33 2.89 161.29 98

(8, 2) 48.82 0.6 48.29 100 67.62 2.03 58.86 100

(8, 3) 66.49 0.58 63.23 98 113.92 3.72 98.82 96

(8, 4) 86.49 1.38 81.01 98 162.72 3.45 143.16 100

(8, 5) 105.98 1.52 99.51 98 158.6 3.8 138.52 100

(8, 6) 125.84 2.09 118.4 98 196.5 4.65 174.04 100

(8, 7) 171.27 2.07 165.87 98 209.17 4.44 184.88 96

(8, 8) 208.91 3.68 210.65 92 249.43 5.49 224.42 94

(16, 2) 52.8 1.23 49.9 98 55.67 2.3 47.84 98

(16, 3) 72.73 1.08 69.9 98 93.02 3.35 80.1 100

(16, 4) 81.64 1.69 75.68 100 118.66 4.09 102.81 100

(16, 5) 102.96 3.26 95.29 100 139.9 4.25 121.31 100

(16, 6) 135.53 3.31 126.33 98 184.63 4.34 161.44 98

(16, 7) 168.29 3.9 164.59 90 175.94 5.46 157.71 98

(16, 8) 193.8 3.81 194.65 92 215.06 4.65 194.23 100

(16, 9) 248.6 4.25 266.73 96 241.82 5.34 224.1 100

(16, 10) 273.55 5.2 317.29 84 273.83 4.82 259.13 92

(32, 2) 47.54 0.87 44.06 100 56.96 2.8 49.13 100

(32, 3) 63.46 1.53 59.4 100 84.42 3.46 73.24 100

(32, 4) 73.53 1.82 67.76 98 104.52 2.86 90.92 100

(32, 5) 103.4 3.13 94.43 96 124.96 4.14 108.99 98

(32, 6) 127.04 2.97 117.49 92 139.69 4.78 123.51 98

(32, 7) 162.69 3.17 156.72 96 165.2 4.27 147.07 98

(32, 8) 194.74 3.45 194.06 100 200.04 4.73 181.42 100

(32, 9) 225.04 3.84 240.13 90 206.24 4.2 191.17 98

(32, 10) 260.49 5.3 302.28 94 217.28 5.3 206.8 100

(64, 2) 31.08 1.16 42.06 100 51.02 2.25 60.07 100

Continued on next page
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QADA-QNDA QNDA

QP t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(64, 3) 50.65 1.79 78.23 98 63.92 2.81 78.38 100

(64, 4) 71.19 2.61 101.98 96 87.51 3.97 105.08 98

(64, 5) 98.82 4.44 131.8 98 106.36 4.09 129.2 100

(64, 6) 116.65 4.06 156.17 98 126.41 3.71 154.4 98

(64, 7) 157.96 4.76 231.93 98 141.68 4.6 178.34 100

(64, 8) 180.93 4.5 249.15 90 165.38 5.51 197.14 94

(64, 9) 206.29 5.01 223.49 98 176.47 5.31 164.97 98

(64, 10) 240.42 4.63 279.79 96 193.42 4.65 183.88 100

(128, 2) 28.78 1.76 26.24 100 36.2 2.12 31.54 100

(128, 3) 44.4 2.08 41.81 100 53.04 2.8 46.94 100

(128, 4) 64.8 3.81 59.89 98 72.96 3.84 64.4 100

(128, 5) 88.72 4.96 81.46 100 101.54 4.19 90.49 100

(128, 6) 107.71 4.67 100.64 98 104.16 4.8 93.86 100

(128, 7) 137.64 5.93 133.35 90 128.54 4.89 116.57 100

(128, 8) 179.18 5.22 181.73 98 148.16 4.74 136.43 100

(128, 9) 214.43 4.8 232.81 98 159.65 4.91 151.1 98

(128, 10) 251.77 5.29 294.71 94 179.27 4.34 172.01 98

(256, 2) 23.52 2.44 30.01 100 33.42 2.4 40.75 100

(256, 3) 51.31 3.92 49.09 98 50.52 3.11 45.01 100

(256, 4) 72.76 4.52 67.19 100 69.56 4.33 63.65 100

(256, 5) 86.71 4.95 79.88 98 84.71 4.14 77.23 98

(256, 6) 107.24 4.51 102.95 92 98.55 3.94 90.51 98

(256, 7) 138.79 6.7 138.27 94 119.44 4.14 111.61 96

(256, 8) 172.15 4.65 179.9 92 138.16 4.21 131.36 98

(256, 9) 218.28 5.79 238.54 92 148.18 4.9 145.65 100

(256, 10) 260.3 5.52 314.51 92 159.38 4.22 157.88 96
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C.2 Distributed MIQP problems

Table C.2: Results for the distributed optimization of the MIQP benchmark problems

(mean values of the converged instances only), t: mean number of iterations until con-

vergence, rel. DG: mean relative duality gap of converged runs (in %) , Tcomp: mean

computation time of converged runs (in s), %c: percentage of converged runs within tmax

iterations.

SG ADMM

MIQP t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 86.69 1.66 69.88 99.5 25.06 2.22 21.16 100

(100, 2) 58.1 0.78 46.73 100 23.4 1.11 18.95 100

(100, 3) 73.4 1.65 59.11 100 21.2 1.69 17.15 100

(100, 4) 60.7 4.81 48.85 100 23.5 5.2 19.24 100

(100, 5) 51.6 9.76 41.61 100 22.7 10.09 18.43 100

(200, 2) 113.33 0.35 90.94 90 25.6 1.08 20.8 100

(200, 3) 66.6 0.84 53.5 100 24.5 1.06 20.07 100

(200, 4) 146.5 2.9 118.08 100 23.7 3.91 19.66 100

(200, 5) 65.1 2.97 52.54 100 23.2 3.61 19.11 100

(300, 2) 129.9 0.31 104.55 100 27.0 0.88 22.31 100

(300, 3) 66.2 0.58 53.34 100 25.4 0.79 21.19 100

(300, 4) 71.2 1.25 57.54 100 24.3 1.49 20.39 100

(300, 5) 61.1 1.56 49.37 100 24.7 1.82 20.82 100

(400, 2) 89.4 0.13 72.04 100 28.4 0.59 23.93 100

(400, 3) 165.2 0.76 133.14 100 26.9 2.26 23.16 100

(400, 4) 77.0 1.06 62.28 100 25.4 1.99 21.89 100

(400, 5) 54.3 1.17 43.94 100 24.2 1.63 21.03 100

(500, 2) 170.3 0.16 137.18 100 29.9 1.17 25.84 100

(500, 3) 58.9 0.28 47.55 100 26.3 0.57 23.37 100

(500, 4) 76.4 0.63 61.81 100 25.6 1.31 22.85 100

(500, 5) 78.5 1.21 63.56 100 25.4 2.08 22.97 100

BTM QAC

MIQP t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 80.52 1.66 65.41 100 59.4 2.13 52.83 86.0

(100, 2) 29.3 0.81 23.72 100 63.0 0.03 56.64 20

(100, 3) 66.1 1.67 53.59 100 81.0 1.66 71.81 60

(100, 4) 98.7 4.71 80.04 100 82.14 4.49 74.82 70

(100, 5) 124.0 9.64 100.67 100 55.6 11.16 47.98 100

(200, 2) 57.6 0.5 46.54 100 101.17 0.44 92.76 60

Continued on next page
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BTM QAC

MIQP t rel. DG Tcomp %c t rel. DG Tcomp %c

(200, 3) 57.6 0.86 46.56 100 95.5 0.92 85.42 100

(200, 4) 157.5 2.98 127.89 100 59.22 4.91 52.42 90

(200, 5) 124.6 2.94 101.29 100 42.2 3.29 36.12 100

(300, 2) 44.7 0.32 36.24 100 89.2 0.37 80.62 100

(300, 3) 51.9 0.58 42.15 100 48.6 0.74 42.99 100

(300, 4) 86.0 1.23 69.97 100 34.89 2.26 29.85 90

(300, 5) 110.8 1.53 90.18 100 35.5 1.61 29.91 100

(400, 2) 34.7 0.16 28.15 100 65.0 0.2 59.38 80

(400, 3) 99.7 0.76 80.91 100 30.57 2.98 26.28 70

(400, 4) 84.2 1.06 68.55 100 27.6 1.81 23.37 100

(400, 5) 93.9 1.15 76.49 100 39.8 1.57 33.7 100

(500, 2) 55.2 0.18 44.75 100 51.33 0.43 46.84 90

(500, 3) 42.6 0.28 34.56 100 79.4 0.36 71.45 100

(500, 4) 75.4 0.63 61.44 100 30.3 1.6 25.99 100

(500, 5) 115.9 1.21 94.52 100 76.0 1.71 68.26 90

QADA-SG QADA-BTM

MIQP t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 19.37 2.54 18.37 100 20.78 3.53 18.62 100

(100, 2) 23.4 1.59 34.3 100 17.6 0.99 26.82 100

(100, 3) 23.4 2.1 32.31 100 17.4 2.8 18.07 100

(100, 4) 19.8 5.09 17.21 100 26.1 5.58 22.19 100

(100, 5) 22.7 13.42 19.53 100 32.1 27.97 27.19 100

(200, 2) 15.2 1.01 17.43 100 12.5 0.83 11.05 100

(200, 3) 18.3 1.46 17.62 100 16.9 1.03 15.03 100

(200, 4) 23.3 4.56 19.73 100 27.0 7.36 23.07 100

(200, 5) 23.5 6.08 19.94 100 29.4 3.79 24.91 100

(300, 2) 15.6 0.4 14.61 100 10.5 0.38 9.22 100

(300, 3) 17.3 0.92 16.6 100 15.7 0.85 14.18 100

(300, 4) 18.8 2.04 15.88 100 22.1 2.55 18.53 100

(300, 5) 22.9 2.04 19.14 100 28.9 2.85 24.28 100

(400, 2) 12.5 0.19 10.87 100 12.4 0.18 12.49 100

(400, 3) 19.4 2.44 16.9 100 18.6 1.64 15.97 100

(400, 4) 18.9 1.29 15.97 100 23.3 1.66 19.6 100

(400, 5) 23.0 1.45 19.08 100 29.5 5.01 24.96 100

(500, 2) 13.0 0.56 11.32 100 12.2 0.29 10.64 100

(500, 3) 16.7 0.49 15.42 100 15.0 0.5 13.3 100
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QADA-SG QADA-BTM

MIQP t rel. DG Tcomp %c t rel. DG Tcomp %c

(500, 4) 16.6 1.44 13.93 100 19.2 1.53 16.23 100

(500, 5) 23.1 2.14 19.67 100 29.1 2.78 24.57 100

QADA-QNDA QNDA

MIQP t rel. DG Tcomp %c t rel. DG Tcomp %c

Mean 22.2 2.86 22.76 100 79.9 1.73 74.91 100

(100, 2) 43.7 0.95 77.42 100 29.4 0.78 26.3 100

(100, 3) 23.8 1.82 29.72 100 65.5 1.65 60.62 100

(100, 4) 30.9 5.94 30.3 100 100.4 4.92 91.62 100

(100, 5) 29.6 19.24 26.36 100 122.0 9.1 115.9 100

(200, 2) 13.0 0.95 12.22 100 58.2 0.5 52.43 100

(200, 3) 16.1 1.02 15.2 100 57.7 0.88 52.75 100

(200, 4) 27.9 6.39 26.16 100 152.3 4.67 143.7 100

(200, 5) 29.4 4.59 26.34 100 122.9 2.98 116.56 100

(300, 2) 10.3 0.33 9.17 100 45.0 0.32 40.4 100

(300, 3) 16.9 1.02 15.91 100 51.4 0.57 47.45 100

(300, 4) 21.0 2.39 18.86 100 84.7 1.21 79.91 100

(300, 5) 28.5 2.4 25.83 100 109.4 1.55 103.82 100

(400, 2) 11.9 0.21 11.88 100 35.1 0.15 31.74 100

(400, 3) 19.0 1.67 17.62 100 99.4 0.76 92.27 100

(400, 4) 22.8 2.01 20.92 100 84.0 1.06 79.31 100

(400, 5) 27.1 1.43 24.91 100 92.8 1.14 89.43 100

(500, 2) 12.5 0.38 11.54 100 55.8 0.19 50.58 100

(500, 3) 14.9 0.51 14.15 100 42.8 0.28 39.82 100

(500, 4) 18.4 1.26 16.71 100 74.2 0.63 71.13 100

(500, 5) 26.3 2.73 23.92 100 115.1 1.22 112.45 100
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C.3 Distributed convex problems

Table C.3: Results for the distributed optimization of the convex benchmark problems

(mean values of the converged instances only), t: mean number of iterations until conver-

gence, ∥wp∥2: mean primal residual of converged runs (×10−3), Tcomp: mean computation

time of converged runs (in s), %c: percentage of converged runs within tmax iterations.

SG ADMM

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 342.51 9.72 310.45 46.07 117.44 7.44 104.97 93.0

(2, 2) – – – 0 27.2 8.2 22.26 100

(4, 2) – – – 0 25.8 6.92 21.31 100

(4, 3) – – – 0 37.6 7.04 31.05 100

(4, 4) – – – 0 38.6 7.34 31.69 100

(8, 2) – – – 0 42.8 7.15 35.25 100

(8, 3) – – – 0 51.7 8.39 42.51 100

(8, 4) – – – 0 50.1 7.67 41.44 100

(8, 5) – – – 0 55.0 5.93 45.93 100

(8, 6) – – – 0 64.0 6.26 53.24 100

(8, 7) – – – 0 83.8 5.54 69.81 100

(8, 8) – – – 0 96.6 6.59 80.13 100

(16, 2) 464.0 9.92 381.03 10 35.4 7.66 29.7 100

(16, 3) 345.0 9.87 287.14 10 49.6 8.25 41.39 100

(16, 4) – – – 0 66.5 7.91 55.52 100

(16, 5) – – – 0 54.5 7.68 45.43 100

(16, 6) – – – 0 67.8 7.55 56.55 100

(16, 7) – – – 0 72.2 7.2 60.33 100

(16, 8) – – – 0 77.5 7.73 65.06 100

(16, 9) – – – 0 83.0 7.55 69.74 100

(16, 10) – – – 0 107.5 7.17 90.01 100

(32, 2) 229.0 9.57 191.38 20 71.9 7.91 60.72 100

(32, 3) 429.5 9.94 361.66 20 51.4 8.22 43.72 100

(32, 4) 432.0 9.91 364.56 10 54.8 8.7 46.59 100

(32, 5) – – – 0 50.4 8.16 42.87 100

(32, 6) – – – 0 55.4 8.48 47.0 100

(32, 7) – – – 0 69.7 8.5 59.0 100

(32, 8) – – – 0 94.9 8.7 82.04 100

(32, 9) – – – 0 88.22 8.15 74.93 90
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SG ADMM

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(32, 10) 469.0 9.51 395.54 10 98.8 7.62 84.84 100

(64, 2) 332.0 9.92 281.45 20 88.0 6.59 75.52 100

(64, 3) 361.0 9.93 308.74 20 101.9 6.81 89.45 100

(64, 4) 332.0 9.92 285.71 20 62.0 8.0 53.59 100

(64, 5) – – – 0 98.2 7.56 84.45 100

(64, 6) – – – 0 69.3 8.48 62.24 100

(64, 7) 411.5 9.93 353.78 20 94.5 8.53 83.29 100

(64, 8) – – – 0 81.78 8.0 70.77 90

(64, 9) – – – 0 106.22 8.16 91.6 90

(64, 10) – – – 0 135.71 6.38 118.44 70

(128, 2) 268.5 9.84 238.85 60 172.89 5.99 153.89 90

(128, 3) 309.2 9.74 277.81 50 188.2 5.16 170.22 100

(128, 4) 268.0 8.92 252.23 30 200.1 6.92 184.32 100

(128, 5) 289.0 9.81 259.23 60 219.6 6.81 200.39 100

(128, 6) 409.0 9.94 360.74 20 238.4 7.7 211.37 100

(128, 7) 340.0 9.67 317.57 40 291.0 7.92 272.24 80

(128, 8) 323.2 9.71 289.48 50 283.88 8.26 259.66 80

(128, 9) 375.5 9.86 335.07 40 278.71 7.62 255.45 70

(128, 10) 429.0 9.4 397.06 40 185.86 8.79 167.21 70

(256, 2) 175.29 9.66 169.3 70 258.25 3.87 249.57 40

(256, 3) 243.38 9.63 238.09 80 441.57 6.63 427.84 70

(256, 4) 306.86 9.69 312.87 70 – – – 0

(256, 5) 256.7 9.46 257.95 100 453.0 7.61 437.14 10

(256, 6) 346.0 9.71 339.83 90 – – – 0

(256, 7) 339.75 9.73 332.69 80 – – – 0

(256, 8) 348.1 9.69 345.85 100 – – – 0

(256, 9) 358.62 9.7 362.9 80 – – – 0

(256, 10) 399.29 9.51 393.96 70 – – – 0

BTM QAC

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 160.29 7.8 139.29 78.26 207.16 6.55 186.9 81.52

(2, 2) 128.2 6.61 105.05 100 134.0 4.87 114.82 50

(4, 2) 98.0 7.62 86.08 100 84.3 4.91 73.94 100

(4, 3) 107.44 7.25 89.48 90 146.0 6.12 127.36 90

(4, 4) 148.1 6.89 123.98 100 214.8 4.36 186.9 100

(8, 2) 74.0 5.83 61.39 80 89.88 4.42 78.25 80
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BTM QAC

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(8, 3) 99.4 5.88 82.6 100 117.1 3.78 101.48 100

(8, 4) 108.6 7.45 90.65 100 157.2 5.31 136.01 100

(8, 5) 103.9 7.66 86.58 100 154.6 5.89 133.19 100

(8, 6) 145.6 6.87 121.68 100 300.0 6.57 258.93 70

(8, 7) 199.5 8.29 167.84 100 395.4 6.9 342.82 50

(8, 8) 220.8 8.37 185.82 100 333.4 6.88 286.44 50

(16, 2) 46.9 4.8 39.15 100 64.0 6.74 55.7 90

(16, 3) 88.7 5.79 74.66 100 138.1 5.51 121.15 100

(16, 4) 109.7 7.73 92.0 100 156.33 6.33 135.76 90

(16, 5) 110.9 7.96 92.33 100 178.1 8.52 153.3 100

(16, 6) 172.5 8.06 144.77 100 235.78 8.02 203.73 90

(16, 7) 191.67 8.07 161.48 90 354.75 8.14 307.39 80

(16, 8) 209.3 8.34 176.79 100 378.75 8.16 328.46 40

(16, 9) 225.88 8.97 191.94 80 439.5 7.08 382.58 20

(16, 10) 333.67 9.13 286.26 60 – – – 0

(32, 2) 56.6 6.08 47.84 100 55.88 3.54 49.33 80

(32, 3) 62.9 5.82 53.21 100 73.6 6.85 65.25 100

(32, 4) 84.5 8.2 71.58 100 90.5 5.96 80.05 100

(32, 5) 138.3 8.1 117.08 100 145.0 6.9 127.45 90

(32, 6) 148.11 8.29 125.71 90 222.3 7.22 194.63 100

(32, 7) 239.83 8.33 203.34 60 344.56 7.17 300.29 90

(32, 8) 280.0 8.85 239.04 60 433.67 8.96 378.71 30

(32, 9) 344.0 8.89 293.6 50 458.0 7.81 406.43 10

(32, 10) 331.5 9.43 284.68 20 – – – 0

(64, 2) 68.5 6.61 58.72 100 46.3 3.27 41.35 100

(64, 3) 106.7 8.31 93.44 100 64.0 5.64 57.8 90

(64, 4) 101.56 7.6 87.82 90 86.5 7.18 77.84 100

(64, 5) 138.0 8.36 119.09 80 190.5 6.76 171.24 100

(64, 6) 153.0 8.69 131.54 20 208.6 8.35 191.2 100

(64, 7) 231.5 8.77 201.97 40 371.2 9.12 339.08 100

(64, 8) 262.0 9.68 227.68 30 412.25 7.29 369.97 40

(64, 9) – – – 0 – – – 0

(64, 10) – – – 0 – – – 0

(128, 2) 38.7 6.5 34.32 100 32.33 6.87 30.23 90

(128, 3) 153.8 7.22 139.38 100 54.5 4.59 51.73 100

(128, 4) 140.75 8.39 128.16 40 82.7 6.3 79.4 100
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BTM QAC

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(128, 5) 163.0 8.94 146.74 30 126.44 7.39 118.16 90

(128, 6) 210.0 7.81 186.94 30 322.5 7.16 297.78 100

(128, 7) 269.0 8.85 238.95 10 398.25 8.76 369.4 40

(128, 8) – – – 0 – – – 0

(128, 9) – – – 0 – – – 0

(128, 10) – – – 0 – – – 0

(256, 2) 41.67 7.48 40.3 90 33.8 4.87 34.64 100

(256, 3) 188.5 7.9 186.54 100 53.0 5.27 54.75 100

(256, 4) 270.75 8.12 266.69 40 90.89 6.78 96.88 90

(256, 5) 227.5 9.8 222.26 20 173.8 7.11 184.27 100

(256, 6) – – – 0 388.1 8.39 400.16 100

(256, 7) – – – 0 498.0 7.27 501.07 10

(256, 8) – – – 0 – – – 0

(256, 9) – – – 0 – – – 0

(256, 10) – – – 0 – – – 0

QADA QNDA

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 123.52 6.95 149.39 75.1 97.13 4.58 114.71 97.14

(2, 2) 132.62 5.58 129.93 80 98.12 4.06 84.55 80

(4, 2) 101.4 5.42 106.85 100 70.7 2.34 66.92 100

(4, 3) 115.7 5.37 120.47 100 132.56 3.88 127.71 90

(4, 4) 124.3 5.74 126.38 100 129.5 3.78 120.74 100

(8, 2) 122.88 5.12 128.55 80 71.12 3.54 65.38 80

(8, 3) 66.33 6.49 70.7 90 93.33 3.34 89.99 90

(8, 4) 125.1 6.73 128.81 100 90.1 3.84 87.91 100

(8, 5) 102.3 7.28 104.77 100 82.6 5.79 83.3 100

(8, 6) 121.8 6.22 127.86 100 104.7 3.7 103.46 100

(8, 7) 158.89 6.93 176.31 90 135.0 4.97 130.73 100

(8, 8) 184.6 8.11 224.27 100 142.5 4.49 143.87 100

(16, 2) 61.3 5.61 60.78 100 54.67 2.08 51.27 90

(16, 3) 80.6 5.17 86.59 100 100.3 2.55 100.26 100

(16, 4) 126.56 7.23 132.23 90 95.5 4.44 97.24 100

(16, 5) 90.6 7.46 94.26 100 82.8 4.26 81.0 100

(16, 6) 127.5 7.34 137.42 100 116.3 3.94 120.19 100

(16, 7) 144.3 7.64 161.92 100 125.8 5.37 127.2 100

(16, 8) 153.3 7.99 189.9 100 105.5 5.07 109.11 100
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QADA QNDA

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(16, 9) 185.78 7.94 256.69 90 137.6 3.87 151.06 100

(16, 10) 246.86 8.03 360.54 70 176.22 6.27 203.63 90

(32, 2) 63.3 3.82 67.01 100 66.9 2.07 64.47 100

(32, 3) 45.4 7.66 49.21 100 83.6 2.99 93.87 100

(32, 4) 82.5 8.2 88.87 100 64.2 4.81 68.41 100

(32, 5) 88.6 7.69 97.37 100 84.3 3.37 88.93 100

(32, 6) 109.1 8.44 118.63 100 96.0 4.99 100.6 100

(32, 7) 166.43 8.59 197.02 70 103.4 4.53 111.76 100

(32, 8) 130.57 7.72 160.34 70 108.2 4.32 137.21 100

(32, 9) 161.71 8.35 217.13 70 111.6 4.93 125.65 100

(32, 10) 150.33 7.8 200.96 30 164.1 6.41 222.04 100

(64, 2) 52.0 5.34 58.92 100 111.67 2.97 117.66 90

(64, 3) 61.11 7.37 69.24 90 73.7 4.21 89.08 100

(64, 4) 101.67 7.73 115.04 90 54.1 2.68 58.95 100

(64, 5) 198.62 7.03 228.11 80 92.5 5.01 109.2 100

(64, 6) 70.0 7.38 82.49 10 81.0 6.34 95.44 100

(64, 7) 161.75 9.4 207.02 40 115.2 5.31 163.71 100

(64, 8) 146.33 9.19 191.32 30 108.2 4.84 127.24 100

(64, 9) 170.0 8.09 240.05 20 107.2 6.18 124.94 100

(64, 10) 198.0 6.57 326.19 10 121.5 5.09 149.86 100

(128, 2) 40.8 6.33 44.26 100 63.5 1.84 68.96 100

(128, 3) 67.44 7.38 81.15 90 66.9 3.59 81.81 100

(128, 4) 257.2 7.03 318.01 50 88.44 4.97 110.79 90

(128, 5) 275.67 9.13 336.91 30 62.89 4.35 70.19 90

(128, 6) 96.0 5.98 114.36 30 73.6 6.21 88.67 100

(128, 7) 104.0 0.7 133.61 10 94.8 6.06 123.52 100

(128, 8) 102.5 7.98 156.0 40 85.11 5.76 96.92 90

(128, 9) – – – 0 119.1 6.2 181.47 100

(128, 10) – – – 0 126.67 7.44 194.22 90

(256, 2) 36.8 6.5 43.9 100 46.3 3.62 60.89 100

(256, 3) 114.38 7.03 148.99 80 81.7 4.91 116.57 100

(256, 4) 170.5 8.73 227.01 40 68.8 5.36 99.93 100

(256, 5) 57.0 4.08 75.53 10 51.3 5.47 74.96 100

(256, 6) – – – 0 65.56 5.74 85.24 90

(256, 7) – – – 0 99.3 6.04 174.23 100

(256, 8) – – – 0 93.7 6.46 144.96 100
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QADA QNDA

Conv t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

(256, 9) – – – 0 121.78 5.5 198.38 90

(256, 10) – – – 0 137.67 4.54 257.37 90
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C.4 Distributed DMPC problems

Table C.4: Results for the distributed optimization of the DMPC benchmark problems

(mean values of the converged instances only), t: mean number of iterations until conver-

gence, ∥wp∥2: mean primal residual of converged runs (×10−3), Tcomp: mean computation

time of converged runs (in s), %c: percentage of converged runs within tmax iterations.

SG BTM

DMPC t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 42.83 8.18 35.24 80.96 273.83 7.09 228.17 57.58

Ns = 5, nr = 2 75.96 8.92 62.18 83.33 248.51 5.8 206.64 83.0

Ns = 5, nr = 3 79.18 9.36 65.1 84.44 309.54 6.93 257.53 52.22

Ns = 5, nr = 4 81.44 9.38 67.24 93.33 373.43 8.34 310.17 31.11

Ns = 5, nr = 5 88.44 9.62 73.32 90.0 425.67 8.98 354.84 10.0

Ns = 10, nr = 2 47.38 8.63 38.91 88.67 244.71 7.19 203.75 86.67

Ns = 10, nr = 3 44.09 8.87 36.38 88.89 305.44 7.93 253.95 47.22

Ns = 10, nr = 4 39.2 9.05 32.4 92.22 389.08 7.9 323.86 27.78

Ns = 10, nr = 5 29.04 8.76 24.14 86.67 458.0 9.42 382.54 10.0

Ns = 20, nr = 2 26.87 7.65 22.07 84.33 261.61 7.38 218.46 84.33

Ns = 20, nr = 3 21.02 8.01 17.36 88.89 301.23 8.0 250.84 43.89

Ns = 20, nr = 4 18.73 8.12 15.53 90.0 399.12 7.4 332.71 26.67

Ns = 20, nr = 5 16.15 7.53 13.42 86.67 404.0 6.16 338.32 3.33

Ns = 50, nr = 2 21.98 6.21 18.12 65.0 249.21 6.86 208.35 70.67

Ns = 50, nr = 3 16.33 6.98 13.52 57.22 317.98 8.05 264.98 30.56

Ns = 50, nr = 4 15.56 6.5 12.92 67.78 431.18 8.16 360.08 12.22

Ns = 50, nr = 5 17.44 6.56 14.51 53.33 – – – –

ADMM QNDA

DMPC t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Mean 62.24 7.65 51.92 99.21 42.6 7.07 38.31 98.21

Ns = 5, nr = 2 68.5 9.22 56.33 95.33 38.93 7.48 35.09 92.0

Ns = 5, nr = 3 75.28 9.38 62.32 97.78 37.7 7.99 34.64 95.56

Ns = 5, nr = 4 78.77 9.32 65.7 100.0 30.11 7.8 27.28 97.78

Ns = 5, nr = 5 80.93 9.59 68.17 100.0 43.37 8.63 43.53 100.0

Ns = 10, nr = 2 60.5 8.86 49.88 99.67 30.63 7.41 26.58 98.0

Ns = 10, nr = 3 63.36 9.0 52.62 100.0 30.1 7.54 26.34 99.44

Ns = 10, nr = 4 66.06 9.09 55.35 100.0 40.56 7.93 36.68 100.0

Ns = 10, nr = 5 66.5 9.12 56.35 100.0 45.17 8.02 42.11 100.0

Ns = 20, nr = 2 54.66 7.5 45.24 100.0 29.46 6.79 25.41 99.67

Ns = 20, nr = 3 55.0 7.97 45.96 100.0 42.42 6.97 37.56 100.0
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ADMM QNDA

DMPC t ∥wp∥2 Tcomp %c t ∥wp∥2 Tcomp %c

Ns = 20, nr = 4 55.2 8.28 46.63 100.0 62.19 7.11 57.37 100.0

Ns = 20, nr = 5 54.73 8.57 46.84 100.0 77.9 7.2 74.7 100.0

Ns = 50, nr = 2 57.15 3.88 47.82 100.0 41.31 6.15 36.06 100.0

Ns = 50, nr = 3 60.78 5.14 51.65 100.0 68.63 5.71 61.71 99.44

Ns = 50, nr = 4 61.62 5.42 53.29 100.0 82.43 6.49 77.11 100.0

Ns = 50, nr = 5 61.97 5.47 54.67 100.0 111.93 6.8 109.76 100.0



C Summaries of computational results 161

C.5 Distributed clustering problems

Table C.5: Results for the distributed optimization of the clustering benchmark problems,

t: mean number of performed iterations, rel. DG: mean relative duality gap (in %), Tcomp:

mean computation time (in s).

SG BTM

Clustering t rel. DG Tcomp t rel. DG Tcomp

Mean 136.75 2.27 996.28 57.44 1.86 515.77

2N2D3K 126.0 1.94 166.08 68.0 1.84 95.01

2N2D4K 113.2 0.89 431.02 64.4 0.8 348.56

2N3D3K 120.0 1.8 223.69 71.6 1.6 167.72

2N3D4K 115.6 0.27 782.18 13.6 0.1 93.92

2N4D3K 91.6 0.31 184.21 36.2 0.16 108.0

2N4D4K 90.4 0.25 965.26 8.6 0.08 93.7

3N2D3K 138.4 7.01 404.59 123.2 6.14 424.47

3N2D4K 150.0 4.7 879.48 62.8 3.99 751.33

3N3D3K 150.0 2.33 301.63 67.0 1.76 160.05

3N3D4K 150.0 0.82 1469.97 66.6 0.35 906.26

3N4D3K 150.0 2.07 354.48 37.2 1.63 110.82

3N4D4K 150.0 1.06 3295.09 37.8 0.56 820.42

4N2D3K 150.0 5.01 311.78 103.2 3.66 262.33

4N2D4K 150.0 7.58 1319.14 93.8 5.71 1346.59

4N3D3K 150.0 1.32 317.69 6.6 0.15 16.75

4N3D4K 150.0 1.55 2786.47 65.8 0.53 2046.2

4N4D3K 150.0 1.57 441.69 35.0 0.42 122.26

4N4D4K 150.0 1.7 2593.41 7.2 0.14 118.24

QNDA

Clustering t rel. DG Tcomp

Mean 54.48 1.81 483.22

2N2D3K 63.2 1.82 92.57

2N2D4K 62.2 0.73 345.59

2N3D3K 62.2 1.58 150.11

2N3D4K 5.0 0.06 34.76

2N4D3K 32.8 0.12 97.89

2N4D4K 4.8 0.08 47.19

3N2D3K 121.0 6.21 412.26

3N2D4K 64.2 3.98 747.3

3N3D3K 64.0 1.71 151.79

Continued on next page
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QNDA

Clustering t rel. DG Tcomp

3N3D4K 63.8 0.28 858.76

3N4D3K 35.0 1.36 111.44

3N4D4K 37.2 0.46 731.33

4N2D3K 94.6 3.61 249.28

4N2D4K 93.8 5.68 1281.33

4N3D3K 9.4 0.17 22.76

4N3D4K 66.0 0.49 1901.69

4N4D3K 37.4 0.41 129.74

4N4D4K 9.8 0.17 178.24
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V. Yfantis, S. Büscher, C. Klanke, F. Corominas, S. Engell, 2020. A

Two-stage Simulated Annealing-based Scheduling Algorithm for a

Make-and-Pack Production Plant. 21st IFAC World Congress. DOI:

https://doi.org/10.1016/j.ifacol.2020.12.2861.

N. Bajcinca, M.V.A. Pedrosa, V. Yfantis, 2020. Mixed-Integer Model Pre-

dictive Control of Hybrid Impulsive Linear Systems. 21st IFAC World Congress.

DOI: https://doi.org/10.1016/j.ifacol.2020.12.327.

A. Tika, N. Gafur, V. Yfantis, N. Bajcinca, 2020. Optimal scheduling and model

predictive control for trajectory planning of cooperative robot manipulators.

21st IFAC World Congress. DOI: https://doi.org/10.1016/j.ifacol.2020.12.2136.

C. Klanke, V. Yfantis, F. Corominas, S. Engell, 2020. Scheduling of a

Large-scale Industrial Make-and-Pack Process with Finite Intermediate

Buffer using Discrete-time and Precedence-based Models. 30th Euro-

pean Symposium on Computer Aided Process Engineering (ESCAPE 30). DOI:

https://doi.org/10.1016/B978-0-12-823377-1.50193-2.

V. Yfantis, F. Corominas, S. Engell, 2019. Scheduling of a Consumer Goods Pro-

duction Plant with Intermediate Buffer by Decomposition and Mixed-integer

Linear Programming. 9th IFAC Conference on Manufacturing Modelling, Management

and Control (MIM 2019 ). DOI: https://doi.org/10.1016/j.ifacol.2019.11.469.

https://doi.org/10.1109/IROS51168.2021.9636118
https://doi.org/10.1016/j.procir.2021.11.257
https://doi.org/10.1007/978-3-030-78230-6_9
https://doi.org/10.1016/j.ifacol.2020.12.2861
https://doi.org/10.1016/j.ifacol.2020.12.327
https://doi.org/10.1016/j.ifacol.2020.12.2136
https://doi.org/10.1016/B978-0-12-823377-1.50193-2
https://doi.org/10.1016/j.ifacol.2019.11.469


D Further publications by the author 165

V. Yfantis, T. Siwczyk, M. Lampe, N. Kloye, M. Remelhe, S. Engell, 2019. It-

erative Medium-Term Production Scheduling of an Industrial Formulation

Plant. 29th European Symposium on Computer Aided Process Engineering (ESCAPE

29). DOI: https://doi.org/10.1016/B978-0-12-818634-3.50004-7.

S. Wenzel, V. Yfantis, W. Gao, 2017. Comparison of regression data

selection strategies for quadratic approximation in RTO. 27th Euro-

pean Symposium on Computer Aided Process Engineering (ESCAPE 27). DOI:

https://doi.org/10.1016/B978-0-444-63965-3.50287-7.

Conferences without Proceedings

A. Elekidis, V. Yfantis, F. Corominas, M.C. Georgiadis, S. Engell, 2019. Opti-

mal Production Scheduling in the Packaged Consumer Goods Industry. 12th

European Congress of Chemical Engineering (ECCE12).

Submitted

Peer-reviewed Journals

V. Yfantis, A. Wagner M. Ruskowski. Numerical Benchmarking of Dual

Decomposition-based Optimization Algorithms for Distributed Model Predic-

tive Control. Results in Control and Optimization.

V. Yfantis, A. Wagner M. Ruskowski. Federated K-Means Clustering via

Dual Decomposition-based Distributed Optimization. Franklin Open.

Conference Proceedings

M. Klostermeier, V. Yfantis, A. Wagner M. Ruskowski. Numerical Study on

the Parallelization of Dual Decomposition-based Distributed Mixed-Integer

Programming. European Control Conference.

https://doi.org/10.1016/B978-0-12-818634-3.50004-7
https://doi.org/10.1016/B978-0-444-63965-3.50287-7


166 Chapter 9: Conclusion and Outlook

E Supervised theses

Rheinland-Pfälzische Techische Universität Kaiserslautern-Landau

M. Klostermeier, 2023. Optimal Parameterization of Multi-Objective MILP

Models using Metaheuristic Algorithms, Master Thesis.

M. Klostermeier, 2022. Mixed-Integer Model Predictive Control of Hybrid

Impulsive Nonlinear Systems, Research Project.

X. Wang, 2022. Entwicklung eines Erkundungsschrittverfahrens in der

verteilten Optimierung, Bachelor Thesis.

A. Babskiy, 2022. Optimale Parametrierung von Soft-Constraints in Pro-

duktionsplanungsmodellen durch Methoden der Computational Intelligence,

Master Thesis.

A. Babskiy, 2022. Produktionsplanung einer Industriellen Formulieranlage

durch gemischt-ganzzahlige lineare Programmierung, Research Project.

M. Abdelraman, 2022. Scheduling of a Job-shop process with variable transport

times by mixed-integer programming, Master Thesis.

N. Bach, 2021. Optimales Demand-Side Management einer flexiblen Pro-

duktionsanlage, Master Thesis.

S. Jungbluth, 2020. Job-Shop Scheduling mit Reinforcement Learning, Master

Thesis.

Technische Universität Dortmund

A. Preuß, 2019. Hybrid Scheduling of an Industrial Formulation Plant by

Metaheuristic Optimization and Constraint Programming, Master Thesis.
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