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Abstract We compare different notions of differentiability of a measure along a vector field
on a locally convex space. We consider in the L2—space of a differentiable measure the analoga of
the classical concepts of gradient, divergence and Laplacian (which coincides with the Ornstein-
Uhlenbeck operator in the Gaussian case). We use these operators for the extension of the basic
results of Malliavin and Stroock on the smoothness of finite dimensional image measures under
certain nonsmooth mappings to the case of non-Gaussian measures. The proof of this extension
is quite direct and does not use any Chaos-decomposition. Finally, the role of this Laplacian in

the procedure of quantization of anharmonic oscillators is discussed.

1 Introduction

This paper is devoted to the foundations of the ’calculus of differentiable
measures’. The recent years have seen a certain revival of the theory of dif-
ferentiable measures in particular because the concept of differentiation of a
measure along a vector field allows to understand some basic constructions
of stochastic calculus in a new and simple way.

However there are several ways to make the differentiation of a measure along
vector fields precise. Thus the first aim of this paper in section 2 is to study
the connections between some of these notions. In particular it turns out
that the most widely used and most flexible definition based on the formula
of integration by parts is equivalent under suitable regularity assumptions
to the direct definitions (like those of Fomin and Skorokhod) which in turn
are particular cases of more general notions of differentiability for curves of
measures on abstract spaces (cf. [SW93]). In finite dimensional spaces we
give a very short proof that differentiable measures are absolutely continuous
with respect to Lebesgue measure (which is one possible formulation of the



socalled ’Malliavin-Lemma’).

In section 3 we fix a nonnegative measure on a locally convex space E which
is differentiable along a Hilbert subspace of E. We introduce the operator
D as the closure in L?(E,v) of the gradient operator. In the case of Gaus-
sian measures this operator is called Malliavin derivative. We extend some
elementary properties of the gradient to the operator D. The adjoint of D
is the divergence operator §, associated with v. The definition of differen-
tiability of a measure via integration by parts essentially implies that for a
vector field A : E — H the function §,h is the negative of the logarithmic
derivative of the measure v along this vector field. Finally the Laplacian
A, corresponding to the measure v is defined as the composition —¢,D. In
the Gaussian case this operator is the Ornstein- Uhlenbeck operator. We
give a simple rule how this operator changes if one passes from one measure
to an equivalent one. This operator and the transformation rule are closely
related to the procedure of the canonical quantization of classical Hamilto-
nian systems whose Hamiltonian function has the form (Ap, p)+V (¢). This
connection is explained in more detail in the last section where we also use
the concept of genereralized densities of differentiable measures introduced
in [Kir94] and [SW95].

Section 4 is concerned with the smoothness of an image measure of v under
some nonlinear map v : £ — F' whith particular emphasis on finite dimen-
sional images in the spirit of Malliavin’s approach [Mal76] to the smoothness
results of Hormander typ. Recently there is more and more interest to get
analogous results for other underlying laws. One early example is the res-
ult of Bouleau and Hirsch ([BH91], Theorem 5.2.2) on the existence of a
density. For general differentiable measures and strictly differentiable maps
u the question of smoothness of the density has been studied by Daletski-
Steblowskaja [DF92]. Because of the stronger assumptions on u, however,
this does not cover the typical setting in Wiener space. We show here that
the classical result of Stroock [Str81] can be extended to general differenti-
able measures. The proof in this more general case looks simpler than the
original proof for Wiener measure. We note however that this result does
not involve analoga of Meyer’s inequalities.



2 Notions of differentiability of measures

The main purpose of this section is to put the (usual) definition (see Defin-
ition 1 below) of the derivative and the logarithmic derivative of a measure
along a vector field into a broader context.

Below all vector spaces are real. We call a mapping from a locally convex
space (LCS) E into another LCS G smooth with respect to a subspace H C E
if it is Gateaux differentiable in the directions in H infinitely many times and
if both the mapping and all its derivatives are continuous on E where the
spaces of linear mappings from H into suitable spaces in which the derivat-
ives take their values are equipped inductively with the topology of uniform
convergence on compact subsets of H. A vector fieldin a LCS F is a mapping
h : E — FE; one denotes by vect(F) the vector space of all vector fields on
E. The derivative of a function u (on E) along the vector field h € vect(E)
is the function denoted by u'h and defined by (u'h)(z) = u'(x)(h(z)).

We need some notions of differentiability of measures. If (2, B) is a meas-
urable space let M(2) be the vector space of all signed o-additive measures
on B. Every topological space E will be equipped with its Borel o-algebra
B(E). We call a space C of bounded Borel functions norm-defining for M(E)
if ||plli = sup{fud,u cu € C,||ul|lo < 1} where || - ||; is the total variation
norm and || - ||o is the sup-norm. If u € M(Q) and u € L'(u) we denote by
up the measure A — [, udp.

If E is a LCS a measure v € M(E) is called Fomin-differentiable along a
vector h € E [ASFT71] if for every set A € B(F) the mapping f4" : R >
t — v(A + th) is differentiable at 0 (and consequently everywhere). Then
the map v}, : A — (f*")(0) turns out to be a (signed) measure on B(E)
which is called the (Fomin) derivative of v along h; moreover, it is absolutely
continuous with respect to v (see [1] or Proposition 1 below). The Radon—
Nikodym derivative of v} with respect to v is denoted by ”(h,-) and called
logarithmic derivative of v in the direction h. Thus v;, = ”(h, -)v.

These definitions can be extended quite naturally in various ways. The fol-
lowing definition was introduced in [SW93]. Denote by 7 a topology on
M(Q). A function f : ¢t — v, from an open interval I in R into the space
M(E) is called 7-differentiable at t € I if there exists a measure v, such that
T — limg,o(vs4t — 1) /s = v,. If v} is absolutely continuous with respect to
v; then the Radon—Nikodym derivative %% is denoted by p(¢, f) or simply p;



and it is called logarithmic derivative of f at the point ¢.

In particular let v be a fixed measure, let € > 0 and let T = (T}) <4< be
a family of B-measurable (not necessarily invertible) transformations of the
set Q with Ty = id. We call v € M(Q) 7-differentiable along the family T
iff the map f : t — v, = vo T, ' is 7-differentiable at ¢ = 0. The deriv-
ative f'(0) € M() is denoted by v4. The logarithmic derivative of f at
the point 0 (if it exists) is called the (7-) 1.d. of v along 7 and is denoted
by B%. If 7 is the topology 7, of setwise convergence on M(£2) we speak
of Fomin-differentiability along 7. Similarly, if C' is the space of bounded
continuous functions on ) for some underlying topology on €2 and 7 is the
topology 7¢ = o(M(R),C) then one speaks of Skorokhod-differentiability.
The following proposition implies that in the case of Fomin-differentiablility
along a family 7 the logarithmic derivative always exists. The proposition
does not hold for general 7,-differentiable functions f : (—¢,&) — M() (see
[SW93]) nor does it extend to weaker topologies than 7.

Proposition 1: Let v € M(Q)) be Fomin-differentiable along a family T =
(T}) —e<t<e of measurable transformations with Ty = id. Then

(a) vy < v, i.e. the logarithmic derivative of v along T exists.

(b) Let v = vt — v~ be the Hahn-Jordan decomposition of v and let S € B
be such that vt (A) = v(ANS) for every A € B. Then vt and v~ are also
Fomin-differentiable along vr and (v*) = v4-(-N S).

Proof: The proof is very close to the proof of the particular case given in
[ASFT71] for the shifts by a constant vector field. As before let f7, denote
the map t — v(T; ' A).
We first prove part (b). We claim that for each function R! > t — B(t) € B
one has
v (TS \ S) N B(1))
t

—0 ast—0 (1)
and
v((S\T;'S) N B(1))
t

In fact, the function ffﬁ’,, has a maximum at ¢ = 0. Therefore 1/4-(S) = 0 and
hence

—0 ast—0 (2)

z/(Tt—ltS \ S) N (_ v(S \tT;15)>



_ AT\ S) —v(S\TT'S) _ w(TS)—v(S) o
n t

But for every B € B one has v(T; 'S\ S) < v(T;'S\S)N B < 0 and
—v(S\T;7'S) < —v(S\ T, 'S) N B < 0. This implies the formulae (1) and
(2).

Now we prove that for every A € B the derivative of f:ﬁ,,ﬁ at ¢ = 0 exists.
As S = (T7*S)U (S\ T, 19)) \ (1,15 \ S), the following identities are true:

HIT'A) = vt (4) _ v((T7'4) N S) — v(ANS)

t t
_ AT ANTS) —v(Ans)
t
V(TP AN(S\T'8)) — (T AN (515 5))
t .

The relations (1) and (2) imply that the second term at the right-hand side
converges to 0; the first term converges to (f4)'(0)(A N S). This means
that fA (and hence f4) is differentiable at ¢ = 0 and that (f4)'(0)(4) =
(f4)'(0)(ANS). This proves (b).

For part (a) we see that it is enough to prove it for »* and for »~. But if
A € B and v (A) = 0, then the function f# has a minimum at ¢ = 0; hence
(f4)(0)(A) = 0. The case of v~ is treated similarly. The proposition is
proved. [ ]

Part (bl) of the following observation gives a partial converse to Proposition
1. Part (a) is a sort of mean value theorem for the transport of a measure
along a flow.

Proposition 2: Let v be 1¢-differentiable along a measurable flow T = (T})
of bijiections on Q) where C' is normdefining for M(Q2) and T -invariant, i.e.
C={voT,:veC} foraltel.

(a) Then the map f :t s voT; " is To-differentiable for all t and Lipschitz-
continuous for the norm || - ||1:

lvoT, " —voT, i <[t —s| [Vl (3)

(b) v is even differentiable along T for the norm topology 7)., if either
(b1) vl K v or
(02) v is twice To-differentiable, i.e. if Vi is also T¢-differentiable along T .



Proof: (a). The map f : ¢t +— v, = v o T, " is 7¢-differentiable at ¢t = 0 by
assumption. Since each T; is a bijection and C' is 7T -invariant this implies
that f is everywhere 7o-differentiable. Therefore for s < t by the mean
value theorem the vector ﬂ%ﬁ is in the 7¢-closed convex hull of the set
M = {f'(#) : s <6 < t}. Since C is normdefining for M () this is equal to
the || -||1 closed convex hull of M. On the other hand the T-invariance of the
space C implies that f'(9) = f'(0)oT,; ' = v/-oT; " and hence || f'(0)||1 = |||

for all #. Thus

” f(t)—f(s)

t—s

which yields the assertion.
(b) In the case (bl) vy < v this is part of the theorem in section 5 of
[SW93]. If (b2) holds then v itself is 7-differentiable along 7 and the
assertion follows from the following adaption of the proof of [SW93], Prop.
2.5 (d): According to part (a) the map ¢t — f'(t) = v4- o T; ' is continuous
for the norm topology and hence as above by the meanvalue theorem and
the fact that C' is normdefining

f(t) — £(0)
t

Il < V57l

—Vrlh < Wy o Tyt — vl

which tends to 0 as ¢t — 0. ]

Next we discuss differentiation of measures along vector fields. If F is a
LCS and v € M(FE) one can call v 7— (resp. Fomin)-differentiable along
the vector field h € vect(FE) if it is 7— (resp. Fomin)-differentiable along the
family 7, given by

T/ () = 2 — th(z) (1)

In particular, if h(z) = hg then this definition coincides with the defini-
tion of differentiability of v along the vector hy given above. In this case

B7,(-) = B (ho, ).

However the most flexible concept of differentiability of a measure along a
vector field is based on a formula of integration by parts:

Definition 1: Let C be a vector space of smooth scalar functions on E
which together with their derivatives are bounded. Suppose moreover that C

is normdefining for M(E). The measure v € M(E) is called C-differentiable



along the vector field h € vect(E) if there is a measure v;, € M(E) such that
for every u € C' the following formula of integration by parts holds:

/u’h dv = — /u dv. (5)

If v;, < v the corresponding Radon-Nikodym derivative is called logarithmic
derivative of v along h and is denoted by [y .

The connection between these various definitions is partially described in the
next Proposition. The reader may think of the family (7}) either as given
by Tix = x — th(z) or as the integral flow of the vector field —A (if this flow
exists).

Proposition 3: Let h be a vector field on E and let T = (T})iwer be a
family of vector fields such that Ty = id and the map F : (t,x) — Tix is
differentiable in t with F'(0,2) = —h(z) for all x € E and suppose that
{F{(t,z) : t € R,x € E} is bounded. Let 7c be the topology oc(M(E),C).
Consider the following conditions:

(a) The measure v is Fomin-differentiable along h.

(a') The measure v is Fomin-differentiable along (T).

(b) The measure v is Tc-differentiable along (T}).

(¢) The measure v is C-differentiable along h.

Then (a) = (b) <= (¢). Moreover (a') => (b). The derivatives v;, and
(if they exist) the corresponding logarithmic derivatives coincide in all four
cases. If (b) and (c) hold for one family T with the above properties then
they hold also for all other such families T. If (T}) is a measurable flow of
bijections of E and v, < v then (b) = (d’).

Proof: (a) = (b). The existence of the logarithmic derivative 3} follows
from proposition 1. Then for every bounded measurable function u the map
&t~ [fuoTl dv is differentiable at ¢ = 0 with derivative (f%)'(0) =
JuBydv. This follows via uniform approximation of u by step functions. In
particular (b) holds with 8¢ = p, and the special family 7, = T}* defined in
(4). For the other families see below.

(b) <= (c). Let u € C. Then

liml(/ Udl/t—/udl/) = lim u(Tyx) — u(x)

t—0 ¢t t—0 t

dv = — /u'(a:)h(x)dl/



where we have used the change of variable formula, the mean value theorem,
the boundedness of v’ and F] and dominated convergence. Now (b) holds
iff the left hand side equals [wupodv and (c) holds iff the right hand side
equals [ufydv. This proves (b)) <= (c¢). On the other hand (¢) depends
only on h and not on the family 7. Therefore the same is true for (b). This
completes also the proof of the implication (a) =>(b). The last statement
is a particular case of Proposition 2 (b). n

The implications (b)) = (a) and (¢) = (a) do not hold in general even if
v, < v. Moreover, (a) and (a’) are not equivalent. The following example
illustrates these statements:

Example 1: Let £ = IR? and let vy be the surface measure on the set G =
{(t,#?) :t € R'} C R?, generated by the usual Lebesgue measure on IR?,
and let v be the Borel measure on IR?, defined by v(A) = [, e~ yy(dz).
Let h be any smooth vector field on IR? such that h(x) is a tangent vector
to G at z of unit norm, for all z € G. Then v is 7¢-differentiable along h
(and B (z) = —2(x, h(z))) but v is not Fomin-differentiable along h. On the
other hand for h there is a C*®°-flow 7 on IR? which satisfies the assumptions
of the proposition. For this flow (a’) holds by the proposition.

Note also that the proposition does not give any sufficient condition for (a)
or (a') if the family 7 is not a measurable flow. In such cases it is therefore
more convenient to work with conditions (b) or (c).

Higher derivatives of a measure are introduced as follows.

Definition 2: Let n > 2 and let hy,---,h, be a finite sequence of vector
fields. We define inductively: v is n-times differentiable along hq,---, h, if
the measure v is n — 1-times differentiable along hy,---,h,_1 and the de-
rivative 1/,(5____2)1171 s differentiable along h,, and in this case we define the
derivative of n-th order by

n n—1
Vf(ll?"hn = (Ulg,y"h)n—l );ln .

If this measure is absolutely continuous with respect to v then the correspond-
ing logarithmic derivative of n-th order s defined by

dV}(ﬁ)hn

ﬂll:r--hn = dv



If H is any set of vector fields we call v n-times differentiable along H if it
s n-times differentiable along hy, - - -, h,, for every choice of the hy,---, h, in

H.

Note that as with derivatives of functions along vector fields in general
V,SQI)M # 1/,(122),11. On a more technical level, note that in the definition of

the logarithmic derivative of, say, second order ﬂ}(l21),h2 it is left open whether
necessarily the logarithmic derivative of the derivative v, exists. Actually
we do not know whether this implication holds in general.

We conclude this section with a few remarks about the finite dimensional
situation. If E = IRY let C° be the space of smooth functions with compact
support. Let us first, following an idea in [ASF71], give a quick proof of a
version of the socalled ‘Malliavin lemma‘:

Proposition 4 A measure v € M(R?) is 7¢x -differentiable in all directions
if and only if it satisfies for some constant K, oo the estimate

0
|/ 5 @1 < Kllell (6)
foralli € {1,---,d} and all v € C. In this case v has a Lebesgue density.

Proof: Suppose first that v is 7¢geo-differentiable. Then for all y € R" and
veCr

[ vy@) vide) = = [ v(z) vj(da) (7)

follows by differentiation under the integral sign and clearly (7) implies (6)
v

since 5 = v'e; where ¢; is the i-th unit vector. Conversely (6) implies for
every y € IR" that the left hand side of (7) can be extended to a bounded
linear functional on the space Cj of continuous functions vanishing at infinity
and hence by Riesz’ representation theorem this functional is induced by a
measure v, € M(IR?). Thus v is 7¢e-differentiable along every vector.

Now let us prove the existence of the density, following an idea in [ASF71].
This proof is based on the classical result of Saks that a measure v € M(IR9)
has a Lebesgue density if (and only if) for every Borel set A the function
y — v(A + y) is continuous on RY. (We need this only for nonnegative

measures and in this case a very short argument can be found in [Hew79], p.
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278).

For each i € {1,---,d} we apply Proposition 2 to C = C2° and the flow
T where Tyz = = — te;. Then (3) implies that V(A + te;) — v(A + se;)| <
lv..|||s — t| and hence

(A+y) —v(A+2) < Klly -2l

for all Borel sets A where K' = maxi<i<q||v;,. Since the maps y — p* and
u +— p~ are contractions in the Banach space (M(E),| - ||1) we infer in
particular the continuity of y — (A4 + y) and hence the existence of the
density by Saks’ theorem.

We mention that this continuity can be also deduced directly from (6). =

The Lebesgue density f of v is what is called (cf. e.g. [Zie89]) a function
of bounded variation on RY i.e. a function whose partial derivatives in the
distributional sense are bounded measures. The density f is absolutely con-
tinuous, i.e. the distributional partial derivatives of f are Lebesgue integrable
functions if the measure v is even Fomin-differentiable (cf. [ASF71] or apply
Proposition 1).

In the case d = 1 one has for Lebesgue-a.a. a € R the representation

f(a) = /((—o0,a) (8)

In fact for each n let g, be a smooth probability density with support [0, %]
and let G,, be the corresponding distribution function. Then we have for
a<b

V((a,b]) = lirrln/Gn(z—a) — G(z —b) V(d2)
= 1im [ gu(z =) = galz = 0) v(d2)
= lim [ (9n(z = b) = ga(z = ) f(2) d2 = £() = f(a).

The last equality holds in L'()\) but since the limit on the left hand side
exists everywhere the equality holds a.e.. Thus both sides of (8) differ only
by a constant a.e.. Due to the integrability of f the only possible limit value
of f at —oo is 0 and hence (8) is proved.

In higher dimensions we need higher derivatives for a similar representation.
Suppose v € M(R?) is d-times 7¢-differentiable along all directions (i.e.
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along the space of constant vector fields). Then for any orthonormal system
of coordinates and Lebesgue-a.a. vectors a = (ay, - - -, aq) we have

(@) = v, (=00, a1] x -+ x (=00, aq]). 9)

The proof is completely analogous to the proof of (8), replacing g,(z — b)
by 1%, gn(zi — b;) etc.. As a consequence we get a version of the result of
[ASFT71], Lemma 3.2.5:

Proposition 5: If n > d and v € M(RY) is n-times Fomin-differentiable
or n+ 1-times Tos -differentiable along (the set of ) all constant directions in
IR¢ then v has a Lebesgue-density for which all derivatives up to order n —d
are continuous and integrable over RY.

In fact from Proposition 2(b2) applied to the shifts 7} (z) = = — ty with
y € IRY we conclude inductively that if the measure v is n + 1-times TCgo-
differentiable along all constant directions then it is n-times 7)., -differentiable,
in particular in the sense of Fomin. Assume n = d. Since the measure v, .,
in (9) is a Fomin derivative it is absolutely continuous with respect to v and
hence with respect to Lebesgue measure. Hence the right-hand side in (9) is
continuous in a, i.e. v has a continuous density. In the case n > d the same
applies to the partial derivatives of f up to order n — d since we can simply
differentiate the identity (9) n — d times to get the result.

It is possible to improve this number n — d using more subtle arguments
connected to Sobolev’s Lemma, see e.g. the proofs in [Yos78], p. 174 and
[Nua95], p. 88.

3 Logarithmic derivative as a negative diver-
gence and the associated Lapalacian

In this section we extend for later use a couple of elementary properties
of the stochastic calculus of Wiener measure to the following setting. A
simple way to produce non Gaussian examples of this situation is to start
with a differentiable measure /mu on IR whose logarithmic derivative is in
L?(p). Then the product measure v = u™ on E = RN satisfies the following
assumptions with respect to the Hilbert space £ (see [SW93] and Example
4 below).
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Let H be a Hilbert subspace of F, i.e. H is a vector subspace, equipped
with the structure of Hilbert space and such that the canonical embedding
H — F is continuous. We suppose that the measure v € M (F) is (Fomin-)
differentiable along every y € H and that the logarithmic derivatives £ (y, )
are even in L?(v) for each y € H. In contrast to the previous section we
assume that v is nonnegative in order to ensure that the bilinear operation
(u,v) — [ uv dv which appears in the formula of integration by parts defines
a Hilbert space.

We introduce the spaces L%, (v) of all Borel vector fields h : E — H for which

1

Wl = ([ In@)v(ds))" < oo.

Let C be the space of all smooth cylindrical functions on E which together
with their derivatives are bounded. We define an unbounded linear operator
Dy : L?(v) D C — L%(v) by dom(Dy) = C and the equation

(Dyv(z),2) =v'(2)z v — a.e.. (10)

Thus Dy is the gradient operator with respect to H. Since every v € C is
bounded with a bounded derivative the measurable functions = — v'(z)z are
indeed uniformly bounded if z varies in the unit ball of H and hence Dyv is
in L?(v).

Proposition 6: The operator Dy is densely defined and closable.

Proof: That the space C is dense in L?(v) is clear. Thus we need to prove
only the closability. Let (v,),enw be a sequence in the domain C which
converges in L?(v) to some 0 and such that the sequence (Dyv,, )nen converges
in L% (v) to some w. We have to show w = 0. For this consider an arbitrary
element u of C' and a vector z € H. Then integration by parts gives

[ ul@)w(z), 2) vidz) (11)
= lim [ u(x)(Dyv,(z),2) v(dx) = lim [ u(z)v)(z)z v(dz)

= Jim [ ((w02)' (@) = va(@)u'(2)2 v(da)
= lim — () @)8(22) + (@)W (@), 2) v(do)

which equals 0 since u and v’ are bounded and 3(z,-) € L?(v). u
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Definition 3: We call the closure of the operator Dy the extended derivative
and denote it by D.

Remark 1 (a). This extended derivative can be considered as the non-
Gaussian analogue of the Malliavin derivative.

(b). Note that the domain of this operator depends of course on the measure
v. So we could write D, instead of D. However if v and p are equivalent
measures and some function v is in dom(D,)Ndom(D,,) then D,v = D,v a.e.
and therefore usually no ambiguity arises if we do not indicate the measure.

The following criterion for a function v to belong to dom(D) sometimes is
useful. It follows from the fact that the graph of D is convex and hence also
weakly closed in the product L?(/nu) x L% (v).

Lemma 4: Let v be the L*(v)-limit of a sequence (v,)n>1 in dom(D). If the
sequence (Dvy,)n>1 is bounded in L%, (v) then v € dom(D) and Dv,, converges
weakly in L2 (v) to Dv.

In the following proposition we give several versions of the chain rule. We
do not need part (c¢) in the sequel.

Proposition 7: Let ¢ : RY - R and u = (uy, - - -, uq) with u; € dom(D) be
given.
(a) If p € C(IRY) is bounded with a bunded derivative then ¢ ou € dom(D)

and

d 8@ )

D(wou) = (22 o uyDui, (12

i=1 0¢;
(b) Let U C RY and let ¢ be differentiable at every point of U. Suppose
that there is a sequence (pg)k>1 of bounded C*(RY)-functions with bounded
derivatives which together with their derivatives converge pointwise on U to
@ and Vo respectively in such a way that |pk(z)| < |o(x)| and ||V ()| <
IVo(z)|| for all k and x € U. Moreover let p,q be in the (closed) interval
[2, 00| such that % + % = 1.

If u(z) € U v-a.e., a_g ou € LP(v) and Du’* € Li(v) fori =1,---,d then
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pou € dom(D) and (12) holds.
(c) Let ¢ be a Lipschitz function with Lipschitz constant K with respect to
some norm || - ||. Then ¢ ou € dom(D) with

|D(p o u)| < K| Dul|. (13)

Proof: Part (a) is just the usual chain rule if the components of u are
smooth cylindrical functions. If (u,) is a sequence of smooth cylindrical
vector functions such that u,, — u and u!, — Du in each component in L?(v)
then the corresponding expressions on the right hand side of (7) converge in
measure and by the boundedness of ¢ even in L?(v). Moreover for a similar
reason ¢ o u, — @ ou in L?(v). This implies (12 in this case.

Under the assumption of (b) the ¢y satisfy the chain rule according to (a),

1.e.
d

D(grou) = (22 0 u)Dur (14)
o 9%

Moreover @ ou — pou in L?(v) and (Vi) ou — (V) ou in LP(v) by

dominated convergence. Thus the left-hand side of (14) converges to the left-

hand side of (12) in L?(v) and together with the assumption Du’ € LI(v)

and Holder’s inequality the second cenvergence allows the same passage to

the limit on the right-hand side.

2. Part (c) is proved using Lemma 4 in exactly the same way as it is done

for Wiener measure e.g. in [Nua95|, p.33. The idea is to mollify ¢ by convo-

lutions.

u

Corollary 1: (a) (Leibniz rule) Let u,v be two elements of dom(D). Then
D(uwv) = uDv + vDu under either of the two conditions: (i) The three
functions u?,v?, uv are also in dom(D). (ii) The integrability conditions
u,v € L*(v) and Du, Dv € L}v) are satisfied.

(b) Let w € dom(D) satisfy v{w = 0} = 0. If Dw € L*(v) and = € L8(v)
then L+ € dom(D) and D+ = =5¥.

w w?2

Proof: In (a), case (i) and in (b) we apply Proposition 7 (b) with p = ¢ = 4.
We define the function ¢ in the first case by ¢(s,t) = st on U = RR? and
in the case (b) by ¢(t) = 1/t on U = IR, — {0}. Our integrability conditions
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imply those in the Proposition. The approximation of ¢ by functions ¢, as
required there is straightforward in the first case. In the second case ¢}, can
be obtained by replacing ¢ on the interval [—1/k,1/k] by an anti-symmetric
smooth function which vanishes at 0 and which is concave on the right part
of this interval.

It remains to prove that the Leibniz rule also holds if we only know that
u?,v? and wv are in dom(D). For this let us first consider the case u =
v. We choose a sequence (¢y)x>1 of bounded smooth functions on R such
that 0 < 9 (z) T 1 and 9(z) — z for all z. We apply the chain rule of
Proposition 7 (a) in two ways. If u?> € dom(D) then ¢ (u?) € dom(D) and
Db (u?) = ¥, (u?)Du? — Du?. On the other hand we can write ¥ (u?) in

the form (¢ (u))? where 94 (2) = /1%(22). With the usual chain rule we
compute the derivatives of the functions 1, and get

Dyy(u?) = DI(x(u))’) = 20(u) Dibr(u)
= 2¢,(v)uDu — 2uDu.

Comparing we arrive at Du? = 2uDu. Now let v be another function such
that v? and uv are in dom(D) as well. Then (u + v)? € dom(D) and sub-
stracting the quadratic terms we arrive at the desired formula. [ ]

Remark 2 The previous results are of course well known for Wiener meas-
ure. One interesting property of the derivative D which holds in the gaussian
case but not in general is the socalled ’locality’:

If Dv =0 then v = const v — a.e.. (15)

If the measure v € M(IR?) has a smooth Lebesgue density whose support is
compact but not connected then (15) fails. However it is not difficult to verify
that for a probability measure y € M(IR) whose logarithmic derivative is in
L?(u) and whose density is locally bounded away from 0 the corresponding
product measure v = u™ on R™ has the property (15). Note that (15) has
some interesting consequences like the zero-one laws (cf [IN94])

If 1p € dom(D) then v(F)v(F¢) = 0. (16)

If v € dom(D) and 1/v € L*(v) then either v > 0 v —a.e. or v < 0 v —a.e..
(17)
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The proofs are again similar to the Gaussian case: For the first note that by
Crollary 1 D(1p) = 21pD(1p) which implies D(1p) = 0 and the assertion
follows by (15). For the second choose a sequence (¢y) of smooth functions
such that 1j/k00) < @6 < o) and 0 < @) < 2k. Then [D(pg o v)| =
|l (v)Dv| < 2klg9<p<1/kyDv. Since 1/v € L*(v) we have {0 < v < 1/k} <
v{1/v > k} = o(z). Together we conclude that D(py 0 v) — 0 in L% (v).
Therefore 1,50} = lim g, o v € dom(D) and (16) gives (17).

Moreover the rule of integration by parts can be extended from smooth test
functions to elements of dom(D).

Lemma 5: (a) If v is differentiable along h € L% (v) with logarithmic deriv-
ative By € L*(v) then [wpB dv = — [(Dw,h)y dv for every w € dom(D).
(b) Let v be m-times differentiable along the vector fields hy, - - -, hy, in L4 (v).

Assume the existence of the two highest logarithmic derivatives ﬂ,(gff,i)

m—1
LP(v) and ﬂ,(:f?_hm € L*(v). If2 < p,q < oo satisfy ;+; = 5 and by, € LY (v)
then for every w € dom(D) one has

/ (Dw, h) B0 dv = — / wB™, dv. (18)

Proof: Part (a) is the special case of (b) where m = 1,p = 2,q = oo and
B© = 1. Thus it suffices to prove (b). Let (w,) be a sequence of smooth
functions such that w, — w in L?(v) and Dw,, — Dw in L%(v). Then on the
right-hand side of (18) one can pass from w,, to w. Similarly, on the left-hand
side we can pass to the limit using the fact that by Holder’s inequality the
product ||hm||ﬂ,(l:'f,_1) is in L?(v). ]

“shm—1

This integration by parts formula has a canonical functional analytic inter-
pretation. Proposition 6 implies that the associated adjoint operator from
L% (v) into L?(v) exists and is densely defined. For reasons connected to the
theory of differential forms and in analogy to the tradition in the context
of Wiener measure we denote this adjoint operator by ¢, rather than D*.
However in contrast to D the values of this operator depend strongly on the
measure and therefore we keep the index v.
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Definition 6 The symbold, denotes the closed operator whose domain dom(J,)
consists of all elements h of L% (v) for which there is some constant K such
that for every v € C we have

I/v'(l')h(x) v(de)| < K |l v l[e2w), (19)

and such that then 8,h is the unique element of L?(v) satisfying

/ V' (@)h(z) v(dz) = / ()8, h(z) v(dz) (20)

for all v € C and hence for all v € dom(D)

/ (Du(z), h(z)) v(dz) = / ()8, h(z) v(dz). (21)
Comparing (20) with the relation (5) we see that
§,h = —p. (22)

Thus the set of square integrable vector fields along which the measure v is
differentiable with a square integrable logarithmic derivative coincides with
the domain of §, and on this domain the equation (22) holds.

Remark 3 In the context of Wiener measure it was discovered by Gaveau
and Trauber [GT82] that the Skorokhod integral is just the adjoint of the
Malliavin derivative. On the other hand among others Daletskii [DM85]
noted that the logarithmic derivative of a Gaussian measure along a vector
field coincides with the negative of the stochastic (Ito- or even Skorokhod-
) integral. The objects on both sides of (22) thus can be considered as
non-Gaussian versions of the Skorokhod integral. However for fixed h as
a function of the elements x of the underlying path space’ E' the random
variable d,h is not v-a.s. additive as in the Gaussian case. Thus on the first
glance it does not seem have the typical bilinear structure of an integral.
Nevertheless we could write symbolically d,h = [ hdBy to indicate that ,h
can be considered as a kind of stochastic integral of the vector field h with
respect to the integrating process (8(y,-) : y € H) on the measure space
(E,B(E),v). The reader will easily verify that this is accordance to the
notation for the Wiener-It6 integral.
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Remark 4 If in the above construction the space C' of test functions is
replaced by another space C'; of bounded smooth functions then the resulting
operators D and J, will not change as long as the two spaces C and C; have
the same completion with respect to the ’graph-norm’ || - ||; 2, i.e. if the
resulting domains dom(D) coincide. For the proof let v € C; be given. For
the vector field w = ' the first and the last member of relation (11) are equal.
The same holds for the vector field w = Dv and hence Dv = v’ for all v € C}.
Thus D is also the closed extension of the restriction of the gradient to Cj.
Therefore the corresponding adjoint operators coincide and the relation (22)
implies that if v is C-differentiable along a vector field h € L% (v) with a
square integrable logarithmic derivative then v is also C'i-differentiable along
h.

Remark 5 We have considered the operator 6, on the space L% (v) but
similarly one could change the corresponding Banach spaces. For example
one could consider the closure D} in Li(v) x L'(v) of D*. We have chosen
the Hilbert space setting mainly for simplicity.

Sometimes one wants to change a vector field along which v is differentiable
by a scalar function. For this and many other purposes it is interesting to
study 6, h in the particular case where the vector field A is of 'gradient type’
i.e. h = Du for some u € dom(D). This leads to the following definition.

Definition 7: We call Laplace operator associated to v the operator com-

position A, = —0,D whose domain dom(A,) consists of all u € dom(D) for
which Du € dom(d,).

Since in the classical space L?(IRY) the negative adjoint of the gradient is the
divergence operator one can consider A, indeed as the natural analogue of
the Laplace operator.

In the case of Wiener measure v this operator is called number or Ornstein-
Uhlenbeck operator (see e.g. [Nua95], p. 54 f.). In this case it is closely linked
to the Wiener Chaos decomposition of L?(v). It is the generator of the semi-
group describing the infinite-dimensional Ornstein-Uhlenbeck process. Since
the use of this operator for Wiener measure is so intimately linked to these
two interpretations it is somewhat surprising that for our purposes we do not
need reference to any underlying stochastic process or any other additional
structure of the space L?(v). Of course such a probabilistic interpretation



19

would give interesting additional insights.

The following observation describes the role of A, for the scalar modification
of vector fields of differentiability and for the differentiability of measures
which are absolutely continuous with respect to v. Note that we cannot ex-
pect in general that the new logarithmic derivative is again square integrable.

Proposition 8: Let v € dom(D) and u € dom(A,). Then the measure v is
differentiable along the vector field vDu with logarithmic derivative

Y w = VAU + (Dv, Du). (23)

Moreover the measure vv which has the Radon-Nikodym density v with respect
to v is also differentiable along the vector field Du with logarithmic derivative

, Du, Dv
pu=Au+ %hlvbo}- (24)

Proof: For every smooth test function w we have by definition of §, as the
adjoint operator of D

—/w'(vDu) dv = — /(vw',Du)H dv = /(U}D’U — D(vw), Du)y dv
= /w(Dv,Du)H dv — /vw d,Du dv
= /w(vL,,u + (Dv, Du)g) dv.

Since v, A, u are in L?(v) and Dv, Du are in L% (v) the function § = vA,u+
(Dv, Du) is in L*(v). Thus the measure whose v-density is this function is
equal to v, p,,. This proves the first assertion.

Similarly this measure has the vv-density %1{|U|>0} and the first integral in
this calculation can also be read as [ w'Du d(vv) and thus this new measure
is also the derivative of vv along the vector field Du. |

Remark 6 If the function v is strictly positive v-a.e.one can rewrite (24) on

a symbolic level as
Dv, D
L,,u=Au+ w (25)
v
However the domain of these operators are quite different. Nevertheless (25)

holds if u belongs to the common domain of the two operators.
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A second useful fact is that like in L?(IRY) the canonical bilinear operation
which is defined by D can be also expressed in terms of the operator A,.

Proposition 9: If u,v,u? v? and uv are in dom(A,) then we have the fol-
lowing identity of elements of L'(v)

2(Du, Dv)g = A, (uv) — vA,(u) — ul,(v). (26)

Proof: Let again w be a smooth scalar test function. Then we get
/w(A,,(Uu) —vA,(u) —ul,(v)) dv
= - /w 0, D(vu) — wv 0, Du — wu 6,Dv dv
= —/DwD(Uu) — (D(wv)Du + D(wu)Dv) dv
= / 2wDvDu dv

since DwD(vu) = Dw(vDu+uDv) = D(wv)Du+ D(wu)Dv — 2wDvDu. =

4 Images of non-Gaussian differentiable meas-
ures

Smoothness results for images of non-Gaussian measures under smooth maps
have been obtained among others by Uglanov [Ugl81] and Daletskii and
Steblow-skaya [DF92]. Here we give similar results, but also for non-smooth
maps, in particular we extend the Malliavin-Stroock theorem [Str81] to non-
Gaussian measures.

The main idea of the results of this section can already be seen in the fol-
lowing simple result for the one-dimensional case. In the Gaussian case this
presumably is due to Bismut [Bis81]. See also Nualart [Nua95], p. 78 .

Proposition 10: Let u : E — R be a function in dom(D). Consider any
vector field h : E — H such that (Du(z),h(z)) = 1 a.e., e.g. h = 7%

[ Dull%
If v is differentiable along h with logarithmic derivative 3% then p=vou™'
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is differentiable with logarithmic derivative b where bou = E(f;|u) and the
Lebesgue density of p is given by

f(z) = /{} By dv. (27)

Proof: Let v : IR — IR be a smooth one-dimensional test function. Let
b: R — R be a measurable function such that bou = E(f}|u). Then

/Ru(g)b(g) dj = /(v o u)E(8|u) dv = /(v ou)fY dv
- —/D(v ou)h dv = —/(U' o u)(Du, h) dv

= —/v'oudlx:—/v'd,u.

This shows that the function b € L' () is the logarithmic derivative of the
measure u. Moreover according to (8) the Lebesgue density of 4 is given by

fl@) = W((=s0,0) = [ b) du

—00

N /{u<w} O v 25)

Remark 7 Of course one can go at this point into the theory of surface
measures. They have been constructed for smooth measures and functions
by Uglanov [Ugl81] and in the framework of infinite dimensional Sobolev
spaces for Wiener measure by Airault and Malliavin [AM96]. Such a surface
measure vy will satisfy for all sufficiently smooth vector fields h the Stokes-

Green formula
h,n) dv, = / B, dv 29
~/{u:a}( ) {u<z} h ( )

where n is the normalised normal vector field of the surface. This formula
has been given (without proof) in [Smo86]. In our case n = ”B—ZH and hence
Du

Touz @s in the proposition and applying (27) we have the

_ vs(dr)
1@ = [ Toul

choosing h =
relation




22

Integrating over a we get

v(E)=u(R) = /o:o f(a) da = /o:o /{u:a} lhs]()?j') da

Applying this formula to the measures gv instead of v where g runs through
the set of smooth cylindrical functions and using a monotone class argument
we get for every Borel subset A of E the formula

v dx
5 da 30
/ ~/{u a}nNA |DU,|| ( )

We would like to mention without going into details that by an induction
argument for codimension larger than 1 the coarea formula

= )| nlde) g, (31)
Rd J{u=a}nA | det Du(Du)*|2

can be connected in a similar way to the Stokes formula of finite codimension,
provided the latter is also available on the manifolds given by the level sets
of u.

We now extend the idea of Proposition 10 to infinite dimensional image
spaces. The following theorem is an extension of a result in Daletskii-
Steblowskaya [DF92]. The main point is to map a vector field to the image
space via the differential of the underlying function. But since the function
u is typically not injective we take an average of these images with respect
to the conditional law on the fibers of u. In other words we use conditional
expectations also for the definition of the vector field in the image space.

Theorem 2: Let F be a LCS and let v : E — F be a Borel function for
which there is a map Dpu: E — L(H, F) which satisfies the chain rule

(D(Cou)(z),y)ng = ((Dru(z)y) v — a.e. (32)

for every y € H and every ( in the dual space F'. Let g : F — G and
h: E — H be two vector fields such that

gou= E(Dgpu hlu) v— a.e. (33)

where (Dpu h) : E — F is defined by (Dpu h)(x) = Dpu(x)h(z) and
the vector valued conditional expectation is understood via composition with
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elements of the dual space F'. If v is differentiable along h then the image
measure = vou ' is differentiable along g and the corresponding logarithmic
derivative B is given by the relation

Bl ou = E(By|u).

Proof: First let us extend the chain rule (32). It implies v o u € dom(D)
and

(D(vou)(z),y)u = v'(u(z))(Du(z)y) v—ae. (34)
whenever v : F' — IR is a smooth bounded cylindrical function with bounded
derivative. In fact we can write

v = SD(CI,"';Cd) (35)

and then (34) follows from Proposition 7 (a). From (34) one gets the chain
rule for differentiation along vector fields, i.e.

(D(vou)(x), h(x)) g = v'(u(z))(Du(z)h(r)) (36)

v-a.e. for every measurable vector field h : E — H. In fact by straightforward
approximation one can reduce the proof to the case where h takes its values
in a finite set.

Now we use the representation (35) once more, writing ( = ((1,--+,(g) - By
definition of the vector valued conditional expectation in (33) we can apply
(36) as follows:

—/v(z) d(v, ou™") = —/voudu,'l
= [(Dwou)@),h(@)n dv = [v/(u(e)¢(Du(@)h(z))) dv

_ / > dup(¢ (u(@)) G Du(2)h())) dv

= [ X oe2)6(e() di= [v()a(z) dp

This shows that the measure y is differentiable along the vector field g with
derivative pg = v}, o u~!. The statement about the logarithmic derivative

follows from

/voudl/,'lz—/vouﬂ,': duz—/(vou)E(ﬂ,’:g\u) dv.
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Remark 8 Let u be as in Theorem 2. Let G be a Hilbert subspace of F
such that for v-a.e. x € E the operator Dpu(z) maps H continuously onto
G. Then the adjoint operator Dpu(z)* : G — [kerDpu(z)]t is an linear
isomorphism. In this case for every vector field g : F* — G one can find a
particular vector field h, which satisfies (33) by setting

-1

hy(@) = Dyu(e)’ (Dru(z) o Dru(@)’)  g(ulz)). (37)

Let us study the particular case F' = IR¢. In the remaining part of this section
we consider a map u = (uy,--+,uq) : E — IRY such that u; € dom(4,) for
each i € {1,---,d}. Define the matrix o(z) by

o(z) = ((Dui(m),Duj(:v))H). (38)

From Theorem 5.2.2 in [BH91] it follows that the image of v under u has
a Lebesgue density if o(z) is a.e. invertible and if in addition to our as-
sumptions the measure v is even quasiinvariant in all directions e; where
(e;) is an orthonormal base of the Hilbert space H. Simple examples show
that differentiability in a certain direction does not imply quasiinvariance,
but we believe that the quasiinvariance assumption of Bouleau and Hirsch
can be replaced by our assumptions in their result. However, very little can
be said about the regularity of the density of the image measure. To prove
smoothness one really seems to need the integration by parts technique. In
the following approach we start from stronger assumption and get a stronger
result.

We first remark that the previous result extends to higher derivatives.

Theorem 3: Let u be as in Theorem 2. Let ¢1,---,9, and hy,---,h, €
L (v) be vector fields in F resp. E such that E(Du h;lu) = g; o u v-a.e..
Suppose that v is n-times differentiable along hi,-- -, h, such that all higher
logarithmic derivatives ﬂl(z?---m (1 < i < n) exist and are in L*(v). Then
= vou ! isn-times differentiable along gi,---,¢g, and the corresponding
logarithmic derivatives of n-th order are related to each other by

b g 0= B(B, ).
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Proof: The proof proceeds by induction using a similar calculation as before.
Here are the main steps: If v is a smooth test function on F' then by induction
hypothesis and (36)

| V@) 1D (d2)
= [ V/(@@)(gn(u(®))) Fp,., (u(x)) v(d)
= [ (Dwow)(@), k(@) B, ,(x) v(da)
= — [ vou(®) Byun, (z) v(dz).

In the last equation the integration by parts is possible due to Lemma 5. As
before it is now sufficient to take conditional expectations. [ ]

The following lemma gives under strong assumptions an elegant way to deal
with higher derivatives.

Lemma 8: Let R be a linear subspace of dom(A,) which contains the con-
stant 1 and is closed both under the operator A, and under multiplication.
(a) Let M(v,R) be the space of signed measures which are absolutely con-
tinuous with respect to v with a Radon-Nikodym density in R. Then the set
M(v,R) is closed under differentiation along the linear hull Hy of the set of
vector fields {rDv : r,v € R}. In particular, the measure v is infinitely often
differentiable along Hx.

(b) Let R be the space of functions s/w with s,w € R and L eNLP(v). Then
R is also a linear space closed under multiplication and under the operator
A, .

Proof: (a) The relation ||Dv||? = (Dv, Dv) = vL(v) — 3L(v?) follows from
(26) in Proposition 9. It implies that

Dv e () L% (v) (39)

p>1

for all v € R. Similarly (26) implies that (Dr, Dv) € R for all r,v € R.
Consider the vector field A = rDv with r,v € R. Proposition 8 then shows
that v is differentiable along h with 8} = rAv+ (Dr, Dv) € R. Consider now
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a measure A € M(v,R) with 2 = r, € R. We want to differentiate A along
the same vector field h = r Dv. Consider the new vector field h* = ryh € Hxp.
Let s be a smooth test function on E. We get

/(t’,h) d\ = /(t’,h)r,\ duz/(t’,h*) dv
= — [ 185 dv < |l

This show that the measure A is differentiable along h and the measure A},
has the v-density (% which again is in R. So X, € M(v,R). Since the
differentiation of a measure along a vector field is linear as a function of the
vector field we can pass to the linear hull #%. This proves (a).

(b) The space R is a linear space which is closed under multiplication since
R has these properties. The space R is contained in (,>; LP(v) since all
integer powers of all of its elements are in the domain of D and hence square
integrable. The same argument then applies to R. That Hz is contained in
Np>1 L (v) follows from (39).

From Corollary 1 we conclude that a function r/w € R is in dom(D) with

1v-

D(r/w) = (wDr — er)% € Hp- (40)

Let now h = (r/w)Dv with r/w € R be given. By Proposition 8 the measure
v is differentiable along h with logarithmic derivative

” r r
/Bh, = EAU,U - (DE’ DU) (41)
_ rAy  (Dr,Dv) N r(Dw, Dv)
w w w?

Since all three denumerators are in R and R is a linear space this logar-
ithmic derivative is again in R and in particular square integrable. Thus
h € dom(6,) and hence H5 C dom(6,) and 6,(H) C R. Together with (40)
this shows that R C dom(A,) and A,(R) C R, i.e. R is closed under the
operator A,.

This completes the proof of the lemma and of the theorem. [ ]

The first part of the following result extends the corresponding theorem of
Stroock [Str81] to non-Gaussian measures. The statement about smooth
versions of the conditional expectations shows once more the advantage of
considering several measures at the same time.
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Theorem 4: Let R be a subset of dom(L) which is closed under the operator
A, and under pointwise multiplication. Let v : E — IRY be a map whose
components belong to R and such that the matriz o(zx) defined in (38) is
v-a.e. tnvertible. If o satisfies

e N L (v (42)

p>1

det( )

then = vou ! has a Lebesgue density f € C®(IRY).
Moreover for every function ¥ = s/w with s,w € R and % € MNp>1 LP(v)
there is a function ¢ on IR which is C*® on the open set {f > 0} such that

B($lu) = pou. (43)

Proof: Without loss of generality we may assume that R is a linear space
and that R contains the constant function 1 because the common linear
hull of the constants and R also satisfies the assumptions of the theorem.
As was seen in the proof of the lemma the entries of the matrix o are in
R. Expanding the determinant we see that det o is a linear combination of
products of elements of R and hence det ¢ € R. Now by Cramer’s rule the
entries of the inverse matrix p = 0~! can be computed as p;; = de’t] where the
entries of the cofactor matrix 6 are again in R for a similar reason. Together

with our assumption (42) we see that the vector fields h; = E?Zl pijDu; are

in the space ‘Hp where R and ‘Hy are defined in Lemma 8. Then applying
part (a) of the Lemma to R which is legitimate by part (b) of the Lemma, we
see that v is infinitely often differentiable along the vector fields h;. Using
the remark 8 it is easily verified that Du(z)h;(z) = e; for each i. So by
Theorem 3 the image measure v is infinitely often differentiable along the
constant directions and thus it has a C'° density f by Proposition 5.

In order to prove the factorization of the conditional expecations we show
that even for every ) € R the image measure (1/v) o u~"! is infinitely often
differentiable in the constant directions. Then by Proposition 5 also this
image measure has a C'*°-density g and then the function ¢ = %1{ >0y satisfies
(43) and it is smooth on {f > 0}.

By Lemma 8 the measure v is differentiable along the vector fields h; and
the corresponding logarithmic derivatives are again in R. Thus for every test
function ¢t € C®°(IR?) we have according to the chain rule (36)

/Rd 0it(z) d = / (t ou)(z), hi(x))(z) v(dz)
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= — [t ”.d:/td”, -
/E o uByy,, dv e (Byn,v) o u

But this means precisely that the set of images of the measures in M(v, R)
under the map u is closed under differentiation along the constant vectors in
IRY, in particular it consists of infinitely differentiable measures, concluding
the proof. [ ]

Remark 9 It is natural to ask whether one can prove differentiability of
finite order, say f € C*(IR?), under weaker assumptions. A closer look at
the above proof shows that this is indeed the case. The cofactors of o are
linear combinations of terms of d — 1 factors of the type rAv with r,v € R.
So if R is not necessarily closed under multiplication but all products of
elements of R and A,(R) with a sufficiently high bound N on the number of
factors are still contained in dom(4,) and if moreover det(o)~! € Li(v) for
sufficently high ¢ > N one gets arbitrarily high moments of the H-norm of
the vector fields h;. Similarly using the explicit representation in (41) one can
enforce arbitrarily high moments of all higher logarithmic derivatives along
these vector fields of a given order. In this way one gets differentiability of
v of a given order n in the direction of the h; and hence by Theorem 3 and
Proposition 5 the differentiability of the density f of order n — d.

5 Remarks on the Laplacian in the context
of canonical quantization

In this section we briefly indicate some of the ideas connecting the mathem-
atical objects in the previous sections to some concepts from physics.

Let us recall the following: If v is a (infinite dimensional) Gaussian measure
the operator A, in the space Ly(v)) can be considered as the Hamiltonian of
an (infinite-dimensional) harmonic oscillator; in the context of this interpret-
ation v describes the ground state of the oscillator, i.e. the state of minimal
energy. Such an oscillator describes the free quantum field’; the operator A,
has a discrete positive spectrum. The order number of an eigenvalue is inter-
preted as the number of particles in all states which correspond to elements
of the associated eigenspace, i.e. the operator A, is the 'number operator’.
Wiener chaos decomposition is just the decomposition of Ly(v) into the Hil-
bert sum of the eigenspaces of A,. This sum is isomorphic to the Hilbert sum
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of the spaces {®;L:1Hj} (n =1,2,...}) where the n-th space is a symmet-
rized Hilbert tensor product of copies of H, and is interpreted as the space of
n-particle states. This is actually a main point of the particle-wave dualism
for quantum mechanical fields.

Now in the case of a nongaussian measure v the Laplace operator A, can be
considered as the Hamiltonian in the corresponding space Ly(v) of an unhar-
monic oscillator which describes a field with selfinteraction (the measure v
depends on the potential of the interaction). So the theory of the Laplacian
A, is related to the so called nonperturbative quantum field theory.

These ideas can be explained in more detail on a ’formal’ (i.e. informal,
omitting precise analytical assumptions) level as follows (see [SW96] !).

First we discuss the notion of generalized density of a differentiable measure
(cf. [SW95], for a different approach see [Kir94]). Let E be a LC'S, let H be a
(dense) Hilbert subspace of E and let v € M, (E) be (Fomin-) differentiable
along every h € H. Actually the assumption of the following Proposition
typically will be satisfied only if the Hilbert space H is strictly smaller than
the ’space of differentiability’, i.e. the space of directions along which the
measure is differentiable. In the Gaussian case it is possible to take for H the
image of the correlation operator of v. The result follows from the Frobenius
theorem.

Proposition 11: If the mapping 3* : H x H — R (h,z) — 3"(h,z)
is continuously differentiable then there erists a function o, : H — R for
which o, (x)h = B*(h,z) for each h,x € H.

The function F, : H 5 x — exp 0, (z) is called a generalized density of v and
o, is called a logarithmic density of v. Hence the generalized density of v is a
function on H whose (usual) logarithmic derivative (In F,) (= o},) : H — H'
coincides with the function

H>z+—[H>h— §"(h,z)]

In [SW96] unfortunately there are some of misprints. The corrected version can be
gathered from the following formulas.



30

Roughly speaking, a generalized density of v is a function on H whose log-
arithmic derivative coincides with the logarithmic derivative of v.

Remark 10 The function o, is defined on H, but if dim H = oo (and as
usual v is o-additive) then o, cannot be extended in natural way to the whole
space E. Nevertheless, in some interesting cases the function

A, Hx H— R, (h,x) — 0,(x+h) —0,(x)

can be extended to the space H X E by continuity. If such an extension
exists we may call it logarithmic quasiinvariant density. This terminology is
justified by the following statement which was proved in [SW95].

Proposition 12: If A, is continuous on H x E and if ® is a map from
R x E into E such that ®(0,x) = x (satisfying some regularity conditions)
then

A®(1,7) — 3,7) = /01 8(® (. 2), (. z))dr.

Here @ denotes the derivative with respect to thefirst variable. Moreover the
image measure of v under the map ®(1,-) can be written via the Girsanov
type fromula

I/((I)(l, ))_l(d(L’) — eA,,(<I>(1,z)—z,z),,(da:)_

Example 2 IfdimE < oo, E = H and f is the (usual) density of v, f(z) >
0 for all z, then one can pose o, = In f and F,, = f. In this case e’ (®(1:2)—2:) —
f(2(1,2))

fl@) -
Example 3 If v is a centered Gaussian measure on E with correlation op-
erator B: E' — E and if ImB D H, then for all x € H and some constant
C>0 —

F,(z) =C-e 287 oo,

Example 4 If E = RY and v(dz) = Q p(x;)dz; with an even probability
density p satisfying [g(p'(s)?/p(s))ds < oo. In this case the subspace of
differentiability is the sequence space (* (see e.q. [SW93]). Then the gen-
eralized density F,, is given by F,(z) = [1p(x;) for those elements of ¢* for
which this product converges. In the particular case of a two-sided exrpo-
nential distribution, i.e. p(s) = e /2 this means that F, is defined on
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H whenever the Hilbert space H is contiunuously embedded in the sequence
space ¢'. Note that in this case the usual logarithmic derivative is given by
the series By (x) = — Y sgn(z;)h; which converges in L*(v) for all h € 2. In
the case of the Cauchy distribution the product representation of F,, makes
sense on a much larger space than £*.

Using this notion of generalized density one can try to define a nonlinear
function of a measure. Namely, if ¢ : (0,00) — (0,00) is a function and if
F, is a generalized density of v then we denote by () any measure whose
generalized density is the function ¢ o F,. Of course, only for very special
measures and functions the measure ¢(v) exists. Moreover the generalized
density is determined at most up to a multiplicative constant the unique-
ness of the measure ¢(v) can be hoped for only in the class of probability
measures. Even this uniqueness typically is a delicate question. Not always
a probability measure on an infinite dimensional space with a dense space of
differentiability can be reconstructed uniquely by its logarithmic derivative.
Let us illustrate the general idea for a particular function ¢.

Example 5 Let ¢(t) = t*. Then we will denote the measure o(v) by v2. If
this measure exists then ﬁ“z(-, ) = 26%(-,-). The latter equation can also be
used to define the measure v?. If v is the Gaussian measure from Example 2,
then v? is the Gaussian measure whose correlation operator is B/2; similarly

1
one can define the measure v2.

After these preparations we come to the idea of canonical quantization: Let
@ and P be two copies of a Hilbert space with a scalar product (-,:). Let
G = @ x P and let ‘H be a real 'Hamiltonian’ function on G given in the
form

H(g,p) = %(Ap,p) +V(g),

where A is a self-adjoint positive operator in P and V is some potential.
If I is defined by I : P x Q — Q x P, (p,q) —> (g, —p) the collection
(Q x P,I,H) is called a (generally infinite-dimensional ) classical Hamilto-
nian system.

If dim Q(= dim P) = d < oo then one can apply to this system the standard
procedure of canonical quantization. According to this procedure one assigns
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to the function 7 the operator A in L*(Q, M) (whereA? is the d-dimensional
Lebesgue measure) given by

. 1
Hg = —EAAgJH/g. (44)

Here A 4 is the Laplace operator corresponding to the quadratic form A, i.e.
Apg = tr Ag”. Actually corresponding to the physical statement that the
potential and thus the total energy is determined only up to an additive con-
stant one can also add a term Cg on the right hand side of (44) where the
constant C will be determined later.

Now in finite dimension it is a classical procedure to replace the space
Ly(Q, %) by the space Ly(Q,n), where n is a certain probability measure
with strictly positive smooth density f,. Then, using the natural isomorph-
ism U : L2(Q,n) — L*(Q, A% defined by ¥g = g - (f,)? one can define
the isomorphic image H, in L?(Q,7n) of the operator H in L*(Q,\?) via
(ﬁng)(fn)% = 7:[(9 (fn)%)

In the infinite-dimensional case Lebesgue measure no longer exists, but the
space L?(Q,n) can be defined. Moreover, the definition of 7-2,7 can be suitably
adapted. One just needs to define the operator 7 by the relation (44) first
in a space of sufficiently smooth functions on () without reference to any
measure, rather than in the space L?(Q, A*°) which does not exist. Instead
of the density f, of n one can use the generalized density F;,. Then one can
actually use the same definition of the operator 7—2,, in the space L?(Q,n) :
Define 7-Alng to be the function which satisfies

N

A l S
(Hyg)(Fy)2 = H(g(Fy)
Then one can calculate that
1

(Flag) (@) = —5 (Bag"(@) + tr AF(,2) @ ¢ (@) + (P (@) Fy ¥ () (o).

).

Let us remark that if one extends - in a natural way - the operator H to the

HF,
space M(E) then the function Iz " is just the Radon-Nikodym density of
n
the measure Hn with respect to 7.
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1 .

Now assume that F;} is an eigenfunction of H for the lowest eigenvalue.
1

Then the measure 72 can be called a ’ground state’ of the operator and the

A L1
constant above can be chosen in such a way that HF;; = 0. In this case the
above formula simplifies to

(Flag) (@) = — 5 (1 Ag"(2) + tr AF"(-,) © ¢'(x).

There is of course the question of convergence of the traces. Either one
assumes that A is of trace class or one has to restrict the domain. Sometimes
the sum of the two traces may exist even if they do not exist separately, in
other words one may extend the domain of H,, by rewriting it as:

(Flag) (@) = —5tx A((6"(z) + 5(,2) © ¢ (2)))

If in the Gaussian case A = A2 where A is a positive definite self-adjoint
trace class operator then

- tT‘AO

and 7 is the measure whose correlation operator is Ay and 7(h, z) = —(Ay ' h, z).
So the Gaussian case corresponds to the harmonic oscillator and the Hamilto-
nian function H(g,p) = @ + (‘IQ;") ): the more general function H(q,p) =
(‘4“2';”) + V(g) can be considered as describing an ”"unharmonic oscillator”
(of course such an interpretation is very wide). In this view the difference
between a free field and the field with selfinteraction is just the difference

between harmonic and unharmonic oscillators.

The connection of these objects to the Laplacian and the divergence oper-
ators introduced in the previous sections is given by the following observation:

Proposition 13: 7-2,7 = 0,AD; if A= Id then 72,, = 16,D = —1A,.

In this way the study of the Laplace operators A, is connected to the study
of a wide class of quantum systems. The following result concerns the action
of the associated dual operator on the measures.
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Proposition 14: Let ?:L; be the operator in the spaces of measures which

1 adjoint to the operator ﬂn with respect to the natural duality between the
spaces of functions and of measures. Then under the above assumptions

Hip = —%tr A" =" @ p" = (87); ® B")

which implies the ’stationarity’ result Hyn = 0.

A l
We conjecture that conversely H;v = 0 only if H,F? = 0. In any case it
would be interesting to know under which conditions this equivalence holds.

Remark 11 A measure v satisfying the equation 7:[;"1/ = 0 is an invariant
measure for the following stochastic differential equation (in Q)

dx = %ﬂ"(-, z)dt + dW

where W is @-valued Wiener process generated by the (Gaussian measure
with the correlation operator A.

This means that the following problems are closely related (actually almost
equivalent); the problem of finding a ground state for a quantum mechanical
system; the problem of finding an invariant measure for a diffusion process
and the problem of reconstructing a measure given its generalized density. As
it was shown in Proposition 12, the generalized densities arise in Girsanov-
Maruyama type formulae. These densities can be used also in a martingale
approach to Feynman-Kac type formulae.

Hence on can expect that logarithmic densities of measures can play, in the

calculus of smooth measures, sometimes an even more important role than
the logarithmic derivatives.
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