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Abstract

Starting from the uniqueness question for mixtures of distributions
this review centers around the question under which formally weaker
assumptions one can prove the existence of SPLIF's, in other words per-
fect statistics and tests. We mention a couple of positive and negative
results which complement the basic contribution of David Blackwell in
1980. Typically the answers depend on the choice of the set theoretic
axioms and on the particular concepts of measurability.

The following pages describe some of my personal experiences and motiv-
ations connected to the subject of David Blackwell’s 1980 note "There are no
Borel SPLIFs’ [2]. T hope to show how this two page paper with a mysteri-
ous title (SPLIF stands for ’strong probability limit identification function’)
leads us directly to the foundations of the probabilistic formalism.

The measure theoretic language of probability provided by S. Ulam and N.
Kolmogorov is used by many without much attention. We all use English
without being experts in grammar. But for every language there always are
and always should be those who study meticulously the rules and the scope
of what could be expressed using the framework given by these rules. In the
case of the measure theoretic language this is part of what I always was inter-
ested in. Blackwell’s paper touches in an extremely elegant way the bounds
of this framework.

Given this interest, why study measures on a space of measures? Of course
a statistician trained in using Kolmogorov’s framework first thinks (with
or without some distrust) of Thomas Bayes’ dictum By chance I mean the
same as probability ([1], p.376) , when he refers to the problem of finding
‘the chance that a probability lies between two given bounds’. For me the
motivation came from a slightly different angle, namely from the theorem of



de Finetti or rather from the effort to understand this and similar extremal
integral representation results from a more abstract point of view.

Let (©,7) be a parameter set with a oc—field 7, let {ps }sco be a family of
probability measures on the measurable space (2, B) such that J — py(B)
is measurable for every B € B. For the sake of simplicity of the exposition
we shall make the regularity assumption that (0,7) and (2, B) are Borel
subsets of Polish spaces with the induced Borel structure.

The mixtures
pr= [ po Ma) (1

where A varies over all probability measures on © form a convex set H. Under
the above assumption every extreme point of H is of the form py. This follows
e.g. from prop. 1 a) in the survey [22]. Conversely in most concrete cases no
pg 1s a mixture of the others and thus

ex H = {ps}sco. (2)

(An interesting exception is given by the mixtures of Weibull distributions:
A Weibull distribution with shape parameter p is a mixture of Weibull dis-
tributions with shape parameter ¢ as long as p < ¢, cf. [10], p. 480.) Under
the condition (2) the mixing equation (1) is a Choquet type representation,
i.e. the representation of a general element of H as a mixture of the extremal
elements.
Naturally we ask the question: Is the representation (1) unique? In gen-
eral the answer is negative. Examples of nonuniqueness are given by the set
of one-dimensional centered distributions or more generally sets of martin-
gale distributions. As a trivial special case consider p; = %5_2 + %51,}72 =
%5—1 + %52,}?3 = %(5—1 +61),p4 = %(5—2 + 63). Then %(}h +p2) = %ps + %p4-
Clearly the uniqueness means that the map A —— p, induces an affine iso-
morphism of the space Prob(©) of probability measures on © onto H, or
equivalently that the cone IRy H is isomorphic to the cone M, (0) of posit-
ive bounded measures on ©. How can such an isomorphism arise? Looking
around I realized that a really remarkable situation turns out to be quite
frequent: Some probabilistic limit theorem gives a function ¢ : @ — 0O such
that

poteo plw) = 0} = 1 3)
for every ¥ € ©. Then the unique representing measure of an element g of
H is given by A = g o ¢~ !. These functions ¢ are precisely the SPLIFs, or
perfect statistics.
In de Finetti’s case one has the strong law of large numbers, or the de-
creasing martingale theorem, in more general ergodic decompositions one
has Birkhoff’s ergodic theorem, in the case of Gibbs measures the decreasing



martingale theorem which corresponds to the thermodynamic limit. Dynkin
[6] gave a systematic study of such situations. In his language the SPLIF is
given by a "H-sufficient’ statistic. An interesting case in which the represent-
ation (1) is unique but a function ¢ with (3) does not necessarily exist arises
in point process theory: pg is the law of the Poisson process given by the
intensity measures ¥. The mixtures correspond to Cox or compound Poisson
processes (cf. Krickeberg [12]).

So we are (as I was) led to the question: What else is needed besides unique-
ness in (1) in order to ensure the existence of a SPLIF? The direction of
our search leads also to the concept of a PLIF, a 'probability limit identifica-
tion function’. For the motivation let us start with an application of a SPLIF.

A remarkably general application of the existence of a SPLIF is given
by one of the early successes of martingale theory: Doob’s [5] consistency
result for the posterior distributions: Let the o—field B be generated by the
union sub-o—fields B,. Let A be a prior and suppose that there is a A—a.s.
B—measurable probability identifying function, i.e. a Borel map ¢ : } — ©
such that

MY € ©:(3) holds} = 1. (4)

Then the posterior probabilities j\n(T|Bn) converge to 17(d) pg—a.s. for
A—a.s. ¥ € O and every measurable set ' C ©. Since the topology on © has
a countable base one gets

MY pg{w: j\n(w) — eggweakly} =1} =1 (5)

where ¢y is the point mass in .

The intriguing fact is that for this consistency argument of Doob the prob-
ability identification (3) needs to work only for all ¥ outside a A—nullset!
Thus the function ¢ may be allowed to depend on A. The existence of such a
@ for each X follows already from the existence of a PLIF, i.e. from asymp-
totic consistency in probability: Let d denote the metric on ©. Suppose that
there is a PLIF, i.e. there is a sequence (¢,) of B,—measurable function
©n : 8 — O such that for every ¢ > 0

Jim py{w: d(pn(w),?) > e} =0 (6)

for all ¥. Then given any prior A on O it is easy to extract a subsequence
such that

MO pof{w : d(pn, (w),9) — 0} =1} =1

which implies the existence of a ¢ which satisfies (4).
But as we mentioned in the known concrete situations one gets even more:
a SPLIF which does not involve any prior. Let us summarize:



Theorem 1 Let ¢ — py be a transition kernel. Fach of the following state-
ments implies the next:

(o) There is a Borel SPLIF, i.e. a Borel function ¢ which satisfies (3) for
ally € 0.

(B) There is a Borel PLIF, i.e. there is a sequence (p,) which salisfies (6)
for all ¥ € ©.

(v) For every prior X there is a Borel function ¢ which satisfies (3) for
A-almost all ¥ € O.

We are led to the
Question 1: Is («) implied by (3) or even by () ¢

In order to understand the question better let us look at condition (v) a
little more closely. It can be reformulated in the following alternative way
which led us in [14] to say that the family {pg} is ’orthogonality preserving’,
whereas a kernel with () was called ’completely orthogonal’.

(v1) For two orthogonal priors A\g L Ay the miztures py, and px, are or-
thogonal as well.

Another way to look at this is from the point of view of vector lattices:
(7v1) says that the mixing map A — p, is not only injective but it is also a
lattice homomorphism from M (0) into M4 (Q) where we recall that the
lattice operations in the space of positive bounded measures can be defined
via the Radon-Nikodym theorem

dmin(p, v)
dp +v

du dv )
dpy+v' dp+v

:min(

and similarly for the max.

Thus the property () gives both from the Bayesian point of view (consistency
of posterior distributions) and from the point of view of the vector lattice
structure of the mixtures a quite natural way of the identifiability condition.
The attractive feature of the condition () resp. (v.) is that there are no
limit theorems visible. But still there is the connection to consistency.

Here is a more precise reformulation of the consistency aspect of condition
(7). We mentioned that (v) is implied by the existence of a sequence (¢,)
which is consistent in probability in the sense of (6). There is an interest-
ing partial converse. David Preiss had the idea to use the concept of filters
of countable type which I believe is due to Grimeisen [9] and Katetov [11].
Simply put, this class of filters can be characterized by being the smallest
class of filters such that the liminf of a sequence of liminf -s along filters of
countable type is again a liminf along a filter of countable type. Convergence
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along such filters shares with convergence of sequences many properties like
the dominated convergence theorem. In [14] (Theorem 4.1) it was shown
that () is equivalent to

(v) There is a family (p;)ien of Borel maps from Q to © and a filler F
of countable type on IN such that for every 9 € ©

li}npﬁ{d(api(w),ﬁ) >e}=0. (57)

Note the fact that in (.) no prior on © is involved !
So the assumption (7) is fairly close to the existence of PLIFs; the difference
being that in (v.) we take limits over a filter of countable type rather than
the usual limit of a sequnce (which is the limit over the filter of cofinite sets in
IN). Now let us try to reshape the condition («), i.e. the existence of SPLIFs.
A natural observation is that («) is equivalent to the following condition (ay).

(as) If ©g, ©1 are two disjoint measurable subsets of © then there are dis-
joint measurable subsets By, By of Q such that pg,(B;) =1 whenever 9; € 0,
and v € {0,1}.

In (o) the two sets H; = {py : A € Prob(0;)} for : = 0,1 are closed un-
der mixtures and every element in Hj is orthogonal to every element of H;
under assumption (ay). Thus () = («) would hold provided the following
question had a positive answer.

Question 2: Let Hy, Hi C Prob(Q,B) be closed under miztures and
Borel sets for the topology of convergence in law. Suppose thal every ele-
ment of Hy is orthogonal to every element of Hy. Do there exist disjoint sets
By, By € B such that every element of H; is concentrated on B; for 1= 10,17

The following nice positive result was discovered independently by many

authors: (e.g. Goullet de Rugy [7], Graf-Mégerl [8], Ornstein-Weiss [16], and
[14]).

Theorem 2 [f, in question 2, the sets H; are compact in the topology of
convergence in law then the answer is "yes”.

The proof of Graf-Magerl uses Choquet capacities, the proof in [14] mim-
icked a classical statistical minimax argument and gave even a quantitative
version of the result. This gives a positive answer to question 1 under the
additional assumption that the family {pg} is o-compact in the topology of
convergence in law.

Also, using the technique of filters of countable type we gave a positive an-
swer to question 2 if one of the sets H; is a singleton. This method implies



that under assumption () the family has the following property (6) which
is the measurably parametrized version of a concept introduced by Dorothy
Maharam-Stone [13] under the name ’uniform orthogonality’.

(6) There is a product measurable set B C Q x © such that for every
Y € O the section By C Q salisfies pg(Bg) = 1 and pg(Bg) = 0 for all
V£ 9.

In ’statistical terms’ this means that for every simple null-hypothesis there
is a test of power 1. If © is the set of all lines in the plane Q and each py 1s
a normal law concentrated on ) then {ps} satisfies (6) but not (7).

Coming back to question 2, another straightforward application of the same
method yields a result of G. Mokobodzki [19]. It assumes the existence of a
medial limit m : [0,1]N — [0, 1], i.e. a universally measurable map m such
that liminf; z; < m(z) < limsup; z for all z = (2;) € [0, 1]N which is measure
affine: m(f zdu) = [ m(z)du for every Borel probability measure on [0, 1]¥.
It is known that medial limits exist under the continuum hypothesis and
even under the weaker "Martin’s axiom’. Under the assumption of a medial
limit Mokobodzki proved that question 2 has a positive answer if the sets H;
are analytic and the B; are allowed to be universally measurable. Similarly
under this assumption property (v) implies the existence of a universally
measurable SPLIF. This contains the older result of J. Stepan [20].

But is all this set theory necessary? Perhaps condition () implies the ex-
istence of a Borel SPLIF after all? We are asking whether something can be
proven within the standard framework of probability (Borel functions and
no special axioms). The turning point was given by the following counter-
example of David Blackwell [2]. The proof was a beautiful application of
Baire category. The main idea had various applications and interpretations
(cf. [4],[3]). A subset of a topological space has the property of Baire, if
there is an open set U/ C ) such that BAU is of first category.

Theorem 3 (Blackwell) Let Q = {0,1}YN and consider fori = 0,1 the set

H,={pe€ Prob(Q) : p{lwr =1} — i}.

k—

Let B C Q such that p(B) =t for all p € H; for i = 0,1. Then B cannot
have the property of Baire. In particular B is not Borel.

The o-algebra of sets with the property of Baire is very large. In fact S.
Shelah [17], improving a famous result of R. Solovay [18], proved that it is
consistent with Zermelo-Fraenkel set theory (of course without the axiom of
choice) that every subset of a Polish space has the property of Baire! As was



remarked already by Solovay in such a world many surprising things hap-
pen, like that the Banach space L'(y) is reflexive for every finite measure p.
Combining Blackwell’s theorem with Mokobodzki’s result we can add that
no medial limits exist there.

Thus the answer to question 2 was negative. In an obvious sense question
2 is the analogue of question 1 for tests. This left the question 1, i.e. the case
of perfect statistics still open. But David Preiss who had found an altern-
ative proof of the Borel part of Blackwell’s theorem improved his technique
with the help of a very clever application of the (hard) measurable selection
theorem for Borel sets with compact sections to prove the existence of a
counterexample to question 1. When I talked to David Blackwell about this
he stressed that if an example exists it should be possible to have an explicit
description. This remark kept working in me and finally Dan Mauldin and 1
[15] managed to find a surprisingly simple strategy to directly construct for
© = [0, 1] uncountably many nonisomorphic families with property with a
PLIF but without a SPLIF, by modifying the classical Bernoulli family on
{0,1}N. On the other hand in [14] it was shown that every two families of
diffuse measures with the same parameter set which allow a SPLIF can be
transformed into each other by a Borel isomorphism of the observation spaces.

Let us come to an end asking two somewhat technical questions which
are left open by the above discussion, and mentioning one final positive result:

Question 3: Can one prove in Zermelo-Fraenkel set theory with the
axiom of choice that the existence of a PLIF implies the existence of a uni-
versally measurable SPLIF?

Question 4: Does () imply (5)? FEquivalently, does the existence of
a net of countable type of Borel functions which is consistent in probability
imply the existence of a PLIF ¢

I guess the answer to the Question 4 is no. Finally, Lutz Weis [21] gave
a mild justification of the intuition behind question 1 with the following

Theorem 4 (Weis) The existence of a SPLIF is equivalent to the following
finitely additive version of property (v, ):

(ar) For any two orthogonal finitely additive priors \g L Ay on (0,7)
the miztures py, and py, are orthogonal as well.
oA AR K K

Writing this review [ experience once more the fascination by these ques-
tions which are simply put, relate easily to the most formal aspects of math-
ematics and at the same time help to clarify the way how to speak about



statistical concepts. In the mean time I think it would be interesting to un-

derstand more clearly how these different versions of a 'perfect’ experiment
could be approximated by finite-dimensional or even finite experiments. 1|
believe in particular that a Shannon theoretic approach will be helpful in
this endeavour.
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