
456 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

Predictive Control of Cooperative Robots Sharing
Common Workspace

Argtim Tika and Naim Bajcinca

Abstract— We present a model predictive control (MPC)
algorithm for online time-optimal trajectory planning of coop-
erative robotic manipulators. Robotic arms sharing a common
confined operational space are exposed to high interrobot col-
lision risks. For collision avoidance, a smooth robot geometry
approximation by Bézier curves is applied, utilizing velocity
constraints and tangent separating planes, enabling an efficient
generation of robot trajectories in real-time. The proposed
optimization algorithm is validated on an experimental setup con-
sisting of two collaborative robotic arms performing synchronous
pick-and-place tasks.

Index Terms— Collision avoidance, cooperative robotics, model
predictive control (MPC), pick-and-place robotics, real-time tra-
jectory planning.

I. INTRODUCTION

S INCE their introduction, robots have significantly revolu-
tionized industrial workplaces and continuously increased

the automation level in various industrial sectors. Robot
deployments involve tasks in multiple domains such as packag-
ing, sorting, assembly, and the execution of specific functions
like machine tending, welding, and painting. Many of these
tasks fall under the category of pick-and-place tasks and are
well-suited as benchmarking frameworks in robotics due to
their widespread use in various industrial applications.

Efficient deployment of multiple cooperating robotic sys-
tems brings the promise of shorter robot cycle times and faster
task execution [1]. In a shared workspace, multiple robots can
perform a wider variety of tasks, either as a composition of
different subtasks into a more complex task or by extending the
operating space, e.g., by passing a tool or workpiece from one
robot to another [2]. Some applications involving coordinated
motion planning with two or more robot manipulators are
given in [3] and [4]. Typically, in such settings, the robots
can communicate with each other, share sensor information,
and coordinate their actions and motions to jointly perform
the assigned tasks. However, the complexity of these systems
poses new computational challenges, especially when the robot
arrangement leads to a significant overlap of robot working

Manuscript received 20 June 2023; accepted 6 October 2023. Date of
publication 20 November 2023; date of current version 26 February 2024. This
work was supported in part by the German Federation of Industrial Research
Associations (AiF) within the scope of the projects CooPick, KIMKO, and
KORINS, under Grant ZF4335706DB7, Grant ZF4335711PO9, and Grant
ZF4335715DB9, respectively. Recommended by Associate Editor M. Oishi.
(Corresponding author: Argtim Tika.)

The authors are with the Department of Mechanical and Process Engi-
neering, Rheinland-Pfälzische Technische Universität (RPTU) Kaiserslautern-
Landau, 67663 Kaiserslautern, Germany (e-mail: argtim.tika@mv.uni-kl.de;
naim.bajcinca@mv.uni-kl.de).

Digital Object Identifier 10.1109/TCST.2023.3331525

areas and, thus, an increased collision risk. Therefore, the
setup, control, and operation of multirobot systems is still
primarily an active field of research, e.g., [2], [5], [6], [7], [8].

With increased automation in the food and beverage
industry, multiple robots are often used for pick-and-place
operations along sorting, packing, and processing lines,
supplementary to high payload industrial robots usually
deployed for palletizing [9]. For fast pick-and-place task
execution, primarily noncollaborative selective compliance
assembly robot arm (SCARA) or delta robots with three
to four degrees of freedom (DoF) are used [10]. While
these highly automated systems allow for high production
throughput, they tend to be product-specific and usually
require significant modifications to make changes and
adjustments to production lines. With the increased diversity
and personalization of goods and products driven by the latest
developments in industry 4.0, production in short batches
becomes more attractive. Despite increasing automation,
manual methods are currently still considered the only
cost-effective solution for the production of small batches,
characteristic of high-mix, low-volume manufacturers [11].
The increased flexibility appears to be a key element toward
higher levels of operational efficiency and productivity. This
can be achieved by empowering workers to work directly
with automated systems or by facilitating robot integration,
enabling adaptations of robotic solutions to new workspaces
[12]. To this end, this work deals with the integration of
6-DoF robots into existing manual processes to increase the
level of automation on existing manual sorting and packaging
stations, typical for small and seasonal producers or
distributors. As shown in Fig. 1, we consider as an application
a fruit packing station consisting of a conveyor, fruit feeder,
a vision-based detection and inspection system, and two
UR5 collaborative robot arms. The packaging system is to be
completed by a foil wrapping station, resulting in a confined
robot setup with highly overlapping robot working areas.

The efficient and safe use of cooperating robots in a
shared workspace relies on balancing the robots’ workload and
ensuring certain safety aspects for collision-free robot opera-
tion. This problem is addressed by introducing a hierarchical
approach involving two optimization-based methods, a discrete
one for task scheduling and a continuous one for point-to-
point trajectory generation. For task scheduling, the discrete
scheduling algorithm presented in [13] is used. This work
focuses on the online trajectory generation and the algorithm
implementation on an experimental setup using a robot oper-
ating system (ROS). In order to minimize the robot cycle
time and increase the operating throughput, the proposed local

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3548-4191
https://orcid.org/0000-0002-1660-4859

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 457

planning approach involves a centralized model predictive con-
troller that directly generates time-optimal robot trajectories
in the state space of the joint positions and velocities. Given
that avoiding collisions is computationally intensive, we use
an approach based on a smooth approximation of the robot’s
geometry using Bézier curves, which is first introduced in
[14] and validated on simulations. The present work builds on
these results and integrates collision avoidance as an integral
part of a real-time planning model predictive control (MPC)
algorithm. Experiments on two specific test cases validate the
algorithm’s performance. Test Case 1 is constructed to analyze
the performance of the trajectory planning in scenarios with
high collision potential between the robot arms. We show
that, although the robotic setup with highly overlapping robot
operational spaces can lead to challenging manipulation tasks,
even in the worst case scenario, two robot manipulators
achieve shorter cycle times than deploying a single robotic
arm. Test Case 2 shows a normal operating mode of the
robotic system involving task scheduling and online trajectory
planning to pick and place moving objects on the conveyor.

II. RELATED WORK

Collision-free motion planning of robotic manipulators in
dynamically changing environments requires algorithms capa-
ble of planning and updating trajectories in real-time. This
research area has been widely studied in the last decades,
presenting different solutions and algorithms, mainly catego-
rized as global and local planning methods. The following
gives a brief overview of related work, focusing more on
optimization-based approaches as more related to the pre-
sented method.

Sampling-based approaches such as the popular
rapidly-exploring random tree (RRT) method [15] and
the probabilistic roadmap (PRM) method [16] are, especially
in global motion planning, widely used for path planning of
robotic manipulators. They involve a time-consuming pre-
processing stage of sampling the collision-free configuration
space and generating a graph-based representation like a
roadmap or a tree data structure. Sampling-based approaches
are well-suited for high-dimensional configuration space and
can be successfully used for path planning in multirobot sys-
tems, e.g., [17], [18]. Since these algorithms are computation-
ally demanding, the paths are computed offline followed by an
open-loop execution, making them more suitable for applica-
tion in static working environments. Prioritized planning meth-
ods, such as coordination along fixed independent paths and
coordination along independent roadmaps can also be applied
to avoid collisions in a multirobot system, e.g., [19], [20].

Sampling-based approaches have been subject to vari-
ous adaptations resulting in algorithms capable of dealing
with dynamically changing environments where continuous
replanning is needed. Algorithms based on RRTs for motion
planning in dynamic environments are discussed in [21] (CT-
RRT) and [22] (RRTX). Dynamic roadmaps (DRMs) are
introduced in [23] for real-time path planning in changing
environments. Motion planning based on the composition
of two separate DRMs for a dual-arm robot is presented
in [24], incorporating prioritized and coordinated planning

Fig. 1. Experimental setup consisting of two robotic arms inclusive of
grippers, a conveyor belt with PLC, and a camera system for object detection
and quality inspection.

along fixed paths or graphs for collision avoidance. To follow
the generated path, a predictive path-following algorithm is
proposed in [25].

One of the first and widely used local planning approaches
for collision-free trajectory generation are artificial potential
field methods proposed in [26]. These methods are mainly
used for single-arm manipulation [27] and consist of gener-
ating a potential field with repulsive terms in the vicinity of
obstacles and attracting terms at the target point. The generated
artificial forces drive the robot away from the obstacles toward
the goal. As an alternative to the artificial potential field
approach, a local method for obstacle avoidance based on the
introduction of virtual velocity dampers and the existence of
separating hyperplanes is presented in [28] and described in
more detail in [29] and [30]. The algorithm can also be applied
to multirobot systems by representing each manipulator link by
a hierarchical description with convex volumes to efficiently
update the environment model as the robots move. However,
the computation times achieved when applying this method
are unsuitable for online applications.

Another optimization-based algorithm for collision-free
robot trajectory planning involving two robot manipulators is
presented in [31]. The parts of the robots are modeled by
spherical shells, generating a geometric representation of the
robots and their surroundings by a list of geometric primitives.
This algorithm falls in the category of prioritized planning
since the first robot follows a preprogrammed trajectory,
and the second one has to reach a target while accounting
for collision avoidance with the other robot. A multirobot
trajectory optimization approach using the alternating direction
method of multipliers (ADMMs) is proposed in [32]. This
approach requires the existence of a strictly feasible initial
trajectory, and the presented computation times are, for a
setup with two robotic arms, not applicable for online appli-
cations. A local optimization approach for multiarm payload
manipulation is presented in [33]. The article focuses on
the teleoperation-based simultaneous guidance of multiple
collaborative arms without considering any collision avoidance
constraints.

CHOMP [34] and TrajOpt [35] represent two
optimization-based algorithms for motion planning that
can cover a wide range of robotic applications, mainly in
static environments. The performance of the planners highly
depends on the provided trajectory initialization. In some
cases, an optimization problem needs to be solved to obtain an
initialization trajectory, or multiple trajectory initialization is
required to find a feasible solution. Both algorithms formulate
trajectory planning as an unconstrained optimization problem

458 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

penalizing the smoothness of the path and the proximity
to obstacles. Implementing collision avoidance as penalties
in the cost function has the drawback that the planner
can converge to local minima of the cost function, which
do not correspond to collision-free robot motions. These
algorithms are mainly used in simulations since they rely
on a geometry representation of the working environment.
This poses a challenge when transferring the motion planning
from simulation to reality and involves offline preprocessing.
Depending on the application, additional sensors like
cameras and laser scanners may be required to generate
the geometry representation using voxel grids (CHOMP)
or meshes (TrajOpt). In addition, CHOMP and TrajOpt are
not complete planners, and postprocessing of the generated
paths is required when using ROS to control a real robot.
For the considered robots, this involves the motion planning
framework MoveIt, adding additional processing time in the
control loop. This, combined with the lack of verifiability
of collision-free motion planning, makes them less suitable
for real-world applications with dynamic target points where
continuous replanning is required.

MPC algorithms are increasingly used in the field of robot
manipulators not only for following a given path but also
for point-to-point trajectory generation [36]. Considering two
robotic arms, a hierarchical approach for MPC-based time-
optimal planning is described in [37]. For collision avoidance,
a standard approach is applied by modeling the robot’s shape
and obstacles using a composition of spheres and swept sphere
lines. The algorithm is validated on a simple experimental
setup using two planar robot arms with two DoFs each. Recent
publications on MPC and dual-arm manipulation focus on
cooperative object transportation without considering collision
avoidance between the robot arms, e.g., [38], [39].

The listed planning algorithms encounter limitations when
implementing motion planning on real applications with
robots sharing a common workspace with dynamically
moving target points. ADMM, for instance, requires a strictly
feasible (collision-free) initial trajectory, which is difficult
to provide. The PRM-based approach [24] requires offline
preprocessing, and the outcome is a prioritized path planning,
which requires an additional path-following algorithm to
generate the control inputs for the robot arms. Experimental
results presented in [31] using an interior-point optimizer
also result in prioritized planning with one robot following a
preprogrammed trajectory. CHOMP and TrajOpt require pre
and postprocessing for an adequate environment representation
and compatibility with the ROS interface. For the considered
application, we present an MPC-based algorithm for time-
optimal robot trajectory planning in the configuration space,
which can be directly sent to the robots using a ROS velocity
interface. Implementing collision avoidance as state-dependent
hard constraints in the optimization problem can not prevent
local minima but ensures that a computed feasible solution
is, in fact, a collision-free trajectory.

III. ARTICLE STRUCTURE

The present article is structured as follows. The
time-optimal MPC algorithm for online collision-free trajec-
tory generation, including the prediction model and collision

avoidance constraints, is presented in Section IV. Section V
describes in detail the implementation of the algorithm on
an experimental setup. The performance of the algorithm is
demonstrated by experimental results presented in Section VI.
A brief discussion and summary in Section VII concludes the
article.

IV. TIME-OPTIMAL ONLINE TRAJECTORY PLANNING

The considered robot manipulators each have n = 6 joints
and are controlled in their configuration space Cr ⊆ Rn, r ∈

{1, 2}, using a joint velocity control interface. Both robots
are represented by the generalized coordinates q1(t) ∈ C1 and
q2(t) ∈ C2, which along with the respective joint velocities
span the state space

x(t) =
[
xT

1 (t), xT
2 (t)

]T
=
[
qT

1 (t), q̇T
1 (t), qT

2 (t), q̇T
2 (t)

]T
. (1)

Considering two robots and multiple tasks, a task scheduling
has to be performed first to assign to each robot r ∈ {1, 2}

a set of final joint positions qr f (t) and velocities q̇r f (t).
The task scheduling is followed by the online generation
of collision-free trajectories so that the robots can safely
reach the assigned tasks within the minimum possible time.
Therefore, we formulate the trajectory planning problem as a
time-optimal optimization problem of the form

min
u(t), t f

∫ t f

t0
dt (2)

s.t. ẋ(t) = f(x(t), u(t)), x(t0) = x0 (2a)

x(t) ∈ χ free , t ∈
[
t0, t f

]
(2b)

u ≤ u(t) ≤ ū , t ∈
[
t0, t f

]
(2c)

x
(
t f
)

= x f
(
t f
)
. (2d)

Here, t0 denotes the current time point, t f is the final
time to be minimized (min) subject to the dynamic system
(2a), representing the robots with the states x(t) and inputs
u(t) = [uT

1 (t), uT
2 (t)]T. The latter are confined by the compo-

nentwise constrains (2c). The robots should simultaneously
reach the assigned tasks at the end of the time horizon,
as represented by the terminal constraints (2d) for a desired
task point x f = [qT

1 f , q̇T
1 f , qT

2 f , q̇T
2 f]

T. The computed trajec-
tories should be collision-free and respect the physical robot
limitations, which is ensured by applying the constraints (2b).
χ free describes the feasible safe region (i.e., free of collisions)
in the state-space. The optimization problem (2) is solved
iteratively, and the computed time-optimal trajectories are
forwarded to the robots using ROS controllers, velocity control
interface.

A. Prediction Model

Depending on the underlying low-level robot control and
the used control interface, different prediction models can be
used for optimization-based online robot trajectory planning.
This also depends on the used planning algorithm and the
resulting optimization problem’s constraints. Since the robots
are controlled in their configuration space, the online planning
of time-optimal robot trajectories is also performed directly in
the robots’ configuration space, although they perform their

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 459

tasks in the 3-D operational space. Moreover, the robot’s
geometry approximation and the collision avoidance between
the robots and other potential obstacles are also defined in
the 3-D workspace. The nonlinear robot forward kinematics
transforms the constraints of the robot motions described in the
3-D operational space into the respective configuration space,
resulting in robot joint position and velocity constraints. The
use of a simplified kinematic prediction model of n double
integrators for each robot, i.e.,

q̈r (t) = ur (t) , r ∈ {1, 2} (3)

is sufficient in this case to directly account for position
qr (t), velocity q̇r (t), and acceleration ur (t) constraints in the
planning algorithm. Obviously, using a kinematic model does
not allow direct constraints to be applied to the robot’s torque.
In this case, a dynamic robot model must be considered, which
is computationally intensive and is more suitable if direct
torque control is applied to control the robots.

Considering a centralized time-optimal MPC algorithm for
both robot manipulators represented by the state space x(t) ∈

R4n from (1), yields the overall prediction model

ẋ(t) = Ax(t) + Bu(t) , x(t0) = x0 (4)

with the input vector u(t) ∈ R2n , state matrix A ∈ R4n×4n ,
and input matrix B ∈ R4n×2n , i.e.,

A = diag
([

0 I
0 0

]
,

[
0 I
0 0

])
, B = diag

([
0
I

]
,

[
0
I

])
(5)

where 0 ∈ Rn×n and I ∈ Rn×n denote the zero and identity
matrix, respectively.

B. Collision Avoidance

The goal of trajectory planning is to generate robot trajec-
tories online so that they safely reach the assigned targets in
the shortest possible time t f , i.e.,

lim
t→t f

||x(t) − x f (t)|| = 0 , with x(t) ∈ χ free , t ∈
[
t0, t f

]
.

(6)

In this section, a feasible set χ free of robot trajectories is
defined to ensure that the robots on their way to the assigned
targets do not collide with each other and the working envi-
ronment, and there is also no self-collision between the links
of a robot.

Performing cooperative tasks in a shared workspace with
highly overlapping operating areas between the robots sig-
nificantly increases the potential for interrobot collisions
and imposes more complexity on trajectory planning. When
formulating collision avoidance constraints, the entire robot
geometry must be considered to exclude the possibility
of collisions occurring between any robot parts. Therefore,
each robot link is usually approximated by convex poly-
hedral objects, mostly spheres and ellipsoids, and between
all possible interrobot links, collision avoidance conditions
are defined to prohibit their intersection. Assuming five to
six convex objects per robot for two robots with six joints
each result in 25–36 constraints in the worst case. More-
over, in optimization-based planning algorithms with a rolling

Fig. 2. Robot geometry approximation with smooth polynomial Bézier
curves. Collision avoidance conditions are defined using two sliding spheres,
whose positions are updated according to the minimum distance between the
corresponding linkage Bézier curves.

horizon, such as MPC, the constraints are applied along
the horizon, which can increase their multiplicity to several
hundred. This significantly increases the computational com-
plexity of the underlying optimization problem and poses a
substantial barrier to the fast solution of the optimization prob-
lem and, thus, to the online planning of collision-free robot
trajectories. To overcome this problem, we have presented in
[14] a novel approach based on a smooth approximation of
the robot geometry that significantly reduces the number of
collision avoidance constraints. For the approximation of the
robot linkage we use Bernstein basis polynomials

bnr
i (λr) :=

(

nr

i

)
λi

r (1 − λr)
nr −i , for 0 ≤ i ≤ nr

0, otherwise

(7)

and a sequence of nr +1 control points pri (qr) ∈ R3 per robot
r ∈ {1, 2}, resulting in a parametric curve of the form

pr (λr , qr) =

nr∑
i=0

bnr
i (λr)pri (qr), 0 ≤ λr ≤ 1 (8)

known as Bézier functions [40]. Here and in the following,
we suppress the time dependence of the joint variables and
other related functions for better readability until further
notice.

A schematic illustration of the Bézier approximation using
five control points per robot is shown in Fig. 2. The coor-
dinate frame (o1x1 y1z1) attached to the base of Robot 1 is
also assumed to represent the inertial frame of reference
(o0x0 y0z0). Robot 2 with the base frame (o2x2 y2z2) is dis-
placed by rb relative to the first robot and rotated by 90◦

around the z-axis. For further calculations the control points
p1i (q1) and p2i (q2) are represented in the inertial coordinate
frame by

0p1i (q1) = p1i (q1) and

0p2i (q2) = 0rb + Rz, π
2
p2i (q2) ∀i ∈ {0, . . . , nr } (9)

using the SO(3) rotation matrix Rz,(π/2) [41].
As opposed to the standard approach in the literature, we do

not apply a static convex approximation of the robot geometry
but introduce a dynamic approximation scheme based on
the Bézier curves by continuously computing the minimum

460 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

distance between them. According to the computed minimum
distance, which reflects the collision potential, we locally
approximate parts of the robots by spheres and define con-
straints to avoid collisions, see Fig. 2. The position of the
spheres is not directly linked to the robot links but rather to
the approximation curves, and their location is continuously
updated depending on the robot configurations, i.e., collision
potential along the robots. This results in sliding collision
spheres along the robot geometries following the minimal
distance between the robots. Here, the center of the spheres
coincides with the points where the distance between the
Bézier curves is minimal.

1) Minimum Distance Computation: Existing approaches
for calculating the minimum distance between two parametric
curves and surfaces can be classified into root-finding and
culling-based methods [42]. An overview of different global
solution techniques that can be applied to find all roots of a
nonlinear system of polynomial equations is given in [43]. The
culling-based approach is a geometric rather than a numerical
method and was originally introduced in [44] as a hierar-
chical framework for computing minimum distances between
geometric objects. The geometric approaches is reported to
be more robust and have a higher computational efficiency,
especially when computing the minimum distance between
high-order surfaces [44]. Given that information for the initial
guess can be extracted from the control points of the curves,
we formulate the computation of the minimum distance as an
optimization problem

λ∗
= arg min

λ

∥0p1(λ1, q1) − 0p2(λ2, q2)∥2

s.t. 0 ≤ λ ≤ 1 (10)

with λ = [λ1, λ2]
T. To provide a good initial guess for the

minimum distance, we use the heuristic approach that the
closest point pair of the control points is a good approximation
of the closest point pair of the underlying Bézier curves.
However, this assumption does not always hold, such as when
at least one edge of the control polygon, defined by connecting
the control points of a Bézier curve, is not an edge of the
convex hull formed by those control points. For a better
approximation, the minimum distance between the two convex
hulls can also be computed by applying the Gilbert–Johnson–
Keerthi (GJK) algorithm [45] as used in [42] to dynamically
compute the subdivision regions. Using the indices{

i∗, j∗
}

= arg min
i, j

{
||0p1i (q1) − 0p2 j (q2)||2 |

i ∈ {0, . . . , n1}, j ∈ {0, . . . , n2}} (11)

of the closest pair of control points, the initial guess for the
optimization problem (10) is chosen as λ0 = [i∗/n1, j∗/n2]

T.
Finally, after solving the optimization problem the distance
between the centers of the two spheres corresponds to the
value of the cost function

d = ∥0p1
(
λ∗

1, q1
)
− 0p2

(
λ∗

2, q2
)
∥2 . (12)

2) Interrobot Collision Avoidance: Collision avoidance
between the robot arms is based on velocity constraints
presented in [14], which prohibit an intersection between the

Fig. 3. Collision spheres and a tangent separating plane.

geometry approximating spheres by forcing them to slide
along tangent separating planes [29]. Let p1(λ

∗

1, q1) and
p2(λ

∗

2, q2) denote the centers of the spheres, see Fig. 3, and
v1(λ

∗

1, q1), v2(λ
∗

2, q2) the respective velocities, the collision
avoidance constraint forcing the spheres to stay on their
respective side of the separating plane read

nT(v2
(
λ∗

2, q2
)
− v1

(
λ∗

1, q1
))

≥ ϵ (13)

with the vector n ∈ R3 perpendicular to a tangent separating
plane, and sufficiently large ϵ ∈ R>0. Using the translational
component of the analytical Jacobian matrices

J1(q1) =
∂0p1

(
λ∗

1, q1
)

∂q1
, J2(q2) =

∂0p2
(
λ∗

2, q2
)

∂q2
(14)

where 0p1(λ
∗

1, q1) and 0p2(λ
∗

2, q2) are the vectors from the
origin of the inertial frame to the points p1(λ

∗

1, q1) and
p2(λ

∗

2, q2), the constraint (13) is transformed in the robot’s
configuration space

nT(J2(q2)q̇2 − J1(q1)q̇1
)

≥ ϵ (15)

and finally expressed in the state space[
01×n

−nTJ1(x) 01×n nTJ2(x)
]
x ≥ ϵ (16)

with the state space vector x ∈ R4n×1 from (1) and the Jacobian
matrices J1(x) ∈ R3×n, J2(x) ∈ R3×n .

To solve the optimization problem and compute robot trajec-
tories x satisfying the interrobot collision avoidance constraints
(16), the perpendicular vector n must be predefined at each
optimization step k, as it is not subject to the optimization.
A suitable perpendicular vector n is computed based on a 2-D
projection method, which consists of projecting the considered
spheres onto 2-D in the x0 y0-plane, thus reducing the problem
to the calculation of tangential separating lines, as shown in
Fig. 4. The vector normal to the separating tangent is then
chosen to be equal to n1 or n2 depending on the relative
robot movements. The collision avoidance constraints prevent
the circles representing a 2-D projection of the spheres from
intersecting, which also results in motions that do not allow
the robots to move on top of each other. As already stated,
projecting the spheres onto 2-D in the x0 y0-plane results in
two possible separating lines tangent to both circles, i.e., two
possible perpendicular vectors n ∈ {n1, n2}. To define the
vectors n1 and n2 perpendicular to the corresponding tangent
separating lines, we conventionally use the direction of the
vector between the centers of the circles

n12 =
0p2
(
λ∗

2, q2
)
− 0p1

(
λ∗

1, q1
)

d
(17)

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 461

as well as the length s and the resulting angle ϕ, defined by

s =
r1d

r1 + r2
, ϕ = arcsin

(r1

s

)
(18)

according to Fig. 4. The perpendicular vectors are then
uniquely obtained by

n1 = RT
z, π

2 −ϕn12 , n2 = RT
z,ϕ−

π
2
n12 . (19)

The accurate selection between n ∈ {n1, n2} has an impor-
tant impact on the efficiency of conflict resolution and collision
avoidance. Therefore, we introduce the direction vector nv of
the relative movement of the proximity spheres

nv =
10p2

(
λ∗

2

)
− 10p1

(
λ∗

1

)
||10p2

(
λ∗

2

)
− 10p1

(
λ∗

1

)
||2

(20)

with

10p1
(
λ∗

1

)
= 0p1

(
λ∗

1, q1 f
)
− 0p1

(
λ∗

1, q1
)

10p2
(
λ∗

2

)
= 0p2

(
λ∗

2, q2 f
)
− 0p2

(
λ∗

2, q2
)

(21)

denoting the vectors from the position of the proximity spheres
at the actual robot configurations q1 and q2 to the position of
the spheres at the target configurations q1 f and q2 f , respec-
tively. This vector provides information about the spheres’
relative direction when placing the robots from the actual to
their final configuration. In fact, nv describes the tentative
relative movement of the spheres in Fig. 3 during a con-
flict resolution phase. Roughly speaking, we hereby invoke
global information referring to the relative motion of the
distance spheres over the prediction of the conflict resolution
horizon. Extensive simulations and experiments indicate that
this alternative over the strategy based on local, i.e., the
instantaneous relative motion of the collision distance spheres
is more efficient and stable in resolving the conflicts [14]. The
direction vector of the relative motions of the spheres (20) is
then used to choose one of the computed perpendicular vectors
and apply it to the collision avoidance constraint (16). If the
scalar product of the vector nv with one of the perpendicular
vectors is positive, the vector n is chosen to be equal to this
vector, i.e.,

n = n1
1
2

(
1 + sgn

(
nT

1 nv

))
+ n2

1
2

(
1 + sgn

(
nT

2 nv

))
. (22)

Otherwise, if

sgn
(
nT

1 nv

)
sgn

(
nT

2 nv

)
≥ 0 (23)

holds true, the vector n is chosen to be equal to the vector
with the smaller angle to the vector nv , i.e.,

n = n1
1
2

(
1 − sgn

(
|nT

1 nv| − |nT
2 nv|

))
+ n2

1
2

(
1 + sgn

(
|nT

1 nv| − |nT
2 nv|

))
. (24)

3) Self-Robot Collision Avoidance: In addition to the con-
straint for collision avoidance between the robots, we need
to further restrict the movement of the robots to avoid colli-
sions with the static environment and self-collisions between
the links of a robot. Considering pick-and-place tasks on a
workbench, we introduce constraints

eT
3 r pr2(qr) ≥ dz1 , eT

3 r pr4(qr) ≥ dz2 , r ∈ {1, 2} (25)

Fig. 4. Schematic illustration of separating common tangents of the circles
representing the spheres projected on the x0 y0-plane.

to limit the respective robot’s working area to a certain
minimum operating height and avoid collisions with the bench.
Here, r pr2(qr) and r pr4(qr) denote the vectors from the origin
of the respective base frame of the robots to the control points
in the area of the robot wrist and end-effector, see Fig. 2.
e⊤

3 = [0, 0, 1] is the unit vector, and dz1, dz2 are distance
parameters defining the minimum operating height along the
z-axis. Furthermore, to avoid collisions between the gripper
and the robot’s shoulder, we restrict the distance between the
control points of the basis and the end-effector to a minimum
distance ds by applying the constraints

||r pr4(qr) − r pr0(qr)||2 ≥ ds , r ∈ {1, 2} . (26)

Again, r pr0(qr) and r pr4(qr) denote the vectors from the
origin of the base frame of the robots to the first and last
control points modeling the robot kinematic chain. To avoid
self-collisions on the wrist robot area we further restrict the
movement of the robot joints four and five using the constraints

sin
(
eT

4 qr
)
| cos

(
eT

5 qr
)
| ≤ ε , r ∈ {1, 2} (27)

with the joint angles eT
4 qr = qr4, eT

5 qr = qr5, and a sufficiently
large ε ∈ R>0. Additional linear constraints are considered
in the form of minimum and maximum bounds of the robot
joints, i.e., x ≤ x ≤ x̄.

C. Minimum-Time MPC

To solve the optimization problem (2), we first perform the
time scaling

τ =
t − t0
t f − t0

=
t − t0
1t f

(28)

mapping the time interval t ∈ [t0, t f] to τ ∈ [0, 1] and
transform the free terminal time optimization problem into
a fixed terminal time problem. Without loss of generality,
we assume t0 = 0 and transform the dynamic model (4) in
the scaled time τ . The resulting continuous time system is
discretized by integration over the time step 1τ , yielding the
discrete-time dynamics

x(k + 1)=(I + 1τA)x(k) + 1τ t2
f

(
I +

1τ

2
A
)

Bu(k) (29)

with the identity matrix I ∈ R4n×4n and the input u(k), which
is constant within the time interval τ ∈ [k1τ, (k+1)1τ). The

462 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

derivation of (29) is given in the Appendix. The time trans-
formation is also applied to the velocity-dependent collision
avoidance constraint (16), yielding

δcϵ ≤ (1 − δc)ϵ

+ δc
1
t f

[
0 −nTJ1(x(k)) 0 nTJ2(x(k))

]
x(k) (30)

with the switching parameter

δc =

{
1, if d ≤ din

0, if d > din ∨ t∗

f ≤ tmin.
(31)

By introducing δc, the constraint is activated only if the com-
puted minimum distance d lies within the influence distance
din. Otherwise, or if the robots are close to their targets, i.e.,
t∗

f ≤ tmin, the constraint is trivially satisfied. Here, t∗

f denotes
the optimal final time computed at the previous sampling time
k − 1. This is motivated by the fact that the chosen robot
targets result in feasible, i.e., collision-free, configurations by
applying a scheduling algorithm for robot task scheduling [13].

The time transformation must also be applied to the upper
and lower bounds of the joint’s velocities, yielding

diag
(
I, t f I, I, t f I

)
x ≤ x(k) ≤ diag

(
I, t f I, I, t f I

)
x̄ (32)

with xT
= [qT, q̇T

, qT, q̇T
] and x̄T

= [q̄T, ¯q̇T, q̄T, ¯q̇T
]. Here,

I ∈ Rn×n denotes the identity matrix, q ∈ Rn , q̇ ∈ Rn the
lower bounds, and q̄ ∈ Rn , ¯q̇ ∈ Rn the upper bounds of
the joint position and velocities in the time t . The initial and
terminal constraints are also transformed in the scaled time τ .

After transforming the trajectory planning problem (2) into a
discrete fixed terminal time optimization problem, the resulting
MPC algorithm for time-optimal robot trajectory planning can
be written as a static optimization problem in the form

min
u(·), t f

t f (33)

s.t. x(j + 1 | k) = (I + 1τA)x(j | k)

+ 1τ t2
f

(
I +

1τ

2
A
)

Bu(j | k) (33a)

x(j + 1 | k) ≤ diag
(
I, t f I, I, t f I

)
x̄

x(j + 1 | k) ≥ diag
(
I, t f I, I, t f I

)
x (33b)

u ≤ u(j + 1 | k) ≤ ū
u̇ ≤ (u(j + 1 | k) − u(j | k))/

(
t f 1τ

)
≤

¯u̇ (33c)

x(0 | k) = diag
(
I, t f I, I, t f I

)
x0(k)

x
(
Np | k

)
= diag

(
I, t f I, I, t f I

)
x f (k) (33d)

eT
3 r pr2(x(j + 1|k)) ≥ dz1

eT
3 r pr4(x(j + 1|k)) ≥ dz2 (33e)

||r pr4(x(j + 1|k)) − r pr0(x(j + 1|k))||2 ≥ ds

sin
(
eT

4 x(j + 1|k)
)
| cos

(
e⊤

5 x(j + 1|k)
)
| ≤ ε

sin
(
eT

16x(j + 1|k)
)
| cos

(
e⊤

17x(j + 1|k)
)
| ≤ ε (33f)

δcϵ ≤ (1 − δc)ϵ

+ δc
1
t f

[
0 −nTJ1(x(j̄ + 1 | k))

0 nTJ2(x(j̄ + 1 | k))
]
x(j̄ + 1 | k) (33g)

where j ∈ {0, . . . , Np − 1} is the iteration index, Np the
prediction horizon, and r ∈ {1, 2} the index denoting the
robots. In each optimization step k, the time minimizing static
optimization problem is solved to generate robot trajectories
from the current measured state x0(k) to a desired final state
x f (k), as expressed by the initial and terminal constraints
(33d). The scaled discrete-time dynamic model (33a) with
the sampling time 1τ = 1/Np is used to predict robot
trajectories along the prediction horizon. The optimization is
also subject to minimum/maximum bounds on the states (33b),
the inputs and their time derivatives (33c), and further con-
straints for collision-free trajectory planning. The constraints
to avoid collisions with the workbench (33e) and between
the robot’s links (33f) are always active along the entire
prediction horizon. Here, eT

4 x(·) = q14(·), eT
5 x(·) = q15(·), and

eT
16x(·) = q24(·), eT

17x(·) = q25(·) represent the variables of the
robot’s joints four and five, see (27). The interrobot collision
avoidance constraints (33g), on the other side, are applied only
along a part of the prediction horizon Np, as denoted by the
index j̄ = j ∈ {0, . . . , Nc} with Nc < Np. This is motivated
by the fact that robot trajectories are iteratively replanned
at each optimization step k. Therefore, it is sufficient to
ensure collision-free planning along a section of the prediction
horizon that is sufficiently larger than the control horizon.

The scaled time interval τ ∈ [0, 1] is subdivided into
Np equidistant time intervals 1τ , which are mapped by
1t = 1τ t∗

f into increasingly tighter 1t-intervals as time
propagates, since the computed optimal final time t∗

f reduces
with each optimization step. In early iterations, the time
resolution of the computed trajectories is lower and increases
after each MPC iteration, resulting in sequentially finer robot
trajectories. This has the advantage that, toward the end,
when the robot approaches the target, the time resolution of
the trajectories is higher, leading to more accurate planning
required to reach the target points.

V. IMPLEMENTATION

The experimental setup consists of two UR5 collaborative
robotic arms equipped with pneumatic grippers, a camera
system, a conveyor belt inclusive programmable logic con-
troller (PLC), and a Host-PC where the algorithms are
implemented, see Fig. 1. The planned time-optimal trajectories
are sent to the robot controllers via transmission control
protocol/internet protocol (TCP/IP) communication protocol
using ROS melodic [46]. The resulting system and imple-
mentation architecture are shown in Fig. 5. The scheduler gets
information about the position of objects 0po, slots 0ps (relative
to the inertial frame), and the actual conveyor speed vc, and
computes feasible robot target points, which are transformed
into final robot joint positions qr f and velocities q̇r f . ROS
Hardware Interface along with the input–output robot interface
is used to close or open the grippers, activate the camera
system, and set the reference velocity vc,ref for the PLC.

With the measured actual robot state and the given final
target state, the trajectories are predicted along the prediction
horizon using (29) and provided as an initial guess to the
MPC algorithm to initialize the motion planning. The input
vector u(k) needed to predict trajectories is approximated

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 463

Fig. 5. System architecture of the considered experimental setup. The algo-
rithms for task scheduling and minimum-time trajectory planning, inclusive of
forward and inverse kinematics, are implemented on a Host-PC. The generated
trajectories are approximated by quintic polynomials and forwarded to the
low-level robot controller via a PID-feedback controller in combination with
a feedforward term using ROS and a velocity control interface.

by a bang–bang acceleration/deceleration profile, typical for
time-optimal planning. The computed minimum-time joint tra-
jectories consisting of position q∗

r (·) = [q∗
r (0), . . . , q∗

r (Np)],
velocity q̇∗

r (·) = [q̇∗
r (0), . . . , q̇∗

r (Np)], and acceleration
u∗

r (·) = [u∗
r (0), . . . , u∗

r (Np)] data points are forwarded, along
with a time vector t∗

= [0, . . . , t∗

f], to ROS Control to finally
generate reference points for the low-level robot controllers.
In this work, joint velocity interface in conjunction with joint
velocity controller is used by ROS Control to send and receive
control commands to the underlying robot controllers. More
specifically, joint trajectory controller is used for execut-
ing joint-space trajectories on a group of joints. Since we
iteratively plan the trajectories, we use the action interface,
which grants the possibility of replacing trajectories at each
optimization step when the new ones are available.

Given a set of position, velocity, and acceleration data points
to be reached at specific time instants, the controller performs
a spline interpolation using quintic polynomials. As shown
in Fig. 5 the used velocity controller provides a closed-loop
control structure using a proportional integral derivative (PID)
controller in combination with a feedforward term, given by

q̇r,ref(t) = KF q̇rd(t) + KP eqr (t) + KI

∫ t

0
eqr

(
t̃
)
dt̃ + KD ėqr (t)

with the diagonal matrices KP for the proportional gain,
KI the integral gain, KD the derivative gain, and KF the
feedforward gain. The velocity controller generates a reference
velocity profile which is forwarded to the underlying robot
controller (UR controller) via a velocity interface.

To realize the feedback loops needed for MPC and the ROS
velocity controller, fast reading of the current position and
velocity of the robot joints is crucial. Measuring and reading
the necessary feedback data requires time, depending on the
update frequency of the UR controller and ROS itself. The
control and update frequency of the robot controller is 125 Hz,
providing sufficient performance for online robot trajectory
planning. However, when using ROS to access the measure-
ment data via ROS messages, the performance of the reading

Fig. 6. Direct comparison of reading time delays coming from RTDE and
ROS while performing pick-and-place tasks.

TABLE I
TUNED PID PARAMETERS

time is poor, causing time delays between 15 and 60 ms per
robot, as shown in Fig. 6. To overcome this problem, a direct
synchronization for data exchange between the UR controller
and the Host-PC is established using a real-time data exchange
(RTDE) interface over a standard TCP/IP connection, without
breaking any real-time properties of the UR controller [47].
Although the ROS driver uses the RTDE interface for data
exchange, the processing overhead when using ROS messages
causes significant delays far greater than the delays resulting
from RTDE, see Fig. 6.

The feedforward PID controller is provided by the ROS
Driver in conjunction with the velocity control interface.
The PID parameters are tuned using sinusoidal reference
trajectories following some basic guidelines described in [41]
since the default PID values do not guarantee a good track-
ing performance. The sinusoidal reference trajectories were
generated considering the position and velocity limits of the
robots in order not to exceed physical limitations and to avoid
self-collision between the links. Therefore, optimization-based
trajectories can also be considered, similar to those introduced
by Tika et al. [48] for robot dynamic parameter estimation.
To evaluate the tracking performance of the tuned parameters
shown in Table I, we let the robot perform pick-and-place
tasks and thus track trajectories other than those used during
the tuning process. As shown in Fig. 7 for the position and in
Fig. 8 for the velocity of the second robot joint, the chosen
parameters result in a very good tracking performance with
nonsignificant tracking errors. The tracking performance of
the other robot joints is similarly good, so we refrain from a
graphical representation of the trajectories.

The algorithms are implemented in Python on a standard
Host-PC with an Intel Core i7-8700 Processor and a 3.20 GHz
clock rate using Ubuntu 18.04.6 LTS with a real-time kernel.
The modeling of minimum-distance computation problem (10)
and the MPC problem (33) is done using CasADi [49], and
the resulting nonlinear optimization problems are solved by
applying the Interior Point OPTimizer (IPOPT) [50] with
the linear solver MA57 for the solution of the underlying
linear system for step computations. The maximum number of
iterations is limited to 100 with an overall acceptable relative
convergence tolerance of 10−6.

464 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

Fig. 7. Comparison between the target and the measured position of robot
joint two and depiction of the resulting position tracking error.

Fig. 8. Comparison between the target and the measured velocity of robot
joint two and depiction of the resulting velocity tracking error.

VI. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed algorithm for
online planning of collision-free robot trajectories, we conduct
experiments considering two test cases with the experimental
setup shown in Fig. 1, which results in a robot arrangement
with considerable overlap of their operational areas. Test
Case 1 is mainly constructed to test the performance of
the collision avoidance constraints and does not reflect a
normal operating mode of the packing line. Here, we consider
12 objects and two trays with six slots each, distributed as
shown in Fig. 9. Test Case 2, on the other side, reflects a rather
normal operating mode of the packing line with objects and
trays transported by the conveyor belt, see Fig. 1.

A. Test Case 1

In order to compute feasible task points for the robots,
scheduling is performed following the idea presented in [13],
which consists of assigning a sequence of objects and trays to
each robot by minimizing the Euclidean distance covered by
the robot end-effectors. The scheduling algorithm is subject
to constraints for robot-task assignment and additional con-
straints to ensure that two simultaneously picked objects do not
lie very close to each other and the final robot configurations
do not result in overlapping robot geometries, i.e., the tasks
points q f r are feasible. Performing task scheduling results in
the task sequence shown in Fig. 10(b), with objects one to six
and Tray 1 assigned to Robot 2, and objects seven to 12 along
with Tray 2 assigned to Robot 1. To test the performance of
the collision avoidance constraints the scheduling algorithm
is further constrained resulting in the task sequence shown
in Fig. 10(a), where the robot-object assignment remains the
same with Robot 1 filling Tray 1 and Robot 2 filling Tray 2.

Fig. 9. Experimental setup for Test Case 1: The robots have to pick up six
objects each and place them in the trays.

Fig. 10. Test Case 1: Task scheduling for two robots, 12 objects, and two
trays. The white space between the colored bars indicates the time needed
by the robots to pick up the next objects. (a) Test Case 1a: The objects
{7, 8, 9, 10, 11, 12} and Tray 1 are assigned to Robot 1, and the objects
{1, 2, 3, 4, 5, 6} along with Tray 2 to Robot 2, leading to tasks with high
collision potential. (b) Test Case 1b: The objects {7, 8, 9, 10, 11, 12} and Tray
2 are assigned to Robot 1, and the objects {1, 2, 3, 4, 5, 6} along with Tray
1 to Robot 2, leading to tasks with low collision potential. The red vertical line
denotes the time it would take for a single robot to perform the pick-and-place
tasks.

The assigned object-tray combination leads in this case to
overlaps in the paths of the robot end-effectors and thus to
motions with high interrobot collision potential.

A visual representation of the experimental results for
Test Case 1a is shown in Fig. 11. The scene succession
Fig. 11(a)–(e) represents an entire pick-and-place sequence
starting from the robot’s initial position, picking up the
assigned objects 1 and 7, and placing them in the respective
slots. On their way to the objects and the respective slots,
the robots sidestep each other to avoid collisions, as shown in
Fig. 11(b) and (d). After placing the first objects, the robots
go to the following assigned objects 2 and 8, according to the
schedule shown in Fig. 10(a), and place them in the respective
slots of the trays, and so forth. The other images, Fig. 11(f)–(l)
represents snapshots of collision avoidance motions of the
robots when they are on their way to the objects or slots. This
clearly shows that collision avoidance is performed so that
the robot arms do not move across each other. Fig. 11(m)–(p)
shows the location of the geometry approximating spheres
corresponding to the robot configurations in Fig. 11(b), (d),
(h), and (l), respectively.

Therefore, we built in MATLAB/Simulink a dynamic
simulation model of the experimental setup using Simscape-
Multibody and robot CAD data with dynamic parameters
identified in [48], and let the robots track position, veloc-
ity, and acceleration trajectories, recorded while performing
the experiment. The position of the spheres is then visu-
alized using recorded optimal curve parameters λ∗

1 and λ∗

2,

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 465

Fig. 11. Pictures show a side and top view of the experiment for Test Case 1a, where the robots perform simultaneous pick-and-place tasks with high
collision potential. Scenes (a)–(e) show an entire pick-and-place cycle starting from the start position (a), picking up the assigned objects (c), and placing
them in the respective slots (e) (Robot 1 Object 7 in Slot 1 and Robot 2 Object 1 in Slot 7). The robots avoid collisions on the way to the objects and slots,
as shown by scenes (c) and (d), respectively. The other snapshots (f) through (l) also show conflict resolution and collision avoidance. The Simulation scenes
(m)–(p) display the position of the spheres corresponding to the robot configurations shown in (b), (d), (h), and (l), respectively. A video of the experiment
can be found under the following link: https://youtu.be/8qSCSVmFoW0. (a) Initial robot position. (b) Collision avoidance: going to objects 1 & 7. (c) Picking
up objects 1 & 2. (d) Collision avoidance: going to slots 1 & 7. (e) Placing objects 1 & 7. (f) Collision avoidance: going to objects 2 & 8. (g) Collision
avoidance: going to slots 2 & 8. (h) Collision avoidance: going to objects 3 & 9. (i) Collision avoidance: going to slots 3 & 9. (j) Collision avoidance: going
to slots 5 & 11. (k) Collision avoidance: going to objects 6 & 12. (l) Collision avoidance: going to slots 6 & 12. (m) Sphere’s position corresponding to b).
(n) Sphere’s position corresponding to d). (o) Sphere’s position corresponding to h). (p) Sphere’s position corresponding to l).

Fig. 12. Distance between the centers of the spheres for Test Case 1. (a) Test
Case 1a: For δc ∈ {0, 1}, the collision avoidance constraints are active within
the influence zone, i.e., d ≤ din, in (31), resulting in no overlapping of the
spheres at any time. δc = 0 denotes the case where the collision constraints
are deactivated. In this case, the distance between the spheres undercuts the
safety distance, defined by the sum of the radii of the proximity spheres,
which would result in collisions between the robots. (b) Test Case 1b: At the
beginning, the interrobot collision avoidance constraints prohibit the minimum
distance from undercutting the critical minimum value. After that, the robots
perform tasks with low collision potential, which is also reflected in the time
course of the minimum distance.

computed during the experiment by solving the optimization
problem (10).

The computed minimum distance between the centers of
the proximity spheres in Test Case 1 is shown in Fig. 12. The
dark gray area marks the region where the spheres overlap, i.e.,
where the robots would collide. The light gray area denotes
the region (influence distance) where the collision avoidance
constraints are active when enabled. It is evident that collisions
would always occur between the robots without collision con-
ditions. The proposed collision avoidance constraints ensure

Fig. 13. Computed minimum final time representing the value of the cost
function of the optimization problem (33) for Test Case 1a shown in (a) and
Test Case 1b shown in (b).

safe robot operation as they prevent the minimum distance
between the robots from falling below a certain safety distance.

To further evaluate the performance of the algorithm,
we analyze the computed minimum final time t∗

f shown
in Fig. 13 and the joint position, velocity, and acceleration
trajectories for Robot 1 shown in Figs. 14 and 15, respectively.
The trajectories are shown only for Robot 1 and half of the
experiment duration since the trajectories for Robot 2 and
the remaining tasks have similar profiles and do not provide
additional information. For better readability, we display only
the measured joint position and velocity, since, as shown in
Figs. 7 and 8, the error between the target and the measured
joint position respective velocity is very small.

The robot manipulators share the same cost function, i.e.,
the same final time, resulting in a synchronous pick-and-place
task execution. The computed optimal time shown in Fig. 13

466 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

Fig. 14. Measured joint positions, velocities, and computed accelerations for
Robot 1 in Test Case 1a. The light and dark gray areas mark the time span
when the robot is going to an object, respectively, slot. (a) Measured joint
positions. (b) Measured joint velocities. (c) Computed joint accelerations.

has 12 maximum and 12 minimum peaks, representing each
the beginning and the end of task execution (picking or placing
an object), respectively. This corresponds to picking six objects
each and placing them in the respective slots. Accordingly, the
minimum time is maximal at the beginning denoting the start
of the trajectory planning, and decreases continuously as the
robots approach their targets with each sampling step (MPC
iteration). The slope of the decreasing cost function varies with
time, and at some points, a local increase compared to the
previous value can also be observed. This occurs especially
in Test Case 1a during a conflict resolution and collision
avoidance situation, which causes the robots to take more
time to achieve their goals. A local change in the course of
the computed minimum time is also reflected in the profile of
the minimum distance and the robot trajectories, especially the
velocity and acceleration. It can be observed that whenever
the slope of the decreasing cost function becomes smaller
or locally positive, the distance between the robots usually
increases as well. As a reaction to this, there are sometimes
sudden changes in the velocity and acceleration in order to
avoid collisions, but the robot trajectories remain smooth, see
Fig. 14.

In Test Case 1b, starting from the initial position Robot
1 will pick up Object 7, and Robot 2 Object 1. This is the
same as in Test Case 1a and corresponds to the image sequence
in Fig. 11(a)–(d). However, Robot 1 then places its assigned
object in Slot 7 (Tray 2) and Robot 2 in Slot 1 (Tray 1), see
Fig. 10(b). Compared to Case 1a, this leads to nonoverlapping
in the paths of the robot end-effectors and thus to low collision
risk. Due to different scheduling, robots need to avoid each
other only during the execution of the first tasks when moving
from the initial points to the first objects. This can also be
observed in the time course of the minimum distance and the
optimal final time shown in Figs. 12(b) and 13(b), respectively.
While executing the first task (going to the first objects),
the value of the minimum distance enters the influence zone
(d ≤ din) activating the constraints and thus prohibiting the

Fig. 15. Measured joint positions, velocities, and computed accelerations for
Robot 1 in Test Case 1b. The light and dark gray areas mark the time span
when the robot is going to an object, respectively, slot. (a) Measured joint
positions. (b) Measured joint velocities. (c) Computed joint accelerations.

minimum distance from falling below the critical value. The
computed optimal time for the first task is also higher and
the decreasing slope is changing with time. The remaining
task points do not lead to robot motions with high collision
potential as the robots do not get close to each other. In this
case, the robots need less time to reach the assigned goals
resulting in shorter transition times and faster overall mission
completion. The entire experiment lasts about 29.3 s, which
is 12.5 s faster compared to Test Case 1a. Deploying a single
robot to execute the same tasks, i.e., fill both trays, results in
an overall task execution time of about 57.2 s. Thus, depending
on the task planning, two robots can perform the entire task
between 15.4 and 27.9 s faster than a single robot.

A correlation between the interrobot collision avoidance
constraints and the resulting time evolution of the trajectories
in Figs. 14 and 15 is evident. When avoiding collisions,
the wrists of the robots are more involved in the trajectory
planning, as the spheres are mainly located in the wrist and
end-effector area, as shown in Fig. 11. The acceleration profile
of at least one robot joint exhibits a time characteristic that is
typical for time-optimal trajectory planning. In the trajectory
planning problem, the terminal constraints impose that all
robot joints reach their target angles simultaneously. Given
that, for the considered robots, all joints have the same speed
characteristics, the robot joints farthest from their targets or
those who are more involved in avoiding collisions determine
the time needed by the robots to reach the final configurations,
i.e., the optimal value of the final time t∗

f . In Figs. 14 and 15,
it is shown that these joints exhibit bang–bang acceleration
profiles. While executing the first task in Test Case 1b, the
fifth robot joint reacts quickly to avoid collisions, which is also
reflected in the velocity and acceleration profile. During the
execution of the remaining tasks with low collision potential,
the fifth robot joint does not change, keeping the orientation of
the gripper perpendicular to the task points. In this case, joints
two and three are the dominant ones since they have to cover
a larger distance and exhibit higher velocity and acceleration
values.

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 467

TABLE II
PARAMETERS

The parameters used during the experiments are listed in
Table II. For the presented results, a prediction horizon of
Np = 10 is chosen, and the constraints for interrobot collision
avoidance (33g) are applied along its first half, i.e., Nc = 5.
The velocity parameter ϵ is chosen to be updated dynamically
using ϵ = 0.24 t∗

f , depending on the value of the minimum
final time t∗

f (cost function) computed in the previous planning
iteration. The value of the optimal final time may locally
increase during a collision avoidance phase as the robots slow
down their motions, leading to a higher time to reach the
targets. In this case, a larger ϵ-value is beneficial to resolve
a conflict situation. On the contrary, in less critical scenarios
with low collision potential, the final time decreases faster,
also relaxing the interrobot collision avoidance constraints by
reducing ϵ. Considering the shape and size of the robot’s links,
the radius of the geometry approximating spheres is chosen to
be constant and equal for both robots. However, a varying
sphere radius can also be considered as a function of the path
variable λ.

The choice of the prediction horizons Np is related to the
expected maximum value for the cost function t f,max, which
for the considered tasks lies between 0.6 and 1.2 s. In the
scaled time τ , the prediction horizon covers the entire period
until the final time point and is subdivided into Np equidistant
intervals 1τ . The interval boundaries serve as control points,
reshaping the trajectories after each MPC iteration. The aim
is to achieve a control point distribution at t f,max in time steps
of about 100 ms, i.e.,

1tmax = 1τ t f,max = 100 ms , with 1τ =
1

Np
. (34)

Considering on average t f,max ≈ 1 s, the prediction horizon is
chosen as

Np = ⌊
t f,max

1tmax
⌋ = 10 (35)

with ⌊·⌋ denoting the integer (floor) operator. Since the time
interval 1t = 1τ t∗

f is becoming shorter with decreasing t∗

f ,
the collision-free horizon Nc has to be sufficiently large to
ensure collision-free operation along the entire control horizon

TABLE III
EXPERIMENTAL RESULTS FOR TEST CASE 1

tc, which is mainly determined by the computation time. Here,
we are referring to the minimum time tmin = 200 ms which
denotes that for t∗

f < tmin the robots are near their target points
(approximately two control horizons far). Therefore, for tc ≤

1tmax, it is sufficient to ensure that at least one control horizon
is collision-free, i.e., 1τ tmin Nc ≥ 1tmax, yielding

Nc ≥
1tmax

tmin
Np . (36)

Choosing Nc = Np/2 satisfies (36) for the used time
parameters.

We have performed experiments using different values for
the prediction horizon Np, the collision-free Nc horizon, and
the velocity parameter ϵ. The results are summarized in
Tables III and IV. The computation time for the MPC-based
trajectory planning problem (33) and the minimum dis-
tance calculation (10) increases with the increased horizon.
In Test Case 1a, the computation time is higher since the
collision-avoidance constraints significantly influence the com-
putation time due to their complexity and nonlinearity. This
can be seen in Fig. 16, where high fluctuations in the MPC
computation time are evident. For Np = 20 and Nc = 10,
the total computation time sometimes exceeds 100 ms being
slightly larger than the requested maximum control horizon.
In this case, tc > 1tmax, so Nc > Np/2 should be chosen to
ensure collision-free trajectory planning above 1tmax toward
the end of the trajectory planning when t∗

f ≈ tmin. However,
increasing Nc will also increase the computation time. In gen-
eral, toward the end of the trajectory planning the computation
time is shorter as the robots are before t∗

f approaches tmin
outside the danger zone for interrobot collisions. In Test
Case 1b, the computation time remains below 100 ms and,
as shown in Fig. 17, reaches its maximum value at the begin-
ning. This is expected since the robots only need to avoid
collisions in the first task and subsequently perform tasks with
low collision potential. For the other performance parameters,
such as the maximum value of the cost function t∗

f,max and
the experiment duration, there is not much difference when
performing experiments with larger horizons. The velocity
parameter ϵ is chosen by trial and error while performing the
experiments. A smaller ϵ-value may lead to robots coming
closer to each other, resulting in robots requiring more time
to resolve conflict situations. A larger ϵ, on the other hand,
pushes the robots farther from each other. Consequently, both
increasing and decreasing ϵ can result in longer task execution
times as shown in Table IV when comparing to the results in
Table III for ϵ = 0.24t∗

f and Np = 15, Nc = 8.

468 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

Fig. 16. Computation time for the MPC-based trajectory planning problem
and the minimum distance calculation for three different horizon lengths in
Test Case 1a.

TABLE IV
EXPERIMENTAL RESULTS FOR TEST CASE 1a, WITH Np= 15, Nc= 8

Fig. 17. Computation time for the MPC-based trajectory planning problem
and the minimum distance calculation for three different horizon lengths in
Test Case 1b.

To analyze the effect of Nc, we performed experiments with
a fixed prediction horizon Np = 15 and Nc ∈ {10, 12, 14}. The
experimental results are summarized in Table V for the more
critical Test Case 1a. Increasing Nc increases the number of
collision avoidance constraints, resulting in higher computa-
tion times. For Nc ≥ 12 the total computation time is above
100 ms. With the selected values for Nc also toward the end of
the trajectory planning, the collision-free horizon is longer than
the maximum computation time, i.e., 1τ tmin Nc ≥ tc holds.
A longer horizon Nc does not affect the obtained maximum
value of the cost function t∗

f,max. However, we see that with
increased Nc the experiment duration increases by about 1–2 s.
Applying the collision avoidance constraints along a longer
horizon decreases the slope and the convergence rate of t∗

f ,
leading to slightly longer overall task execution times.

When collisions are not a concern, the interior point solver
requires only a few iterations to converge to a feasible solution.
The number of iterations increases if interrobot collisions
pose an issue. In this case, the solver requires, on average,

TABLE V
EXPERIMENTAL RESULTS FOR TEST CASE 1a AND Np= 15

Fig. 18. Test Case 2: Pick-and-place tasks on a conveyor belt.
A video of the experiment can be found under the following link:
https://youtu.be/07viYkl-v1Y.

14 iterations to converge to a feasible solution for the trajectory
planning problem and six iterations for the minimum distance
calculation.

B. Test Case 2

The proposed control structure addresses the integration of
robotic manipulators into existing manual sorting or packing
processes. Therefore, with Test Case 2, we aim to demonstrate
an application similar to such processes and let the robots
perform pick-and-place tasks with objects transported by a
conveyor belt, see Fig. 18. During the experiment, the robots
fill two trays each, corresponding to picking up a total of
24 objects and placing them in the slots of the trays. The
estimation of the pose of the objects is done by applying the
deep learning algorithm presented in [51]. For the pick-and-
place task execution, scheduling is performed first to assign
a tray and a sequence of objects to a robot. As mentioned,
scheduling is performed in the Cartesian space by minimizing
the Euclidean distance covered by the robot end-effectors.
Since objects and trays are transported by a conveyor belt,
new task points are constantly added, requiring an iterative
task scheduling after an object is placed in its respective slot.

Moving task points requires continuously updating the
desired final robot state x f (k) in (33d). Let 0p ∈ {0po, 0ps}

denote the position of a task point and 0p(k) its current
from the camera system captured position value relative to
the inertial frame. The final target point position is then
continuously updated using the prediction

0p f (k) = 0p(k) + 0vc(k) t∗

f (1 − 1τ) (37)

with 0vc(k) = [0,−vc(k), 0]
⊤ representing the current mea-

sured speed vector of the conveyor relative to the inertial
frame. Here, t∗

f (1 − 1τ) models the remaining time period
the robots need to reach the assigned targets. Applying inverse
kinematics and inverse differential kinematics to (37) and 0vc,
along with a desired end-effector orientation, the final position
and velocities of the robot joints are calculated to update the
desired final state vector x f (k).

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 469

Fig. 19. Computed minimum final time for Test Case 2 representing the
value of the cost function of the optimization problem (33).

TABLE VI
EXPERIMENTAL RESULTS FOR TEST CASE 2

From the performance of the task execution, Test Case 2 is
similar to Test Case 1b, as the robots usually perform tasks
with low collision potential. This can be also seen in the course
of the computed final time t∗

f in Fig. 19 and the experimental
results summarized in Table VI. A local increase of the optimal
final time t∗

f toward the end of the execution of the first two
tasks is related to the position prediction (37) of the task
points. More precisely, this is due to the changes in the belt
speed, which are higher at the beginning due to friction effects
and decrease with time, so that the speed converges to a steady
state and maintains the desired value of 5 cm/s nearly constant.
The trajectories of the robots are not explicitly shown because
they are similar to those in Fig. 15. The computation time
shown in Fig. 20 for the entire experiment duration and three
different horizon lengths never exceeds 100 ms.

The entire experiment with two robots lasts about 48.1 s.
We performed the same experiment deploying a single robot
manipulator to fill four trays, resulting in an overall experi-
ment duration of about 84.2 s. The double-arm solution being
36.1 s faster than the single-robot-arm solution is a promising
indicator that efficient deployment of multiple robot arms can
result in an improved performance in terms of robot cycle time
and overall working throughout.

VII. DISCUSSION AND CONCLUSION

As an optimization-based planner, the performance of the
proposed approach relies besides the problem formulation
itself on the chosen parameters of the algorithm and the numer-
ical solver. Using a longer prediction horizon is beneficial
for trajectory planning in terms of increased time resolution.
However, this requires a longer collision-checking horizon,
increasing the dimension of the optimization problem and,
thus, the computation time. A longer computation time is
reflected in increased control horizon and overall robot task
execution time as it reduces the convergence rate of the cost
function.

Overall, the solver converges within a few iterations toward
a feasible solution, but the iteration evaluation is computa-

Fig. 20. Computation time for the MPC-based trajectory planning problem
and the minimum distance calculation for three different horizon lengths in
Test Case 2.

tionally costly. The number of iterations varies between 6–40
for the MPC problem and 2–12 for the minimum distance
computation. The experimental results obtained with different
horizon lengths show that, although the average number of
iterations does not considerably increase with the horizon, the
computation time increases. This comes from the collision
avoidance formulation as nonlinear state-dependent constraints
but also from the terminal constraints. The exact satisfaction
of the equality constraints at the end of the prediction horizon
may require high computational effort.

The success rate of the planner depends mainly on the dif-
ficulty of the tasks regarding interrobot collisions, the horizon
lengths, and the velocity parameter ϵ, which directly influences
the collision avoidance constraints. Limiting the number of
solver iterations to 100, we performed experiments considering
the execution of 100 randomly chosen pick-and-place tasks
similar to Test Case 1a in terms of difficulty level. With ϵ

varying between 0.1t∗

f to 0.35t∗

f , for Np = 15 and Nc = 8 the
success planning rate varies from 86% at worst to 94% at best.
In all cases where the solver fails to find an optimal solution,
the maximum number of iterations is reached, so the trajectory
execution is aborted. For smaller ϵ, this is usually the case
when the robots get very close to each other. Consequently,
the robot’s speed is very low, and the solver has difficulties
resolving the conflict situation within a time span applicable
for online trajectory planning. Contrary, a larger ϵ might
bring the robots outside the influence zone defined by (31),
deactivating the collision-avoidance constraints. Reentering
the influence zone generates repulsive forces pushing the
robots again outside the influence zone. Here, the trajectory
planning results in high-velocity motions with robots leaving
and entering the influence zone without being able to pass each
other. The solver always converges to a feasible solution within
a few iterations for pick-and-place tasks with low interrobot
collision risks since the trajectory planning problem, in this
case, is simple.

Prior to developing the geometry approximation using
Bézier curves, we performed simulations approximating the
robot geometry by circles and ellipsoids. We applied velocity
constraints in the form of virtual velocity dampers to avoid
intersections between the approximating convex primitives.
Velocity constraints were used since, for the proposed time-
optimal planning, they have the advantage of the time to

470 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 2, MARCH 2024

target t f , a subject of minimization, inherently appearing in
the constraints due to time scaling. Even after reducing the
number of the approximating convex geometries to a minimum
by using three ellipsoids for the shoulder, elbow, and robot
wrist three, including the gripper, and a circle in the area of
wrists one and two, the achieved computation times were not
suitable for real-time implementation in an experimental setup
as considered in this article.

In the effort to generate time-optimal and real-time robot
trajectories for robotic arms performing pick-and-place tasks
in a shared work environment, a continuous approximation of
the robot geometry by Bézier curves is introduced at the cost
of a coarser geometry approximation by moving proximity
spheres, without compromising the safe robot use. To this
end, an efficient collision avoidance approach has been formu-
lated by defining velocity restrictions along tangent separating
planes as inequality constraints of an MPC problem. Thereby,
the underlying predictive character of the algorithms is of emi-
nent interest as potential collisions can be timely anticipated
and, thus, avoided in advance. This fact underpins the key
role and necessity of predictive control strategy in cooperative
robotics. From the implementation perspective, however, this
invokes online real-time calculations of trajectory adaptations,
which also has been successfully demonstrated in this work
using an experimental setup with two robotic arms performing
pick-and-place tasks on a conveyor belt. For the considered
application, we have shown that using two robot arms in a
tight shared workspace leads, even in the worst case, to an
improvement in cycle times compared to deploying a single
robot to execute the same tasks. This improvement is greater
through coordinated task and trajectory planning, enabling a
more efficient robot operation. Future work will include a
monolithic integration of task scheduling within the framework
of a mixed-integer predictive algorithm and its extension to
address asynchronous robot task execution.

APPENDIX

A. Time Discretization of the Prediction Model

The solution of the linear time-invariant system (4) is given
in the form

x(t) = 8(t − t0)x0 +

∫ t f

t0
8
(
t − t̃

)
Bu
(
t̃
)
dt̃

by successively applying Picard’s iteration method with the
state-transition matrix

8(t) =

∞∑
i=0

Ai t i

i !
= I + At.

With the time transformation τ = (t − t0)/1t f , the joint
trajectories qr (t) = qr (τ), and the time derivatives

d
dt

qr (t) =
1

1t f

d
dτ

qr (τ),
d2

dt2 qr (t) =
1(

1t f
)2

d2

dτ 2 qr (τ)

where 1t f = t f − t0, the solution of the scaled linear
time-invariant system for the time interval τ ∈ [k1τ, (k +

1)1τ) can be written as

x(k + 1) = 8(1τ)x(k)

+
(
1t f

)2
∫ (k+1)1τ

k1τ

8
(
(k + 1)1τ − τ̃

)
Bu
(
t0 + τ̃1t f

)
dτ̃

= 8(1τ)x(k)

+ 1t f

∫ t0+(k+1)1τ1t f

t0+k1τ1t f

8
(
(k + 1)1τ −

(
t̃ − t0

)
/1t f

)
Bu(k)dt̃

yielding the discrete time dynamics (29).

REFERENCES

[1] R. Shome, K. Solovey, J. Yu, K. Bekris, and D. Halperin, “Fast,
high-quality two-arm rearrangement in synchronous, monotone tabletop
setups,” IEEE Trans. Autom. Sci. Eng., vol. 18, no. 3, pp. 888–901,
Jul. 2021.

[2] H. Ha, J. Xu, and S. Song, “Learning a decentralized multi-arm motion
planner,” in Proc. Conf. Robot. Learn. (CoRL), 2020, pp. 1–12.

[3] S. Mirrazavi, N. Figueroa, and A. Billard, “Coordinated multi-arm
motion planning: Reaching for moving objects in the face of uncer-
tainty,” in Robotics: Science and Systems. Ann Arbor, MI, USA:
Robotics: Science and Systems XII, 2016.

[4] Y. Gan, J. Duan, M. Chen, and X. Dai, “Multi-robot trajectory planning
and position/force coordination control in complex welding tasks,” Appl.
Sci., vol. 9, no. 5, p. 924, Mar. 2019.

[5] J. Chen et al., “Cooperative task and motion planning for multi-arm
assembly systems,” 2022, arXiv:2203.02475.

[6] M. Wagner, P. Heß, S. Reitelshöfer, and J. Franke, “Cooperative pro-
cessing with multi-robot systems,” in Proc. IEEE Int. Conf. Adv. Intell.
Mechatronics (AIM), Jul. 2017, pp. 663–669.

[7] C. Wong, S. Shackleford, D. Potter, J.-P. Richardson, L. McDermott,
and J. Nolan, “Robotic task sequencing and motion coordination for
multiarm systems,” IEEE/ASME Trans. Mechatronics, vol. 27, no. 6,
pp. 5275–5286, Dec. 2022.

[8] S. Zhang and F. Pecora, “Online sequential task assignment with
execution uncertainties for multiple robot manipulators,” IEEE Robot.
Autom. Lett., vol. 6, no. 4, pp. 6993–7000, Oct. 2021.

[9] H. J. Bückenhüskes and G. Oppenhäuser, “DLG trend report: Robots
in the food and beverage industry,” DLG Lebensmittel, vol. 9, no. 6,
pp. 16–17, 2014.

[10] S. D. Han, S. W. Feng, and J. Yu, “Toward fast and optimal robotic
pick-and-place on a moving conveyor,” IEEE Robot. Autom. Lett., vol. 5,
no. 2, pp. 446–453, Apr. 2020.

[11] S. Berger and B. Armstrong, “The puzzle of the missing robots,”
MIT Case Studies Social Ethical Responsibilities Comput., Jan. 2022.
[Online]. Available: https://mit-serc.pubpub.org/pub/puzzle-of-missing-
robots

[12] L. Sanneman, C. Fourie, and J. A. Shah, “The state of industrial robotics:
Emerging technologies, challenges, and key research directions,” Found.
Trends® Robot., vol. 8, no. 3, pp. 225–306, 2021.

[13] A. Tika and N. Bajcinca, “Synchronous minimum-time cooperative
manipulation using distributed model predictive control,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Las Vegas, NV, USA,
Oct. 2020, pp. 7675–7681.

[14] A. Tika and N. Bajcinca, “Model predictive control based cooperative
robot manipulation and collision avoidance in shared workspaces,” in
Proc. Eur. Control Conf. (ECC), Jun. 2021, pp. 702–709.

[15] S. M. Lavalle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions. Wellesley, MA, USA: A K Peters, 2001, pp. 293–308.

[16] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp. 566–580,
Mar. 1996.

[17] K. Solovey, O. Salzman, and D. Halperin, “Finding a needle in an
exponential haystack: Discrete RRT for exploration of implicit roadmaps
in multi-robot motion planning,” Int. J. Robot. Res., vol. 35, no. 5,
pp. 501–513, Apr. 2016.

[18] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris,
“DRRT: Scalable and informed asymptotically-optimal multi-robot
motion planning,” Auto. Robots, vol. 44, nos. 3–4, pp. 443–467,
Mar. 2020.

[19] S. Akella and S. Hutchinson, “Coordinating the motions of multiple
robots with specified trajectories,” in Proc. IEEE Int. Conf. Robot.
Autom., May 2002, pp. 624–631.

TIKA AND BAJCINCA: PREDICTIVE CONTROL OF COOPERATIVE ROBOTS SHARING COMMON WORKSPACE 471

[20] D.-H. Lee, D.-H. Kim, J. Y. Lee, and C.-S. Han, “Collision-free coordi-
nation of two dual-arm robots with assembly precedence constraint,”
in Proc. 14th Int. Conf. Control, Autom. Syst. (ICCAS), Oct. 2014,
pp. 515–520.

[21] Y.-C. Tsai and H.-P. Huang, “Motion planning of a dual-arm mobile
robot in the configuration-time space,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., Oct. 2009, pp. 2458–2463.

[22] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” Int. J. Robot.
Res., vol. 35, no. 7, pp. 797–822, Jun. 2016.

[23] P. Leven and S. Hutchinson, “A framework for real-time path plan-
ning in changing environments,” Int. J. Robot. Res., vol. 21, no. 12,
pp. 999–1030, Dec. 2002.

[24] A. Völz and K. Graichen, “Composition of dynamic roadmaps for dual-
arm motion planning,” in Proc. IEEE Int. Conf. Adv. Intell. Mechatronics
(AIM), Jul. 2017, pp. 1242–1248.

[25] A. Völz and K. Graichen, “A predictive path-following controller for
continuous replanning with dynamic roadmaps,” IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 3963–3970, Oct. 2019.

[26] O. Khatib, “Real-time obstacle avoidance for manipulators and
mobile robots,” in Proc. IEEE Int. Conf. Robot. Autom., May 1985,
pp. 500–505.

[27] C. C. B. Viturino, U. de Melo Pinto Junior, A. G. S. Conceição, and
L. Schnitman, “Adaptive artificial potential fields with orientation control
applied to robotic manipulators,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 9924–9929, 2020.

[28] P. Tournassoud, “A strategy for obstacle avoidance and its application to
multi-robot systems,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 1986,
pp. 1224–1229.

[29] P. Tournassoud, “On motion coordination,” INRIA, Rennes, France,
Tech. Rep., RR-0549, Jul. 1986.

[30] B. Faverjon and P. Tournassoud, “A local based approach for path
planning of manipulators with a high number of degrees of freedom,”
in Proc. IEEE Int. Conf. Robot. Autom., Oct. 1987, pp. 1152–1159.

[31] P. Bosscher and D. Hedman, “Real-time collision avoidance algorithm
for robotic manipulators,” in Proc. IEEE Int. Conf. Technol. Practical
Robot Appl., Woburn, MA, USA, Nov. 2009, pp. 113–122.

[32] R. Ni, Z. Pan, and X. Gao, “Robust multi-robot trajectory optimization
using alternating direction method of multiplier,” IEEE Robot. Autom.
Lett., vol. 7, no. 3, pp. 5950–5957, Jul. 2022.

[33] F. Kennel-Maushart, R. Poranne, and S. Coros, “Manipulability opti-
mization for multi-arm teleoperation,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2021, pp. 3956–3962.

[34] M. Zucker et al., “CHOMP: Covariant Hamiltonian optimization for
motion planning,” Int. J. Robot. Res., vol. 32, nos. 9–10, pp. 1164–1193,
Aug. 2013.

[35] J. Schulman et al., “Motion planning with sequential convex optimiza-
tion and convex collision checking,” Int. J. Robot. Res., vol. 33, no. 9,
pp. 1251–1270, Aug. 2014.

[36] M. M. G. Ardakani, B. Olofsson, A. Robertsson, and R. Johansson,
“Real-time trajectory generation using model predictive control,” in
Proc. IEEE Int. Conf. Autom. Sci. Eng. (CASE), Aug. 2015, pp. 942–948.

[37] S. A. Homsi, “Online generation of time-optimal trajectories for indus-
trial robots in dynamic environments,” M.S. thesis, Université Grenoble
Alpes, Grenoble, France, Mar. 2016.

[38] C. Zhou, M. Lei, L. Zhao, Z. Wang, and Y. Zheng, “TOPP-MPC-
based dual-arm dynamic collaborative manipulation for multi-object
nonprehensile transportation,” in Proc. Int. Conf. Robot. Autom. (ICRA),
May 2022, pp. 999–1005.

[39] N. Dehio, Y. Wang, and A. Kheddar, “Dual-arm box grabbing with
impact-aware MPC utilizing soft deformable end-effector pads,” IEEE
Robot. Autom. Lett., vol. 7, no. 2, pp. 5647–5654, Apr. 2022.

[40] P. Bézier, The Mathematical Basis of the UNISURF CAD System.
London, U.K.: Butterworth, 1986.

[41] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Dynamics and
Control. Hoboken, NJ, USA: Wiley, 2006.

[42] J.-W. Chang, Y.-K. Choi, M.-S. Kim, and W. Wang, “Computation of
the minimum distance between two Bézier curves/surfaces,” Comput.
Graph., vol. 35, no. 3, pp. 677–684, Jun. 2011.

[43] N. M. Patrikalakis and T. Maekawa, Shape Interrogation for Computer
Aided Design and Manufacturing. 1st ed. Cham, Switzerland: Springer,
2009.

[44] D. E. Johnson and E. Cohen, “A framework for efficient minimum dis-
tance computations,” in Proc. IEEE Int. Conf. Robot. Autom., May 1998,
pp. 3678–3684.

[45] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi, “A fast procedure for
computing the distance between complex objects in three-dimensional
space,” IEEE J. Robot. Autom., vol. 4, no. 2, pp. 193–203, Apr. 1988.

[46] Robotic Operating System, Stanford Artif. Intell. Lab., Stanford, CA,
USA, 2018.

[47] RTDE: Real-Time Data Exchange, Universal Robots, Odense, Denmark,
2019.

[48] A. Tika, J. Ulmen, and N. Bajcinca, “Dynamic parameter estimation
utilizing optimized trajectories,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., Aug. 2020, pp. 7300–7307.

[49] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and optimal
control,” Math. Program. Comput., vol. 11, no. 1, pp. 1–36, Mar. 2019.

[50] A. Wächter and L. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Math. Program., vol. 106, pp. 25–57, Mar. 2006, doi: 10.1007/s10107-
004-0559-y.

[51] L. A. Giefer, J. D. Arango Castellanos, M. M. Babr, and M. Freitag,
“Deep learning-based pose estimation of apples for inspection in logistic
centers using single-perspective imaging,” Processes, vol. 7, no. 7,
p. 424, Jul. 2019.

Argtim Tika received the Diploma degree (Dipl.-
Ing.) in automation and control from the Faculty of
Electrical Engineering and Information Technology,
Technische Universität Wien (TU WIEN), Vienna,
Austria, in 2016.

Since 2016, he has been a Research Assistant at
the Department of Mechanical and Process Engi-
neering, Rheinland-Pfälzische Technische Univer-
sität (RPTU) Kaiserslautern-Landau, Kaiserslautern,
Germany. His current research interests include
modeling, optimization, and control of robotic
systems.

Naim Bajcinca graduated in theoretical physics
and electrical engineering from the University
of Prishtina, Prishtina, Kosova. He received the
Ph.D. degree in robust control from the Techni-
cal University of Berlin (Institute of Robotics and
Mechatronics), Berlin, Germany, and the German
Aerospace Research Center (DLR), Oberpfaffen-
hofen, Germany, in 2006.

He worked as a Research Associate with the
Max-Planck Institute for Dynamics of Complex
Technical Systems, Magdeburg, Germany, prior to

accepting a Full Professor position at the Department of Mechanical and
Process Engineering, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany.
His research interests in control theory include stability analysis and control
design in robust and optimal control, hybrid dynamical systems, networked
control systems, stochastic control, and data-driven and learning-based control.
His work on applied control comprises various domains of engineering and
life sciences, including robotics, human–machine interaction, embedded and
cyber–physical systems, autonomous systems, power systems, production
systems, process engineering, and systems biology.

http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y

