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IntroductionWe present a new algorithm for computing the normalization �R of a reduced a�nering R, together with some remarks on e�ciency based on our experience with animplementation of this algorithm in SINGULAR (cf. [GPS]).Our method to compute �R (the integral closure of R in its total ring of fractions)is based on a criterion for normality, due to Grauert and Remmert [GR], which wasrediscovered in [J]. The criterion states that R = �R if and only if the canonical mapR �! HomR(J; J) is an isomorphism, where J denotes a reduced ideal such thatits zero set contains the non{normal locus of SpecR. In general this map is onlyinjective and we obtain an inclusion of rings,R � HomR(J; J) � �R:Our method is to present HomR(J; J) as an a�ne ring R1, which is of typeR[T1; : : : ; Ts] modulo an ideal generated by linear and quadratic relations in theTi.We continue in the same manner with R1 and obtain a sequence of ringsR = R0 $ R1 $ � � � $ Rk = HomRk(Jk; Jk);such that Rk = �R by the criterion of Grauert and Remmert (the algorithm muststop, since �R is �nite over R).At the end of this paper we describe several special cases which allow us to do somesteps in the algorithm more e�ciently. Examples show that these re�nements maybe essential to the ability to compute the normalization.The normalization provides a decomposition of R into the normalization of the primecomponents, in particular, it computes the number of irreducible components. Ouralgorithm does not need any prime decomposition, but we may, of course, �rst makesuch a decomposition and then normalize the components. The last table shows thatthis is sometimes useful, but there are also examples where the normalization is easilycomputed, the prime decomposition, however, is not computable in a reasonabletime.It is clear that this algorithm applies to the case where R is the localization of ana�ne ring with respect to a general monomial ordering (for example, the localizationat a maximal ideal) as described in [GP].
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Criterion for normalityHere we describe the algorithm, mentioned in the introduction. Other algorithmswere given, for example, by Seidenberg [Se], Stolzenberg [St], Gianni, Trager [GT]and Vasconcelos [V].The algorithm is based on the following criterion for normality due to Grauert andRemmert [GR]:Proposition Let R be a noetherian reduced ring and J be a radical ideal containinga non{zero divisor such that the zero set of J, V (J) contains the non{ normal locusof Spec(R). Then R is normal if and only if R = HomR(J; J).Proof. Let �R be the normalization of R. Then we have the canonical inclusionsR � HomR(J; J) � �Rr  'r; ' '(x)xwhere 'r is the map de�ned by the multiplication with r and x is a non{zero divisorof J . It is easy to see that '(x)x is independent of the choice of x. Since J is�nitely generated, the characteristic polynomial of ' de�nes an integral relationand, therefore, '(x)x 2 �R.Now we claim that HomR(J; J) = HomR(J;R) \ �R. Indeed, let h 2 �R and hn +an�1hk�1 + � � � + a0 = 0, ai 2 R. If h 2 HomR(J;R), that is hJ � R, then for allg 2 J we have hg 2 R and(gh)n + gan�1(gh)n�1 + � � �+ gna0 = 0which implies (gh)n 2 J . But J is a radical ideal and, therefore, gh 2 J , whichimplies h 2 HomR(J; J).Now we are prepared for the proof of the proposition.One implication is trivial. To prove the other, assume R = HomR(J; J). This impliesR = HomR(J;R) \ �R.Let h = fg 2 �R, it su�ces to show that hJ � R. Let � = fP 2 Spec(R)jh 62 RPg,then obviously, � is contained in the non{normal locus of Spec(R) and, therefore,by assumption � � V (J). � can be de�ned by the ideal C = fu 2 Rjhu 2 Rg. Bythe abstract Nullstellensatz, we obtain pC � J . Now, by de�nition h � C � R andwe may choose an integer d such that R � hpCd � hJd. Assume that d is minimalsuch that R � hJd. If d > 1, then there exists an a 2 Jd�1 such that ha 62 R butha 2 �R and haJ � R. This implies, because of HomR(J; J) = HomR(J;R) \ �R,that ha 2 J � R, which gives a contradiction. Therefore, d = 1 and hJ � R, whichproves the proposition. 2



Remark: Let J;R be as in the proposition and x a non{zero divisor of J . We sawin the beginning of the proof that1) xJ : J = x � HomR(J; J)and, consequently,2) R = HomR(J; J) if and only if xJ : J � hxi.3) Let u0 = x; u1; : : : ; us be generators of xJ : J as R{module. BecauseHomR(J; J) is a ring we have s(s+1)2 relations uix � ujx = sPk=0�ijk ukx , s � i � j � 1,�ijk 2 R in 1x(xJ : J). Together with the linear relations, the syzygies betweenu0; : : : ; us, they de�ne the ring structure of HomR(J; J):R[T1; : : : ; Ts] � HomR(J; J)Ti  uix :The kernel of this map is the ideal generated by TiTj� sPk=0�ijk Tk (T0 = 1) andsPk=0�kTk such that sPk=0�kuk = 0.The normalization algorithmNow we are prepared to give the normalization algorithm:Input: a radical ideal I � K[x1; : : : ; xn].Output: s polynomial rings R1; : : : ; Rs and s prime ideals I1 � R1; : : : ; Is � Rs ands maps �i : R ! Ri, such that the induced map � : K[x1; : : : ; xn]=I ! R1=I1�� � ��Rs=Is is the normalization of K[x1; : : : ; xn]=Inormal(I[, inform])Additional information by the user (respectively by the algorithm) can be given inthe optional list inform, as for instance,{ I de�nes an an isolated singularity{ some elements of the radical of the non{normal locus,which are already known� Result = ; 3



� compute idempotents of K[x1; : : : ; xn]=I.This is optional and gives just the information about the normalization assplitting into a direct sum of rings.Assume K[x1; : : : ; xn]=I = K[x1; : : : ; xn]=I1 � � � � �K[x1; : : : ; xn]=Is.� For i = 1 to s do{ compute J = singular locus of Ii{ choose f 2 J r Ii and compute Ii : f to check whether f is a zero divisor{ if Ii : f % IiResult = Result [ normal(Ii : (Ii : f))[ normal(Ii : f)(Notice that pIi; f = Ii : (Ii : f) in this situation.)elseIf we have an isolated singularity at 0 2 Kn then J = (x1; : : : ; xn).In general, if J0 is the radical of the singular locus of a normalizationloop before, given by the list inform, then J = pIi; f + J0elseJ = pIi; fH = fJ : Jif H = hfiResult = Result [fK[x1; : : : ; xn]; Ii, idgelseassume H = fJ : J = hf; u1; : : : ; usithen compute an ideal L,L � K[x1; : : : ; xn; T1; : : : ; Ts](as described in the remark above) such thatK[x1; : : : ; xn; T1; : : : ; Ts]=L ��! Hom(J; J)Ti  uif ,let ' : K[x1; : : : ; xn]! K[x1; : : : ; xn; T1; : : : ; Ts]be the inclusion.S = normal(L),compose the maps of S with '.Result = Result [S� return ResultIt remains to give an algorithm to compute the idempotents.We shall explain this for the case when the input ideal I is (weighted) homogeneouswith strictly positive weights.An idempotent e, that is, e2 � e 2 I, has to be homogeneous of degree 0. Thereforeit will not occur in the �rst loop. 4



It may occur after one normalization loop in Hom(J; J) 'K[x1; : : : ; xn; T1; : : : ; Ts]=L because some of the generators may have the samedegree.Let T � fT1; : : : ; Tsg be the subset of variables of degree 0.Then L\K[T ] is zero{dimensional because T 2j �P �jjk Tk 2 L\K[T ] for all Tj 2 T(the weights are � 0 and, therefore, �jjk 2 K; Tk 2 T ).For this situation there is an easy algorithm:Input: I � K[x1; : : : ; xn] a (weighted) homogeneous radical ideal, deg(x1) = � � � =deg(xk) = 0; deg(xi) > 0 for i > k, I \K[x1; : : : ; xk] being 0{dimensional.Output: ideals I1; : : : ; Is such that K[x1; : : : ; xn]=I = K[x1; : : : ; xn]=I1 � � � � �K[x1; : : : ; xn]=Is and I \ K[x1; : : : ; xk] = \(Iv \ K[x1; : : : ; xk]) is the prime de-compositionIdempotents(I)� Result = ;� compute J = I \K[x1; : : : ; xk]� compute J = P1 \ � � � \ Ps the (0{dimensional) prime decomposition.� For i = 1 to s do{ choose gi 6= 0 in \v 6=iPv{ Result = Result [fI : gig� return ResultImplementation and comparisonsThe above algorithm has been implemented by the authors. The implementation inSINGULAR is available as SINGULAR library normal.lib.To have an e�cient version of the normalization algorithm, we had to take care ofseveral special cases and tricks for the implementation:1) If the variety de�ned in a certain normalization loop has an isolated singularity(let us say at the origin), the varieties arising in the following loops will havean isolated singularity, too. Therefore, there is no longer any need to computethe singular locus: its radical is (x1; : : : ; xn).5



2) If we have computed some radical containing the non{normal locus as zero{set,then we add it in the next step to the corresponding ideal. The \old" radicalelements turned out to be very helpful in speeding up the computations.3) Similar to the property 1), equidimensionality is kept. Then we only have tocompute the equidimensional radical of the ideal containing the non{normallocus, which is faster.4) There are examples which show that it is faster to make a primary decompo-sition (for example, �a la Gianni, Trager, Zacharias) before the normalizationand then computing the normalization without it.5) Similar to the property 1), irreducibility is kept. Then a check for non{zerodivisors is not necessary.6) Similar to the property 1), Cohen{Macaulayness is kept. Then a test forregularity in codimension 2 as criterion for normality is very useful.7) It is also useful to try to reduce the number of variables after having computedthe ring structure of Hom(J; J) by substituting those which can be expressedby other variables.We illustrate the algorithm by computing the normalization of the cuspidal planecubic:
R = K[x; y]=y2 � x3� Radical of the singular locus : J = (x; y)� R $ HomR(J; J) = (1; yx)� the linear relations are x2 � yT1; y � xT1the quadratic relation is T 21 � xand, therefore HomR(J; J) = R[T1]=(x2 � yT1; y � xT1; T 21 � x)6



� reducing the number of variables by y = xT1; x = T 21 we obtain �R = K[T1]and as map R ! K[t1];x  T 21 ;y  T 31 :Examples1) Example of Huneke (cf. [V])5abcde� a5 � b5 � c5 � d5 � e5,ab3c+ bc3d+ a3be+ cd3e + ade3,a2bc2 + b2cd2 + a2d2e+ ab2e2 + c2de2,abc5 � b4c2d� 2a2b2cde+ ac3d2e� a4de2 + bcd2e3 + abe5,ab2c4 � b5cd� a2b3de+ 2abc2d2e+ ad4e2 � a2bce3 � cde5,a3b2cd� bc2d4 + ab2c3e� b5de� d6e + 3abcd2e2 � a2be4 � de6,a4b2c� abc2d3 � ab5e� b3c2de� ad5e+ 2a2bcde2 + cd2e4,b6c+ bc6 + a2b4e� 3ab2c2de+ c4d2e� a3cde2 � abd3e2 + bce5This is a non{minimal abelian surface of degree 15 in {4 which is linked (5; 5)to a Horrocks{Mumford surface.2) x2y2 + x2z2 + y2z2This is a 3{nodal quartic:
3) Example of SturmfelsThe radical of the ideal generated by the 2� 2 permanents of a generic 3� 3{matrix.bv + su,bw + tu,sw + tv,by + sx,bz + tx,sz + ty, 7



uy + vx,uz + wx,vz + wy,bvz.4) wy � vz,vx� uy,tv � sw,su� bv,tuy � bvz.5) Example of RiemenschneiderThe radical of the base space of the versal deformation of the �rst \general"cyclic quotient singularity of embedding dimension 6.xz,vx,ux,su,qu,txy,stx,qtx,uv2z � uwz,uv3 � uvw,puv2 � puw.6) The intersection of the ideals of example 2) and 4).The examples illustrate the remarks made at the beginning of this section:Example 1) takes several hours if the information that it is an isolated singularityis not given to the next loop.Example 2) takes several minutes if the \old" radical is not used in the next loop.Example 3) and 5) are much faster if a primary decomposition is performed priorto the normalization (using the algorithm of Gianni, Trager, Zacharias).
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We obtained the following timings for our implementation in SINGULAR (cf.[GPS]) (in seconds) on an HP740, where * means that the computation took morethan one hour: computation prime decom-computation of the minimal prime position and normali- number ofof the radical associated primes decomposition normalization zation components1 42 * * * 7 12 1 1 1 1 1 13 3 7 9 11 * 154 1 2 2 30 28 35 1 2 9 3 33 46 2 4 4 32 22 4
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