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Introduction

The representation theory of curve singularities (more precisely, of their local
rings) has turned out to be closely related to their deformation properties.
Namely, as was shown in [6],[9],[7], such a ring R is of finite type, that is has
only finitely many torsion-free indecomposable modules (up to isomorphism),
if and only if it dominates one of the so called simple plane curve singularities
in the sense of [1]. In [4] the authors have shown that R is of tame type,
that is it has essentially only 1-parameter families of indecomposable torsion-
free modules, if and only if it dominates one of the unimodal plane curve
singularities of type Tpq (Tpe2 in the classification of [1]).

These singularities form the “serial” part of the list of all unimodal plane
curve singularities. There are also 14 “exceptional” ones, which happen to be
wild, that is they possess n-parameter families of (non-isomorphic) indecom-
posable modules for arbitrary large n . The bimodal plane curve singularities in
the sense of [1] are also wild. Nevertheless, in [11] was shown that all uni- and
bimodal plane curve singularities possess only 1-parameter families of ideals.
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In [13] these singularities are called strictly unimodal and we prefer to use this
terminology.

The aim of our paper is to show that the strictly unimodal plane curve
singularities are in some sense “universal” among those having not more than
1-parameter families of ideals. Namely, we prove that a curve singularity has
this property if and only if it dominates one of the strictly unimodal plane
curve singularities. Moreover, we prove this result for curve singularities over
an algebraically closed field of arbitrary characteristic. For this we use, instead
of the definition of such singularities by the corresponding equations, their
characterization via parametrization given in [11]. Note that it follows from
[6],[9],[7] that a curve singularity has only finitely many non-isomorphic ideals if
and only if it is of finite type (in contrast with the case of 1-parameter families).
We use the parametric characterization as a definition in positive characteristic
(with special care in characteristic 2) and call them ideal-unimodal in view of
the main theorem of this paper.

The proof of this theorem follows the same scheme as that of the main
result on tameness from [4]. Namely, we first introduce some “overring condi-
tions” for the ring R and show that whenever they do not hold, R possess
2-parameter families of non-isomorphic ideals. Then we show that these condi-
tions imply that R dominates a strictly unimodal plane curve singularity. To
accomplish the proof, we need also to show that any strictly unimodal plane
curve singularity has not more than 1-parameter families of ideals. But in-
deed, one can calculate all ideals of these rings. This has already been done in
[11] and [12]. Although Schappert used the “definition via equations”, one can
verify (and we do it here for three most complicated examples) that his cal-
culations depend only on the parametrization of these rings. This calculation
of ideals shows that all strictly unimodal plane curve singularities really have
only 1-parameter families of ideals. Moreover, using the parametrization, we
can extend this result to curve singularities over algebraically closed fields of
positive characteristic, that is, to ideal-unimodal singularities.

1 Preliminaries

Notation 1.1 Throughout this article we use the following notations:

¢ R denotes a complete local noetherian ring without nilpotent elements.

Q its full ring of fractions.

m =rad R its unique maximal ideal.
e k =R/m, the residue field of R.

Ro its normalization, i.e. its integral closure in Q.

R; = m'Ry + R (a local ring for i > 0).



e m; =miRy +m (the maximal ideal of R; for ¢ > 0).

o d(M) = dimk(M/mM), the minimal number of generators of an R-
module M .

Later on we suppose k to be algebraically closed.

Definition 1.2 R is said to be a curve singularity provided it satisfies the
following conditions:

1. R is a k-algebra and R/m =k.

2. R is of Krull dimension 1.

Such rings are just the completions of the local rings of points of reduced
algebraic curves over the field k.

It is known that, in this case, dg is finite and, moreover, d(I) < d¢ for each
R-ideal I (cf. [3]).
Recall the definitions related to families of R-modules (cf. [5],[10]). We shall
consider here only full R-ideals, i.e. ideals I, such that QI = Q (later we omit
the epithet “full”).

Definition 1.3 Let X be an algebraic variety over k and 7 an R® Ox-ideal-
sheaf, such that QZ = Q ® Ox (the tensor product is over k). Call Z a family
of ideals with base X if it is flat over Ox and if Z/r7T is Ox-flat for each
non-zero divisor r € R.

A series of such families, which are in some sense universal, can be constructed
as follows. Consider the subvariety B(d) of the Grassmannian Gr(d,Ro/R),
consisting of those subspaces, of Ryg/R of codimension d, which are R-
submodules in Rg/R. The pre-image Z(d) in Ry®Og(q) of the canonical locally
free sheaf of corank d on B(d) is then a family of R-ideals and any other family
can be “glued” from the inverse images of the families Z(d) (cf. [5], Proposition
3.5 and Corollary 3.6). Hence, we are able to define, following [10], the number
of parameters for R-ideals, par(1,R).

Definition 1.4 Let B(d,i) the subset of B(d) consisting of points z such that
the set {y € B(d) |Z(d)(y) ~ Z(d)(z) } (which is locally closed) has dimension
¢ and define

par (1,R) = néaix{ dimB(d,i) —i}.

Note that B(d,i) is also locally closed in B(d) and that, intuitively, par (1,R) is
the maximal number of independent parameters of isomorphism classes of R-
ideals (= torsion free R-modules of rank 1). Hence, par (1, R) may be considered
as the maximal dimension of a component of a moduli space parametrizing non-
isomorphic R-ideals.



We say that a ring R’ dominates R if R C R’ C Rg. In this case, evidently,
par (1,R") < par (1,R). It follows from [7], [3] that par (1,R) =0 if and only if
R dominates one of the so-called simple (or 0-modal) plane curve singularities
in the sense of [1] (cf. also [13], [8]). We are going to prove an analogous fact
concerning the strictly unimodal plane curve singularities (cf. [1], [13])! and
extend this to arbitrary characteristic.

As k is algebraically closed, we may suppose that Ry = [];_, D;, where
D; = k[[t;]] (formal power series rings). The number s is called the number

of branches of R. Let ¢t = (t1,t2,...,ts) and v; be the standard valuation in
D;. For any element r = (ry,rs,...,7s) € Ro define its (multi-)valuation as
the vector v(r) = (v1(r1),v2(r2),...,vs(rs)) . In Table 1 we prefer to present

the plane curve singularities in a parametrized form, that is given by their

generators ,y as complete subalgebra of Rg. Such a presentation has the

advantage that it is almost independent of the characteristic — only chark = 2

needs extra conditions. In the table the valuations v(z) and v(y) are given.
In view of Theorem 2.1 we propose the following definition:

Definition 1.5 A plane curve singularity with complete local ring R C Ry is
called ideal-unimodal (IUS) if its maximal ideal admits generators x,y whose
(multi-)valuation satisfies the conditions of Table 1.

According to Theorem 2.1, ideal-unimodal (IUS) is the same as strictly uni-
modal for plane curve singularities of characteristic 0. For char k > 0 we wish
to reserve the name strictly unimodal (SUS) to singularities defined by their de-
formation properties (as in [1], [13]). As, at the time of this writing, the strictly
unimodal singualrities have not been classified in positive characteristic, we
have to distinguish between IUS and SUS for char k > 0.

We also use the following definition and notation.

Definition 1.6 Let {ai,...,aq}, a; € m, represent a basis of m/(m NtmRy),
v; = v(a;). The set {vi,...,vq} will be called a valuation type of R and
denoted by val (R).

2 Main theorem

2.1 Formulation

We pass now to the main theorem. In addition to the notations 1.1, let I =
t?mRy + m, R = EndI and A, the 4-dimensional k-algebra having a basis
{1,a,b,ab} with a®> = b> = 0 (these notations will be used only in the case
chark = 2).

!In [1] these singularities are called “uni-” and “bimodal” (with respect to right-
equivalence), while in [13] they are called “strictly unimodal” (with respect to contact equiv-
alence). We use the latter terminology, which is more adequate in our situation.



Table 1

Type | s v(z) v(y) Condition Name
E 1 (3) 0 1=17,8,10,11 | E12,E14,E18,E2
2 (1,2) (00,1) 1=4,5,6,7 E2.2p-1,Ei13,E3,2p-1
(p>1), E19
3 (1,1,1) (oo,k,l) = 2,3, k>1 El,2(k—l)
T 2 (2, k) (l, 2) k, l Odd, k>4 Tk+2,l+2,2
3 (13 1, k) (OO, la 2) k Odda Ik > 4 Tk+2,2(l+1),2
4 (1700717k) (OO,].,l,].) lk Z 1 T2(k+1),2(l+1),2
w |1 (4) ) 1=5,6,7 () | Wip, W}, _,
(p>1), Wig
2 (1,3) (OO,l) l :4,5 W13;W17
2 (2,2) (3,1) |1=3 (%) | Wi0, Wiy, 2>1)
l Z 5,0dd W1,1_3
3 (1,1,2) (0,1,3) |1>2 W23
z 2 (1,1) (x,3) |[1=4,5,7,8 211,213,217, 219
3 (].,00,2) (OO,].,Z) l= 2,3,4,5 Z()’p,zl2,zl,2p_1
(p>1), Z18
4 (1,00,1,1) (OO,l,l,k) l= 1727 k>1 Zl—1,2(k—l)

(¥) If char k = 2, extra conditions in case W are required: if s = 1 then | = 5,
if s =2, v(z) = (2,2) and | = 3 then 22 — y® € t'R,.
(This excludes Wig (s = 1) and all Wffp (s=1lors=2))




Theorem 2.1 Let R be a curve singularity. The following conditions are
equivalent:

1. par(1,R) < 1.
2. R dominates a simple or ideal-unimodal plane curve singularity.
3. (a) d(Ro) <4;
(b) d(Ry) < 3;
(¢) d(Rz + eR) < 3 for any idempotent e € Ry, such that d(eRg) =1
(provided it exists);
(d) if d(Ro) =3, then d(R3) <2;
(e) if chark =2, then R/T # Aq.
The proof of Theorem 2.1 (3. = 2.) implies i) of the following corollary:
Corollary 2.2

i) Let R be a plane curve singularity. Then R is simple or ideal-unimodal if
and only if the equivalent conditions of theorem 2.1 are satisfied.

ii) If char k = 0, then R dominates a simple or strictly unimodal plane
curve singularity if and only if the equivalent conditions of Theorem 2.1
are satisfied.

Part ii) follows from the following parametric classification of strictly unimodal
curve singularities.

Proposition 2.3 Let char k = 0 and R be a plane curve singularity. Then R
is ideal-unimodal if and only if it is strictly unimodal.

Remark 2.4 One can see that the condition 3(c) of the theorem means that
either d(Ry) <2 or em  m + m®Ry .

It is perhaps worth giving a more geometric interpretation of these overring
conditions.

e Ry = [I._, k[[t:]] is the normalization of R and dg = d(Ro) the usual
multiplicity of the local ring R.

e Ry =k + [];_; t3"k[[¢t;]] is the maximal local overring of R, having the
same multiplicity vector (m1,...,ms) as R, where m; = multiplicity of
the i-th branch; d; = d(R;) = dimk(Ro/Ry) + 1.

e In general, we have Rp D Ry D R2 D --- D R, R;y1 = k + mR;, hence
d; = d(R;) = dimg(R;4+1/R;) + 1. R; is the maximal local overring of R
such that R;/m‘Ry = R/m'Ry.

e Ife=(e,...,es), e; € {0,1}, is an idempotent such as d(eRg) = 1, then
e; = 1 for some i,e; = 0 for j # i and the i-th branch of R is nonsingular.
Hence, eR = k][[t;]] and d(R2 + eR) < 3 is a condition on the remaining
branches of R.



2.2 Proofs

Proof of Theorem 2.1. 1. => 3. Suppose first that d = dg > 5. Consider the
factoralgebra A = Ro/mRy. If V is any subspace in A, then its pre-image
M(V) in Rq is an R-submodule. Moreover, if V' and U are two subspaces
in A such that AV = AU = A, then, evidently, M (V) ~ M(U) if and
only if U = aV for some invertible element a € A. Consider now the subset
Gro(m, A) of the Grassmannian Gr (m, A), consisting of all such subspaces V
that AV = A. Obviously, it is an open subset, hence, an algebraic variety over
k of dimension m(d—m). The algebraic group G = A*/k* of dimension d —1
is acting on this variety, and different orbits of this action correspond to non-
isomorphic R-ideals. In particular, there are families of non-isomorphic ideals
of dimension > dim Gro(m, A) —dimG = (m—1)(d—m—1)for 1 <m < d—1.
But, as d >4, dim G < dim Gr (2, A) — 2. In view of [5] (Corollary 3.9), this
implies par(1,R) > 2.

Let now d(R;) > 4. Note that rad Ry = mRy and R;/radR; = k. Thus,
the algebra A’ = R;/mR; is local with radical J = mRo/mR;. Moreover,
mR; D (mRg)?, whence J? = 0. Then, for any subspace W C J, the subspace
V =k + W is a subalgebrain A and its pre-image M (V) is a subring of Rg.
Hence, taking different subspaces W C J, we get non-isomorphic R-modules.
As dimJ =d; — 1, dim Gr (2,J)) = m(dy —m — 1) for 1 < m < d; and, hence,
par(1,R) > 2,if d; > 4.

for dg even
(_d12— 2) for

Remark 2.5 The same observations show that par (1,R) > (d°2_ 2)
respectively > (92-1)(%=3) for dg odd and if dg = d; par (1,R) >
d; even respectively > (9-1)2 for d; odd.

2
di
2
To complete the proof, we need two simple lemmas.
Lemma 2.6 Let I,J C R be full ideals. Then

dim(I/JI) = dimRy/JRg — dim (JI/rI)

for any generator v of the principal Ro-ideal JRy.

Proof. Since J is full, r is a nonzero divisor of Ry and the snake lemma of
0 — I — Ry — Ro/I — 0
yr r r
0 — I — Ry — R¢/I — 0
shows dim Rg/rRg = dim I /rI which is equal to dimI/JI + dim JI/rI. O

Lemma 2.7 Suppose that dg =dy = --- =dg, k > 1. Let r € m, such that
rRo = mRg. Then



1. 7,2, ..,r% form a basis of mpy1/mFTIR, .

2. rm; = mm; and dimm;/mm; =dg for i =0,... k.

Proof. To prove the first assertion, consider the dimensions
¢; = dim (m; /m7Ry)
and note that for j > 0
d; = 1+ dim (mj/mjy1) = 1+ ¢; + dim (m?Ro /m’ ' Ro) — ¢j41 -

Evidently, dim (m/Ro/m7*1Ry) = do for all j. So, we have cj11 = ¢; + 1
for 1 < j < k, whence, ¢; = j—1, 0 < j < k+ 1. In particular,
dim (mg4 1 /mF1Ry) = k. As, of course, the elements r,r2,...,7* are linear
independent modulo m**!Ry, they form a basis of this vector space.

Now note that rm; C mm; and dim (my/rmy) = dim (Ro/mRg) = dg in
view of Lemma 2.6. But the result just obtained implies that

dim (mg/mp41) + dim (mp41 /mmy,)
do — 1+ dim (mk+1/(m2 + mk_HRO) = do.

dim (my /mmy,)

Therefore, rm; = mmy O

If ritly; € r3tRg, i = 1,...,1, are a basis of m;;1/m;s = (m+71Ry)/(m+
r7*+1Ry), then r7b; are linear independent in m;/m; 1. Hence

Lemma 2.8 dj; <d; for every j > 0.

Now suppose that dg = d3 = 3. Consider the factoralgebra F' = Ry/m?m,.
Choosing » € m as in Lemma 2.7, we see that mimy = rimy for all 4,
dim (my/rmp) = 3 and dimF = 7. Of course, r ¢ rma, so we can choose
r,u,v € my linear independent modulo rms. Then {1,r,u,v,r? ru,rv} is a
basis of F'. Now F' contains a 2-parameter family of subalgebras, contain-
ing the image of R (i.e. 1 and r), namely, the subalgebras A(\, u) with
bases {1,r,u + Av + prv,r%, ru + Arv}. Then their pre-images in R, form a
2-parameter family of overrings of R, hence, of pairwise non-isomorphic R-
ideals.

Remark 2.9 Tt follows from [3] that in this case we can only obtain families of
overrings, as there are at most two non-isomorphic ideals with a fixed endo-
morphism ring.

At last, suppose that d(Ry + eR) = 4 for some idempotent e € Ry, such
that d(eRg) = 1. As we have noted, this means: d(R;) = 3 and em C m +
m3Ry . Of course, the idempotent e is primitive and eR = eRg. Denote R’ =
(1—-e)R; R, = (1 —e)Rg; dj, = d(R},). Then dy = d} = dj, = 3. Hence,



we can apply Lemma 2.7 and choose an element r € m, such that {r,7?}
form a basis of mR,/m3®R{,. Consider the factoralgebra F' = (eR + Ry)/(m? +
m3Ro) . If {r,u,v} is a basis of mR{/m?R{,, then a basis of F' can be chosen
in the form: {1,e,7,u,v,ru,rv}. The subspaces V(A) = V (Ao, A1,A2) with
the bases {1,e+ Agu + A\1v + Aarv, 7, Aoru + A0}, where Mg # 0, form a 3-
dimensional family of R-submodules in F'. Thus, they define a 3-dimensional
family M(X) of R-ideals. But it follows from [5] (proof of Proposition 3.6),
that the ideals, isomorphic to some fixed M ()), form a subvariety of dimension
dim (V(AN)/S(X)), where S(A) = {a € F|aV(A) CV(A)}. As dimV(\) =4
and S(A\)1,r, Agru 4+ Airv}, this dimension is at most (indeed, equals) 1.
Hence, again par (1,R) > 2.

If chark = 2 and R/I ~ A, consider the subspaces A(\,x) C Ag with
bases {1,a+ Ab+ pab}. They are subalgebras in A¢ (as chark = 2), hence,
their pre-images in R form a 2-parameter family of overrings of R, hence, of
non-isomorphic R-ideals O

3 = 2. Take any ring R satisfying the conditions 3(a—e€). It is known
(cf. [3],[7])that if R has only finitely many non-isomorphic ideals then it dom-
inates one of the simple pane curve singularities. So, we may supposethat R
has infinitely many non-isomorphic ideals, i.e. dg > 3 and if dy = 3, then
also d;y = 3 (cf. ibid.). Suppose first that s = 1, where s is the number of
branches. Then the condition (a) implies that val (R) = {3} or {4} . In the first
case the condition (d) easily implies that R contains also an element of the val-
uation ! € {7,8,10,11}. But then it dominates a SUS of type E (cf. the list).
If val(R) = {4}, then the condition (b) impliesthat R contains an element of
the valuation 5 <1 < 7, hence, dominates a SUS of type W. If chark = 2,
the condition (e) implies also that R contains an element of the valuation 5:

otherwise I =15Rg + k + kt*, hence R = t?Rg +k and R/T ~ A,.

Let now s = 2. If dy = 3 then val (R) = {(1,2)} (up to a numbering of the
branches; later we omit this notice). Again the condition (d) implies that R
contains an element of the valuation (oo,l) with 4 <1 < 7, hence, dominates
a SUS of type E. Suppose that dg = 4. Then the following cases can occur:

e val(R) D {(1,3)}. Then the condition (b) implies that R contains an
element with the valuation either (00,4) or (00,5), hence, dominate a
SUS of type W.

e val(R) D {(2,2)}. Again (b) implies that R contains an element with
the valuation (3,1),i.e. dominates a SUS of type W . Again, if chark = 2
and z° —y? € "Ry, we get that R/T ~ A, .

e val(R) = {(2,k),(l,2)}. Then R dominates a SUS of type T.
e val(R) = {(1,1),(0c0,3)}. Now the condition (c) obviously implies that
1 < 8 (and not 6), hence, R dominates a SUS of type Z.



If s=do =3, then val(R) = {(1,1,1)} and the condition (d) implies that R
contains am element of the valuation (00,3,1), i.e. dominates a SUS of type
E.Let s=3, dy =4.If val(R) consists of only one vector, then it is (1,1, 2)
and the condition (b) implies immediately that R contains also an element of
the valuation (o0, 3,1), hence, dominate a SUS of type W. If val (R) consists
of 2 vectors, then there are the following possibilities:

e val(R) ={(1,1,k),(c0,1,2)}. Then R dominates a SUS of type T.

o val (R) = {(1,00,1),(00,1,2)}. Then the condition (¢) implies that | <5,
hence, R dominates a SUS of type Z.

If val (R) consists of 3 vectors, they may be chosen as
{(17 m? k), (m’ 17 l)7 (mJ m? 2)}

and R dominates a SUS of type T.

At last, let s = 4. The condition (b) implies that val (R) has at least 2 vectors.
If there are really only 2 of them, then either val (R) = {(1, 00, k,1), (00,1,1,1)}
or val (R) = {(1,00,1,1), (00,1, k,1)}. In the first case R dominates one of the
SUS of type T, while in the latter case the condition (c) implies that k < 2,
thus R dominates a SUS of type Z. Finally, if val (R) contains 3 vectors, one
can easily see that R dominates a SUS of type T O

Proof of Proposition 2.3. The parametric form of an SUS, as computed by
Schappert ([11]), satisfies the conditions of Table 1, hence it is an TUS.

Let R be an IUS. In the following subsection we classify curve singularities
of multiplicity 3 and 4 given in parametric form. This implies the sixth column
of Table 1 (notations of [1]), hence ideal-unimodal singularities are strictly
unimodal.

2.3 Classification in characteristic 0

Let char k = 0. Any local ring of a plane curve singularity of multiplicity
3 or 4 admits generators z,y with v(x) and v(y) as in columns 3 and 4 of
Table 1, together with a few more cases. Starting from these valuations, we
deduce a relation between z and y and determine its position in Arnold’s list
of singularities [1], classifying in this way all parametrizations of plane curve
singularities of multiplicity 3 and 4.

We proceed by increasing s, the number of branches.
One branch (s =1):

e (Multiplicity 3) v(z) = 3,v(y) =1
after a change of the parametrization, we may assume (since char k = 0)
that

r=t, y=t+ tmp(t%),

10



1#£0(3), m+1=0(3), | >4, p(0) # 0. These satisfy the relation
y* = 3yat ™ Pp(a) — 2t — 2P’ ().
Following Arnold’s determinator ([1], Para. 16), we obtain

| = 3k+1 = Eg,
I = 3k+2 :>E6k+2-

(Only k = 2,3 give strictly unimodal singularities.)

e (Multiplicity 4) v(z) =4, v(y) =
we may assume

T = t4, y= t4k+1p(t) + t4n+2q(t) + t4m+37'(t),

k,n,m > 1, p,q,r € k[[t']], | = min{4k + 1,4n + 2,4m + 3}.
We obtain the relation (p, g,r € k[[z]]),

g —y2(2¢222 ) + dpraktmT)
_ 2 . 2ktntl 2. 2m+n+2
y(4p*qz + 4qrex )

—p4.:l:4k+1 + q4m4n+2 _ 4pq2r$k+2n+m+2 + 2p2,r2z.2k+2m+2 _ T'4$4m+3.

The determinator gives

I = 4k+1 = Wiy,

I = 4n+2 = Wi, | i=2(k-n)if k<m,
i=2(m—-n)+1if k>m,

I = 4m+3 = W12m+6-

(Only k¥ = n =m =1 provide strictly unimodal singularities.)
Two branches (s = 2):
e (Multiplicity 3) v(z) = (1,2), v(y) = (o0,1):
@ = (t1,13), y = (0.t + £'p(t)),
1>3,1+m=1(2),p(0) # 0, with relation (p € K[[z]])
y(y? + z2F — 22k 20712 9k ) if | = 2k,m =2k +2j — 1
and
y(y? + 2 — 2D g2 9gkHiyp) if [ = 2k + 1,m = 2(k + 7).
I=2km=2k+2j—1= Ega;_1,j >1 (Jpaj_1 in [1])

l=2k+1=> E6k+1-
(Strictly unimodal for k = 2,3, D, for | = 2.)

11



o (Multiplicity 4, 2 singular branches, 2 tangents) v(z) = (2,k), v(y) =
1,2):
v = (6" p(t3) + 65" q(83), y = (1", )
k=2m+1,1=2n+1,m > 1,n > 1 with relation (p,q € k[[y]], p(0) #
0,4(0) # 0)

(y2 _ $2n+1) (55'2 _ y2m+1p2 + ym+2y2 _ 2wym+1q),

= Tri2,042,2
(even for k=1 or ! =1if kl > 4. Note that T3 p162 = Es ;).

e (Multiplicity 4, 1 singular branch, 1 tangent) v(z) = (1,3), v(y) =
(00,1):

2 = (t1,13), y = (0,65 p(83) + 657 2q(83) + 137 >r(3))
k,n,m > 1, | = min{3k + 1,3n + 2,3m + 3} with relation

y(yS _ $3k+1p3 _ 3wk+n+1ypq _ w3n+2q3 _ 3$m+1y2r
+3xk+n+m+2pqr + 3$2m+2yr2 _ .'173m+37‘3).

1=3k+1=> W12k+1,
l=3n+2=> W12n+5,

l:3m+3,n2k>m¢2g2;1+k)—5'

o (Multiplicity 4, 2 singular branches, 1 tangent) v(z) = (2,2), v(y) =
(2k +1,1):

z = (17,63), y = (", 5" p(83) + 557 q(13)),
k> 1, | = min{2n + 1,2m} with relation (p, g€ K{[z]], p(0) #0, q(0) #0)
(y2 _ $2k+1) (y2 _ a?2"+1p2 _ 2.’L’myq + .’1&'2mq2).
k=n<m = Wgo (p0)#1),Wi,; (p(0) =1)
with j = ord(y?(ty) — t3¥+1) — (2k + 1),

kE<n,m = Wgamop,
kE>m>2 = Y (1<s<r).

o (Multiplicity 4, 1 singular branch, 2 tangents) wv(z) = (1,1), v(y) =
(00,3):

z = (t1, 1 +t5p(t3)), y = (0,13),
k>1>4, k+1=0(3), with relation (p € k[[y]], p(0) # 0)
y(x3 _ yl _ ykp3 _ 3.Z'y(k+l)/3p).

l= 3p+ 1 = 26p+57
1=3p+2= Zgpsr,
(1=3:Eq; (if k=3j + 1), Egjun (if k = 3j +2)).
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Three branches (s = 3):
e (Multiplicity 3, 1 tangent) v(x) = (1,1,1), v(y) = (00,1, k):
z = (t1,t2,t3), y = (0,15, 85" "p(ts)),
1> 2,n >0, with relation (p € K[[z]],p(0) # 0)

!

y(@' —y)(@"p—y).

n=0= E o (p(0) #1),
n>0= El,2n (Jl,2n in [1])

e (Multiplicity 4, 2 smooth branches with same tangent, 2 tangents) v(z) =
(1,1,k), v(y) = (o0,1,2):

z = (t1, 12, t59(t3)), y = (0,t5p(t2), 13),
k odd, kl > 2; relation (p(0) # 0,¢(0) # 0)
yly — 2'p(x))(@® - y*¢* (v)).
= Thy2.2041),2-

o (Multiplicity 4, 2 smooth branches, 1 tangent) wv(z) = (1,1,2), v(y) =
(007 l; 2n + 1);

z = (t1,t2,13), y = (0,5p(t2), 5" 1q(23)),
1> 2,n > 1; relation (p(0) # 0,¢(0) # 0)
y(y — 2'p(2))(y* — *' ¢ (),

I>n+1= Wn,2(l—n)—1:

I<n=> Zé?ﬁl_”.

e (Multiplicity 4, 2 smooth branches with different tangents, 2 tangents)
o(@) = (1,00,2), v(y) = (00, 1,2n + 1);

T = (t1707t§)7 y= (07t27tl3 +tl§:Q(t§))7
k> 1> 2, relation (¢(0) #0) for I = 2j + 1, k even:
my(y2 — ol —zkg? — 2y$k/2q + 2xkq2).

= Zsjts,
for I = 2j we have the relation

zy(y® + o' — z*q® — 227y)

= Zj_lvk_l (207p = lep = T474+pa2)'
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Four branches (s = 4):

e (4 tangents, 3 tangents, or 2 tangents, each belonging to 2 branches)
U(m) = (1,00, lak); U(y) = (OO, ]-al; 1):

z = (t1,0,13,t5p(ts)) y = (0, b2, th, ta),
k,1 > 1; relation
yz(z' — y)(z — y*p).

= To(ks1),20041),2-

¢ (2 tangents, one belonging to 3 branches) wv(z) = (1,00,1,1), v(y) =
(00,1,1, k):

z = (£,0,t,1), y = (0,t,'q(1),*p(t)),
k > 1> 1; relation (p(0) # 0, ¢(0) # 0)
ya(a'q — y)(z*p - y).
= Z1_12(k—1)-
e (1 tangent) v(z) = (1,1,1,1),v(y) = (00, k,1,m):
& = (ti,ta, t3,ta), y = (0,8%,1'p(t),t™q(t)),
1 < k <1 < m; relation (p(0) # 0, ¢(0) # 0)
y(@* —y)(@'p —y) (=g —y).

E<l<m = Zfikim(mil),
kE=l<m = Xg;(i>0)or Yt (1<s<r).
(None is strictly unimodal.)

3 Ideals of ideal-unimodal plane curve singular-
ities

Now we have to prove the implication 2 => 1, that is to show that any IUS
from Table 1 has only l-parameter families of ideals. Indeed, this was done
in Schappert’s paper [12]. Though Schappert supposed that chark = 0 and
used another definition of IUS, one can check that his calculations are valid for
our list too, independent of the characteristics. To demonstrate it and because
Schappert’s thesis has not been published, we show below examples of such
calculations (in somewhat different form). Moreover, we have chosen the most
complicated cases.
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Our calculations are based on the following simple observation (cf. [3]).
Let R be a curve singularity, m its maximal ideal and S = Endr(m) =
{a € Q| am C m}. We keep these notations through the whole section and
also put n = radS, S’ = Ends(n). For any R-ideal I, SI is an S-ideal and
mI =mSI C I CSI. Consider the vector space V =V (I) =I/ml.Itis a gen-
erating subspace in W = SI/mSI | i.e. such that FV = W, where F = S/m,
and one can easily check that I ~ I' if and only if ¥V (I) = V(I') for some
map 4 : F — F induced by an automorphisms ~ of SI. Moreover, S # R,
whenever R is not a discrete valuation ring. Therefore, we can calculate the
ideals “inductively”, ascending by overrings. Note also that any plane curve sin-
gularity R is Gorenstein [2],i.e. inj.dimgR = 1. Hence, R has as only minimal
overring R’ and any R-ideal is either principal or an R’-ideal. In particular,
par (1,R) = par (1,R’).

Note that all TUS of type T are known to be tame, i.e. have at most 1-
parameter families of indecomposable torsion-free modules of any rank [4]. So
we have to consider only the IUS of types W,Z and E.

3.1 Ideals of singularities of type W

Here we consider the case, when s = 1 and R contains elements z,y with
v(z) =4, v(y) =7 (“type Wig” in Arnold’s classification). It is convenient to
suppose here that ¢t = 22 /y. Of course, we suppose also that chark # 2. It is
easy to verify that then R D #18Ry and, if R is a plane curve singularity, its
minimal overring contains even 4R, . Hence, we may restrict ourselves by the
case, when R is the smallest subalgebra of Ry containing ¢'#Ry and generated
modulo #'4Ry by 2 and y. Thus,

R= (1,$,y,$2,$y,$3> + t14R07

where, as usual, we denote by {(ai,...,a,) the k-subspace generated by
ai,...,a, . An obvious calculation shows that in this case

S=(1,z,y,2%) +t'°Rg

and
S'=(1,z,z) + t°Ry,

where z = y/z. As v(z) = 3, it follows from [6] or [9] that S’ has only finitely
many non-isomorphic ideals (it is the simple plane curve singularity of type
Eg). Moreover, in these articles the precise list of such ideals is given. Namely,
they are, except Ro and S' itself:

A = S(1,1%), A* = S'(1,t), A" = S'(1,t%).

Here A and A’ are overrings of S’ and A* the module dual to A with respect
to the duality described e.g. in [3].
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Now, for each of these ideals, say M , we have to calculate M/nM . Here
is their list (we write “r” for the image of an element » € M in M/nM too):

S = (1,2,2%,2%), A = (1,2,t5,5  A* = (1,t,2,15),
Al = (1,12,2,t%), Ro =:(1,t,t2,3).

Now one can easily write down all generating subspaces V from each W =
M/nM (up to automorphisms of M ). Consider the case M = A* (the most
complicated). First, as V is generating, it has to contain at least two elements
of the form: a; = 1+ Mz + Mot® and ay = 2 + iz + pst® . Dividing by
a; (which is the image of an invertible element from A’'), we may suppose
that a; = 1. Suppose that V = (a;,as). If u; # 0, one can replace V by
(1 = (p1 + p2)(2p1) 1)V, thus obtaining a subspace of the same form but with
2 = 0. Hence, we get two 1-parameter families of S-ideals:

Fi(p) = S(LE*+pz), Fa(u) = S(1,t% + put®) .

Suppose now that V contains another element, which can be chosen in the
form b = mz +n*t°. If ;1 # 0, we may suppose that gu; = 0 and then,
multiplying by 1 —n2/m12, also 12 = 0, i.e. b = z. But then, multiplying by
1 — pot3, we get o = 0, which gives only one more ideal:

I =S{1,,2).
If 71 =0, we may suppose pz = 0, obtaining 1-parameter family:
F3(n) = S(1, 8% + pz,t%) .

Of course, we have to add to those families also the ideal A’ itself (correspond-
ing to V. = W). But we can remark that d(A’) <4, hence dimA’'/mA’' <4
and mA’ = nA’. Thus, any generating subspace in A’/mA’ (with respect to
S) must coincide with A'/mA’ itself. Therefore, we need not consider the case
SI = A’ when calculating the R-ideals. The same argument is valid, of course,
in each case, when we have an S-ideal L such that nL = mL (it is always the
case, if dim (L/nS) = dg): we may exclude them while calculating the R-ideals.
In particular, here we may exclude all S'-ideals.

Quite analogous observations give us the following list of S-ideals (which
are not S'-ideals):

S'L=5"

Fy(p) = S, 2+ puz%), Fs(p) = S(1,2° +p2%), S = S(1),
L, =5(1,2%), I =5(1,22%, I, =S(1,2,2%), Iy =S5(1,2% 2%).

S'L=A:

Fe(u) = S(Lz+ut®), p#0, Fr(p) = S, z+pt°,t%, n#0,
Fs(p) = S(1, 8% + pt®), Fy(p) = S(1,2,° + ut®), Iy = S(1,£°,¢%).
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S'L = A*:
Fio(p) = S(L,t+ pz), Fii(p) = S(1,t+ pz,t%, I = S(1,t,2).
S'L=Rg:
Iy = S{1,t,t%).

Now we can pass to R-ideals I. Put M = SI. It would be one of the ideals
Fi_11(p), I1_g or S. One can easily check that in the following cases mM =
nM , so we need not to consider them:

Fi(w) for i # 4,8,10,
F;(w) for i =4,10 and p #0,
I; for i #£2.

In the case M = Fy(0) we have: M/mM = (1,z,t'?) . Hence, the only proper
generating subspace is (1, z), which gives one new ideal:

Ig = R<1, Z) .
Analogously, in the case M = Fi¢(0) we obtain also one new ideal:
Lo =R{1,t).

In the case M = Fg we have M/mM = (1,5 + ut® +19) . Hence, there is again
only one proper generating subspace, namely, (1,#> + ut®) and we obtain a
new l-parameter family:

Fia(p) = R(L,u(w)), where u(p) =+ ut® .

In the case M = S we have: M/mM = (1,#'° ¢13) . As there is no element
with valuation 3 in S, we get here a new family parametrized by the projective
line:

F13()\0 : )\1) = R(l,)\otlo + )\1t13) .

At last, the case M = I, also gives a new l-parameter family:
Fia(p) = R{1, 2 + put'®,¢3) .

Thus, we have described all R-ideals and proved that par (1,R) = 1. Quite sim-
ilar (mainly easier) calculations show that par (1,R) = 1 all other singularities
of type W.

Remark. In the list of Schappert [11] the ideals Fz(p) (which are indeed
overrings of R) and I3 are missing,.
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3.2 Ideals of singularities of type Z

Now consider the singularities of type Z. Here we suppose that s = 2 and R
contains elements z,y with v(z) = (1,8), v(y) = (00,3) (IUS of type Z9).
One can check that in this case R D (#3,#37)Ry and, moreover, its minimal
overring contains (#2,t1*). Hence, we may suppose that

R=(1,2,4,9% v, zy,y*) + (&, t3")Ro .

It is convenient to take for #; the first component of z and choose t» in such
way that y3 = (0,%2)z . Now

S: <1axayay23y3)+(t1’t%1)R0 and SI = DI@S2,

where Dy = k[[t1]] and S = k[[t3,#3]] (the simple plane curve singularity of
type Eg). Here is the list of all So-ideals (cf. [6],[9]) given by their generators
over S and over S:

Ideal | So-generators | S-generators

S, 1 1, t5, 10
A 1,4 1,3, ]
A* 1,13 1,13, t3
B 1,3 1, t3,13
B* 1, ty 1, ta, t3
B’ 1,13, t5 1,13, t5
D» 1, ta, t3 1, ta, t3

Any (full) S'-ideal is of the form D; @ N, where N is an Sy-ideal. Consider
first the S-ideals I such that ST = D; @ A. Then nI =n+ {(0,£°)),

S'I/nI =W =((1,0),(0,1),(0,13), (0,t}))

and any generating subspace V' C W contains an element of the form (1,a)
and also elements of the form (ay,1 + uit3), (az,ts + poty) . Multiplying by
(1,1 — pu1t3) , we may suppose that V' contains (aj,1). Then, if dimV = 2,
there are only two possibilities:

V =((1,1),(0,pt3 + t3)) and V =((0,1),(1,put3 +13)).

If dimV =3, we can add also an element of the form (3,t3) or (1,0) It gives
three more possibilities:

V= <(171)3(07t3)3(07t;)>7 V= <(051)7()‘05t3)5()‘17t’;))7
V= ((1,0),(0,1), (ut3 +t3)),
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where (Ao :

A1) is a point of the projective line. Hence, here is the list of the

corresponding S-ideals (which are not S'-ideals):

S((1,1), (0, put3 + 13))
S((0,1), (1, ut3 +t3))
$((0,1), (X0, 13), (A1, t2))
$((1,0), (0, 1), (ut3 +3)) ,
S((1,1),(0,13), (0,3)) -

Note that the ideals Fy(u) are decomposable (as modules), while all other
ideals of this list are indecomposable.
Analogous calculations give the following list of all S-ideals I, which are

not S'-ideals:
S'I=5":

F5(Xo : A1)
S

I

I3

I,

I3

Is

I

Iy

Iy

FG(AO .
F7()\0 : )\1)

S((/\O: 1)7 (/\la tg)) )
S((1,1)),
S((1,1),(0,25"))
$((1,1),(0,%3), (0,£5°)),
S((0,1),(1,13),(0,85°))
5((0,1), (1,£5%))
5((0,1), (0,3), (1,85°)),
5((1,0),(0,1)) ,
$((1,0),(0,1), (0,23)),
S((1,0),(0,1), (0, ;%))
S((%0, 1), (A1, 3)),
S{(Mo, 1), (A1, 13),(0,¢)),
$((0,1),(0,83), (1,13)) ,
S((1,0), (0,1), (0,3)) -
):
S((1,1), (0,3 + pt3)) ,
S0, 1), (1,2 + pit3))
S((0, 1), (o, 1), (A1, )
5((1,0), (0,1), (0,4 + )
S((1,1), (0, 4), (0, 13)) .



S'I=D:®B*, nl =n+((0,t3),(0,t]),(0,5°)) :

Fia(Ao: A1) = S{(No,1),(A1,t2)),
Fiz(o: M) = S{(ha,1), (M, t2),(0,83))
Lz = $((0,1),(0,8),(1,13)),
Ly = 5((1,0),(0,1),(0,t2)).
S'I=D; ®B', nI =n+{(0,t3),(0,t5),(0,t9)):
Ls = S{(1,1),(0,23), (0,23))
Le = 5{(0,1),(1, t2) (O,té))
Ly = S{(0,1),(0,83), (1,23))-
S'I =Rg:
L = ${(1,1),(0,t2),(0,t3))
Ly = S{(0,1),(1,t2),(0,23))
Iy = $5{(0,1),(0,%),(1,%3)).

Here p denotes an element of k and (Mg : A1) a point of the projective line
over k.

Now pass to the calculation of R-ideals, which are not S-ideals. Again
one can verify that for the following S-ideals M we have mM = nM , so we
do not need to consider the case, when SI = M :

Fz(l"‘) for 7’751787
F;(Ao : A1) for all 7,
Fy(p) for p#0,
I; for ¢ #£2,7.

For M = Fy(u), M/mM = ((1,1), (0, ut3 + t2),(0,%5)) . If p # 0, the multi-
plication by itself maps the second of these elements to the third one, which is
congruent modulo mM to pu~'tl?. Hence, here we obtain only the following
new l-parameter family of ideals:

Fra(p) = R{(1,1), (0, ut3 + 3)) , p#0.
If 4 =0, we obtain the following new family:
Fus(p) = R{(1,2), (£ + pt3)) -

In the case M = F3(0), M/mM = ((1,1), (0,3 + ut3), (0,t5) . Hence, we also
obtain only one new family of ideals:

Fig(p) = R((1,1), (3 + pt3)) .
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The remaining cases: S and I; (¢ = 2,7), give the ring R itself and the
following ideals:

Fiz(Mo: M) = R{(1,1),(Not1, \it3%)),
Fig(p) = R((1,1), (ut1,15°)),
Ly = R{(1,0),(0,1)),
Ly, = R((l,t13) ( ))

Therefore, we have proved that in this case also par(1,R) = 1. Quite similar
calculations prove the same for all other singularities of type Z.

Remark: Here the family Fj3 is missing in Schappert’s list of ideals.

3.3 Ideals of singularities of type E

Now consider the case of singularities E. In this case dy = 3, so it follows from
[3] that each R-ideal is isomorphic either to an overring of R or to its dual
module. Therefore, we only need to find all overrings. But if I is an overring
of R then ST is also an overring of S. Hence, at each stage of our inductive
process we may restrict ourselves to overrings. To be complete, we always mark,
which of these overrings are Gorenstein (i.e. self-dual).

Here we suppose that s =3 and R contains elements z,y with v(z) =
(1,1,1) and v(y) = (o0, k,4) with k& > 3 (IUS of type Esp). Of course, we
suppose here that x =t = (t1, ¢2, t3) . Again, passing to the minimal overring,
we may suppose that R contains (t'erz,tkJr2 t3)Ro and is generated by =
and y modulo this ideal. Then S contains (tk+1 tkJrl ,t3)Ro and is generated
modulo this ideal by = and z, where y = zz and v(z) = (00,k—1,2) (it
is an IUS of type E;j,). The ring S’ contains (t§,t5,t3)Ro and is generated
modulo this ideal by z and z. Put now n’ =radS', S” = End (n'). Then S”
is generated by z and 2', where v(2') = (00, k — 2,1) and z = z2z'. Hence,
S" has only finitely many ideals up to isomorphism (it is a simple plane curve
singularity of type D), cf. [6],[9]. Namely, here is the list of the overrings of S”
(except S" itself):

A = S"(1,(0,15,0)) (1<i<k-2),

B; = 5"(1,(0,0,1),(0,%5,0)) (0<i<k-2),
Bor = S"(1,(1,0,0)),

Boz = SH(L(O’LO))a

Ro = S5"((1,0,0),(0,1,0),(0,0,1)).

Among them, only A; are non-Gorenstein. Moreover, Mn" = Mn' for M =
Ro or M = B;, ¢ < k— 2, where n” = radS"”, so we do not need further
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to C(_)nsider these overrings. Note also that in the case of By_o the generator
(0,%,0) above is superfluous.

As S is Gorenstein, its overrings, except S itself, are those of S’. Here is
the list of factoralgebas M /n'M for the overrings M of S”:

S"m = (1,7,(0,0,t2)),

A /WA = (1,(0,0,t3), (0,14,0)),
Bi_2n'Br_2 = (1,(0,0,1),(0,t572,0)),
Bo1/n'Bos (1,(1,0,0), (0,t2,0)),
Boz/n'Boz (1,(0,1,0), (0,%,0)) .

It is now easy to find all proper subalgebras of these algebras and, hence, the
overrings of S (except S itself), which are not overrings of S”:

S = 5(1,(0,0,83)),
Ar1 = 5(1,(0,0,#3)),
Fi(p) = S(1,(0,t5,ut3)) (1<i<k-2),
Br_1 = S(1,(0,0,1)),
Bon = 5(1,(1,0,0)),
Bl, = S5(1,(0,1,0)).

Among them only S, Ap_; and F;(0) are non-Gorenstein. Note also that
Mm = Mn' for all overrings of S”, so we do not need to consider them
further. To find all overrings of R, which are not overrings of S, calculate the
factoralgebras M/mM for the rings of the preceding list and S:

S/m = (1,2,(0,0,%3)),
S'/mS'" = (1,2,(0,0,t3)),
A 1/mAr 1 = (1,(0,0,t2),(0,0,t571)),
Fy(p)/mFi(p) = (1,(0,t5, uts), (0,0,t3)),
Br_1/mBr_1 = (1,(0,0,1),(0,t571)),
Boi/mBy = (1,(1,0,0),(0,5,0)),
Boa/mBo, = (1,(0,1,0),(,0,0)).

It gives us the following list of overrings of R, which are not overrings of S
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(except R itself):

R = R(L(0,0,63),
Fi () = R{Lpuz+(0,0,63),
Fea(p) = R(L0,ut5 ", 8) (n#1),
Fl(p) = RL(0,6,8) (1<i<k-2),
Br = R(,(0,0,1)),
Bgl = R<17(1100)>
B(I)IZ = R<15(07150)>

Here Fy_1(p), Br, By, and Bj, are Gorenstein.

Thus, we have proved that par (1,R) = 1. Analogous calculations show the

same for all other TUS of type E, which accomplishes the proof of Theorem 2.1.
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