
Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-020-01554-x

Efficient Hardware Architectures for 1D- and MD-LSTM Networks

Vladimir Rybalkin1 · Chirag Sudarshan1 · Christian Weis1 · Jan Lappas1 ·Norbert Wehn1 · Li Cheng2

Received: 18 September 2019 / Revised: 8 May 2020 / Accepted: 20 May 2020
© The Author(s) 2020, corrected publication 2021

Abstract
Recurrent Neural Networks, in particular One-dimensional and Multidimensional Long Short-Term Memory (1D-LSTM
and MD-LSTM) have achieved state-of-the-art classification accuracy in many applications such as machine translation,
image caption generation, handwritten text recognition, medical imaging and many more. However, high classification
accuracy comes at high compute, storage, and memory bandwidth requirements, which make their deployment challenging,
especially for energy-constrained platforms such as portable devices. In comparison to CNNs, not so many investigations
exist on efficient hardware implementations for 1D-LSTM especially under energy constraints, and there is no research
publication on hardware architecture for MD-LSTM. In this article, we present two novel architectures for LSTM inference:
a hardware architecture for MD-LSTM, and a DRAM-based Processing-in-Memory (DRAM-PIM) hardware architecture
for 1D-LSTM. We present for the first time a hardware architecture for MD-LSTM, and show a trade-off analysis for
accuracy and hardware cost for various precisions. We implement the new architecture as an FPGA-based accelerator that
outperforms NVIDIA K80 GPU implementation in terms of runtime by up to 84× and energy efficiency by up to 1238×
for a challenging dataset for historical document image binarization from DIBCO 2017 contest, and a well known MNIST
dataset for handwritten digits recognition. Our accelerator demonstrates highest accuracy and comparable throughput in
comparison to state-of-the-art FPGA-based implementations of multilayer perceptron for MNIST dataset. Furthermore, we
present a new DRAM-PIM architecture for 1D-LSTM targeting energy efficient compute platforms such as portable devices.
The DRAM-PIM architecture integrates the computation units in a close proximity to the DRAM cells in order to maximize
the data parallelism and energy efficiency. The proposed DRAM-PIM design is 16.19× more energy efficient as compared
to FPGA implementation. The total chip area overhead of this design is 18% compared to a commodity 8Gb DRAM chip.
Our experiments show that the DRAM-PIM implementation delivers a throughput of 1309.16GOp/s for an optical character
recognition application.

Keywords Long short-term memory · LSTM · MD-LSTM · 2D-LSTM · FPGA · DRAM · Processing-in-memory · PIM ·
Optical character recognition · OCR · MNIST · DIBCO · Zynq · Image binarization · Hardware architecture · Deep
learning

1 Introduction

In recent years, a wide variety of neural network acceler-
ators [9, 26, 53] have been published that achieve higher
performance and higher energy efficiency compared to gen-
eral purpose computing platforms. Many of these accelera-
tors target feed-forward networks such as CNN, however far

� Vladimir Rybalkin
rybalkin@eit.uni-kl.de

Extended author information available on the last page of the article.

fewer investigations exist on efficient hardware implemen-
tations for Recurrent Neural Networks (RNNs), and Long
Short-Term Memory (LSTM) in particular, especially under
energy constraints.

Compared to feed-forward Neural Networks (NNs),
efficient implementation of LSTM networks are especially
challenging for the following reasons: first, LSTM, namely
One-dimensional Long Short-Term Memory (1D-LSTM)
has a recurrence along a time-axe in speech recognition or
writing direction in Optical Character Recognition (OCR)
that creates data dependence to previous steps, which
forces sequentialization of the processing and affects the
overall throughput of the compute architecture; second, the
LSTM algorithm includes multiple non-linear activation

http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-020-01554-x&domain=pdf
http://orcid.org/0000-0002-0926-6062
mailto: rybalkin@eit.uni-kl.de

J Sign Process Syst

functions in contrast to low-complexity rectified linear units
common for CNN layers; third, LSTM networks have a
large memory footprint, and a peak performance that is not
computation bounded but limited by the external memory
bandwidth [26]. The challenges are further augmented for
Multidimensional Long Short-Term Memory (MD-LSTM)
that has recurrent connections along multiple axes, e.g.
two in image processing or three in volumetric imagining.
Multidimensional recurrences further enlarge the memory
footprint and required memory bandwidth, significantly
reduce the potential for parallelization that extremely slows
down the inference and training. Although, it has been
shown that a size of a model based on MD-LSTM can
be 3-11 times smaller than a CNN model with similar
accuracy [38, 45], the best parallel implementation of a
single layer of MD-LSTM has a computational complexity
that is typically by one or two orders of magnitude higher
than of a naive implementation of a convolutional layer
[45]. These aforementioned reasons challenge the design of
efficient hardware accelerators for LSTM networks.

In this work, we systematically address these challenges
and propose efficient hardware accelerators for the infer-
ence of LSTM networks. We present two novel hardware
architectures: first, an FPGA-based hardware architecture
for MD-LSTM network targeting image segmentation and
recognition problems. Second, a DRAM-based Processing-
in-Memory (PIM) architecture for 1D-LSTM network tar-
geting energy efficient compute platforms. To the best of
our knowledge, our research is the first to propose a DRAM-
based Processing-in-Memory (PIM) architecture for 1D-
LSTM network and the first ever to propose a hardware
architecture for MD-LSTM.

Excessive sequential execution of MD-LSTM is a
bottleneck that significantly constrains efficiency of using
massive parallelism of modern GPUs that prevents intensive
research involving MD-LSTM in recent years. In this paper,
we show that high flexibility of FPGAs that allows for
custom pipelined datapath, and natural support of low bit-
width operations provides an efficient solution to complex
recurrent dataflow of MD-LSTM, when massive parallelism
of GPUs ain’t enough to provide the necessary performance
required by the application. An efficient implementation
for inference is presented that opens a door for efficient
training that can boost application of MD-LSTM. We
elaborate on two vanilla MD-LSTM [19] based typologies,
where one was trained to perform binarization of historical
documents from DIBCO 2017 competition [44], and second
to perform handwritten digits recognition task on MNIST
dataset [30]. The former task was selected because it
is a challenging problem that shows that the selected
topology has a representative complexity and deals with
a real world problem. Additionally, MNIST was chosen
as a benchmark to have a fair comparison with existing

FPGA-based implementations with respect to throughput
and energy efficiency.

The PIM architecture focuses on integrating a binary
weighted 1D-LSTM inference engine into a commodity
DRAM architecture. The aim of the PIM architecture is to
eliminate the memory bound (bandwidth and energy) issues
that are associated with NN data and parameter access.
It bridges the memory-computation gap by integrating
the computation logic in the memory devices. The tight
coupling of the memory and computational logic enables
massive data parallelism and minimal data movement
cost, which results in a much higher energy efficiency.
The challenge in DRAM-based PIM architecture is the
physical implementation of the computational logic that is
constrained by factors like DRAM sub-array width, fine bit-
line pitch and the limited number of available metal layers
(e.g. three) in the DRAM process.

The novel contributions of this paper are:

– A novel hardware architecture of MD-LSTM neural
network is presented.

– A systematic exploration of accuracy vs. hardware
cost trade-off for MD-LSTM using challenging DIBCO
2017 and MNIST datasets is conducted. We investigate
the effects of quantization of weights, input, output,
recurrent, and in-memory cell activations on accuracy
during training. In particular, we explore binarized
weights and activation functions.

– We provide the first open source HLS implementation
for parameterizable hardware architectures of MD-
LSTM layers on FPGAs, which provides full-range
precision flexibility, and allows for parameterizable
performance scaling.1

– An open-source implementation of MD-LSTM in
Pytorch (http://pytorch.org/) for training and inference
on GPU is provided.2

– We present a novel DRAM based 1D-LSTM-PIM
architecture that is compatible with the existing
commodity DRAM technology, strictly not modifying
the DRAM sub-array design.

The paper is structured as follows: In Section 2 we review
the basics of 1D- LSTM and MD-LSTM algorithms. This
is followed by Section 3, which presents the details of the
MD-LSTM accelerator. Section 3.1 gives an overview of the
existing research on MD-LSTM. We describe the training
setup and quantization techniques in Section 3.2 and
Section 3.3, respectively. Section 3.4 provides the details of
the novel hardware architecture of MD-LSTM. Section 3.5
presents the results with respect to implementation of MD-
LSTM. Section 4 presents the details of the 1D-LSTM

1https://github.com/tukl-msd/hls-2dlstm
2https://github.com/tukl-msd/pytorch-2dlstm

http://pytorch.org/
https://github.com/tukl-msd/hls-2dlstm
https://github.com/tukl-msd/pytorch-2dlstm

J Sign Process Syst

PIM accelerator. The prior-art on PIM accelerators is
reviewed in Section 4.1 and followed by the basics of
DRAM in Section 4.2. Section 4.3 presents DRAM based
1D-LSTM PIM architecture in detail. The results of the
PIM implementation are discussed in Section 4.5. Finally,
Section 5 concludes the paper.

2 Background

2.1 1D-LSTM

In this paper, as a showcase topology for the PIM
architecture we selected a Bidi- rectional LSTM (Bi-LSTM)
with Connectionist Temporal Classiffication (CTC) layer
targeting OCR. Bidirectional Recurrent Neural Networks
(RNNs) were proposed to take into account impact from
both the past and the future status of the input signal
by presenting the input signal forward and backward to
two separate hidden layers both of which are connected
to a common output layer that improves overall accuracy
[20]. CTC is the output layer used with LSTM networks
designed for sequence labelling tasks. Using the CTC layer,
LSTM networks can perform the transcription task on a
level of text-lines without requiring pre-segmentation into
characters.

For the sake of clarity, we review the basic LSTM
algorithm, earlier presented in [18, 22].

at = tanh(W ax
t + Ray

t−1 + ba)

it = σ(W ix
t + Riy

t−1 + bi)

f t = σ(W f xt + Rf yt−1 + bf)

ot = σ(W ox
t + Roy

t−1 + bo)

ct = it � at + f t � ct−1

yt = ot � tanh(ct) (1)

The LSTM architecture is composed of a number of
recurrently connected memory cells. Each memory cell
is composed of three multiplicative gating connections,
namely input, forget, and output gates (i, f , and o, in
Eq. 1); the function of each gate can be interpreted as write,
reset, and read operations, with respect to the cell internal
state (c). The gate units in a memory cell facilitate the
preservation and access of the cell internal state over long
periods of time. The implemented LSTM cells have been
implemented without peephole connections that are optional
and according to some research even redundant [6]. There
are recurrent connections from the cell output (y) to the
cell input (a) and the three gates. Equation 1 summarizes
formulas for LSTM network forward pass. Rectangular
input weight matrices are shown by W , and square weight

matrices by R. x is the input vector, b refers to bias vectors,
and t denotes the time (and so t-1 refers to the previous
timestep). Activation functions are point-wise non-linear
functions, that is logistic sigmoid (1

1+e−x) for the gates (σ)
and hyperbolic tangent for input to and output from the
node. Point-wise vector multiplication is shown by �.

2.2 MD-LSTM

A MD-LSTM neural network was firstly proposed in [19]
to extend the applicability of unidimensional counterpart
for data with more than one spatio-temporal dimension
like in image and video processing or volumetric medi-
cal imaging. Having recurrent connections along multiple
axes, typically the x-axis and y-axis in image process-
ing, allows MD-LSTM to capture long-term dependencies
along all dimensions of the data that makes MD-LSTM
very robust to local distortions along any combination
of input dimensions. MD-LSTM provides state-of-the-art
performance on most of benchmarks for offline Hand-
written Text Recognition [38, 54]. They show advanced
results in semantic segmentation [7] and medical imaging
[14, 51]. Probably, MD-LSTM is one of the most con-
troversial neural networks. While having high theoretical
potential for learning, [19, 38, 45, 55] acknowledged that
MD-LSTMs are in principle more powerful and more robust
to distortions than CNNs, they suffer from lack of inves-
tigation due to slow training. Recently, there were a lot
of discussions if MD-LSTM layers are needed at all. It
was shown that in some scenarios, MD-LSTM layers can
be replaced with CNN layers that can provide similar or
higher accuracy at lower computational cost [45]. How-
ever, most recent research on handwritten text recognition
[38] proofs that MD-LSTM interleaved with CNN layers
and 1D-LSTM on the top provides a superior performance
than pure CNN based topology or CNNs combined with
1D-LSTM in the case of more complex and challeng-
ing real-world datasets. That justifies research related to
MD-LSTM.

As already said, MD-LSTM is a generalization of a
recurrent neural network, which can deal with higher-
dimensional data. In the following we restrict ourselves
to the two-dimensional case, which is commonly used
for handwriting and similar tasks. A 2D Long Short-
Term Memory (2D-LSTM) scans the input image along
horizontal and vertical axes and produces an output image
of the same size following equations (Eq. 2) for each
coordinate (i, j) in the input image x.

It is common to use parallel 2D-LSTM layers processing
an input image in four directions (top-left origin, top-right
origin, bottom-left origin and bottom-right origin) as it is
depicted in Fig. 1 for top-left origin. The outputs from
four directions are later combined (concatenated) so that a

J Sign Process Syst

Figure 1 In the case of top-left
origin: a the dependencies
between each position (pixel), b
the pixel-by-pixel processing
order, c the diagonal-wise
processing order.

spatio-temporal context from all four directions is available
at each position (pixel).

For the sake of clarity, we review the basic 2D-LSTM
algorithm. Equation 2 summarizes formulas for the network
forward pass. Similar to unidimensional LSTM, 2D-LSTM
architecture is composed of a number of recurrently
connected memory cells. However, each memory cell is
composed of four, rather than tree multiplicative gating
connections, namely input, forget for the y-coordinate and
x-coordinate, and output gates (k, f , g, and o). There are
two square weight matrices, one for the y-coordinate (U)
and one for x-coordinate (V). The rest is similar to the
unidimensional case.

3MD-LSTM

ai,j = tanh(W axi,j + Uayi−1,j + V ayi,j−1 + ba)

ki,j = σ(W kxi,j + U kyi−1,j + V kyi,j−1 + bk)

f i,j = σ(W f xi,j + Uf yi−1,j + V f yi,j−1 + bf)

gi,j = σ(W gxi,j + Ugyi−1,j + V gyi,j−1 + bg)

oi,j = σ(W oxi,j + Uoyi−1,j + V oyi,j−1 + bo)

ci,j = f i,j � ci−1,j + gi,j � ci,j−1 + ai,j � ki,j

yi,j = oi,j � tanh(ci,j) (2)

This section presents a complete design methodology
that starts from selecting a neural topology. Later training,
refinement and selection of a full-precision model is done.
Further, we train a model with quantized learning parame-
ters to identify a search space of accuracy as a function of
hardware cost for various precision points. In the follow-
ing, a selection of a configuration with an optimal trade-off
between accuracy and hardware cost using Pareto frontier
is performed. As the main goal of the paper, we present
a novel hardware architecture and provide implementa-
tion details. We perform a throughput scalability analysis
to identify a configuration with the highest throughput that
is used for comparison to the state-of-the-art with respect to
accuracy, achieved throughput and energy efficiency.

3.1 Related work

In this section, we review related work on MD-LSTM with
respect to its application, and earlier presented optimisation
techniques for accelerating both inference and training. As
there are no prior publications on hardware architectures
for MD-LSTM, we review state-of-the-art architectures for
recurrent neural networks, namely unidirectional LSTM.

3.1.1 Application

Afzal et al. [2] has proposed treating the image binariza-
tion as a sequence learning problem and modeled the image
as a two-dimensional sequence. MD-LSTM was used to
learn spatial dependencies in the two-dimensional image,
the same as 1D-LSTM is used in temporal domain to learn
temporal dependencies. In general the task was formulated
as a semantic segmentation problem, where each pixel was
classified either as text or non-text. The approach was eval-
uated on DIBCO 2013 dataset achieving comparable results
with the state-of-the-art. Similar idea was applied by one
of the participants at DIBCO 2017 [44] competition using
Grid LSTM cells [27]. We use similar topology to Afzal
et al. but with more memory cells to cope with increased
complexity of DIBCO 2017 dataset. Graves et al. [19] could
achieve accuracy comparable to state-of-the-art applying
MD-LSTM on MNIST dataset without using any pre-
processing or augmentation. They formulated the task as a
semantic segmentation problem, where each pixel was clas-
sified according to the digit it belonged to. Our approach is
different as we do not make prediction for each pixel but for
the complete image based on all outputs from hidden layers
taken together. We selected an alternative topology in order
to explore more on architectural level, otherwise the archi-
tecture would be identical to the semantic segmentation one.

3.1.2 Optimization

There is a number of papers proposing to accelerate inference
and trainingofMD-LSTMbynewparallelization approaches or
improving stability of the cells for faster convergence. Leifert

J Sign Process Syst

et al. [31] has shown that MD-LSTM has a severe concep-
tual problem related to computational instability of a value
of the memory state that grows drastically over time and can
even become infinite. They proposed an improved version
of a cell called Leaky − LP that overcomes the instability,
while preserves the state over long period of time, however
at the expense of more complex computational graph. In
our research we use vanilla MD-LSTM cells, so to be able
to evaluate all optimizations with respect to the original
model.

MD-LSTM has constraints on computing order of the
steps (pixels) due to recurrent dependencies between the
pixels, see Fig. 1a. Each pixel is considered as one time
step/position here. Each position requires an input from two
neighboring ancestor positions, one located on the previous
column, another on the previous row. The straightforward
implementation follows a pixel-by-pixel processing order,
one pixel is processed after another as it is shown in Fig. 1b.
Voigtlaender et al. [54] and Oord et al. [41] proposed
conceptually similar parallelization approaches. They have
noticed that all pixels on the same diagonal can be computed
in parallel because they are computationally independent
from each other, the processing order is depicted in Fig. 1c.
The diagonal-wise approach reduces the time complexity
to process an image from O(W · H) to O(W + H)

because there are (W + H − 1) diagonals in an image
with H rows and W columns. Our architecture is based
on the pixel-by-pixel order of processing. In the case of
GPU, we have implemented both approaches. Additionally,
Wenniger et al. [55] proposed an efficient approach of
packing samples in batches with low computational and
memory overhead. The approach could achieve 6.6 times
seed-up on word-based handwriting recognition by avoiding
wasteful computation on padding. In the case of MNIST
dataset, the padding is not necessary because all images
are of the same size. For DIBCO dataset, the padding is
negligible because we process big size images (up to 4M
pixels) in small chunks (64 by 64 pixels). Our approach
is orthogonal to all previously proposed, as we present a
hardware acceleration on alternative computing platform,
namely FPGA. Our approach potentially can be combined
with previously presented ones.

3.1.3 Architecture

To the best of our knowledge, we are proposing the first
hardware architecture of MD-LSTM. However, it is not the
first architecture of RNNs. In [48] Rybalkin et al. gives a
good overview of FPGA-based implementations. The most
remarkable architectures providing the highest throughput
are [48] and [21]. Where the later one operates on par-
tially stored on-chip sparse model. However, in this paper
we investigate influence of low precision on accuracy rather

than sparsity, and keep our model dense. Furthermore, as
it has been mentioned in Section 1, the MD-LSTM mod-
els are much more compact in comparison to other types
of neural networks [38, 45] that makes them very appealing
for on-chip implementation. In the following, we primary
compare new architecture with [48] as it operates on a
dense model stored completely on-chip. The new archi-
tecture has additional datapaths for recurrent dependencies
along extra dimensions. We exploit a concept of interleaving
data corresponding to different processing directions pro-
posed in [49], and extend it to four processing directions
(see Section 2). Interleaving in the case of RNNs enables
to keep pipelined datapath always busy (see Section 3.4).
We show that in the case of MNIST datatset, it is not
necessary to align corresponding outputs from four pro-
cessing directions that significantly reduces the required
on-chip memory for intermediate computations. However,
in the case of semantic segmentation problem, like in bina-
rization, the alignment is necessary. We propose an archi-
tecture of an output layer operating on multidimensional
buffer.

3.2 Training

In the following chapter, we give an overview of the selected
applications and benchmarking datasets, namely MNIST
and DIBCO. A complete training flow is presented in this
section.

During training we experimented with a different
number of MD-LSTM cells, precision and different hyper
parameters. The quantized versions of the networks were
trained de novo without full-precision pre-training. We
trained the networks with quantized weights, biases, input,
output, recurrent activatuions, and full-precision in-cell
activations. A quantized LUT-based version of the in-cell
activations was used during the test. It was found that
gradient clipping can be necessary to achieve stable learning
that is reasonable in the case of vanilla cells in particular
[55]. We applied dropout between the 2D-LSTM layers and
output layer for better generalization.

3.2.1 MNIST

We used a well-known MNIST dataset [30] of isolated
handwritten digits to have a common benchmark to compare
our hardware implementation to existing FPGA-based
designs with respect to throughput and energy efficiency.
The database consists of gray-scale images, each of which
is 28 pixels high and 28 pixels wide depicting a single
handwritten digit like in Fig. 2.

MNIST has a training set with 60k images and a test set
with 10k. We used 5% of the training set for validation. We
report the best test accuracy of a model with the highest

J Sign Process Syst

Figure 2 Sample images from
the MNIST dataset.

validation accuracy after at most 1000 epochs. We did not
perform any pre-processing or augmentation on MNIST
dataset. We used a threshold-based binarization on the
input pixels in the case of quantized network and real-
value pixels in the case of full-precision configuration. The
architecture of 2D-LSTM network depicted in Fig. 3 has a
single hidden layer that is separated into four independent
LSTMs processing the input in four directions with NH

memory cells each. The red arrows in Fig. 3 indicate
the direction of propagation during the forward pass. The

input layer is of size (C) 1. The outputs from all hidden
layers and from all pixels are concatenated and fed into
the common output layer of size (NO) 10 that is a number
of classes (digits from 0 to 9). The LogSoftmax activation
function was used at the output layer. We used a negative
log likelihood loss criterion with Adam optimizer and a
mini-batch size of 512 or 256 depending on a size of
a model. We used larger batch size for training smaller
models to fully utilize the GPU resources. The learning
rate starts from 0.01 and reduced by a factor of 0.8 every

Figure 3 Image classification
topology for MNIST dataset.
The forward pass.

J Sign Process Syst

20 epochs. We used gradient clipping with a value of
100.

3.2.2 DIBCO 2017

Document image binarization is a process of separating
text from images, where text consists of pixels of interest,
thus we train a model to label every pixel as belonging
to text of background. Binarization of document images
is a common pre-processing step for the document image
processing that enhances quality of the images. Document
images, especially of historical documents, usually contain
different types of degradation and noise, i.e. different
artifacts, uneven background, and bleedthrough text like it
is shown in Fig. 4.

We considered a dataset that is used in DIBCO 2017
document image binarization contest to proof representabil-
ity and correctness of our implementation. For training we
used a combination of datatsets from DIBCO 2009 - 2016
competitions that gave us 86 images, where 10 of them
were randomly chosen for validation. We report the highest
test accuracy associated with the highest validation accu-
racy after at most 300 epochs. For testing we used a dataset
from DIBCO 2017 [44] as the most challenging among
all of them. The test datasets contains 10 printed and 10
handwritten documents. All datasets contain both color and
gray-scale images with up to 4M pixels per image. We
treated all images as 3-channel color images (C = 3). We
did not perform any pre-processing or augmentation. The
images are divided into patches of size n by n and are fed
into the 2D-LSTM. We could achieve the best results with
n = 64. The architecture of 2D-LSTM network depicted in
Fig. 5 has a single hidden layer that is separated into four
independent LSTMs processing the patches from all the four
possible directions. Each LSTM consists of NH memory
cells. The values from each LSTM are concatenated with
respect to corresponding pixels, and fed into a common out-
put layer of size (NO) 2. Now, the output has a context from
four different directions of the image at each pixel. Each

Figure 4 Sample image with bleedthrough text between the lines and
corresponding ground truth from the DIBCO 2017 dataset.

output value indicates the probability of each pixel to be
either text or background. We used a negative log likelihood
loss criterion with Adam optimizer with a mini-batch size of
128 or 96 patches depending on a size of a model. We used
larger batch size for training smaller models to fully utilize
the GPU resources. The learning rate starts from 0.01 and
reduced by a factor of 0.7 every 10 epochs. We used gradient
clip with a value of 10.

3.3 Quantization

In this section, we present the approaches that have been
used for quantizing learning parameters and activations of
the networks during training.

Our quantization methods are based on those presented
in [24, 46, 58]. For multi-bit weights and activations, we
adopt Eq. 3a as a quantization function, where a is a full-
precision activation or weight, aq is the quantized version,
k is a chosen bit-width, and f is a number of fraction bits.
For multi-bit weights, the choice of parameters is shown
in Eq. 3b. For multi-bit activations, we assume that they
have passed through a bounded activation function before
the quantization step, which ensures that the input to the
quantization function is either x ∈ [0, 1) after passing
through a logistic sigmoid function, or x ∈ [−1, 1) after
passing through a tanh function. As for the quantization
parameters, we use Eq. 3b after the tanh and Eq. 3c after the
logistic sigmoid.

aq = clip(round(a · 2f) · 2−f ,min,max),where (3a)

f = k − 1

min = −(2(k−f −1)) = −1

max = −min−2−f = 1 − 2−f (3b)

f = k

min = 0

max = 2k−f − 2−f = 1 − 2−f (3c)

In the case of binarized activations ab, we apply a sign

function as the quantization function [46], as shown in Eq. 4.
In the case of binarized weights wb, on top of the sign
function we scale the result by a constant factor that is a
standard deviation calculated according to Glorot et al. [17].
Our motivation to use this scaling coefficient based on that
we use Glorot initialization for the weights in the case of
full-precision model. In the case of binarization, the weights

J Sign Process Syst

Figure 5 Document image
binarization topology for
DIBCO 2017 dataset. The
forward pass.

are constrained to -1 and 1, thus it makes sense to scale them
to the boundary limits of the full-precision weights.

ab = sign(a) (4)

wb = sign(a) · scaling f actor (5)

3.4 Architecture

This section presents a hardware architecture of 2D-LSTM
and fully-connected layers. The main challenge to design
an efficient architecture of an algorithm with feed-back
loop comes from recurrency that becomes a throughput
bottleneck. A next time step (pixel) can be calculated only
if the previous step has been finished due to precedence
constraint that makes pipeline part-time idle. An efficient
solution is to make pipeline busy with calculations that do
not have recurrent dependencies between each other. In the
case of 2D-LSTM, the processing of the different directions
(top-left origin, top-right origin, bottom-left origin and

bottom-right origin) are independent. Being inspired with
the idea presented in [49], we propose to interleave
calculations corresponding to different directions. First, the
architecture processes first pixel from each direction in a
sequence, then second pixel, and so on. This approach keeps
pipeline always busy without throughput penalties, if the
number of sequentially processed LSTM cells is enough.

The architecture is parametrizable with respect to per-
formance scaling. The parametrization allows to apply
coarse-grained parallelization on a level of 2D-LSTM cells,
and fine-grained parallelization on a level of dot-products.
The former, indicated as PE LSTM unrolling, while the
latter, indicated as SIMD INPUT and SIMD RECURRENT
unrolling factors for input data and recurrent paths, respec-
tively. This flexibility allows for tailoring of parallelism
according to the available resources on the target device.
When PE unrolling is performed, the LSTM cell will
be duplicated PE LSTM times, generating for each clock
cycle PE LSTM output activations. When SIMD unrolling
is applied, each gate will receive a portion of the input
data, namely SIMD INPUT and a portion of the recurrent

J Sign Process Syst

state SIMD RECURRENT in each clock cycle. The same
is applied to the fully-connected layer with PE FC and
SIMD FC unrolling factors.

In the following, we explain the functionality of
each component of the 2D-LSTM accelerator depicted in
Fig. 6.

– Mem2Stream core is responsible for DMA reads of
input data from DRAM using AXI memory-mapped
non-coherent interface, and converting each transaction
into AXI stream. The input data (pixels) are concate-
nated into 64- or 128-bit words that correspond to a
single bus transaction depending on a bus width. For
simplicity, the pixels are quantized so that the bus width
is a multiple of pixel width, so the pixels do not spread
over several transactions, and no padding is required.

– The Data Width Converter splits each transaction into
separate pixels and concatenates them according to
SIMD INPUT.

– The 2D-LSTM Hidden Layer core depicted in Fig. 7
implements all functionality according to Eq. 2 except
the recurrent connections. All memory cells and cor-
responding dot-products are instantiated with respect
to PE LSTM, and SIMD INPUT, SIMD RECURRENT
respectively. Computations corresponding to differ-
ent memory cells and dot-products can be calculated
with various degree of parallelization, but always
in a sequence with respect to different directions.
Sequential execution of computations corresponding to
different directions instead of parallel execution allows
to save hardware resources as we do not quadruple dat-
apath and memory ports. Although it increases latency
per image, it keeps pipeline always busy that results in
a higher computational efficiency.

– The Recurrent Path X/Y-axis Data With Converter con-
verts the output from the hidden layer that has a width
that is a multiple of PE LSTM into input with a width
that is a multiple of SIMD RECURRENT. The buffers

are required to match the inputs and outputs from the
corresponding directions. The X-axis buffer contains
4 × NH recurrent values (yi−1,j) along x-axis, while
the Y-axis buffer contains W ×4×NH recurrent values
(yi,j−1) along y-axis.

– The Output Layer implements the output fully-
connected layer with PE FC = FULL and SIMD FC
equal to PE LSTM of the previous hidden layer, so to
match the throughput. The architecture of the core is
depicted in Fig. 8. In the case of MNIST, the outputs
from different directions do not need to be matched for
the same pixels, thus there is no need for a large match-
ing buffer. The results are accumulated in a single-value
buffer instantiated for each output unit. Opposite for
DIBCO, outputs from hidden layer corresponding to
the same pixel processed from different directions
have to be matched, thus there is a matching buffer of
size (H × W) for each output unit shown in Fig. 8.
The buffers are implemented with dual-port read-write
memories that allow to read and write partial sums in
a pipelined manner at each clock cycle. Due to pixel-
by-pixel processing order and sequential computations
corresponding to different directions, the read and
write patterns never risk to address the same address
(partial sum) in the buffer in the same clock cycle. The
processing directions follow distinct access sequence
that is encoded in Row offset and Column index
buffers.

– The SoftMax core implements a simplified version of
Softmax function. It finds a label with the maximum
value among all outputs from the output layer in the
case of MNIST, or among all outputs corresponding to
the same pixel in the case of DIBCO.

– The Data Width Converter concatenates the labels into
64- or 128-bit words depending on bus width.

– The Stream2Mem writes the labels to DRAM using
AXI memory-mapped non-coherent interface.

Figure 6 System-level view of
the 2D-LSTM Accelerator.

J Sign Process Syst

Figure 7 Hardware Architecture
of the Hidden Layer.

Figure 8 Hardware Architecture
of the Output Layer.

J Sign Process Syst

3.5 Results

3.5.1 Full-Precision Accuracy

In the following, we are presenting accuracy achieved with
a full-precision 2D-LSTM network on MNIST and DIBCO
2017 datasets.

3.5.2 MNIST

Table 1 presents classification accuracy achieved with
the full-precision 2D-LSTM on MNIST dataset. Our full-
precision version is approaching accuracy of the state-of-
the-art network [29] without using any pre-processing or
augmentation, and confidently outperforms the result of a
similar approach presented in the original paper on MD-
LSTM [19] (see Section 3.1). The network presented in
[29] is based on three deep learning architectures working
in parallel, namely fully-connected deep network, deep
CNN and deep RNN. The top result was achieved using
a combination of 30 deep learning models that by far
exceeds the size and complexity of our network. The 2D-
LSTM architecture with 20 memory cells shows accuracy
comparable with the sate-of-the-art. This configuration has
been selected for a trade-off analysis of accuracy and
hardware cost for various precisions.

3.5.3 DIBCO

Table 1 presents accuracy (F-measure) achieved with
the full-precision 2D-LSTM on DIBCO 2017 dataset in
comparison with previous methods. Our implementation
with the highest accuracy outperforms the similar approach
(see Section 3.1) and loses only 2.8% in accuracy to
the winner of the competition presented in [44] without
using any pre-processing or augmentation of the dataset.

The winner approach presented in [44] is based on U-Net
[47] type of fully convolutional neural network and data
augmentation during training. The 2D-LSTM architecture
with 40 memory cells shows accuracy comparable with
the sate-of-the-art. In the following experiments, this
configuration has been used for a trade-off analysis of
accuracy and hardware cost for various precisions.

3.5.4 Accuracy vs. Hardware Cost vs. Precision

In the following experiments we explore accuracy as
a function of hardware cost for various precision. All
hardware prototypes have been implemented on Xilinx
Zynq UltraScale+ MPSoC ZCU102 board featuring a
XCZU9EG device that contains (1) Quad-core ARM
Cortex-A53 and (2) FPGA fabric. The HLS synthesis and
place and route have been performed with Vivado Design
Suite 2017.4.

Figures 9, 10, 11, 12 plot the achieved test accuracy over
BRAM36k and LUT utilization for different precisions
for MNIST and DIBCO 2017 datasets. All resources are
given after post-placement and routing. Each point on the
plots represents a configuration represented with a com-
bination of number of bits used for inputs (x), weights
(wLST M), biases (bLST M), output activation (yLST M) of
the 2D-LSTM layer and weights (wFC) and biases (bFC)
of the FC layer. In the experiments, the parallelism of the
hardware accelerator has been kept constant, with a number
of instances of the complete accelerator M=1, PE LSTM=1,
SIMD INPUT=FULL, SIMD RECURRENT=FULL,
PE FC=FULL and SIMD FC=1 with a target frequency
that has been set to 300 MHz and 240 MHZ for accelerators
running MNIST and DIBCO 2017 datasets, respectively. In
order to identify a configuration with the lowest hardware
cost and accuracy that satisfies chosen criteria, we find
Pareto frontier for various precisions in a space of accuracy

Table 1 Accuracy of a full-precision 2D-LSTM on MNIST and DIBCO 2017 datasets depending on a number of memory cells (NH) in
comparison to earlier approaches.

Approach NH Train Accuracy, [%] Test Accuracy, [%]

MNIST State-of-the-art [29] - - 99.8200

Similar approach [19] - - 98.9000

2D-LSTM [this work] 40 100 99.5700

2D-LSTM [this work] 20 99.9983 99.4600

DIBCO A winner of DIBCO 2017 [44] - - 91.0400

Similar approach [44] - - 82.4400

2D-LSTM [this work] 60 94.1131 88.2360

2D-LSTM [this work] 40 93.7852 88.0040

J Sign Process Syst

Figure 9 Pareto frontier for
accuracy against BRAMs for
2D-LSTM with NH = 20
memory cells runing on MNIST
dataset depending on precision
of input activation (x), weights
(wLST M), biases (bLST M),
output activation (yLST M) of the
2D-LSTM layer, and precision
of weights (wFC) and biases
(bFC) of the FC layer.

as a function of hardware cost. The Pareto frontier identifies
the configurations with the best trade-off between accuracy
and hardware cost.

3.5.5 MNIST

The full-precision configurations presented in Table 1 have
achieved higher test accuracy with a higher value of dropout
than quantized versions (0.8 vs. 0.7, respectively) that
confirms observations that quantization has a regularization
effect on neural network similar to dropout that prevents model
overfitting [23, 56]. Furthermore, high dropout values mean
that MD-LSTM has a strong tendency to overfitting that
is also in accordance with earlier observations presented in
[43] and [38]. Considering Figs. 9 and 10 in the following, a
configuration with 2-bit weights is not depicted on the plots
because it has shown bad convergence that is probably a
result of imbalanced representation of negative and positive

values in the case of 2-bit quantization, namely (-1.0, -0.5,
0, 0.5). We expect that ternarisation of the model will result
in higher accuracy.

Configuration 1/1,1/1/1,1 demonstrates that binarization
of activation causes stronger degradation of accuracy than
binarization of the weights that can be explained by that
we did not use scaling factor for binarized activation but
weights and biases only. Some of the configurations with
lower precision have higher test classification accuracy than
some with higher precision that can mean that regularization
that is brought by the quantization outperforms the negative
effects of the lower precision. Moderate degradation in
accuracy even for the configuration with binary weights
means that the 2D-LSTM is an overkill for the MNIST
problem. We constrained a selection of an optimal
configuration with accuracy that is higher than the best
test accuracy on MNIST dataset for existing FPGA-
based implementations presented in Table 3. A hardware

Figure 10 Pareto frontier for
accuracy against LUTs for
2D-LSTM with NH = 20
memory cells runing on MNIST
dataset depending on precision
of input activation (x), weights
(wLST M), biases (bLST M),
output activation (yLST M) of the
2D-LSTM layer, and precision
of weights (wFC) and biases
(bFC) of the FC layer.

J Sign Process Syst

Figure 11 Pareto frontier for
accuracy against BRAMs for
2D-LSTM with NH = 40
memory cells runing on DIBCO
2017 dataset depending on
precision of input activation (x),
weights (wLST M), biases
(bLST M), output activation
(yLST M) of the 2D-LSTM layer,
and precision of weights (wFC)
and biases (bFC) of the FC layer.

implementation of a multilayer perceptron presented in [42]
with 98.92% of accuracy identifies the low bound. We
selected a configuration 1/1,1/2/1,1 that is Pareto optimal
with the lowest hardware cost and accuracy higher than
the low bound for further throughput scalability analysis
and comparison with existing FPGA implementations
processing MNIST dataset.

3.5.6 DIBCO

Considering Sections 11 and 12 in the following, the
results show a strong correlation between the precision
of the operands and accuracy. Comparing configurations
8/4,4/4/8,8 and 8/4,8/4/8,8, we see that precision of a bias
has a noticeable influence on accuracy with 1.31% gain in
accuracy for the later one. Keeping higher precision for bias,
while reducing precision for weights or activation can be an
efficient approach for increasing accuracy at low hardware
cost. The noticeable influence of biases on accuracy can be
explained by higher contribution of biases to the final result

in the case of smaller models. The full-precision versions
presented in Table 1 could achieve higher accuracy with
higher value of dropout than quantized versions (0.6 vs.
0.5, respectively). There is still a noticeable gap between
train and test accuracy that can mean an overfitting of the
model, however higher dropout values did not improve the
accuracy. The gap in accuracy between training and test
can be also explained by a different complexity between
training and test datasets as DIBCO 2017 dataset is more
challenging for binarization than previous additions. We
constrained a selection of an optimal configuration with
degradation in accuracy of less then 1% with respect to full-
precision version. 1% degradation is an empirical value for
fair trade-off between complexity and accuracy. According
to Fig. 11 configurations 8/4,4/8/8,8 and 8/4,8/4/8,8 are
Pareto optimal with accuracy higher than the low bound.
However, in the case of LUT utilization, 8/4,4/8/8,8 is not
a Pareto optimal configuration that makes 8/4,8/4/8,8 a
selection for further investigation. The preference is given to
Pareto optimal configurations with respect to LUT resources

Figure 12 Pareto frontier for
accuracy against LUTs for
2D-LSTM with NH = 40
memory cells runing on DIBCO
2017 dataset depending on
precision of input activation (x),
weights (wLST M), biases
(bLST M), output activation
(yLST M) of the 2D-LSTM layer,
and precision of weights (wFC)
and biases (bFC) of the FC layer.

J Sign Process Syst

as the LUT utilization is the implementation bottleneck, see
Table 2.

3.5.7 Throughput Scalability

According to Eq. 2, a number of learnable parameters per
single 2D-LSTM cell is 5 × (C + 2 × NH + 1), where five
comes from a number of gates including input to a memory
cell. In the case of semantic segmentation problem, a single
neuron of the output layer has (4 × NH + 1) parameters,
where 4×NH gives a number of concatenated outputs from
the hidden layers. In the case of MNIST, a single unit of the
output layer has (4 × NH × H × W + 1) parameters. The
number of operations of the 2D-LSTM layer per image is
OpLST M = (2×5×(C+2×NH)+11)×NH ×H ×W ×4,
where two comes from multiplication and addition counted
as separate operations, eleven is a number of point-wise
operations, and four is a number of possible processing
directions. The same applies to the output layer: OpFC =
(2×(4×NH)+1)×NO ×H ×W . We neglect a complexity
of the rest of the network.

The resource utilization for selected configurations of
the accelerator for MNIST and DIBCO 2017 datasets are
presented in Table 2. In the case of design implemented for
DIBCO dataset, a LUT utilization is a resource bottleneck
that condition a selection of a Pareto optimal configuration
with higher BRAM number but lower LUT utilization. The
resource utilization of a baseline configuration (PE LSTM
= 1, SIMD LSTM = FULL, PE FC = FULL, SIMD FC =
PE LSTM) allows to place more instances. The architecture
allows to scale throughput by increasing a number of
PE LSTM or instantiating multiple (M) instances of the
complete accelerator. The following Figs. 13 and 14
show a throughput scalability depending on a number
of PE LSTM with M = 1. The measured throughput
scales near perfectly with respect to theoretical throughput
with discrepancy that increases with a higher PE LSTM
number. The discrepancy can be explained by increased
throughput penalty due to reduced number of sequentially
executed cells that makes the pipeline partially idle.
The theoretical throughput is calculated according to the
following formula: (OpLST M +OpFC)×F ×(PE LSTM×
M)/L, where F is target frequency and L = NH ×
4 × H × W is a theoretical latency in clock cycles to
process a single image without considering any architecture

related features like depth of a pipeline. In the following
experiments we aim to find a configuration with the highest
throughput instantiating multiple (M > 1) accelerators with
PE LSTM > 1.

Sections 13 and 14 clearly show that instantiating
multiple cells rather than multiple instances of the complete
accelerator is more efficient because we avoid unnecessary
replication of conversion cores and weights’ memory. In
the case of instantiating multiple cells, although the design
operates on the same model, there is still an increase
in memory utilization that comes from more parallel
ports required to supply higher throughput. The measured
throughput shows near theoretical values with increased
discrepancy over a number of PE LSTM.

The configurations PE LSTM=5, M=14 and
PE LSTM=10, M=2 for MNIST and DIBCO 2017 datasets,
respectively, with the highest throughput are used for
comparison with GPU and other FPGA implementations
in Table 3. Configurations with higher PE LSTM are not
presented as they failed routing.

3.5.8 Comparison

The host code runs on Cortex-A53 running Ubuntu 16.04.6
LTS. It reads test images from the SD card, stores them
in the shared DRAM, starts the accelerator execution,
measures runtime, and computes accuracy against the
ground truth classifications. During processing, we perform
two types of power measurements: Pboard that is a power
consumption of the complete board, in the case of FPGA
measured using digital multimeter Voltcraft VC-870, and
Pchip that has been acquired using Zynq UltraScale+
MPSoC Power Advantage Tool [1] for FPGA, and nvidia-
msi for GPU.

As it is shown in Table 3, 2D-LSTM model provides
the highest accuracy with respect to other FPGA-based
implementations, while having one of the smallest models
that confirms finding in the earlier works [38, 45] that
MD-LSTM layers require less trainable parameters to
achieve similar accuracy to other types of neural networks.
Although, it has one of the smallest models, the number
of operations is the highest that is also in alignment with
the previous works, and this is the primary reason why
other types of networks are preferred over MD-LSTM in the
recent years.

Table 2 Resource utilization for a baseline configuration (M=1, PE LSTM=1, SIMD INPUT=FULL, SIMD RECURRENT=FULL, PE FC=FULL
and SIMD FC=PE LSTM) of the accelerator implemented on XCZU9EG for MNIST and DIBCO 2017 datasets.

Dataset Precision, [bits] Frequency, [MHz] LUT FF BRAM DSP

MNIST 1/1,1/2/1,1 300 6817(2,49%) 9162(1,67%) 34(3,73%) 11(0,44%)

DIBCO 8/4,8/4/8,8 240 18080 (6,60%) 15657(2,86%) 56(6,14%) 6(0,24%)

J Sign Process Syst

Ta
bl
e
3

C
om

pa
ri
so
n
to

FP
G
A
an
d
G
PU

im
pl
em

en
ta
tio

ns
pr
oc
es
si
ng

M
N
IS
T,

D
IB
C
O
20
17

da
ta
se
ts
.

N
am

e
Pl
at
fo
rm

M
od
el
,[
bi
ts
]

Pa
ra
m
s,
[M

]
O
ps
.a
,[
M
]

A
cc
.,
[%

]
Fr
eq
.,
[M

H
z]

θ
,[
G
O
p/
s]

kF
PS

b
P

c
h
ip
,[
W
]

P
b
o
a
r
d
,[
W
]

k
F

P
S

P
c
h
ip

k
F

P
S

P
b
o
a
r
d

M
N
IS
T

FI
N
N
[5
3]

Z
C
70
6

1
3.
34
E
-1

6.
69
E
-1

95
.8
3

20
0

82
65
.4
5

12
36
1

7.
30

21
.2

1.
69
E
+
3

5.
83
E
+
2

FI
N
N
[5
3]

Z
C
70
6

1
2.
91
E
+
0

5.
82
E
+
0

98
.4
0

20
0

90
85
.6
7

15
61

8.
80

22
.6

1.
77
E
+
2

6.
91
E
+
1

B
N
N
[3
3]

St
ra
tix

-V
5S

G
SD

8
1

1.
00
E
+
1

2.
00
E
+
1

98
.3
2

15
0

12
21
9.
40

61
0.
36

-
26
.2

-
2.
33
E
+
1

T
N
N
[4
]

K
in
te
x-
7
16
0T

2
1.
99
E
-1

3.
97
E
-1

97
.7
6

20
0

10
1.
28

25
5.
10
2

0.
32

-
7.
97
E
+
2

-

T
N
N
[4
]

K
in
te
x-
7
16
0T

2
1.
72
E
+
0

3.
44
E
+
0

98
.3
3

20
0

87
7.
81

25
5.
10
2

2.
86

-
8.
92
E
+
1

-

[4
2]

Z
C
70
6

3
2.
90
E
+
0

5.
80
E
+
0

98
.9
2

17
2

38
4.
16

66
.2
55

4.
98

11
.4

1.
41
E
+
1

4.
98
E
+
0

T
hi
s
w
or
k

Z
C
U
10
2

1
6.
39
E
-1

2.
77
E
+
1

99
.3
7

30
0

87
10
.2
8

31
4.
82

13
.2
0

39
.3

2.
39
E
+
1

8.
01
E
+
0

T
hi
s
w
or
kD

Te
sl
a
K
80

32
F

6.
39
E
-1

2.
77
E
+
1

99
.4
6

-
23
9.
83

8.
66

27
3.
85

-
3.
16
E
-2

-

T
hi
s
w
or
kP

Te
sl
a
K
80

35
F

6.
39
E
-1

2.
77
E
+
1

99
.4
6

-
10
3.
33

3.
73

19
3.
21

-
1.
93
E
-2

-

D
IB
C
O

T
hi
s
w
or
k

Z
C
U
10
2

4/
8

6.
75
E
-2

1.
35
E
-1

87
.5
4

24
0

36
18
.2
3

6.
53

15
.4
7

43
.6

4.
22
E
-1

1.
50
E
-1

T
hi
s
w
or
kD

Te
sl
a
K
80

32
F

6.
75
E
-2

1.
35
E
-1

88
.0
0

-
31
9.
27

0.
58

24
7.
47

-
2.
34
E
-3

-

T
hi
s
w
or
kP

Te
sl
a
K
80

35
F

6.
75
E
-2

1.
35
E
-1

88
.0
0

-
10
1.
91

0.
18

18
3.
11

-
9.
83
E
-4

-

a i
nd
ic
at
es

nu
m
be
r
of

op
er
at
io
ns

pe
r
28

×2
8
im

ag
e
fo
r
M
N
IS
T,

an
d
nu
m
be
r
of

op
er
at
io
ns

pe
r
pi
xe
lf
or

D
IB
C
O

b
ta
ki
ng

in
to

ac
co
un
t2

8×
28

im
ag
es

in
th
e
ca
se

of
M
N
IS
T,

an
d
64

×6
4
pa
tc
he
s
in

th
e
ca
se

of
D
IB
C
O

D
di
ag
on
al
-w

is
e
or
de
r
of

ex
ec
ut
io
n.

P
pi
xe
l-
by
-p
ix
el
or
de
r
of

ex
ec
ut
io
n.

J Sign Process Syst

Figure 13 Throughput
scalability depending on a
number of PE LSTM and a
number of instances (M) of the
complete accelerator for MNIST
dataset.

Table 3 presents comparison with earlier FPGA imple-
mentations of multilayer perceptron processing MNIST dat-
saset, and our 2D-LSTM implementations for pixel-by-pixel
(P) and diagonal-wise (D) approaches running on GPU for
MNIST and DIBCO 2017 datasets. Our FPGA-based imple-
mentation processing MNIST dataset outperforms all refer-
ence FPGA implementations in accuracy, however it loses to
implementations with similar precision in terms of through-
put and energy efficiency due to several reasons. First of all,
all other implementations use multilayer perceptron mod-
els that have much lower implementation complexity due to
only feed-forward dataflow and low-complexity activation
functions like ReLu or just a step function in the case of
binarized models [53]. In contrast, 2D-LSTM has two recur-
rent paths and multiple non-linear activation functions, and
has to process image in four directions. Additionally, the

implemented architecture follows the pixel-by-pixel order
of execution that has the highest time complexity. Never-
theless, it shows very promising results taking into account
that we did not apply any of the orthogonal approaches for
accelerating 2D-LSTM (Section 3.1).

Our FPGA-based implementation outperforms pixel-
by-pixel and diagonal-wise approaches running on GPU
in terms of throughput by 36-84× and 11-36×, and in
terms of energy efficiency by 429-1238× and 180-756×,
respectively. However, a difference in throughput between
pixel-by-pixel and diagonal-wise GPU implementations is
less than expected (H × W)/(H + W), due to overheard
of picking up pixels from diagonals for diagonal-wise
processing. Additionally, in the case of MNIST dataset, the
batch size for pixel-by-pixel approach was larger than for
diagonal-wise approach (2560 vs. 2048, respectively) due

Figure 14 Throughput
scalability depending on a
number of PE LSTM and a
number of instances (M) of the
complete accelerator for DIBCO
2017 dataset.

J Sign Process Syst

to lower memory overhead that also reduces the speedup of
the later approach. In the case of DIBCO dataset, the batch
size was the same for both implementations. Clearly there is
a big room for optimization. However, even if we consider
perfect speedup with respect to pixel-by-pixel approach, our
FPGA-based implementation still outperforms the perfect
diagonal-wise GPU implementation in terms of throughput
and energy efficiency.

It has been shown that FPGA is a promising computing
platform for deep-learning that achieves higher performance
and energy efficiency in comparison to conventional
platforms. However, even higher levels of efficiency can
be achieved following emerging computing paradigms.
In recent years, new computing approaches have been
proposed targeting much higher energy efficiency and
parallelism than ever before. One such technology is
Processing-in-Memory (PIM).

4 1D-LSTM PIM

The peak performance and energy efficiency of many
advanced neural network accelerators (e.g. LSTM) are
constrained due to limited external memory bandwidth and
high data access energy. PIM is an emerging computing
paradigm that bridges the memory-computation gap by
integrating the computation units inside the memory
device. The tight coupling of memory and computation
logic minimizes the data movement cost, enables the
massive internal data parallelism and results in high energy
efficiency. In this section, we present a novel DRAM based
PIM hardware architecture for binary 1D-LSTM inference.
As an initial step, this work only focuses on implementing
of a 1D-LSTM inference model in a DRAM-based PIM that
will be the base architecture for future variants of LSTM
models, such as MD-LSTM.

4.1 RelatedWork

Recently, there are several research publications on CNN
PIM accelerators that are based on RRAM [8, 10, 50, 57],
SRAM [3, 5, 16, 28, 34] and DRAM [15, 25, 32, 52]
devices. However, a limited number of publications have
focused on RNN PIM accelerators. The authors of [37]
and [35] propose a PIM accelerator for basic RNNs that
are based on SRAM and RRAM, respectively. However,
these works did not consider advanced networks, such as
LSTMs. The authors of [36] extended the work of [35]
for other advanced RNN networks such as LSTMs. The
basic computation unit of this architecture is a vector
multiplication unit that is realized using RRAM crossbar
array. This architecture needs an area, power, and latency
intensive 8-bit analog to digital converter (ADC) in the

Sub-Array (SA). The ADCs increase the area of PIM SAs
by 10× compared to a standard RRAM SA. The ADCs
consumed 43% of the total system power and 49% of the
total chip area, respectively. Another issue of RRAM based
PIM accelerators is the high process variation that affects
the final computation results between the SAs/devices.
Additionally, the RRAM process is not technologically as
mature as SRAMs or DRAMs. On the other side, SRAM
based accelerators have low memory density and are not
suitable for networks with a large memory footprint.

Hence, this paper presents a DRAM based LSTM PIM
accelerator.

4.2 DRAM Basics

In this section, we describe the DRAM architecture and its
functionality in order to provide the required background
to understand our PIM architecture. A DRAM device
is organized as a set of banks that include memory
arrays. Each bank consists of row and column decoders,
Master Wordline Driver (MWLD), and Secondary Sense
Amplifiers (SSAs) (see Fig. 15). The memory array is
designed as an hierarchical structure of SAs (eg. 1024 ×
1024 cells). To access the data from DRAM, an activate
command (ACT) is issued to a specific row, which activates
the associated MWLD and LocalWordline Drivers (LWDs).
This initiates the charge sharing between the memory
cells and the respective Local Bitlines (LBLs), the voltage
difference on each of these LBLs is sensed by the Primary
Sense Amplifiers (PSAs) (e.g. 1024 PSAs) integrated in
each SA. The PSAs are integrated on either sides of a SA
(half the number of PSAs on each side) and are shared
between the two neighbouring SAs. The concurrently
sensed data by the PSAs of all the SA in a block (i.e. row
of SA) creates an illusion of a large row buffer or a page
(e.g. Page size = 1KB). After row activation, read (RD) or
write (WR) commands are issued to specific columns of this
logical row buffer to access the data via Master Datalines
and SSAs. Each column of SAs (CSA) has a separate set
of Master Datalines and SSAs (e.g. 8 per CSAs) that are
shared. Reading or writing the data from/to the PSAs of
a block (or page) is performed in a fixed granularity of
I/O data width×bursts length (e.g. 8×8 = 64 bit in DDR3/4)
and equal amount of data is fetched (e.g. 8 bits for x8 device)
from all the associated SA (e.g. 8 SAs) of a block. In order
to activate a new row in the same bank, a precharge (PRE)
command has to be issued to equalize the bitlines and to
prepare the bank for a new activation.

4.3 Architecture

This section presents the DRAM based 1D-LSTM PIM
architecture in detail. One of the major goals of this

J Sign Process Syst

Ban
ks

Page Size

LWL
Sub Arrays

MWL

PSA

Local Datalines

CSL

Master Datalines

LWL

Transistor

Capacitor

LBL

LBL

Bank 0

Column Decoder & SSA

R
ow

 D
ec

od
er

Memory Arrays

Block

CSA

Figure 15 DRAM architecture.

architecture is to conserve the regular and repetitive
structure of a DRAM bank to benefit from the high
memory density. The computation units should not break
this modularity. The aim is to maximize the data parallelism
and minimize the data transfer cost by integrating the
computation units close to the storage units without
modifying the highly optimized commodity SA. Hence, the
nearest possible location to integrate the computation units
is at the output of the PSA where the data parallelism
is maximum. However, the DRAM architecture and its
process restrict the integration of logic units in this
region i.e. at the output of the PSA due to the following
reasons:

– PSA region has no clocking signals i.e. only combina-
tional logic can be integrated.

– Among the three available metal layers in the DRAM
process one metal layer in this region is utilized for the
LBL of the neighboring SA due to PSA sharing. Hence,
the computation logic will only have two metal layers,
requiring more engineering efforts for floor planning
and routing.

– The width (in μm) of the computational logic is limited
to the SA width in order to conserve the repetitive
structure of a DRAM bank.

Contrarily, integrating the computation logic near the
SSAs do not impose hard design constrains but compro-
mises the parallelism. Hence, our new architecture partition
the computation logic into basic computation units and sec-
ondary processing units (SPU) in order to attain a balance
between parallelism and design constraints of the DRAM
architecture and its process. Only, the basic computation
units are integrated at the output of the PSA in each SA.
The rest of the logic required to process the output of these
basic units are in SPU that is integrated at the output of

the SSAs. The computational hierarchy matches the mem-
ory hierarchy without affecting the structure of the DRAM
bank. The basic computation units are explicitly built using
combinational logic due to lack of clocking signals near the
PSA.

In the following, we first elaborate the micro-architecture
of a basic unit followed by the details of the overall
architecture. The proposed architecture is for a state-of-the-
art commodity 8 Gb x8 DDR4DRAMdevice with 16 banks,
1024 × 1024 SA dimension, 16 SAs per block (8 per Half-
Bank see Fig. 15.), 2 KB page size, 1024 PSAs per SA,
128 master bitlines (eight per SA), and 128 SSAs (eight
per CSA). The architecture is scalable to other dynamic
random access memory (DRAM)s and their technologies.
This architecture targets a binary 1D-LSTM with 1 bit
weight (i.e. logic 0 → +1, logic 1 → −1), 2 bit data and
2 bit activation. The authors of [24] and [48] have shown
that the binary networks have negligible impacts on the
accuracy as compared to full-precision networks for various
applications such as OCR.

4.3.1 Basic Computation Unit

The basic computation unit (i.e. dot-product unit) consists of
N multiplication units and an adder-tree as shown in Fig. 16.
A single multiplication unit for a binary NN is realized using
two XOR gates and a 2s complement converter (as shown
in Fig. 17.). The 2s complement converter is a simple adder
that adds logic 1 to the output of the XOR gates if the sign
of the weight is negative.

The 3-bit output of the multiplication units is fed to an
adder tree that outputs the dot-product result of two 1D-
arrays of dimension N. The value of the N is crucial as it
directly influences the size/depth of the adder-tree and can
potentially blow up the design near the SA.. Hence, based

J Sign Process Syst

on the architectural exploration the value of N is confined to
32 (i.e. 8-bit dot-product result), which also satisfies all the
aforementioned physical implementation constraints.

The architecture specifically stores the weight array (i.e.
W or R) and its corresponding data array (i.e. xt or yt−1) in
different rows of the same SA. felements of the weight array
are aligned column-wise with the corresponding elements of
the data array. For example, the element zero of weight array
has been stored in the same columns of a SA as element
zero of the data array. Hence, 1-bit weights are duplicated
to align with 2-bit data in the column direction. Before
the start of the dot-product computations, the weight array
row is first activated and are accessed by the PSA. These
weights are also buffered in shadow latch (SHL) by enabling
the isolation (ISO) switch. Once the weights are latched
in shadow-latches it is reused for several computations
by changing only the corresponding data in PSAs (i.e.
activation of a new row), refer Fig. 17.

A single SA of a DRAM bank is integrated with 16
basic computation units (i.e. dot-product units). Each of this
unit can only compute the dot-product of the arrays whose
dimension are less than or equal to 32. If the dimensions
of the dot-product operation are larger than 32 then the
dot-product operation is broken down to multiple smaller
dot-products such that it could be mapped to the basic units.
The 8-bit partial dot-product results computed by multiple
basic units are transferred to the SSA region (i.e. same as
read operation) where they are added in the SPU to obtain
the final result of the large dot-product operation. The 8-bit
width of the basic unit output also matches with the DRAM
architecture since the master bitlines connecting a single SA
to the SSAs are also 8-bit wide.

4.3.2 Overall Architecture

Figure 18 shows the architecture of a single bank that is
enhanced with LSTM computation units. The architecture
exploits different levels of parallelism (i.e SA parallelism,
bank parallelism) available in DRAM to achieve high

Figure 16 Dot-Product Unit.

throughput. The computations of each LSTM cell are
mapped to an individual CSA (refer Fig. 15) in a DRAM
bank. Hence, the computations of each LSTM cell are
executed in parallel. For example, a DRAM with 16
banks and 16 CSAs per bank executes a maximum of
256 LSTM cells in parallel. In our architecture, one bank,
called as FC-bank, is reserved for the fully-connected layer
computations. The remaining banks are used for LSTM cell
computations. Hence, the maximum LSTM cells executed
in parallel is 240. This architecture offers flexibility to
configure any bank as FC-bank.

In an individual CSA, the dot-product operations of each
gate of an LSTM cell are mapped to an individual SA or
to a group of SAs. These SAs operate in a pipeline fashion
i.e. while a particular SA is transferring the results of 16
basic units to the SPU unit, another SA belonging to the
same CSA starts its computation by activating (i.e. ACT)
the required rows of that sub-array. The transfer of basic
unit output from the SA to the SSA region is similar to a
read operation. The CSL lines that are used to select the
required burst of data from the currently active row (in the
PSAs) for a read/write operation are also used to select
one of the 16 basic units outputs when a SA is operated in
computation mode. The selected 8-bit data from a SA in
each CSA is then transferred to the respective SSAs/SPU
via the master bitlines. Figure 19 shows the block diagram
of a SPU. The partial dot-product results computed in the
basic computation unit are added using a sequential adder
in the SPU to complete the summation operations of each
LSTM gate (e.g. W ax

t + Ray
t−1 + ba , see Eq. 1). The

sequential adder and the transfer operations are executed in
pipeline manner. Hence, adding only one clock cycle delay
to the overall latency. The intermediate results of each
LSTM gate are stored in a buffer. As the summation result
corresponding to a gate for an instance t is finished, the
dot-product done signal is set high and the result is trans-
ferred to an appropriate activation function (i.e. tanh or
sigmoid). The non-linear activation functions are imple-
mented as a piece-wise linear function similar to [40].
Figure 20. shows the comparison between the actual value
and the hardware implemented piece-wise linear sigmoid
function. Once the activation function outputs at , it ,
f t and ot are computed for a given instance, ct and yt

computations are triggered.
Each of the SPU produces a 2-bit output corresponding to

an LSTM cell. The 2-bit output of all concurrently executed
LSTM cells are concatenated to form the yt output array.
If the LSTM cells are distributed across the banks, each
bank broadcasts its 16 × 2-bit (i.e. 32-bit) result to all other
banks including FC-bank. This architecture does not use
an explicit bus for such broadcasting. It reuses the shared

J Sign Process Syst

Figure 17 Basic unit at the
PSAs.

bus (i.e. 64 bit wide for DDR4) that is used to transfer
the data from the banks to the interface and vice-versa.
Once the yt output array is available in all the banks, it
is written back to the appropriate SAs that are responsible
for the computations of the next instance in each CSA.
Note that the writebacks are concurrent in all the CSAs.
Since the yt is applicable to all the gates of an LSTM cell,
this yt has to be written multiple time to all the memory
locations that are responsible for the respective LSTM gate

computations within the CSA. This writing of the same
data multiple times within the CSA imposes a huge latency.
Hence, the architecture enables multiple CSL lines instead
of only 8 CSLs per CSA. This enables concurrent writes
of the same data to multiple 8-bit word memory locations
in each CSA but at the cost of increased load capacity of
the write drivers. Since the LSTM cells have a maximum of
four gates (including input to a memory cell), the concurrent
write is limited to four memory locations in each CSA,

Figure 18 PIM bank
architecture.

J Sign Process Syst

Figure 19 SPU unit.

which requires an increase in driver strength by 10-15%
only.

Although the architecture considers each CSA as a
parallel entity, the commodity DRAM bank architecture
imposes a major restriction. All the SAs belonging to the
same block (i.e. row of SAs) has to perform the same set of
operations at any given time due to coupling of these SAs
by the MWL and other control lines.

The basic unit computations require activation of rows
and these commands in a DRAM bank corresponds to an
entire block that activates the same row in each SA of that
block. Similarly, transfer of data between the SA and SSAs
involve read and write commands that are applicable for the
entire block i.e. all the SAs in a block are concurrently in
data transfer mode. However, the restriction that imposes
dependency between the CSAs is addressed by mapping and
executing the same processing steps of the respective LSTM
cell in each CSA in a bank.

FC-bank stores the yt results and performs the fully-
connected operations of the previous instance (i.e t − 1)
in parallel with the LSTM cell operations of the current
instance (i.e. t). The same basic units and the sequential
adder in the SPU are sufficient for the fully-connected layer.
The final results of the fully-connected layer are also stored

Figure 20 Actual vs the hardware implemented piece-wise linear
sigmoid function.

in the same bank. The number of dot-product operations
per unit/neuron of the fully-connected layer is less than the
LSTM cell i.e. LSTM cells are more computationally inten-
sive. Hence, the FC-bank finishes its operations before the
availability of yt results of the next instance. This architec-
ture only performs the operations corresponding to the input
layer, hidden layer and fully-connected layer of the LSTM
inference engine. The remaining processing steps like soft-
max and connectionist temporal classification (CTC) are
assumed to be executed in an external processing unit.

4.4 Experimental Setup

This work investigated all the relevant DRAM circuits
(e.g. PSAs) and the aforementioned PIM circuits using the
DRAM architecture exploration tool DRAMSpec [39] and
an adapted UMC 65 nm Low-Leakage CMOS bulk technol-
ogy, respectively. The UMC 65 nm process technology was
modified to emulate a 65 nm DRAM process by changing
the transistor parameters, restricting the number of metal
layers (three metal-layers only), and layout rules, such as the
minimum metal pitch. The area, power, latency results of all
the PIM circuitry are based on the exhaustive circuit level
simulations and the full custom layout implementations that
are done using Cadence Spectre and Virtuoso, respectively.
To retain the modular and regular architecture of commod-
ity DRAMs, the layout confines the total width of the PIM
circuitry integrated near the SA to the width of the SA.

The rest of the DRAM architecture results, including
SAs, SSAs, peripherals circuitry, row and column decoders,
are evaluated with DRAMSpec. All the estimated results
are for the DRAM core clock period of 3ns. The results
obtained from DRAMSpec and the circuit-level simulations
are substituted in the bit-true model of the proposed PIM
architecture to calculate the total area, power consumption,
and performance. Finally, the calculated total area in
65 nm technology is conservatively scaled to a 20 nm
node to make a fair comparison with recent commodity
DRAMs.

4.5 Results

This section presents the experimental results of our DRAM
based PIM implementation. The system performance is
evaluated using the inference of a Bi-LSTM model for
OCR application adapted from [48]. The Bi-LSTM model
is trained for 1-bit weight and 2-bit data/activation that
achieves a classification accuracy of 94% for the same
dataset as used in [48]. The inference of the Bi-LSTM
model is also implemented on Xilinx Zynq UltraScale+
MPSoC ZCU102 board featuring a XCZU9EG device using
the same architecture as in [48]. The FPGA implementation
is used as a baseline for comparison in this paper.

J Sign Process Syst

Table 4 Area comparison of DRAM PIM vs Standard DRAMs

Type Area, [mm2]

Standard DRAM 8Gb 65 nm (Calculated) 207.15

Standard DRAM 8Gb 20 nm (Scaled) 63.73

Standard DRAM 8Gb 20 nm (Samsung-DDR4) [11] 59.00

Standard DRAM 8Gb 21 nm Gen-1 (Hynix-DDR4) [12] 76.0

Standard DRAM 8Gb 21 nm Gen-2 (Hynix-DDR4) [12] 53.6

Standard DRAM 8Gb 18 nm (Micron-DDR4) [13] 58.48

PIM DRAM 8Gb 65 nm (all MAC rows) 385.55

PIM DRAM 8Gb 20 nm (all MAC rows) 118.63

PIM DRAM 8Gb 65 nm (4 MAC rows) 242.69

PIM DRAM 8Gb 20 nm (4 MAC rows) 74.67

4.5.1 Area

We implemented the PIM architecture and designed all
necessary circuits in a 65 nm technology. The obtained die
area results are conservatively scaled to 20 nm in order to
compare it to a state-of-the-art 8 Gb commodity DRAM.
Table 4 shows the calculated area results of a standard
DRAM die and the PIM enhanced DRAM die for a 65 nm
technology and for a scaled 20 nm technology. The scaled
area of a standard DRAM die for 20 nm technology is
comparable to 8 Gb commodity DRAM dice from various
vendors. This shows the correctness of our estimation
methodology.

The presented area results for the PIM enhanced DRAM
are evaluated for two architecture variants, (1) all DRAM
SAs are enhanced with basic computation units (referred as
all MAC rows) (2) limited number of blocks (four in this
case) in each bank are enhanced with basic computation
units (referred as 4 MAC rows). 4 MAC rows are sufficient
to store all the parameters of the specified Bi-LSTM
inference model. However, for the networks with larger
parameter size, the parameters corresponding to initial
timestamps are stored in the available space of 4 MAC
rows. The parameters of the subsequent timestamps are
overwritten on a timely basis that is stored in non-PIM SAs.

Alternatively, a suitable architecture variants like 8 MAC
rows or 16 MAC rows can be chosen at a cost of larger
area.

The 4 MAC rows architecture variant is preferable as it
achieves a high memory density, similar to a commodity
DRAM chip. This architecture variant (i.e 4 MAC rows)
enables the DRAM based PIM chips to be used as both a
conventional memory device and an accelerator.

Such a PIM chip has a total area overhead of 18%
compared to an 8 Gb commodity DRAM. All the evaluation
results presented henceforth are only for the 4 MAC rows
variant.

4.5.2 Power Consumption

The power overhead of NN circuits compared to total
power consumption is only 10%. The remaining power
consumption is due to the conventional DRAM operations
required for the computation. The prime benefit of this
architecture is the low power consumption. The total power
of our PIM implementation is 0.384W, while the FPGA
implementation consumes a power of 19W measured using
Zynq UltraScale+ MPSoC Power Advantage Tool [1]. Only
the FPGA core power is presented not the board power for
a fair comparison.

Table 5 Results of our work against RRAM based LSTM PIM

RRAM-PIM [36] This work

Technology [nm] 28 20

Quantization [bits] 16 2

Dataset HAR Plaintext

Input size 28 32

Number of LSTM cells 128 128

Area overhead [%] ≈50 18

Power [W] 0.6 0.384

Computation efficiency [GOp/s/W] 116.3 3409.28

J Sign Process Syst

4.5.3 Throughput and Energy Efficiency

The throughput of the proposed architecture for the
aforementioned Bi-LSTM inference is 6329113 input layer
columns per second that accounts to 1309.16GOp/s. The
same inference executed on an aforementioned FPGA
results a throughput of 4000GOp/s. Although, the FPGA
based implementation achieves higher throughput, the goal
of our new architecture is mainly to optimize the energy
efficiency, i.e. performance per Watt. The PIM based
implementation is 16.19× more energy efficient compared
to an FPGA based implementation. As there are no prior
publications on DRAM based LSTM PIM, we show for
the sake of completeness the results of this work against
the results of the RRAM based implementation from [36]
(Refer Table 5). Note that, both the systems are designed
for different quantizations and the obtained results are for
different applications. Hence, a fair comparison of these two
works is not possible.

5 Conclusion

We presented two novel hardware architectures for infer-
ence of LSTM neural networks.

First, a hardware architecture for MD-LSTM neural net-
work was presented. We conducted a systematic exploration
of accuracy as a function of hardware cost for various pre-
cisions using Pareto frontier for DIBCO 2017 and MNIST
datasets. It was demonstrated that MD-LSTM achieves
an accuracy that is comparable with state-of-the-art for
MNIST dataset with binary weights and 2-bit activation.
It also approaches best results for DIBCO 2017 dataset
with low bit-width weights and activation. Based on this
new architecture we implemented an FPGA-based accelera-
tor that outperforms NVIDIA K80 GPU implementation in
terms of runtime and energy efficiency. At the same time,
our accelerator demonstrates higher accuracy and compa-
rable throughput in comparison to state-of-the-art FPGA-
based implementations of multilayer perceptron for MNIST
dataset.

Second, we proposed a DRAM based PIM architecture
for 1D-LSTM with binary weights and 2-bit data/activation.
This architecture is explicitly proposed for energy efficient
computing and addressing the memory bound issues of
LSTM networks. One of the major highlights of our
architecture is retaining the regular and repetitive DRAM
structure without compromising the memory density. The
small area overhead (18%) compared to an 8Gb DDR4
DRAM qualifies this architecture to be embedded in
upcoming DRAM devices. The results show that the
PIM implementation is 16.19× more energy efficient as
compared to the FPGA based design. In the future, this work

will be extended to different input data quantizations and
weights, and to MD-LSTM.

We have shown that the new compute paradigm PIM, and
FPGAs are very promising platforms for deep learning that
can offer a solution in cases, where conventional platforms,
such as GPU, fail to provide the necessary performance and
energy efficiency required by the applications.

Acknowledgments This work was initiated in the context of a
cooperation with Huawei. The project OPRECOMP acknowledges the
financial support of the Future and Emerging Technologies (FET)
programme within the European Unions Horizon 2020 research
and innovation programme, under grant agreement No.732631
(http://www.oprecomp.eu). Partially this work was supported by
the InnoProm program of the state Rhineland-Palatinate, Germany.
The training was partly performed on High Performance Computer
’Elwetritsch’ at the TU Kaiserslautern. We also acknowledge Cadence
and Synopsys for the design and evaluation of ASIC circuits.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Zynq UltraScale MPSoC Power Advantage Tool. https://
xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841813/
Zynq+UltraScale+MPSoC+Power+Management.

2. Afzal, M. Z., Pastor-Pellicer, J., Shafait, F., Breuel, T. M.,
Dengel, A., & Liwicki, M. (2015). Document image binarization
using lstm: a sequence learning approach. In Proceedings of the
3rd international workshop on historical document imaging and
processing (pp. 79–84). ACM.

3. Agrawal, A., Jaiswal, A., Roy, D., Han, B., Srinivasan, G.,
Ankit, A., & Roy, K. (2019). Xcel-RAM: accelerating binary
neural networks in high-throughput SRAM compute arrays. IEEE
Transactions on Circuits and Systems I: Regular Papers, 66(8),
3064–3076. https://doi.org/10.1109/TCSI.2019.2907488.

4. Alemdar, H., Leroy, V., Prost-Boucle, A., & Pétrot, F. (2017).
Ternary neural networks for resource-efficient ai applications. In
2017 international joint conference on neural networks (IJCNN)
(pp. 2547–2554). IEEE.

5. Ando, K., Ueyoshi, K., Orimo, K., Yonekawa, H., Sato,
S., Nakahara, H., Takamaeda-Yamazaki, S., Ikebe, M., Asai,
T., Kuroda, T., & Motomura, M. (2018). BRein mem-
ory: a single-chip binary/ternary Reconfigurable in-memory
deep neural network accelerator achieving 1.4 TOPS at 0.6
W. IEEE Journal of Solid-State Circuits, 53(4), 983–994.
https://doi.org/10.1109/JSSC.2017.2778702.

http://www.oprecomp.eu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841813/Zynq+Ult raScale+MPSoC+Power+Management
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841813/Zynq+Ult raScale+MPSoC+Power+Management
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841813/Zynq+Ult raScale+MPSoC+Power+Management
https://doi.org/10.1109/TCSI.2019.2907488
https://doi.org/10.1109/JSSC.2017.2778702

J Sign Process Syst

6. Breuel, T. M. (2015). Benchmarking of lstm networks.
arXiv:1508.02774.

7. Byeon, W., Breuel, T. M., Raue, F., & Liwicki, M. (2015). Scene
labeling with lstm recurrent neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 3547–3555).

8. Chen, X., Zhu, J., Jiang, J., & Tsui, C.Y. (2019). CompRRAE:
RRAM-based convolutional neural network accelerator with
reduced computations through a runtime activation estimation. In
Proceedings of the 24th Asia and South Pacific design automation
conference (pp. 133–139). New York: ASPDAC ’19, ACM.
https://doi.org/10.1145/3287624.3287640.

9. Chen, Y., Krishna, T., Emer, J. S., & Sze, V. (2017). Eyeriss: an
energy-efficient reconfigurable accelerator for deep convolutional
neural networks. IEEE Journal of Solid-State Circuits, 52(1),
127–138. https://doi.org/10.1109/JSSC.2016.2616357.

10. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang,
Y., & Xie, Y. (2016). PRIME: a novel processing-in-memory
architecture for neural network computation in reRAM-based
main memory. In 2016 ACM/IEEE 43Rd annual interna-
tional symposium on computer architecture (ISCA) (pp. 27–39).
https://doi.org/10.1109/ISCA.2016.13.

11. Choe, J. (2017). Samsung 18 nm DRAM cell integration: QPT and
higher uniformed capacitor high-k dielectrics. https://www.techins
ights.com/blog/samsung-18-nm-dram-cell-integration-qpt-and-high-
er- uniformed-capacitor-high-k-dielectrics.

12. Choe, J. (2017). SK hynix’ 21 nm DRAM cell technology: com-
parison of 1st and 2nd generation. https://www.techinsights.com/
blog/sk-hynix-21-nm-dram-cell-technology-comparison-1st-and-
2nd-generation.

13. Choe, J. (2018). Micron’s 1x DRAMs examined. https://www.
eetimes.com/author.asp?section id=36&doc id=1333289.

14. Davidson, B., Kalitzeos, A., Carroll, J., Dubra, A., Ourselin,
S., Michaelides, M., & Bergeles, C. (2018). Automatic cone
photoreceptor localisation in healthy and stargardt afflicted retinas
using deep learning. Scientific Reports, 8(1), 7911.

15. Deng, Q., Jiang, L., Zhang, Y., Zhang, M., & Yang, J.
(2018). DrAcc: a DRAM based accelerator for accurate CNN
inference. In Proceedings of the 55th annual design automation
conference (pp. 168:1–168:6). New York: DAC ’18, ACM.
https://doi.org/10.1145/3195970.3196029.

16. Eckert, C., Wang, X., Wang, J., Subramaniyan, A., Iyer, R.,
Sylvester, D., Blaauw, D., & Das, R. (2018). Neural cache:
bit-serial in-cache acceleration of deep neural networks. In
Proceedings of the 45th annual international symposium on
computer architecture (pp. 383–396). Piscataway: ISCA ’18,
IEEE Press. https://doi.org/10.1109/ISCA.2018.00040.

17. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the
thirteenth international conference on artificial intelligence and
statistics (pp. 249–256).

18. Graves, A. (2012). Supervised sequence labelling. In Supervised
sequence labelling with recurrent neural networks (pp. 5–13).
Springer.

19. Graves, A., Fernández, S., & Schmidhuber, J. (2007). Multi-
dimensional recurrent neural networks. In International confer-
ence on artificial neural networks (pp. 549–558). Springer.

20. Graves, A., & Schmidhuber, J. (2005). Framewise phoneme
classification with bidirectional LSTM and other neural network
architectures. Neural Networks, 18(5-6), 602–610.

21. Han, S., Kang, J., Mao, H., Hu, Y., Li, X., Li, Y., Xie, D., Luo,
H., Yao, S., Wang, Y., & et al. (2017). Ese: efficient speech
recognition rngine with sparse lstm on fpga. In Proceedings
of the 2017 ACM/SIGDA international symposium on field-
programmable gate arrays (pp. 75–84). ACM.

22. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735–1780.

23. Hou, L., Yao, Q., & Kwok, J.T. (2016). Loss-aware binarization of
deep networks. arXiv:1611.01600.

24. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., & Bengio,
Y. (2016). Quantized neural networks: Training neural networks
with low precision weights and activations. arXiv:1609.07061.

25. Jiang, L., Kim, M., Wen, W., & Wang, D. (2017). XNOR-POP: a
processing-in-memory architecture for binary convolutional neu-
ral networks in wide-IO2 DRAMs. In 2017 IEEE/ACM interna-
tional symposium on low power electronics and design (ISLPED)
(pp. 1–6(7)). https://doi.org/10.1109/ISLPED.2017.8009163.

26. Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G.,
Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., & et al.
(2017). In-datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44Th annual international symposium on
computer architecture (ISCA) (pp. 1–12). IEEE.

27. Kalchbrenner, N., Danihelka, I., & Graves, A. (2015). Grid long
short-term memory. arXiv:1507.01526.

28. Kang, M., Gonugondla, S. K., Patil, A., & Shanbhag, N.R.
(2018). A multi-functional in-memory inference processor using
a standard 6T SRAM array. IEEE Journal of Solid-State Circuits,
53(2), 642–655. https://doi.org/10.1109/JSSC.2017.2782087.

29. Kowsari, K., Heidarysafa, M., Brown, D. E., Meimandi, K. J., &
Barnes, L.E. (2018). Rmdl: random multimodel deep learning for
classification. In Proceedings of the 2nd international conference
on information system and data mining (pp. 19–28). ACM.

30. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., & et al.
(1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11), 2278–2324.

31. Leifert, G., Strauß, T., Grüning, T., Wustlich, W., & Labahn, R.
(2016). Cells in multidimensional recurrent neural networks. The
Journal of Machine Learning Research, 17(1), 3313–3349.

32. Li, S., Niu, D., Malladi, K. T., Zheng, H., Brennan, B., &
Xie, Y. (2017). DRISA: a DRAM-based Reconfigurable in-situ
accelerator. In Proceedings of the 50th annual ieee/acm interna-
tional symposium on microarchitecture (pp. 288–301). New York:
MICRO-50 ’17, ACM. https://doi.org/10.1145/3123939.3123977.

33. Liang, S., Yin, S., Liu, L., Luk, W., & Wei, S. (2018). Fp-
bnn: binarized neural network on fpga. Neurocomputing, 275,
1072–1086.

34. Liu, R., Peng, X., Sun, X., Khwa, W., Si, X., Chen, J., Li, J.,
Chang, M., & Yu, S. (2018). Parallelizing SRAM arrays with
customized bit-cell for binary neural networks. In 2018 55Th
ACM/ESDA/IEEE design automation conference (DAC) (pp. 1–6).
https://doi.org/10.1109/DAC.2018.8465935.

35. Long, Y., Jung, E. M., Kung, J., & Mukhopadhyay, S.
(2016). reRAM crossbar based recurrent neural network
for human activity detection. In 2016 international joint
conference on neural networks (IJCNN) (pp. 939–946).
https://doi.org/10.1109/IJCNN.2016.7727299.

36. Long, Y., Na, T., & Mukhopadhyay, S. (2018). reRAM-
based processing-in-memory architecture for recurrent
neural network acceleration. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 26(12), 2781–2794.
https://doi.org/10.1109/TVLSI.2018.2819190.

37. Mathuriya, A., Manipatruni, S., Lee, V., Sumbul, H., Chen,
G., Kumar, R., Knag, P., Krishnamurthy, R., Young, I., &
Sharma, A. (2019). In-memory analog neural cache. http://www.
freepatentsonline.com/y2019/0057304.html.

38. Moysset, B., & Messina, R. (2018). Are 2d-lstm really dead for
offline text recognition? arXiv:1811.10899.

39. Naji, O., Weis, C., Jung, M., & Wehn, N. (2015). Hansson, a.:
a high-level DRAM timing, power and area exploration tool. In
2015 International conference on embedded computer systems:

http://arxiv.org/abs/1508.02774
https://doi.org/10.1145/3287624.3287640
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/ISCA.2016.13
https://www.techinsights.com/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics
https://www.techinsights.com/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics
https://www.techinsights.com/blog/samsung-18-nm-dram-cell-integration-qpt-and-higher-uniformed-capacitor-high-k-dielectrics
https://www.techinsights.com/blog/sk-hynix-21-nm-dram-cell-technology-comparison-1st-and-2nd-generation
https://www.techinsights.com/blog/sk-hynix-21-nm-dram-cell-technology-comparison-1st-and-2nd-generation
https://www.techinsights.com/blog/sk-hynix-21-nm-dram-cell-technology-comparison-1st-and-2nd-generation
https://www.eetimes.com/author.asp?section_id=36&doc_id=1333289
https://www.eetimes.com/author.asp?section_id=36&doc_id=1333289
https://doi.org/10.1145/3195970.3196029
https://doi.org/10.1109/ISCA.2018.00040
http://arxiv.org/abs/1611.01600
http://arxiv.org/abs/1609.07061
https://doi.org/10.1109/ISLPED.2017.8009163
http://arxiv.org/abs/1507.01526
https://doi.org/10.1109/JSSC.2017.2782087
https://doi.org/10.1145/3123939.3123977
https://doi.org/10.1109/DAC.2018.8465935
https://doi.org/10.1109/IJCNN.2016.7727299
https://doi.org/10.1109/TVLSI.2018.2819190
http://www.freepatentsonline.com/y2019/0057304.html
http://www.freepatentsonline.com/y2019/0057304.html
http://arxiv.org/abs/1811.10899

J Sign Process Syst

architectures, modeling, and Simulation (SAMOS) (pp. 149–
156(7)). https://doi.org/10.1109/SAMOS.2015.7363670.

40. Ngah, S., Bakar, R. A., Embong, A., & Razali, S. (2016). Two-
steps implementation of sigmoid function for artificial neural
network in field programmable gate array. In ARPN journal of
engineering and applied sciences.

41. Oord, A. V. D., Kalchbrenner, N., & Kavukcuoglu, K. (2016).
Pixel recurrent neural networks. arXiv:1601.06759.

42. Park, J., & Sung, W. (2016). Fpga based implementation of
deep neural networks using on-chip memory only. In 2016
IEEE International conference on acoustics, speech and signal
processing (ICASSP) (pp. 1011–1015). IEEE.

43. Pham, V., Bluche, T., Kermorvant, C., & Louradour, J. (2014).
Dropout improves recurrent neural networks for handwriting
recognition. In 2014 14th international conference on frontiers in
handwriting recognition. pp. 285–290. IEEE.

44. Pratikakis, I., Zagoris, K., Barlas, G., & Gatos, B. (2017).
Icdar2017 competition on document image binarization (dibco
2017). In 2017 14Th IAPR international conference on document
analysis and recognition (ICDAR). vol. 1, pp. 1395–1403. IEEE.

45. Puigcerver, J. (2017). Are multidimensional recurrent layers really
necessary for handwritten text recognition? In 2017 14Th IAPR
international conference on document analysis and recognition
(ICDAR). vol. 1, pp. 67–72. IEEE.

46. Rastegari, M., Ordonez, V., Redmon, J., & Farhadi, A. (2016).
Xnor-net: Imagenet classification using binary convolutional
neural networks. In European conference on computer vision. pp.
525–542. Springer.

47. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net:
Convolutional networks for biomedical image segmentation.
In International conference on medical image computing and
computer-assisted intervention. pp. 234–241. Springer.

48. Rybalkin, V., Pappalardo, A., Ghaffar, M. M., Gambardella, G.,
Wehn, N., & Blott, M. (2018). Finn-l: library extensions and
design trade-off analysis for variable precision lstm networks
on fpgas. In 2018 28th international conference on field
programmable logic and applications (FPL). pp. 89–897. IEEE.

49. Rybalkin, V., Wehn, N., Yousefi, M. R., & Stricker, D. (2017).
Hardware architecture of bidirectional long short-term memory
neural network for optical character recognition. In Proceedings
of the conference on design, automation & test in Europe. pp.
1394–1399. European Design and Automation Association.

50. Song, L., Qian, X., Li, H., & Chen, Y. (2017). PipeLayer:
a pipelined reRAM-based accelerator for deep learning.
In 2017 IEEE international symposium on high per-
formance computer architecture (HPCA). pp. 541–552.
https://doi.org/10.1109/HPCA.2017.55.

51. Stollenga, M. F., Byeon, W., Liwicki, M., & Schmidhuber, J.
(2015). Parallel multi-dimensional lstm, with application to fast
biomedical volumetric image segmentation. In Advances in neural
information processing systems. pp. 2998–3006.

52. Sudarshan, C., Lappas, J., Ghaffar, M. M., Rybalkin, V.,
Weis, C., Jung, M., & Wehn, N. (2019). An in-DRAM
neural network processing engine. In 2019 IEEE interna-
tional symposium on circuits and systems (ISCAS). pp. 1–5.
https://doi.org/10.1109/ISCAS.2019.8702458.

53. Umuroglu, Y., Fraser, N. J., Gambardella, G., Blott, M., Leong,
P., Jahre, M., & Vissers, K. (2017). Finn: a framework for
fast, scalable binarized neural network inference. In Proceedings
of the 2017 ACM/SIGDA international symposium on field-
programmable gate arrays. pp. 65–74. ACM.

54. Voigtlaender, P., Doetsch, P., & Ney, H. (2016). Handwriting
recognition with large multidimensional long short-term memory
recurrent neural networks. In 2016 15th international conference
on frontiers in handwriting recognition (ICFHR). pp. 228–233.
IEEE.

55. Wenniger, G. M. D. B., Schomaker, L., & Way, A. (2019).
No padding please: efficient neural handwriting recognition.
arXiv:1902.11208.

56. Xu, C., Yao, J., Lin, Z., Ou, W., Cao, Y., Wang, Z., & Zha,
H. (2018). Alternating multi-bit quantization for recurrent neural
networks. arXiv:1802.00150.

57. Yu, S., Li, Z., Chen, P., Wu, H., Gao, B., Wang, D., Wu, W.,
& Qian, H. (2016). Binary neural network with 16 Mb RRAM
macro chip for classification and online training. In 2016 IEEE
international electron devices meeting (IEDM). pp. 16.2.1–16.2.4.
https://doi.org/10.1109/IEDM.2016.7838429.

58. Zhou, S., Wu, Y., Ni, Z., Zhou, X., Wen, H., & Zou, Y. (2016).
Dorefa-net: training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv:1606.06160.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Vladimir Rybalkin received
his Master’s degree in Electri-
cal and Computer Engineering
from University of Kaiser-
slautern, Germany, in 2014.
Currently, he is a research
associate doing a PhD in
Microelectronic Systems
Design Research Group at
the University of Kaiser-
slautern. His research interests
lie in hardware accelera-
tion for applications ranging
from financial computations
and big data algorithms to
machine learning and deep

learning algorithms for hand gesture recognition, historical document
analysis, and medical applications. The main focus of his research
is given to designing efficient hardware architectures for recurrent
neural networks.

Chirag Sudarshan received
his Master’s (2017) degree in
Electrical and Computer Engi-
neering from the University
of Kaiserslautern, Germany.
He is working towards the
PhD degree with the Micro-
electronic Systems Design
Research Group, in the same
university. His research inter-
ests are DRAM architecture,
Process-in-Memory, DRAM
controllers, and emerging
memory technologies.

https://doi.org/10.1109/SAMOS.2015.7363670
http://arxiv.org/abs/1601.06759
https://doi.org/10.1109/HPCA.2017.55
https://doi.org/10.1109/ISCAS.2019.8702458
http://arxiv.org/abs/1902.11208
http://arxiv.org/abs/1802.00150
https://doi.org/10.1109/IEDM.2016.7838429
http://arxiv.org/abs/1606.06160

J Sign Process Syst

Christian Weis received the
Ph.D. degree in electrical
engineering from the TU
Kaiserslautern, Germany, in
2014. From 1996 to 1998, he
was with Mitsubishi Semi-
conductor Europe, Germany,
where he was engaged in
the design and development
of microcontrollers. From
1998 to 2009, he was with
Siemens Semiconductor,
Infineon Technologies AG
and Qimonda AG, Munich,
Germany, in DRAM design.
During this time frame, he

was involved in DRAM design for graphics and commodity DRAM
products. In 2006, he was a Design Team Leader for the 1Gb DDR3
DRAM, the first DDR3 volume product at Infineon/Qimonda. Since
2009, he has been with the Microelectronic System Design Research
Group, TU Kaiserslautern, Germany. He holds several patents related
to DRAMs and DRAM design, and published more than 60 papers.
His current research interests include DRAM controller design, Near-
& In-Memory processing, 3D-integrated DRAMs, heterogeneous
memory architectures, and MPSoCs.

Jan Lappas received the
Master’s degree in electrical
engineering from the Uni-
versity of Kaiserslautern,
Germany, in 2017. Since 2017
he is a researcher in the Micro-
electronic Systems Design
Research Group in the Electri-
cal and Computer Engineering
department of the Univer-
sity of Kaiserslautern. His
research interest are design
automation of analog-mixed
signal designs, modelling of
memory systems as well as
in-memory processing.

Norbert Wehn holds the
chair for Microelectronic Sys-
tem Design in the department
of Electrical Engineering and
Information Technology at the
University of Kaiserslautern.
He received his Diploma and
PhD from the TU Darmstadt
in Germany. He is associate
editor of various journals and
member of several scientific
industrial advisory boards.
He has more than 350 pub-
lications in various fields of
microelectronic system design
and holds 20 patents. His

special research interests are VLSI-architectures for mobile commu-
nication, forward error correction techniques, low-power techniques,
advanced SoC and memory architectures, 3D integration, reliability
issues in SoC, IoT and hardware accelerators for machine learning.

Li Cheng received the B.S.
degree in physics and the
Ph.D. degree in electronics
from University of Science
and Technology of China, in
2013 and 2018, respectively.
He is currently working as an
Electronic Design Engineer at
Huawei Technologies Co.,Ltd.
His current interests include
the design of processing in
memory architecture and neu-
ral network computing accel-
eration.

J Sign Process Syst

Affiliations

Vladimir Rybalkin1 · Chirag Sudarshan1 · Christian Weis1 · Jan Lappas1 · Norbert Wehn1 · Li Cheng2

Chirag Sudarshan
sudarshan@eit.uni-kl.de

Christian Weis
weis@eit.uni-kl.de

Jan Lappas
lappas@eit.uni-kl.de

Norbert Wehn
wehn@eit.uni-kl.de

Li Cheng
licheng56@huawei.com

1 Technische Universität Kaiserslautern, Kaiserslautern, Germany
2 Huawei Technologies Co., Ltd., Chengdu, China

http://orcid.org/0000-0002-0926-6062
mailto: sudarshan@eit.uni-kl.de
mailto: weis@eit.uni-kl.de
mailto: lappas@eit.uni-kl.de
mailto: wehn@eit.uni-kl.de
mailto: licheng56@huawei.com

	Efficient Hardware Architectures for 1D- and MD-LSTM Networks
	Abstract
	Introduction
	Background
	1D-LSTM
	MD-LSTM

	MD-LSTM
	Related work
	Application
	Optimization
	Architecture

	Training
	MNIST
	DIBCO 2017

	Quantization
	Architecture
	Results
	Full-Precision Accuracy
	MNIST
	DIBCO
	Accuracy vs. Hardware Cost vs. Precision
	MNIST
	DIBCO
	Throughput Scalability
	Comparison

	1D-LSTM PIM
	Related Work
	DRAM Basics
	Architecture
	Basic Computation Unit
	Overall Architecture

	Experimental Setup
	Results
	Area
	Power Consumption
	Throughput and Energy Efficiency

	Conclusion
	References
	Affiliations

