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Predicting the martensite content of metastable austenitic steels
after cryogenic turning using machine learning
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Abstract
During cryogenic turning of metastable austenitic stainless steels, a deformation-induced phase transformation from γ-austenite
to α’-martensite can be realized in the workpiece subsurface, which results in a higher microhardness as well as in improved
fatigue strength and wear resistance. The α’-martensite content and resulting workpiece properties strongly depend on the
process parameters and the resulting thermomechanical load during cryogenic turning. In order to achieve specific workpiece
properties, extensive knowledge about this correlation is required. Parametric models, based on physical correlations, are only
partly able to predict the resulting properties due to limited knowledge on the complex interactions between stress, strain,
temperature, and the resulting kinematics of deformation-induced phase transformation. Machine learning algorithms can be
used to detect this kind of knowledge in data sets. Therefore, the goal of this paper is to evaluate and compare the applicability of
three machine learning methods (support vector regression, random forest regression, and artificial neural network) to derive
models that support the prediction of workpiece properties based on thermomechanical loads. For this purpose, workpiece
property data and respective process forces and temperatures are used as training and testing data. After training the models
with 55 data samples, the support vector regression model showed the highest prediction accuracy.
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1 Introduction

The surface morphology of a component is significantly in-
fluenced by the characteristics of the manufacturing process
and has a decisive impact on the application behavior of the
component [1, 2]. In order to tailor the surface morphology of
a component to the demanded requirements, extensive knowl-
edge regarding the causal correlations between the input var-
iables of the manufacturing process, the acting mechanical,
chemical and thermal loads, and their impact on the material
properties is essential [3]. Especially for small batch sizes, the
determination of suitable process parameters for new
demanded requirements tends to be expensive due to a high
number of required experiments. In this context, the applica-
tion of machine learning can help to decrease the required
amount of expensive experimental investigations. The

presented case study on cryogenic turning focuses on the pre-
diction of the martensite content generated during the process,
which is decisive for the surface layer hardening.

1.1 Cryogenic turning of metastable austenitic
stainless steels

During the cryogenic turning of metastable austenitic steels, a
hardening of the subsurface material can be achieved which is
caused by strain hardening mechanisms and deformation-
induced phase transformation from metastable γ-austenite to
ε- and α’-martensite. Hence, this finishing process allows to
integrate surface layer hardening into the machining process
and thus renders a separate hardening process such as shot
peening obsolete, depending on the requirements on the com-
ponent surface [4, 5]. It has already been proved that the wear
resistance [6] and the fatigue strength [7] of stainless steel
components manufactured in this way can be increased. The
deformation-induced phase transformation and the resulting
increase in microhardness are favored by low temperatures
and increasing plastic deformation [8, 9]. During cryogenic
turning, a pronounced plastic deformation can be achieved
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in the workpiece subsurface by applying high process forces,
which can be realized by turning with high feed rates and the
usage of tools with heavily chamfered or rounded cutting
edges [10, 11]. Low temperatures can be ensured when turn-
ing with low cutting speeds and applying cryogenic coolants
[12]. The impact of different input variables like the cutting
paramete r s [13] or the tool proper t i e s [14] on
thermomechanical load and the resulting α’-martensite con-
tent ξm and the microhardness is already well investigated.
However, due to the complex interactions between the stress,
strain, and temperature which are distributed inhomogenously
depending on time and position and the resulting α’-martens-
ite content ξm [15, 16], these correlations can only partially be
determined with parametric models which are based on mate-
rials science fundamentals [17, 18]. Quantified models enable
the indirect in-situ measurement of the α’-martensite content
bymeasuring the process forces and the temperature. This soft
sensor would allow the development of a closed-loop process
control for the robust manufacture of stainless steel compo-
nents with predefined surface morphologies [19, 20]. For
these purposes, machine learning provides suitable data-
based prediction methods.

1.2 Machine learning in context of manufacturing
processes

Machine learning is one of the fundamental methods of arti-
ficial intelligence, which includes methods that allow to pro-
gram computers in a way that they can learn from training
data. That means, particular algorithms learn from a training
data set and are able to apply the derived knowledge to data
sets they have not handled before. This is also known as the
process of converting experience into expertise. Machine
learning can be grouped into three different learning catego-
ries: unsupervised learning, reinforcement learning, and su-
pervised learning [21].

Unsupervised learning is mainly used in case a data set has
no specific output value. In unsupervised learning, the algo-
rithms try to reveal similarities or correlations between the
input data. The algorithm categorizes data which has some-
thing in common with regard to a specific attribute [22].
Concerning reinforcement learning an algorithm or agent pro-
duces a sequence of actions. These actions cause a change in
an environment which results in a reward or punishment. The
goal for the algorithm is to maximize the utility over time; i.e.,
the agent has to “try out” different strategies to maximize its
utility [23].

By using supervised learning, a training data set with input
values (features) and corresponding output values (labels) is
taken as a basis. An algorithm generalizes the connections and
predicts the output when using other input data sets, the so-
called test set. Supervised learning is also known as learning
from examples [22]. The primary aim of supervised learning

is therefore to maximize the accuracy of this prediction.
Popular examples using supervised learning algorithms are
spam filtering, face and speech recognition, machine transla-
tion, robot motion, or data mining [24]. These examples are
either a task of data classification [22] or finding a function of
a specific data set via regression [23]. An algorithm for solv-
ing a classification problem considers a data set (input vectors)
and decides which of them belong to a specific class based on
the training data set. The main aspect to point out regarding
classification problems is the data discreteness; i.e., one ex-
ample is typically part of one class and classes cover the entire
output space [22]. Contrary to this, an algorithm for solving a
regression problem generally handles continuous data.
Different types of regression methods exist, addressing differ-
ent forms of the fitted function: simple linear regression, mul-
tiple linear regression, or non-linear regression.

Wuest et al. give an overview of applications with regard to
the different machine learning categories and consider super-
vised learning as the predominantly relevant method in
manufacturing [25].Widely usedmachine learning techniques
following the supervised learning approach are for instance
support vector machines, random forest algorithms, or artifi-
cial neural networks. Support vector machines (SVM) are
useful for multidimensional regression problems. Support
vector regression (SVR) uses a kernel function to map the
problem from its original dimensionality to a higher dimen-
sional space. The SVM algorithm finds the single hyperplane
with maximum margins separating, e.g., two data sets [26].
Applications of SVM in machining are, e.g., given by Çaydaş
et al. who compared artificial neural networks (ANNs) and
SVR for surface roughness prediction in turning [27].
Yeganefar et al. applied ANN and SVR to predict and opti-
mize surface roughness and cutting forces in milling [28].
Remesan et al. applied SVM for classification of thermal error
in machine tools [29]. ANN are networks of perceptrons,
which consist of a set of input nodes, (McCulloch-and-
Pitts)-neurons and a weighted connection between input
nodes and neurons. If more than one layer of neurons is used,
the network is referred to as multi-layer perceptron (MLP)
[22]. ANNs are widely used for the prediction of workpiece
properties for machining: for instance, Das et al. examined the
impact of different factors on the martensite content, i.e. stress,
strain, temperature, chemical composition, and grain size,
concluding that especially the applied stress and the tempera-
ture had the greatest impact on deformation-induced phase
transformation [30, 31]. For this purpose, an ANN is used to
solve the regression problems of martensite content within
metal microstructures.

Random forest (RF) algorithms are defined as methods that
build up a group of tree-structured classifiers with independent
identically distributed random vectors. To find the most popular
class at a certain input, each tree casts a unit vote [32]. RF are
used, e.g., in condition monitoring of belt grinding [33], in
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quality assessment of resistance spot welding [34], or in
microfabrication processes of stents in medical technology [35].

The predictions of these regression algorithms problems
can suffer from overfitting, i.e., the model learned the data
course of the given data set but not the relationship among
the variables, which is why it would not been usable for un-
seen data sets [23]. The problem of overfitting is especially
relevant while handling small data sets. Increasing the size of
the data set is a possible measure to tackle this kind of prob-
lem. However, in the manufacturing domain, this is not al-
ways suitable. For example, the generation of a high amount
of data can be hampered by costly experiments or small batch
sizes. Besides adding more data, several methods to structure
the training process can be used to lower the danger of
overfitting: The test set method splits the data into training
set and a test set. The model is trained using the training data
set, and the performance is tested using the test data set. Other
popular methods are the leave-one-out cross validation or the
k-fold cross validation [23].

1.3 Research gap

Cryogenic turning enables to shorten process chains by com-
bining the process of turning and subsequent heat treatment.
However, current models can only partly describe the func-
tional relationship between process parameters (e.g., forces
and temperatures) and the resulting α’-martensite content that
largely defines the resulting microhardness. Methods of ma-
chine learning are increasingly used in manufacturing to learn
functional and often hidden knowledge from data sets. In the
case of cryogenic turning, these methods bear potential to
derive models from existing experimental data. This can be
the foundation for improved predictions of the workpiece
properties. Despite this potential, it is an open research ques-
tion how the selection and configuration of suitable machine
learning algorithms need to be carried out in order to deliver a
high prediction accuracy in this specific use case.

To address this question, this paper is structured as follows:
Section 2 describes the experimental setup that was used to
generate a set of data, which is described in Section 3.
Afterwards, the three machine learning algorithms are trained
to model the relationship between the measured process data
and the resulting α’-martensite content ξm (Section 3.2). The
prediction performance of the respective models is compared
in Section 3.3. Section 4 summarizes the findings and closes
with an outlook on future investigations.

2 Experimental setup

The workpieces were turned on a CNC lathe to a final diam-
eter of 14 mm over a feed travel of 18 mm. All experiments
were conducted on one batch of metastable austenitic stainless

steel AISI 347, because varying chemical composition and
grain size influences the austenite stability [8, 37] and hence
the amount of deformation-induced α’-martensite generated
during cryogenic turning [38]. Bi-phase cryogenic CO2 was
supplied with a total mass flow of 3.5 kg/min with a nozzle
position that ensures a high cooling efficiency according to
Becker et al. [39] (see Fig. 1a). A low cutting speed of 30 m/
min and depth of cut of 0.2 mm were chosen, because these
parameters ensure a low thermal load and thus a comprehen-
sive phase transformation in the workpiece subsurfaces.
Besides these constant cutting parameters, the feed rate, and
the duration of precooling were varied in order to manipulate
the thermomechanical load and hence the resulting α’-mar-
tensite content ξm. Cemented carbide inserts with the specifi-
cation DNMA150416 were used. The cutting edge geometry
and the tool coating were varied to further manipulate the
thermomechanical load. The process forces were measured
with a 3-component dynamometer. The temperature was mea-
sured with thermocouples inside the workpieces at a distance
of 1 mm from the surface. A rotating radio unit which was
clamped between the chucks was used to transfer the informa-
tion to a computer. While these measurements do not take an
inhomogeneous distribution of stress and temperature into ac-
count (see Fig. 1b), they give a good indication of the overall
thermomechanical load acting in the workpiece subsurface
during cryogenic turning. The α’-martensite content ξm was
measured after the experiments with a magnetic sensor. This
well-established integral measurement method also does not
consider the phase distribution as a function of the distance
from the surface but allows a fast and non-destructive estima-
tion of the extent of the phase transformation [40–43].

3 Machine learning analysis

In this section, the performance of three machine learning
algorithms to predict the α’-martensite content ξm based on
the experimental data is analyzed.

3.1 Resulting data

The previously conducted experiments (see Hotz et al. [36] for
more information) led to a data set with 55 instances, each
containing four features (passive force Fp, cutting force Fc,
feed force Ff, temperature T) and one label (α’-martensite
content ξm). Figure 2 depicts the correlations of the respective
features with respect to ξm in a scatter plot. The α’-martensite
content ξm of the cryogenically turned workpieces was be-
tween 2.1 vol.-% and 12.4 vol.-%, representing a wide range
of subsurface states. The measured values are in agreement
with previous investigations ([10, 14]). As the figure reveals,
trends can be seen regarding the influence of cutting force,
passive force, and temperature on deformation-induced phase

751Int J Adv Manuf Technol (2021) 115:749–757



transformation. However, significant scatter can be observed.
It can be assumed that this is a result of the fact that
deformation-induced formation of α’-martensite cannot be
explained solely by the mechanical or thermal load, but only
by their superposition. To quantify the correlation intensity,
the Pearson correlation coefficient r between each of the fea-
tures and the label ξm is calculated. The cutting force shows
the highest correlation with a value of 0.726, followed by the
passive force (0.680) and then the temperature (− 0.628)
which shows a negative trend as opposed to the other param-
eters. The feed force displays the minimum correlation coef-
ficient (0.107) among the parameters. After investigating the
correlations, three machine learning models were trained,
which is described in the next subsection.

3.2 Machine learning analysis

The described problem can be interpreted as a regression
problem. Furthermore, each feature vector in the data set

contains a respective label (α’-martensite content ξm), thus
supervised learning can be applied. There is no general ap-
proach that fits all supervised regression problems best, since
every machine learning problem can be considered to be
unique due to varying data set sizes, correlations, and feature
characteristics. A common approach to find suitable machine
learning models is to train and evaluate several machine learn-
ing regression methods with the goal of choosing the model
that fits the real observations best. Firstly, to analyze the cor-
relation characteristics in the data, a polynomial regression
was performed with an 80 to 20 ratio between train and test
data set. For this regression, L1 regularization (“lasso”) was
applied to limit the complexity of the resulting model and to
prevent overfitting. Root-mean-square error (RMSE) was se-
lected as the corresponding loss function within the regulari-
zation. Figure 3 plots the resulting RMSE values that were
achieved with polynomial regression models with varying de-
grees. As the figure indicates, the lowest RMSE results from a
polynomial with a degree of 3. However, this RMSE of

Fig. 2 Scatter plots between the
features and the α’-martensite
content ξm including the
respective correlation coefficients
r

Fig. 1 a Experimental setup according to Hotz et al. [36]. b Schematic illustration of the deformation-induced phase transformation during cryogenic
turning of metastable austenitic stainless steels according to Mayer et al. [13]
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approximately 12.4% is considered too large to allow suitable
predictions of material properties.

Polynomial regression revealed that the correlation be-
tween ξm and the measured process is characterized by non-
linearities. Therefore, to derive models with a higher predic-
tion accuracy, three major supervised learning algorithm clas-
ses that proved their applicability in previous studies (see
Section 1.2) were considered for further analyses: SVM, RF,
and ANN.

As the data set contains a comparably small number of
instances, special attention had to be given to prevent
overfitting. For this purpose, randomized sub-sampling (also
known as Monte Carlo cross-validation) was used as the
cross-validation method. This method was selected over k-
fold cross validation, since randomized sub sampling does
not affect the resulting ratio between training and testing set
size. In consequence, this split ratio could be chosen indepen-
dently. The data set is randomly split into sub-samples, of
which the size can be chosen freely as opposed to k-fold cross
validation [29]. According to the definition of randomized
sub-sampling, 10 different randomized data set splits were
created (see example in Fig. 4).

The same set of 10 randomized splits was then used for
training within each algorithm class type. A train-test ratio of
80 to 20% was selected, so all randomized splits contained 44

training and 11 testing instances. For each of the three algo-
rithms, a range of algorithm-specific hyperparameters was iter-
atively varied for the training processes: The small data set and
the small number of hyperparameters being selected for optimi-
zation in each algorithm encouraged an exhaustive search or
grid search over the selected hyperparameter space. The set of
hyperparameters to be searched over for such an optimization
was created by iteratively traversing over all possible
hyperparameters or hyperparameter combinations over the giv-
en hyperparameter ranges, as described in Feurer et l. [44]. This
grid search approach is suitable for smaller scale problems and
has the advantage that all possible hyperparameter combina-
tions are evaluated exhaustively.

For each iteration, the prediction accuracy was evaluated
using the arithmetic mean of the RMSE of the prediction of ξm
over all 10 trained models. Afterwards, the hyperparameters
that yielded the lowest RMSE values for each algorithm were
selected. Additionally, all analyses were performed with as
well as without considering the feed force Ff. This was done
because reducing the number of features can help to prevent
overfitting [45]. Furthermore, Ff showed a weaker correlation
with ξm than Fc and Fp. Finally, the results of all three algo-
rithms were compared using RMSE and the coefficient of
determination R2 as performance indicators, calculated on
the test set. The overview of the approach is shown in Fig. 5.

Fig. 3 Polynomial regression
results

Fig. 4 Randomized sub-sampling
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3.2.1 Support vector regression

The SVR module of the Python library scikit-learn [46] was
applied for the analysis. Radial basis function (RBF) was cho-
sen as the kernel function which in turn uses the Gaussian
kernel as the kernel function. Using this kernel is common
practice in cases of SVR. Since SVM algorithms are not scale
invariant, the data was initially standardized.

For tweaking the hyperparameters, the kernel width σ and
the regularization parameter C were varied. The other two
hyperparameters, namely, the tolerance tol and the epsilon
value ε were considered as default (tol = 0.001; ε = 0.1). The
selected hyperparameters as well as the impact on RMSE and
R2 is shown in Table 1. σ was varied from a range of 0.14 to
1.6 with a step of 0.001, and C was varied from a range of 0.6
to 3 with a step of 0.001.

3.2.2 Random forest regression

The RF algorithm was implemented using the Python library
scikit-learn. The maximum number of trees ntrees and the max-
imum depth of the forest dmax were varied to find the best
hyperparameters. ntrees was iterated over in the range of 1 to
200, and a depth equal to the number of features was chosen
depending on the data set. The resulting hyperparameters as
well as the corresponding results are shown in Table 2.

3.2.3 Artificial neural network

Furthermore, a MLP regression model was trained by
implementing a three-layer MLP using the Python library
keras [47]. The neurons in the input layer represent the fea-
tures (Fc, Fp, T, and Ff in case of its consideration). They are
connected to the neurons in the hidden layer that are assigned
with a tanh activation function. Figure 6 depicts the architec-
ture of the MLP.

The output layer neuron that yields the α’-martensite con-
tent ξm is activated by a rectified linear unit (ReLU) function.
Several network architectures were evaluated by varying the
number of hidden layer neurons from 10 to 100 in steps of 1.
In case of Ff consideration, 35 hidden layer neurons were
used, while 25 neurons were applied when Ff was neglected.
The hyperparameter nEpochs, signifying the number of itera-
tions used for training the MLP, was changed over values

Fig. 5 Overview of the approach

Table 1 Hyperparameters and results for SVR

Hyperparameters Results

Ff included? σ C RMSE R2

Yes 0.14 1.715 0.836 99.21%

No 0.20 2.998 1.094 89.12%
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ranging from 500 to 5000 in steps of 50 epochs. The resulting
minimum RMSE and the respective nEpochs are tabulated in
Table 3. In this context, an epoch refers to one complete iter-
ation over the entire train set which is fed to the network in a
batch-wise manner. The batch size employed was 1 due to the
small size of the data set. Values bigger than 5000 did not lead
to better results, which led to the chosen interval. The opti-
mizer used in both cases (with and without Ff) was Adam.
Adam is a first-order gradient-based optimization algorithm
mainly used for stochastic objective functions. The function
principle of Adam is to minimize the training loss function by
reducing the magnitude of the 1st order gradient to moving it
towards zero. Based on this computation, the weights of the
MLP are adjusted. Adam is considered to be very economical
with regard to memory utilization and is one of the most wide-
ly used optimization algorithms in ANNs [48]. The loss func-
tion was the mean squared error (MSE). Table 3 lists the
results for the ANN analysis.

3.3 Comparison of results

Figure 7 shows the results of all three algorithms. Overall,
SVR that incorporates Ff provides the smallest RMSE value
and the biggest coefficient of determination, so it delivers the
best accuracy. The accuracy of ANN is slightly lower, while
RF yields the least accurate results. It can be seen that consid-
ering Ff helps to generally achieve smaller RMSE values.

Also, R2 is decreased in all algorithms when considering Ff.
In case of ANN, R2 is likely to increase in case of increased
data set size. The fact that including Ff improves the RMSE
and R2 values lead to the conclusion that this force also has
some importance when estimating the α’-martensite content
ξm, although it is rather small in comparison to Fc and Fp.
However, it is conceivable that the increase in Fp and Fc are
of greater significance to the deformation-induced phase
transformation, because these greater forces cause more defor-
mation in the workpiece subsurface. This is also indicated by
their higher correlation to the α’-martensite content ξm (see
Fig. 2).

Regarding computational efforts for 10 iterations, SVR
training required the least computing time (18 ms). RF needed
790 ms for training (ntrees = 200), while the ANN required
9 min and 46 s (nEpochs = 2000).

4 Conclusions and future work

Cryogenic turning of metastable austenitic stainless steels al-
lows to integrate the processes of turning and surface layer
hardening. In order to manufacture components with defined
properties, extensive process knowledge regarding the corre-
lations between input variables, thermomechanical load, and
subsurface properties is required. In this work, three machine
learning algorithms (SVR, RF, and ANN) were trained and
their ability to predict the α’-martensite content as a function
of the thermomechanical load was evaluated. The results in-
dicate that in the described case of a low amount of available
data (55 instances), SVR provides the most accurate results in
terms of RMSE and R2. Randomized sub sampling was found
to be a suitable technique to prevent the common risk of
overfitting during training. Therefore, this approach can be
adapted to other scenarios with small amounts of training data,
which is rather common in industrial applications.

With the investigated correlations, it is now possible to
determine theα’-martensite content already duringmachining
bymeans of an indirect measurement of the process forces and
the temperatures. Thus, when monitoring variations in the
thermomechanical load, which can be caused by disturbance
variables such as tool wear, a soft sensor based on the trained
models now allows to estimate how this will impact theFig. 6 MLP Architecture

Table 2 Hyperparameters and results for RF Regression

Hyperparameters Results

Ff included? ntrees dmax RMSE R2

Yes 53 4 1.265 88.62%

No 19 3 1.289 88.52%

Table 3 Hyperparameters and results for Multi-layer Perceptron

Hyperparameters Results

Ff included? nEpochs Hidden layer neurons RMSE R2

Yes 3000 35 1.114 70.78%

No 2000 25 1.162 64.05%
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Fig. 7 Overview of the results of
the machine learning analysis
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resulting α’-martensite content. Future investigations aim at
developing a process control, which aims at ensuring the robust
manufacture of workpieces with defined subsurface properties,
despite the occurrence of disturbance variables. Necessities for
developing such a process control on the one hand are the
correlations between the thermomechanical load and the α’-
martensite content, which was demonstrated in this study. The
other prerequisite to this approach are correlations between the
input machining parameters and the thermomechanical load,
which were investigated in previous studies (e.g., [13] and
[14]). As both correlations have now been investigated, the next
step is the combination of these models and the development
and implementation of a soft sensor-based control loop that can
be used in industrial applications.
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