On Learning and Co-learning
of Minimal Programs

Sanjay Jain
Department of Information Systems and Computer Science
National University of Singapore
Singapore
sanjay@iscs.nus.sg

Efim Kinber
Department of Computer Science
Sacred Heart University
5151 Park Avenue
Fairfield, CT 06432-1000
kinber@shu.sacredheart.edu

Rolf Wiehagen
Fachbereich Informatik
Universitat Kaiserslautern
P. O. Box 3049
D-67653 Kaiserslautern, Germany
wiehagen@informatik.uni-kl.de

Abstract

Freivalds, Karpinski and Smith [8] explored a special type of learn-
ing in the limit: identification of an unknown concept (function) by
eliminating (erasing) all but one possible hypothesis (this type of learn-
ing is called co-learning). The motivation behind learning by erasing
lies in the process of human and automated computer learning: often
we can discard incorrect solutions much easier than to come up with the
correct one. In Godel numberings any learnable family can be learned
by an erasing strategy. In this paper we concentrate on co-learning
minimal programs. We show that co-learning of minimal programs,
as originally defined is significantly weaker than learning minimal pro-
grams in Godel numberings. In order to enhance the learning power

of erasing strategies, we generalize the concept of co-learning in two
directions. Firstly, we consider learning by erasing all programs, but
a few correct ones. Secondly, we consider learning by erasing some
incorrect programs only, including all programs that are shorter than
the minimal one. We show that each of these types of co-learning min-
imal programs is considerably more powerful than erasing all but the
minimal program. We also exhibit various relationships and differences
between these types of co-learning minimal programs. In particular,
we explore these types in Kolmogorov numberings that can be viewed
as “natural” Godel numberings of partial recursive functions.

1 Introduction

In [8] Freivalds, Karpinski and Smith explored a special type of learning
in the limit: identification of an unknown concept (function) by eliminat-
ing (erasing) all but one possible hypothesis (CoAll in our notation). The
motivation behind learning by erasing lies in the process of human and au-
tomated computer learning: often we can discard incorrect solutions much
easier than to come up with the correct one. However, if all incorrect so-
lutions have been successfully discarded, one can easily solve the problem
just picking any conjecture that has been left. The version of learning re-
cursive functions by erasing (referred thereafter as co-learning) suggested
in [8] (erasing all but one conjecture) turned out to be significantly more
restrictive than learning in the limit for special computable non-Gédel num-
berings of partial recursive functions. However, in G6del numberings any
learnable family can be learned by an erasing strategy (co-learned). One can
consider co-learning in a broader sense, when some or all correct programs
of the unknown function are not being erased [13], however, in the light of
abovementioned observation, it does not increase the power of co-learning.

In this paper we concentrate on co-learning minimal programs and learn-
ing minimal programs by strategies that result from co-learning. We show
that co-learning of minimal programs, as originally defined in [8], is signifi-
cantly weaker than learning minimal programs even in Godel numberings. In
order to enhance the learning power of erasing strategies, we generalize the
concept of co-learning in two directions. Firstly, we allow the learning strat-
egy to possibly not cancel out more than one of the programs for the input
function, but we still require the strategy to cancel all incorrect programs
of that function (CoSuper in our notation). Secondly, we observe learning
by erasing some incorrect programs only, including all programs that are

shorter than the minimal correct one (CoSub in our notation). We show
that each of those types of co-learning minimal programs is considerably
more powerful than erasing all but the minimal program. Then we exhibit
various relationships and differences between these two types of co-learning
minimal programs and give some examples of classes co-learnable within
each of those paradigms. In particular, we explore co-learning of both types
in Kolmogorov numberings that can be viewed as “natural” Goédel number-
ings of partial recursive functions.

Co-learning of minimal programs naturally suggests a special strategy
of learning minimal programs: each new hypothesis is “longer” than the
prior one. In contrast, one can also consider learning minimal programs by
strategies of the opposite type: each new hypothesis is “shorter” than the
prior one. We show that these both types of learning minimal programs are
weaker than learning minimal programs in the general case. We also give
the complete picture of relationships between the abovementioned types of
learning minimal programs.

The power of co-learning can be enhanced if the learner can make sev-
eral attempts to apply the learning strategy; the same concerns learning by
special strategies. For example, the strategy that always chooses greater
conjectures, may do this for a while, and then start it all over again; it can
perform such “trials” a finite number of times. If the number of the trials
is not limited, then any learning strategy can be arranged in this fashion.
However, if the number of trials is uniformly bounded, we can show that
increasing the number of trials enhances the power of learning minimal num-
bers by strategies that increase their conjectures, as well as by those that
decrease the conjectures.

Co-learning criteria considered in this paper have also been considered
by [13] in the context of indexed families of recursive languages.

2 Preliminaries

2.1 Notation

N denotes the set of natural numbers. (J, €, C, C, D, D respectively, denote
empty set, element of, proper subset, subset, proper superset, superset.
max(-), min(-), denote maximum and minimum of a set, where by conven-
tion max()) = 0 and min() = co. Cardinality of a set S is denoted by
card(S). S denotes the complement of the set S. (-,-) stands for an ar-
bitrary 1-1, computable, encoding of all pairs of natural numbers onto N.

The quantifiers O‘v(’) and OEIO denote, for all but finitely many and there exist
infinitely many, respectively.

‘R denotes the set of total recursive functions of one argument. For n > 2,
R™ denotes the set of total recursive functions of n arguments. P denotes
the set of partial recursive functions of one argument. For n > 2, P™ denotes
the set of partial recursive functions of n arguments. A numbering 9 is a
(possibly partial) computable function from N? to N, i.e., ¥ € P2. For a
numbering 1, ¥; denotes the function Az.¢(i,z). Ry ={¢i|i € N A 9 €
R}. Progs,(f) denotes the set of ¥-programs for f, i.e., Progs,(f) = {7 |
¥; = f}. MinProg,(f) = min(Progs,(f)). A class C of recursive functions
is said to be r.e. iff C = Ry for some ¢ € R?, i.e., if C can be recursively
enumerated by some total recursive numbering.

A numbering 9 is called acceptable [15] iff for every numbering 7, there
exists a recursive function h such that (Vi)[n; = ¥p(;)]. Acceptable num-
berings are also called G&édel numberings. A numbering @ is a Kolmogorov
numbering iff for every numbering 7, there exists a recursive function A and
a constant ¢ such that (Vi)[n; = ¥y A h(7) < max(c#i,c)]. A numbering
1 is called 1-1 iff, for all ¢ # 7, ¥; # ¥;.

¢ denotes a standard acceptable (Gédel) numbering. ¢ denotes a Blum
complexity measure [2] for ¢. We use | and 1 to denote that a computation
converges or diverges. Thus, ¢;(z) =1 denotes that ¢;(z) is undefined.

2.2 Criteria of Inference

We direct the reader to [10, 3, 1, 14, 12] for a general background in the
area of learning theory. Here we briefly consider the notions needed for the
paper.

For any recursive function f and any n € N, let f[n] denote the initial
segment (f(0), f(1),..., f(n—1)) (or, more formally, the code of the tuple
(f(0), f(1),..., f(n—1)) in some fixed one-one computable numbering of all
tuples of numbers in N). Let SEG ={f[n] | f€ R A n € N}. A denotes
the empty segment, f[0]. A learning machine is an algorithmic mapping
from SEG to N U{?}. Intuitively, we will interpret the output of a learning
machine as a program. ? then represents the case where the machine outputs
“no conjecture.” We let M, with or without, decorations range over learning
machines.

In the following definitions let ¥ denote any numbering and f any re-
cursive function.

Definition 1 [10] M Exy-identifies f (written f € Exy(M)) iff (3¢ | o =

N m)M(fn]) = i].
Ex; = {C | (BM)[C C Ex,(M)]}.

It can be shown that Ex,, = Ex, for all Godel numberings). Thus the class
Ex is invariant under Go6del numbering chosen to interpret the programs
conjectured by the machines. Thus we often refer to Ex,, as just Ex.

Definition 2 [4] M MinExy-identifies f (written f € MinEx,(M)) iff

f€Ry and (iVo n)[M(f[n]) = MinProg, (f)].
MinEx, = {C | (3M)[C C MinEx,(M)]}.

Unlike Ex inference, the class MinEx,, depends on the Gédel numbering

[4].

Definition 3 [10] M Finy-identifies f (written f € Finy(M)) iff (3¢ | o; =
HE)[(Vm < n)[M(f[m]) =71 A (Ym > n)[M(f[m]) = d]].
Finy, = {C | (3M)|[C C Fin,(M)]}.

The class Finy, is same for all Gédel numberings 1. Thus we often refer to
Fin, as just Fin.

Definition 4 [4] M MinFiny-identifies f (written f € MinFin,(M))
iff f € Ry and (In)[(Vm < n)[M(f[m]) =?] A (Vm > n)[M(f[m]) =
MinProg, (f)]]-

MinFiny, = {C | (3M)[C C MinFin,(M)]}.

The class MinFin, depends on the Gédel numbering % [4].

3 Definitions of Co-learning

We will consider three versions of co-learnability in this paper. Similar to
the definitions of Ex and Fin, we will first define the general version of
each type of co-learnability and then the minimal version. Again in the
definitions below let i) denote any numbering and f any recursive function.

The first version of co-learning was defined in [8]. In this type of co-
learning, M needs to cancel out all the programs, except exactly one pro-
gram, which must be a program for the function being learned.

Definition 5 Let ProgSet(M, f) = {M(f[n]) | n € N A M(f[n]) #7}.
Let ProgSet(M, f[m]) = {M(f[x]) | n < m A M(f[u]) £7}.
We say that M co-convergeson f [9] to 7 iff i = min(/N —ProgSet(M, f)).
We say that M co-converges on f iff there exists an ¢ such that M co-
converges on f to ¢.

Definition 6 [8] M CoAll-identifies f (written f € CoAll,(M)) iff (3¢ |
b1 = f)[ProgSet(M, f) = N — {i}].
CoAll, ={C | (IM)[C C CoAll,(M)]}.

Definition 7 M MinCoAll,-identifies f (written f € MinCoAll,(M))
iff f € Ry and ProgSet(M, f) = N — {MinProg,,(f)}.
MinCoAll, = {C | (3IM)[C € MinCoAll,(M)]}.

We now consider our second type of co-learning. As a generalization to
CoAlly, in this version we allow the machine to possibly not cancel out
more than one of the programs for the input function, but we still require
the machine to cancel all incorrect programs of that function. Hence the
machine must cancel a superset of the set of all incorrect programs.

Definition 8 M CoSuper,-identifies f (written f € CoSuper,(M)) iff
[€ Ry, Progs, (f) C ProgSet(M, f) and M co-converges on f to a program

in Progs,(f).
CoSuper,, = {C | (AM)[C C CoSuper, (M)]}.

Definition 9 M MinCoSuper,-identifies f (written f € MinCoSuper,, (M))
iff f € Ry, Progs,(f) C ProgSet(M, f) and M co-converges on f to
MinProg,(f)-

MinCoSuper,, = {C | (3M)[C C MinCoSuper,,(M)]}.

We now consider our third type of co-learnability. In this version, we
require that all the programs cancelled by the machine should actually be
incorrect ones. Hence the machine may cancel only a subset of the set of all
incorrect programs.

Definition 10 M CoSub,-identifies f (written f € CoSuby(M)) iff f €
Ry, ProgSet(M, f) C Progs,(f) and M co-converges on f to a program in

Progs,(f).
CoSuby, = {C | (IM)[C C CoSuby(M)]}.

Note that the types of co-learning functions from Definitions 8 and 10 above
are also considered for co-learning indexed families of recursive languages in

[13].

Definition 11 M MinCoSub,-identifies f (written f € MinCoSub,,(M))
iff f € Ry, ProgSet(M, f) C Progs,(f) and M co-converges on f to
MinProg,,(f).

MinCoSub,, = {C | (3M)[C C MinCoSub,(M)]}.

Co-learning of the type MinCoSub, suggests a natural strategy of
learning minimal programs: cross out, in increasing order, all the indices
smaller than the minimal one for the given function. We will observe below in
Proposition 2 that this type of learning minimal programs and MinCoSub,,
are of the same power.

Definition 12 M MinIncExy-identifies f (written f € MinIncEx,(M))
i (Vm,n | m <0 A M(fm)) £2 A M(fn]) £)M(fm]) < M(f[n])]
and M MinEx,-identifies f.

MinIncExy, = {C | (IM)[C € MinIncEx,(M)]}.

As a dual to MinIncExy, criterion we consider the case where the ma-
chine is required to output its conjectures in a decreasing order.

Definition 13 M MinDecExy-identifies f (written f € MinDecEx,(M))
i (Vim,n | mo<n A M(fm) £2 A M(fn]) £)M(f[m]) > M(f[n])]
and M MinEx,-identifies f.

MinDecEx,; = {C | (3M)[C C MinDecEx,(M)]}.

It can easily be shown that there exists an r.e. sequence of machines
My, My, ..., such that, for any criterion I of inference discussed in this pa-
per, C € I, = (37)[C C I;,(M;)]. Intuitively, this enumeration of machines
allows us to restrict our attention to just these machines in the diagonaliza-
tions.

4 Results

Clearly, the minimal version of each of the criteria defined above can only
be restrictive, thus:

Proposition 1 MinFin, C Finy.
MinEx, C Exy.
MinCoSub, C CoSub,.
MinCoSuper,, C CoSuper,,.

The following proposition essentially follows directly from the definitions,
we omit the details.

Proposition 2 MinIncEx,; = MinCoSub,; = CoSuby,.
MinlIncEx, N MinDecEx,; = MinFin,.

Proposition 3 (V¢))[MinFin, C MinCoAll, C MinCoSuper;, C
MinCoSub, C MinEx,].
(V¢)[MinFin, C MinDecEx,; C MinEx,].

ProoF. We show MinCoSuper,, C MinCoSub,. All other inclusions
follow from the definitions.

Suppose M is given. Let M’ be such that, for all f, ProgSet(M’, f) =
{i] (V7 <14)[j € ProgSet(M, f)]}. It is easy to construct M’ as above. It is
now easy to see that MinCoSuper,, (M) C MinCoSub,,(M’). |

Proposition 4 (V Gddel Numbering ¢)[CoAlly, = CoSuper,, = Exy].

Proor. Clearly, for all numberings ¥, CoAll, C CoSuper, C Ex,. For
Godel numberings ¥, Exy, C CoAlly, ([8]). Proposition follows.

Since we are mainly interested in Godel numberings and Kolmogorov
numberings, due to the above proposition, we will mostly be interested only
in minimal identification version of co-learning criteria.

4.1 Kolmogorov Numberings

In this section we show that the different minimal identification criteria
considered in this paper are separated in every Kolmogorov numbering
(except for the case MinCoSuper, vs MinCoAll,; we do not know at
present whether MinCoSuper, and MinCoAll, are separated in every
Kolmogorov numbering). |

Let # = {h; | 7 € N}, where h; is defined as follows.

1, ifz=y;
(o) = { J

0, otherwise.

Theorem 1 [5, 6] (V Kolmogorov Numbering 1)(3C C H | card(C) =
00)[C € MinFiny].

Note that MinFiny, C MinIncEx,. It is easy to verify the following propo-
sition.

Proposition 5 (V Gédel Numbering 1)(VC € MinIncExy)(Vf € R)[C U
{f} € MinIncExy)].

Note that the above proposition does not hold for MinDecEx replacing
MinIncEx. Let ZERO be the everywhere 0 function. Note that any ma-
chine which MinDecEx,-identifies ZERO can MinDecEx,-identify only
finitely many functions in #. Thus:

Proposition 6 (V)(VC C H | card(C) = o0)[CU{ZERO} ¢ MinDecEx,].
As a corollary to Theorem 1 and Propositions 5 and 6 we immediately have:

Theorem 2
(V Kolmogorov Numbering v)[MinIncEx,; — MinDecEx,, # 0].

Corollary 1 (V Kolmogorov Numbering »)[MinDecEx, C MinExy].
Freivalds’ proof of Theorem 1 essentially also shows:

Theorem 3 (V Kolmogorov Numbering 1)(3e > 0)(3C € MinFiny)
(3 r)[card({i < r | hi €C}) > er).

Theorem 4 (V Kolmogorov Numbering 1)(3C C #H | card(C) = o0)[C U
{ZERO} € MinCoAlly].

ProoFr. Let M, ¢ >0, C' C H, be such that, ¢’ C MinCoAll, (M) and

(3 r)[card({i < r | hi €C'}) > er]

Note that there exists such M, ¢,C’ by Theorem 3 and Proposition 3.
Let M’ be defined as follows. Suppose z = MinProg, (ZFERO).

ProgSet(M', ZERO[n]) = {z |z < exn/2 N z # z}

ProgSet(M', h;) = ProgSet(M, h;) U ProgSet(M', h;[5])

Note that such an M’ can be easily constructed.

Note that M’ MinCoAll,-identifies ZERO. It may however not
MinCoAlly-identify all the functions MinCoAlly-identified by M (due
to the extra programs output by M’ on h;).

Let C = {h; | hj € C" A MinProg,(h;) > exj/2}.

It is easy to verify that M’ MinCoAlly-identifies each function in C.
Moreover, card(C) = oo, since it contains at least (¢ — ¢/2) * r functions in
{h1,...,h,} for infinitely many r.

As a corollary, we have:

Theorem 5
(V Kolmogorov Numbering 1)[MinCoAll, — MinDecEx, # (.

Theorem 6
(V Kolmogorov Numbering ¢)[MinDecEx,; — MinIncEx, # 0].

ProoF. Suppose a Kolmogorov numbering 1 is given. We will construct a
numbering . o

For each i € N, j < i, we will define, I, u!. Think of the programs (in
the numbering 7) as being divided into intervals, I;, and each interval I; as
being subdivided into i 4+ 1 subintervals I7. !/ and u! are the boundaries of
the interval IZ]

I =1. _ _

O =ui+ 1. 0 =l +1.

uf:lé—*i*S—l—l.

Let I} = {p|] <p < uj}.

Let I; = {p | (3j < i)[p € []}.

Each 75, will either be a total recursive function or the everywhere unde-
fined function.

We will now define the functions 1%, for & € I; (such a construction is
carried out for each 7 separately). Intuitively, this will give us a collection
of functions §;, such that none of the machines Mgy, My, ..., M;_1, will
MinIncEx-identify any of the functions in S;.

Definition of 7, for k € I,.
Let 0?(0) =i (02 is of length 1). Go to stage 0.
Begin stage s.

10

Let j =1 — s.
2. Let m = |o?| (i.e., m is the least element not in the domain of 7).

3. For all p € I, define 7, as follows

os(z), ifz <m

ro(x) = {p, if o = m;

0, otherwise.

4. Search for p € Ig and y > m, such that, card({r < 7| (3¢ > @ x lf)[q €
ProgSet(M,, 7,[y])]}) > s.

(* Intuitively if (3¢ > i x lf)[q € ProgSet(M,, 7,[y])] then M, has output
a “large” program, and thus would become useless *)

5. If and when such p,y are discovered, let Uf‘H = 7,[y] and go to stage
s+ 1.
End stage s.

End of Definition of 7%, for k € I;.

First note that there cannot be infinitely many stages. In fact, if the
construction reaches stage 7, then the search at step 4 cannot succeed. Let
s; denote the last stage that is executed, and let j; =7 — s;.

It is easy to observe that each 7 is either a total function or the every-
where undefined function (for p € I?, 7, is total iff j > j;.) Moreover, total
functions in the numbering 7 are pairwise different.

Let ¢ be a constant such that, for all p, there exists a p’ < max({cp, c}),
such that 7, = %, (since 9 is a Kolmogorov numbering, there exists such

ac). Let i > c. We note the following property about the functions 7,
pe .

For all r < i, either ProgSet(M,,,) contains a program
>tk ul' > i*xp > c*p (M, was diagonalized against in the
previous stages), or ProgSet(M,, 7,,) contains only programs less
than 7 % [7* (M, could not be diagonalized against in the last
stage).

Thus M,, r < i, can MinIncEx,-identify only those 7, in {7, | lfl <

p < uf’}, whose minimal v programs are < 7 * l,f-"'. Let

Si=1{m | lf" <p< ufz A MinP1‘0g¢(Tp) > 1k lfz}

11

It immediately follows that no machine M, can MinIncEx,-identify
any function in §;, for ¢ > max({r, c}). We will construct our diagonalizing
class as an infinite subset of |J,5.S;, using a trick used by Freivalds [5, 6].
For i > ¢, let

i>c

Si={m|m €S A card({g < cxul' |7l +1] C wy}) < de}
Note that card(S8}) > [ul' — 4] — uli /4 — 0% 17 (i ¥ term is for functions
spoiled due to them having small (< 7 % /) minimal programs in ; the

uf"/4 term is due to the functions having more than 4c¢ programs < ¢ u*
in the numbering). Thus S/ is non-empty (for 7 > ¢).

Let C = ;5. Sf. We now construct M7, M5, ..., M), such that at least
one of these machines MinDecEx,-identifies an infinite subset of C.

The idea of the construction of M/ is as follows. Suppose the input
function is f € §;NC (i can be determined from f(0)). Thus f must be the
same as 7, for some p € [/*. Note that, for p € I, j > j;, card({z > 0 |
mp(z) # 0}) = ¢ — j + 1. Moreover, if 7, = f, then MinProg, (f) must lie
in the interval [i % 7', ¢ % u?] (note that ¢ u?* < ixul < i), This
is what our construction uses. Note that U,f_j, if defined, can be effectively
determined. Let nf = |Uf_j| + 1 (note that nf — 1 determines the point at
which the functions in {7, | p € I/} differ).

Let X{:{q | z*lf <¢< c*uf A f[nf] C g}

M! is defined as follows. M!.(f[n]) =?, for n < 1. For n > 1, let
j=i—card({z |0 <z <n A f(z)#0})+1; M.(f[n]) is then the r-th
element, if any, in a standard 1-1 enumeration of X7 .

It is easy to note that the conjectures of MJ. are monotonically decreasing
(since exul < i*uf“—recall that ¢ > ¢, and the j’s as used in the definition
of M. are monotonically decreasing). Moreover, at least one of the machines
M/, 1 <r < 4¢, MinExy-identifies f (since card(X}*) < 4¢, for f € C, and
Xij‘ contains a minimal program for f.) Thus for every function f € C, at
least one of the machines M/, ..., M}, MinDecEx-identifies f. Since C
is infinite, there exists a machine which MinDecEx,-identifies an infinite

subset of C. Since no infinite subset of C is in MinIncEx,, the theorem

follows. |

Theorem 7
(¥ Kolmogorov Numbering ¢)[MinIncEx,, — MinCoSuper,, # {].

12

ProOOF. The idea of the proof is similar to that of the proof of Theorem 6
though there are subtle differences.

Suppose a Kolmogorov numbering v is given. We will construct a num-
bering . o

For each i € N, j <1, we will define, I/, u/.

Ih=1. 4 4

0, =u+1. I =l 1,

ul = (19)°(3i 4 1)°.

Let I/ = {p| l! <p < ul}.

Let I = {p | (3 < 9)[p € [}]}.

Each 75, will either be a total recursive function or the everywhere unde-
fined function.

We will now define the functions 1%, for £ € I; (such a construction is
carried out for each i separately). Intuitively, this will give us a collection
of functions &;, such that none of the machines Mgy, My, ..., M;_q, will
MinCoSuper,-identify any of the functions in ;.

Definition of 7, for k € ;.

Let 0?(0) =i (02 is of length 1). Go to stage 0.

Begin stage s.

1. Let j = s.

2. Let m = |o?| (i.e. m is the least element not in the domain of o7).

3. For all p € I, define 7, as follows

os(z), ifz <m
P, if £ =m;
0, otherwise.

mp(z) =

4. Search for p € Iz-j and y > m, such that, card({r < i | card({g < 7 * u! |
q ¢ ProgSet(M,, m,[y])}) < \/i % ul}) > j.

(* Intuitively card({q < i*u’ | ¢ € ProgSet(M,, 7,[y])}) < 1/7 * u! means
that M, can MinCoSuper,-identify only “few” relevant functions *)

5. If and when such p,y are discovered, let UfH = 7,[y] and go to stage
s+ 1.
End stage s.

End of Definition of 7%, for k € I;.

13

First note that there cannot be infinitely many stages. In fact, if the
construction reaches stage ¢, then the search at step 4 cannot succeed. Let
s; denote the last stage that is executed, and let j; = s;.

It is easy to observe that each 7 is either a total function or the every-
where undefined function (for p € I, 7, is total iff j < j;.) Moreover, total
functions in the numbering 7 are pairwise different.

Let ¢ be a constant such that, for all p, there exists a p’ < max({cp, c}),
such that 7, = ®¥,s (since 9 is a Kolmogorov numbering, there exists such
ac). Let i > c. We note the following property about the functions 7,

peli.
For all r < 7, either '
(a) there exists an S C {z | < i u}, such that card(S) <
\/1 * ut and, for all p € Igi, N — ProgSet(M,, ,) C S or
(b) for each p € I;i, ProgSet(M,, 7,) does not contain at least

©* u; programs < ¢ * u;.

In either case M,, r < i, can MinCoSuper-identify at most /i * ufﬁ
of the functions in {7, | l,f-'”' <p< 'u?i} (in case (a), there are only /7 * u
possibilities for M, to co-converge to; in case (b) there can be at most /i u}
distinct programs for which M, cancels out all the incorrect programs <
Let

Si={r, |l <p<ul' A (Vr<i)[r, ¢ MinCoSuper, (M,)]}.

It immediately follows that no machine M, can MinCoSuper-identify
any function in §;, for ¢ > max({r, c}).

We will construct our diagonalizing class as an infinite subset of (J; . S;,
using a trick used by Freivalds [5, 6]. For ¢ > ¢, let

Si={r, |7, €S A MinProg,(r,) > i * lfl A card({g < c* uf‘ |
Tpllof*| +1] C }) < de}.

Note that, for large enough 4, card(8!) > (ul' — 17¥) — uli /4 — i % 17 — i
Vixut >0 (ix lfi term is for functions spoiled due to them having small

(< 7% lfi) minimal program in ; the ufi /4 term is due to the functions

14

having more than 4¢ programs < ¢ % ufz in the numbering ; i % \/i % u
term is for the functions which are MinCoSuper,,-identified by some M.,
r < 1). Thus §; is non-empty (for large enough i > ¢).

Let C = ;5. Sf. We now construct M7, M5, ..., M/, such that at least
one of these machines MinIncEx,-identifies an infinite subset of C.

The idea of the construction of M/ is as follows. Suppose the input
function is f € §;NC (¢ can be determined from f(0)). Thus f must be the
same as 7, for some p € I}*. Note that, for p € I, j < j;, card({z > 0 |
7p(z) # 0}) = j + 1. Moreover, for f € CNS;, MinProg, (f) must lie in the
interval [i % 14, ¢ u?'] (note that ¢ * ul < i*ul < i), This is what
our construction uses. ' '

Note that o7, if defined, can be effectively determined. Let n! = |o]|+1
(note that nf —1 determines the point at which the functions in {7, | p € IZJ}
differ). 4 4 4

Let X! ={q|ixll] <qg<ecxul AN fn]]C ¥}

M is defined as follows. M.(f[n]) =7, for n < 1. For n > 1, let
j=card{z | 0 <z < n A f(z)# 0})+1; M/(f[n]) is then the r-th
element, if any, in a standard 1-1 enumeration of X7 .

It is easy to note that the conjectures of M. are monotonically increasing
(since exul < i*uf“—recall that ¢ > ¢, and the j’s as used in the definition
of M. are monotonically increasing). Moreover, at least one of the machines
M/, 1 <r < 4¢, MinExy-identifies f (since card(X}*) < 4¢, for f € C, and
Xij‘ contains a minimal program for f.) Thus for every function f € C, at
least one of the machines Mj,..., M/, MinIncExy-identifies f. Since C
is infinite, there exists a machine which MinIncExy-identifies an infinite

subset of C. Since no infinite subset of C is in MinCoSuper,, the theorem

follows. |

Theorem 8
(3 Kolmogorov Numbering ¢))[MinCoSuper,, — MinCoAll,; # (].

The above theorem follows from Theorem 24. We are not sure at this
point whether the above theorem holds for all Kolmogorov numberings.
However, we conjecture that it does.

Our main aim in this section was to separate all the minimal identifi-
cation criteria in each Kolmogorov numbering. As an aside we note that
a variant of the proof of Theorem 1 in [11] can be used to show that
(3 an infinite class C C #)(V Kolmogorov Numbering)[C € MinFiny].

15

Thus Theorem 2 can be strengthened to:

Theorem 9
(3C)(V Kolmogorov Numbering ¥)[C € MinIncEx, — MinDecExy].

Thus the same class could be used for diagonalization for all Kolmogorov
numberings. Such a result can also be obtained for Theorem 5. However,
we do not yet know whether we could use the same class for other diagonal-
izations in this section.

We can generalize MinIncEx,, as follows. Let us say that the machine
M MinIncExj-identifies f for a constant ¢ € N if it starts to work on f
as MinIncExy-strategy at most ¢ times (formal details of the definitions
and proofs omitted). In the same way one can extend MinDecEx, to
MinDecEx;,. We can exhibit hierarchies of those classes, showing that, for
each ¢, MinIncExj, C MinIncExf/;"1 and MinDecEx;, C MinDecExf/j'l.
Accordingly, results of Theorems 2 and 6 can be extended to classes
MinIncExj;, and MinDecEx;,.

4.2 Godel Numberings

In this section we show that some of the diagonalizations shown for Kol-
mogorov numberings in the previous section may not hold for every Gédel
numbering.

Theorem 10 (3 Gddel Numbering) MinFin, = MinCoAll;, =
MinCoSuper,, = MinlncEx, = MinDecEx,; = MinEx,].

Proor. Taking a Gddel numbering 1 such that MinEx, contains only
finite classes of functions ([4]) gives the theorem. |

In fact, using the above theorem, for every “reasonable” relationship
between the minimal criteria considered in this paper, we can construct a
Godel numbering in which this relationship does hold.

The essential idea is to interleave the needed diagonalizations in Theo-
rems 12, 13, 14, 16, 17, with the numbering generated in Theorem 10 ([7]
used a similar trick to generate Godel numberings for any reasonable rela-
tionship between MinFin,, MinCoAll,, MinEx,). We omit the details.

Theorem 11 Suppose oy, ag, ag, aq, as, a6 € {C, =}, such that as and ag
are both ‘="iff oy, a9, a3, oy are all ‘=". Then there exists a Gédel number-
ing ¥ such that

16

(a) MinFin, a; MinCoAll, a; MinCoSuper,, a3 MinlncEx, ay
MinExy, and
(b) MinFin, as MinDecEx, ag MinEx,,.

4.3 Non-Godel Numberings

In this section we prove the theorems on non-Gdodel numberings needed to
prove Theorem 11. In addition we prove that every Ex-identifiable class is
MinCoAlly-identifiable in some (non-Gédel) numbering .

Theorem 12 (J¢)[card(Ry) = oo A Ry € MinlncEx, A (VS C
Ry)[card(S) = co = § € MinDecEx, U CoSuper,]].

Proor. We exploit the fact that for CoSuper,, one needs to cancel out all
the incorrect programs.

For ¢ € N, define f; as follows: f;(0) = ¢, and, for z > 0, let f;(z) = 0.

Let C={f;|i € N}. Let h(0) = 0. Let h(i+ 1) = h(i) + 20+ 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, exactly one of the programs in S; = {p | h(i) < p <
h(i+ 1)} will compute f;. All the other programs in S; will compute non-
total functions. This will make Ry =C.

(b) For j <4, f; € MinDecEx,(M;) U CoSuper,(M;).

(¢) C € MinIncEx,.

This will prove the theorem.

Fix 7. We now define 1;, for j € S;.

Definition of 9;, for 7 € S;.

Let CancelF? = CancelD? = (.

Go to stage 0.

Begin stage s

1. Let p(¢,s) = h() + 1 4 card(Cancell'?) 4 card(CancelD?).
2. Forall z < s, let ¥,; o(7) = fi(z).

(Intuitively, we want to make ¥,(; o) = fi).

3. Let CancelDT' = CancelD! U {j < i | p(i, s) € ProgSet(M;, f;[s])}.

4. Let Cancell's*! = CancelFf U {j < i | {Il < k(i +1) | # p(i,s)} C
ProgSet(M;, fi[s])}.

5. Go to stage s+ 1.

17

End stage s.
End of Definition of 9, for j € S;.

It is easy to verify that CancelD?, CancelF; are monotonically nonde-
creasing (with respect to C) in s. Let CancelD{® = lim,_,~, CancelD{ and
CancelF$® = lims_n, Cancell'. Note that p(7,s) is monotonically nonde-
creasing in s. Let p(i,00) = lim,—e p(7,8). Note that h(i) < p(i,s) <
h(i) + 1420 < h(i +1). Also, ¥y c0) = fi; and for all j € S; — {p(i,00)},
1; is a non-total function. Thus (a) is satisfied.

Consider any j < 4. If j € CancelD] then ProgSet(M;, f;) contains
a program < p(i,s) < p(i,00). If 7 ¢ CancelD{®, then ProgSet(M;, f;)
does not contain p(i,00). In either case ¥,(; o) = fi ¢ MinDecExy(M;).
Similarly, if j € CancelF? then ProgSet(M;, f;) contains p(i,00). If j &
CancelF':°, then {{ < h(i+ 1) | | # p(i,00)} € ProgSet(M;, f;). In either
case Py(i,00) = fi § CoSuper,(M;). Thus (b) is satisfied.

To show that C € MinIncEx,, note that p(7, s) is a monotonically non-
decreasing function of s, which converges to the minimal -program for f;.
Thus ¢ € MinIncEx,. Thus (c) is satisfied.

Theorem 13 (37)[card(Ry) = oo A Ry € MinCoSuper,, A (VS C
Ry)[card(S) = co = § ¢ MinCoAll, U MinDecExy]].

ProoFr. The proof of this theorem is similar to the proof of Theorem 12.
For ¢ € N, define f; as follows: f;(0) = ¢, and, for z > 0, let f;(z) = 0.
Let C=A{f;|i € N}. Let h(0) = 0. Let h(i+ 1) = h(i) + 20+ 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, there exists a j € S; = {p | h(i) < p < h(i+ 1)}, such
that (a.1) (V5" | 7 < 7' < h(i+ 1)[¥y = f;] and (a.2) (V5" | k(i) < j' <
7)[¥; € R]. This will make Ry =C.

(b) For j < i, fi ¢ MinDecEx,(M;) U MinCoAll;(M;).

(c) C € MinCoSuper,,.

This will prove the theorem.

Fix 7. We now define 1;, for j € S5;.

Definition of 9;, for 7 € S;.
Let CancelC) = CancelD} = .
Go to stage 0.

Begin stage s

18

1. Let p(z,s) = h(2) + 1 4 card(CancelC7) 4 card (CancelD?).

2. For all j’ such that p(i,s) < j' < h(i41), forall 2 < s, let ¥ (z) = fi(z).
(Intuitively, we want to make p(i,00) as j in clause (a)).

3. Let CancelD™! = CancelDf U {j < i | p(i,s) € ProgSet(M;, fi[s])}

4. Let CancelC5t! = CancelCZU{j < i | {l < h(i+ 1) |1 # p(i,s)} C

ProgSet(M;, f;)}.
5. Go to stage s+ 1.
End stage s.

End of Definition of %;, for j € 5;.

It is easy to verify that CancelD;, CancelC; are monotonically nonde-
creasing (with respect to C) in s. Let CancelD{® = lim,_,, CancelD{ and
CancelC{® = lims_,~ CancelC!. Note that p(7, s) is monotonically nonde-
creasing in s. Let p(i,00) = limse p(4,8). Note that h(i) < p(i,s) <
h(7) +2i+ 1 < h(i+ 1). Also, for all j/, such that p(i,00) < j' < h(i+ 1),
¥y = fi, and for all j' such that h(:) < j* < p(i,00), 9j is a non-total
function. Thus (a) is satisfied.

Consider any j < 4. If j € CancelD] then ProgSet(M;, f;) contains
a program < p(i,s) < p(i,00). If j ¢ CancelD$®, then ProgSet(M;, f;)
does not contain p(i,00). In either case ¥,(; o) = fi ¢ MinDecExy (M;).
Similarly, if j € CancelC] then ProgSet(M;, f;) contains p(i,00). If j ¢
CancelC;°, then {I < h(i + 1) | [# p(i,00)} € ProgSet(M;, f;). In either
case Py(i00) = fi € MinCoAlly, (M;). Thus (b) is satisfied.

To show that C € MinCoSuper,,, note that p(z, s) is a monotonically
non-decreasing function of s, which converges to the minimal -program for
fi- Moreover, for all j/, such that p(i,00) < j' < h(i 4 1), ¥jy = f;. Thus
C € MinCoSuper,,. Thus (c) is satisfied.

Theorem 14 (J¢)[card(Ry) = oo A Ry € MinDecEx, A (VS C
Ry)[card(S) = co = § ¢ MinIncExy]].

ProoF. The proof of this theorem is similar to the proof of Theorem 12,
with some minor changes.

For ¢ € N, define f; as follows: f;(0) = ¢, and, for z > 0, let f;(z) = 0.

Let C={f;|i € N}. Let h(0) = 0. Let h(i+ 1) = h(i) +2¢ 4 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, exactly one of the programs in S; = {p | h(i) < p <
h(i+ 1)} will compute f;. All the other programs in \S; will compute non-
total functions. This will make Ry =C.

19

(b) For j < i, f; ¢ MinIncEx,(M;).
(c) C € MinDecExy,.

This will prove the theorem.

Fix 7. We now define 1;, for j € 5;.

Definition of 9;, for 7 € S;.

Let Cancell? = (.

Go to stage 0.

Begin stage s

1. Let p(z,s) = k(14 1) — card(Cancellf).

2. Forall z < s, let ¥ 5 (z) = fi().
(Intuitively, we want to make 1,(; o) = fi)-

3. Let Cancell{*! = Cancell{ U {j < i | p(i,s) € ProgSet(M;, f:[s])}.

4. Go to stage s+ 1.

End stage s.

End of Definition of 9;, for j € S;.

It is easy to verify that Cancell{ is monotonically nondecreasing (with
respect to C) in s. Let Cancell{® = lim,_,., Cancell;. Note that p(7,s) is
monotonically nonincreasing in s. Let p(i,00) = lims_ p(4,s). Note that
h(i+1) > p(i,s) > h(i +1) = 2i > h(i). Also, ¥,y = fi, and for all
Jj € S;—{p(i,00)}, ¥; is a non-total function. Thus (a) is satisfied.

Consider any j < ¢. If j € Cancell{ then ProgSet(M;, f;) contains a
program > p(i,s) > p(i,00). If j ¢ Cancell;®, then ProgSet(M;, f;) does
not contain p(i,00). In either case ¥p(; o) = fi ¢ MinIncExy (M;). Thus
(b) is satisfied.

To show that C € MinDecExy, note that p(i, s) is a monotonically non-
increasing function of s, which converges to the minimal ¢-program for f;.
Thus ¢ € MinDecEx,. Thus (c) is satisfied.

Theorem 15 (V¢ € R?)[Ry € MinCoSuper,].

ProoF. Let M be such that, for all f, ProgSet(M, f) = {¢ | (3z)[vi(z) #
fi(z)]}. Note that it is easy to construct such a machine. It is easy to verify
that Ry C MinCoSuper,(M). |

20

Theorem 16 (J¢)[card(Ry) = oo A Ry € MinCoAll, A (VS C
Ry)[card(S) = co = S ¢ MinDecExy]].

ProoF. We will construct a numbering v, 1 € R?, such that

(a) ¢ is 1-1, and

(b) no infinite subset of Ry is in MinDecEx,.

This would prove the theorem (since for any 1-1 total numbering 1,
R, € MinCoSuper,, = MinCoAll).

If there exists a o, such that Mg(o) #7?, then let o¢ be the least such
o; otherwise, let oo = A. For ¢ > 0, if there exists a ¢ D o,;_1, such that
M;(c) #7, then let o; be the least such o; otherwise, let o; = o;_;. Note
that o; can be determined effectively in the limit. Let 7/, be such that

(i) 7/ can be determined effectively from 7 and j,

(i) 7/ C T,L»j+1, and

(i) lim oo 77 = 0.

Note that there exist such TZ]

Let ; be defined as follows.

oy i), it <7
vilz) = {i, otherwise.
It is easy to verify that each 1; € R, and ;’s are pairwise different. Thus
(a) is satisfied. Note that for each ¢, for all but finitely many j, o; C TJJ.
Thus, for all 7,
(c) for all but finitely many 7, o; C ¥;,
(d) either M;(o;) #7, or (Vo 2 o;)[M;(0) =7].
It follows immediately that M; can MinDecEx,-identify at most finitely
many ;. Thus (b) is satisfied. |

Theorem 17 (J¢)[card(Ry) = oo A Ry € MinExy, A (VS C
Ry)[card(S) = co = § ¢ MinDecExy, U MinIncExy]].

Proor. This is a somewhat more complicated modification of the proof of
Theorem 12.

For ¢ € N, define f; as follows: f;(0) = ¢, and, for z > 0, let f;(z) = 0.

Let C = {fi|i € N}. Let h(0) = 0. Let h(i + 1) = k() + 222 — 1.

We will make sure that (a), (b) and (c) are satisfied.

(a) For each i, exactly one of the programs in S; = {p | h(i) < p <
h(i 4+ 1)} will compute f;. All the other programs in .S; will compute non-
total functions. This will make Ry =C.

21

(b) For j < i, fi MinDecExy,(M;) U MinIncEx,(M;).
(¢) C € MinExy.

This will prove the theorem.

Fix 7. We now define ;, for j € ;.

Definition of 9;, for 7 € S;.
Let Cancell? = CancelD? = §.
1(,0) =h(i) + 1. u(z,0) = h(: + 1).
Go to stage 0.
Begin stage s
1. Let p(i,s) = M
2. Forall < s, let ¥,; o(z) = fi(z).
(Intuitively, we want to make ¥,(; o) = fi)-
3. if there exists a j < 4, such that j ¢ CancelD{ and p(i,s) €
ProgSet(M;, fi[s])
then let /(i,s) = p(i,s) + 1 and CancelDT' = CancelD{ U {j < i |
p(i,) € ProgSet(My, f[s])}.
4. elseif there exists a j < ¢, such that 7 ¢ Cancell} and p(i,s) €
ProgSet(M;, fi[s])
then let u(i, s) = p(i
ProgSet(M;, fi[s])
endif
5. Go to stage s+ 1.

s)—1 and Cancell¥*! = Cancell{U{j < i | p(i, s) €

}

End stage s.
End of Definition of 9, for j € S;.

It is easy to verify that CancelD?, Cancell! are monotonically nonde-
creasing (with respect to C) in s. Let CancelD{® = lim,_,~, CancelD and
Cancell{® = lim,_, . Cancell?. Also it is easy to verify that /7 is monotoni-
cally nondecreasing and u} is monotonically nonincreasing in s. Let u{® =
limsoo uf, and 2 = limsoo 7. Let p(i,00) = limsooo p(7,s) = w
Note that A(i) <17 < p(i,s) < uf < h(i+1). Also, ¥p(; o) = fi, and for all
j € Si—{p(i,00)}, ¥; is a non-total function. Thus (a) is satisfied.

Consider any j < i. If j € CancelD{ then ProgSet(M;, f;) contains a pro-
gram < [(i,s) < [(z,00) < p(i,00). If j ¢ CancelD$°, then ProgSet(M;, f;)
does not contain p(i,00). In either case ¥,(; o) = fi ¢ MinDecExy (M;).

22

Similarly, if 7 € Cancell? then ProgSet(M;, f;) contains a program > u(i, s) >
u(7,00) > p(t,00). If j ¢ Cancell{”, then ProgSet(M;, f;) does not contain
p(i,00). In either case ¥,(; o) = fi € MinIncExy, (M;). Thus (b) is satis-
fied.

To show that C € MinExy, note that p(7, s) converges to the minimal
i-program for f;. Thus C € MinEx,. Thus (c) is satisfied. |

The following theorem says that, for suitable non-Gédel numberings, the
minimality criteria discussed in the paper are not so weak.

Theorem 18 (VC € Ex)(3 1-1 numbering 1)[C € MinCoAlly].

ProoF. We use the following result from [16].
Lemma 1 C € Ex iff there exists a numbering b such that
(i) C CRy, and
(ii) there exists a d € R? such that, for any i # j, ¥:[d(i, j)] # ¥;[d(3, 5)].

Now, suppose C € Ex. Let 1, d be as given in the lemma. First note
that 1 contains exactly one program for any function in C. Thus showing
that C € CoAlly suffices. Let M be defined such that:

ProgSet(M, f) = {j | (i # J)[f[d(i,)] C i]}-
It is easy to verify that M MinCoAll,-identifies C. |

Note that the above theorem indirectly characterizes |J,cp> Ly, where I
is any of the (min) co-learnability criteria discussed in this paper (since they
turn out to be equivalent to Ex).

Theorem 19
(3¢)[CoSuby, — CoSuper,, #0 A CoSuper, — CoSub,, # (].

PROOF. Let 1 be a numbering such that CoSub, — CoSuper, # . Let
be a numbering such that CoSuper; — CoSubg # (. Define 7 as follows.
P9i(0) = 1. 92;41(0) = 2. For all z, 1g;(z + 1) = n;(z). For all z, ¥g;11(z +
1) = Bi(z). It is easy to verify that 1) witnesses the theorem. |

Theorem 20 (37 € R?)[CoAll, C MinCoSuper,].

23

ProoF. By Theorem 15 for any 7 € R?, R, € MinCoSuper,. So we just
need to construct a 7 € R? such that R, ¢ CoAll.. Define 7 as follows.
Let f;(0) = ¢, and, for 2 > 0, f;(z) = 0. 72;(0) = 79;41(0) = 4. For z > 0,

T2i(2), T2i+1(z) are defined as follows.

0, if 2¢,2i4+ 1 ¢ ProgSet(M;, fi[z]);

0, if 2 € ProgSet(M;, fi[z]);

1, if 2i 4+ 1 € ProgSet(M;, fi[z]) and
21 ¢ ProgSet(M,, fi[z]);

0, if 2¢,2i+ 1 ¢ ProgSet(M;, fi[z]);
.} 0, if 2i+ 1 € ProgSet(M;, fi[z])
m2i1(2) = 1, if 2¢ € ProgSet(M;, fi[z]) and
2i + 1 ¢ ProgSet(M;, fi[z]);
It is easy to see that at least one of 7y;, 79,41 is f;. Moreover, by con-
struction, M; does not CoAll.-identify f;. |

4.4 Miscellaneous

Theorem 21 (V infinite r.e. U)y (3 infinite Vv C U
(3 Kolmogorov Numbering) [V € MinCoAlly].

PROOF. Let € R? be a 1-1 numbering such that &4 = {n; | i € N}. Note
that there exists such a numbering. Let M MinCoAll,-identify ¢ (note
that there exists such a machine due to Theorem 15 and 5 being a 1-1
numbering). Let 8 be a Kolmogorov numbering. Define 9 as follows. 13, =
Bi. tsig1 = m2; and P3i42 = M2ip1. Let M’ be such that ProgSet(M’, f) =
{3i|i € N}U{3i+1| 2i € ProgSet(M, f)}U{3i+2 | 2i+1 € ProgSet(M, f)}.
Let V = {m | (Vj < 9)[B8; # mail} U{mzita | (V7 < 9)[B; # maipa]}. Tt is
easy to verify that V is infinite and ¥V C MinCoAll, (M’). |

Theorem 22 (3C)(3 Kolmogorov Numbering)[C € MinDecEx,; A
(V Gédel Numbering n)C ¢ MinIncEx,].

Proor. Let C = {f € R | (VYz)[f(z) = f(0)]}, the class of constant
functions. We first construct a Kolmogorov numbering @ such that C €
MinDecEx,. Let 1) be defined as follows.

Without loss of generality suppose that ¢ is a Kolmogorov numbering.
Let 99,41 = ¢;. Note that this makes ¥ a Kolmogorov numbering.

24

For all z, let ¥g;(z) = ¢;(0).
Consider the following machine M. M(f[0]) =?. For n > 0,

24, if (37 < n)[®;(0) < n A @;(0) = £(0)]
M(f[n]) = { and j = min({j" <n | ®;(0) <n A ¢;(0) = f(0)}).

7, otherwise.

It is easy to verify that C C MinDecEx,(M).

Let n be any Godel numbering and M be any learning machine. We now
show that C Z MinIncEx,(M). This would prove the theorem.

By implicit use of Kleene recursion theorem there exists an e such that
n. may be defined as follows. Let f. denote the function, f.(z) = ¢, for all
T.

Definition of ..
1. Search for ¢,n € N, such that M(f:[n]) > e.

2. If and when such ¢, n are found, let 5. = f..

End of Definition of ..

Note that if step 1 does not succeed then M can MinIncEx-identify only
finitely many functions in C. On the other hand, if step 1 search succeeds
then clearly, MinProg, (f.) < e. However, since M on f. outputs a program
larger than e, M cannot MinIncEx,-identify f..

It follows that C € MinIncEx, (M). |

The following theorem follows from the proof of Theorem 5.

Theorem 23 (V Kolmogorov Numbering)(3C)[C € MinCoAll, A
(V Gédel Numbering n)[C ¢ MinDecEx,)]].

Theorem 24 (3 Kolmogorov Numbering)(3C)[C € MinCoSuper, A
(V Gédel Numbering n)[C ¢ MinCoAll,]].

Proor. Without loss of generality suppose that ¢ is a Kolmogorov num-
bering. We will construct a Kolmogorov numbering % and class C witnessing
the theorem.

Let 17; = ;. Note that this makes 1) a Kolmogorov numbering. Define
h as follows.

h(0) = 1. h(i+1) = 3(h(5) + 1).

25

Note that for any Godel numbering 7, there must be a recursive function
¢; witnessing the reduction from % to n. Thus we will try to diagonalize
against all pairs of machines, M;, and potential reduction functions, ¢;.

Let Sy ={p | A | h(k) <l <hk+1)3r|0<r<T)[p="7+r]}.
Intuitively, Si denotes the k-th set of available programs for diagonalization.
We will use the programs in the set Sy for diagonalization against machine
M; and reduction function ¢;, where k£ = (7, j). It will be the case that all
functions computed by programs in Sy will be total functions.

Let C = {¢, | p € Ur Sk A p= MinProg,(¢,)}.

Note that totality of functions computed by v, p € J; Sk, immediately
implies that C € MinCoSuper,,. For each k = (7, j), we will construct the
functions computed by %, p € S, in such a way that, if ¢; is an increasing
function witnessing a reduction from % to Gdédel numbering n, then, for
at least one p € S, ¥, € C — MinCoAll,(M;). This would prove that
C ¢ MinCoAll,, for any Gddel numbering 7.

For each r € N, let f. denote the constant function f.(z) = r. For
w € {1,2,3}, and [such that h(k) <! < h(k + 1), we will now define the
functions 714y, and Yrip43.

¢7l+w - f7l+u}-

7+ w, if z =0;

frgw(z), ifz>0and &;(71+w+3) >z

frigw(2), if z >0, and ®;(7/+ w+3) < z, and
card({g < ;(TI+w+3) | ¢ ¢
ProgSet(My. fripulz])}) > 1

71+ w+ 3, otherwise.

¢7l+w+3($) =

It is easy to verify that all functions computed by programs in [J, Sy are
total. Suppose ¢; witnesses the reduction between v and 1. Then M, does
not MinCoAll,-identify at least one of 97,4, and t7;4,43. Moreover, for
each k, there exists an [, h(k) <! < h(k+1), and a w € {1,2,3}, such that
for all < h(k+ 1), ¢5(0) # 7l + w. (This is so since the number of such
pairs [, wis 3(h(k+1) —h(k)) > h(k+1)). It immediately follows that there
exists a p € S, such that ¢, € C, and M; does not MinCoAll,-identify
by

It is open at present whether (3 Kolmogorov Numbering ¢)(3C)[C €
MinIncEx,; A (V Gdel Numbering 1)[C ¢ MinCoSuper,]].

26

5 A characterization of MinIncEx,

In this section we provide a characterization of MinIncEx, (and thus of
MinCoSub,, and CoSuby).

Theorem 25 C € MinlncExy, iff there exists a P € P such that the fol-
lowing properties are satisfied.

(1)C CRy;

(2) For all f € C, P(MinProg,(f)){;

(3) For all t € N, P(i)| implies (3a) and (3b):

(3a) For all x < P(1), ¥ (x)].

(3b) For all j < i with v; € C, ¥;[P(1)] # ¥[P(7)] .

PrOOF. (=) Suppose C € MinIncEx,, as witnessed by M. (1) must clearly
hold. Let P be defined as follows:

P(i) = min({z | (Vy < 2)[i(y)l] A M(¢iz]) = 1})

It is easy to verify that (2) and (3) must hold.

(<) We use the fact that CoSub, = MinIncEx,. Suppose (1) holds
and P is such that (2) and (3) hold. Then consider a machine M such that

ProgSet(M, f) = {j | Gi >)[P()b=n A f[n] = ¢i[x]]}

Note that such a machine M can easily be constructed. Using the prop-
erties of P above it is easy to verify that M MinCoSub,-identifies each
function in C. |

It would be interesting to get a similar characterization of MinDecEx,,
and other criteria of inference considered in this paper.

References

[1] L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125-155, 1975.

[2] M. Blum. A machine-independent theory of the complexity of recursive func-

tions. Journal of the ACM, 14:322-336, 1967.

[3] J. Case and C. Smith. Comparison of identification criteria for machine induc-
tive inference. Theoretical Computer Science, 25:193—-220, 1983.

[4] R. Freivalds. Minimal Godel numbers and their identification in the limit. In
Proceedings of the International Conference on Mathematical Foundations of
Computer Science, Marianske Lazne, pages 219-225. Springer-Verlag, 1975.
Lecture Notes in Computer Science 32.

27

[5]

[12]
[13]

[14]

[15]

[16]

R. Freivalds. Inductive inference of minimal programs. In M. Fulk and J. Case,
editors, Proceedings of the Third Annual Workshop on Computational Learning
Theory, pages 3—20. Morgan Kaufmann Publishers, Inc., August 1990.

R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In
J. Barzdins and D. Bjorner, editors, Baltic Computer Science. Lecture Notes
. Computer Science 502, pages 7T7-110. Springer-Verlag, 1991.

R. Freivalds and S. Jain. Kolmogorov numberings and minimal identification.
In Paul Vitanyi, editor, Computational Learning Theory, Second European
Conference, EuroCOLT 95, Barcelona, Spain, pages 182-195. Springer-Verlag,
March 1995. Lecture Notes in Artificial Intelligence 904.

R. Freivalds, M. Karpinski, and C. H. Smith. Co-learning of total recursive
functions. In Proceedings of the Seventh Annual Conference on Computational
Learning Theory, New Brunswick, New Jersey, pages 190-197. ACM Press,
July 1994.

R. Freivalds and T. Zeugmann. Co-learning of recursive languages from posi-
tive data. Technical Report RIFIS-TR-CS-110, Kyushu University, 1995.

E. M. Gold. Language identification in the limit. Information and Control,
10:447-474, 1967.

S. Jain. An infinite class of functions identifiable using minimal programs in all
Kolmogorov numberings. International Journal of Foundations of Computer

Science, 6(1):89-94, March 1995.

R. Klette and R. Wiehagen. Research in the theory of inductive inference by
GDR mathematicians — A survey. Information Sciences, 22:149-169, 1980.

S. Lange, R. Wiehagen, and T. Zeugmann. Learning by erasing. Technical
Report RIFIS-TR-CS-122, Kyushu University, 1996.

D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduc-
tion to Learning Theory for Cognitive and Computer Scientists. MIT Press,
Cambridge, Mass., 1986.

H. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw-Hill, New York, 1967. Reprinted, MIT Press 1987.

R. Wiechagen. Characterization problems in the theory of inductive inference.
In Proceedings of the International Colloquium on Automata, Languages and
Programming, Udine, pages 494-508. Springer-Verlag, 1978. Lecture Notes in
Computer Science 62.

28

