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Abstract. Defects change the phonon spectrum and also the magnetic properties of bee-Fe. Using molecular
dynamics simulation, the influence of defects — vacancies, dislocations, and grain boundaries — on the
phonon spectra and magnetic properties of bee-Fe is determined. It is found that the main influence of
defects consists in a decrease of the amplitude of the longitudinal peak, P1,, at around 37 meV. While the
change in phonon spectra shows only little dependence on the defect type, the quantitative decrease of
Pr, is proportional to the defect concentration. Local magnetic moments can be determined from the local
atomic volumes. Again, the changes in the magnetic moments of a defective crystal are linear in the defect
concentrations. In addition, the change of the phonon density of states and the magnetic moments under

homogeneous uniaxial strain are investigated.

1 Introduction

Since point defects are the most common defect type in
metals, their influence on the phonon density of states
(pDOS) was studied intensely. This influence is of basic
importance because it enters the calculation of defect
migration energies and defect formation entropies as well
as the temperature dependence of the free energy of Fe.
Early calculations of the vibrational spectra of vacancy-
containing crystals were limited to pair potentials [1-5].
In view of the known limitations of pair potentials to
describe the elastic properties of metals properly [6], later
approaches turned to many-body potentials. Kislov and
Mazurenko [7] calculated the vibrational spectrum of bee-
Fe using the Finnis-Sinclair potential [8]. They found
a shift of the transverse phonon peaks towards lower
frequencies which they ascribed to a weakening of the
interatomic interaction in the near-neighbor environment.
Gairola et al. [9] calculated the local density of states
of the neighbors of a vacancy in bce Fe using a Green’s
function method and a self-determined interaction poten-
tial. They found that changes in the vibrational spectrum
are restricted to first neighbors; the pDOS features a
decrease towards higher frequencies and a small shift
towards lower frequencies. Self-interstitials show localized
modes (related to the stretching of the dumbbell bond),
which are absent for vacancies; their vibrational properties
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have been calculated more rarely [10,11]. Also localized
low-frequency modes exist that correspond to easy glide
directions of the interstitial [11].

In contrast to point defects, the effect of extended
defects on the vibrational spectrum has been determined
only rarely. An exception is provided by interstitial clus-
ters, since these are important in radiation damage studies
[11].

Derlet et al. [12] studied the low-frequency behavior
of nano-crystalline Cu. They found that in the low-
frequency limit, the grain-boundary component of the
pDOS exhibits an increase o< w rather than o w?. They
also found a lowering of the longitudinal peak in nano-
crystalline matter.

Later Meyer et al. [13] studied how the pDOS of nan-
oclusters evolves towards that of the bulk material. They
found that the contribution of atoms that are not in
a well-characterized crystal environment shows a shift
towards lower frequencies and a lowered longitudinal peak
amplitude.

Besides their effects on the phonon spectrum, defects
also influence the magnetic properties of the sample [14].
Magnetic effects have been characterized in iron for point
defects [15-17] and also grain boundaries [18-25]. Their
effect on dislocations has been studied both for iso-
lated screw dislocations [26] and for dislocation networks
generated by nanoindentation [27].

In the present paper, we use atomistic simulation
to study the effect of defects on the pDOS and the
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magnetic moments in bee Fe. Isolated vacancies are stud-
ied for comparison purposes, while the study of extended
dislocation networks is novel. Poly-crystalline specimens
are also investigated due to their principal importance for
experiment.

2 Methods

Our Fe crystals are cubic with a side length of 14.4 nm
and contain N = 250000 atoms. We equilibrate them at
a temperature of 300 K for 50 ps, before evaluating the

pDOS.
Defects are introduced into the sample as follows.

(i) Vacancies are introduced by randomly deleting
atoms in the crystal. Vacancy concentrations up to
n, = 0.03 are considered.

Dislocations are produced according to the recipe
of [28,29] by introducing straight edge dislocations,
running in (100) direction, into the crystal. The dis-
locations were annealed according to the recipe of
[30] by heating to 1230 K, equilibrating for 100 ps
and then cooling down to 300K. We produce 9
samples with dislocation densities p between 0 and
5.959 x 106 m~2. The resulting structures contain
a dislocation network consisting of dislocations with
Burgers vectors b = £(111) and b = (100), in which
the latter are remnants from the production process.
Here, the dislocation density is calculated as p =
Lais1/V, where Lqig is the total length of dislocations
in the sample, and V is the sample volume.

For purposes of comparison, we can relate the dislo-
cation density to a defect concentration n. as follows.
If Qy = 11.78 A3 denotes the atomic volume of bee
Fe, the number of atoms in the core of a disloca-

(i)

tion line of length Lgig is given by Ny = Ldisl/Qé/g.
Hence

ne = Naf/N = p03/. (1)

As an alternative method to introduce dislocations
into the sample, we strained the sample uniaxially
along a (100) direction with a strain rate of 101? s=1.
In the orthogonal directions, the boundary condi-
tions guaranteed zero stress. Before evaluating the
data, we equilibrated the system for 10 ps.

Grain boundaries are generated using the free soft-
ware ‘atomsk’ [31]. The nanocrystalline specimen
created contains 6 grains with an average size of
9.75 nm. They are equilibrated by annealing at
1230 K, as described above for dislocated crystals,
item (ii) above.

(iii)

(iv)

The pDOS, y(w), is calculated from the velocity auto-
correlation function ~(7) of the iron atoms

v(1) = <Zvi(t0 +7) 'Ui(t0)> : (2)

to
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Fig. 1. pDOS as calculated using the Ackland et al. [33]
potential, compared to experimental data at 295 K [55]. The
quadratic dependence at small phonon energies is highlighted.

where the sum runs over all iron atoms i in the sample
and (...), denotes the average taken over the reference
times to. All calculations are performed at 300 K, unless
noted otherwise. The velocity autocorrelation function is
calculated for times up to Tymax = 50 ps; this appears
sufficient since it corresponds to a frequency resolution
of 1/Tmax = 0.02 THz or 0.67 cm™* [32]. The pDOS is
obtained as the Fourier transform of the velocity autocor-
relation function [32]. We normalize it to area 1 such that
(W) =1.

We use the Fe potential developed by Ackland et al.
[33] in this study, since it provides a fair representation
of the Fe pDOS when comparing to experimental data.
A variety of other potentials were investigated by us, but
they did not reproduce this quantity as satisfactorily, see
Appendix A.

The software LAMMPS [34] is used for performing the
simulations. OVITO [35] is employed to render snapshots
and to calculate the dislocation length.

3 pDOS

Experimental data of the Fe pDOS have been available
since the late 1960s where the phonon dispersion was mea-
sured by neutron scattering [36-38]. We reproduce these
data in Figure 1 for 300 K and compare them with our
calculated data. Deviations between experiment and sim-
ulation show up; as discussed in the Appendix A, these
are typical for all interatomic potentials.

The shape of the pDOS, g(w), is characterized by a
quadratic increase at low frequencies according to

g(w) o vpw?, 3)

where vp is the Debye velocity of sound, and a high-
frequency cut-off. In between, the shape is dominated
by 3 peaks; the two lower-frequency peaks correspond to
mainly transverse-polarized phonons, while the last peak
is due to longitudinal phonons.

In the present study, we base our analysis on the peak
height of the longitudinal peak, since this is a quantity
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Fig. 2. Influence of vacancies: (a) pDOS, (b) relative height of longitudinal peak, Pr. Line in (b) gives a linear fit.

that is easily obtained also from an experimentally mea-
sured pDOS. Certainly, from a theoretical point of view, it
might be preferable to base the analysis on the fraction of
modes present under the entire longitudinal peak by inte-
grating the pDOS around a suitable interval around the
peak maximum. However, this interval might be difficult
to define as it changes with the defect types and concen-
trations considered. We therefore restrict the discussion
to the peak height itself.

At low temperatures, the spectrum is shifted to higher
frequencies and the relative position of the peaks changes.
For this reason, we restrict our analysis to one tempera-
ture, 300 K.

3.1 Defective crystals: vacancies

The influence of vacancies on the vibrational spectrum
of crystals has been investigated since long. As outlined
in the Introduction, Section 1, the effect of vacancies is
localized to the first two neighbor shells around it and
can be characterized as a shift of the spectrum to smaller
frequencies.

In Figure 2a, we investigate the effect on the pDOS
of a random assembly of vacancies in a bcc-Fe crystal.
Clearly, the vacancy densities applied in our study are
considerably larger than in experiment; they are used in
order to bring out the influences more strikingly. The
main effect is a decrease of the height of the longitudi-
nal peak situated at around 37 meV. To a lesser extent,
also the second transverse peak, at around 27 meV, is
reduced. In compensation, the minima between the peaks
are slightly filled up, and also the pDOS at low frequencies,
between 8 and 18 meV, is slightly increased. A change of
the low-frequency dependence, g(w) o v3w?, equation (3),
can hardly be detected below 5 meV. This independence
implies that the elastic moduli of Fe are only negligibly
changed by the introduction of vacancies at the densities
applied here.

We conclude that the change in the longitudinal phonon
peak is the most pronounced feature of the influence of
vacancies on the phonon spectrum. Figure 2b shows that
up to a vacancy concentration of 2%, the longitudinal peak

amplitude decreases linearly with the vacancy density as
Pr, =1 — ayn,, (4)

where Py, denotes the longitudinal peak height relative to
that of an ideal crystal, and n,, is the vacancy concentra-
tion. We find «, = 5.083. For higher densities, the peak
amplitude appears to stabilize.

3.2 Defective crystals: dislocations

The change of the pDOS upon the insertion of disloca-
tions is shown in Figure 3a. The effects parallel closely
those in a vacancy-filled crystal; the main effect is again
a decrease in the longitudinal peak amplitude. As shown
in Figure 3b, the effect is again approximately linear in
the defect density, in particular for dislocation densities
p < 3x 10 m~2. Here, we find in analogy to equation (4)

PL =1- Qqp, (5)

where ag = 0.03 (1016 m=2)~! at low p < 3 x 106 m~2
and ag = 0.013 (10 m~2)~1 at higher p.

In order to compare the changes induced by dislocations
with those induced by vacancies, we convert the disloca-
tion densities to the concentration of core atoms, n., via
equation (1). We note that this comparison only allows
to assess the strength of the respective influence of vacan-
cies and dislocations; the physical origin of the changes in
the pDOS are caused by the structure of the defects — in
particular the local environment around the defects — and
will not be assessed here. In terms of the concentration of
core atoms, n., the change in peak height reads

Py =1- acne,, (6)

with a, = aanz/?’. Hence a. = 60 at low p < 3 x
10 m~2 and a. = 25 at higher p. These values are a
factor of 5-12 higher than the vacancy values «,,. This dis-
crepancy can be interpreted such that the concentration of
core atoms is larger than the estimate equation (1) by a
factor of around 10. In other words, the cross-sectional
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Fig. 3. Influence of dislocations: (a) pDOS, (b) relative height of longitudinal peak, Pr. Two linear fit lines are indicated

in (b).

area around the dislocation line where the density is
changed with respect to the ideal-lattice density is larger
than an atomic cross section. This is in line with atomistic
calculations of the core structure of dislocations in Fe [17].

The effect of a single dislocation on the frequency
spectrum of a crystal does not appear to have been stud-
ied previously in such detail as that of point defects. It
may however be assumed that the effect is based on two
aspects: (i) the underdense dislocation core, (ii) the far-
reaching strain field around a dislocation. Atoms in and
around the dislocation core are expected to experience
similar effects as around vacancies, since also here the local
atom density is reduced. The strain field around disloca-
tions, on the other hand, is complex and has both tensile
and compressive components [39,40]; it is therefore hard to
predict its influence on the height of the longitudinal peak,
Pr,. If one assumes that the close environment of the dis-
location dominates the effect on Py, the similarity of the
vibrational spectra of vacancy- and dislocation-filled crys-
tals in decreasing the longitudinal-peak height becomes
understandable. Note, however, that dislocations also pop-
ulate high-frequency modes — in contrast to vacancies —
and hence lead to a broadening of the longitudinal peak.

3.3 Defective crystals: strain

An alternative method to introduce dislocations into a
crystal consists in straining the crystal until it responds by
dislocation formation. Figure 4a shows that dislocations
start to develop at a strain of around 18%; this late start
of defect formation is caused by our use of an ideal crystal.
Then the dislocation density increases more or less mono-
tonically until a strain of around 40%, and then saturates
at values of around 10" m~2. Clearly, such high strains
can only be applied to ideal crystals without fracturing
them.

Figure 4b shows that under strain the spectra change
more pronouncedly than in the cases considered above. In
particular, a clear increase in the curvature at low frequen-
cies is seen. In agreement with equation (3), this increase is
related to the increase of elastic constants in the strained
material. Concomitantly, a slight increase of the pDOS at

the highest frequencies is observed; in particular, also the
frequency of the highest phonon mode is lifted. Again, this
is caused by the high strain in the crystal.

Similarly as for the defects described previously — vacan-
cies and unstrained dislocations — the amplitude of the
longitudinal peak decreases. However, the changes in the
minima and also in the second transverse peak are now
more pronounced than in the previous cases.

Figures 4c and 4d quantify the decrease of the longitudi-
nal peak amplitude with increasing strain and dislocation
density, respectively. The dependence now differs strongly
from the approximately linear dependences found above.

(i) Up to a tensile strain of 5%, the pDOS and Py, are
unchanged.

(ii) At 10% strain, Py, is significantly reduced, by around
25%, even though no dislocations were generated.
Figure 4b reveals that at this strain, the spectrum
already considerably changes. Phonon modes are
re-distributed towards the low- and high-frequency
regions, signaling the strain-induced increase of the
elastic moduli and the speed of sound on the one
hand and the increase of the maximum phonon fre-
quency on the other hand. As a result, the entire
phonon peak region between 20 and 40 meV is
depopulated of modes. Hence the change occurring
between 5 and 10% strain is not caused by defect
formation, but by a re-distribution of modes from
the peak region to the edges of the spectrum.

At even higher strains, the relative changes are minor
and mostly produced by noise.

However, for strains between roughly 20 and 30%,
where the dislocation density increases strongly, an
approximately linear decrease of Py, with p can be
found, similar to equation (5):

(i)
(iv)

P, =0.762 — asp, (7)

where a, = 0.013 (10! m=2)7!, in excellent agree-
ment with the value of ag given in Section 3.2
above.
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linear fit.

(v) In this same regime, the dependence of Py, on strain
€ is

Pr, = 0.794 — ape, (8)
with oy, = 0.244.

3.4 Defective crystals: grain boundaries

In Figure 5, we compare the pDOS of a single-crystalline
sample with that of the nanocrystalline sample. Again we
observe a relocation of modes from the central peak region
of the spectrum towards the high- and low-frequency tails.
This feature is in agreement with previous experimen-
tal [41] and simulational [12] studies of nanocrystalline
Ni which showed that with decreasing grain size, this
mode relocation becomes more pronounced. The increase
of both low- and high-frequency modes is attributed to
modes localized at grain boundaries; this redistribution
leads to a ‘broadening’ of the pDOS towards low and high
frequencies [13].

When straining the poly-crystalline sample, the strain
induces complex changes both in the grain-boundary
regions and in the bulk of the grains; such changes may
occur already at considerably lower strains than in a
single-crystalline specimen [42]. However, an analysis of

0.05 single crystal
—— polycrystal
0.04
>
E
£ 0.03 1
Z
)
o 0.02 +
@)
-
0.01
0.00
T T T T T T
0 10 20 30 40 50 60

energy (meV)

Fig. 5. Comparison of the pDOS in an ideal single crystal to
that of a polycrystal.

defect generation in poly-crystalline materials is non-
trivial, since grain boundaries are easily mis-identified
as dislocations by defect-identification algorithms such
as OVITO; in addition, it is hard to monitor changes
in the grain boundaries during straining. We therefore
refrain from correlating strain with defect densities in the
polycrystal.


https://epjb.epj.org/

Page 6 of 11
0.04 - 0% strain
' 5% strain
—— 10% strain
< 0.03 —— 15% strain
2 20% strain
~
—
~ 0.02 A
")
o
a
o
0.01 +
0.00
T T T T T T
0 10 20 30 40 50 60
energy (meV)
(a)

Eur. Phys. J. B (2020) 93: 116

1.00 = — it
3 X strained pc sample
2
2 0.95 4
€
[y}
X
3
2 0.90 X
)
o
[a)
o
2 085+ 3
=
[}
© X
[ X x X % % X

0.80 == T T T T T T

0 10 20 30 40 50 60
strain (%)
(b)

Fig. 6. Influence of dislocations induced by strain in a polycrystalline sample: (a) pDOS, (b) relative height of longitudinal

peak, Pr,, vs. strain. Line in (b) gives a linear fit.

Figure 6 shows that — in contrast to the single-crystal,
Figure 4 — the change in Py, depends rather monotonously
on strain. A roughly linear relationship can be read off
Figure 6b, which we write as

P, = 0.914 — aype, (9)

with a; = 0.43. Here we excluded the initial value at zero
strain from our fit, since the initial decrease of Py, with
strain is stronger. This may be due to the fact that ini-
tially the grain boundaries were not sufficiently relaxed
such that the initial straining leads to more complex
grain-boundary changes.

The value of «, for straining a poly-crystalline sample
is almost double as large as the value for single-crystal
straining. This demonstrates that grain boundaries and
their changes during strain have a major effect on the
evolution of the pDOS.

4 Magnetic moments

Bec-iron is ferromagnetic; in the ideal defect-free lat-
tice, at zero temperature, each atom carries a magnetic
moment of pfequ = 2.154 pp [43], where up denotes the
Bohr magneton. In the vicinity of defects, the magnetic
moment of an atom 4, p;, will change. The physical origin
of the change is complex. A major influence is exerted
by the so-called magneto-volume effect which predicts
that the magnetic moment of an Fe atom depends on
its local atomic volume. For a free atom (infinite atomic
volume), it is p = 4.0 pup; with shrinking volume the
moment monotonically decreases until it vanishes at a
critical atomic volume [14]. Since the atomic volumes are
changed in the vicinity of defects, the magneto-volume
effect influences the magnetic moments locally. A sec-
ond influence is provided by the local coordination of
iron atoms. The coordination effect has been investigated
recently by Zhang et al. [44] in Fe. They found that this
effect becomes dominant in particular for compressed iron
with atomic volumes smaller than the equilibrium volume
in bee-Fe, Q = 11.78 A3.

Our atomistic results on the structure of defective Fe
may be used to assess the changes in magnetism via the
magneto-volume effect; we ignore the coordination effect,
since the local volumes in defect structures are as a rule
enhanced with respect to the equilibrium volume, such
that the coordination effect will lose significance. In the
embedded-atom-model type potential that we use here,
the local volume of atom ¢ may be most easily assessed by
the value of the electron density n{ at this site. The elec-
tron density nf is obtained as the sum of the contributions
of all surrounding atoms,

ng = Zf(%% (10)

where j denotes the neighbor atoms and 7;; their distance
to atom 4. The function f(r) denotes the electron density
provided by a neighbor atom at distance r and is part
of the description of the interatomic potential function.
Figure 7a displays the dependence of the elec-
tron density on atomic volume for a homogeneously
expanded/contracted lattice. Derlet and Dudarev [26,43,
45,46] used this idea to correlate the magnetic moment
of atom ¢, u;, directly with its electron density, n{. They
proposed a function

~
n¢
,ul—C<1 n%) .

It has been argued that the calculation of the local
electron density to some extent also incorporates the coor-
dination effect, since it is based on the individual bond
lengths r;; [25].

Figure 7b shows ab-initio data of the dependence
of pu on the atomic volume and demonstrates that
equation (11) is able to fit this dependence well via the
local electron density. In the present study, the range of
atomic volumes tested is 11-16 A3, such that our fit is well
justified. Our fit parameters are C' = (3.423 + 0.234) up
and v = 0.278 + 0.046. Here, the error denotes the accu-
racy of the fit procedure. n¢ denotes the electron density

(11)
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at the critical volume, Q. = 7.750 A3, and is only used for
normalization purposes. equation (11) results in an equi-
librium magnetic moment of pequ = 2.149 (2.166) pp for
the single-crystalline (poly-crystalline) structure.

We note that the dependence of the magnetic moment
 on the atomic volume 2 can be well approximated by
a linear dependence in the vicinity of the equilibrium
volume,

Q-0
H = Hequ <1 +k 0) ) (12)
Qo

with &k, = 0.770.

We show in Figure 8a that the magnetic moment
depends on the vacancy concentration in a defective
crystal in a linear way,

H = /Jequ(1 + kvnv) ) (13)
with k, = 0.477. This value can be compared to the value
of k given above, equation (12), if we assume Q — Qy =

n,80. ky is of similar size, but somewhat smaller than k.
This can be justified by the fact that the volume change
caused by insertion of a vacancy is somewhat smaller than
an atomic volume, due to relaxation effects [47].

For dislocations, the linear relationship is more noisy,
see Figure 8b:

= pequ(l + kap) (14)

with kg = 0.388 x 1072 (10'® m~=2)~!. Rewriting this
expression in terms of the concentration of atoms in the
core of a dislocation line, n., equation (1), we obtain

1= flequ(1 + kgne) (15)

with &/, = 0.75. This value is somewhat larger than k,,
equation (13), implying — analogous to the effect seen for
the pDOS — that the number of core atoms in a disloca-
tion underestimates the effects on the changes in magnetic
moments.


https://epjb.epj.org/

Page 8 of 11
X x
X
E 2.165 X
— X x
‘q:-; X
£ 2.160
[}
S x ¥
2 X
2 2.155 4
)
o]
€ X
— fit
2.150 J X strained sc sample
T T T T T T T
0 10 20 30 40 50 60

strain (%)

(a)

Eur. Phys. J. B (2020) 93: 116

2.1825 4 Xxx"xxx
= 2.1800 x %
3
e 21775 1
c
[
§ 2.1750 -
£
221725 A
[
)
g 2.1700 +
2.1675 1 fi
: J X strained pc sample
T T T T T T T
0 10 20 30 40 50 60
strain (%)
(b)

Fig. 9. Dependence of the magnetic moment of (a) single-crystalline and (b) poly-crystalline Fe on strain. Lines denote linear

fits.

The influence of grain boundaries on the magnetism
can be assessed by comparing the magnetic moments in
our single-crystalline (2.149 pup) and in a poly-crystalline
(2.166 pp) specimen. The increase is caused by the open
volume generated in the vicinity of the grain boundaries.

The magnetic moments change in a strained specimen.
We first discuss the changes under small strains € < 1%,
where the specimen responds in a linear elastic way. The
relative volume change then is given by

Q-0
Qo

= (1 —2v)e, (16)

where v = C15/(C12 + C12) = 0.37 is the Poisson number
when the uniaxial strain e is exerted in [001] direction,
and the C;; are the elastic moduli, which for our poten-
tial are tabulated in [33]. Inserting this dependence in
equation (12) leads to

[t = pequ(l +K'e) (17)

with ¥’ = 0.16. This dependence is well fulfilled in our
simulation (not shown).

The data for larger strains, however, deviate from this
behavior, see Figure 9. Here, a value of k' = 0.045 (0.039)
is obtained for the single-crystalline (poly-crystalline)
case, considerably smaller than in the linear-elastic case.
This behavior is mainly caused by a considerably slower
increase of the atomic volume than that predicted by
equation (16), since at large strains, the strain-induced
stresses relax to decrease the atomic volumes.

In addition, the effect of strain is weaker in the
poly-crystalline specimen, presumably since already the
grain-boundary-filled polycrystalline material has a higher
initial magnetic moment than the single-crystalline spec-
imen. Note that the dislocations created in the single-
crystalline material hardly allow to reach the unstrained
value of the polycrystalline material, 2.166 pp. This com-
parison thus demonstrates the strong influence that grain
boundaries have on the magnetic moment.

For a uniaxial strain, atomic volumes increase as ¢ =
(@ —Qp)/Q and we can therefore immediately compare
the values of k' under strain with the value of k, equa-
tion (12), by more than an order of magnitude.

5 Conclusions

Using atomistic simulation, we studied the influence of
defects on the pDOS and the magnetic moments in bee-Fe.
We found the following.

1. Defects lead to a decrease of the amplitude of the
longitudinal phonon peak, Py,. In compensation, the
pDOS increases in the minima between the peaks,
and also in the low-frequency region.

2. The changes induced by different types of defects
— vacancies, dislocations, grain boundaries — to the
longitudinal peak height are similar. In other words,
it appears difficult to use the changes in the longi-
tudinal peak height as a tool to identify the defect
types.

3. In contrast to vacancies, both dislocations and
grain boundaries lead to an increased population
of high-frequency modes, i.e., a broadening of the
longitudinal peak.

4. At low defect densities, the peak of the longitudi-
nal phonons decreases in proportion to the defect
density.

5. Changes in the magnetic moment of defective crys-
tals are also linear in the defect density. These
changes can be explained since defects lead to an
increase in the atomic volume of neighboring atoms,
and hence in their magnetic moment.

Open access funding provided by Projekt DEAL. Funded
by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) — TRR 173 — 268565370 (projects
A04, A06 and B08). Simulations were performed at the High
Performance Cluster Elwetritsch (Regionales Hochschulrechen-
zentrum, TU Kaiserslautern, Germany).
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Fig. A.1. pDOS obtained for various potentials and compared to experiment [55]. (a) Etesami and Asadi [49], (b) Chamati
et al. [48], (c) Marinica et al. [17,54] (d) Mendelev et al. [50], (e¢) Meyer and Entel [51], (f) Olsson [52], (g) Proville et al. [53].
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Appendix A: Interatomic potentials

A considerable number of potentials have been derived
for bee Fe. We used here the potential by Ackland et al.
[33]. However, we also tested the potentials of Chamati
et al. [48], Etesami and Asadi [49], Mendelev et al. [50],
Meyer and Entel [51], Olsson [52], Proville et al. [53],
and Marinica et al. [17,54] for the quality of their pDOS.
The data are shown in Figure A.l. Interestingly, none
of the potentials reproduces the experimental data [55]
accurately.

Since in this study, we focus on the changes in the
longitudinal phonon peak, are interested in a fair rep-
resentation of the position and relative height of the
longitudinal and the two transverse phonon peaks. These
appear to be best represented by the Ackland et al. poten-
tial [33] (and also in the less well kown Olsson potential),
and we selected this potential for our study.
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The pDOS of the Mendelev et al. [50] potential has also
been provided by Talati et al. [56], in fair agreement with
our results.

Dragoni et al. [57] provide a comprehensive review of
the thermoelastic properties of bee-Fe in four potentials:
The Mendelev potential [50], the Meyer-Entel potential
[51], the Ouyang et al. potential [58] and the March-
ese et al. potential [59]. Among others they also cal-
culate the phonon dispersions, but not the density of
states. They conclude that all considered potentials have
their weaknesses; for example, the Mendelev potential
[50] shows anomalies in the softening of the Cy4 elastic
constant.

Previously, Marinica and Willaime [10] calculated the
bulk phonon dispersions and phonon densities of state for
the potentials by Ackland et al. [33], Mendelev et al. [50]
and its improved version [60], and Dudarev and Derlet
[45] and found good performance for all potentials at zero
pressure. At higher pressure (10 GPa) — which may be
relevant in locally strained defective regions of a metal —
the performance is not so good.

It should be noted that potentials are usually devel-
oped by fitting to basic metallurgical quantities, such as
the cohesive energy, lattice constant, elastic moduli, and
point defect energies. Depending on the motivation of the
developers, other quantities may enter, such as surface
energies and relaxations, melting or phase transformation
temperatures, etc. The pDOS usually does not belong to
the quantities used for potential development. This may
explain why the potentials considered in this Appendix
show such a variation in the description of the pDOS.

Malerba et al. [17] report on the ability of potentials
to describe dislocation cores in Fe correctly. They note
that among the potentials studied here Ackland et al. [33],
Mendelev et al. [50], and Marinica et al. [17,54] perform
well in this regard. This justifies our use of the Ackland
potential for modeling plasticity in Fe.
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