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Preface

After the notion of Grobner bases and an algorithm for constructing them was
introduced by Buchberger [Bul, Bu2] algebraic geometers have used Grébner
bases as the main computational tool for many years, either to prove a theo-
rem or to disprove a conjecture or just to experiment with examples in order
to obtain a feeling about the structure of an algebraic variety. Nontrivial
problems coming either from logic, mathematics or applications usually lead
to nontrivial Grobner basis computations, which is the reason why several im-
provements have been provided by many people and have been implemented
in general purpose systems like Axiom, Maple, Mathematica, Reduce, etc.,
and systems specialized for use in algebraic geometry and commutative alge-
bra like CoCoA, Macaulay and Singular.

The present paper starts with an introduction to some concepts of algebraic

geometry which should be understood by people with (almost) no knowledge
in this field.
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In the second chapter we introduce standard bases (generalization of Gro-
bner bases to non—well-orderings), which are needed for applications to local
algebraic geometry (singularity theory), and a method for computing syzygies
and free resolutions.

The last chapter describes a new algorithm for computing the normaliza-
tion of a reduced affine ring and gives an elementary introduction to singu-
larity theory. Then we describe algorithms, using standard bases, to compute
infinitesimal deformations and obstructions, which are basic for the deforma-
tion theory of isolated singularities.

It is impossible to list all papers where Grobner bases have been used
in local and global algebraic geometry, and even more impossible to give
an overview about these contributions. We have, therefore, included only
references to papers mentioned in this tutorial paper. The interested reader
will find many more in the other contributions of this volume and in the
literature cited there.

1 Introduction by simple questions

The basic problem of algebraic geometry can be formulated as a very sim-
ple question: “What is the structure of the set of solutions of finitely many
polynomial equations in finitely many indeterminates?”

That is, we try to understand the set of points z = (zy,...,z,) € K"
satisfying

fl(.’L']_, Ce ,./L'n) = 0,

fk(]}l, .. .,.’En) = 0,

where K is a field and fi,..., fx are elements of the polynomial ring K[z] =
K[zy,...,2,). The solution set of fi,..., fr is called the algebraic set, or
algebraic variety of fi,..., fr and is denoted by V(f1,..., fx)-

Here are three simple examples, which will be used to illustrate some of

our subsequent questions:

/AT/
1) the hypersurface 2) the variety 3) the variety
V(a? +y° — %) V(zz,yz) V(zy, 22,yz)

The simple question, however, does not have an easy answer at all. On
the contrary, the mathematical discipline algebraic geometry, which provides
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tools for possible answers, belongs with its long history to one of the highly
developed branches of mathematics, which has created deep and quite so-
phisticated theories in geometry as well as in algebra. It has been estimated,
as Kunz states in the introduction to his book on commutative algebra and
algebraic geometry [Ku|, that one can teach a course on algebraic geometry
for 200 terms without repetition.

Of course, understanding is relative to the status of the theory but also to
the cultural, economical and technical status of the society. Nowadays, faced
by the technical revolution through computers, understanding requires, more
and more, a computational approach to a problem, if possible. This is evident
in algebraic geometry, as one can see, for instance, from recent textbooks (for
example, [CLO], [St]). It is also evident that the majority of computational
tools developed for algebraic geometry is based on Grobner basis techniques.

Of course, any linear combination f = > a;f;, a; € K|z], vanishes on V' =
V(fi,..-, fr) and V is equal to the solutions of all f € I = (fi,..., f)k[a);
the ideal generated by fi,..., fr in K[z]. Even the radical of I,

VI={feK[z]|3d, fel}

has the same solution set and, by the Hilbert Nullstellensatz, there is the
following tight relation between ideals of K|z| and algebraic sets, provided
the field K is algebraically closed:

For any variety V. C K" let I(V) = {f € K[z] | f(x) =0V z € V} the
ideal of V', then

V=V(J)=I(V)=VJ.

The converse is trivially true.

This theorem is the reason why the couple algebra and geometry married
and produced so many wonderful theorems. Using this ideal-variety corre-
spondence, we may formulate several geometric question and their algebraic
counterparts.

One word about the role of the field K. Algebraic geometers usually draw
real pictures, think about it as complex varieties and perform computations
over some finite field. This attitude is justified by successful practice.

From the geometric point of view, the field K is, however, extremely im-
portant. Algebraic geometry over R, for instance, is much more complicated
and by far not as complete as over C.

The following questions and problems together with those mentioned
in Buchberger’s article [Bu4| belong to the very basic ones in algebraic geom-
etry. They are also quite natural and are motivated already from the above
examples. Note that for these examples, the answers are more or less obvious
from the figures but, nevertheless, they require a mathematical proof which
is usually given by algebra. The answers given by algebra however coincide
with our geometric intuition only in the case of an algebraically closed field.
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e Is V(I) irreducible or may it be decomposed into several algebraic va-
rieties? If so, find its irreducible components. Algebraically this means
to compute a primary decomposition of I or of /I, the latter means to
compute the associated prime ideals of I.

The first example is irreducible, the second has two components (one of
dimension 2 and one of dimension 1), while the third example has three
components (all of dimension 1).

o A natural question to ask is "How independent are the generators fi,. ..,
fr of 1?7 that 1s, we ask for all relations

(TI’ trey Tk:) S K[x]r, such that Zrz‘fl = 0.

These relations form a submodule of K[z]", which is called the syzygy
module of I and is denoted by syz(I). It is the kernel of the K[z]|-linear
map

K[z)" — K[z], (r1,...,13) — Zﬁfz‘-

e More generally, we may ask for generators of the kernel of a K|x]-
linear map K|x|" — K|[z]®, or, in other words, for solutions of a system
of linear equations over K|z].

A direct geometric interpretation of syzygies is not so clear, but there
are instances where properties of syzygies have important geometric
consequences (cf. [Sch2]).

In example 1 we have syz(/) = 0, in example 2, syz(I) = ((—y,z)) C
K|z]? and in example 3, syz(I) = {(—z,y — 0), (—2,0,z)) C K[z]3.

e A more geometric question is the following. Let V(I) = V(1) UV (I3)
be a union of not necessarily irreducible varieties and let us assume that
V(I) and V(1) are known. How can we describe V (I3)? Algebraically,
we want to compute generators for Iy if we know those of I and Iy. This
amounts to finding generators for the ideal quotient

I:I={feKl[z]| f, CI}.
Geometrically, V(I : 1) is the smallest variety containing V(1) \V (I1),
which is the (Zariski) closure of V(1) \ V(I3).

In example 2 we have (zz,yz): (x,y) = z and in example 3 (zy, zz,yz) :
(z,y) = (2, xy),which gives, in both cases, equations for the complement
of the z—axis x =y = 0.

e Geometrically important is the projection of a variety V(I) C K™ into a
linear subspace K"~ ". Given generators f1,..., fr of I, we want to find
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generators for the (closure of the) image of V(I) in K" = {z|x; =

- = x, = 0}. The image is defined by the ideal I N K[xr11,..., Ty
and finding generators for this intersection is known as eliminating
XT1y.-osXp from fr,... fr.

Projecting the three varieties above to the (z,y) plane is, in the first two
cases, surjective and in the third case it gives the two coordinate axes
in the (z,y) plane. This corresponds to the fact that the intersection
with K|z, y] of the first two ideals is 0, while the last one is zy.

e Another problem is related to the Riemann removable theorem, which
states that a function on a complex manifold, which is holomorphic and
bounded outside a subvariety of codimension 1, is actually holomorphic
everywhere. This is well-known for open subsets of C, but in higher
dimension there exists a second removable theorem, which states that
a function, which is holomorphic outside a subvariety of codimension 2
(no assumption on boundedness), is holomorphic everywhere.

For singular complex varieties this is not true in general, but those for
which the two removable theorems hold are called normal. Moreover,
each reduced variety has a normalization and there is a morphism with
finite fibres from the normalization to the variety, which is an isomor-
phism outside the singular locus.

The problem is, given a variety V(I) C K", find a normal variety
V(J) € K™ and a polynomial map K™ — K" inducing the normal-
ization map V(J) = V(I).

The problem can be reduced to irreducible varieties (but need not be, as
we shall see) and then the equivalent algebraic problem is to find the
normalization of K[z1,...,x,]/I, that is the integral closure of Klx|/I
in the quotient field of K[x]/I and present this ring as an affine ring
Klz1,...,zm)/J for some m and J.

In the above examples it can be shown that the normalization of all three
varieties are smooth, the last two are the disjoint union of the (smooth)
components. The corresponding rings are K[xq,zs|, K[z1,zo] ® K|z3],

e The significance of singularities appears not only in the normalization
problem. The study of singularities is also called local algebraic geom-
etry and belongs to the basic tasks of algebraic geometry. Nowadays,
singularity theory is a whole subject on its own.

A singularity of a variety is a point which has no neighbourhood in
which the Jacobian matrix of the generators has constant rank.

In the first example the whole x—axis is singular, in the two other ex-
amples only the origin.
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One task is to compute generators for the ideal of the singular locus,
which is itself a variety. This is just done by computing subdetermi-
nants of the Jacobian matriz, if there are no components of different
dimensions. In general, however, we need ideal quotients.

In the above examples, the singular locus is given by (z,y), (z,y, 2) and
(z,y, 2), respectively.

o Studying a variety V(I), I = (f1,..., fx), locally at a singular point,
say the origin of K™, means studying the ideal 1K |x]5) generated by I
wn the local ring

Kl = {§ fgeKlal, g ¢ <>}

In this local ring the polynomials g with g(0) # 0 are units and K|z] is
a subring of K|x|().

Now all the problems we considered above can be formulated for ideals
in K[x)g) and modules over K[z]y) instead of K[x].

The geometric problems should be interpreted as concerning properties
of the variety in a neighbourhood of the given point.

It should not be a surprise to say that all the above problems have algo-
rithmic and computational solutions, which use, at some place, Grobner ba-
sis methods. Moreover, algorithms for most of these have been implemented
quite efficiently, in several computer algebra systems, such as CoCoA [CNR],
Macaulay [GS] and SINGULAR [GPS]. The most complicated problem by
far is the primary decomposition, the latest achievement is the normaliza-
tion, both being implemented in SINGULAR.

At first glance, it seems that computation in the localization K[z]) re-
quires computation with rational functions. It is an important fact that this
is not necessary, but that basically the same algorithms which were developed
for K[z] can be used for K[z];). This is achieved by the choice of a special
ordering on the monomials of K|[x] where, loosely speaking, the monomials
of lower degree are considered to be bigger.

However, such orderings are no longer well-orderings and the classical
Buchberger algorithm would not terminate. Mora discovered [Mo] that a
different normal form algorithm, or, equivalently, a different division with
remainders, leads to termination. Thus, Buchberger’s algorithm with Mora’s
normal form is able to compute in K[z](;) without denominators.

Several algorithms for K[z] use elimination of (some auxiliary extra) vari-
ables. But variables to be eliminated have, necessarily, to be well-ordered.
Hence, to be able to apply the full power of Grobner basis methods also for
the local ring K|[x](;), we need mixed orders, where the monomial ordering
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restricted to some variables is not a well-ordering, while restricted to other
variables it is. In [GP] the authors described a modification of Mora’s nor-
mal form, which terminates for mixed ordering and, more generally, for any
monomial ordering which is compatible with the natural semigroup structure.

The corresponding modification of Buchberger’s algorithm with this gen-
eral normal form computes, in the case of a well-ordering (which we also call
global ordering) Grobner bases while, in the case of a local ordering (which
was called tangent cone ordering by Mora), it computes so—called standard
bases, which enjoy similar nice properties as Grobner bases. We follow a sug-
gestion by Mora and call bases computed by the general algorithm, standard
bases, whilst, following the tradition of the last 33 years, reserving the name
Grobner basis for the established case of well-orderings.

2 Standard bases

Let K be a field and K|z] = Klzy,...,2,] be the polynomial ring in n
variables over K.

2.1 Monomial orderings and associated rings

Definition 2.1. A monomial ordering on K|[z] is a total order on the set
of monomials {z%*|a € N"} satisfying

2@ > 28 = 2" > 2 for all o, 5,7 € N°.

We call a monomial ordering > a global (respectively local, respectively
mixed) ordering if z; > 1 for all i (respectively z; < 1 for all 7, respectively
if there exist 4, j so that z; > 1 and z; < 1).

This notion is justified by the associated ring to be defined later. Note that
> is global if and only if > is a well-ordering.

Definition 2.2. Any f € K[z] \ {0} can be written uniquely as

f=c®+f
with ¢ € K ~ {0} and a > o for any non-zero term ¢/z® of f'. We set
Im(f) ==z% the leading monomial of f,
le(f) =¢, theleading coefficient of f.

For a subset G C K|[z] we define the leading ideal of G as

L(G) = (Im(g) [ g € G~ {0}) ka1,

the ideal generated by {Im(g) | ¢ € G \ {0}} in K|[z].
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Typical global orderings are the lexicographical ordering lp (z* >,
7P :& the first non-zero entry of o — 3 is positive) and the degree reverse
lexicographical ordering dp (z* >4, 2° :& degz® > degz” or degz® =
deg z” and the last non—zero entry of a— (3 is negative), typical local orderings
are the negative lexicographical ordering Is (z® > 2’ :& the first
non—zero entry of o — (3 is negative) and the negative degree reverse
lexicographical ordering ds (z¢ >4 7 :& degz® < degz® or degz® =
deg z” and the last non-zero entry of o — 3 is negative). In the abbreviations
Ip, dp, ls, ds the p refers to a polynomial ring and the s to a series ring (cf.
Definition 2.3).

For practical purposes, as well as for certain theoretical arguments, it is
important to extend the definitions of dp, respectively ds, to weighted degree
orderings, where the variables have positive, respectively negative, weights.

Given monomial orderings >; on Klzy,...,z,] and >3 on K[y1,...,Ynl,
we define the product ordering or block ordering > = (>1,>2) on K|z, y]
by z%y8 > 27y° & 2@ >, 27 or 2% = 27 and y? >, /.

Definition 2.3. For a given monomial ordering > define the multiplicatively
closed set

Ss :={u € K[z] \ {0} | lm(u) =1}

and the K—-algebra

Loc Klz] i= S5 K[z] = {5 | feKlalueSs),

the localization (ring of fractions) of K[z] with respect to Ss.
We call Loc K[z] also the ring associated to K|z] and >.

Remark 2.1. 1) K[z] C LocK[z] C Klz]) where K[z]) denotes the
localization of K|z] with respect to the maximal ideal (z1,...,z,).
Loc K[z] is Noetherian, it is K[z]-flat and K{z](,) is Loc K[z]-flat.

2) Loc K[r] = KJz] if and only if > is global and Loc K[z] = K|[z] if
and only if > is local (which justifies the names).

Mixed orderings occur as a product ordering of two orderings with one
global and the other local. Many constructions with Grobner bases in
K|[z] use a set of auxiliary variables which have to be eliminated later.
If one wants to perform such constructions in K|z](), the auxiliary
variables must be bigger than 1, hence, mixed orderings occur naturally
in this context.

3) The product ordering on Klz,y] = Kl[z1,...,%n, Y1, --,Ym] With >;
global on K[z] and >, arbitrary on K[y] is an elimination ordering
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for z1,...,z, on Klz,y], that is, for g € K[z,y] and lm(g) € Ky] we
have g € K[y|. It is easy to see that for an arbitrary monomial ordering
> to be an elimination ordering for z1, ..., x, it is necessary that z; > 1
for i = 1,...,r. For example, let >; be global on K[z] and >, local
on K[y], then the product ordering > = (>1,>;) on K|z, y] satisfies
Ss = K* + (y)K][y], hence

Loc K[z, y] = (K[yl)l«]-

Note that Im and lc have natural extensions to the localization. For
f € Loc K|[z] there exists u € S, lc(u) = 1, such that uf € Klz| and we
define

Im(f) := Im(uf), le(f) = le(uf).

Since

Im(fg) = Im(f) Im(g) and
le(fg) = le(f)le(g)

this definition is independent of the choice of u. Moreover, for a subset G C
Loc K[z] set

L(G) = (Im(g)|g € G~ {0})ka) C Kz]
and call it the leading ideal of G. Note also that u € Loc K[z] \ {0} is a

unit in Loc K[z] if and only if Im(u) = 1, that is, if u € Ss.

For our intended applications of standard bases, but also for an elegant
proof of Buchberger’s standard basis criterion, we have to extend the notion

of monomial orderings to the free module K[z]" = >  K]|z]e; where
i=1,..,r

e =(0,...,1,...,0) € K[z]
denotes the i—th canonical basis vector of K[z]". We call
z%; = (0,...,2%...,0) € K[z]"
a monomial (involving component i).

Definition 2.4. Let > be a monomial ordering on K[z]. A monomial or-
dering or a module ordering on K|z|" is a total ordering >,, on the set of
monomials {z%;|a € N*,i = 1,...,r} satisfying

z%; >, Pe; = xe; >, P Me;,
z® > P = 2%, >, e,
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forall o, B,y e N* 4,5 =1,... 7.
Two module orderings are of particular practical interest:

xo‘ei>xﬁej(i)i>j0ri:jandx”‘>xﬂ,

giving priority to the components and
x%; > a:ﬁej s>zl or 2 =2 and i > j,
which gives priority to the monomials in K[z].

Note that, by the second condition, each component of K[z]" carries the
ordering of K|z]. Hence, >,, is a well-ordering on K|z]" if and only if > is
a well-ordering on K[z]. We call >,, global respectively local respectively
mixed, if this holds for > respectively.

Now we fix a module ordering >,, and denote it also with >. Since any
f € K[z]" ~ {0} can be written uniquely as

f=cite+

with ¢ € K \ {0} and 2%; > 2% e; for any non-zero term ¢'z® e; of f’ we can
define as before

lm(f) = xaeia
le(f) = ¢

and call it the leading monomial respectively the leading coefficient of
f. Moreover, for G C K[x]" we call

L(G) = (Im(g)|g € G~ {0}) k) C Klz]"

the leading submodule of G.

As from K[z] to Loc K[z] these definitions carry over naturally from K|z]"
to (Loc K[z])".

We say that x“%e; is divisible by xﬂej if i = j and 2%|z®. For any set of
monomials G C K[z]" and any monomial z%¢;, we have

z%e; & (G) k() © 2%€; is not divisible by any element of G.

2.2 Standard bases and normal forms

Let > be a fixed monomial ordering on K[z]. In order to have a short notation,
we write

R :=LocK][z] = S.'K|x]

to denote the localization of K[z]| with respect to >.
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We define the notion of standard basis respectively Grobner basis and give
an algorithm to compute such a basis. In the case of a well-ordering this is
Buchberger’s [Bul], [Bu2], [Bu3], [Bu4| celebrated algorithm, in the general
case it is a variation of Mora’s tangent cone algorithm [Mo], first published in
[Getal], [GP], [Gra]. We like to stress that it is important to work consequently
with the ring R and not with K|[z], even if the input is polynomial.

Definition 2.5.

1) Let I C R" be a submodule. A finite set G C [ is called a standard
basis of [ if and only if L(G) = L(I), that is, for any f € I\ {0} there
exists a g € G satisfying Im(g)|lm(f).

2) If the ordering is a well-ordering, then a standard basis G is called a
Grobner basis. In this case R = K|[z] and, hence, G C I C K|[z]".

With the above notation, we follow the suggestion of [MPT], reserving the
name Grobner basis exclusively for well-orderings.

A set G C R is called interreduced if 0 ¢ G and if Im(g) ¢ L(G \ {g}).
Note that any standard basis can be made interreduced by deleting succes-

sively those g with Im(g)|lm(h) for some h € G \ {g}. An interreduced
standard basis is also called minimal.

For f € K[z]" and G C K|z|" we say that f is reduced with respect to
G if no monomial of f is contained in L(G). If > is not a well-ordering, we
extend this to f € R" and G C R" by saying that f is (completely) reduced
with respect to G if there exist uy € S5, and for each g € G, u, € Sy such
that usf, u,g € K[z]|" and uyf is reduced with respect to {u,9|g € G}.

A set G C R is called reduced if 0 ¢ G and if each g € G is reduced with
respect to G\ {g} and if, moreover, g —Ic(g) Im(g) is reduced with respect to
G. For > a well-ordering this just means that for each g € G C K[z]", Im(g)
does not divide any monomial of any element of G \ {g}.

We shall see later that reduced Grobner bases do always exist, but reduced
standard bases, in general, do not.

Definition 2.6. Let G denote the set of all finite and ordered subsets G C R'.
1) A map
NF:R xG— R, (f,G)— NF(f|G),
is called a normal form on R" if, for all f and G,

(i) NF(£|G) # 0 = Im(NF(f|G)) & L(G),
(i) f—NF(f|G) € (G).
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NF is called a reduced normal form if, moreover, NF(f, G) is reduced
with respect to G. NF is called a weak normal form if, instead of (ii),
only the condition (ii’) holds:

(i’) for each f € R" and each G € G there exists a unit u € R, so that
uf = NE(f|G) € (G)r.

2) Let G ={g1,...,9s} €G. A representation of f € (G)g,
f=) aig, a€R,
i=1

satisfying Im(f) > Im(a;g;), whenever both sides are defined, is called
a standard representation of f (with respect to G).

Remark 2.2. The reason for introducing weak normal forms is twofold. On
the one hand, they are usually more easy to compute and as good as normal
forms for practical applications. On the other hand, and more seriously, nor-
mal forms may not exist, while weak normal forms do. For example, it is easy
to see that f = 2 € R = K|xz](;) (with Is) does not have a normal form with
respect to G = {z — z?}. On the other hand, since (1 — z)f = z — 2* and
1 — 2 a unit in R, f is a weak normal form of itself with respect to G.
NF(f|G@) is by no means unique. For applications (weak) normal forms are
most useful if G is a standard basis of (G)g. We shall demonstrate this with
a first application, which follows immediately from the definitions.

Lemma 2.1. Let I C R" be a submodule, G C I a standard basis of I and
NF(—|G) a weak normal form on R" with respect to G.

1) For any f € R we have f € [ & NF(f|G) = 0.
2) If J C R" is a submodule with I C J, then L(I) = L(J) implies I = J.
3) I = (G)p, that is, G generates I as R—-module.

4) If NF(—|G) is a reduced normal form, then it is unique.

For describing Buchberger’s normal form algorithm, we need the notion of
an s-polynomial.

Definition 2.7. Let f,g € R" \ {0} with Im(f) = z%; and lm(f) = zPe;,
respectively. Let

Y= ICHI(OJ, ﬂ) = (max(al, ﬂl)v te ,max(an, ﬂn))
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be the least common multiple of 2 and #* and define the s—polynomial
of f and g to be

le(f)
le(g)
0, if i £ j.

7T f — 27 Bg,  ifi=j,

spoly(f,g) :=

If Im(g)|lm(f), say lm(g) = zPe;, Im(f) = z“;, then the s—polynomial is
especially simple,

) jas
o(g)” ¥

and Im(spoly(f, g)) < Im(g). For the normal form algorithm, the s-polyno-
mial will only be used in this form, while for the standard basis algorithm
we need it in the general form above. In order to be able to use the same
expression in both algorithms, we prefer the definition of spoly above and
not the more symmetric form lc(g)z7=®f — le(f)z”#g. Both are, of course,
equivalent, since our ground ring K is a field.

spoly(f,9) = f —

Algorithm 2.1. Assume that > is a well-ordering on K{z|".
NFBUCHBERGER(f|G)

Input:  f e K[z]", Geg.
Output: h € K[z]", a normal form of f with respect to G.

e h=f;

e while (h # 0 and G, = {g € G | Im(g) | Im(h)} # 0)
choose any g € Gp;
h = spoly(h, g);

e return h;

For termination and correctness see [Bud|. Note that each specific choice of
“any” gives a different normal form function.

It is easy to extend NFBuchberger to a reduced normal form.

The idea of many standard basis algorithms may be formalized as follows:

Algorithm 2.2. Let > be any monomial ordering on R" and assume that a
weak normal form algorithm NF on R" is given.

STANDARD(G,NF)

Input: Ge€g

Output: S € G such that S is a standard basis of the submodule I = (G)g C
R’/’
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o 5=G;

e P={(f,9)lf;geStCcSxS

e while (P # 0)
choose (f,g) € P;
P=P~A(f,9)}
h = NF (spoly(f,9)|5);
If (h # 0)
P=PU{(h, f)|f €Sk
S=SUh;

e return S;

To see termination of STANDARD, note that if 4 # 0 then lm(h) ¢ L(S) by
property 1) of NF. Hence, we obtain a strictly increasing sequence of mono-
mial submodules of K[z]", which becomes stationary by Dickson’s lemma or
by the Noetherian property of K[z]. That is, after finitely many steps, we al-
ways have NF (spoly(f, g)\S)) =0 for (f,g) € P and, after some finite time,
the pairset P will become empty.

Correctness follows from applying Buchberger’s fundamental standard ba-
sis criterion below.

Theorem 2.1. [Buchberger’s criterion] Let I C R" be a submodule and G =
{91,-.-,9s} be a subset of I. Let NF(—|G) be a weak normal form on R’
with respect to G, satisfying: for each f € R" there exists a unit u such that
uf — NF(f|G) has a standard representation with respect to G.

Then the following are equivalent

1) G is a standard basis of I,
2) NF(f|G) =0 forall f €1,
3) each f € I has a standard representation with respect to G,

4) G generates I and NF (spoly(g;, 9;)|G) =0 fori,j=1,...,s.

The implications 1) = 2) = 3) = 4) are easy.

The implication 4) = 1) is the important criterion which allows the check-
ing and construction of standard bases in finitely many steps. The proof is
most easily done by using syzygies and is, therefore, postponed to the next
section (Theorem 2.2).

We present now a general normal form algorithm, which works for any
monomial ordering. It is basically due to Mora [Mo], with a different notion
of ecart, as given in [Getal], [GP]).
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Before doing this, let us first analyze Buchberger’s algorithm in the case
of a local ordering.

The standard example is in one variable z, with x < 1, f =z and G =
{9 = z — 2*}. We obtain

x — (Zx’) (x—2%)=0

in K[[z]], which is checked to be true, since > 2" = - in K/[[z]]. However,

this is not a normal form in our sense, since »_ z* ¢ R.

Mora’s idea was to allow more elements for reduction in order to create a
standard expression of the form

uf = Zaigi +NF(f]G),

=1

with u a unit, a; € K[z] and NF(f|G) € K[z]|" in the case when the input
data f and G = {g1,...,gs} are polynomial. In the above example he arrives
at an expression

l—z)z=0-2°

instead of z = (Y_%)(z — 22).

=0

Definition 2.8. For a monomial z%; € K|z]" set degx®e; = degz® = oy +
-+ -+ay,. For f € K[z]"\{0}, let deg f be the maximal degree of all monomials
occurring in f. We define the ecart of f as

ecart (f) = deg f — deglm(f).

For a homogeneous f = ) fie; (all components f; are homogeneous polyno-

mials of the same degree), we have ecart(f) = 0.

Algorithm 2.3. Let > be any monomial ordering on K|z]", R = S;'K|z].

NFMORA(f|G)

Input: fe Klz]",G={g1,...,9:} C K[z|"

Output: h € K[z]" a weak normal form of f with respect to G. Moreover, there

exists a standard representation uf — h = ) a;g; with a; € K[x], u € Ss.
i=1

* h=F;
o T'=(,
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e while(h # 0 and T}, = {g € T'|lm(g)|1lm(h)} # 0)
choose g € T}, with ecart(g) minimal;
if (ecart(g) > ecart(h))

T =TuU({h};
h = spoly(h, g);
e return h;

If the input is homogeneous, then the ecart is always 0 and NFMORA is
equal to NFBUCHBERGER. If > is a well-ordering, then Im(g)|lm(h) implies
that Im(g) < lm(h), hence ' = G during the algorithm. Thus, NFMora is the
same as NFBuchberger, but with a special selection strategy for the elements
from G.

For termination and correctness see [GP].

It is clear that, with a little extra storage, the algorithm does also return
u € Ss.

Algorithm 2.4. Let > be any monomial ordering on K|z|", R = S;'K|z].
STANDARD BAsIs(G)

Input: G ={g1,...,9:} C Kl[z]"

Output: S = {hy,...,h} C Klz|" such that S is a standard basis of I =
(G)r C R

¢ S = Standard(G,NFMora);

e return S;

2.3 Syzygies and free resolutions

Let K be a field and > a monomial ordering on K[z]". Again R denotes the
localization of K[z] with respect to Ss.

We shall give a method, using standard bases, to compute syzygies and,
more generally, free resolutions of finitely generated R—modules. Syzygies and
free resolutions are very important objects and basic ingredients for many
constructions in homological algebra and algebraic geometry. On the other
hand, the use of syzygies gives a very elegant way to prove Buchberger’s cri-
terion for a standard basis. Moreover, a close inspection of the syzygies of
the generators of an ideal allows detection of useless pairs during a compu-
tation of a standard basis (cf. [MM], [Ei]). Our presentation follows partly
that of Schreyer [Schl], [Schl2], cf. also [Ei]. The generalization to arbitrary
monomial orderings was first formulated and proved in [Getal] and [GP].

A syzygy or a relation between £ elements fi,..., fr € R" = é Re; is a
i=1
k-tuple (g1, ...,gr) € RF satisfying

k
Z 9ifi = 0.
i=1
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The set of all syzygies between fi, ..., fx is a submodule of R*. Indeed, it is
the kernel of the ring homomorphism

D=

p1: Fy = & Re; — Fy := éRei,
i i=1

1

g —> fi7

where e; respectively €; denote the canonical bases of R” respectively RF. ¢,
surjects onto I = (f1,..., fr)r and

syz I = Ker ¢

is called the module of syzygies of I with respect to the generators f,.. ., fx.

We shall now define a monomial ordering on Fj, which behaves perfectly
well with respect to standard bases. This was first introduced and used by
Schreyer [Schl].

Set

1%; > 2P¢; & lm(z® f;) > Im(2” f;) or
Im(z®f;) = lm(2° f;) and i < ;.

The left-hand side > is the new ordering on Fj and the right-hand side >
is the ordering on Fjy. In order to distinguish them, we occasionally call them
>, respectively >g. >¢ and >; induce the same ordering on R. We call the
ordering >; the Schreyer ordering. Note that it depends on fi,..., f.

Now we are going to prove Buchberger’s criterion, stating that G = {f1, .. .,
fr} is a standard basis of I, if, for all i < j, NF(spoly(f;, f;)|G) = 0. The
proof uses syzygies and is basically due to Schreyer [Schl], [Schl2], although
our generalization (to general monomial orderings) seems to be simpler. It
gives, at the same time, a proof of Schreyer’s result that the syzygies derived
from a standard representation of spoly(f;, f;) form a standard basis of syz I
for the Schreyer ordering.

We introduce some notations. For each ¢ < j such that f; and f; have
leading term in the same component, say Im(f;) = z%e,, Im(f;) = 2%e,,
define the monomial

mji =27 % € K[z,

where v = lem(ay, o). If ¢; = 1c(f;) and ¢; = lc(f;) then

Ci
myi fi — ;mijfj = spoly(fi, fj)-
7

Assume now that for ¢ < j

NF(spoly(fi,fj)\G) =0,
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for some weak normal form NF on R".
Then we have a standard representation

k
Ci . ..
myifi = —mijfj = El ay?f,, af? € R.
Define for ¢ < j such that Im(f;) and lm(f;) involve the same component
¢ y
Sij = mjiai - C—;m“é'] — EV a,(f])s,,.

Then s;; € syz I and it is easy to see that
Lemma 2.2. lm(sij) = MMj;&;.

Theorem 2.2. Let G = {g1,...,9s} be a set of generators of I C R" satis-
fying, for some weak normal form NF on R’

NF(spoly(gi,gj) | G) =0,1<7,

then the following holds:

1) G is a standard basis of I.

2) {si;j} is a standard basis of syz I with respect to the Schreyer ordering.
In particular, {s;;} generates syz I.

Proof. We give a proof of 1) and 2) at the time time.
Take any f € I and a preimage g € F} of f,

9= Zaif‘:ia f=elg) = Zaigi-
i=1 i=1

This is possible as G generates I.
In case 1), we assume f # 0, in case 2) f = 0.
Consider a standard representation of g — h,

g= Zaijsz'j +h, a;; € R,

where h =) h;e; € F; is a normal form of g with respect to {s;;} for some
weak normal form on F; (we need only know that it exists). We have, if h # 0,

Im(h) =1m(h,) - €, for some v
and Im(h) & L({si;}) = ({myie;}) by Lemma 2.2. This shows

myy, { lm(h,) for all j.
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Since g — h € ({si;}) C syz I, we obtain

f=o(g) =o(h) =Y hjg;.

Assume that for some j # v, Im(h;g;) = lm(h,g,). Then Im(h,g,) is divisible
by Im(g,) and by Im(g;) and hence, by

Im(g,) Im(g;)/ ged (Im(g, ), Im(g;)) = Im(g, )m;,.

This contradicts mj, 1 Im(h, ).

In case 1) we obtain Im(f) = Im(h,g,) € L(G), in case 2) it shows that
h # 0 leads to a contradiction. In case 1) G is a standard basis by definition
and in case 2) {s;;} is a standard basis by Theorem 2.1, 2) = 1), which was
already proved. O

We shall now see, as an application, that the Hilbert syzygy theorem holds
for the rings R = S K |z], stating that each finitely generated R—module has
a free resolution of length at most n, the number of variables.

Lemma 2.3. Let G = {g1,-..,9s} be a standard basis of [ C R", ordered in
such a way that the following holds: if i < j and lm(g;) = z%e,, lm(g;) =
x%e, for some v, then o; > o lexicographically. Let s;; denote the syzygies
defined above. Suppose that lm(g,), . ..,1lm(gs) do not depend on the variables
T1, ..., %k Then the lm(s;;), taken with respect to the Schreyer ordering, do
not depend on Ty, ..., Tkl

Proof. Given s;;, then ¢ < j and Im(g;) and Im(g;) involve the same com-
ponent, say e,. By assumption Im(g;) = z%e,, Im(g;) = z%e, satisfy oy =
0,...,kt1,---) o = (0,...,0k41,...) With o1 > @ g11. Therefore,
Im(s;;) = mjie;, my; = x'™(@:%)=% does not depend on ;. d

Applying the lemma successively to the higher syzygy modules, we obtain
(cf. [GP] for a detailed proof):

Theorem 2.3. Let > be any monomial ordering on K[z] = Klxq,..., 2]
and R = SS'K[z] be the associated ring. Then any finitely generated R—
module M has a free resolution

0—F, —Fn1—...—Fp—M—0,
E; free R—modules, of length m < n. In particular, R is a reqular ring.

It is clear that the methods of this section provide an algorithm to com-
pute (non-minimal) free resolutions. This algorithm has been implemented
in SINGULAR.
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3 Applications

3.1 The normalization

Here we describe an algorithm which goes back to Grauert and Remmert [GR]
and was proposed by T. de Jong ([J]). There are also algorithms by Gianni,
Trager ([GT]) and Vasconcelos ([V]).

The algorithm is based on the following criterion for normality:

Proposition 3.1. Let R be a Noetherian reduced ring and J be a radical
ideal containing a non—zero divisor such that the zero set of J, V(J) contains
the non— normal locus of Spec(R). Then R is normal if and only if R =
ERHDR(J;J).

Remark 3.1. Let J R be as in the proposition and xz a non—zero divisor,
then

1) zJ : J =z -Homg(J,J)
and, consequently,

2) R =Homg(J,J) if and only if zJ : J C (z).

3) Let ug = =z, uq,...,us be generators of zJ : J. Because of the fact

S ..
that Homg(J, J) is a ring we have w relations % - 2 = I;_()ﬁ,i“;—k,

§>14 >4 >1, 5,? € Rin %(J:J : J), which, together with the linear

relations, the syzygies, between uy, ..., u; define the ring structure of
Hompg(J, J):
R[Ty,...,Ts] — Homg(J,J)
U
Lo
x

The kernel of this map is the ideal generated by the T;T; — Zf,ichk,
k=0

where Ty = 1, and > T} such that > nmpug = 0.

s
k=0 k=0

Algorithm 3.1.

NORMAL(T)

Input:  a radical ideal I C K|y, ..., Zy],

Output: s polynomial rings Ry, ..., Rs and s prime ideals I C Ry,...,I; C Ry
and s maps m; : R — R;, such that the induced map 7 : K(z,...,z,]/] —
R/ x --- x Ry/I is the normalization of K{z1,...,x,]/I

e Result = (;
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e compute idempotents of K[z1,...,z,]/I;
Assume Kz, ...,x,]/]1 = K21, ..., 25|/]1 X +-- X K[x1,...,2,]/ ;.

e Fori=1to sdo

— compute J = singular locus of I;

— choose f € J~ I, and compute I; : f to check whether f is a zero
divisor
- lfIz . f ; Iz then
Result = Result U NORMAL(+\/I;, f)U NORMAL(; : f)
else
J=VIL [
H=fJ:J
if H = (f)
Result = Result U{K[z1,...,x,], [;, id}
else
assume H = fJ : J = (f,u1,...,us)
then compute an ideal L C Klx1,..., Ty, T1,...,Ts| such
that
K[il?l,...,ﬂ?n,Tl,...,Ts]/L l) HOIH(J, J), E ~ %
let o : Klz1,...,2,] = Klz1,...,2,,T1,...,Ts| be the in-
clusion.
S = normal(L);
compose the maps of S with ¢;
Result = Result US;

e return Result

It remains to give an algorithm to compute the idempotents.

We shall explain this for the case when the input ideal I is (weighted)
homogeneous with strictly positive weight.

An idempotent e, that is, €2 — e € I has to be homogeneous of degree 0,
will, therefore, not occur in the first step. It can, however, occur after one
normalization loop in Hom(J, J) ~ K|z, ...,z,,T1,...,Ts]/L because some
of the generators may have the same degree.

Let T C {T},...,Ts} be the subset of variables of degree 0.

Then L N K[T] is zero-dimensional because T — E7Ty, € LN KI[T) for
all T; € T (the weights are > 0 and, therefore, &’ € K, T, € T)).

For this situation there is an easy algorithm:

Algorithm 3.2.
IDEMPOTENTS(])
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Input: I C Klx1,...,z,| a(weighted) homogeneous radical ideal, deg(z;) =
0 for i < k, deg(x;) > 0 for i > k, I N K[x1, ..., x| 0—dimensional.
Output: ideals I, ..., I, such that

Klzy,...,z,)/] = K[z1,... 2,/ ]1 X -+ X K[z1,...,2,]/ I

and I N Kzy,...,zx] =N, N K[zy,...,2zg]) is the prime decomposition

e Result = ();
e compute J =INK[zy,...,T;
e compute J = P, N ---N P; the (0-dimensional) prime decomposition;
e For:=1to s do

— choose g; # 0 in N Py;

vF£1L

— Result = Result U{! : ¢;};

e return Result;

3.2 Singularities

The basic concepts and ideas of singularity theory are best explained over
the field C of complex numbers, although, algebraically, most invariants make
sense over arbitrary fields.

Let U C C" be an open subset in the usual Euclidian topology, and
fi, ..., fx holomorphic (complex analytic) functions on U, then we may con-
sider

V=V(fi,--, fr) ={z € U|fi(k) = -+ = fi(x) = 0},

the complex analytic sub-variety defined by fi,..., fr in U.

In practice, fi,..., fx will be polynomials, but singularity theory is in-
terested only in the behaviour of V(fi,..., fx) in an arbitrary small neigh-
bourhood of some point p € V, that is, the germ of V at p, which is
denoted by (V,p). Algebraically, this means that we are not interested in
the ideal generated by fi,..., fr in the polynomial ring C[z,...,z,] but
in the ideal I generated by fi,..., fx in the convergent power series ring
Clz1 —p1, .-, Tn —pn} = C{z — p}.

For arbitrary fields K, where the notion of convergence does not make
sense, we consider instead the formal power series ring K|[[z]|] = K[[z1, ..., z,]]
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and ideals I generated by formal power series (in practice polynomials) fi, .. .,
fr € K[[z]]. In order to have a uniform notation, we write

K(z) = K{xy,...,2y,)

to denote both K{[z]] and K{z} = K{x1,...,z,} if K is a complete valued
field (for example, K = C).

The ring Oy,, = C{z — p}/I (respectively K (x)/I) is called the analytic
local ring of the singularity (V] p).

If fi,..., fr are polynomials, we may also consider the corresponding al-
gebraic local ring K[z]y—p)/(f1,- -, fx), Where K[z]_p) is the localization
of K[z] in the maximal ideal (z1 —p1,...,Z, — pp). Indeed in this ring we are
able to compute standard bases (cf. Section 1).

As in the affine case, we have the Hilbert Nullstellensatz (also called the
Hilbert—Riickert Nullstellensatz), stating that

VI=1(V,p):={f € C{z — p}| flvyp = 0}

for I ¢ C{z — p} and (V,p) the complex analytic germ defined by I.

A (complex) singularity is, by definition, nothing but a complex ana-
lytic germ (V,p) (together with its analytic local ring C{z — p}/I). (V,p) is
called non—singular or regular or smooth if C{z; — py,...,z, =p,}/I is
isomorphic (as local ring) to a power series ring C{y,...,y4} (respectively
K{(zy,...,2,)/T = K{yi,...,y4)). By the implicit function theorem, this is
equivalent to the fact that I has a system of generators g1, ..., g, 4 such that
the Jacobian matrix of g1, ..., g,—q has rank n — d in some neighbourhood
of p. (V,p) is called an isolated singularity if there is a neighbourhood
W C C" of p such that W N (V \ {p}) is regular everywhere.

Isolated Singularities Non-isolated singularities

e

& £
-~ &

Al 2?2 =2 +22=0D4: 22 — 222+ 942 =0 A :22 — 942 =0 Dy : 9?2 — 222 =0
The dimension of the singularity (V, p) is, by definition, the Krull dimen-
sion of the analytic local ring Oy, = K(z)/I, which is the same as the Krull
dimension of the algebraic local ring K[z];—p) /1 if I = (f1,..., fi) is gener-
ated by polynomials, which follows easily from the theory of dimensions by
Hilbert-Samuel series. Using this fact, we can compute dim(V, p) by comput-
ing a standard basis of the ideal (fi,..., fi)roc k[z] With respect to any local
monomial ordering on K[z]. The dimension is equal to the dimension of the
corresponding monomial ideal (which is a combinatorial problem).
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It is important to compute a standard basis with respect to a local ordering.
For example, the leading ideal of (yx — y,zx — z), with respect to dp, is
(ry,xz) (hence of dimension 2), but, with respect to ds, it is (y, z) (hence
of dimension 1). Geometrically, this means that the dimension of the affine
variety V = V(yx — y, zz — 2z) is 2 but the dimension of the singularity (V,0)
(that is, the dimension of V' at the point 0) is 1:

Viylr—1)=2z(x—-1)=0, dim(V,0) =1

Another basic invariant is the multiplicity mt(V,p) of the singularity
(V. p). If (V, p) is reduced, that is, I = v/I, then mt(V, p) has a nice geometric
interpretation: it is the number of intersection points of a sufficiently small
representative V' C C* of (V,p) with a general (n — d)—dimensional plane in
C" close to p (but not through p). If (V,p) is a hypersurface singularity,
that is, I = (f) is a principal ideal in C{z — p}, then mt(V, p) is the smallest
degree in the Taylor expansion of f in p.

Algebraically, mt(V, p) is the Hilbert—Samuel multiplicity of the ideal {(x1 —
D1, ---,Zn — Pp) in the analytic or in the algebraic local ring of (V p).

As before the Hilbert-Samuel function of the ideal defining V' coincides
with the Hilbert-Samuel function of the leading ideal of a standard basis with
respect to a local degree ordering.

One of the most important invariants of an isolated hypersurface singular-
ity (V,p) given by I = (f) C K(z) is the Milnor number

M(f) = dimK K<$>/<fm17 <. afwn>

(char(K) = 0) where f,, denotes the partial derivative of f with respect to
Z;.

For K = C, p is even a topological invariant and has the following topolog-
ical meaning, due to Milnor [Mil]. For f € C{x1,...,z,} defining an isolated
singularity at 0, let

Vi= BE(O) n f_l(t)a

0 < |t| << 1 and B.(0) a small ball of radius ¢ around 0, then V; (the
“Milnor fibre of f”) has the homotopy type of a 1-point union of u(f) (n—1)—
dimensional spheres. In particular, p(f) = dim¢ H,(V;, C).
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Algorithm 3.3. (Assume char(K) = 0).
MILNOR( f)

Input: [ € Klxy,...,Ty,]

Output: p(f)

e compute a standard basis {gi,...,9s} of (fo,,. ., fa.)Loc K[z] With re-
spect to any local monomial ordering on K|zl;

e the number of monomials of K[z] not in (Im(gy),...,lm(gs)) is equal to

w(f);

The correctness of this algorithm follows from [GP, 3.7].
Similarly, we can compute the Tjurina number (char(K) > 0)

7(f) = dimg K(z)/{f, fer> - - fan)-

This number plays an important role in the deformation theory of the singu-
larity defined by f and will be considered in the next section.

There is an interesting conjecture, due to Zariski, stating that the multi-
plicity of a complex hypersurface singularity is a topological invariant. This
conjecture is still open. For a formulation, using the Milnor number, and for a
partial positive answer (which was prompted by computer experiments using
SINGULAR with local standard bases) see [GP].

3.3 Deformations

Let (V,0) C (C*,0) be a singularity given by convergent power series fi,. .., fi,
converging in a neighbourhood U of 0 € C". The idea of deformation theory
is to perturb the defining functions, that is to consider functions F; (¢, z), ...,
Fy(t,z) with F;(0,z) = f;(x), where ¢t are small parameters of a parameter
space S. For t € S the functions f;,(z) = F;(t,z) define a complex analytic
set

Vi=V(fie,--nfey) CU

which, for ¢ close to 0, may be considered to be a small deformation of V =
Vo. It may be hoped that V; is simpler than Vj but still contains enough
information about V. For this hope to be fulfilled, it is, however, necessary
to restrict the possible perturbations of the equations to flat perturbations,
which are called deformations.

The formal definition is as follows: a deformation of the singularity (V,0)
over a complex analytic germ (S, 0) consists of a cartesian diagram

(V,0) < (U,0) ={(t,z) e SxU|F(t,z)=---= Fy(t,z) =0}

1 1 ¢
{0} e (50
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such that ¢, which is the restriction of the second projection, is flat, that is,
Ou o is, via ¢*, a flat Og-module.

Grothendieck’s criterion of flatness states that ¢ is flat if and only if any re-
lation between the f;, say > r;(z) f;(x) = 0, lifts to a relation Y | R;(¢, x) F;(t, x)
= 0, where R;(z,0) = r;(z), between the F;. Equivalently, for any gener-
ator (ry,...,7rg) of syz({fi,..., fx)) there exists an element (Ry,...,Rg) €
syz((F1, ..., Fy)) satisfying R;(0,x) = r;(z).

The notion of flatness is not easy to explain geometrically. It has, however,
important geometric consequences. For example, the fibres of a flat morphism
have all the same dimension. Topologists would call a flat morphism perhaps
transversal. In any case, the intuitive meaning is that the fibres of a flat
morphism vary in some sense continuously with the parameter.

By a theorem of Grauert [Gr| (see also Schlessinger [Schll] for the formal
case), every isolated singularity admits a semi-universal or mini-versal de-
formation ¢ : (U,0) — (S,0) of (V;0), which, in some sense, contains the
information upon all possible deformations.

By a power series Ansatz it is possible to compute the mini-versal defor-
mation up to a given order. In general, the algorithm will, however, not stop.

The existence of such an algorithm follows from the work of Laudal [La]. This
algorithm has been implemented in SINGULAR by Martin.

We are not going to describe this algorithm here but just mention that
for an isolated hypersurface singularity f(zi,...,z,) the semi-universal de-
formation is given by

F(t,a) = () + 3" t9;()

where 1 = g1, 99, ..., g, represent a basis of the Tjurina algebra

K<:'E>/<f’fwl""7f$n>)

7 being the Tjurina number.

Instead we describe algorithms to compute the modules T&,,O respectively
T‘%’O of first order deformations of (V,0) respectively of obstructions, which
are the first objects one likes to know about the semi-universal deformation.

We switch now to an algebraic setting where deformations are described
on the algebra level.

Since the infinitesimal deformation theory of an affine algebra and an ana-
lytic algebra is pretty much the same (cf. [Ar]), we use from now on the same
notation K(x1,...,x,) for the polynomial ring over the field K as well as for
power series ring over K.

Let I = (f1,..., fx) C K{z) = K(z1,...,2,) be an ideal and let R =
K(z)/I.
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An embedded deformation of R over an analytic algebra A = K(t)/J =
K(ti,..., ty)/J is given by

Fi(t,x) = filz) + Y _t;gi(t,z) € A(x)

j=1
satisfying that every relation (syzygy) between the f;,

k

(r1,-..,me) € K{@)¥, > ri(a) filz) =0,

i=1
lifts to a relation between the Fj,
(Rla'--aRk) € A('Z‘)kv ZRz(ta $)E(t, .Z‘) = O:

R;(0,z) = r;i(z).
By definition, Fi, ..., Fy and Fj,..., F] define the same embedded defor-
mation, if they generate the same ideal.

Setting
Rs = Alz)/{Fy,..., Fy)

we obtain a commutative cartesian diagram

R « RA
T Ty
K « A

with ¢ flat, which is called a deformation of R over A (and which is
just the algebraic translation of the geometric definition). Two deformations
A — Ry and A — R/, of R over A are called isomorphic if there is an

A-isomorphism R4 = R/, compatible with the given isomorphisms to the
“special fibre”,

Ra/(t) = R=R,/(t),

where (t) = (t1,...,ty). It is not difficult to see that every deformation of R
is isomorphic to an embedded deformation.
We like to stress the fact that the base algebras A for deformations have

to be local analytic K—algebras with K = A/m, m the maximal ideal of A,
even if R is affine.

Infinitesimal deformations

Let K[¢] = K(e)/(g?) denote the two—dimensional analytic algebra K+ Kz,
g2 = 0 (the space Spec(K[e]) may be considered as a “thick” point, that is,
a point together with a tangent direction). An (embedded) deformation of R
over K[¢] is called an infinitesimal (embedded) deformation.
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Proposition 3.2.

1) The R-module of infinitesimal embedded deformations is isomorphic to
the normal module

NR = HOIHR(I/IQ,R).

2) The R—-module of isomorphism classes of infinitesimal deformations of
R is isomorphic to Th, where Tx is defined by the exact sequence

O @ R — Ng — T, — 0.

Here, © = Derg K(z) = & K(z)5> and the map a sends the derivation
i=1 i

6%1' to the homomorphism sending h to g—z,

For the proof we refer to [Schl2].

Remarks:

1) Schlessinger’s theorem [Schll] states that R admits a formal semi-universal
deformation B — Rp = B{(x)/(F},..., F}) over a complete local K-
algebra B if and only if dimg T} < oo.

This assumption is fulfilled in the affine case R = K|[zy,...,z,]/I if the
affine variety V(I) has only isolated singularities (necessarily finitely
many) or in the analytic case R = K({(z1,...,z,)/I if the singularity
(V(I),0) has an isolated singularity.

2) In the complex analytic case with R = C{z1,...,z,}/I and dim¢ T}, <
oo, R admits even a convergent complex analytic semi-universal de-
formation with base algebra B = C{t,...,t,}/J and total algebra
RB = C{tl,...,tm,l‘1,. . .,xn}/<F1,...,Fk>.

The proof of the convergence is quite difficult and was given by Grauert
in 1972 [Gr| and it was in this paper that he proved the “division theorem by
an ideal”. In our language, he introduced the notion of standard bases and
proved the existence of normal forms for complex analytic convergent power
series. An equivalent theorem had already been proved before in 1964 by
Hironaka in his famous resolution paper ([Hi]). It is interesting to notice that
the analog of Grobner bases in power series rings was invented for proving
deep theoretical results. The proofs were, however, not constructive and did
not contain Buchberger’s criterion.

3) It follows from Grothendieck’s definition of tangent spaces that, if a
semi-universal deformation B — Rp of R exists, then T} is isomor-
phic to the Zariski tangent space to Spec B at the maximal ideal of B.
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This shows, with ti,...,%, a K-basis of Tx*, that B = K(T})/J =
K(t1,...,tm)/J for some ideal of J. Hence, the base algebra B of the
semi-universal deformation of R is defined by analytic relations between
the elements ¢, . .., t,, of a K—basis of the dual of T and these relations
generate J.

To compute Th, let 0 +— R +— K{z) +— K{x)* +— K(x)’ be a repre-
sentation of R, then, applying Homg ;) (—, R) to the sequence

0 +— R +— K(z) +— K{(z)* < K{(x)*,

we obtain Ny = ker(R* N RY).

Now choose a resolution of Ng

RF S1 RS S2 Rt

o/

Ng

The canonical map 7 : R* ~ ©Og;) ® R — Npg is induced by the map
j : R* — R* defined by the Jacobian matrix <g£;)z <+ We can lift j to a
j<n
map [j : R — R? such that s; olj = j because j induces the map 7.

t

R T Rk 1 R 52 Rt
o
Ngr
j [
™ ;
B

Now T} = Ng/Im(m) ~ R*/Im(ss) + Im(lj) gives the required represen-
tation
0+ TL+— R &% pig pr,
Algorithm 3.4.
T1(I)
Input: anideal I = (f1,..., fr) C K{(z),
Output: a matrix M € M, (K (x)) which defines a representation

o M
T11(<$)/I « K(z)® +— K(z)’
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e compute 7 = syz(I) the matrix of the syzygies of fi,..., fx;

e compute the Jacobian matrix j = (gg?);
J

e compute in K(z)/I a representation of the kernel of the transposed
matrix 7t of r:

(K a)/1)* = (K(z)/I)" < (K(z)/I)";

e lift the Jacobian matrix j to a s X n—matrix [j such that s, - I = j;
e concatenate [j and sy to obtain the matrix t1 = [j, so;
e choose a matrix My € M, ,4+(K(x)) such that My mod I = t1;

e choose a matrix L € M, . (corresponding to I K (x)®), such that
0 (K(z)/1)* « K(z)* «— K(z)**
is exact;

e concatenate M, and L to obtain M = M, L;

e return M

Obstructions

The construction of a semi-universal deformation of R, in case T is finite
dimensional, starts with the preceding remark 3): we start with the infinites-
imal deformations of first order, that is, with elements of Tj, and try to
lift these to second order. This is not always possible, there are obstructions
against lifting. That is, a lifting to second order is possible if and only if the
corresponding obstruction is zero. Assuming that the obstruction is zero, we
choose a lifting to second order (which is not unique) and try to lift this to
third order. Again there are obstructions, but if these are zero, the lifting
is possible and we can continue. In any case, the obstructions yield formal
power series in K[[t1,..., fal], t1,--.,tn a K-basis of T4, and if J denotes
the ideal generated by them, B = K][t1,...,ty]]/J will be the base algebra
of the formal semi-universal deformation of R.

The following proposition describes the module of obstructions to lift a
deformation from an Artinian algebra to an infinitesimally bigger one, where
we may think of starting with A = K(t,...,t,)/{t1, ..., )%

For this, let R = K(x)/I and consider a presentation of I = (fi,..., fx),

0 I <% K2\t << K(z)*
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with a(e;) = f; and syz(I) = ker(«) = im(f) is the module of relations of
fi,..., fr, which contains the module of Koszul relations,

Kos = <fi€j — fj6i|1 <1< ] < ])

Set Rel = K (x)*/ ker(8) which is isomorphic to syz(I) and Rely = 3~!(Kos).
We define the module T% by the exact sequence

Hompg(R*, R) 2 Hompg(Rel / Rely, R) — T2 — 0.

Proposition 3.3.

1) Let A" — A be a surjection of Artinian local K —algebras with kernel an
ideal J satisfying J*> = 0. There is an obstruction map

ob: Defr(A) — Tp @ J

satisfying: a deformation A — R4 of R admits a lifting A" — Ry,

RA “— RAI
t 0O 1
A « A,

if and only if 0b([A — R4]) =0 ([A — R4| denotes the deformation
class of A — Ry).

2) If T} is finite dimensional over K and if Ts = 0, then the semi-universal
deformation B — Rp of R has a smooth base space, that is B is a free
analytic algebra K(t1,...,ty) for some m > 0.

For the computation of T2 we choose, as before, a representation
04— R+— K(z) +— K({z)* < K{z)* & K(z)'.

Then Rel = syz(I) = Im(r) and Rely is the submodule of Rel generated by
the (%) Koszul relations Kos.
Now Rel / Rely — RF is the induced map defined by the following diagram

IK(z)* — K(z)f — R*
Ui Ui T
Rely <= Rel — Rel/Rel.

To obtain a representation of Rel / Rely we lift the Koszul relations to K (z)*:

k r K<x>é S K(x)t
\Ré/ '

Re{ 2 [ Kos

K(z)
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Then Rel /Rely ~ K{x)*/Im(s) + Im(¢{Kos) and if we denote by s/ the £ x
(t + (%))-matrix s, £ Kos:

0 +— Rel /Rely +— K {z)! <& K(z), t, =t + (%),
is a representation of Rel / Rely.
Now we are interested in a representation of T3 which is just
coker (Homp(R*, R) — Hompg(Rel / Rely, R)).
We dualize the representation of Rel / Rely and obtain

0 — Hompg(Rel/Relg, R) — Homp (K (z)',R) % Homj (K (z)", R)
| |
Hompg(Rel / Relg, R) Homp(R¢, R) Hompg(R", R),
that is, Hompg(Rel / Rely, R) = ker(sf?).
Now we take a representation of Hompg(Rel / Relg, R)

Rtl Sft

Rl (T_l R£1 (T_zR&
O v

Hompg(Rel / Rely, R)
The map RF ~ Hompg(RF, R) — Hompg(Rel /Rely, R) is defined by r? :
RF — R’ We can lift this map to a map ¢rt : R¥ — R% such that
ryoflrt =rt.

Rt T1 RA T2 RK2

N

rt \Hom(Rel /Relo, R) ., frt

R’“l
Then T3 = coker(R* — Hom(Rel/Rely, R)) ~ R /Im(ry) + Im(¢rt)
gives the required representation

0+— T2 +— R4 280 Rt gy Rk,

We obtain the following algorithm:

Algorithm 3.5.
T2(1I)

Input:  anideal I = (f,..., fir) C K{x)
Output: a matrix M € M, (K (x)) which defines a representation

o M
TIQ('(w)/I « K(z)* — K(z)"
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compute r =syz(I) € My ¢o(K (x)), the matrix of the syzygies of f1, ..., fk
and s = syz(syz(I)) € My(K(z)) to obtain a representation of K (x)/I;

compute the matrix Kos € M, (%) the Koszul matrix of the relations of

2
f17 R afk:;
lift Kos to a matrix £ Kos € M, ) such that r - £ Kos = Kos;

2
concatenate £ Kos and s to obtain the matrix sf = £ Kos, s € M, (5)+0)
\2

compute in K(z)/I a representation of the kernel ker(s¢') given by
matrices r1 and 7o (r1 = syz(sl') € Mgy, (K{(z)/I), m2 = syz(r1) €
My, ¢ (K (2)/1));

lift the matrix 7* to a matrix ¢rt € My, (K (x)/I) such that ry-frt = rt;
concatenate ¢rt and 7o to obtain 2 = lrt,ry € My, gre, (K (x)/I);
choose a matrix My € My, j1s,(K(z)) such that My mod I = t2;

choose a matrix L € My, j.¢, (corresponding to IK (z)*) such that

0 (K(z)/I)" « K(z)% +— K(z)*"

is exact;
e concatenate My and L to obtain M = M,, L;
e return M.
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