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Preface

Algebraic geometers have used Grobner bases as the main computational tool for
many years, either to prove a theorem or to disprove a conjecture or just to experi-
ment with examples in order to obtain a feeling about the structure of an algebraic
variety. Non-trivial mathematical problems usually lead to non—trivial Grobner
basis computations, which is the reason why several improvements and efficient im-
plementations have been provided by algebraic geometers (for example, the systems

CoCoA, Macaulay and SINGULAR).

The present paper starts with an introduction to some concepts of algebraic geome-
try which should be understood by people with (almost) no knowledge in this field.

In the second chapter we introduce standard bases (generalization of Grobner bases
to non—well-orderings), which are needed for applications to local algebraic geometry
(singularity theory), and a method for computing syzygies and free resolutions.

In the third chapter several algorithms for primary decomposition of polynomial
ideals are presented, together with a discussion of improvements and preferable
choices. We also describe a newly invented algorithm for computing the normaliza-
tion of a reduced affine ring.

The last chapter gives an elementary introduction to singularity theory and then
describes algorithms, using standard bases, to compute infinitesimal deformations
and obstructions, which are basic for the deformation theory of isolated singularities.

It 1s impossible to list all papers where Grobner basis have been used in local and
global algebraic geometry, and even more impossible to give an overview about these
contributions. We have, therefore, included only a few references to papers which
contain interesting applications and which are not mentioned in this tutorial paper.
The interested reader will find many more in the other contributions of this volume
and in the literature cited there.



0 Introduction by simple questions

The basic problem of algebraic geometry can be formulated as a very simple question:
“What is the structure of the set of solutions of finitely many polynomial equations
in finitely many indeterminates?”

That is, we try to understand the set of points z = (z1,...,z,) € K" satisfying
fl(flfl, . ,$n> = 0,

fk(‘rla v '7$n) - Oa

where K is a field and fi,..., fr are elements of the polynomial ring K[z] =
K[xy,...,x,]. The solution set of fi,..., fx is called the algebraic set, or algebraic

variety of fi,..., fr and is denoted by V(fi,..., fi).

Here are three simple examples, which will be used to illustrate some of our subse-
quent questions:

1) The hypersurface (a variety defined by one equation) V(z? + y* — t?y?):

2) The variety V(zz,yz):

———..



3) The variety V(zy, zz,yz):

The simple question, however, does not have an easy answer at all. On the contrary,
algebraic geometry, which provides tools for possible answers, belongs with its long
history to one of the highly developed branches of mathematics, which has created
deep and quite sophisticated theories in geometry as well as in algebra. It has been
estimated, as Kunz states in the introduction to his book on commutative algebra
and algebraic geometry [Ku], that one can teach a course on algebraic geometry for
200 terms without repetition.

Of course, understanding is relative to the status of the theory but also to the
cultural, economical and technical status of the society. Nowadays, faced by the
technical revolution through computers, understanding requires, more and more,
a computational approach to a problem, if possible. This is evident in algebraic
geometry, one can see this already in recent textbooks (for example, [CLO], [St],

[V3]).

It is also evident that the majority of computational tools developed for algebraic
geometry is based on Grobner basis techniques.

Of course, any linear combination f = Y a;f;, a; € K|z], vanishes on V =
V(fi,..., fx) and V is equal to the solutions of all f € I = (fi,..., fi)x[s, the
ideal generated by fi,..., fx in K[z]. Even the radical of I,

VI={feK[]|3d, f'en}

has the same solution set and, by the Hilbert Nullstellensatz, there is the following
tight relation between ideals of K[z] and algebraic sets, provided the field K is
algebraically closed:

For any variety V. C K™ let I(V) = {f € K[z] | f(z) =0V 2 € V} the ideal of V,
then

V=V({J)=I(V)=V].

The converse is trivially true.



This theorem is the reason why the couple algebra and geometry married and pro-
duced so many wonderful theorems. Using this ideal-variety correspondence, we
may formulate several geometric question and their algebraic counterparts.

One word about the role of the field K. Algebraic geometers usually draw real pic-
tures, think about it as complex varieties and perform computations over some finite
field. This attitude is justified by successful practice. Fortunately, Grobner basis
theory is completely independent of the field, although the result of a computation
may very well depend on the field.

From the geometric point of view, the field K is, however, extremely important.
Algebraic geometry over R, for instance, is is much more complicated and by far
not as complete as over C. To avoid such “rationality questions”, we should like to
change our definition of variety slightly and define

V(fi,.. fe) ={z € K'|fi(w) =+ = fi(w) = 0}

for fi,...,fx € K[z], * = (21,...,2,), and where K is an algebraic closure of the

field K.

The following questions and problems belong to the very basic ones in algebraic
geometry. They are also quite natural and are motivated already from the above
examples. Note that for these examples, the answers are more or less obvious from
the figures but, nevertheless, they require a mathematical proof (which is usually

given by algebra).

o What is the dimension of the variety V(I), or, what is the Krull dimension of
the quotient ring K[z]/T?

Following tradition in computer algebra, we denote this dimension by dim(/)
and call it the dimension of I. The dimension of a variety is the maximum
dimension of its components.

In the first two examples, the dimension is 2, in the third example it is 1.

o Is V(I) irreducible or may it be decomposed into several algebraic varieties? If
s0, find its irreducible components. Algebraically this means to compute a pri-
mary decomposition of T or of /I, the latter means to compute the associated
prime ideals of 1.

The first example is irreducible, the second has two components (one of dimen-
sion 2 and one of dimension 1), while the third example has three components
(all of dimension 1).

o Instead of decomposing a variety, we may wish to compule equations for the
union V(1)U V(). Algebraically this means lo find generalors for the inter-
section I, N 1.



In example 3, for instance, we have given the generators zy,zz,yz for the
intersection (z,y) N (y, z) N (z, z).

A simpler problem is to decide whether a given polynomial f vanishes on V(I),
or, algebraically, whether f is in \/I. Even simpler is the question whether f
is an element of 1.

Given generators for an ideal I, we may ask for another set of polynomials
describing the same variety V(I). For instance, we may ask for a minimal set
of generators of I or, more complicatedly, for a set of generators for /I, the
radical of I.

In the above examples, I = /I, and the given set of generators is minimal.

A natural question to ask ts "How independent are the generators fi,..., fr of
127 that is, we ask for all relations

(ri,...,rx) € K[z]", such that Z rifi = 0.

These relations form a submodule of K[z]|", which is called the syzygy module
of I and is denoted by syz(I). It is the kernel of the K|[z]-linear map

K[z)* — K[z], (r1,...,r5) = Zﬁfz

More generally, we may ask for generators of the kernel of a K|[z|-linear map
K[z]" — K][z]®, or, in other words, for solulions of a system of linear equations
over K|z].

A direct geometric interpretation of syzygies is not so clear, but there are
instances where properties of syzygies have important geometric consequences

(cf. [Sch2]).

In example 1 we have syz(I) = 0, in example 2, syz(I) = ((—y,z)) C K[z]?
and in example 3, syz(I) = ((—z,y — 0), (—z,0,2)) C K[z].

A more geometric question is the following. Let V(I) = V(I;) U V(I3) be
a union of nol necessarily irreducible varieties and lel us assume that V(I)
and V(1) are known. How can we describe V(1y)? Algebraically, we want
to compute generators for Iy if we know those of I and I,. This amounts to
finding generators for the ideal quotient

I:L={feKl[z]| flLCI}
Geometrically, V(I : I1) is the smallest variety containing V(1) ~ V(1;), which
is the (Zariski) closure of V/(I) ~ V(I4).

In example 2 we have (zz,yz) : (z,y) = z and in example 3 (zy,zz,yz) :
(x,y) = (z,zy), which gives, in both cases, equations for the complement of
the z—axis ¢ =y = 0.



o Geometrically important is the projection of a variety V(I) C K™ into a linear

subspace K"™". Given generators fi,..., fr of I, we want to find generators

Jor the (closure of the) image of V(1) in K" ={z|z; =--- =z, =0}. The
image is defined by the ideal INK[x,41,...,7,] and finding generators for this
intersection is known as eliminating x.,...,x, from fi,..., fr.

Projecting the three varieties above to the (z,y) plane is, in the first two cases,
surjective and in the third case it gives the two coordinate axes in the (x,y)
plane. This corresponds to the fact that the intersection with K[z, y] of the
first two i1deals is 0, while the last one is zy.

e Another problem is related to the Riemann removable theorem, which states
that a function on a complex manifold, which is holomorphic and bounded
outside a subvariety of codimension 1, is actually holomorphic everywhere.
This is well-known for open subsets of C, but in higher dimension there exists a
second removable theorem, which states that a function, which is holomorphic
outside a subvariety of codimension 2 (no assumption on boundedness), is
holomorphic everywhere.

For singular complex varieties this is not true in general, but those for which
the two removable theorems hold are called normal. Moreover, each reduced
variety has a normalization and there is a morphism with finite fibres from
the normalization to the variety, which is an isomorphism outside the singular
locus.

The problem is, given a variety V(1) C K", find a normal variety V(J) C K™
and a polynomial map K™ — K" inducing the normalization map V(J) —

V(I).

The problem can be reduced to irreducible varieties (but need not be, as we shall
see) and then the equivalent algebraic problem is to find the normalization of
Klzy,...,z,]/1, that is the integral closure of K[x]/I in the quolient field of
K[z]/I and present this ring as an affine ring K[zq,...,x,]/J for some m
and J.

In the above examples it can be shown that the normalization of all three
varieties are smooth, the last two are the disjoint union of the (smooth)
components.  The corresponding rings are Kz, x|, K[z, 23] & Klzs],

K[z, ® K[xy] & K[xs).

o The significance of singularities appears not only in the normalization problem.
The study of singularities is also called local algebraic geometry and belongs to
the basic tasks of algebraic geometry. Nowadays, singularity theory is a whole
subject on its own.

A singularity of a variety is a point which has no neighbourhood in which the
Jacobian matrix of the generators has constant rank.



In the first example the whole z—axis is singular, in the two other examples
only the origin.

One task is to compule generators for the ideal of the singular locus, which is
itself a variety. This is just done by computing subdeterminants of the Jaco-
bian matriz, if there are no components of different dimensions. In general,
however, we need ideal quotients.

In the above examples, the singular locus is given by (z,y),(z,y,z) and
(x,y,z), respectively.

e Studying a variety V(I), I = (fi,..., fr), locally at a singular point, say the
origin of K", means studying the ideal I K[z](y) generated by I in the local ring

Klz]@w) = {5 | f,g € K[z], g ¢ <;c1,...,xn>}.

In this local ring the polynomials g with g(0) # 0 are unils and K|z] is a
sub-ring of K[z]().

Now all the problems we considered above can be formulated for ideals in
Kz]() and modules over K[z]y instead of K[z].

The geometric problems should be interpreted as concerning properties of the
variety in a neighbourhood of the given point.

It should not be a surprise to say that all the above problems have algorithmic and
computational solutions, which use, at some place, Grobner basis methods. More-
over, algorithms for most of these have been implemented quite efficiently, in several
computer algebra systems, such as CoCoA [CNR], Macaulay [GS] and SINGULAR
[GPS]. The most complicated problem by far is the primary decomposition, the
latest achievement is the normalization, both being implemented in SINGULAR.

At first glance, it seems that computation in the localization K[z](,) requires com-
putation with rational functions. It is an important fact that this is not necessary,
but that basically the same algorithms which were developed for K[z] can be used
for K[z](y). This is achieved by the choice of a special ordering on the monomials
of K[z] where, loosely speaking, the monomials of lower degree are considered to be

bigger.

However, such orderings are no longer well-orderings and the classical Buchberger
algorithm would not terminate. Mora discovered [Mo| that a different normal form
algorithm, or, equivalently, a different division with remainders, leads to termina-
tion. Thus, Buchberger’s algorithm with Mora’s normal form is able to compute in
f\"[m](x) without denominators.

Several algorithms for K[z] use elimination of (some auxiliary extra) variables. But
variables to be eliminated have, necessarily, to be well-ordered. Hence, to be able



to apply the full power of Grébner bases methods also for the local ring K[z]), we
need mixed orders, where the monomial ordering restricted to some variables is not a
well-ordering, while restricted to other variables it is. In [GP] the authors described
a modification of Mora’s normal form, which terminates for mixed ordering and,
more generally, for any monomial ordering which is compatible with the natural
semi-group structure.

The corresponding modification of Buchberger’s algorithm with this general normal
form computes, in the case of a well-ordering (which we also call global order-
ing) Grobner bases while, in the case of a local ordering (which was called tangent
cone ordering by Mora), it computes so-called standard bases, which enjoy similar
nice properties as Grobner bases. We follow a suggestion by Mora and call bases
computed by the general algorithm, standard bases, whilst, following the tradition
of the last 33 years, reserving the name Grobner basis for the established case of
well-orderings.



1 Standard bases

Let K be a field and K[z] = K[z4,...,2,] be the polynomial ring in n variables
over K.

1.1 Monomial orderings and associated rings

Definition 1.1. A monomial ordering on K|[z] is a total order on the set of
monomials {z*|a € N"} satisfying

2* > 2’ = 2 > 2 for all o, B,y € N,

We call a monomial ordering > global (respectively local, respectively mixed) if
z; > 1 for all 7 (respectively x; < 1 for all 7, respectively if there exist 7,5 so that
;i >1and x; < 1).

This notion is justified by the associated ring to be defined later. Note that > is
global if and only if > is a well-ordering.

We often identify the set of monomials with N* and write a > g if 2 > z°. By
[Ro] there exists a (non—unique) matrix A € GL(n,R) such that o > 3 if and only
if A-« is bigger than A - 3 with respect to the lexicographical ordering on R”. We
say then that > is given by A.

Remark 1.1. On N* we have the natural partial ordering >..; (o >na G iff
a— (3 € N", that is if 2°|z®).

The following are equivalent:
(i) > is global,

(ii) if > is given by a matrix A, then the first non-zero entry of each column of A
is positive,

(iii) > refines the natural partial ordering, that is
Q >nat By £ B = 2 > P,

(iv) > is a well-ordering.

The implication (iii) = (iv) follows from Dickson’s lemma, saying that every subset
of N has, at most, finitely many minimal elements with respect to >pat.

10



Definition 1.2. Any f € K[z] ~ {0} can be written uniquely as
f=e
with ¢ € K ~ {0} and a > o for any non—zero term /2% of f. We set

Im(f) ==z the leading monomial of [,
le(f) = ¢, the leading coefficient of f.
exp(f) =a, theleading exponent of f.

For a subset G C K|z]| we define the leading ideal of G as
L(G) = (Im(g) [ g € G~ {0})kpays
the ideal generated by {lm(g) | ¢ € G ~ {0}} in K[z].
Tn the following examples, we define important orderings and accompany this with a

polynomial f written as a sum of monomials in decreasing order (hence, the leading
monomial is first) and a matrix A describing the ordering for three variables.

Example 1.1.
Typical global orderings are the lexicographical ordering lp (z* >, 27 :< the
first non—zero entry of a — 3 is positive) and the

100
A=[o01 0 |,
00 1

[ =a'+ 2’2+ 2y  +yz*+2° exp(f) = (4,0,0). degree reverse lexicographical
ordering dp (2% >4, 2 :& degz® > dega’ or degaz® = dega” and the last
non-zero entry of a — 3 is negative), typical local orderings are the

11 1
A=[o0 o0 -1 ],
0 -1 0

[ =yzt 4+ 2° + 2* + 2%y* + 232, exp(f) = (0,1,4). negative lexicographical
ordering ls (z® > 2” :< the first non—zero entry of a — 3 is negative) and the

-1 0 0
A= 0 -1 0
0 0 -1

[ =22+ yzt 4+ 2%y? + 2°2 + 2, exp(f) = (0,0,5). negative degree reverse
lexicographical ordering ds (2% >4 77 ;& degz® < degz” or degz® = deg 2’
and the last non-zero entry of a — 3 is negative). In the abbreviations Ip, dp, Is, ds

the

-1 -1 -1
A= 0 0 -1
0 —1 0

11



f=at+ 2%y + 22 4yt + 2°, exp(f) = (4,0,0).
p refers to a polynomial ring and the s to a series ring (cf. Definition 1.3).

In the above examples Ip and dp are global, while Is and ds are local (the p refers
to a polynomial ring and s to a series ring, cf. Definition 1.1).

For practical purposes, as well as for certain theoretical arguments, it is important
to extend the definitions of dp, respectively ds, to weighted degree orderings, where
the variables have positive, respectively negative, weights.

For any n—tuple of real numbers w = (wy,...,w,) we define the weighted degree
of a monomial z* to be

w—degz® = (w, ) = wiay + -+ + Wy,

Hence, for w = (1,...,1), w—degz® = deg z°.

Let wy,...,w, be strictly positive, then the weighted degree reverse lexico-
graphical ordering wp(wy, ..., Wy ) (respectively the negative weighted degree
reverse lexicographical ordering ws(wy, ..., wy)) are defined as dp (respectively
ds) but with deg replaced by w-deg.

w, Wy W3 —wp —Wy —ws
A= 0 0 -1 respectively A = 0 0 -1
0 -1 0 0 -1 0

wp(5,3,4) 1 f =2+ 2° + 2%z + y2* + 2%y?, exp(f) = (4,0,0),
ws(5,5,4) : f =2’z 4+ 2t 4+ 2%y* + 2° + y2?, exp(f) = (3,0

wp is global and ws is local.

Given two monomial orderings >; on Klzy,...,2,] and >y on Klyi,...,ym|, v
define the product ordering or block ordering > = (>;,>;) on Klz,y] by
2oy > 2y e 2® > 27 or 2® = 27 and ¢P >, .

= (),

if >, is given by A; and >, by A,.
(dp(1), 1s(2)) : 2* + 2%z + 2%y* + 2° + y2*, exp(f) = (4,0,0).
(ds(1), 1p(2)) : 2%y* + 2’z + 2* + y2* + 2°, exp(f) = (2,2,0).
Remark 1.2. The leading monomial function has the following basic property
(f,9 € Klz]~ {0})1
Im(gf) = Tm(g) Im(f),

Im(g + f) < max(Im(f), Im(g)) with inequality
if and only if Im(g) = Im(f) and lc(f) = —lc(g).

12



This implies that

Ss ={u € K[z] ~ {0} Im(u) =1}

is a multiplicatively closed subset of Kz].

The localization of K[z] with respect to S5 plays an important role for local and
mixed orderings.

Definition 1.3. For a given monomial ordering > define the multiplicatively closed

set

Ss i={u € K[z] ~ {0} | Im(u) =1}

and the K-algebra

Loc K[z] := ST'K[z] = {g | f € K[z],u € S5},

the localization (ring of fractions) of K[z] with respect to Ss.

We call Loc K[z] also the ring associated to K[z] and >.

Remark 1.3. 1) K[z] C Loc K[z] C K[;c](x) where [([:v](x) denotes the local-

ization of K[z] with respect to the maximal ideal (zy,...,z,). Loc K[z] is
Noetherian, it is K[z]-flat and K[z](y) is Loc K[z]-flat.

Loc K[z] = K[z] if and only if > is global and Loc K[z] = K{[z](y) if and only
if > is local (which justifies the names).

Mixed orderings occur as a product ordering of two orderings with one global
and the other local. Many constructions with Grobner bases in K[z] use a
set of auxiliary variables which have to be eliminated later. If one wants to
perform such constructions in K[z](), the auxiliary variables must be bigger
than 1, hence, mixed orderings occur naturally in this context.

The product ordering on K|z,y] = K[xy,..., %, y1,- -, Ym] with >; global on
K[z] and >, arbitrary on K[y| is an elimination ordering for z,..., 2, on
Klz,y], that is, for g € K[z, y] and Im(g) € K[y] we have g € K[y]. It is easy
to see that for an arbitrary monomial ordering > to be an elimination ordering
for zy,...,z, 1t i1s necessary that z; > 1 for: = 1,...,r. For example, let >; be
global on K[z] and >; local on K[y], then the product ordering > = (>4, >,)
on Klz,y| satisfies S5 = K* 4 (y)K[y], hence

Loc K[r,y] = (Klyl)lal.

13



4) The product ordering is not commutative, that is, if >; and >, are as in 1) and
we define the product ordering >= (>3, >;) on K[y, 2| by changing variables,
then S5 = K * +(y) K[y, z] and

Loc K[z] = S;lK[y, ] 2 ([x”[y](y))[w]

1
14+zy

since , for instance, is in the first but not in the latter.

Note that lm and lc have natural extensions to the localization. For [ €
Loc K[z] there exists u € S5, lc(u) = 1, such that uf € K[z] and we define

Im(f) := Im(uf), le(f):= le(uf).

Since

Im(fg) = lm(f) lm(g) and
le(fg) = le(f)le(g)

this definition is independent of the choice of u. Moreover, for a subset G C Loc K|[z]
set

L(G) = (Im(g)|lg € G ~ {0}) ks C K|x]

and call it the leading ideal of (. Note also that v € Loc K[z] ~ {0} is a unit in
Loc K[z] if and only if Im(u) = 1, that is, if u € Ss.

For our intended applications of standard bases, but also for an elegant proof of
Buchberger’s standard basis criterion, we have to extend the notion of monomial
orderings to the free module K[z]|" = > K][z]e; where

i=1,...,r
¢, =(0,...,1,...,0) € K[z]"

denotes the i—th canonical basis vector of K[z]". We call z%¢; = (0,...,2%,...,0) €
K[z]" a monomial (involving component i).

Definition 1.4. Let > be a monomial ordering on K[z]. A monomial ordering
or a module ordering on K[z]|" is a total ordering >,, on the set of monomials
{z%;|a € N* i =1,...,r} satisfying

r%e; >, xﬁej = e >, :vﬁ"'”ej,
> zf = z%; >, xﬁei,
forall o, B,y e N*, 0,5 =1,...,r.
Two module orderings are of particular practical interest:
xaei>$ﬁej<:>i>jori:jand x> 2P,
giving priority to the components and
x%e; > xﬁej sz >alor 2% =2 and i > j,

which gives priority to the monomials in K|[z].

14



Note that, by the second condition, each component of K[z]" carries the ordering of
K[z]. Hence, >,, is a well-ordering on K[z|" if and only if > is a well-ordering on
K[z]. We call >,, global respectively local respectively mixed, if this holds for >
respectively.

Now we fix a module ordering >,, and denote it also with >. Since any f €
K[z]" ~ {0} can be written uniquely as

f=cx + [

. b 7 ’
with ¢ € K~ {0} and z%¢; > 2 ¢; for any non-zero term ¢’z ¢; of f’ we can define
as before

Im(f) = 2%,
le(f) =c

and call it the leading monomial respectively the leading coefficient of f. More-
over, for G C K[z]" we call

L(G) = (Im(g)|g € G ~ {0}>K[x] C Klz]

the leading submodule of G.

As from K[z] to Loc K[z] these definitions carry over naturally from K[z]|" to

(Loc K[z])".

Note that the set of monomials of K[z]" may be identified with N* x " C N* x N =
Nt E" = {ey,...,e.} and here ¢; is considered as an element of N". The natural
partial order on N**" induces a partial order >,,; on the set of monomials, which
is given by

r9¢; <pat %€, & 1 =7 and x"|xﬁ

& $a€i|$ﬁ€j.

We say that z%¢; is divisible by zf¢; if i = j and z°|z®. For any set of monomials
G C Klz]" and any monomial 2%¢;, we have

x%e; € (G)k[z) © %€ is not divisible by any element of G.

Hence, Dickson’s lemma for N™ (m arbitrary) is equivalent to the statement that
any monomial submodule of K[z]|" (r arbitrary) is finitely generated.

1.2 Standard bases and normal forms

Let > be a fixed monomial ordering on K[z]. In order to have a short notation, we
write

R :=Loc K[z] = 53" K[x]

15



to denote the localization of K[z] with respect to >.

We define the notion of standard basis respectively Grébner basis and give an algo-
rithm to compute such a basis. In the case of a well-ordering this is Buchberger’s
[Bul], [Bu2], [Bu3| celebrated algorithm, in the general case it is a variation of
Mora’s tangent cone algorithm [Mo], first published in [Getal], [GP], [Gra]. We like
to stress that it is important to work consequently with the ring R and not with
K[z], even if the input is polynomial.

Definition 1.5.

1) Let I C R" be a submodule. A finite set G C [ is called a standard basis of
I'if and only if L(G) = L(I), that is, for any f € I ~ {0} there existsa g € G
satisfying lm(g)|Im(f).

2) If the ordering is a well-ordering, then a standard basis G is called a Grébner
basis. In this case R = K[z] and, hence, G C I C K[z]".

With the above notation, we follow the suggestion of [MPT], reserving the name
Grobner basis exclusively for well-orderings.

A set G C R’ is called inter-reduced if 0 € GG and if Im(g) ¢ L(G ~ {g}).

Note that any standard basis can be made inter-reduced by deleting successively
those g with lm(g)|lm(h) for some h € G~ {g}. An inter-reduced standard basis is
also called minimal.

For f € K[z]" and G C K[z]" we say that f is reduced with respect to G if no
monomial of f is contained in L(G). If > is not a well-ordering, we extend this to
f € R and G C R" by saying that f is (completely) reduced with respect to G if
there exist uy € S5, and for each g € G, u, € S5 such that usf, u,g € K[z]" and
uysf is reduced with respect to {u,g|g € G}.

A set ¢ C R" is called reduced if 0 € (¢ and if each g € G is reduced with respect
to G~ {g} and if, moreover, g — lc(g) lm(g) is reduced with respect to G. For > a
well-ordering this just means that for each ¢ € G C K[z]", ln(g) does not divide
any monomial of any element of G\ {¢g}.

We shall see later that reduced Grobner bases do always exist, but reduced standard
bases, in general, do not.

Definition 1.6. Let G denote the set of all finite and ordered subsets G C R".

1) A map
NF: R xG— R, (f,G)— NF(f|G),

is called a normal form on R" if, for all f and G,
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(i) NF(f|G) # 0 = Im(NF(f|G)) ¢ L(G),
(ii) S = NF(f|G) € (G)r.
NF is called a reduced normal form if, moreover, NF(f, ) is reduced with

respect to G. NF is called a weak normal form if, instead of (ii), only the
condition (ii’) holds:

(ii”) for each f € R™ and each G € G there exists a unit u € R, so that
uf —NF(f|G) € (G)r.

2) Let G ={g1,...,9:} € G. A representation of f € (G)g,

S
/= Zdi% a; € R,

=1

satisfying Im(f) > Im(a;g;), whenever both sides are defined, is called a stan-
dard representation of f (with respect to 7).

Remark 1.4. The reason for introducing weak normal forms is twofold. On the
one hand, they are usually more easy to compute and as good as normal forms
for practical applications. On the other hand, and more seriously, normal forms
may not exist, while weak normal forms do. For example, it is easy to see that
[ =12 € R = K[z (with Is) does not have a normal form with respect to
G = {z — 2?}. On the other hand, since (1 —z)f =2 —2*and 1 —z a unit in R, f
is a weak normal form of itself with respect to G.

NF(f|G) is by no means unique.

For applications (weak) normal forms are most useful if G is a standard basis of
(GYr. We shall demonstrate this with a first application, which follows immediately
from the definitions.

Lemma 1.1. Let I C R be a submodule, G C I a standard basis of I and NF(—|G)

a weak normal form on R" with respect to G.

1) For any f € R™ we have f € I & NF(f|G) = 0.

2) If J C R" is a submodule with I C J, then L(I) = L(J) implies I = .J.
3) I = (G)r, that is, G generates I as R-module.

4) IfNF(=|G) is a reduced normal form, then it is unique.

Proof. 1) If NF(f|G) = 0 then uf € I and, hence, f € I. If NF(f|G) # 0, then
1m<NF(f|G)) ¢ L(G) = L(I), hence NF(f|G) € I, which implies f & I.

17



2) Let f € J and assume NF(f|G) # 0. Then 1m(NF(f|G)) ¢ L[G) = L(I) =
L(J), a contradiction since NF(f|G) € J. Hence, f € I by 1).

3) Follows from 2).

4) Let f € R and assume that h,h' are two reduced normal forms of f with
respect to G. Then

h—h/E<G>R:[.

If h—h"# 0, then Im(h —R") € L(I) = L(G), a contradiction, since lm(h — h’)

is a monomial of either h or A'.

O

Remark 1.5. The above properties are well-known for Grobner bases with R =
K[z]. For local, or mixed, orderings it is quite important to work consequently with
R instead of K[z]. We give an example showing that none of the above properties
1) - 3) hold for K[z], if they make sense, that is, if the input data are polynomial.
Let fi = 2'% — 4?2 f, = y® — 22", f5 = 2'%" and consider >; on K[z,y]. Then
R=K[z,Yl@zy, (1 —2y)fs =y [i + 2% f; and we set

I = ( 1,f2>R = (flafZafS)R’
I'=(fi, [2)K[z,y]
"= (f1, fos J3) K2, y],

G ={f f.}.

Then ( is a reduced standard basis of I (since we must multiply f; at least with y”
and f; with 2'° to produce new monomials, but then the resulting monomials are

already in L(G)). If NF(—, @) is any (weak) normal form on R, then NF(f5|G) = 0,

since fs3 € I. Hence, we have

NF(f3|G> = 0 but f3 ¢ ],,
G C J' but (@Yxp # T,
I'cJ, L([’) = L(J’) but I # J'.

Note that .J' is even (z,y)-primary.

For describing Buchberger’s normal form algorithm, we need the notion of an s—
polynomial.

Definition 1.7. Let f,g € R" ~ {0} with Im(f) = z%¢; and Im(f) = 2”¢;, respec-
tively. Let

v :=lem(e, B) := (max(m B1)s -, max(ay, ﬂn))
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be the least common multiple of 2 and z” and define the s—polynomial of f
and g to be

e _k(_f)l.w—ﬁ
g

0, i # .

which is called the s—polynomial of f and g.

ifi =7,
spoly(f,g) :=

Of course, spoly(f,g) € R" is only a polynomial if r = 1 and f, ¢ € K|z].

If Im(g)| lm( ), say Im(g) = z”¢;, Im(f) = 2”¢;, then the s—polynomial is especially
simple,

o(f) ac
@x ﬁgv

and hn(spoly(f,g)) < lmn(g). For the normal form algorithm, the s—polynomial
will only be used in this form, while for the standard basis algorithm we need it
in the general form above. In order to be able to use the same expression in both
algorithms, we prefer the definition of spoly above and not the more symmetric form
le(g)zY=2f — le(f)z"=Pg. Both are, of course, equivalent, since our ground ring K

is a field.

spoly(f,g) = f —

Algorithm 1.1.

Assume that > is a well-ordering on K[z]".
NFBUCHBERGER( f|()

Input: [ € K[z]", G €G.
Output: h € K[z]", a normal form of f with respect to G.

* h=f;

e while (h #0 and G}, = {g € G | Im(g) | Im(h)} # 0)
choose any g € Gj;
h = spoly(h, g);

e return h;

For termination and correctness see [Bu3]. Note that each specific choice of “any”
gives a different normal form function. The algorithm terminates, since in the i—th
step of the while loop we create (hg := f) a spoly

h; = hi—1 — m;g;,
hﬂ(hi—l) = lm(ngz) > lm(hz)

where m; is a term (monomial times coefficient) and ¢g; € GG (allowing repetitions).
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Since > is a well-ordering, {lm(k;)} has a minimum, which is reached at some step
m. Back substitution gives an expression (h = h,,)

m—1
h=f— Z m;gi,
i=1

satisfying lm(f) = lm(m — 1g1) > lm(mig;) > lm(h.,).

Moreover, by construction, Im(h) ¢ L(G). This proves correctness, independently
of the specific choice of “any” in the while loop

It is easy to extend NFBuchberger to a reduced normal form.

Algorithm 1.2.
Assume that > is a well-ordering on K[z]".

REDNFBUCHBEGER

Input:  fe K[z]",Geg
Output: h € K[z]", a reduced normal form of f with regard to G
h:=0,g=F,
WHILE (g # 0)
g = NFBuchberger (¢|G),
h = h + le(g) lm(g);
9 =g —lc(g)Im(g);
Since the “tail” g — lc(g)Im(g) of ¢ has strictly smaller leading term than g, the
algorithm terminates, since > is a well-ordering. Correctness follows from the cor-
rectness of NFBuchberger.

The idea of many standard basis algorithms may be formalized as follows:

Algorithm 1.3.
Let > be any monomial ordering on R" and assume that a weak normal form algo-

rithm NF on R" is given.
STANDARD (G,NF)

Input: G €§G
Output: S € G such that S is a standard basis of the submodule I = (G)r C R"

o S=0G;

o P=A{(f,9)lf,ge St CSxS

e while (P # 0)
choose (f,g) € P;
P=P~A{(f.9)}
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h = NF(spoly(f, g)|5);

If (h £ 0)
P=PU{(h,f)|f €S}
S =SUh;

o return 9;

Remark 1.6. If NF is a reduced normal form and if G is reduced, then S is a
reduced standard basis. If G is not reduced, we may apply NF afterward to (f, S —
{f}) for all f € S in order to obtain a reduced standard basis.

To see termination of STANDARD, note that if A # 0 then Im(h) ¢ L(S) by property
1) of NF. Hence, we obtain a strictly increasing sequence of monomial submodules
of K[z]", which becomes stationary by Dickson’s lemma or by the Noether property
of K[z]. That is, after finitely many steps, we always have NF (spoly(f,g)|5)) =0
for (f,g) € P and, after some finite time, the pair-set P will become empty.

Correctness follows from applying Buchberger’s fundamental standard basis criterion
below.

Theorem 1.1 (Buchberger’s criterion). Let I C R" be a submodule and G =
{g1,...,9s} C I. Let NF(—|G) be a weak normal form on R" with respect to G,
salisfying: for each f € R" there exists a unit u such that uf — NF(f|G) has a

standard representation with respect to (.

Then the following are equivalent

1) G is a standard basis of T,

2) NF(f|G) =0 forall f €1,

3) each f € I has a standard representation with respect to G,
4) G generates T and NF(spoly(gi, g;)|G) =0 fori,j=1,...,s.

The implications 1) = 2) = 3) = 4) are easy.

Proof. Let us first prove the equivalence of 1) — 3), which is easy. The implication
1) = 2) follows from Lemma 1.1, 2) = 3) is trivial.

Assuming 3), we see that lm(f) must occur as the leading monomials of a;g; for
some ¢. This implies that Im(g;)|lm(f), whence 1).

To see 3) = 4), note that h = NF(Spoly(fi,fjﬂG) € I and, hence, by 3), if h # 0,
Im(h) € L(G) by 3), a contradiction to property (ii) of NF. Generation was shown
in Lemma 1.1.

The implication 4) = 1) is the important criterion which allows the checking and
construction of standard bases in finitely many steps. The proof is most easily done
by using syzygies and is, therefore, postponed to the next section (Theorem 1.2). O
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We present now a general normal form algorithm, which works for any monomial
ordering. It is basically due to Mora [Mo], with a different notion of ecart, as given

in [Getal], [GP]).

Before doing this, let us first analyze Buchberger’s algorithm in the case of a local
ordering. We may assume that in K[z,y] we have z1,...,2, < 1, y1,...,ym >
1(m > 0). Look at the sequence m; = ¢y’ of terms constructed in the algorithm.

If deg,(m;) = deg(z™) and, hence, since > induces a well-ordering on Kly| the
algorithm stops after finitely many steps.

If deg,(m;) is unbounded, then, for each fixed factor 2, there can only be finitely
many cofactors y% and, hence, 3 m; converges in the (z)-adic topology, that is,
Yomi € (KyD[[z]]. If G ={g1,...,9s} we may gather the coefficients rn; of any g;,
obtaining thus an expression

h=f-— Zaigz-, h,a; € Kly][[«]],

which holds in K[y][[#]]. This is not a normal form in our sense since, in general,
a;, h g R

The standard example is in one variable z, with x < 1, f = x and G = {g = v —2?}.
We obtain

T — (Zf) (z —xQ) =0

1=0

in K[[z]], which is checked to be true, since 3 z* = == in K[[z]]. However, this is

not a normal form in our sense, since Y z* ¢ R.

Mora’s idea was to allow more elements for reduction in order to create a standard
expression of the form

uf =" aigi + NF(f|Q),

=1

with w a unit, a; € K[z] and NF(f|G) € K[z]" in the case when the input data f and
G ={g1,...,9s} are polynomial. In the above example he arrives at an expression

(1—-2)r=2—2"
instead of = (Y, 2%)(z — z?).
=0

Definition 1.8. For a monomial z%¢; € K[z]" set deg 2%¢; = degz® = a1+ - -+ ay,.
For f € K[z]" ~ {0}, let deg f be the maximal degree of all monomials occurring in

f. We define the ecart of f as
ecart (f) = deg f — deglm(f).
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For a homogeneous f = )" fie; (all components f; are homogeneous polynomials of
the same degree), we have ecart(f) = 0.

If w = (wy,...,w,)is any tuple of positive real numbers, we can define the weighted
ecart by e,(f) = w-deg f — w-deg Im(f) with w-deg z* = w — lay + --- +
wpay,. In the following normal form NFMora, we may always take e, instead of e,
the algorithm works as well. Grabe noticed [Gra] that, for certain examples, the
algorithm can become much faster for a good choice of w.

More generally, let f* denote the homogenization of f with respect to a new variable
t (such that all components of f are homogeneous of the same degree). Define on
K[t,z] an ordering by the matrix

where A is a matrix defining the ordering on K[z]. This defines a well-ordering on
K|t,z]. Extend it to K[t,z]" by

t"2%e; > tPxle; < deg(t°2”) > deg[t’z’) or 27e; > z'¢;.
Then we have for f € K|[z]"
I £#) = 1740 i ),
in particular, ecart(f) = deg, lm(f").

Algorithm 1.4.
Let > be any monomial ordering on Kz]", R = S3'K|[z].
NFMora(f|G)

Input:  f € K[2]", G ={g1,...,9:} C K[a]’
Output: h € K[z]" a weak normal form of f with respect to G. Moreover, there
exists a standard representation uf —h = > a,g; with a; € K[z], u € Ss.

=1

o h=f;
o T'=(,
o while(h # 0 and T}, = {g € T|lm(g)|Im(h)} # 0)

choose g € T}, with ecart(g) minimal;
if (ecart(g) > ecart(h))

T=TU{h};

h = spoly(h, g);
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e return h;

If the input is homogeneous, then the ecart is always 0 and NFMORA is equal to NF-
BUCHBERGER. If > is a well-ordering, then Im(g)|Im(A) implies that Im(g) < Im(h),
hence T' = GG during the algorithm. Thus, NFMora is the same as NFBuchberger,

but with a special selection strategy for the elements from G.

Termination is most easily seen by using homogenization: start with h = f* and

T = G". The WHILE loop looks as follows:
WHILE (h # 0 and T'" = {g € T|lm(g)|t* lin(h) for some a} # 0)

choose G € T'" with a minimal;

IF (a > 0)

T=TUh;
h = spoly(h, g);
h = (h|t=1)h5

h|t=l5

By Dickson’s lemma L(7),) becomes stable for v > N, where T, denotes the set T
after the v—th step of the WHILE loop. The next h, therefore, satisfies Im(h) C
L(Ty) = L(T), whence, Im(g)|lm(h) for some ¢ € T and o« = 0. That is, T,
itself becomes stable for v > N and the algorithm continues with fixed T'. Then it
terminates, since > is a well-ordering on K[t, z|".

To see correctness, consider the v—th step in the WHILE loop. There we create
(with hg = f) a spoly

hl, - hy—l - mugzln
Im(hy,—1) = Im(m,g.) > Im(h,),

where m,, is a term and for g, we have two possibilities:

a) g, = g; € G for some 1, or

b) gz,/ E{hoahla"-ahu—Q}CT\G'

Suppose, by induction, that we have, after step v — 1, constructed a standard rep-
resentation (ug = 1,hg = f)

i f =30l Vgi 4 husy, utY € S,
=1

In case b), we substitute h,_; by h, + m,h; with j <v — 1. y induction, we know

hi= Dgi —u;f, u; € S5

k3
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hence,

(wpmr = myuj)f =Y algi+ hy.

Since Im(m,h;) = Im(h,_1) < Im(h;) we get Im(m,) < 1 and u, = u,—y — myu; €
Ss.
By construction Im(h) € L(G), hence, the result.

For termination and correctness see [GP].

It is clear that, with a little extra storage, the algorithm does also return v € Ss.
Moreover, with quite a bit of bookkeeping one obtains the a,. However, u is usually
not needed and the a; can be computed, as we shall see, more easily with the
standard basis algorithm itself.

Algorithm 1.5.
Let > be any monomial ordering on K[z]", R = ST K[z].

STANDARD BAsIS(G)

Input: G ={qg1,...,9s} C K|z]"
Output: S ={hy,...,h} C K[z]" such that S is a standard basis of [ = (G)r C R".

e S = Standard(G,NFMora);

e return S;

1.3 Syzygies and free resolutions

Let K be a field and > a monomial ordering on K[z]|". Again R denotes the local-
ization of K[z] with respect to Ss.

We shall give a method, using standard bases, to compute syzygies and, more gener-
ally, free resolutions of finitely generated R—modules. Syzygies and free resolutions
are very important objects and basic ingredients for many constructions in homo-
logical algebra and algebraic geometry. On the other hand, the use of syzygies gives
a very elegant way to prove Buchberger’s criterion for a standard basis. Moreover,
a close inspection of the syzygies of the generators of an ideal allows detection of
useless pairs during a computation of a standard basis (cf. [MM], [Ei]). Our presen-
tation follows partly that of Schreyer [Schl], [Schl2], cf. also [Ei]. The generalization
to arbitrary monomial orderings was first formulated and proved in [Getal] and [GP].
A syzygy or a relation between k elements fi,..., fr € R" = é] Re; is a k-tuple

(.q17 e 7Qk> € Rk Satisfying

k
Z g:fi =0.
=1
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The set of all syzygies between fi,..., fr is a submodule of R*. Indeed, it is the
kernel of the ring homomorphism

k r
p1: I = @ Re;, — Fy:= & Re;,
=1 =1
Ei—> fz',

where ¢; respectively g; denote the canonical bases of R” respectively R*. o, surjects

onto I = (f1,..., fx)r and
syz I = Ker

is called the module of syzygies of I with respect to the generators fi,..., fi. It
can be shown that the isomorphism class of syz I as R-module does only depend on
the isomorphism class of I, in particular, it is independent of the set of generators.

We shall now define a monomial ordering on Fy, which behaves perfectly well with
respect to standard bases. This was first introduced and used by Schreyer [Schl].

Set

x%; > aPe; & lm(2z? f;) > lm(2" f;) or
Im(z®f;) = lm(:vﬁfj) and 7 < j.

The left-hand side > is the new ordering on F} and the right-hand side > is the
ordering on Fy. In order to distinguish them, we occasionally call them >; respec-
tively >¢. >¢ and >; induce the same ordering on R. We call the ordering >; the
Schreyer ordering. Note that it depends on fi,..., fi.

Now we are going to prove Buchberger’s criterion, stating that G = {fi,..., fx} is
a standard basis of I, if, for all 2+ < 5, NF (spoly(fy;, f])|G> = 0. We give an elegant
proof by using syzygies, which is different from Schreyer’s [Sch1], [Sch2] original one
(cf. also [Ei]), although the basic ideas are due to Schreyer. Our proof gives,

The proof uses syzygies and is basically due to Schreyer [Schl], [Schl2], although
our generalization (to general monomial orderings) seems to be simpler. It gives,
at the same time, a proof of Schreyer’s result that the syzygies derived from a
standard representation of spoly( f;, f;) form a standard basis of syz I for the Schreyer
ordering.

We introduce some notations. For each ¢ < j such that f; and f; have leading term
in the same component, say Im(f;) = ¢, Im(f;) = 2*/e,, define the monomial

mj; 1= 2" € K[z],

where v = lem(ay, ;). If ¢; = le(f;) and ¢; = le(f;) then

Ci
myi fi — ;mm'fj = spoly(fi, f;)-

J
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Assume now that for 7 < 7

NF (spoly(fi, ;)|G) =0,

for some weak normal form NF on R".
Then we have a standard representation

k

myi fi — %’”iz‘fj =Y a9}, ) e R

J v=1
Define for 1 < j such that Im(f;) and Im(f;) involve the same component
C; ..
A (i)
Sij = Mji&; cj- M€ zy:a,y €y

Then s;; € syz [ and it is easy to see that
Lemma 1.2. lm(sij) = My;&;.
Proof. This follows, since L(my;f;) = L(m;:f;), hence L(mje;) > L(my;e;) by def-

inition of >, since © < j. From the defining property of a standard representation
we obtain

&

Im(al? f,) < Im(my; f; — —m; ;)
¢
< Im(f;i fi)
and hence the claim. O

Theorem 1.2. Lel G ={q1,...,9s} be a sel of generators of I C R" satisfying, for
some weak normal form NF on R,

NF(spoly(gi,g;) | G) =0, i < j,

then the following holds:

1) G is a standard basis of I.

2) {sij} is a standard basis of syz I with respect to the Schreyer ordering. In
particular, {sz-j} generales syz I .

Proof. We give a proof of 1) and 2) at the time time.
Take any f € I and a preimage g € F} of f,

S S

9= aci, [ =¢(g) =) ag.
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This is possible as GG generates [.
In case 1), we assume f # 0, in case 2) f = 0.

Consider a standard representation of g — h,
9= aysi+h, aj€R,

where h = Y hje; € Fy is a normal form of g with respect to {s;;} for some weak
normal form on F; (we need only know that it exists). We have, if h # 0,

Im(h) = Im(h,) - &, for some v
and Im(h) & L({s;;}) = ({m;:e;}) by Lemma 1.2. This shows
m;, {1m(h,) for all j.
Since g — h € ({si;}) C syz I, we obtain

f=¢lg)=eh) = hig.
Assume that for some j # v, lm(h;g;) = lm(h,g,). Then Im(h,g,) is divisible by
Im(g,) and by lm(g;) and hence, by
Im(g,) Im(g;)/ ged (Im(g, ), Im(g;)) = Tm(g,)m;y.
This contradicts mj, { lm(h,).
In case 1) we obtain Im(f) =lm(h,g,) € L(G), in case 2) it shows that h # 0 leads

to a contradiction. In case 1) (¢ is a standard basis by definition and in case 2) {s;;}
is a standard basis by Theorem 1.1, 2) = 1), which was already proved. O

We shall now see, as an application, that the Hilbert syzygy theorem holds for
the rings R = SJ'K[z], stating that each finitely generated R—module has a free
resolution of length at most n, the number of variables.

Lemma 1.3. Let G = {¢1,...,9:} be a pairwise different minimal (inter-reduced)

r

standard basis of I C R" = Y Re; such that lm(g;) € {e1,...,e.}. Let J denote the

=1
set of indices j such that e; & {lm(g1),...,lm(gs)}. Then
I= &Ry, R/I= @ Rej.
=1 JE€J

Proof. The set G U {¢;|j € J} is R-linear independent, since the leading terms
are. This shows that both sums above are direct. For f € R" consider a standard
representation

F= aigi + b (k) ¢ L(G)

=1

This implies h € ) Re;, and hence the result. O
JeJ
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Lemma 1.4. Let G ={q1,...,9:} be a standard basis of [ C R", ordered in such a
way that the following holds: if 1 < j and Iin(g;) = z™e,, Im(g;) = z%e, for some
v, then a; > o lexicographically. Let s;; denote the syzygies defined above. Suppose
that lm(gy),...,lm(gs) do not depend on the variables xy, ..., x,. Then the Im(s;;),
taken with respect to the Schreyer ordering, do not depend on xq,...,xpy1.

Proof. Given s;;, then 1 < j and lm(g;) and lm(g;) involve the same component, say

e,. By assumption lm(g;) = z%%e,, lm(g;) = x™e, satisfy a; = (0,..., @i pt1,...)
a; = (0,...,aj541,...) With ;g1 > ojpp1. Therefore, lm(s;;) = mjie;, mj; =
glom(@ios)=2i " Joes not depend on 4. O

Applying the lemma successively to the higher syzygy modules, we obtain (cf. [GP]
for a detailed proof):

Theorem 1.3. Let > be any monomial ordering on K[z] = K[x1,...,2,] and R =
SSUK[x] be the associated ring. Then any finitely generated R—module M has a free
resolution

0— F,— Fu1— ... — g — M — 0,

F; free R—modules, of length m < n. In particular, R is a reqular ring.

Proof. Since R is Noetherian, M has a presentation

0— T — Fpb— M —0,

ro
with Fy = Y Re;, and I finitely generated. Let G = {g1,...,gs} be a standard basis
i=1
of I and assume that the Iin(g;) do not depend on the variables zq,..., x4, k > 0.
By Theorem 1.2, the syzygies s;; generate syz [, are a standard basis of syz [ and
by Lemma 1.4 we may assume that Im(s,;) do not depend on zy,...,z441. Hence,
we obtain an exact sequence

O—>Ker¢1:syz[—>F1i>Fo—>M—>0

Fi = > Rei, v1(e:) = gi, with syz I satisfying analogous properties as I. We can,
=1
therefore, construct by induction an exact sequence

0 — Kergppp — Fosp 2 By — 0. 2 — Fy — M — 0
with F; free of rank r; and Kery,_; given by a standard basis {sl(-;L_k)} such that

none of the variables appear in lm(sz(-;_k)). By Lemma 1.3, F,,_/ Ker ¢,y is free,
and replacing F,_; by F,_;/ Kerp,_; we obtained the desired free resolution. By
Serre’s criterion [Mat, 19.2], R is regular. O
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It is clear that the methods of this section provide an algorithm to compute (non-
minimal) free resolutions. This algorithm has been implemented in SINGULAR.

Algorithm 1.6.
Let > be any monomial ordering on K[zy,...,z,]", R = S3'K[x].

SRESOLUTION

Input: A matrix G = (¢1,-.-,9:), ¢1,--.,9 € K[z]" a standard basis of [ =
(G)r C R,
Output: A set of matrices A; of size (r,_1,7r;),7=1,...,n such that

0«— R /I +— R° ¢— - +— R} AR

is a resolution.

[ ] A1:(g1,...,gt).

k ..
e For i < j compute a standard representation of spoly(g;,g;) = Zaq(f])g,n
v=1

o T i
855 1= M€ — émmej — Z( )&‘U.
v

[} A2 = (8127 . ,St_l,t).

e Change the monomial ordering to the Schreyer ordering with respect to
g1y .., 3Gs.

e result = {A;}U SResolution (Az).

e return result.

Etwas zur Berechnung von Ext und annExt als Anwendung
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2 Primary decomposition

2.1 The theory

Let R be a Noetherian ring.

Definition 2.1. An ideal I C R is a prime ideal if T ; R and ab € I, a ¢ I implies
be [ forall a,b € R.

Example 2.1.
1) Let M be a maximal ideal of R, then M is prime.

2) Let R be factorial (for instance, K[z,...,z,] for a field K or K = Z). If
f € R is irreducible, then (f) is prime.

3) (ziyy.-y2,) C Klzy,...,2,], K afield, is prime.

4) Let I C R be an ideal, P D I a prime ideal, then P = {f|f| € P} C R/I is

prime.

The proof of 1) - 4) is simple and we leave it to the reader.

Definition 2.2. An ideal I C R is a primary ideal, if [ ; Randabe I, a g1
implies ™ € I for some m, a,b € R.

Example 2.2.

1) The power of a maximal ideal is primary.

2) In a factorial ring, the ideal generated by the power of an irreducible element
is primary.

3) Let R = Klz,y,z]/(zy — 2z*), K a field, then P = (z,2) is a prime ideal but

P? is not primary.

4) The image of a primary ideal of R in R/I is primary.

Remark: Let @ C R be a prime (respectively primary) ideal. Let A- B C () and
A ¢ @Q for two ideals A, B C R, then B (respectively B*® for some s) is contained in

Q.

Definition 2.3. Let I C R be an ideal, the radical of I is defined by
VI = {fIf € R, f™ € I for some m}.

We leave it to the reader to prove that /7 is an ideal.

Lemma 2.1. Let Q C R be primary, then \/Q is prime.
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Proof. Let ab € \/Q and a € /Q then (ab)™ € @Q for some m, but a™ ¢ Q. This
implies (b™)* € Q for some s and, therefore, b € \/@Q. O

Remark: Example 2.2 3) shows that there are ideals Q with \/@Q being prime but @
not being primary. Such ideals are called pseudo primary. Equidimensional pseudo
primary ideals are primary.

Definition 2.4. Let I C R be an ideal, the set of associated primes Ass(/) is
defined by

Ass(I) = {P|P prime, P = Ann(b), b€ R/I}
= {P|P prime, P = I : b}.

Example 2.3.
1) Let @ C R be primary, then Ass(Q) = {V/Q}.
2) Let I = (2% zy) C K[z,y], K a field, then = Ass(I) = {(z), (z,y)}.
3) I = (2%, zy) is pseudo primary, \/T = (z).

Proof.

1) Let P = @ : b be prime, then @ C P implies /@ C V/P = P. On the other
hand, b ¢ Q implies P™ C Q for some m and, therefore, P C 1/Q.

2) Iiz=(z,y)and [ : y = (z). O

Definition 2.5. Let P,Q € Ass([) and P ; Q, then @) is an embedded prime ideal
of I. Minass(I) := {P € Ass(I)|P is not an embedded prime ideal}. For P € Ass(/)
let C(1,P) =1{Q|Q € Ass(I), @ C P}.

Example 2.4.
1) (x,y) is an embedded prime ideal of 1.
2) Minass(7) = {(z)}.
3) C(I,(x,y)) = Ass(I), C(I,(z)) = Minass(I).

Definition 2.6. Let [ = @1N---NQ,, ; primary. The decomposition is redundant,
if there is an ¢ such that I = Q1 N....,NQi=1 NQix1 N---NQ,. If the decomposition
is not redundant, it is called irredundant.

A decomposition of I into an intersection of primary ideals is called minimal, if the
number of necessary primary ideals is minimal between all possible decompositions.

Example 2.5. Let [ = (2%, zy).
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1) I'=(z)N(z,y)*is minimal.

3) I =(x)N (z,y)*N(z,y) is redundant.

)
2) Minimal implies irredundant.
)
4)

The decomposition (z,y)* = (2%, y) N (z,y?) is irredundant, but not minimal.

Now we are prepared to prove the following main theorem of this chapter:

Theorem 2.1. Let I C R be an ideal, then there exisls a minimal decompo-
sition I = Q1N - N Qr of I as an intersection of primary ideals Qq,...,Q),
and r = # Ass(I). Furthermore, Ass(I) = {/Q1,...,/Q,} and if C(I,P) =
{m, ceey \/QT} Jor some P € Ass(I), then also Q;, N---NQ;, is independent on

the choice of a minimal decomposition.

Proof. To prove the existence of a minimal decomposition, it is sufficient to prove
that any ideal is the intersection of finitely many primary ideals. Assume that this
is not true, and let X = {J/J C R be an ideal which is not an intersection of finitely
many primary ideals }.

We shall use Zorn’s lemma to prove that X' has a maximal element. To do this we
have to prove that for every ascending chain --- C J; C J;1; C ... of ideals of X,
also UJ; € X,

Because R is noetherian, such a chain stabilizes and UJ; = J, for some k, that is,
UJ; € X and the assumptions of Zorn’s lemma are satisfied.

Now let J € X be a maximal element. Being in X' the ideal [ cannot be primary

itself and we can choose a,b € R such that a-b € J, a & J and b™ ¢ .J for all n.

Now the ascending chain --- C (J : ™) C (J : ™) C ... stabilizes and we obtain
an n such that J : " = J : b1, We shall prove later that, under this condition,

J=(J b0 (J, ).

But J ; J b and J ; (J,b") because of the choice of b, therefore, (J :b"),
(J,0") ¢ X and, consequently, intersections of finitely many primary ideals. This
holds, therefore, for .J, too, and gives a contradiction to the assumption that X’ # ().

Now we shall prove that \/Q); # /Q; if ¢ 7£ J. Assume /Q; = \/Q; for some 1,
and ¢ # j. Then /Q:NQ; = VO ﬂ V@i = V@i We qha see that Q; N Q; is,

again, a primary ideal. Let ab € Q; N Q; and ad Q;NQ; (we may assume a & Q,),
then b™ € Q; for some m. This implies b € /Q; = \/@ and, therefore, b* € (); for
some s, especially ™ € ); N @);, which proves that ¢); N Q); is primary. But this is
a contradiction to the minimality of the decomposition:
I=0:N--NQi1N(Q:NQ;)NQix1N---NQj—1NQ 41 N---NEQ, is a decomposition
of length r — 1.
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We proved that the {\/Q.} is a set of pairwise different prime ideals.

To continue, we need the following lemma:

Lemma 2.2, Let I = ANQ, A ¢ Q and @ primary, then there is a d € R such
that I :d =+\/Q. We shall prove the lemma later.

We choose dy,...,d, € R such that I : d; = \/Q;. This implies {\/Q1,...,/Q,} C
Ass(I). Let P € Ass(I), P =1 : b for some b, then

P=TI:b=(Q::b)N---N(Q,:b)
=/Q1:bN---N/Q, : b because of P =/P.
IfbeQ; then Qi :b=R,if b Q; then \/Q, : b = \/Q; and we obtain
P=1/QiyN--N+/Qi, for {ir,... i,}
being the set of indices with b & Q.
In particular, we have

P C/Q; 7=1,...,s

and

V@i /Wi, CP.

This implies that P = 1/Q);, for some k and we proved Ass(I) = {v/Q1,...,VQ,}.
Finally, let P € Ass(/) and C(I, P) = {4/Qi,,-.-,+/Q:.}, then it is easy to see that

IRPNR=Q;N---NQ,.,

which proves the rest of the theorem. O

Proof of Lemma 2.2. We choose dy € A, dy ¢ Q) and obtain
] . do = Q . do.

If Q : dy is already prime, the lemma is proved with d = dy. Otherwise, let (), =
Q : dy and we choose d; € Qi = +/Q, d; € Q. In this way, we assume Q;, d;_;
are already defined and Q; S /Q; = /@, then we choose d; € \/Q ~ Q; and define

Qi1 by Qi : di.

We have Q Qi11: namely, there is a minimal ¢ > 2 such that d! € @Q;, then
df Ve Qis1 and d* ! ¢ ;. The ascending chain Q - Q1 Q,C---CQ; C...
has to stabilize. Therefore there is a k& such that

Qr:di = \/Q.

This proves the lemma with d = dy - ... - dj. O
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Remark: The two different minimal decompositions (z)N(z,y)* = (z)N(2?, y) show
that we cannot obtain uniqueness for the primary ideals in a minimal decomposition.

During the proof of the theorem, we promised to prove the following lemma:

Lemma 2.3. Let I C R be an ideal and assume I : b =1 :b* for some b € R, then
I'=(I:b)n(I,b).

Proof. Let f € (I:b)N(I,b), f=m+7rb,me I,andbf € I. Thenb-m+rb* € |
and, therefore, rb* € I. This impliesr € I : b* = I : b and, therefore, [ € I, which
means ([ : b) N (1,b) C I. The other inclusion is obvious. O

Corollary 2.1. Let I be pseudo primary and assume that Ass(1) = Minass([/) then
I is primary.

Proof. Let I = Q1 N---N Q.. Because all associated primes are minimal we have

V@i ¢ \/Q;j for 1 # j. VT =/Q10---N\/Q, is prime implies, therefore, r = 1. O

2.2 The algorithms

In this section, let R = K[zy,...,2,] and I C R be an ideal.

The aim is to explain how to compute several decompositions of I, its radical v/T and
the normalization of the factoring R/I. Our main tools are Grobner bases (for well-
orderings) but all algorithms involving just these carry over to Loc K[zy,...,x,]
for arbitrary monomial orderings. For primary decomposition we need, in addition,
multivariate polynomial factorization. Almost all algorithms of this chapter are

implemented in SINGULAR.
Let [ = (TWIQZ be a minimal primary decomposition (that is, r is minimal) and
i

denote by P; = \/@); the associated prime ideals. We are interested in solving the
following problems:

(1) For v > codim(7), compute F,(I) := i r(wQ : Q)i the equidimensional part of

I of codimension v (if codim(Q);) # v for all i let E,(I) = R).

(1’) To solve a weaker problem, compute equidimensional ideals I, such that /T, =
E,(1).

(2) Compute Ass(/) = {Py,...,P.} and minAss(/) = {P; € Ass([) | P, g Py for
i # 5}

(3) Compute the radical /T = _(TWIPZ- =, ﬂA (I)P and the equidimensional rad-
1= €min Ass

ical “W/T = V Eq(I), d = codim([).
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(4) Compute, for I radical, the normalization of R/, that is the integral closure
of R/I in its quotient ring Q(R/T).

(5) Compute a minimal primary decomposition of 1.

There are some basic tools for the solution of these problems.
Lemma 2.4 (splitting tools).
1) IfT:f=1:f%for some f € R, then [ = (I: f) (I, f).
2) Let f-gel and (f,g) = R, then I = (I, f)N(I,g).
3) Let f-gel, then VI= I, F/T,g.
4) Let fr €1, then T =/T,7.
5) Let J be an ideal, then /T =/ T: JONT+T=~T:J0\/T:(I:1]).

Proof. 1) is just Lemma 2.3, 2), 3) and 4) are obvious. To prove 5), let P €
minAss(/ : J). If P ¢ minAss(/), there isa ) € minAss(/) and P 2 Q). This implies
I:J ¢ @ and, therefore, I : (I : J) C Q. If P € minAss([ (1 J)) and P ¢
minAss(/) there is a () € minAss([) and P 2 Q. This implies QQ D I : J, because
Q@ D 1T:J wouldimply I:(1:J)CQ. Thisproves\/7:\/[:Jﬁ\/[:(f:J).
Now]+.]C]:([:.]),Whichprovesf:\/[:[ﬂ\/[%-J. ]

Remark 2.1. Our experience shows that during all algorithms one should use
Lemma 2.4 to split the ideal as often as possible.

Lemma 2.5. Let I C Kzy,...,z,] be an ideal and S = {q1,...,9s}, gi €
Klz1,...,z,] be a Grobner basis of ITK(x1,...,x5)[Tkt1,...,20]. Let h =
lcm(lc(gl), . ,lc(gs)) then

1) IK(z1, ..., xp)[@hg1y oy xn) N K[z1, ..o ] = (12 ™).

2) Let (I:h>*)=1T:h", then I =(I:RN)n(I,hY).

3) Assume TK(xq,...,25)[Tp41,...,20] = \/]K(:vl, ooy ) [Thgr, o] then
VI =(1:h=)0/(I,h).
Proof. Obviously (1 : h*) C TK(x1,...,x%)[Tkt1, -, Tnl.
Let f € IK(z1,...,25)[Tks1,-- -, 2|V K][24,. .., 2,], 5 being a Grobner basis implies

NF(f]S) =0 in K(z1,...,25)[Tks1,--.,T,]. But the algorithm of the normal form
requires only dividing by the leading coefficients lc(g;) of the g;. This implies f =

Z:&gz and & € Klzy,...,x,]n and, therefore, hV¢ € Klxy,...,,] for some h,
i=1

which proves 1).
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2) ist just Lemma 2.3.

To prove 3), we choose an N such that I : 2 = T : kN, We know (by 2))
I=(1:hN)0(1,hN).

This implies v/T = \/[:hNﬂ\/[,hN.

Now /I, AN = /I, h and by assumption /(I : h**) = (I : ™) proves the proposi-
tion. O

2.2.1 Computation of the radical

We shall describe two different approaches to compute the radical of an ideal. An-
other approach is due to Becker and Wormann, which we shall not treat here ([BW]).

We start with an algorithm, which, in its main part, is due to Krick and Loger

([KL]).

Proposition 2.1. Let [ C K[zy,...,x,] be a zero-dimensional ideal and P(z;) €
Klz;) N I polynomials of minimal degree i = 1,...,n, Li(z;) the square free part of
P then T =1+ (I,...,Ly,).

Proof. Klzy,...,z,)/(L1,..., L,y ~ Klz1]/L1 @k -+ @r K[z,|/L1 is semisim-
ple, because K[z;]/L; is a direct sum of fields (square freeness of L;). Then
Klzy,...,za)/T 4+ (L1,...,L,) is semisimple and contains, therefore, no nilpotent

elements. This implies that T C \/T+ (L1,..., L) =+ {(L1,...,L,) CVI. O

Algorithm 2.1.
RADICAL (I)

Input: an ideal I,
Output: \/T:
e Result = (1);
e choose any admissible term—ordering <;

o use the factorizing Grobner basis algorithm to compute ideals I;,..., I} and

Grébner bases GO, ..., GO such that /T = N/T;. Let m = {I,,..., I };
e For / € m do

— compute I' = {u® ... D} v C {z),...,2,} = =, #ulD = dim([)
and L(I) N [\"[u(i)] = (0), the maximal independent set of the leading
ideal L(7I) of I (this is a combinatorical problem);

— start with the ideals Result = (1) and W = I;
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— for2=1to s do
compute S, a Grobner basis of W with respect to a block—ordering <;
having the property that if z, € ul), 2, & ul), then 2, < z;
(notice that WK (u)[z . uD] is zerodimensional and S is a Grébner

basis of this ideal with respect to <; restricted to = ~ u(i));

— using linear algebra and the Grébner basis S, compute for all z, €

z~ ul? P,(x,) such that (Pa(xa)) = W[((u("))[x ~ u(i)] N [x”(u("))[xa];
— compute the square free L, part of P,;
— compute a Grobner basis T of WK (u)[x ~ uD] + ({L.|z, € 2~ u})

such that the elements of T are polynomials in K[zy,...,z,];

— compute hl) € K[u)], the least common multiple of the leading coeffi-
cients of the elements in T,

— compute in K[zy,...,z,] ((T®): pld)= = jl),
— Result = Result ﬂJ(Z)’

(if this is done for i = 1,..., s, then Result = equidimensional radical of

Iif dimW < dim /).
— Result = Result N radical (W);

e return Result

A quite different approach is due to Eisenbud, Huneke and Vasconcelos ([EHV]).
We fix a field K of characteristic 0, or characteristic p, sufficiently large.

Let A = K[z1,...,2,]/] be a K—algebra of finite type. We denote by J,(A) the a—th

fitting ideal of Q 4k, the module of Kéhler differentials and by J,(I) its pull-back

in K[zy,...,2,)].

J.(A) is compatible with localizations and base change.

Note that if I = (f1,..., fm), then J,(I) = I+ the ideal generated by the (n —a)-
A fi

minors of the Jacobian matrix Erll B
J

The idea of the algorithm goes back to the following theorem of Scheja and Storch

([SS])-

Theorem 2.2. Lel A be a local Artinian K -algebra with mazximal ideal M 4, then
A is a complete intersection if and only if (0) : Jo(A) = My4.

For A = K[xy,...,x,]/I the result can be formulated as follows:

Let I C Klzy,...,2,] be a (z1,...,2,)-primary ideal, then [ is a complete inter-
section if and only if 1 : Jo(I) = (z1,...,2,).
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Corollary 2.2. Let I C Klzy,...,x,] be a complete intersection of dimension d,

then T =1 : Ja(T).

Corollary 2.3. Let I be equidimensional of codimension m and fi,...,f. € I a
reqular sequence. If Io = (f1,..., fm), then

VI=To: (\/1y: 1).
Proof. Because of Iy C I equidimensional, we have Vi = VINL and VIp:I=1:
I=Land Ip: L=VI1:L=+I. O

Remark 2.2. Let I = I, N I; and I; the equidimensional part of [ intersected
with the embedded components corresponding to the equidimensional part, I, the

part of higher codimension. Then I, = I : \/ﬁN, where N has the property that
[:\/I_lNZI:\/ENH.
We obtain the following algorithms:

Algorithm 2.2.
EqQuiRADICAL(])

Input:  an ideal [
Qutput: the radical of the equidimensional part of [

e compute a Grobner basis of I and the codimension d = codim(7);

e choose a regular sequence fi,..., f; in I (try the first d elements of a set of
minimal generators of I, if this does not work, choose d elements as a generic
linear combination of the generators of I with coefficients in K');

e compute the Jacobian ideal Jy = J,_4(ly) of Iy = (fi,..., f4) and then com-
pute /Ty = Iy : Jo;

o compute /Iy : (v/Io : I) =: I, (this is the radical of the equidimensional part);

e Return [

Algorithm 2.3.
RapicaL(T)

Input: an ideal [
Qulput: the radical of T

e [, = EquiRadical (7);
o compute N such that [ : N =1: [fv-l_l;

e return /1N Radical (7 : [fv)
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2.2.2 Computation of the equidimensional part of an ideal

Again we present two different approaches. The first approach is used in several
papers ([GTZ], [KL], ...) and is based on Proposition 2.5:

Let I C K[zy,...,x,] be an ideal of dimension d and v C {zy,...,2,} =: x be a
maximal independent set, that is, I N K[u] = (0) and #u = d. Let < be a block-

ordering for v and x \ u, such that elements of x \ u are always greater than elements
of u.

Let GG be a Grobner basis of I with respect to <. G, considered as polynomials
in K(u)[z ~\ u], is still a Grébner basis of I K[u)[z \ u], which is zero-dimensional.
Let h € K[u] be the least common multiple of the leading coefficients of G in
K(u)[z ~ u], then I K(u)[z ~ u] N K[z] = I : h* is equidimensional of dimension d
and I = (I:hN)N(I,RN)if T:h> =1:0"V,

This 1s the basis of the following algorithm:

The algorithm (input an ideal I of codimension d, output the equidimensional part
E4(I) of I and an ideal W of codimension > d such that I = E,(I)N W):
Algorithm 2.4.

EQUIDIMENSIONAL (1)

Input:  an ideal I of codimension d
Output: the equidimensional part E4(I) of I and an ideal W of codimension > d
such that I = E4(I)NW.

e choose any admissible term—ordering <;

e compute S, a Grobner basis of I with respect to <;

o compute d = dim(/) and T' = {u® ... uO} D C{ay,... 2.} =z, #ul) =
d and L(I) N K[u] = (0), the maximal independent set of the leading ideal
L(1I) of I

e start with the ideals Result = (1) and W = [;

o fors=1to 5 do

— compute S, a Grébner basis of W with respect to a block-ordering <;,
having the property such that if 2, € u(), 2, & ul), then z, < xy;
(S0 is a Grébner basis of WK (u)[z ~ u(])

— choose T, a subset of S, which is a minimal Grobner basis of
WK (u)[z ~ «)] and compute () € K[ul)] the least common mul-
tiple of the leading coefficients of the elements in 7;

— compute in Klzy,...,z,], (<T(i)> : h(i)o") = JO,
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— Result = Result ﬂJ(i);

- W = (W, r), if diim(W) < dim(I)
return {Result, W}.

¢ Result = Result N Equidimensional (W)[1];
return {Result, Equidimensional (W)[2]}.

Proposition 2.2. Let I C Klzy,...,x,] =: R be an ideal of codimension d and
denote by FE;(I) the equidimensional part of I of codimension j, then

1) Ey(I) = annFxth(R/1, R).

2) If Io C I is a complete intersection, then Eq(I) = Io: (Io: 1).
3) Forl>d

VE(T) = 1/ Ee(ann(Exty(R/1, B))).

Proof. To prove 2), we use the following property of zero-dimensional complete
intersections (cf. [SS]):

Let A be a local complete intersection Artinian ring. Let I C A be an ideal, then
(0): ((0): T) =1.

The reason for this property is the non—degenerate symmetric bilinear form o, de-
fined by the socle S (the determinant of the Jacobian matrix of the complete inter-
section):

Extend a fixed socle element s to a K-base of A. Define o(a,b) = coefficient of a - b
of s written in terms of the base. Then (0) : [ = I+ = {z € Alo(z,I) = 0} and
(It =1.

Now it is not difficult to see that always I C Iy : ([y : I). It is sufficient to prove
that Ip = ([0 : (1o - ]))P for all associated prime ideals of codimension d of [

because \/E4(I) = \/Io: (ly: 1) (Ip has, as complete intersection of codimension

d, all associated primes of I of codimension d as associated primes, Iy : [ has, as
associated primes, the complement of Ass(/y)). Now we may consider (R/[y)p =: A,

but here (0) : ((0) : [A) = I A holds, which proves 2).

To prove 1), we use the following standard formula ([M, p. 140]):

Let B be a noetherian ring, M, N B—modules, + € B B-regular und M-regular and
N =0, then Extzt' (N, M) ~ Extg /. 5(N, M/xM).

Applying this d times to our situation we obtain:

Exth(R/1T, R) ~ Homp,1,(R/1T, R/1,),
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Iy C I as in 2) a complete intersection of codimension d
HomR/[O(R/[, R/1y) ~ (Iy: 1)/ 1.

This implies that
ann Exth(R/I,R) = Iy : (Ip: I).

Now, using 2), E;(I) = annExtR(R/I, R).
To prove 3), let P be a prime of codimension £ and S = Rp. Assume that P D 1.

Consider the exact sequence
0—(0:P°)— S/ — F—0.

Then, by construction, Homg(S/P, F') = 0 and, therefore, depth (F') > 0. Using the
formulae of Auslander and Buchsbaum (projdim(F)+ depth(F') = depth(S) = ¢),
we obtain Extg(F, S) = 0. From the long exact sequence

. — Bxt§(F,S) — Exty(S/I,8) — Ext§((0: P*),S) — 0

we obtain Ext5(S/1,5) = Ext5((0 : P*®),S) and especially ann(Ext5(S/1,9)) =
ann(Ext5((0 : P®),5)). Now (0 : P®) is of finite length and S is regular; this
implies Ext{(Exts((0 : P*>),5),5) = (0 : P*) (dualizing the free resolution of
(0 : P>) gives a free resolution of Extg((O : P*°),S) because Ext((0: P*),S5) =0
for 5 < ¢) and especially ann(Ext‘((0 : P*>),S)) = ann((0 : P*)). Obviously
P™ C ann(0: P*®) = ann(BExt%(S/I,59)).

On the other hand, ann(0 : P*>°) C P if and only if P € Ass([).

This proves the proposition. O

We obtain the following algorithm:

Algorithm 2.5.
EQUIDIMENSIONAL (/)

Input:  an ideal [
QOutput: the equidimensional part of [

e compute a Grobner basis of [ and the codimension d = codim(7);

o choose the first d elements in a set of minimal generators of I and set Iy =

(froooos fa);

o If Iy is a complete intersection
return o : (I : I);

e return annExth(R/[, R);
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2.2.3 Zerodimensional primary decomposition

We shall first give the theoretical background, which is used for the algorithm of
Gianni, Trager, Zaharias ([GTZ]). Notice that in [GMT], Gianni, Miller and Trager
generalize the Berlecamp algorithm to obtain a zero—dimensional decomposition.
We do not treat this approach here.

Let K be a field of characteristic zero, or sufficiently large.

Definition 2.7. Let P be a maximal ideal in K[xy,...,z,]. P is called in general
position with respect to the lexicographical ordering x; > - -+ > x,, if the reduced

Grobner basis of P is {z1 — fi(wn), ... &n1 — fa1(xn), falzn)} with fi € K[z,
Remark 2.3. Notice that automatically f, is irreducible and deg f; < deg f,.

Proposition 2.3. For every mazimal ideal P C Klz1,...,x,]| there exists a dense
open subset U C K™™' such that for every a = (ai,...,a,—1), the associaled map ,

n—1
defined by vq(x;) = z; if 1 < n and p,(z,) = v, + > a;x; maps P to p(P), an ideal

i=1

in general posilion with respect to the lexicographical ordering x, > --- > x,,.

Proof. The field K|zy,...,z,]/P is a finite extension of K and there exists a dense

open subset U C K"™' such that for ¢ = (a1,...,a,-1) € U the element z =
n—1

T, + > a;r; is a primitive element for the field extension (theorem of the primitive
i=1

element).

Using the corresponding map ¢, we may assume that z,, is a primitive element, that

is,

Klzy,...,2,)/P = Klz,]/ fo(z,)

for an irreducible polynomial f,(z).

Now define fi(z,) by #; mod P = fi(z,) mod f,(z,) and we obtain

(w1 = fi(zn), s wna = o (n), fulzn)) = P.

The set of these generators is obviously a Grobner basis with the required properties.

O

Definition 2.8. Let I C K{z1,...,x,] be zero-dimensional. [ is called in general
position with respect to the lexicographical ordering x; > - -+ > z, if the following
holds: let I = Q1N ---N s be the minimal primary decomposition with associated
primes Py, ..., P, then

1) Pi,..., P; are in general position with respect to the lexicographical ordering
Ty >0 > Iy
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2) PN Klz,l,..., PsN K[z,] are coprime.

Proposition 2.4. Let [ C Klzy,...,x,] be a zero-dimensional ideal. There is a
dense open subset U C K™™' such that for a € U, @,(1) is in general position with
respect to the levicographical ordering x; > -+ > x,,.

Proof. Let I = QN ---N Q5 be the primary decomposition with associated primes

Py, ..., P, then ¢,(P;) are in general position with respect to the lexicographical
ordering z; > -+ > x, for almost all @ € K™™'. On the other hand, the zero set
of I is just a set of s different points which project to different points for almost all
a. O
Theorem 2.3. Let [ C Klxy,...,x,] be in general position with respect lo the
lezicographical ordering xy > -+ > wx, and G a minimal Grobner basis, {g} =
GNKlz,).

Let g = gi' ...+ gP be the decomposilion of g into a power product of irreducible

factors g;, then

(1) 1= 1 (1,g%);
(2) the ideals (I,gp*) are primary ideals.
Proof. (2)let I = Q1N---NQ, with associated primes Py,..., Py and let P,NK[z,] =
(p;). Then by assumption p;,...,p; are coprime and, therefore, NP, N K[z,| =
£
N(p;) = (][ p:)- On the other hand, I N K[z,] = (g) implies that g divides a power
=1
¢
of []p:- This implies £ = s and that we may assume g; = p; for 1 = 1,...,s. This
1=1

implies P; D (I,g/") and P; % (I,g") for i # j. Because of I C (I,g.*) we know
that Ass(/,¢*) C Ass(I) and, therefore, (2) is proved.

To prove (1) note that
1N Kz, = kri([, 9P N Kz,).

Let f € n(l,g%), f = fo+ &gl with f, € I, then g f = g f() 4 g¢ - g for
g© =g/gl. Let Ynug"™ =1, then
v=1
f= vag(u)f(v) + ng(u)&g €l
v=1

v=1

which proves (1). O
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Using Theorem 2.3 we obtain the following algorithm

Algorithm 2.6.
ZerOPRrIMDEC(T)

Input: I C K[zy,...,x,| zero-dimensional

Output: {Q1, P1,...,Qs, Ps}, Q; primary, \/Q; = Prand I = Q1N --- N Q;

o Result = (), Rest = 0;
e perform a random coordinate change J = ¢,([), ¢, defined by ¢,(z;) = z; if
n—1
i <nand p,(x,) =z, + Y, aiz;
i=1
e compute a Grobner basis G' of J with respect to the lexicographical ordering
€Ty > > Xy,

o let {f} =GN Klz,], factorize f:
T2

e For k=1 to s do
test whether (7, f{*) is primary:

This is the case if and only if a Grobner basis with respect to the lexicographical

ordering x; > -+ > x, contains hﬁ’“), e ,h%k) such that
- b = o
n{®)
- = (2 — ¢ (2,))™ mod (B, R,
If (J, f{*) is prime, then Py := (2, — g(k), B T g(k_) , [x) is the associated
k 1 n—1

prime to Q% := (J, f2*);
Result = Result U{p;"(Qk), ©;'(Pr)}
else

Rest = Rest U{(Ia%;l( lfk»}’

o If Rest = (), then return Result
else
let Rest = {[1,...,I,}
fort=1tor
Result = Result U ZEROPRIMDEC(];)

return Result.
Remark 2.4. To make this algorithm really efficient, it is necessary to do some
preprocessing to avoid a random coordinate change whenever possible. Random
coordinate change destroys sparseness and usually makes the Grobner basis compu-
tation very difficult. Therefore, we use the properties (cf. Lemma 2.4).
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o I=(I:b)N(I,b)ifI:b=1T:0%
o (I.f-g)= (/)0 (l,g9)if (f.g) = (1),

to split the ideal as often as possible before starting the algorithm. To do this,
we produce as many reducible elements as possible. This leads to the following
preprocessing algorithm:

Algorithm 2.7.
spLIT(])

Input:  an ideal [
Output: two sets of ideals: Primary = {Qy, P1,...,Qs, Ps} and Rest = {[1,..., I}
such that I = (NQ;) N (N1;), Q; primary and @Q; = P,

e Primary = (), Rest = () ;

e compute (P;) = I N K[z;] and add them to the generators of I;

o factorize all the generators of I and split the ideal as often as possible;

e compute for all splitting ideals a Grobner basis with respect to the lexico-
graphical ordering x1 > -+ > z,;
if possible split the generators again;

o test whether the splitting ideals are primary and in general position with

respect to the lexicographical ordering z; > --- > z,. Put the detected
primary ideals and their associated primes to Primary and the other ideals to
Rest;

o return Primary, Rest.

Remark 2.5. The ideals of Rest have the following property:

They have a set of generators (which is a Grébner basis with respect to the lexico-
graphical ordering zy > --- > z,) and every generator is a power of an irreducible
element.

Remark 2.6. The decomposition of a zero—dimensional radical ideal is, with re-
spect to the preprocessing, simpler. We can use the fact that

VI.[-g=~1.[n/Ig.

This simplifies the splitting. In particular, we can use the factorizing Grobner basis
algorithm to split the ideal. Also the prime test for a zero—dimensional ideal is
simpler than a primary test:

I is prime if there is an irreducible ¢ € [ N Kz;] for some i and
dimg K{z1,...,2,]/I = deg(g). Especially, we obtain:
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I is prime and in general position with respect to the lexicographical ordering
Ty > -+ > 1, if and only if for a minimal Grobner basis G and G N K[z,] = {g} we
have dimy K[zq,...,2,]/I = deg(g) and g is irreducible.

Remark 2.7. An equivalent approach, also going to general position, is the follow-
ing algorithm proposed by Eisenbud, Huneke, Vasconcelos ([EHV]):

Algorithm 2.8.
pEcomp EHV(T)

Input:  a zero-dimensional radical ideal
Qutput: the associated prime ideals

e Choose a generic f € K[xy,...,z,] and test whether [ is a zero—divisor
mod [ (this is the case if [ : f 2 I). If f is a zero—divisor mod I (which
implies [ = ([ : f)N(I,f)), then
return becomp EHV(7 : f)U pecomp EHV(I, f);

e Choose m minimal such that 1, f,..., f™ is linearly dependent mod I. If

m < dimg K[zy,...,2,]/] start the algorithm again;
let P € K[T] be the minimal polynomial of f; if P is irreducible, then
return {/};

If P = Ql . QQ, then
return DECOMP EHV (7, Q(f))U DECOMP EHV (I, Q1(f))

2.2.4 Higher dimensional primary decomposition

Prime decomposition of a radical ideal

Algorithm 2.9.
MINASSPRIMES(/)

Input:  an ideal [
Qutput: the minimal associated prime ideals of [

e Result =0

e use the factorizing Grobner basis algorithm to split [;
the result m is a set of ideals such that

— all elements of their Grobner bases are irreducible

— the radical of the intersection of the elements of m is the radical of I.

e For J €mdo
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— compute X the set of maximal independent sets of variables of the leading
ideal L(J);
— for u € X do
- compute
Ass(J K (u)[z \ u]) using zero—dimensional prime decomposition.
For P € Ass(JK (u)[z ~ u]) do
Result = Result U{P N K[z]}

compute h such that
JK(u)zx~ul|NKlz]=J:h
J = (J,h)

- Result = Result U minAssPrimes(J)

e return Result

A second possibility is based on the computation of the irreducible characteristic
sets associated to I (cf. [W], [Mi]). We do not treat this approach here.

The computation of the primary ideals

The first approach, proposed by FEisenbud, Huneke, Vasconelos, is based on the

following lemma:

Lemma 2.6. Let [ be an ideal and P € min Ass(1), let m satisfy I : P™ ¢ P, then
the equidimensional part of I + P™ is a primary ideal of I with associated prime P.

Proof. Let () be the primary ideal in the primary decomposition of I which has P
as associated prime. By assumption there exist £, € € P and £€P™ C I C (). This
implies P C () and, therefore, [+ P™ C ). Localizing by P, we obtain (I4+P™)p C
@p = Ip which implies (I + P™)p = Qp and, therefore, () = equidimensional part
of I + P™. This proves the lemma. ]

Remark 2.8. If P € Ass(/) is an embedded prime, then one can also obtain a
primary ideal @) of the decomposition of I as

@ = EQUIDIMENSIONAL(] + P™).

In this case, it is more difficult to estimate m (cf. [EHV]):
Let Itpy = {b € R|I : b ¢ P} and consider the map (I;p) : P*°)/Ijp;) — R/Q. Then

() is a primary ideal of a decomposition of [ if and only if the above map is injective.

The second approach, proposed by Shimoyama and Yokoyama ([SY]), is based on
the following two lemmata:

Lemma 2.7. Let [ be an ideal and minAss(I) = {Py,...,P,}. Assume there are
fiy. .y fr such that
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- fie NPy
Ji€ Qb
- fi ¢ P.
Let k; be defined by [ : [ =1:fF Qi:=1:f* and J =14+ (f",...,f"), then

1) /Q; = P, that is, Q; is pseudo primary;

2) I= Zéle- nJ;

3) codim(.J) > codim([).

4) Let Q; = ?Q;Z) be a minimal primary decomposition of QQ;, 1 = 1,...,r,

then O'Qg-i) is @ minimal primary decomposition of ﬁle (no redundant com-
1,7 1=

ponen’ts.’) and U Ass(Q;) N Ass(J) = 0.

Remark 2.9. Let [ be an ideal and minAss(/) = {P,...,P.}. Assume that
G,...,G, are Grobner bases of Pp,..., P,. Since P; is minimal in Ass([), there
are always elements ¢; in (G; not being in P; for i # j. Now define f; := [[¢;, then
J#

fiy-- ., fr satisfy the assumptions of Lemma 2.7.

Lemma 2.8. Let Q be pseudo primary with \/Q = P prime and v C z a mazimal
independent set for Q. Then QK (u)[z ~ u] N K[z] =: Q" is primary. Let g € K|[u]
be chosen such that QK (u)[z ~u]NK[z] =Q : g = Q : ¢, then Q@ = Q' N (Q,g)
and codim(Q) < codim(Q, g).

Proof. QK (u)[z~u] is zero—dimensional and /@ is prime, this implies Q K (u)[z ~ u]
is primary and, therefore, Q K (u)[z~u|NK[z] = Q' is primary. Using Lemma 2.3 we
obtain @ = Q'N(Q, g). Since g € K[u] we have g € P and, therefore, (P, g) C /Q, ¢,
which implies codim(Q) < codim(@Q, g). O

The algorithm of Eisenbud, Huneke, Vasconcelos

Algorithm 2.10.
PRIMARYDECEHV(T)

Input: anideal I C K[zy,...,2,] = R,
Output: a set Result = {Q1, P1,...,Qs, Ps} such that I = NQ, is a minimal primary
decomposition and /@), = P,.)

e compute F = {ann(Ext%(R/I—, R)),j > codim(7)};
e compute m = {Equiradical(J) | J € E, J # R};
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e compute Ass(/) = LU Ass(L);
em

o Let Ass(I)={P,..., P}
For i =1 to s do

compute @; = Equidimensional (1 + P);
(rm as in Lemma 2.6)

e Return {Qy, Pr,...,Qs, Ps}

The algorithm of Gianni/Trager/Zacharias

Algorithm 2.11.
PRIMARYDECGTZ([)

Input and Qutput as in the previous algorithm)

e Result = 0;

o compute X’ the set of maximal independent sets of variables of the leading
ideal L([);
e Foru e X do

— compute m = ZEROPRIMDEC(I K (u)[z \ u]);
— Result = Result U{J N K[z]|.J € m};

— compute h such that
IK(uz~ulNK[z]=1:h=1:h%
I'=(1,h)

e Result = Result U PRIMARYDECGTZ(7);

e return Result

Remark 2.10. During the previous algorithm one should always try to avoid the
computation of redundant components, respectively remove them as soon as possi-
ble. This can be arranged as in the next algorithm.

The algorithm of Shimoyama and Yokoyama

Algorithm 2.12.
PRIMARYDECSY (7, check)

Input and Qutput as in the previous algorithm, additionally we have, for recursive
use of the procedure, a test ideal check to avoid redundant components, which is (1)
at the beginning
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e Result = §;
o if check C [ return Result;

e compute minAss(l) = {P,..., P };
let Gy,...,G, be Grobner bases of Py, ..., P,

e choose t; € (; not being in P; for © # j and define f; := [[;;
i#

o Fori=1tordo

— compute k; such that I : f* =1T: fz-ki =: Qs
— if check C @; then Q; = (1);

o J:=T+4/( fl,...,f,f“};
e Fori=1tordo

— for ); # (1) compute maximal independent sets u; of the leading ideal
L(Q;) and g; such that Q;K(u;)[z ~ w] N K[z] = Qi :g: = Qi : g7 = Q!
and let J; := (Qi, gi);

If check C Q! then
Q= (1)
else
Result = Result U{Q’, P;}
If check C J; then
J; = (1)
else
Result = Result U PRIMARYDECSY (J;, check);

e check = check N(NQ;);
¢ Result = Result U primarydecSY(.J, check);

e return Result

2.2.5 The normalization

Here we describe an algorithm which goes back to Grauert and Remmert [GR] and
was proposed by T. de Jong ([J]). Other algorithms were given, for example, by
Seidenberg [Se], Stolzenberg [St], Gianni, Trager [GT] and Vasconcelos [V1].

The algorithm is based on the following criterion for normality due to Grauert and

Remmert [GR]:
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Proposition 2.5. Let R be a noetherian reduced ring and J be a radical ideal con-
taining a non-zero divisor such that the zero set of J, V(J) contains the non— normal

locus of Spec(R). Then R is normal if and only if R = Homg(J, J).

Remark 2.11. Let J, R be as in the proposition and x a non—zero divisor of J. It
is not difficult to see

1) «J :J == Homg(J,J)
and, consequently,

2) R = Homg(J,J) if and only if z.J : J C (x).

3) Let ug = =z,uy,...,us be generators of zJ : J as R-module. Because
S ..
Hompg(J, J) is a ring we have 5(52—4—1) relations % . 2 = Y LI g > > 5 >,
k=0

f,ij € Rin %(xJ : J). Together with the linear relations, the syzygies between
ug, . .., us, they define the ring structure of Hompg(.J, J):

R[Ty,...,Ts] - Hompg(J,J)
T -4

z

The kernel of this map is the ideal generated by T;T; — > ijTk (To =1) and
k=0

S S

S Ty such that > ngug = 0.

k=0 k=0

Now we are prepared to give the normalization algorithm:
Algorithm 2.13.
NORMAL(I[, INFORM])

Input: a radical ideal I C Kz, ..., z,].

QOulput: s polynomial rings Ry, ..., Rs and sideals I} C Ry,...,I; C Rs and s maps
m;: R — R;, such that the induced map 7 : K|zy,...,2,]/1 — R/l x -+ X R/
is the normalization of K[xy,...,z,]/I

Additional information by the user (respectively by the algorithm) can be given in
the optional list inform, as for instance,

— [ defines an an isolated singularity
— some elements of the radical of the non-normal locus,
which are already known

e Result =0
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e Fori=1to s do

— compute J = singular locus of [
— choose f € J~ I and compute I : f to check whether f is a zero divisor
—ifI:f 2 1

Result = Result U normal(/ : (1 : f))U normal(! : f)

(Notice that /T, f = T : (I : f) in this situation.)

else
If we have an isolated singularity at 0 € K™ then J = (z1,...,x,).
In general, if Jy is the radical of the singular locus of a normalization

loop before, given by the list inform, then J = /I, f + Jo

else
J =TT
H=fJ:J

it 1= (f)
Result = Result U{K[z1,...,z,], I, id}
else
assume H = fJ:J = (f,u1,...,us)
then compute an ideal L,
L C [X’[;cl,...,xn,Tl,...,Ts]
(as described in the remark above) such that
Klzy,...,20, Ty, ..., Ts]/L = Hom(J, J)
Tz' ~ %,
let o : K[zy, ..., = Koy, ..oy, Ty oo T
be the inclusion.
S = normal(L),
compose the maps of S with .
Result = Result US

e return Result

The above algorithm has been implemented by the authors. The implementation in

SINGULAR is available as SINGULAR library normal.lib.

To have an efficient version of the normalization algorithm, we had to take care of
several special cases and tricks for the implementation.

We illustrate the algorithm by computing the normalization of the cuspidal plane
cubic:
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R = K[z,y]/y* = o

Radical of the singular locus : J = (z,y)
R ; Homg(J, J) = (1, %)

the linear relations are % — yTy,y — 2T
the quadratic relation is T} — x
and, therefore

HomR(J, J) = R[Tl]/(l'Q —yT,y — $T17T12 - :C)

reducing the number of variables by y = 2Ty, © = T? we obtain R = K|[T}]
and as map

R — K[t],
x o~ T
y ~ TP
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3 Applications to Singularity Theory

3.1 Basic concepts and invariants

The basic concepts and ideas of singularity theory are best explained over the field
C of complex numbers, although, algebraically, most invariants make sense over
arbitrary fields.

Let U C C* be an open subset in the usual Euclidian topology, and fi,..., fx
holomorphic (complex analytic) functions on U, then we may consider

V= V(fh-"vfk) = {x S U|f1(k) = :fk(‘r) :O}v

the complex analytic sub-variety defined by fi,..., fr in U.

In practice, fi,..., fr will be polynomials, but singularity theory is interested only in
the behaviour of V/(f1,..., fx) in an arbitrary small neighbourhood of some point p €
V, that is, the germ of V' at p, which is denoted by (V, p). Algebraically, this means
that we are not interested in the ideal generated by fi,..., fr in the polynomial
ring Clzy, ..., z,] but in the ideal I generated by fi,..., fx in the convergent power
series ring C{z1 — p1,..., 2, — p,} = C{z — p}.

For arbitrary fields K, where the notion of convergence does not make sense, we
consider instead the formal power series ring K|[z|] = K[[z1,...,%,]] and ideals [
generated by formal power series (in practice polynomials) fi,..., fi € K[[z]]. In
order to have a uniform notation, we write

K(z) = K(z1,...,2,)
to denote both K[[z]] and K{z} = K{xy,...,2,} if K is a complete valued field
(for example, K = C).

The ring Oy, = C{z —p}/I (respectively K(x)/I) is called the analytic local ring
of the singularity (V, p).

If fi,...,fr are polynomials, we may also consider the algebraic local ring
K[z (o—p)/{f1s -+, [r), where K[z]_p) is the localization of K[z] in the maximal
ideal (z; — p1,...,2, — pn). Indeed in this ring we are able to compute standard

bases (cf. Section 1).

As in the affine case, we have the Hilbert Nullstellensatz (also called the Hilbert—
Riickert Nullstellensatz), stating that

VI=1(V,p):={f € C{z — p}| flvy = 0}

for I C C{z — p} and (V,p) the complex analytic germ defined by I.

39



A (complex) singularity is, by definition, nothing but a complex analytic germ
(V,p) (together with its analytic local ring C{z — p}/I). (V,p) is called non—
singular or regular or smooth if C{zy — p1,...,2, = p,}/I is isomorphic (as
local ring) to a power series ring C{yy,...,yqs} (vespectively K(xy,...,z,)/] =
K{(y1,...,y4)). By the implicit function theorem, this is equivalent to the fact
that I has a system of generators ¢i,...,¢g,—q such that the Jacobian matrix of
g1, .-, gn—q has rank n — d in some neighbourhood of p. (V,p) is called an isolated
singularity if there is a neighbourhood W C C* of p such that W N (V ~ {p}) is
regular everywhere.

Isolated Singularities Non-isolated singularities
& & A

\\\: - :b

<F & ==

Ayia? —y? +22=0 Dy:22—z24+y* =0 A :22—y? =0 Dy :y*—222=0
The dimension of the singularity (V,p) is, by definition, the Krull dimension of
the analytic local ring Oy, = K(x)/I, which is the same as the Krull dimension of
the algebraic local ring K[z]z—p)/I if I is generated by polynomials, which follows
easily from the theory of dimensions by Hilbert-Samuel series (cf. [AM]). Using this
fact, we can compute dim(V, p) by using standard bases.

Algorithm 3.1.

DIM(T)

Input:  f1,..., [x € K[z1,...,3,] such that I = (f1,..., fx)
Output: dim K(z)/I

e compute a standard basis {g1,...,g,} of the ideal (fi,..., fi)roc K[z With re-
spect to any local monomial ordering on K{z];

e compute the dimension of the monomial ideal (Im(gy),...,1m(g;)) -

Correctness was proved in [GP, 3.6]. The second step is combinatorial and the same
as for global orderings.

It is important to compute a standard basis with respect to a local ordering. For
example, the leading ideal of (yz —y, zx — z), with respect to dp, is (zy, zz) (hence
of dimension 2), but, with respect to ds, it is (y, z) (hence of dimension 1). Geomet-
rically, this means that the dimension of the affine variety V = V(yz — y,zz — 2)
is 2 but the dimension of the singularity (V,0) (that is, the dimension of V' at the
point 0) is 1:
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Viyle—1)=2(z—1) =0, dim(V,0) =1

Another basic invariant is the multiplicity mt(V,p) of the singularity (V,p). If
(V,p) is reduced, that is, I = V1, then mt(V, p) has a nice geometric interpretation:
it i1s the number of intersection points of a sufficiently small representative V' C C?
of (V,p) with a general (n — d)-dimensional plane in C* close to p (but not through
p). If (V,p) is a hypersurface singularity, that is, / = (f) is a principal ideal in
C{z — p}, then mt(V, p) is the smallest degree in the Taylor expansion of f in p.

Viy*—2*=0, mt(V,0)=2

Algebraically, mt(V,p) is the Hilbert—Samuel multiplicity of the ideal (z; —
Pis.-., Ty — pp) in the analytic or in the algebraic local ring of (V) p) (cf. [AM]).

Algorithm 3.2.
MULT(])

Input:  f1,..., fx € K[z1,...,3,] such that [ = (fi,..., fx).
Output:  multiplicity of (xq1,...,z,) in K{(z)/{(fi,..., fx), respectively in
["[-x](x)/<f1, s 7fk>

e compute a standard basis {g,...,g,} of the ideal (f1,..., fi)1ocK[w] With re-
spect to a local degree ordering on K|[z|;

e compute the (usual) degree of the monomial ideal (lm(g7),...,lm(gs)).

Correctness was proved in [GP, 3.7]; indeed, the Hilbert function of
(Im(g1),...,lm(gs)) coincides with the Hilbert—Samuel function of (fi,..., fi) with
respect to (zq,...,2,).
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The answer to Zariski’s multiplicity question, whether the multiplicity of a hyper-
surface singularity is a topological invariant (for K = C), is still open. We shall
report on this in the last section.

One of the most important invariants of an isolated hypersurface singularity (V, p)

given by I = (f) C K(z) is the Milnor number

p(f) = dimg K@)/ {(for,- -y fon)

(char K = 0) where f;, denotes the partial derivative of f with respect to ;.

For K = C, p is even a topological invariant and has the following topological
meaning, due to Milnor [Mil]. For f € C{zy,...,z,} defining an isolated singularity
at 0, let

Vi=B.(0) N f7(1),

0 < |t] << 1 and B.(0) a small ball of radius ¢ around 0, then V; (the “Milnor
fibre of f”) has the homotopy type of a 1-point union of u(f) (n — 1)-dimensional
spheres. In particular, u(f) = dime H,(V;, C).

(V,0

v,

o e
o~

Algorithm 3.3. (Assume char K = 0).
MILNOR( f)

Input: [ € Klzy,...,x,]
Output: p(f)

e compute a standard basis {g1,..., g5} of (fa,,-- . fon)loc K[z] With respect to
any local monomial ordering on K|z];

¢ the number of monomials of K[z] not in (Im(g1),...,Im(gs)) is equal to u(f);
The correctness of this algorithm follows from [GP, 3.7].
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Similarly, we can compute the Tjurina number

7(f) = dimg K{(x)/(f, fars- s fan)-

This number plays an important role in the deformation theory of the singularity
defined by f and will be considered in the next section.

To see the difference between local and global orderings, consider the affine plane
curve

flzy) = (y2 —2®)(z —1) =0

The affine variety V(fs, f,) = V(y2 — 4a% + 322, y(27 — 2)) C C? describes the four
critical points of the function f, (0,0), (1,£1) and (3,0), V(f, fs, f,) consists of the
three points (0,0), (1,%1), while 7(f) = p(f) = 2 is the multiplicity of the point

(0,0). Hence, dimg K[z, y]/(fz, fy) = 5, dimg K[z, y]/(f, [z, fy) = 4.

A standard basis of ( fo, fy)toc K[zy] = (f3 for fy)Loc K[wy)» With respect to ds, is {y, 2*}
a standard basis of (fs, fy) K[z, With regard to dp, is {zy —y,y* —y, 42’ — 32* —y*}
and a standard basis of (f, fz, fy) K[z, With regard to dp, is {zy —y, 2> —y*,y° —y}.

There 1s an interesting conjecture, due to Zariski, stating that the multiplicity of
a complex hypersurface singularity is a topological invariant. This conjecture is
still open. For a formulation, using the Milnor number, and for a partial positive
answer (which was prompted by computer experiments using SINGULAR with local
standard bases) see [GP].

3.2 Deformations

Let (V,0) C (C*,0) be a singularity given by convergent power series
filz),..., fu(z), converging in a neighbourhood U of 0 € C*. The idea of de-
formation theory is to perturb the defining functions, that is to consider functions
Fi(t,z),..., Fy(t,z) with F;(0,2) = fi(z), where { are small parameters of a para-
meter space S. For ¢t € S the functions fi;(z) = F;({,z) define a complex analytic
set

V;f = V(fl,fv"wka) C U
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which, for ¢ close to 0, may be considered to be a small deformation of V' = V4.
It may be hoped that V; is simpler than V4 but still contains enough information
about V. For this hope to be fulfilled, it is, however, necessary to restrict the possible
perturbations of the equations to flat perturbations, which are called deformations.

The formal definition is as follows: a deformation of the singularity (V,0) over a
complex analytic germ (59, 0) consists of a cartesian diagram

z

(V,0) — (U,0) ={(t,z) e SxU|Fi(t,z)="-+= Fi(t,z) =0}
3 } ¢
{0}y € (50

such that ¢, which is the restriction of the second projection, is flat, that is, Oy
is, via ¢*, a flat Ogg—module.

Grothendieck’s criterion of flatness states that ¢ is flat if and only if any relation
Yori(z) fi(z) = 0 between the f; lifts to a relation Y R;(¢,z)Fi(t,z), R;(z,0) =
ri(x), between the F;. Equivalently, for any generator (rq,...,r%) of syz((fi,..., fx))
there exists an element (Ry,..., Ri) € syz((F,..., Fy)) satisfying R;(0,z) = r;i(z).

The notion of flatness is not easy to explain geometrically. Mumford [Mu] states:
“The concept of flatness is a riddle that comes out of algebra, but which is technically
the answer to many prayers.” It has, however, important geometric consequences.
For example, the fibres of a flat morphism have all the same dimension. Topologists
would call a flat morphism perhaps transversal. In any case, the intuitive mean-
ing is that the fibres of a flat morphism vary in some sense continuously with the
parameter.

By a theorem of Grauert [Gr] (see also Schlessinger [Schll] for the formal case),
every isolated singularity admits a semi-universal or mini-versal deformation ¢ :
(U,0) — (5,0) of (V,0), which, in some sense, contains the information upon all
possible deformations.

Definition 3.1. A deformation ¢ : (U4,0) — (5,0) of (V,0) is semi-universal, if
the following holds:

1) Any deformation (U’,0) LA (57,0) is isomorphic to the pull-back ¢*)(¢) by
some map ¢ : (5,0) — (5,0), ¢ is not unique but may be prescribed on a
subspace of (57,0).

2) The (Zariski) tangent map of ¢ is unique.

Property 1) is called the “versality” property, 2) the “semi-universality”. Once the
semi-universal deformation (which is unique up to isomorphism) of (V,0) is known,
“all” deformations of (V,0) are known (in the sense of 1)).
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By a power series Ansatz it is possible to compute the mini-versal deformation up
to a given order. In general, the algorithm will, however, not stop. The existence
of such an algorithm follows from the work of Laudal [La]; for an elaboration of
this, see the recent article of Martin [Ma]. (This algorithm has been implemented
in SINGULAR.)

We are not going to describe this algorithm here but just mention that for an isolated
hypersurface singularity f(zi,...,z,) the semi-universal deformation is given by

F(t,z) = f(x) +thgj($)7

where 1 = ¢1,¢2,...,9; represent a basis of the Tjurina algebra K(z)
J{f, fers--os Jon), T being the Tjurina number.

Instead we describe algorithms to compute the modules T&O respectively T&O of first
order deformations of (V,0) respectively of obstructions, which are the first objects
one likes to know about the semi-universal deformation.

Algebraically, deformations can be described on the algebra level. TLet R =
Klzy,...,2,]/I be an affine algebra or R = K(z1,...,2,)/[ an analytic algebra. A
deformation of R over a local ring (A, m) with K = A/m is a cartesian diagram,

R “&— RA
T T flat
K « A.

As in the geometric situation, we have the notion of a formal (semi—uni)versal
deformation, where, in part 1) of the definition, we consider only deformations
over Artinian algebras A.

If R has only isolated singularities, a formal semi-universal deformation of R exists

by the theorem of Schlessinger [Schll], which even has algebraic representation by
Elkik [El] (cf. also [Ar], [KPR].

Consider now “the thick point”

T. = Spec K[e],e* = 0,
which is a point, together with a tangent direction.
Definition 3.2.

1) A first—order infinitesimal deformation of (V,0) is, by definition, a defor-
mation of (V,0) over T.. The Oy g-module of isomorphism classes of first—order
infinitesimal deformations of (V,0) is denoted by

1
TV’O .
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2) 7(V,0) := dimg Ty is called the Tjurina number of (V,0).

If (V,0) has an isolated singularity, then 7(V,0) is finite, the converse is, in
general, not true, but holds for hypersurface singularities or, more generally,
for complete intersections.

We switch now to an algebraic setting where deformations are described on the
algebra level.

Since the infinitesimal deformation theory of an affine algebra and an analytic al-
gebra is pretty much the same (cf. [Ar]), we use from now on the same notation
K{(zy,...,z,) for the polynomial ring over the field K as well as for power series
ring over K.

Let I =(fi,...,fs) C K(z) = K(x1,...,2,) be an ideal and let R = K(x)/I.

An embedded deformation of R over an analytic algebra A = K(t1,...,t,,)/J =
K(t)/J is given by

Fi(t,z) = fi(z) + Y t;g4(t,x) € A(z)
7=1
satisfying that every relation (syzygy) between the f;,

(ris. o) € K@), Y ri(a) filz) =0,

k
=1

lifts to a relation between the F},
(Ri,... Re) € Aw)f, D Ri(t,2)Fi(t,z) =0,

R:(0,2) = ri(z).

By definition, Fi,..., Fj and FY{,..., I} define the same embedded deformation, if
they generate the same ideal.

Setting
Ry = A(z)/(Fy,..., Fy)

we obtain a commutative cartesian diagram

R « R4
T Ty
K « A
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with ¢ flat, which is called a deformation of R over A (and which is just the
algebraic translation of the geometric definition). Two deformations A — R4 and
A — R/, of R over A are called isomorphic if there is an A-isomorphism R4 = R/,
compatible with the given isomorphisms to the “special fibre”,

Ra/(t) = R = Ry /(1),

where (t) = (t1,...,1,). It is not difficult to see that every deformation of R is
isomorphic to an embedded deformation.

We like to stress the fact that the base algebras A for deformations have to be local
analytic K-algebras with K’ — A/m, m the maximal ideal of A, even if R is affine.

Infinitesimal deformations

Let K[e] = K(g)/(¢*) denote the two-dimensional analytic algebra K 4+ Ke, ¢? =0
(the space Spec(K[¢]) may be considered as a “thick” point, that is, a point together
with a tangent direction). An (embedded) deformation of R over Kle] is called an
infinitesimal (embedded) deformation.

Proposition 3.1.

1) The R—module of infinitesimal embedded deformations is isomorphic to the
normal module

NR = HOIHR([/[Q, R)

2) The R-module of isomorphism classes of infinitesimal deformations of R is
isomorphic to T}, where Ty is defined by the exacl sequence

O @k R 2y Np — Th — 0.

Here, © = Derg K(z) = 2-§K<$>8%¢ and the map « sends the derivation 8%1_

to the homomorphism sending h to %.

Proof. [Sch12]
1) Given an infinitesimal deformation
Fi(e,z) = fi(z) + egi(x),
then (g1, ..., fy) determines an element of
Nr = Homg(I/I%, R) = Homg (I, R)

by > aifi — > a;g;. This map from [ to R is well-defined by the flatness
assumption: a relation Y r; f; = 0 lifts to a relation Y (r; + ¢s;)(fi + ¢gi;) =0,
whence ¢ > (s fi + rigi) = 0, which implies Y r;g; € I.
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Conversely, given ¢ : [ — R, choose a representative

(91, .., 9r) € K[(z)*
of (g.o(fl), cee Lp(fk)) € R*. defining a deformation f; + cg; of R.

To verify the flatness condition, let > r;f; = 0. Then > r;p(f;) = 0, hence,
Srigi = — > sifi € I, which defines a lifting of the relations. Moreover, if ¢!
are different liftings of ¢(f;) we have ¢! — ¢; = > ¢;if; € I. Therefore,

J

(fited s foteg)=(h+eg, o futeg)+e(fiy fr)-C
= (f1+€glv'-'7fk+€gk>(]l +€C>,

with C' = (¢j;) showing that the two liftings define the same embedded defor-
mation.

2) An infinitesimal deformation F; = f; + eg; is trivial, if and only if
Ke,x)/(Fi,....,Fy) = K{e,2)/{(fi,..., [x),

that is, if there is an auto-morphism ¢ of K (e, z) over K(¢), x; — z;+6;(x),
§; € K(z), such that
(fi(z +eb(x))) = (fi +egi)-

Taylor’s formula gives fZ(T + 65(7")) = fi(z) + 62%(30)5]-(30), which shows
7 J

that for a trivial deformation,

gi(x)=0(f;) €1
with d = 25]-(1;)8%1, € Derg K(z), that is, (g1,..., fx) is in the image of a.
J

Conversely, any element from the image of a defines a trivial deformation.
Let Defg(A) denote the set of isomorphism classes of deformations of R over

the analytic K—-algebra A. Part 2) of the proposition states
Defr(K[e] == Ty,

Remarks:

1) Schlessinger’s theorem [Schll] states that R admits a formal semi-universal
deformation B — Rp = B(x)/(Fi,..., Fy) over a complete local K-algebra
B if and only if dimg T < oo.
This assumption is fulfilled in the affine case R = K[xy,...,x,]|/ ] if the affine
variety V' (I) has only isolated singularities (necessarily finitely many) or in the
analytic case R = K(x1,...,z,)/I if the singularity (V([), 0) has an isolated
singularity.
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2) In the complex analytic situation with R = C{zy,...,2,}/I and dimc T <
0o, R admits even a convergent complex analytic semi-universal deformation

with B = C{ty,...,tn}/J and Rg = C{t1,.. ., tp,x1,...,zo /[ (Fr, ..., Fy).

The proof of the convergence is quite difficult and was given by Grauert in 1972 [Gr]
and it was in this paper that he proved the “division theorem by an ideal”. In our
language, he introduced the notion of standard bases and proved the existence of
normal forms for complex analytic convergent power series. An equivalent theorem
had already been proved before in 1964 by Hironaka in his famous resolution paper
([Hi]). It is interesting to notice that the analog of Grébner bases in power series
rings was invented for proving deep theoretical results. The proofs were, however,
not constructive and did not contain Buchberger’s criterion.

3) It follows from Grothendieck’s definition of tangent spaces that, if a semi-
universal deformation B — Rp of R exists, then T} is isomorphic to the
Zariski tangent space to Spec B at the maximal ideal of B. This shows, with
t1y ..oy tm a K-basis of T}, that B = K(T})/J = K(t1,...,tm)/J for some
ideal of J. Hence, the base algebra B of the semi-universal deformation of R
is defined by analytic relations between the elements tq,...,t¢,, of a K-basis
of the dual of T and these relations generate .J.

To compute Th, let 0 ¢+— R +— K(z) +— K{z)* </~ K{(z)* be a representation of
R, then, applying Homg ;) (—, R) to the sequence

0¢+— R+— K(z) +— K(z2)F <~ K(z)",

we obtain Ng = ker( RF 7,_:) RY).

Now choose a resolution of Np

k. S1 S t
RF . R "2 R

o/

Ngr

The canonical map 7 : R" ~ Ok ;) ® R — Ng is induced by the map j : R" — R*
defined by the Jacobian matrix <8fi>2.<k. We can lift 7 to a map lj : R* — R?

o,
J<n
such that s; 0[5 = 7 because j induces the map .
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R r R S1 RS S9 Rt

Now T} = Ng/Im(m) ~ R®/Tm(sy) + Im(lj) gives the required representation
0+ TL+— R &2 pto pr,

Algorithm 3.4.
T1(7)

Input: anideal I = (fi,..., fx) C K(z),
Output: a matrix M € M, (K (x)) which defines a representation

Thioyr « K(a)* & K(x)
e compute r = syz([) the matrix of the syzygies of fi,..., fi;

e compute the Jacobian matrix j = <%>,

O

e compute in K (z)/T a representation of the kernel of the transposed matrix r!

of r:
(K(a)/1)* &= (K () /1) €= (K(2)/1)';

o lift the Jacobian matrix j to a s X n—matrix [ such that s, - {5 = 7;
e concatenate [ and sy to obtain the matrix t1 = [7, sy;
e choose a matrix My € M ,+:(K(z)) such that My mod I = t1;
e choose a matrix L € M, ., (corresponding to /K (z)*), such that
0« (K(z)/I)* « K(z)* <= K(z)**
is exact;

e concatenate My and L to obtain M = My, L;

o return M
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Obstructions

The construction of a semi-universal deformation of R, in case T4 is finite dimen-
sional, starts with the preceding remark 3): we start with the infinitesimal defor-
mations of first order, that is, with elements of T4, and try to lift these to second
order. This is not always possible, there are obstructions against lifting. That is, a
lifting to second order is possible if and only if the corresponding obstruction is zero.
Assuming that the obstruction is zero, we choose a lifting to second order (which is
not unique) and try to lift this to third order. Again there are obstructions, but if
these are zero, the lifting is possible and we can continue. In any case, the obstruc-
tions yield formal power series in K{[t1,..., fu]], t1,...,t, a K-basis of T}, and if .J
denotes the ideal generated by them, B = K]{[t1,...,{n]]/J will be the base algebra

of the formal semi-universal deformation of R.

The following proposition describes the module of obstructions to lift a deformation
from an Artinian algebra to an infinitesimally bigger one, where we may think of
starting with A = K{(t1,...,t,)/{t1,. .., )%

For this, let R = K(z)/I and consider a presentation of I = (f1,..., fx),
0 T« K{z)¥ ¢ K{z'

with a(e;) = f; and syz([) = ker(a) = im(3) is the module of relations of fi,..., f&,

which contains the module of Koszul relations,
Kos = <f2'€]' — fjei|1 <1 <j < ]>

Set Rel = K(z)*/ker(3) which is isomorphic to syz(I) and Rely = 37'(Kos). We
define the module T% by the exact sequence

Homp(R*, R) - Homp(Rel / Rely, R) — T3 — 0.
Proposition 3.2.

1) Let A" > A be a surjection of Artinian local K -algebras with kernel an ideal
J satisfying J* = 0. There is an obstruclion map

0b: Defg(A) — TI% R J

satisfying: a deformation A — R4 of R admits a lifting A" — R,

Ry « Ryu
tooo7
A « A

if and only if 0b(JA — R4]) = 0 ([A — Ra] denotes the deformation class
OfA — RA)
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2) If Ty is finite dimensional over K and if T = 0, then the semi-universal
deformation B — Rp of R has a smooth base space, thal is B is a free
analytic algebra K(ty,..., ) for some m > 0.

Proof. 2) follows from 1) and Grothendieck’s criterion for formal smoothness.

1) for simplicity we give the proof only for A = K(t)/(t?), A" = K(t)/{1?*') with
J=(r) /(7).

So, we are given a deformation over A,

R(e0) = )+ Y Pei(o)

with relations (using the dot product for the corresponding vectors),

k

F(z,t) - r(z;t) = Z Fi(z,t)ri(z,t) =0 € A(x).

i=1
We want to lift the deformation and the relations to A’. That is, we are looking for
g € K{z)F such that, setting
F'(z,t) = F(z,t) +t°¢'(2),

there exist

r'(z,t) = r(z,t) + 1A' (z)

satisfying F'(z,t) - r'(z,t) = 0 in A'(x).
A deformation over A is given by F = (Fy,..., F),

Fit,x +Zt” ) e K(t,z)

and a relation by R = (Ry,..., Rx)

Ri(t,z) =r;(z —I—le—lt”hj ) € K(t,z)

satisfying

R(t,z)- F(t,z) = zk: Ri(z,t)Fy(z,t) =0
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in A{z) = K(t,z)/(1?).

We want to lift this deformation to A’. That is, we are looking for ¢’ € K{(x)* such
that, setting

F'(t,z) = F(t,z) + t*¢ (),
there exists for any relation R(¢,z) a lifting
R'(t,z) = R(t,z) + t*h'(z)

satisfying R'(t,z) - F'(t,z) = 0 in A'(z) = K({,z)/{t?*"). Computing the dot

product R'- F', we obtain modulo (tP*1), since I - R € (I},
p—1

R-F =T (Z hpngy +h' - f 41 g') in J @x K(z)

v=1

= tp(t_pR-F—l—r-g') in J®g R.

It follows that the deformation given by F' admits a lifting f’ over A" if and only if
R'- F" = 0, which is equivalent to t? RF being of the form r- ¢ for some ¢’ € K (z)*
(in J QK R). ]

For the computation of T we choose, as before, a representation
0 ¢— R ¢+— K(z) ¢+— K{(z)* ¢ K{2)* &~ K(z)".

Then Rel = syz(I) = Im(r) and Rely is the submodule of Rel generated by the (%)

Koszul relations Kos.

Now Rel / Relg — R* is the induced map defined by the following diagram
IK(z)F — K{z)* — RF

Ui Ui 1
Rely < Rel ——» Rel/Rely.

To obtain a representation of Rel / Rely we lift the Koszul relations to K (x)*:

K(z) (z) 5 K(z)!

k r K(z)
\Ra/ '

os Re{(: - { Kos

K(z)t/8
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Then Rel / Rely >~ K<;v>['/ Im(s) —I—Im(f Kos) and if we denote by sf the £ x (t + ( ]2‘“ ))f
matrix s, £ Kos:

0 «— Rel /Rely «— K{(z) &5 K(2), t, =1+ (%),
is a representation of Rel / Rely.

Now we are interested in a representation of T,% = COkGI‘(HOIﬂR(Rk,R) —

Hompg(Rel / Rely, R))
We dualize the representation of Rel / Relg and obtain

0 — HomA (Rel /Relg, R) — Hom,—(<r>([\"<x>e, R) i) HomI(<x>([\"<J,‘>t1 , R)
| | |
Hompg(Rel / Rely, R) HomR(Re, R) Hompg(R", R),
that is, Homp(Rel / Relg, R) = ker(s{").
Now we take a representation of HomR(Rel / Rely, R)

sft

R & R B RY & R-
O v
Hompg(Rel / Relg, R)
The map R¥ ~ Homg(R*, R) — Homg(Rel / Rely, R) is defined by r' : R* — R’.
We can lift this map to a map frt : R* —s R% such that ry o frt = r.

RZ 2 R[-Q

N

Rel / Relg, R

Rkl

Then T3 = coker(R* — Hom(Rel/Relg, R)) ~ R"/Im(ry) + Im({rt) gives the

required representation

0¢— T2 «— RH 2570 Rl gy RE,
We obtain the following algorithm:

Algorithm 3.5.
T2(1)

Input:  anideal I = (fi,..., fi) C K(x)
Output: a matrix M € M, (K (x)) which defines a representation

Ty« K{z)" =5 K(z)"
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compute r = syz(l) € My (K (z)), the matrix of the syzygies of fi,..., fz and
s = syz(syz(I)) € M, ;(K(z)) to obtain a representation of K(z)/I;

compute the matrix Kos € My (1/2), the Koszul matrix of the relations of

f17 EE 7fka
lift Kos to a matrix £ Kos € Mj /2y such that r - £ Kos = Kos;

concatenate £ Kos and s to obtain the matrix s/ = £ Kos, s € My (ry2)+4;

compute in K(z)/I a representation of the kernel ker(sf") given by matrices

ry and ry (T1 = syz(sl') € My (K{(x)/I), ry = syz(ry) € M41,g2([\”<$>/1'));
lift the matrix r’ to a matrix ¢rt € My, ,(K(z)/I) such that rq - frt = r;
concatenate {rt and ry to obtain the matrix {2 = lrt,ry € My, jpo, (K(z)/1);

choose a matrix My € My, jye,(K(z)) such that My mod I = 12;

choose a matrix L € My, y4, (corresponding to I K(x)") such that
0 ¢ (K(2)/1)" « K{z)" <" K(a)"

is exact;

concatenate My and L to obtain M = My, L;

return M.
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