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Abstract
Over the past 2 decades, there has been much progress on the classification of symplectic
linear quotient singularities V /G admitting a symplectic (equivalently, crepant) resolution of
singularities. The classification is almost complete but there is an infinite series of groups in
dimension 4—the symplectically primitive but complex imprimitive groups—and 10 excep-
tional groups up to dimension 10, forwhich it is still open. In this paper, we treat the remaining
infinite series and prove that for all but possibly 39 cases there is no symplectic resolution.We
thereby reduce the classification problem to finitely many open cases. We furthermore prove
non-existence of a symplectic resolution for one exceptional group, leaving 39+9 = 48 open
cases in total. We do not expect any of the remaining cases to admit a symplectic resolution.

1 Introduction to the problem and current status

Recall that a smooth symplectic variety is a complex algebraic variety X equipped with a
regular, closed, and non-degenerate 2-form ω, i.e. there is a “smooth” family of symplectic
formsωx on the tangent spaces Tx X of X . As the dimension of the tangent space at a singular
point is greater than that at smooth points, it is not clear how to extend this concept to singular
varieties—and what to gain from this.

In 2000, Beauville [1] proposed such an extension: a (possibly singular) symplectic variety
is a normal variety X with a symplectic form ω on its smooth part X sm such that for any
resolution π : ˜X → X of singularities (i.e. a proper birational morphism with ˜X smooth) the
pullback ofω toπ−1(X sm) extends to a regular 2-formon all of ˜X . Since twogiven resolutions
are dominated by a common resolution, it is enough to check this property only for one

B Ulrich Thiel
thiel@mathematik.uni-kl.de

Gwyn Bellamy
Gwyn.Bellamy@glasgow.ac.uk

Johannes Schmitt
schmitt@mathematik.uni-kl.de

1 School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow G12 8QQ,
UK

2 Fachbereich Mathematik, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00209-021-02793-9&domain=pdf


662 G. Bellamy et al.

particular resolution. Singularities of a symplectic variety are called symplectic singularities.
They are rational Gorenstein [1]. In retrospect, this definition seems natural but Beauville was
originallymotivated by the analogy between rationalGorenstein singularities andCalabi–Yau
manifolds. Symplectic singularities have become a very important and influential subject,
not just in algebraic geometry but also in representation theory [9,16].

If the pullback of ω to π−1(X sm) extends not just to a regular 2-form but to a symplectic
form, the resolution π is called symplectic. This is the kind of resolution one would like
to have in this context. In light of the minimal model program [7], we moreover want the
resolution to be a projectivemorphism. From now on, by “resolution” we will always mean a
“projective resolution”. The canonical class KX of a symplectic variety X is trivial since it is
trivialized by∧nω, where dim X = 2n. Hence, if π : ˜X → X is a symplectic resolution, then
K

˜X is trivial as well. In particular, π∗KX = K
˜X , i.e. π is a crepant resolution. Conversely,

a crepant resolution of a symplectic variety is symplectic [17].
One important class of examples of symplectic varieties are the symplectic linear quotients:

quotients V /G = SpecC[V ]G for V a finite-dimensional symplectic complex vector space
and G < Sp(V ) a finite group of symplectic automorphisms of V . Here, the symplectic
form on the smooth part of V /G is induced by the symplectic form on V ; see [1]. Note that
we always have Sp(V ) ≤ SL(V ) and that there is equality for V = C

2, so 2-dimensional
symplectic linear quotients are precisely the Kleinian singularities. It is known that Kleinian
singularities admit a unique minimal resolution, and the minimal resolution is crepant (thus
symplectic). In higher dimensions, the situation is much more difficult and interesting.

Problem Which symplectic linear quotients V /G admit a symplectic resolution?
There has been much progress on this problem over the past 2 decades—more on this

below. The classification is almost complete but there is an infinite series of groups and 10
exceptional groups for which it is still open. In this paper, we treat the infinite series (and one
exceptional group) and reduce the classification problem to finitely many open cases. The
first major step in the classification is due to Verbitsky [28].

Theorem 1.1 (Verbitsky) If V /G admits a symplectic resolution (not necessarily projective),
then the finite group G is generated by symplectic reflections, i.e. by elements s ∈ G whose
fixed space is of codimension 2 in V .

Groups generated by symplectic reflections are called symplectic reflection groups. Note
that despite the terminology, a symplectic reflection group is not just a group G but a pair
(V ,G). It is clear that for the main problem we need to consider pairs (V ,G) only up
to change of basis. Symplectic reflection groups up to conjugacy have been classified by
Cohen [11] in 1980. In dimension 2 the symplectic linear quotients are just the Kleinian
singularities and all of them admit a symplectic resolution. So, we assume from now on we
are in dimension≥ 4. It is sufficient to only consider symplectically irreducible pairs (V ,G),
i.e. pairs for which there is no proper non-zero symplectic subspace of V invariant under G,
since any pair is a direct sum of symplectically irreducible pairs. The irreducible ones split
into four classes as illustrated in Fig. 1.

If G preserves a Lagrangian subspace L ⊆ V , we say that G is improper. In this case,
G ≤ GL(L) is a complex reflection group and V ∼= L ⊕ L∗ as a G-module. Complex
reflection groups up to conjugacy were classified by Shephard and Todd [25]. In work of
Etingof–Ginzburg [13], Gordon [20], and Bellamy [2] it is proven that in this case V /G
admits a symplectic resolution if and only if G is the group G(m, 1, n) = Cm � Sn or
the exceptional group G4 in the Shephard–Todd notation. All symplectic resolutions up to
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Symplectic linear quotients admitting a symplectic resolution 663

Fig. 1 The different classes of symplectic reflection groups in dimension ≥ 4 in Cohen’s classification

isomorphism were explicitly constructed for G(m, 1, n) by Bellamy–Craw [3] and for G4

by Lehn–Sorger [23].
We call a proper (i.e. not improper) group G symplectically imprimitive, if there exists a

non-trivial decomposition V = V1 ⊕ · · · ⊕ Vk into symplectic subspaces such that, for all
g ∈ G and all i , there exists j such that g(Vi ) = Vj . These groups split into infinite families
given in [11, Theorem 2.6] (in dimension 4) and [11, Theorem 2.9] (in dimension greater than
4). Linear quotients of these groups are treated in [5], where the above question is answered
for almost all cases. The remaining ones are covered by [29]. The only groups in this class
for which the linear quotient admits a symplectic resolution are the groups K � Sn with a
finite group K ≤ SL2(C) and the group Q8 ×Z/2Z D8 considered in [4]. All resolutions in
the latter case were explicitly constructed by Donten-Bury–Wiśniewski [12].

This leaves only the proper groups G which are symplectically primitive, that is, groups
for which no decomposition as above exists. We still may have a decomposition into non-
symplectic subspaces, so those groupsmay be complex primitive or complex imprimitive. The
complex primitive groups are given in [11, Table III]. In [5], the authors prove that for three
of them (W (Q),W (S3),W (T )) no symplectic resolution exists. Using the same strategy, we
prove in Sect. 6:

Theorem 1.2 The symplectic linear quotient associated to the symplectic reflection group
W (S2) does not admit a symplectic resolution.

This leaves the 9 groups coming from the root systems O1, O2, O3, P1, P2, P3, R, S1, U
in [11, Table III], for which the problem is still open.

Apart from Sect. 6 we consider in this paper the last class of groups, namely the sym-
plectically primitive but complex imprimitive ones as given in [11, Theorem 3.6]. This is an
infinite class of groups in dimension 4. The main result of this paper is:

Theorem 1.3 For all but possibly finitely many of the symplectic reflection groups (V ,G)

which are symplectically primitive but complex imprimitive the associated symplectic linear
quotient V /G does not admit a symplectic resolution.

The cases not covered by our theorem are explicit. By theoretical arguments, we reduce
it from infinitely many to 73 open cases, see Theorem 4.5 and Table 4. Using computer
calculations with the software package Champ [26] developed by the third author, we further
reduce this to 39 open cases, see Table 6.
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664 G. Bellamy et al.

We have thereby reduced the classification problem to finitely many (precisely, 39+ 9 =
48) open cases. We expect none of them admits a symplectic resolution but we currently
cannot prove this.

We want to mention one key tool that was used to prove non-existence of a symplectic
resolution in many cases and that we will use as well: the symplectic reflection algebras
Hc(V ,G) associated to (V ,G) by Etingof and Ginzburg [13]. These non-commutative alge-
bras form a flat family of deformations of the “skew coordinate ring” C[V ] � G of V /G.
Their centres yield a flat family of deformations of the coordinate ring C[V ]G of V /G. The
parameter space for the c is the space C

S(G)/G , where S(G) is the set of symplectic reflec-
tions inG and S(G)/G denotes the set ofG-conjugacy classes of symplectic reflections. The
algebraHc(V ,G) is finite over its centre, so all its irreduciblemodules are finite-dimensional.
In fact, their dimension is bounded above by the order of G, see [13]. The following theorem
is a combination of theorems by Etingof–Ginzburg [13] and by Ginzburg–Kaledin [19].

Theorem 1.4 (Etingof–Ginzburg, Ginzburg–Kaledin) If V /G admits a symplectic resolu-
tion, then there is a parameter c such that the dimension of all irreducible Hc(V ,G)-modules
is equal to the order of G.

In fact, the converse holds as well [24] but most relevant for us is the negation of the above
theorem: if for all c there is an irreducible Hc(V ,G)-module of dimension less than the order
of G, then V /G does not admit a symplectic resolution. This is the strategy we will pursue in
this paper. A key concept will be that of rigid representations introduced by the first and third
authors in [6]. Before we come to this, we first need to collect and prove several properties
about the reflection groups in question.

Remark 1.5 As noted by the referee, choosing a suitable normal subgroup K of G may allow
one to apply the geometric techniques of [5] in order to show that some of the remaining
open cases of symplectically primitive but complex imprimitive groups do not give rise
to quotient singularities admitting a symplectic resolution. Specifically, if there exists a
symplectic resolution Y → V /K such that the action of G/K on V /K lifts to Y , then
the existence of particularly bad singularities on Y/(G/K ) implies that V /G cannot admit a
symplectic resolution.However, we do not expect that the representation-theoretic techniques
employed in this article (together with the computational data from [26]) can take us any
further in deciding if the remaining cases admit a symplectic resolution, unless new ideas are
introduced.

2 Primitive complex reflection groups

In Cohen’s classification [11], symplectically primitive reflection groups come as complexi-
fication of primitive quaternionic groups andmay be complex imprimitive or primitive. Here,
we consider the first case. These are given by four infinite families of groups all acting on
C
4 by [11, Theorem 3.6]. Each of them is constructed using an infinite family of subgroups

of GL2(C). We will first describe these groups in more detail before we move on to the
construction of the symplectic groups in the next section.

For any d ∈ Z≥1 let

μd :=
〈(

ζd 0
0 ζd

)〉

,
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Symplectic linear quotients admitting a symplectic resolution 665

where ζd ∈ C is a primitive d-th root of unity. Let T, O and I be the binary tetrahedral, binary
octahedral and binary icosahedral group respectively, which are subgroups of SL2(C). Of
course, these are only defined up to conjugacy, but there is no need to fix a representative for
what follows. See [10, 393] for such an explicit description.

We have T � O with O/T ∼= C2, so O = 〈T, ω〉 for some ω ∈ O. We follow [10, 392] to
construct a further group OTd for any d ∈ Z≥1 (or (μ2d | μd ;O | T) in Cohen’s notation).
For d ∈ Z≥1 let

ϕ : μ2d/μd → O/T

be the isomorphism defined by ϕ
(

ζ2d I2
) = ω. Set

μ2d ×ϕ O = {(z, g) ∈ μ2d × O | ϕ(zμd) = gT},
and let OTd denote the image of μ2d ×ϕ O in GL2(C) under the natural multiplication map.
That means, we have

OTd =
2d−1
⋃

k=0
k even

ζ k
2dT ∪

2d−1
⋃

k=1
k odd

ζ k
2dωT.

The infinite families of subgroups of GL2(C) used to constructed the symplectic reflection
groups in the next section are the following:

(1) μdT, with d a multiple of 6,
(2) μdO, with d a multiple of 4,
(3) μd I, with d a multiple of 4, 6, or 10,
(4) OT2d , with d an odd multiple of 1 or 2 (i.e. d not divisible by 4).

Lemma 2.1 We have Z(μdT) = Z(μdO) = Z(μd I) = Z(OTd) = μd , for all even d ∈ Z≥1.

Proof We have {±I2} ⊆ μd for even d and Z(μdT) ∩ T ⊆ Z(T) = {±I2} (and analogously
for O and I), which settles the first three groups.

Let now g ∈ Z(OTd). Note that OTd ⊆ μ2dO, so for any h ∈ OTd , there exist a z ∈ μ2d

and an h′ ∈ O, such that h = zh′. Then gh = hg implies gzh′ = zh′g, so gh′ = h′g.
It follows g ∈ Z(μ2dO) = μ2d , so Z(OTd) ≤ μ2d . Since μ2d ∩ OTd = μd and clearly
μd ⊆ Z(OTd), it follows μd = Z(OTd).

Lemma 2.2 For any group G in (1) to (4) and any g ∈ G we have (det g)I2 ∈ Z(G) = μd .
More precisely, we have {(det g)I2 | g ∈ G} = μd/2, if G belongs to (1), (2), or (3) and
{(det g)I2 | g ∈ G} = μd if G belongs to (4).

Proof LetG = μdTwith d amultiple of 6. Then the claim follows directly since T ≤ SL2(C)

and (det g)I2 ∈ μd/2 for g ∈ μd . The same holds for the groups in (2) and (3).
LetG = OTd with d a multiple of 2 not divisible by 8. ThenG ⊆ μ2dO, so any non-trivial

determinant comes from an element ζ k
2dg with a primitive 2d-th root of unity ζ2d , g ∈ O

and 0 ≤ k < 2d . Then det ζ k
2dg = ζ k

d ∈ Z(G). For the second claim notice that for any
0 ≤ k < 2d either ζ k

2d I2 ∈ G or ζ k
2dω ∈ G, so we obtain indeed all elements of Z(G) as

determinants.

Lemma 2.3 The groups O and I are not conjugate to any subgroup of μdT for even d ∈ Z≥1.
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Proof Assume there is an embedding O ↪→ μdT for an even d . Then we also would have an
injective map O/Z(O) ↪→ μdT/Z(μdT), since the preimage of Z(μdT) must be contained
in Z(O). But

|μdT/Z(μdT)| = |μdT/μd | = |T|
2

= 12

and

|O/Z(O)| = |O|
2

= 24,

so this is not possible. The same reasoning holds for I in place of O since |I/Z(I)| = 60.

For groups G, H ≤ GL2(C), we write H ≤g G if gHg−1 ≤ G with g ∈ GL2(C).

Lemma 2.4 The group O is not conjugate to any subgroup of OT2d for any d ∈ Z≥1.

Proof Assume O ≤g OT2d for a g ∈ GL2(C) and let h ∈ O. By the explicit description of
OT2d above, we may distinguish two cases.

First assume ghg−1 = ζ k
4dωt for some t ∈ T and 1 ≤ k < 4d odd. But this would imply

det
(

ζ k
4d I2) = 1, so k must be a multiple of 2d in contradiction to k being odd.

Hence we must have ghg−1 = ζ k
4d t for some t ∈ T and 0 ≤ k < 4d even. As this holds

for all h ∈ O, it follows O ≤g μ4dT in contradiction to Lemma 2.3.

Lemma 2.5 There exists g ∈ GL2(C) with OT2d ≤g OT2d ′ for d and d ′ both not divisible by
4 if and only if d divides d ′ with d ′/d odd.

Proof Assume OT2d ≤g OT2d ′ for a g ∈ GL2(C). We have ζ4dω ∈ OT2d so gζ4dωg−1 ∈
OT2d ′ and hence

det(ζ4dω)I2 = ζ 2
4d I2 ∈ Z(OT2d ′) = μ2d ′ ,

by Lemma 2.2. So ζ 2
4d = ζ k

2d ′ for some 0 ≤ k < 2d ′, which already shows d | d ′. Now
assume that k = d ′/d is even. Then the only elements of OT2d ′ having determinant ζ k

2d ′ lie
in ζ k

4d ′T. But then we would have gζ4dωg−1 ∈ μ4d ′T, so gωg−1 ∈ μ16dd ′T in contradiction
to Lemma 2.3.

Every group G in (1)–(4) contains a primitive complex reflection group of rank 2. These
groups are the exceptional groups G4 to G22 in the classification by Shephard and Todd [25]
by [10, Theorem 3.4]. Following [10], we can identify the groups G5 and G7 to G22 with
the groups in (1)–(4) for “small” values of d , see Table 1.

We now want to describe the largest complex reflection group contained in G. Let G ′ be
any primitive complex reflection group contained in G. Then the largest reflection group G0,
i.e. the group generated by the reflections in G, must be primitive too, since it contains G ′.
HenceG0 must be conjugate to one of the groupsG4 toG22 in the classification by Shephard
and Todd [25].

To reduce the number of cases one has to consider in the proof of the next proposition,
we computed which groups of the table are (conjugate to) a subgroup of another group using
Magma [8]. We summarize the results in Table 2. (Note that the groups G4 and G6 do not
contain any other group.)
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Symplectic linear quotients admitting a symplectic resolution 667

Table 1 Primitive complex
reflection groups

Group Shephard–Todd Group Shephard-Todd
number number

μ6T 5 μ12T 7

μ4O 13 μ8O 9

μ12O 15 μ24O 11

μ4I 22 μ6I 20

μ10I 16 μ12I 21

μ20I 17 μ30I 18

μ60I 19

OT2 12 OT4 8

OT6 14 OT12 10

Table 2 Subgroup relations

Group Is (conjugate to) a subgroup of

μ6T μ12T, μdO for d ∈ {12, 24}, μd I for d ∈ {6, 12, 30, 60},
OT2d for d ∈ {3, 6}

μ12T μ12O, μ24O, μ12I, μ60I, OT12
μ4O μ8O, μ12O, μ24O

μ8O μ24O

μ12O μ24O

μ24O

μ4I μ12I, μ20I, μ60I

μ6I μ12I, μ30I, μ60I

μ10I μ20I, μ30I, μ60I

μ12I μ60I

μ20I μ60I

μ30I μ60I

μ60I

OT2 μdO for d ∈ {4, 8, 12, 24}, OT6
OT4 μ8O, μ24O, OT12
OT6 μ12O, μ24O

OT12 μ24O

Proposition 2.6 For the groups G in (1) to (4) the largest complex reflection group G0 ⊆
GL2(C) contained in G is as follows:

(a) If G = μdT then G0 = μd0T with d0 ∈ {6, 12} the largest number dividing d.
(b) If G = μdO then G0 = μd0O with d0 ∈ {4, 8, 12, 24} the largest number dividing d.
(c) If G = μd I then G0 = μd0 I with d0 ∈ {4, 6, 10, 12, 20, 30, 60} the largest number

dividing d.
(d) If G = OT2d then G0 = OT2d0 with d0 ∈ {1, 2, 3, 6} the largest number dividing d, such

that d/d0 is odd.

In each case we have G0 � G and G/G0 ∼= μd ′ with d ′ := d/d0.
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Proof (a) LetG = μdT, d amultiple of 6. Then clearlyμ6T ≤ G, so by the above discussion
we have to consider the groups in the first row of Table 2.
The group μ12T is a subgroup of G if and only if d is a multiple of 12.
For any g ∈ GL2(C), we cannot have μd̃O ≤g G or μd̃ I ≤g G for any d̃ since this
would imply O ≤g G or I ≤g G which does not hold by Lemma 2.3.
Assume finally OT2d̃ ≤g G for a g ∈ GL2(C). Then for all h ∈ Owe have ghg−1 = ζ k

d t
or gζ4d̃ hg

−1 = ζ k
d t for some 0 ≤ k < d and t ∈ T. But then ghg−1 ∈ μ4d̃dT, so

O ≤g μ4d̃dT in contradiction to Lemma 2.3.
So the largest complex reflection group in G is μd0T with

d0 :=
{

6, d is an odd multiple of 6,

12, d is an even multiple of 6

and clearly G/G0 ∼= μd/d0 .
(b) Let G = μdO, d a multiple of 4. Then μ4O ≤ G, so μ4O ≤ G0 and we only have to

consider the supergroups of μ4O in Table 2. This already finishes this case.
(c) Let G = μd I, d a multiple of 4, 6, or 10. Then G for sure contains μ4I, μ6I or μ10I and

Table 2 assures us that the only subgroups possible are of the form μd0 I.
(d) Let G = OT2d for a d not divisible by 4. By Lemma 2.5, OT2d0 is a subgroup of OT2d

if and only if d0 divides d and d/d0 is odd. Choosing the largest such d0 ∈ {1, 2, 3, 6}
we hence obtain the largest reflection group of type OT2d0 contained in OT2d . Such a d0
always exists since d is either an odd multiple of 1 or of 2. Consulting Table 2 again,
it remains to prove μd̃O �g G for any d̃ ∈ {4, 8, 12, 24} and any g ∈ GL2(C). This
follows directly with Lemma 2.4.
Lastly, we proveG/G0 ∼= μd/d0 . Set d

′ := d/d0 and define ϕ : G → μd ′ by ϕ(ζ k
4dg) :=

ζ k
d ′ I2 for all 0 ≤ k < 4d and g ∈ O, such that ζ k

4dg ∈ G. Let ζ k
4dg ∈ ker ϕ. Then d ′ | k,

so k = d ′l for some l ∈ N, where l is odd if and only if k is odd, since d ′ is odd. Hence
ζ k
4dg = ζ l4d0g ∈ OT2d0 . As ϕ is surjective it follows G/OT2d0 ∼= μd ′ .

3 Imprimitive symplectic reflection groups

We are now ready to describe the already mentioned four families of imprimitive symplectic
reflection groups which are symplectically primitive.

For a matrix g ∈ GL2(C), set

g∨ :=
(

g 0
0 (g�)−1

)

∈ GL4(C).

For any subset (in particular group) G ⊆ GL2(C), define

G∨ := {g∨ | g ∈ G} ⊆ GL4(C).

Set

s :=

⎛

⎜

⎜

⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞

⎟

⎟

⎠

and define E(G) = {g∨, g∨s | g ∈ G} for a group G ≤ GL2(C). Then the groups E(G)

with G in (1)–(4) are imprimitive symplectic reflection groups by [11, Lemma 3.3]. In fact,
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Symplectic linear quotients admitting a symplectic resolution 669

all imprimitive but symplectically primitive symplectic reflection groups are conjugate to
one of these groups by [11, Theorem 3.6].

For any group G ≤ GL2(C) denote by R(G) the set of reflection in G. For a group
G ≤ GL4(C) denote by S(G) the set of symplectic reflection in G. In what follows let G
be one of the groups in (1) to (4) and write Z(G) = μd . Let G0 be the largest complex
reflection group contained in G, as in Proposition 2.6. We have G = μdG0, but note that
μd ∩ G0 = Z(G0).

Lemma 3.1 The subgroups G∨ and G∨
0 are normal subgroups of E(G).

Proof For g, h ∈ G we have g∨h∨(g∨)−1 = (ghg−1)∨ ∈ G∨. If h ∈ G0, then also
g∨h∨(g∨)−1 ∈ G∨

0 , since either g ∈ G0 or g ∈ Z(G). It remains to show sh∨s−1 ∈ G∨ for
h ∈ G. Here, an easy calculation shows sh∨s−1 = (

(det h)−1h
)∨ ∈ G∨ (see Lemma 2.2)

and the same holds for h ∈ G0.

Lemma 3.2 The group Dd := 〈μ∨
d , s〉 ≤ E(G) is the dihedral group of order 2d and a

normal subgroup of E(G).

Proof By definition, Dd is generated by r∨ and s, where

r :=
(

ζd 0
0 ζd

)

,

and the equalities
(

r∨)d = s2 = (

sr∨)2 = I4

hold, so Dd is indeed the dihedral group of order 2d .
Let t ∈ E(G), so t = g∨sk for some g ∈ G and k ∈ {0, 1}. We have tr∨t−1 = (r∨)−1 ∈

Dd , if k = 0, and tr∨t−1 = r∨ ∈ Dd , if k = 1. Further, we have

tst−1 = g∨skss−k (

g∨)−1 = g∨s
(

g∨)−1
,

as s = s−1. But

g∨s
(

g∨)−1 =
(

0 A
A−1 0

)

with

A := g

(

0 1
−1 0

)

g� =
(

0 det(g)
− det(g) 0

)

.

By det g = ζ ld for some 0 ≤ l < d , it follows tst−1 = (rl)∨s ∈ Dd and Dd is indeed a
normal subgroup of E(G).

Proposition 3.3 The group E(G) is a symplectic reflection group with symplectic reflections

S := R(G)∨
.∪ {

z∨s | z ∈ μd
}

.

Proof If g ∈ R(G), so rk(g − I2) = 1, then g∨ is clearly a symplectic reflection. Also, for

z =
(

ζ kd 0

0 ζ kd

)

∈ μd for some 0 ≤ k < d , we have

z∨s =

⎛

⎜

⎜

⎝

0 0 0 ζ k
d

0 0 −ζ k
d 0

0 −ζ−k
d 0 0

ζ−k
d 0 0 0

⎞

⎟

⎟

⎠

,
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670 G. Bellamy et al.

so rk(I4 − z∨s) = 2 and z∨s is a symplectic reflection. Hence all elements in S are indeed
symplectic reflections and E(G) is a symplectic reflection group since E(G) = 〈S〉.

Let now t ∈ E(G) be a symplectic reflection. Then either t = g∨ or t = g∨s for a g ∈ G.
In the first case, it directly follows g ∈ R(G). So assume t = g∨s. For ease of notation, we
define

A := g

(

0 1
−1 0

)

and B := (g�)−1
(

0 −1
1 0

)

,

so that

t =
(

0 A
B 0

)

.

From

I4 − t =
(

I2 A
B I2

)

=
(

I2 0
B I2 − BA

) (

I2 A
0 I2

)

it follows that rk(I4 − t) = 2 if and only if BA = I2, so A = B−1. An easy calculation
shows that this requires g to be a scalar matrix, so g ∈ Z(G) = μd , as all scalar matrices lie
in the centre of G. Therefore all symplectic reflections in E(G) are elements of S.

Finally, note that the two given subsets of S contain matrices of different block-types, so
their union is disjoint.

Corollary 3.4 All symplectic reflections in E(G) lie either in G∨
0 or in Dd . None of the

symplectic reflections of G∨
0 is conjugate in E(G) to one of Dd and vice versa.

Proof The first part is clear since R(G) = R(G0). The second part follows from Lemma
3.1 and Lemma 3.2.

We state for later reference:

Lemma 3.5 There are two Dd-conjugacy classes in S(Dd), namely [s] and [(ζd I2)∨s]. In
case G belongs to (1), (2), or (3) these are also the E(G)-conjugacy classes. In case G
belongs to (4), there is only one E(G)-conjugacy class in S(Dd).

Proof For the claim about Dd -conjugacy, see [6, Section 8.3]. The computations in the proof
of Lemma 3.2 show that for g ∈ E(G) we have gsg−1 = z∨s with z ∈ {(det h)I2 | h ∈ G}
(and for any such z there exists a g ∈ E(G)). Hence s and (ζd I2)∨s are conjugate in E(G)

if and only if there exists h ∈ G with det h = ζd . By Lemma 2.2, this is the case if and only
if G belongs to (4).

4 Symplectic reflection algebras

Let again G be one of the groups in (1) to (4). Let G0 be the largest complex reflection group
contained in G and let μd = Z(G). Let Dd := 〈μ∨

d , s〉 ≤ E(G) as before. Let V = C
4 with

standard symplectic form ω (notice that we already implicitly assumed this setting when we
defined s).

We recall the definition of a symplectic reflection algebra as introduced in [13]. For
g ∈ S(E(G))wehaveV = V g⊕(V g)⊥ (orthogonalwith respect toω). Letπg : V → (V g)⊥
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be the projection and let ωg be the bilinear form defined by ωg(u, v) := ω(πg(u), πg(v))

for all u, v ∈ V . The symplectic reflection algebra of (V , E(G)) is defined to be

Hc(V , E(G)) := T (V ) � E(G)
/〈

[u, v] −
∑

g∈S(E(G))

c(g)ωg(u, v)g
∣

∣

∣ u, v ∈ V
〉

,

where c : S(E(G)) → C is an E(G)-conjugacy invariant function. From now on we will
omit the vector space in the notation and just write Hc(E(G)) for this algebra.

We want to construct a simple module ofHc(E(G)) of dimension strictly less than |E(G)|
and then apply Theorem 1.4. To this end, we are going to deform a suitable module of an
algebra Hc′(E(G)) for a certain parameter c′. To be able to state the precise result, we require
a bit more notation.

By Corollary 3.4, we may split c in two E(G)-invariant functions c1 : S(E(G)) → C

and c2 : S(E(G)) → C given by

c1|S(G∨
0 ) = c|S(G∨

0 ) and c1|S(Dd ) = 0 resp. c2|S(G∨
0 ) = 0 and c2|S(Dd ) = c|S(Dd ),

so we may think of c as c1 + c2. By abuse of notation, we also write c1 resp. c2 for the
restrictions c1|S(G∨

0 ) resp. c2|S(Dd ).
We may consider the symplectic reflection algebras Hc1(G0) and Hc1(G) (or more pre-

cisely Hc1(G
∨
0 ) and Hc1(G

∨)) with the embeddings Hc1(G0) ⊆ Hc1(G) ⊆ Hc1(E(G)).
Notice however that c1 is in general not a generic (or even arbitrary) parameter for Hc1(G0),
since G∨

0 -invariant functions are not necessarily E(G)-invariant.
Let χ0, . . . , χd−1 be the irreducible characters of Z(G) = μd , ordered such that

χl

((

ζ k
d 0
0 ζ k

d

))

= ζ kl
d

for all 0 ≤ k, l < d and a primitive d-th root of unity ζd .
Notice that d is even as −I2 ∈ Z(G). We label the irreducible representations of Dd

as follows. There are four 1-dimensional representations Triv, Sgn, V1 and V2, where
Triv |Z(G)∨ = Sgn |Z(G)∨ = χ0 and

V1|Z(G)∨ = V2|Z(G)∨ = χ d
2
,

(note that Z(G)∨ ≤ Dd ). Further, there are the 2-dimensional representations ϕ1, . . . , ϕ d
2 −1

for which we have

ϕi |Z(G)∨ = χi ⊕ χd−i .

See [6, Section 8.2] for more details and precise definitions of these representations.
We say an irreducible representation ϕ of Dd is c2-rigid, if ϕ is (isomorphic to) a sim-

ple Hc2(Dd)-module, see [6] for details. The following proposition reduces the problem of
constructing Hc(E(G))-modules to constructing Hc1(G)-modules.

Proposition 4.1 Let L be a simple Hc1(G)-module and set

R(L) := Hc1(E(G)) ⊗Hc1 (G) L.

Then R(L) is a Hc(E(G))-module if and only if all constituents of R(L)|Dd are c2-rigid.

Proof By definition, R(L) is an Hc1(E(G))-module. We just need to show that it naturally
deforms to a Hc(E(G))-module. The defining relations for Hc(E(G)) are

[u, v] =
∑

g∈S(G∨)

c1(g)ωg(u, v)g +
∑

g∈S(Dd )

c2(g)ωg(u, v)g
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in contrast to

[u, v] =
∑

g∈S(G∨)

c1(g)ωg(u, v)g

for Hc1(E(G)). As R(L) is an Hc1(E(G))-module this means that [u, v] acts as
∑

g∈S(G∨)

c1(g)ωg(u, v)g.

Hence R(L) is an Hc(E(G))-module if and only if
∑

g∈S(Dd ) c2(g)ωg(u, v)g acts as zero
on R(L) for all u, v ∈ V that is, if and only if

∑

g∈S(Dd )

c2(g)ωg(u, v)ϕ(g) = 0

for any constituentϕ of R(L)|Dd . By [6, Lemma 4.10], this holds if and only if all constituents
of R(L)|Dd are c2-rigid.

Lemma 4.2 An irreducible representation ϕ ∈ Irr Dd is c2-rigid for all E(G)-invariant
functions c2 : S(Dd) → C if and only if:

(a) ϕ = ϕi for an 1 < i < (d − 2)/2, in case G belongs to (1), (2), or (3),
(b) ϕ = ϕi for an 1 < i ≤ (d − 2)/2 or ϕ ∈ {V1, V2}, in case G belongs to (4).

Proof By [6, Proposition 8.3], the representations ϕi for 1 < i < (d − 2)/2 are c2-rigid for
arbitrary parameters c2. By Lemma 3.5, the function c2 is determined by its values at s and
(ζd I2)∨s.
(a) The symplectic reflections s and (ζd I2)∨s are not E(G)-conjugate by Lemma 3.5. Hence

there exist parameters c2 with c2(s) �= c2((ζd I2)∨s) and c2(s) �= −c2((ζd I2)∨s) and all
other representations are not c2-rigid for those parameters by [6, Proposition 8.3].

(b) Here, Lemma 3.5 states that there is only one E(G)-conjugacy class in S(Dd). Therefore
all parameters fulfil c2(s) = c2((ζd I2)∨s) and only ϕ1, Triv, and Sgn are not c2-rigid by
[6, Proposition 8.3].

Corollary 4.3 Let ϕ be any representation of Dd . Then all constituents of ϕ are c2-rigid for
all E(G)-invariant functions c2 : S(Dd) → C if and only if:

(a) χi | ϕ|Z(G) implies i /∈ {0, 1, d
2 − 1, d

2 , d
2 + 1, d − 1} in case G belongs to (1), (2), or

(3),
(b) χi | ϕ|Z(G) implies i /∈ {0, 1, d − 1} in case G belongs to (4).

The action of G0 resp. G on V leaves a Lagrangian subspace h invariant and we may
identify h with the reflection representation of G0. Then h = C

2 and ζd I2 ∈ μd acts as
the scalar ζd on h and as ζ−1

d on h∗. We may write V = h ⊕ h∗ (but this decomposition is
of course not stable under the action of s). Then we can define a Z-grading on Hc1(G0) by
putting h∗ in degree 1, h in degree −1 and G0 in degree 0. In the same way, we obtain a
Z-grading on Hc1(G) and the inclusion Hc1(G0) ⊆ Hc1(G) preserves this grading.

Set

Hc1(G0) := Hc1(G0)
/(

C[h]G0 ⊗ C[h∗]G0
)

+Hc1(G0).

This algebra has a triangular decomposition

Hc1(G0) ∼= C[h]coG0 ⊗ CG0 ⊗ C[h∗]coG0 ,
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Symplectic linear quotients admitting a symplectic resolution 673

where C[h]coG0 := C[h]/C[h]G0+ C[h], see [27, Corollary 2.1]. Given λ ∈ Irr G0, we then
have the baby Verma module

	(λ) := Hc1(G0) ⊗
C[h∗]coG0�CG0

λ

of Hc1(G0) corresponding to G0 as in [27]. The module 	(λ) has a simple head L(λ) by
[27, Theorem 2.3]. We may consider both of them as Hc1(G0)-modules by letting Hc1(G0)

act via the quotient morphism Hc1(G0) � Hc1(G0). Notice that L(λ) is also simple as
Hc1(G0)-module.

Lemma 4.4 Let λ ∈ Irr G. Then

(i) λ|G0 ∈ Irr G0 and
(ii) The Hc1(G0)-module structure on any graded quotient of 	(λ|G0) extends to Hc1(G).

In particular, L(λ|G0) is a graded (simple) Hc1(G)-module.

Proof (i) This is [14, Theorem III.2.14] since G/G0 is cyclic.
(ii) We have to define an action of Z(G) on 	(λ|G0). By [27, Lemma 2.5], we have

	(λ|G0)
∼= C[h]coG0 ⊗C λ|G0

as vector spaces, in particular 	(λ|G0) is concentrated in non-negative degree. Let
Z(G) act by χ on λ. By the above, ζd I2 ∈ Z(G) = μd acts by ζ−1

d on h∗. We obtain

an action of Z(G) on 	(λ|G0)k for any k ≥ 0 by letting ζd I2 act by ζ−k
d on C[h]coG0

k
and by χ(ζd I2) on λ|G0 . Then this action of Z(G) extends 	(λ|G0) to a module over
Hc1(G).
Now let M ≤ 	(λ|G0) be any graded Hc1(G0)-submodule. Since M is graded, it is
stable under the action of C

× induced by the action of C
× on h. The given action of

Z(G) on h∗ is just a restriction of this action to the subgroup 〈ζd〉 ≤ C
×. Hence this

also extends M to an Hc1(G)-module.
As L(λ|G0) is a graded quotient of 	(λ|G0), this turns L(λ|G0) into an Hc1(G)-module
too and L(λ|G0) is of course simple as such a module.

Theorem 4.5 If there exists λ ∈ Irr G such that L(λ|G0)|Dd is c2-rigid for all E(G)-invariant
functions c2 : S(Dd) → C and dim L(λ|G0) < |G|, then C

4/E(G) does not admit a
symplectic resolution.

Proof Since L(λ|G0) fulfils the conditions of Proposition 4.1,we obtain anHc(E(G))-module
R(L(λ|G0)). By construction, we have

dim R(L(λ|G0)) = dim
(

Hc1(E(G)) ⊗Hc1 (G) L(λ|G0)
) = 2 dim L(λ|G0) < |E(G)|,

since |E(G)| = 2|G|. Then any simple quotient L of R(L(λ|G0)) will also fulfil dim L <

|E(G)|. As this holds for arbitrary parameters c, if follows that the variety C
4/E(G) does

not admit a symplectic resolution by Theorem 1.4.

We use a crude first estimate to show that all but finitelymany of the groups on the list admit
a simplemodule as inTheorem4.5.Let N := |S(G∨

0 )|be the number of symplectic reflections
in G0. The coinvariant ring C[h]coG0 is a (positively) graded ring with (C[h]coG0)k = 0 for
k > N , by [22, Proposition 20-3A]. This implies 	(λ)k = 0 for each k > N or k < 0 and
any simple G0-module λ.
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Proposition 4.6 The group G admits a simple module λ as in Theorem 4.5 if G0 � G and

(a) 2N + 6 < d in case G belongs to (1), (2), or (3),
(b) N + 3 < d in case G belongs to (4).

Proof We only prove (a), (b) follows analogously. Note that d − 2 ≥ 0 by assumption. Let
λ ∈ Irr G be any irreducible summand of IndGZ(G) χd−2, so λ restricts to a multiple of χd−2

on Z(G). As in the proof of Lemma 4.4, Z(G) acts on 	(λ|G0)k by

χd−k ⊗ χd−2 = χd−k−2,

for k ≥ 0. Since L(λ|G0) is a quotient of 	(λ|G0), this implies that if
[

L(λ|G0)|Z(G) : χi
] �= 0

then i ∈ {d − N − 2, d − N − 1, . . . , d − 2}. Hence if 2N + 6 < d , then N + 2 < d−2
2 , so

d − N − 2 = d − (N + 2) > d − d − 2

2
= d

2
+ 1.

Then L(λ|G0)|Dd is c2-rigid for all c2 by Corollary 4.3.
We have dim L(λ|G0) ≤ |G0| by [13, Theorem 1.7], hence dim L(λ|G0) < |G| since

G0 � G.

5 Sharp bounds

In Table 3 we recall the number of reflections in the possible groups G0 from [10] together
with the minimal value of d fulfilling the condition in Proposition 4.6 (which does not mean
that there exists a group G for such a d). This gives the groups G, for which Proposition 4.6
does not apply, as in Table 4. Using data computed with Champ [26], we want to find all
groups which fulfil the assumptions of Theorem 4.5.We describe the necessary computations
and give a concrete example below.

As before, let G0 be one of the complex reflection groups from Table 1 and let (Gd)d∈D
be the family of supergroups containing G0 as subgroup generated by the reflections for a set
of indicesD determined by the conditions in (1)–(4) and Proposition 2.6. Let λ ∈ Irr G0 and

Table 3 Number of reflections in the groups G0

Group Number of Minimal Group Number of Minimal
reflections value of d reflections value of d

μ6T 16 39 μ12T 22 51

μ4O 18 43 μ8O 30 67

μ12O 34 75 μ24O 46 99

μ4I 30 67 μ6I 40 87

μ10I 48 103 μ12I 70 147

μ20I 78 163 μ30I 88 183

μ60I 118 243

OT2 12 16 OT4 18 22

OT6 28 32 OT12 34 38
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let Z(G0) = 〈ζ 〉. Then λ(ζ ) = ζl Idim λ for a certain primitive l-th root of unity ζl with l | d0.
Hence we can extend λ to a representation λd of Gd for any d ∈ D by setting λd |G0 = λ

and λd(η) = ζl ′ Idim λ, where Z(G) = 〈η〉 and l ′ = l d
d0

(note that l ′ | d , since l | d0 and

d0
d
d0

= d). Here, ζl ′ is a primitive l ′-th root of unity with ζ
d/d0
l ′ = ζl . In particular, there may

exist more than one choice for λd .
Now one can find, if it exists, the smallest d1 ∈ D such that λd1(η) = η−m Idim λ with

2 ≤ m < d1
2 − 1 respectively 2 ≤ m < d1 − 1 if G0 belongs to (4).

Let k ≥ 0 be minimal such that L(λ)k = 0 with respect to all parameters c1, which we
can compute using Champ. Then the claim of Proposition 4.6 also holds for all d ∈ D with
d ≥ d1 and d − (k − 1)−m > d

2 + 1 respectively d − (k − 1)−m > 1 if G0 belongs to (4).
We give the results of our computations and in particular the best possible values for k

and m for each of the families of groups in Table 5. Using those bounds for d , we obtain
a “better” version of Table 4, see Table 6. However, this also means that for the groups in
Table 6 (besides those, for which we could not do any computations), there does not exist
any simple module λ fulfilling the conditions of Theorem 4.5.

Example 5.1 We carry out the described computations for the group G0 := μ6T. The family
of supergroups is given by Gd := μdT for d = 12a + 6 with a ∈ Z≥0. Let ω ∈ C

be a primitive third root of unity and set ζ6 := −ω−1. Then we may choose the matrix
ζ := ζ6 I2 as generator for Z(G0) = μ6. Going through the representations of G0 in the
database of Champ, we see that representation numbered 19 with character ϕ3,4 maps ζ to
(−ω−1)I3 = ζ−2

6 I3. In the above notation, we hence havem = 2. Note that this is the “best
possible" value of m since we require m ≥ 2.

This gives the lower bound m = 2 < d1
2 − 1, so that d1 > 6, that is, d1 = 18 = 3d0.

Using Champ, we see that the top degree of L(λ) is 4, hence we have k = 5. Therefore we
have the additional restriction

d − (k − 1) − m = d − 6 >
d

2
+ 1,

which simplifies to d > 14. In conclusion, we improved the lower bound for d in Proposition
4.6 to d ≥ 18, leaving only the group G0 itself.

6 The groupW(S2)

In this section we show that for the group W (S2) of [11, Table III] there is no symplectic
resolution of the corresponding linear quotient. This group is one of the few symplectically
and complex primitive groups; we follow the same strategy used in [5] to treat these groups.
Namely, we are going to show, or rather compute that there is a subgroup of W (S2), say H ,
which is the stabilizer of a vector. We can identify H with the improper symplectic group
coming from the complex reflection group G(4, 4, 3) in the classification by Shephard and
Todd [25]. Since the corresponding linear quotient of this group does not have a symplectic
resolution by [2], the same holds for the quotient by W (S2) by a result of Kaledin [21,
Theorem 1.6].

The computer calculations leading to the result we are going to present were carried out
and cross-checked using the software package Hecke [15] and the computer algebra systems
GAP [18] and Magma [8].
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6.1 The group

The group of interest here is a subgroup of Sp8(C) of order 21034 = 82944. Like all sym-
plectically and complex primitive groups, it is given by a root system in [11, Table II]. Cohen
gives 72 root lines for the group, however, already four are enough to generate a group of the
correct order. The respective root lines are

(1, i, 0, 0, 0, 0, 1,−i), (1 − i, 1 − i, 0, 0, 0, 0, 0, 0),

(1 − i, 0, 1 − i, 0, 0, 0, 0, 0), (2, 0, 0, 0, 0, 0, 0, 0),

in C
8. Note that these are the “complexified” versions of the vectors over the quaternions

given in [11]. The group W (S2) ≤ Sp8(C) is now generated by the symplectic reflection
matrices

M1 := 1

2

⎛

⎜

⎜

⎜

⎝

1 i −1 −i
−i 1 −i 1

1 i 1 i−i 1 i −1
1 −i 1 −i
−i −1 i 1

−1 i 1 −i
i 1 i 1

⎞

⎟

⎟

⎟

⎠

, M2 :=

⎛

⎜

⎜

⎜

⎝

−1
−1

1
1 −1

−1
1
1

⎞

⎟

⎟

⎟

⎠

,

M3 :=

⎛

⎜

⎜

⎜

⎝

−1
1−1

1 −1
1−1

1

⎞

⎟

⎟

⎟

⎠

, M4 :=

⎛

⎜

⎜

⎝

−1
1
1
1 −1

1
1
1

⎞

⎟

⎟

⎠

,

which one obtains from these root lines, see [11] for details.

6.2 The subgroup

Let v := (0, 0, 1, 0, 0, 0, 0,−1)� ∈ C
8 and let H ≤ W (S2) be the stabilizer of v with

respect to the natural action of W (S2) on C
8. Using the command Stabilizer in either

GAP [18] or Magma [8] one can compute this group:

H = 〈M2, M4, M1M3M4M2M4M3M1〉 .

The space V H ≤ C
8 of vectors fixed by H is generated by v and (0, 0, 0, 1, 0, 0, 1, 0)�.

Its H -invariant complement W is then generated by the columns w1, . . . , w6 ∈ C
8 of the

matrix

1

2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−ζ 3 −ζ 3 −ζ 3 −ζ 3

−ζ ζ ζ −ζ

−ζ 3 ζ 3

−ζ −ζ
−ζ −ζ ζ ζ

ζ 3 −ζ 3 ζ 3 −ζ 3

ζ ζ

−ζ 3 ζ 3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

where ζ ∈ C is a primitive 8-th root of unity such that ζ 2 = i .
By changing the basis from C

8 to W ⊕ V H and restricting to W we may identify H with
a subgroup HW of Sp(W ) generated by the matrices

⎛

⎝

−i
i

1
i−i
1

⎞

⎠ ,

⎛

⎜

⎝

−1
−1

1 −1
−1

1

⎞

⎟

⎠
,

⎛

⎝

−i
1

i
i

1−i

⎞

⎠ .
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The basis of W was chosen, so that the symplectic form on Sp(W ) is given by the matrix
(

I3
−I3

)

.

One can directly see that HW leaves the subspace 〈w1, w2, w3〉 invariant and that this is a
Lagrangian subspace. Hence HW is an improper group and can be identified with a complex
reflection group G ≤ GL(〈w1, w2, w3〉). Since this group is of rank 3 and order 96 it must
be conjugate to G(4, 4, 3) in the classification [25].

6.3 Conclusion

Theorem 6.1 The linear quotient C
8/W (S2) by the symplectic reflection group W (S2) as

given in [11, Table III] does not admit a symplectic resolution.

Proof Assume there does exist such a resolution. Let v ∈ C
8 be any vector, Gv ≤ W (S2) the

stabilizer of this vector and V ≤ C8 the Gv-invariant complement of the subspace (C8)Gv of
vectors fixed by Gv . Then also V /Gv admits a symplectic resolution by [21, Theorem 1.6].
However, by the calculations above there exists a vector v ∈ C

8 such that Gv acts on the
invariant complement of the fixed space as G(4, 4, 3). Hence the quotient by Gv does not
admit a symplectic resolution by [2, Corollary 1.2] and the same must hold for C

8/W (S2).

Remark 6.2 One might want to use the same approach as presented in this section for the
remaininggroups.However, if the group is of dimension4 anynon-trivial subgroup stabilizing
a vector is of dimension 2, so that the corresponding quotient by the subgroup always admits
a symplectic resolution.

This leaves only the groupsW (S1),W (R) andW (U ), which are of dimension 6, 8 and 10
respectively. For the group W (S1) we could not find any suitable subgroup, and the groups
W (R) and W (U ) are too large so that an exhaustive search for subgroups is not feasible.
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