On analytic semigroups and cosine functions in
Banach spaces

by V. Keyantuo and P. Vieten

Abstract

If A generates a bounded cosine function on a Banach space X
then the negative square root B of A generates a holomorphic semig-
roup, and this semigroup is the conjugate potential transform of the
cosine function. This connection is studied in detail, and it is used
for a characterization of cosine function generators in terms of growth
conditions on the semigroup generated by B. This characterization
relies on new results on the inversion of the vector-valued conjugate
potential transform.
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1. Introduction

In a Banach space X, consider a closed linear operator A which generates a
cosine function C'(+) (see e.g. Fattorini [6] or Goldstein [7] for more inform-
ation about cosine operator functions). Then A generates a holomorphic
semigroup T'(-) of angle m/2. The semigroup and the cosine function are
related by the abstract Weierstrass formula

T(t)x _72/4t0(r)xd7', t>0.

1 00
= — €
Vit /0

On the other hand, assume that A generates a Co—semigroup T'(-). If
T(-) is uniformly bounded, then one can define the fractional powers (—A)~
of —A for 0 < a < 1. We restrict ourselves to the case a = 1/2. First define
the operator J with domain D(J) = D(A) by



1 00
- _/ ATV = AN (—A)ed), « € D(J).
7 Jo
Then J is closable and by definition, (—A)1/2 :=J (see e.g. Yosida [16,
p.260]).
The operator B := —(—A)1/2 is the generator of a holomorphic semigroup
Ts(-) which has an explicit representation (see [16, p.268 |):
TB t :Z?

e~ 1T () ze X, t>0.
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Combining the above facts, we see that whenever A generates a uniformly

bounded cosine function C(-), the negative square root of A generates a
bounded holomorphic semigroup of angle 7/2 given by the formula

2 ot
s(t)e == | iy aCedr, € X, >0, (1)

It is our intention in this paper to study this connection in more details.
In the first part, we introduce the general transformation: if f: (0,00) — X
is measurable, and if the integral [5° || f(7)|| /(t* + 7%)dT converges for all
t € (0,00) then we define

2 ot
Cft) == [ el te(0,),
and we call Cf the conjugate potential transform of f. We provide a vector-
valued inversion theory for the conjugate potential transform in the spirit of
[14], using Widder’s results on the inversion of convolution transforms [15].

In the second part we consider the relationship (1) and prove that T(-)
satisfies the semigroup property iff C'(+) satisfies the cosine functional equa-
tion. A similar relationship was studied by Dettman [4] in connection with
the Cauchy problem. Our approach is operator theoretic.

A remarkable feature is the following: by using the sine function S(-)
associated with the cosine function, one can recast formula (1) in the form

TB(t):z/OOOt?iT ds(r), x€X. (2)

Now, if we do not assume that A generates a cosine function but rather
that it generates a sine function which is Lipschitz-continuous in the strong



operator topology, then we prove that the representation (2) implies that in
fact A generates a strongly continuous cosine function. This is to be likened
to Arendt [1] where a similar phenomenon occurs in the relationship between
resolvents and integrated semigroup. More precisely, the fact that Widder’s
theorem holds for general Banach spaces only in an integrated form while it
holds in all Banach spaces in the usual form for resolvents of densely defined
linear operators.

The results of the first section can then be used to recover C(:) from
Ts(-) in the representation (1). We provide an explicit representation to that
effect. Another interesting fact is that since the transform of Section 2 was
studied for general vector-valued functions, it can be used, along with the
inversion formula to relate the solution of the second order Cauchy problem
associated with A to that of the first order Cauchy problem associated with
the negative square root of A.

1. Inversion of the conjugate potential transform

If f:(0,00) = X is measurable with [ || f(¢)|| /(s* 4+ t*)dl < oo for all
s € (0,00) then we define

s
In this section we give an inversion formula which recovers any bounded

continuous function f from the transformed function Cf, and we characterize
those functions F': (0,00) — X which can be represented as

2 [ S
F(s) = _/0 mdﬁb(t% s € (0,00),

f)ydt, se(0,00).

where ¢ : (0,00) — X is Lipschitz-continuous.
Before we state the inversion formula we introduce some notations. For
2 C R open and f: Q — X differentiable, we set

Df(s) = f'(s) and Af(s)=sf"(s), seq.
For n € N, we denote by F, the polynomial

£ =11 (1- )

k=0



and we put Fo(s) = 1. If f € C*" then we put
EJ[f] = Eo(D)f and  ER[f] = Eo(A)f.
With these notations the proposed inversion formula takes the form:

THEOREM 1 If f : (0,00) — X is bounded and continuous then, for all
s € (0, 00),
lim F2CA1(5) = f(5).

This theorem will be proven using Widder’s results on the inversion of
convolution transforms (see [15] and Theorem 2). This is possible because
the operator C can be “translated” into a convolution transform in the fol-
lowing way:

If f:(0,00) = X is any function then, for v € R, put I'f(u) = f(e").
If f€ Ly((0,00),X) then

2 o et
e = = [ g
2

o0 es_u
/_oo mpf(Tt) du
= K=«Tf(s),

where the convolutional kernel K € L;(R) is given by

2 et
me2 4 1°

K(u) =

The convolution transform g — K * g can be inverted by using the following
theorem, which is a special case of [15, Chapter 7, Theorem 7].

THEOREM 2 Let K : R — R be a measurable function with the following
properties:

(i) The bilateral Laplace transform of K converges in a slrip symmelric
about the imaginary axis.
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(i) F(s) = [ _”‘K(u) du has no zeros in a strip |R(s)| < o, and

E(s) = F(s)™" can be written as
B =TI (1- ).
k=0 ar

where the numbers ar, € R\ {0} are such that lim,_ > p_y1/ar =0
and Y32, 1/ai < oo.

If g: R — R is bounded and continuous then K g € C*°(R), and, for all
s € R,

1_{{301_[ (1= 2) 1K = glls) = o).

We show next that the kernel K(u) = 27r_le“(62“ + 1)_1 fulfills the as-

sumptions of the foregoing theorem. The bilateral Laplace transform

F(s)= /OO e K(u)du = z/m 6_5“67 du

—00 T J—0 €2u + 1

of K exists in the strip |R(s)| < 1, and, by substitution,

2 [0 tF 1
Fs)=— 72"~ oson ) (3)

Hence F' has no zeros in the strip |R(s)| < 1. Moreover, by [8, p.484],
E(s) = F(s)7" can be written as

E(s) = cos(sm/2) = ﬁ (1 ﬁ) ﬁ (1 - _> 5

k=0 k=0 ak
where ap = k + 1 if k is even, and a, = —k if k is odd. Moreover,
lim 2”: L 0 and f: !
n—oo h—0 ag — 123

Hence K fulfills the assumptions of Theorem 2. Since E(s) = limy,—e En(s)
we can use Theorem 2 for the proof of the following proposition.



PRrROPOSITION 3 Let g : R — X be bounded and continuous. Then K x g €
C(R,X) and, for all s € R,

lim EP[K % g](s) = g(s).

Proof. We consider first a real-valued bounded and continuous function
g : R — R. Since K satisfies the assumptions of Theorem 2 it follows that
for all s € R,

. Dryr .

Jim EVTR + g](s) = g(s)- (4)

In order to prove the conclusion for X-valued functions we make the following
observations:

(a) Let K, = EP[K], for n = 0,1,2,.... By induction it can be proven

easily that
e(2n+1)u

c”(ezu + 1)2n+1’

where ¢, is a positive constant depending only on n. In particular, K,

K, (u) =

is positive for all n.

(b) Let K, denote the Fourier transform of K,,. Then, by (3),
E,.(iw)
COS(?:UNT/2>.

A e

Kn(w) = EP[K)(w) = E,(iw)K (w) =

Consequently, [0 K, (t)dt = [;’(()) = 1. Since, by (a), K, is positive

we have HKnHLl =1.

(c) Since K, belongs to L;(R) for all n € N it follows that
EPIK % g = EP[K] % g = K, * g.
If g: R — X is bounded and continuous then K * g belongs to C*(R, X).
For u,s € R define 75(u) = ||g(s) — ¢g(s + u)||. Then 7, : R — R is bounded

and continuous. So we may conclude from (a) - (c) together with (4) that

tim sup g(s) — EL[K + )(5)]
‘/_O: Ko(u)(g(s) — g(s — u)) du

< lim OOI'\"n(u)Ts(—u)dt

n—00 f_ nn

= lim K, *x75(0) = 7(0) =0,

n—o0

= limsup
n— oo




and the proof is complete. =

In order to deduce Theorem 1 from Proposition 3 we note that I'(AF) =
D(TF)if F e C'((0,00), X), and

I (E2[F]) = BP[TF] (5)
for f € C*((0,00), X).

Proof. (of Theorem 1) Let f : (0,00) — X be bounded and continuous.
Then F = Cf belongs to C*((0,00), X), and by (5),

I'(ES(F]) = EP[TF) = EP[K +T'f].

Since I'f : R — X is bounded and continuous we can apply Proposition 3
to I'f. Hence

Jim BX[FI(s) = Jim T (E2[F]) (logs)
= lim B[K T f](logs)
= T f(logs)
= J(s),
for all s € (0, 00). =

In the following section we need the injectivity of C on L. ([0, 0), X).
Therefore, we prove the following corollary to Proposition 3.

COROLLARY 4 Let f € Lo(]0,00),X). IfCf =0 then f =0.

Proof. Since I' : Ly ([0,00), X) = Lo(R, X) is an isometric isomorphism,
and T'(Cf) = K« T f for f € L,(][0,00),X), it is sufficient to prove that
K %xg = 0 implies ¢ = 0 for ¢ € Lo(R,X). If K g = 0 then, for all
h € L1(R),

0= (K*g)xh=K=x(gx*h).

Since g * h : R — X is bounded and continuous Proposition 3 implies that

0= g+ h(0) = /_°° g(Oh(=t)dt, for all h € L,(R).



Consequently, g = 0. =

The inversion formula in Theorem 1 is the key for a characterization of
those function F': (0,00) — X which have a representation

2 [ s
Fo) == [7 5o doln). s € (0,00)

where ¢ : [0,00) — X is Lipschitz-continuous. Our next task is to state and
prove such a characterization. To this end, we need some more notations,
and we recall some facts about vector-valued Lipschitz-continuous functions,
which may be found in [14, Chapter 1, Section 3].

For Lipschitz-continuous functions ¢ : [0,00) — X we introduce the
Lipschitz norm

H¢|‘Lipzsup{w:0§s<t<oo}. (6)

By Lip([0,00), X) we denote the space of all Lipschitz-continuous functions
¢ 1 [0,00) = X with ¢(0) = 0. The space Lip([0,00), X) supplied with
the norm defined in (6) is a Banach space. Moreover, we have the following
proposition (see e.g. [14, Proposition 1.3.5]).

PROPOSITION 5 The mapping which assigns to ¢ € Lip([0,00), X) the op-
erator Ty : L1([0,00)) — X defined by

Tyh = /Ooo h(t) dé(t)

is an isomelric isomorphism.

Ify:Q— X, Q CR,isany function, and if z* € X*, then x* 0 ¢ stands
for the scalar-valued function given by z* o 9 (t) = z* (¢(1)), t € Q.

THEOREM 6 Let I : (0,00) — X be any function, and let M be a positive
real number. Then the following two assertions are equivalent:

(i) There exists ¢ € Lip([0,00), X), with HqﬁHLip < M, such that, for all
s >0,

Fs)= 2 [ o doto) (7)

s2 442



(it) F € C*((0,00),X) and

wp[ES1
neNU{0}

< M. (8)
Proof. (i)=-(ii) Let ¢ € Lip(]0,00), X) have Lipschitz norm equal to M.
Then F defined by (7) belongs to C*°((0,00),X). In order to prove (8)
it is sufficient to show sup, .y HEHA[:U* 0 F]H < M for all * € X* with
|lz*|| < 1. If 2* € X* has norm less than or equal to one then z* o ¢ is a

scalar-valued Lipschitz-continuous function with ||z* o ¢HLip < M. Hence,

z* 0 ¢ has a Radon-Nikodym derivative fu« with ||fus|[.. < M. Moreover,
for s € (0, 00),

* 2 feo S *
2 [0 s
= = /0 gl (1) di
= Cfux(s).

Therefore, we have to show HEnA [Cfs]|| < M. But by (5), this estimate is

an immediate consequence of

|EP e f)|

K, T fye

o0

<, 1T fa
< M.

(il)=(i) Let F € C*((0,00),X) fulfill (8). Then for n € N U {0}, the
operators T, : L1([0,00)) — X defined by
T = | T (O EAF)(1) di
0

have norm less than or equal to M. We claim that the family (7,,) converges
pointwise to an operator T : L;([0,00)) — X with |T|| < M. To see this
we rewrite T, h in the following way:

Toh = /“ (1) EA[F)(1) dt
0

= [ (e BAF)(e) du

— 00

-/ Z Iy h(u) EP[DF)(u) du,
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where I'y : L1([0,00)) — Li(R) is given by I'1A(u) = €“h(e"). Since I'y is an
isometric isomorphism it is enough to show that the operators S, : L;(R) —
X given by S,g = [ g(u)EP[TF](u)du converge towards an operator
S Li(R) — X. To see this, take s € R and consider K (u) = K(s — u).
Then, by Proposition 3,

. - . o D
nh_}rgo S, Ks = lim N K(s —u)E[TF|(u)du

n—oo J_
= lim K « EPITF(s)
= nh_}rglo K, «T'F(s) =TF(s).

Hence, S,g converges for all ¢ in the subset k = {K; : s € R} C Li(R).
We know from (3) that the Fourier transform of K has no zeros. Hence, by
Wiener’s Tauberian theorem [16, Theorem X1.16.3] it follows that & is total
in L;(R). In addition, the family (.S,,) is bounded, since ||S,|| = ||T,.|| < M.
Hence, by the Banach-Steinhaus theorem, (.S,) converges pointwise to an
operator S : Li;(R) — X. In particular, SK; = T'F(s). Consequently, (7))
converges pointwise to an operator T : L;([0,00)) — X with ||T|| < M, and
S and T are related by Th = S(I'1h).

Now, by Proposition 5, there exists ¢ € Lip([0,00), X) with ||q'DHL2.p <
IT|| < M, such that T has a representation

Th = /Om h(t)de(t), h € Ly(]0,0)).

2 s .
Let kq(1) = TS Then I'iks(u) = Kiogs(u). Consequently,
. 2 oo S
F(s) = TF(logs) = SKiogs = S(Tiks) = Thy = ;/0 s A9,

and the proof is complete.

2. A characterization of uniformly bounded cosine functions

Let us first recall the following definitions: A mapping 7'(-) : (0,00) — L(X)
has the semigroup property if

Tt+u)=T)T(u), t,u>0,
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and T(-) is a Cy-semigroup if, in addition, T'(-) is strongly continuous in
[0,00) and T'(0) = Id. A mapping C(-) : R — L(X) satisfies the cosine

functional equation if

1
C(OC) = 2 [Cl+0)+ Ct—w), LueR 0
and S(-) : R — L(X) fulfills the sine functional equation if S is strongly
measurable with

ﬂﬂﬂ@z%[ﬁﬁ@+®+8@—®hh LueR.  (10)

If, in addition to (9), C(-) is strongly continuous with C'(0) = Id then C(-)
is a cosine function. S(-) is a sine function if, in addition to (10), S(-) is
non-degenerate, that is S(¢t)z = 0 for all ¢ € R implies x = 0.

If C(-) is a cosine function, then the generator A of C(-) is defined by

D(A)={ze X: C()z € C*(R,X)} and Az = C"(0)z for z in D(A).

The generator A of a sine function S(-) is given by: x belongs to D(A) if
and only if there exists y € X such that, for all 7 € R,

S(r)x = TJU-I—/OT(T—U)S(U)ydU. (11)

In this case Az = y. Note that y is uniquely determined by (11) since S(+)
is non degenerate. In case we assume that the sine function is exponen-
tially bounded, with densely defined generator, one can provide equivalent
definitions using the Laplace transform (see [9], and [13]).

If C: R — L(X) is strongly continuous and even, and if S : R — L(X)
is defined by

5@=Kaﬂm IER,

then it follows by straightforward calculations that C(-) fulfills the cosine
functional equation if and only if S(-) fulfills the sine functional equation.
Consequently, C(+) is a cosine function if and only if S(+) is a sine function.
In this case the generators of C'(+) and S(-) are the same.

Let A be the generator of a bounded Cy-semigroup T'(+). Then, by [16,
Chapter IX.11] (see also the introduction), we can define B = —(—A)'/2 and
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B is the generator of a bounded Cy-semigroup Tg(+). If A generates a cosine
function C'(-) then we have the fundamental connection (see Introduction)

2 o 1
Tg(t :—/ — d 12
sy =2 [* o (12)
and if S(-) is the sine function generated by A then
To(ty=2> [~ L s 13
s(t) =~ | s 4500 (13)

Unless otherwise stated, integrals involving operator-valued functions will
be understood in the strong operator topology henceforth. Our main goal in
this section is to show that the converse of the above assertion holds; more
precisely,

THEOREM 7 Let A be the generator of a bounded Cy-semigroup and let
Tg() be the Cy-semigroup generated by B = —(—A)Y?. Then A generales
a bounded cosine funclion if and only if there exists a strongly Lipschitz-
conlinuous function S(-) : [0,00) — L(X) such that

2 ot
Ta(t) == | ds(r), 1>0. 14
o) =2 [l aser), (14

Before we prove Theorem 7 we need a couple of lemmas and propositions,
and we make a few remarks.

REMARK 8 (i) If F/: R — L(X) is a strongly Lipschitz continuous function
then, as a consequence of the uniform boundedness principle, F' is Lipschitz
continuous with respect to the operator norm. Therefore, it is enough to
prove Theorem 7 for Lipschitz continuous sine functions.

(i) If the densely defined operator A generates a Lipschitz-continuous
sine function S(-) then A generates a bounded strongly continuous analytic
semigroup T'(-) given by

T(t)x - 6_72/4tTS<T>J/‘dT (15)

1
2 /mt3/2 /0
(see Arendt-Kellermann [3]). If we proceed as in the introduction, we find
that the semigroup Tg(+) generated by the negative square root B of A has
the representation:
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To(t) = %/Om ﬁ S(r)dr. (16)

It is well-known that there are operators that generate sine functions but
do not generate cosine functions (see [3], [9] and [5]). Proposition 10 be-
low states that the semigroup property corresponds to the cosine functional
equation via (12) and to the sine functional equation via (13).

(iii) In the case where X has the Radon-Nikodym property (see [14] or
[1]), the assumption on S(-) implies the existence of a derivative S'(-) = C(+)
which is bounded. The cosine functional equation for C'(-) combined with
strong measurability imply that C'(-) is strongly continuous (see [6, Theorem
1.1, p. 24] or [12]; these results extend the corresponding facts for the
semigroup functional equation [10]).

For our further investigations it is useful to introduce the Poisson kernels

1 8

782+ o2’

Py(o) = s>0,0¢€R.

We note that the family (Ps) has the following semigroup property
Py Py = Pyyy, s,6>0. (17)
If f is bounded and measurable on R then we let
PI()= [ P(r)f(r)dr, tER.

We note that Pf = 0 implies f = 0 if f € Lo(R,X) is even. This follows
from Corollary 4 since for even functions f € L. (R, X)

() =2 [ P(r)f(r)dr = (Cipes)(t)

In the sequel we write @)y = —P).

LEMMA 9 If f: R — X is odd and Lipschilz-continuous, and if

/°° Qur)f(r)dr =0, forallt>0 (18)

— 00

then f(7) =0 for all T € R.
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Proof. Tt is enough to prove the lemma for scalar-valued functions. Then
the vector-valued case follows by applying the Hahn-Banach theorem. Let
f be an odd, scalar-valued Lipschitz-continuous function with (18). Then f
has an even, bounded Radon Nikodym derivative f’. By partial integration
it follows that

0= /_ O; Qu(r)f(r)dr = / " P(r)f(r) dr.

— 00

Since the operator P is injective on even functions we conclude that f’ = 0.
Consequently, f is constant. But a constant function which is odd must be

0. =

ProposITION 10 Let T'(+) : [0,00) — L(X) be bounded and strongly con-
linuous.

(i) If C(+) : R — L(X) is bounded, strongly conlinuous and even, and if
C(+) and T'(+) are related by

T(t):—/oo ! C(r)dr, t>0,

T Jeoo 12+ 72

then T(-) has the semigroup property if and only if C(-) fulfills the
cosine functional equation. Moreover, T(0) = C(0).

(it) If S(-) : R — L(X) is strongly Lipschitz-continuous and odd, and if
S(-) and T(-) are connected by

T(t):l/oo L 4s(r), 1>0,

T Jooo 12+ 72

then T(+) has the semigroup property if and only if S(-) fulfills the sine
functional equation.

Proof. We first prove (ii).
(ii) By partial integration it follows that

()= [ Z Pir)ds(r) = [ ‘: Qi(7)S(r) dr.
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Consequently,

= /_ /_ Qs(0)Q+(7) S(c)S(7) drdo
The semigroup property of the Poisson kernels gives

d d
Quad(r) = == Pase(r) = =P+ P)() = Qo PA(7).

Since S and (), are odd it follows that
T(S + t) = / QS‘H S dp

= / / p—T)P(7)dr S(p)dp

- /OO/_ )S(o + 7)drdo
= [ [ aonm % (S(0 +7) + S0 — 7)] drdo.

Integrating the right hand side of the above equation by parts gives

rs+n=[" [" )(%/(JT[S(Hp)w(a—p)]dp) drdo.

If S(-) fulfills the sine functional equation then it follows directly that 7'(-)

has the semigroup property in (0, 00). That 7'(-) has the semigroup property

in the closed interval [0, co) follows from the strong continuity of 7'(-).
Conversely, if T'(-) has the semigroup property then we obtain

| [ @uo)Qun) s(n)S(r) drdo
[ [ a1 (5 (186 +0) + 5~ p)ldp) drde,
for all s,¢ > 0. Since the functions
(0:7) = [[[Sto+0)+ S0 =p)ldp and (,7) = S(7)S(7)
are odd in o for 7 fixed, and in 7 for o fixed, it follows from Lemma 9 that

S(0)5(r) = 5 [[[8(o +p) + 5(r = p)l dp
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whence S(+) fulfills the sine functional equation.
(i) Define S(-) : R — L(X) by
t
S(t) = / C(r) dr.
0

Since C(-) is even it follows that S(-) fulfills the sine functional equation if
and only C(+) fulfills the cosine functional equation. Moreover,

T(t) = /_Z Py(r)C(r) dr = /°° Py(r)dS(r).

Hence it follows from (ii) that C'(-) fulfills the cosine functional equation if
and only if T'(-) has the semigroup property.

Moreover, since the family of Poisson kernels (P;) is an approximate
identity it follows that

T(0) = lim T() = lim " P(n)C(r)dr = C(0).

If A generates an integrated semigroup U(-) then, for all z € X and
T>0,

/OTU(a)deED(A), and U(r ):1:—711:—}—A/ o)xdo

(see Arendt [1, Proposition 3.3]). If we consider sine functions instead of
integrated semigroups then, by Arendt [2], we obtain the following result.

LEMMA 11 Let S(-) be a sine function with generator A. Then, for all
x € X and 7 € R,

/OT(T—G')S(O').I' do € D(A), and S(t)x = Tx+A/()T(T—J)S(J):1: do. (19)
Proof. Let T € R,z € X and set z, = [j(7 —0)S(c)zdo. Then
Sz, = S(1) /0 “(r — 0)S(o )z do

- 2/ T‘”/[5t+p)+8(t— )]z dpdo

t-I-cr tcr
= / (r—o) [/ plrdp — / ;cdp]
2 Jo

= 2/0 (T—U)/ti-I:S( )z dpdo.

[ =
=)

[ =

[ =
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It follows that

@Sty = [ (= o) +0) = St = o) do (20)

In particular, S'(0)z, = z,. From (20) we infer

d 1 t+7 1 t—T

%S(t)xT = 5/75 (r+t—0)S(o)xdo+ 5/75 (r—t+0)S(o)zdo,
whence

d2 1 i+ t—T

ﬁS(t)xT = 3 [/t S(o)xdo —15(t)r — /t S(e)do —15(t)x

i+
= % S(o)xdo —78(t)x = [S(T) — 7]S(1)z.
t—T7

Therefore,

SWae = [ (1= 0)8" () do +15'(0)z + 5(0),

= oot | (L = 0)S(0)[S(r) — ] dor

Consequently, z, € D(A) and Az, = S(7)z — Tz.

PRrOPOSITION 12 Let B generate a Cy-semigroup Tg(-) on X and let A be
the generator of a strongly Lipschilz-conlinuous sine function S(-). If

1

To(t) = —/

T J—00 7'2+t2

o [

ds(r), t>0, (21)

then B? = —A.

Proof. Ty is infinitely often differentiable in ¢ > 0; this follows easily from
the representation (21) (actually, T’g(+) is analytic). Hence Tg(t)z belongs
to D(B") forallt >0, z € X, n € N, and

dn
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In order to prove that B* = —A, we use integration by parts combined
with the estimates ||S(7)z| < M7 ||z|| and ||fy S(p)zdp| < M7*||z| for
some number M > 0, and the fundamental formula (Lemma 11, 19) for sine
function generators:

B*Tg(t)r = —TB $_/ d2 dS(r)x

= /_O:O—gpf( )d(T;v—l—A/O (T—O’)S(O‘):Udo‘)

— —A/oo d—QPt (/OTS(U)JMM) dr

e A/OO ipt ).r dT
= —A/ Py(t)dS(T)z
= —ATg(t)x

Let « € D(B?). Then
lim —ATg(t)z = lim BZTB( Jx = lim TB(t)BQx = B%z.

t—=0t t—0t t—0t

Since A is closed and limy_,o+ Ts(t)z = z it follows that © € D(A) and
—Az = B*z. Conversely, if z € D(A) then

. 2 1 N o0
tl_lféi BTg(t)x = tl_l}ror}r ATg(t)x tl_l}rori A » Py(r)dS(7)z
= — tl_if(ﬂ /_OO Py(r)dS(T)Az = — tl_if(ﬂ Tg(t)Azx = —Ax.

Consequently, by the closedness of B? implies that € D(B?) and B*z =
—Ax. =

Now we are in the position to prove the main theorem (Theorem 7).
Proof.  (of Theorem 7) Assume first that A generates a bounded cosine

function C'(+). Then A is the generator of a sine function S(-) which is given
by
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Hence, since C(-) is bounded S(-) is Lipschitz-continuous, and (14) follows
from (12).

Conversely, assume that there exists a Lipschitz-continuous function S(-) :
[0,00) — L(X) such that Tg(-) and S(-) are connected by (14). We may
assume without loss of generality that S(0) = 0. Then S(-) can be extended
to an odd, strongly Lipschitz-continuous function S : R — L(X) by putting
S(t) = —S(—t) for t < 0. Then

To(t) = 2 /0 " p(r)dS(r) = L / Z Py(r) dS(r).

™ s

Therefore, Proposition 10 implies that S(-) fulfills the sine functional equa-
tion. Moreover, if S(t)z = 0 for all ¢ € R then it follows from (14) that
T(t)z = 0 for all t > 0, whence z = 0. Consequently, S(-) is a sine function,
which, by Proposition 12, is generated by —B? = A.

It remains to show that S(-) has a strong derivative C'(-). Let € D(A).
Then

S(t)r =tz + /Ot(t —7)5(r)Ax dT.

Hence S(¢)z is continuously differentiable and we can define
t

O(z)(t) = S'(1)x = v +/ S(r)Azdr, 1€R.
0

Since S(+) is Lipschitz-continuous we have

1®(@)]lco = NSC)2llrs < 1SC s 121l (22)

Hence ® : D(A) — C3(R, X) is a bounded linear operator. Consequently,
® has a unique bounded linear extension to D(A) = X. Define C(t)z =
®(z)(t). Then, for every t € R,

sup |C(0)z]| < [[SC) Iz -

ll=(|<1

Hence, C'(t) € L(X) for each t € R, and C(-) : R — L(X) is bounded and

strongly continuous. Moreover, C'(-) is a cosine function, since S(-) is a sine

function, and C(+) is generated by A since S(-) is generated by A. =

Combining Theorem 1, Theorem 6 and Theorem 7 we obtain the following
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COROLLARY 13 Let A be the generator of a bounded Cy-semigroup, and let
B = —(—A)'? generate the semigroup Tg(-). Then A generates a bounded
cosine function if and only if there exists M > 0 such that

HEnA[TB](t)H <M foralln=0,1,2,... and t > 0.
In this case, the cosine function C(-) generated by A is given by
C(t)z = C(=t)z = lim EX[Tg](t)z, ¢>0,z¢c X.

n—oo

We now provide an explicit description of ES[Tg](t). We claim first
that E2[Tg](t) = pn(tB)Tg(t), where p, is a polynomial of degree 2n. This
statement is certainly true for n = 0, with py(¢) = 1. For any polynomial p
let us define (®p)(t) = t[p(t) + p'(t)]. If the statement holds for n > 0 then

ABATSI(1) = Apa(tB)Ta(T)

= UBp,(tB)Th(t) + pa(tB)BTg(t)] = (®pn)(1 B)Ts(1).

Consequently, Fn-l—l[TB]( ) = put1(tB)Tg(t), where

q)Z n q)2 ®
pes = (1= ) = L (1= ) = e

is a polynomial of degree 2n + 2 = 2(n + 1).
Secondly, we describe the p,,’s explicitly. Let p,(¢) = a2,t** +agn—1t*" "1+
..+ ait + ag. The polynomial p, is uniquely determined by the equation

l 00
E2 '] )e' = Zajtj Z = > bt (23)
. =0

where b, = Z;mgmn a;/(l — 7)!. On the other hand, since A(#') = It we
have

Al 0 oo 4l n—1 [? ;
En[elzlzg i Z?,H( W) Zcﬂf (24)

where ¢; = F,(1)/I!. Combining (23) and (24) we have

S Y, 1=0,1,...,2n (25)



21

Let @ = (ag,...,a2,), ¥ = (co,...,¢2,). Then (25) may be written as
Ao = v, where A is the matrix given by

1 1 0 0
1/2 1 1 0 - 0
/6 1/2 1 1 0 0
A = . . .
1 1 0
. 1 10
1/(2n)! 101
Consequently, a = A~'y, where
1 0 0
-1 1 0o - 0
/2 -1 10 - 0
—-1/6 1/2 -1 1 0 0
Al — . oo
11
: 11
1/(2n)! . R |
Since ¢; = ¢3 = ... = ¢a,-1 = 0 we obtain the following representation of

E}Tg](t):

ProposiTiON 14 If Tg(-) is a differentiable semigroup which is generated
by B, then

EX[Ts)(1) = |aza(tB)*™ + ... + a1 (LB) + ao| Ta(1),

where

0 = %[jzj {(_1);@(;);@(1_%)} . k=0,1,....%n,

and [k /2] denotes the grealest nonnegative integer not exceeding k /2.
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Finally, if we consider the Laplace operator on one of the spaces LP?(R)
1 <p<oo, Ch(R)or BUC(R) (with maximal distributional domain for
LP(R), 1 < p < c0), then the semigroup Ts(-) corresponds to the classical
Poisson transform for which an inversion theory has been carried out in [14].

References

[1] W. Arendt, Vector-valued Laplace transforms and Cauchy problems,
Israel. J. Math. 59 (1987), 327-352.

[2] W. Arendt, Personal communication.

(3] W. Arendt, H. Kellermann, Integrated solutions of Volterra integrodif-
ferential equations and Cauchy problems, in Integrodifferential Fqua-
tions, Proc. Conf. Trento 1987, G. Da Prato and M. Iannelli (eds.),
Pitman RNMS 190 (1987), 21-51.

[4] J. W. Dettman, Initial-boundary value problems related through the
Stieltjes transform, J. Math. Anal. Appl., 25 (1969), 341-349.

[5] O. El Mennaoui and V. Keyantuo, Trace theorems for holomorphic
semigroups and the second order Cauchy problem, Proc. AM.S., 124
(1996), 1445-1458.

[6] H. O. Fattorini, Second Order Linear Differential Equations in Banach
Spaces, North Holland, Amsterdam-New-York-London, 1985.

[7] J. A. Goldstein, Semigroups of Linear Operators and Applications, Ox-
ford Mathematical Monographs, New York, 1985.

[8] E.R. Hansen, A Table of Series and Products, Prentice Hall, Englewood
Cliffs, 1975.

[9] M. Hieber, Integrated semigroups and differential operators on LP(RY)-
spaces, Math. Ann. 291 (1991), 1-16.

[10] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Amer.
Math. Soc. Colloq. Publ., Vol. 31, Providence, R. 1., 1957.



REFERENCES 23

[11] J. Kisynski, On cosine operator functions and one-parameter semi-

groups, Studia Math. 44 (1972), 93-105.

[12] S. Kurepa, A cosine functional equation in Banach algebras, Acta Sci.

Math. Szeged 23 (1962), 255-267.

[13] H. R. Thieme, Integrated semigroups and integrated solutions to the
abstract Cauchy problem, J. Math. Anal. Appl. 152 (1990), 416-447.

[14] P. Vieten, Holomorphie und Laplace Transformation Banachraumwer-

tiger Funktionen, PhD thesis, Shaker, Aachen, 1995.

[15] D. V. Widder, An Introduction to Transform Theory, Academic Press,
New York, 1971.

[16] K. Yosida, Functional Analysis, Springer Verlag, New York, 1980.

P. Vieten
Fachbereich Mathematik der Universitat Kaiserslautern
Erwin-Schrodinger Strasse, 67663 Kaiserslautern, Germany

e-mail: vieten@mathematik.uni-kl.de

V. Keyantuo
Department of Mathematics
University of Puerto Rico, Rio Piedras, Puerto Rico 00931

e-mail: keyantuo@upracd.upr.clu.edu



