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Abstract
In a widely-studied class of multi-parametric optimization problems, the objective
value of each solution is an affine function of real-valued parameters. Then, the goal is
to provide anoptimal solution set, i.e., a set containing anoptimal solution for eachnon-
parametric problem obtained by fixing a parameter vector. For many multi-parametric
optimization problems, however, an optimal solution set of minimum cardinality can
contain super-polynomially many solutions. Consequently, no polynomial-time exact
algorithms can exist for these problems even if P = NP. We propose an approximation
method that is applicable to a general class of multi-parametric optimization problems
and outputs a set of solutions with cardinality polynomial in the instance size and the
inverse of the approximation guarantee. This method lifts approximation algorithms
for non-parametric optimization problems to their parametric version and provides an
approximation guarantee that is arbitrarily close to the approximation guarantee of
the approximation algorithm for the non-parametric problem. If the non-parametric
problem can be solved exactly in polynomial time or if an FPTAS is available, our
algorithm is an FPTAS. Further, we show that, for any given approximation guarantee,
the minimum cardinality of an approximation set is, in general, not �-approximable
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for any natural number � less or equal to the number of parameters, and we discuss
applications of our results to classical multi-parametric combinatorial optimizations
problems. In particular, we obtain an FPTAS for themulti-parametricminimum s-t-cut
problem, an FPTAS for the multi-parametric knapsack problem, as well as an approx-
imation algorithm for the multi-parametric maximization of independence systems
problem.

Keywords Multi-parametric optimization · Approximation algorithm ·
Multi-parametric minimum s-t-cut problem · Multi-parametric knapsack problem ·
Multi-parametric maximization of independence systems

Mathematics Subject Classification Primary 90C31; Secondary 90C27 · 68W25

1 Introduction

Many optimization problems depend on parameters whose values are unknown or can
only be estimated. Changes in the parameters may alter the set of optimal solutions
or even affect feasibility of solutions.Multi-parametric optimization models describe
the dependencies of the objective function and/or the constraints on the values of
the parameters. That is, for any possible combination of parameter values, multi-
parametric optimization problems ask for an optimal solution and its objective value.

In this article, we consider linear multi-parametric optimization problems in which
the objective depends affine-linearly on each parameter. For simplicity, we focus on
minimization problems, but all our reasoning and results can be applied to maximiza-
tion problems aswell. Formally, for K ∈ N\{0}, (an instance of) a linear K -parametric
optimization problem � is given by a nonempty (finite or infinite) set X of feasible
solutions, functions a, bk : X → R, k = 1, . . . , K , and a parameter set � ⊆ R

K .
Then, the optimization problem is typically formulated [cf. Oberdieck et al. (2016)
and Pistikopoulos et al. (2012)] as

{
inf
x∈X f (x, λ) := a(x) +

K∑
k=1

λk · bk(x)
}

λ∈�

.

Fixing a parameter vector λ ∈ � yields (an instance of) the non-parametric ver-
sion �(λ) of the linear K -parametric optimization problem. Moreover, the function
f : � → R∪{−∞}, λ �→ f (λ) := infx∈X f (x, λ) that assigns the optimal objective
value of �(λ) to each parameter vector λ ∈ �, is called the optimal cost curve. The
goal is to find a set S′ ⊆ X of feasible solutions that contains an optimal solution
for �(λ) for each λ ∈ � for which inf x∈X f (x, λ) is attained. Such a set S′ is called
an optimal solution set of the multi-parametric problem and induces a decomposition
of the parameter set �: For each solution x ∈ S′, the associated critical region �(x)
subsumes all parameter vectors λ ∈ � such that x is optimal for �(λ).

For many linear multi-parametric optimization problems, however, the cardinality
of any optimal solution set can be super-polynomially large, even if K = 1 [see,

123



Journal of Combinatorial Optimization (2022) 44:1459–1494 1461

for example, Allman et al. (2022), Carstensen (1983a), Gassner and Klinz (2010),
Nikolova et al. (2006) andRuhe (1988)]. In general, this rules out per se the existence of
polynomial-time exact algorithms even if P = NP. Approximation provides a concept
to substantially reduce the number of required solutions while still obtaining provable
solution quality. For the non-parametric version �(λ), approximation is defined as
follows [cf. Williamson and Shmoys (2011)]:

Definition 1.1 For β ≥ 1 and a parameter vector λ ∈ � such that f (λ) ≥ 0, a feasible
solution x ∈ X is called β-approximate (or a β-approximation) for the non-parametric
version �(λ) if f (x, λ) ≤ β · f (x ′, λ) for all x ′ ∈ X .

This concept can be adapted to linear multi-parametric optimization problems. There,
the task is then to find a set of solutions that contains a β-approximate solution for each
non-parametric problem �(λ). Formally, this is captured in the following definition
[cf. Bazgan et al. (2022) and Giudici et al. (2017)]:

Definition 1.2 For β ≥ 1, a finite set S ⊆ X is called a β-approximation set for� if it
contains a β-approximate solution x ∈ S for�(λ) for any λ ∈ � for which f (λ) ≥ 0.
An algorithm A that computes a β-approximation set for any instance � in time
polynomially bounded in the instance size is called a β-approximation algorithm.1

A polynomial-time approximation scheme (PTAS) is a family (Aε)ε>0 of algorithms
such that, for every ε > 0, algorithmAε is a (1+ε)-approximation algorithm. A PTAS
(Aε)ε>0 is a fully polynomial-time approximation scheme (FPTAS) if the running time
of Aε is in addition polynomial in 1

ε
.

Next, we discuss some assumptions that are necessary in order to ensure a
well-defined notion of approximation and to allow for the existence of efficient approx-
imation algorithms. Note that the outlined (technical) assumptions are rather mild and
they are satisfied for multi-parametric formulations of a large variety of well-known
optimization problems. This includes well-known problems such as the knapsack
problem, the minimum s-t-cut problem, and the maximization of independence sys-
tems problem (see Sect. 6), as well as the assignment problem, the minimum cost flow
problem, the shortest path problem, and the metric traveling salesman problem [see
Section 5 in Bazgan et al. (2022)].

Similar to the case of non-parametric problems,where non-negativity of the optimal
objective value is usually required in order to define approximation [cf. Williamson
and Shmoys (2011) and Definition 1.1 above], we require that the optimal objective
value f (λ) is non-negative for any λ ∈ �. To ensure this, assumptions on the param-
eter set and the functions a, bk , k = 1, . . . , K , are necessary. An initial approach
would be to assume nonnegativity of the parameter vectors as well as nonnegativity of
the functions a, bk , k = 1, . . . , K . A natural generalization also allows for negative
parameter vectors. To this end, we consider a lower bound λmin ∈ R

K on the parame-
ter set, i.e.,� :=×K

k=1[λmin
k ,∞) (Assumption 1.3.1). Then, assuming f (x, λmin) and

1 Note that any β-approximation algorithm returns a β-approximation set of polynomial cardinality. Under
the assumptions discussed next, given such a polynomial-size β-approximation set S and some parameter
vector λ ∈ �, it is possible to compute a β-approximate solution for �(λ) in time polynomial in the
instance size and the encoding length of λ by iterating over S and choosing a solution x ∈ S with minimum
value f (x, λ).
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bk(x), k = 1, . . . , K , to be nonnegative for all x ∈ X (Assumption 1.3.3) guarantees
nonnegativity of the optimal objective value for any λ ∈ �.

Moreover, solutions must be polynomially encodable2 and the values a(x)
and bk(x), k = 1, . . . , K , must be efficiently computable for any x ∈ X in order
for the problem to admit any polynomial-time approximation algorithm. Hence, we
assume that any solution x ∈ X is of polynomial encoding length and the values a(x)
and bk(x), k = 1, . . . , K , can be computed in time polynomial in the instance size and
the encoding length of x (Assumption 1.3.2). This implies that the values a(x) and
bk(x), k = 1, . . . , K , are rationals of polynomial encoding length. Consequently, the
assumptions made so far imply the existence of positive rational bounds LB and UB
such that bk(x), f (x, λmin) ∈ {0} ∪ [LB,UB] for all x ∈ X and all k = 1, . . . , K .
It is further assumed that LB and UB can be computed polynomially in the instance
size (Assumption 1.3.3). Note that the numerical values of LB and UB may still be
exponential in the instance size.

Extending the results for 1-parametric optimization problems from Bazgan et al.
(2022), we study how an exact or approximate algorithm ALG for the non-parametric
version can be used in order to approximate the multi-parametric problem and which
approximation guarantee can be achieved when relying on polynomially many calls
to ALG. Hence, the last assumption is the existence of an exact algorithm or an approx-
imation algorithm for the non-parametric version (Assumption 1.3.4). In summary, the
following assumptions are made:

Assumption 1.3 1. For some given λmin = (λmin
1 , . . . , λmin

K )� ∈ R
K , the parameter

set is of the form � =×K
k=1[λmin

k ,∞).
2. Any x ∈ X can be encoded by a number of bits polynomial in the instance size and

the values a(x) and bk(x), k = 1, . . . , K , can be computed in time polynomial in
the instance size and the encoding length of x .

3. Positive rational bounds LB and UB such that bk(x), f (x, λmin) ∈ {0} ∪ [LB,UB]
for all x ∈ X and all k = 1, . . . , K can be computed in time polynomial in the
instance size.

4. For some α ≥ 1, there exists an algorithm ALGα that returns, for any parameter
vector λ ∈ �, a solution x ′ such that f (x ′, λ) ≤ α · f (x, λ) for all x ∈ X .3 The
running time is denoted by TALGα .

2 This is a typical assumption in approximation [see, e.g., Papadimitriou and Yannakakis (2000)]. Never-
theless, our method can also be applied to problems where only the ‘relevant solutions’ can be encoded
polynomially in the instance size. For example, not all feasible solutions of linear programs can be encoded
polynomially in the instance size since they are implicitly determined by finitely many inequalities. How-
ever, it is sufficient to restrict to basic feasible solutions, which have encoding length polynomially bounded
in the instance size (Grötschel et al. 1993).
3 The approximation guarantee α is assumed to be independent of λ. However, it is allowed that α depends
on the instance (such that the encoding length of α is polynomially bounded in the encoding length of the
instance).

123



Journal of Combinatorial Optimization (2022) 44:1459–1494 1463

2 Related literature

Linear 1-parametric problems are widely-studied in the literature. Under the assump-
tion that there exists an optimal solution for any non-parametric version, the parameter
set can be decomposed into critical regions consisting of finitely many inter-
vals (−∞, λ1], [λ1, λ2], . . . , [λL ,∞) with the property that, for each interval, one
feasible solution is optimal for all parameters within the interval. Assuming that L is
chosen as small as possible, the parameter values λ1, . . . , λL are exactly the points of
slope change (the breakpoints) of the piecewise-linear optimal cost curve. A general
solution approach for obtaining the optimal cost curve is presented by Eisner and
Severance (1976). Exact solution methods for specific optimization problems exist
for the linear 1-parametric shortest path problem (Karp and Orlin 1981), the linear 1-
parametric assignment problem (Gassner and Klinz 2010), and the linear 1-parametric
knapsack problem (Eben-Chaime 1996). Note that linear 1-parametric optimization
problems also appear in the context of some well-known combinatorial problems. For
example, Karp and Orlin (1981) observe that the minimummean cycle problem can be
reduced to a linear 1-parametric shortest path problem (Carstensen 1983a; Mulmuley
and Shah 2001), and Young et al. (2006) note that linear 1-parametric programming
problems arise in the process of solving the minimum balance problem, the minimum
concave-cost dynamic network flow problem (Graves and Orlin 1985), and matrix
scaling (Orlin and Rothblum 1985; Schneider and Schneider 1991).

These and many other problems share an inherent difficulty [see, e.g., Carstensen
(1983a)]: The optimal cost curve may have super-polynomially many breakpoints
in general. This precludes the existence of polynomial-time exact algorithms even
if P = NP. Nevertheless, there exist 1-parametric optimization problems for which
the number of breakpoints is polynomial in the instance size. For example, this is
known for linear 1-parametric minimum spanning tree problems (Fernández-Baca
et al. 1996) as well as for special cases of (1) linear 1-parametric binary integer pro-
grams (Carstensen 1983a, b), (2) linear 1-parametric maximum flow problems (Gallo
et al. 1989; McCormick 1999), and (3) linear 1-parametric shortest path prob-
lems (Erickson 2010; Karp and Orlin 1981; Young et al. 2006).

Exact solution methods for general linear multi-parametric optimization problems
are studied by Gass and Saaty (Gass and Saaty 1955; Saaty and Gass 1954) and Gal
and Nedoma (Gal and Nedoma 1972). The minimum number of solutions needed to
decompose the parameter set into critical regions, called the parametric complexity,4

is a natural criterion to measure the complexity. As for the 1-parametric case, the
parametric complexity of a variety of problems is super-polynomial in the instance
size. This even holds true for the special cases of minimum s-t-cut problems whose
1-parametric versions are tractable (Allman et al. 2022). Known exceptions are cer-
tain linear K -parametric binary integer programs (Carstensen 1983a), various linear
K -parametric multiple alignment problems (Fernández-Baca et al. 2000), linear K -
parametric global minimum cut problems (Aissi et al. 2015; Karger 2016), and the
linear K -parametric minimum spanning tree problem (Seipp 2013).

4 Also referred to as combinatorial facet complexity or facet complexity (Aissi et al. 2015).
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As outlined above, many linear K -parametric optimization problems do not admit
polynomial-time algorithms in general, even if P = NP and K = 1. This fact strongly
motivates the design of approximation algorithms for K -parametric optimization prob-
lems. So far, approximation schemes exist only for linear 1-parametric optimization
problems. A general algorithm, which can be interpreted as an approximate version of
the method of Eisner and Severance, is presented in Bazgan et al. (2022). The approxi-
mation of the linear 1-parametric 0-1-knapsack problem is considered in Giudici et al.
(2017), Halman et al. (2018) and Holzhauser and Krumke (2017).

We conclude this section by expounding the relationship between multi-parametric
optimization and multi-objective optimization. We first mention similarities and then
discuss differences between (the approximation concepts for) both types of prob-
lems. In a multi-objective optimization problem, the K + 1 objective functions a, bk ,
k = 1, . . . , K , are to be optimized over the feasible set X simultaneously, and a β-
approximation set is a set S′ ⊆ X of feasible solutions such that, for each solution
x ∈ X , there exists a solution x ′ ∈ S′ that is at most a factor of β worse than x in each
objective function a, bk , k = 1, . . . , K . We refer to the seminal work of Papadimitriou
and Yannakakis (2000) for further details.

When restricting to nonnegative parameter sets�, linearmulti-parametric problems
can be solved exactly by methods that compute so-called (extreme) supported solu-
tions of multi-objective problems. Moreover, since the functions a, bk , k = 1, . . . , K ,
are linearly combined by a nonnegative parameter vector, multi-objective approx-
imation sets are also multi-parametric approximation sets in this case. Surveys on
exact methods and on the approximation of multi-objective optimization problems
are provided by Ehrgott et al. (2016) and Herzel et al. (2021), respectively. Using
techniques from multi-objective optimization with the restriction that the functions
a, bk are assumed to be strictly positive, multi-parametric optimization problems with
nonnegative parameter sets are approximated inDaskalakis et al. (2016), Diakonikolas
(2011) and Diakonikolas and Yannakakis (2008). We note that the proposed concepts
heavily rely on scaling of the objectives such that, for each solution x ∈ X , all the
pair-wise ratios of a(x), bk(x), k = 1, . . . , K , are bounded by two. This clearly cannot
be done if (strict subsets of) the function values of solutions x ∈ X are equal to zero.

Despite these connections, there are significant differences between the approxi-
mation of multi-parametric and multi-objective problems: (1) As already pointed out
in Diakonikolas (2011), the class of problems admitting an efficient multi-parametric
approximation algorithm is larger than the class of problems admitting an effi-
cient multi-objective approximation algorithm. For example, the multi-parametric
minimum s-t-cut problem with positive parameter set can be approximated effi-
ciently (Diakonikolas 2011), whereas it is shown in Papadimitriou and Yannakakis
(2000) that there is no FPTAS for constructing a multi-objective approximation set for
the bi-objective minimum s-t-cut problem unless P = NP. This is also highlighted by
the simple fact that (2) multi-objective approximation is not well-defined for negative
objectives, whereas multi-parametric approximation allows the functions a, bk to be
negative as long as the parameter set � is restricted such that f (x, λ) ≥ 0 for all
solutions x ∈ X and all parameter vectors λ ∈ �. (3) For nonnegative parameter
sets, Helfrich et al. (2021) show that, in the case of minimization, a multi-parametric
β-approximation set is only a multi-objective ((K + 1) · β)-approximation set. In the
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case of maximization, they even show that no multi-objective approximation guaran-
tee can be achieved by a multi-parametric approximation in general. (4) There also
exist substantial differences with respect to the minimum cardinality of approximation
sets: For some M ∈ N, consider a 2-parametric maximization problem with feasible
solutions x0, . . . , xM such that a(xi ) = β2i , b1(x1) = β2(M−i) for i = 0, . . . , M .
Then, any multi-objective β-approximation set must contain all solutions, whereas
{x0, xM } is a multi-parametric β-approximation set.

Consequently, existing approximation algorithms for 1-parametric and/or multi-
objective optimization problems are not sufficient for obtaining efficient and
broadly-applicable approximation methods for general multi-parametric optimization
problems. This motivates the article at hand, in which we establish a theory of and
provide an efficient method for the approximation of general linear multi-parametric
problems.

3 Our contribution

We provide a general approximation method for a large class of multi-parametric
optimization problems by extending the ideas of both the approximation algorithm of
Diakonikolas (2011) and Diakonikolas and Yannakakis (2008) and the 1-parametric
approximation algorithm of Bazgan et al. (2022) to linear multi-parametric problems.
Note that, in Bazgan et al. (2022), only 1-parametric problems are considered, which
leads to an easier structure of the optimal cost curve due to the one-dimensional
parameter set, which allows for a bisection-based approximation algorithm. This
bisection-based approach cannot be generalized to multi-dimensional parameter sets
as considered here.

For any 0 < ε < 1, we show that, if the non-parametric version can be appro-
ximated within a factor of α ≥ 1, then the linear multi-parametric problem can be
approximatedwithin a factor of (1+ε)·α in running time polynomially bounded by the
size of the instance and 1

ε
. That is, the algorithm outputs a set of solutions that, for any

feasible vector of parameter values, contains a solution that ((1+ε) ·α)-approximates
all feasible solutions in the corresponding non-parametric problem. Consequently, the
availability of a polynomial-time exact algorithmor an (F)PTAS for the non-parametric
problem implies the existence of an (F)PTAS for the multi-parametric problem.

In Sect. 4, we show basic properties of the parameter set with respect to approx-
imation. These results allow a decomposition of the parameter set by means of
assigning each vector of parameter values to the approximating solution. We state
our polynomial-time (multi-parametric) approximation method for the general class
of linear multi-parametric optimization problems.

Furthermore, we discuss the task of finding a set of solutions with minimum cardi-
nality that approximates the linear K -parametric optimization problem in Section 5.
We adapt the impossibility result of Diakonikolas (2011) and Diakonikolas and Yan-
nakakis (2008), which states that there does not exist an efficient approximation
algorithm that provides any constant approximation factor on the minimum cardi-
nality if the non-parametric problem can be approximated within a factor of 1 + δ

for some δ > 0. We extend this to the case that an exact non-parametric algorithm is
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available. Here, we show that there cannot exist an efficient approximation algorithm
that yields an approximation set with cardinality less than or equal to K times the
minimum cardinality.

Section 6 discusses applications of our general approximation algorithm to multi-
parametric versions of several well-known optimization problems. In particular, we
obtain fully polynomial-time approximation schemes for the linear multi-parametric
minimum s-t-cut problem and themulti-parametric knapsack problem [where approx-
imation schemes for the linear 1-parametric version have been presented in Giudici
et al. (2017) and Holzhauser and Krumke (2017)]. We also obtain an approximation
algorithm for the multi-parametric maximization problem of independence systems, a
class of problemswhere thewell-known greedymethod is an approximation algorithm
for the non-parametric version.

4 A general approximation algorithm

We now present our approximation method for linear multi-parametric optimization
problems satisfying Assumption 1.3. We first sketch the general idea and then dis-
cuss the details. In the following, given some β ≥ 1, we simply say that x is a
β-approximation for λ instead of x is a β-approximation for �(λ) if this does not
cause any confusion. Clearly, for each solution x ∈ X , there is a (possibly empty)
subset of parameter vectors �′ ⊆ � such that x is a β-approximation for all parame-
ter vectors λ′ ∈ �′. Hence, the notion of β-approximation (sets) is relaxed as follows:
A solution x is a β-approximation for �′ ⊆ � if it is a β-approximation for every
λ′ ∈ �′. Analogously, a set S ⊆ X is a β-approximation set for �′ ⊆ � if, for any
λ′ ∈ �′, there exists a solution x ∈ S that is a β-approximation for λ′.

Let 0 < ε < 1 be given and let α ≥ 1 be the approximation guarantee obtained by
the algorithmALGα for the non-parametric version as inAssumption 1.3.4. The general
idea of our multi-parametric approximation method can be described as follows: We
show that there exists a compact subset �compact ⊆ � with λi > λmin

i for any λ ∈
�compact and all i = 1, . . . , K that satisfies the following property:

A. For each parameter vector λ ∈ � \ �compact, there exists a parameter vector λ′ ∈
�compact such that any ((1 + ε

2 ) · α)-approximation for λ′ is also a ((1 + ε
2 ) ·

α + ε
2 )-approximation for λ (see Proposition 4.7 and Corollary 4.8). Thus, since

((1+ ε
2 ) · α + ε

2 ) ≤ (1+ 2 · ε
2 ) · α) = (1+ ε) · α, any ((1+ ε

2 ) · α)-approximation
for λ′ is, in particular, a ((1 + ε) · α)-approximation for λ.

Then, a grid �Grid ⊆ � is constructed, where each λ′ ∈ �Grid is computed as λ′
k =

λmin
k + (1 + ε

2 )
lk for some lk ∈ Z and k = 1, . . . , K , such that the following holds:

B. The cardinality of �Grid is polynomially bounded in the encoding length of the
instance and 1

ε
(but exponential in K ),5 see Proposition 4.12.

5 Note that compactness of �compact and that λi > λmin
i for any λ ∈ �compact and all i = 1, . . . , K is

necessary to achieve a finite cardinality of �Grid.
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C. For each parameter vector λ′ ∈ �compact, there exits a grid vector λ̄ ∈ �Grid such
that

λ̄k − λmin
k ≤ λ′

k − λmin
k ≤

(
1 + ε

2

)
(λ̄k − λmin

k ) for k = 1, . . . , K .

Then, any α-approximation for λ̄ is a ((1 + ε
2 ) · α)-approximation for λ′ (see

Proposition 4.13).

It follows that, for each parameter vector λ ∈ � \ �compact, there exist a parameter
vector λ̄ ∈ �compact and a grid vector λ′ ∈ �Grid such that any α-approximation
for λ′ is a ((1 + ε

2 ) · α)-approximation for λ̄ and, thus, a ((1 + ε) · α)-approximation
for λ. Hence, algorithm ALGα can be applied for the polynomially many parameter
vectors in �Grid, and collecting all solutions results in a ((1 + ε) · α)-approximation
set S for �. This method yields a multi-parametric (F)PTAS if either a polynomial-
time exact algorithm ALG1 or an (F)PTAS for the non-parametric version is available.
Moreover, this approximation algorithm allows to easily assign the corresponding
approximate solution x ∈ S to each parameter vector λ ∈ �.

We now present the details of the algorithm and start with Property A. To this end, it
is helpful to also allow parameter dependencies in the constant term. Hence, we define
F0(x) := f (x, λmin) and Fk(x) := bk(x), k = 1, . . . , K , for all x ∈ X . Further, we
let R

K+1
� := {w ∈ R

K+1 : wi ≥ 0, i = 0, . . . , K } denote the (K + 1)-dimensional

nonnegative orthant. Using this notation, the augmented multi-parametric problem
reads {

min
x∈X w0F0(x) + w1F1(x) + · · · + wK FK (x)

}
w∈R

K+1
�

(1)

and the goal is to provide an optimal solution for any w ∈ R
K+1
� . The vectors w ∈

R
K+1
� are called weights, and the set of all weights is called the weight set in order

to distinguish it from the parameter set of the non-augmented problem. The terms β-
approximate solution and β-approximation set for the augmented problem are defined
analogously to Definitions 1.1 and 1.2, respectively. Note that the non-parametric
version�(λ) of� for some λ = (λ1, . . . , λK ) ∈ � coincides with the non-parametric
version of the augmented problem for the weight w = (1, λ1 −λmin

1 , . . . , λK −λmin
K ).

A solution x∗ is optimal for some weight w ∈ R
K+1
� if and only if x∗ is optimal

for t · w for any positive scalar t > 0. An analogous result holds in the approximate
sense:

Observation 4.1 Let x, x∗ ∈ X be two feasible solutions. Then, for any positive scalar
t > 0 and β ≥ 1, it holds that

∑K
i=0 wi Fi (x∗) ≤ β · ∑K

i=0 wi Fi (x) if and only if
t · ∑K

i=0 wi Fi (x∗) ≤ t · β · ∑K
i=0 wi Fi (x).

The conclusion of this observation is twofold: On the one hand, any β-
approximation set for the augmented multi-parametric problem (1) is also a β-
approximation set for �. On the other hand, restricting the weight set to the bounded
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K -dimensional simplex W1 := {w ∈ R
K+1
� : ∑K

i=0 wi = 1} again yields an equiva-

lent problem.
The compact set�compact ⊆ � satisfying PropertyA can nowbe derived as follows:

For β ≥ 1 and 0 < ε′ < 1, a closed cone W cone ⊆ R
K+1
� is constructed such

that any β-approximation set for W cone is a (β + ε′)-approximation set for R
K+1
� ,

W1, and �. Then, by Observation 4.1, a β-approximation set for the intersection
W compact := W cone ∩ W1 is also a (β + ε′)-approximation set for R

K+1
� , W1, and �.

Since W1 is compact, any closed subset of W1 is also compact. Thus, denoting the
Minkowski sum of two sets A, B ⊆ � of parameter vectors by A+B, the (continuous)
function

φ : W1 ∩ {w : w0 > 0} →�, (w0, w1, . . . , wK ) �→
(

w1

w0
+ λmin

1 , . . . ,
wK

w0
+ λmin

K

)

can be defined to obtain a compact subset�compact := φ(W compact) of�. By choosing
ε′ = ε

2 and β = (1 + ε′), a compact subset �compact that satisfies Property A is
obtained.6

The next results formalize this outline. Initially, an auxiliary result about convexity
and approximation is given: For γ ≥ 1, if a solution x is a γ -approximation for
several weights w1, . . . , wL ∈ R

K+1
� , the same solution x is a γ -approximation for

any weight in their convex hull.

Lemma 4.2 Let γ ≥ 1 and a subset W ′ ⊆ R
K+1
� be given. Then, any γ -

approximation x ∈ X for W ′ is also a γ -approximation for the convex hull conv(W ′).

Proof Letw be some weight in the convex hull ofW ′. Then,w = ∑L
l=1 θlw

l for some
L ∈ N, w1, . . . , wL ∈ W ′, and θ1, . . . , θL ∈ [0, 1] with ∑L

l=1 θl = 1. Thus, for any
x ′ ∈ X ,

K∑
i=0

wi Fi (x) =
K∑
i=0

L∑
l=1

θl · wl
i Fi (x) =

L∑
l=1

θl ·
K∑
i=0

wl
i Fi (x)

≤
L∑

l=1

θl · γ ·
K∑
i=0

wl
i Fi (x

′) = γ ·
K∑
i=0

wl
i Fi (x

′),

which implies that x is a γ -approximation for w. ��
The next results establish the compact set �compact ⊆ � of parameter vectors such

that any β-approximation set for �compact is a (β + ε′)-approximation set for �.
Let w be a strictly positive weight whose components wi for i in some index set

∅ �= I ⊆ {0, . . . , K } sum up to a small threshold. The next lemma states that, instead

6 Note that �compact could also be defined by means of the intersection W cone ∩ {w ∈ R
K+1≥ : w0 = 1}.

However, structural insights into the geometry of �compact would then be missed. Moreover, the presented
construction allows to easily derive lower and upper bounds on �compact, which are necessary for proving
the polynomial bound on the cardinality of the grid �Grid.
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of computing an approximate solution forw, one can compute an approximate solution
for the weight obtained by projecting all componentswi , i ∈ I , to zero, and still obtain
a ‘sufficiently good’ approximation guarantee for w.

To this end, for a set I ⊆ {0, . . . , K } of parameter indices, the projection projI :
R

K+1 → R
K+1 that maps all componentswi of a vectorw ∈ R

K+1 with indices i ∈ I
to zero is defined by

projIi (w) :=
{
0, if i ∈ I ,

wi , else.

Lemma 4.3 Let 0 < ε′ < 1 and β ≥ 1. Further, let ∅ �= I � {0, . . . , K } be an index
set and let w ∈ R

K+1
� be a weight for which

∑
i∈I

wi = ε′ · LB
β · UB · min

j /∈I w j .

Then, any β-approximation for w is a (β + ε′)-approximation for projI (w).

Proof Let x ∈ X be a β-approximate solution for w. We have to show that, for
any x ′ ∈ X ,

∑
j /∈I

w j Fj (x) ≤ (β + ε′) ·
∑
j /∈I

w j Fj (x
′).

Since x is a β-approximation for w, we know that, for any solution x ′ ∈ X ,

∑
i∈I

wi Fi (x) +
∑
j /∈I

w j Fj (x) ≤ β ·
⎛
⎝∑

i∈I
wi Fi (x

′) +
∑
j /∈I

w j Fj (x
′)

⎞
⎠ ,

which implies that

∑
j /∈I

w j Fj (x) − β
∑
j /∈I

w j Fj (x
′) ≤

∑
i∈I

wi · (β · Fi (x ′) − Fi (x)
)

≤
∑
i∈I

wi · β · UB = ε′ · LB · min
j /∈I w j .

Note that, for any solution x ′′ ∈ X , it holds that

∑
j /∈I

w j Fj (x
′′) ∈ {0} ∪

⎡
⎣LB · min

j /∈I w j ,
∑
j /∈I

w j · UB
⎤
⎦ .
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If
∑

j /∈I w j Fj (x ′) = 0 and
∑

j /∈I w j > 0, we obtain

∑
j /∈I

w j Fj (x) ≤ ε′ · LB · min
j /∈I w j < LB · min

j /∈I w j

and, therefore,
∑

j /∈I w j Fj (x) = 0. If
∑

j /∈I w j Fj (x ′) = 0 and
∑

j /∈I w j = 0, it
follows that w j = 0 for all j /∈ I and, therefore,

∑
j /∈I w j Fj (x) = 0 as well. Hence,

in these cases, the claim holds since∑
j /∈I

w j Fj (x) = 0 = (β + ε′) ·
∑
j /∈I

w j Fj (x
′).

If
∑

j /∈I w j Fj (x ′) ≥ LB · min j /∈I w j , it holds that

∑
j /∈I

w j Fj (x) ≤ ε′ · LB · min
j /∈I w j + β

∑
j /∈I

w j Fj (x
′)

≤ ε′ ∑
j /∈I

w j Fj (x
′) + β

∑
j /∈I

w j Fj (x
′) = (β + ε′) ·

∑
j /∈I

w j Fj (x
′),

which proves the claim. ��
Let w ∈ R

K+1
� and ∅ �= I � {0, . . . , K } be given as in Lemma 4.3. By the

convexity property from Lemma 4.2, every β-approximation for w is not only a (β +
ε′)-approximation for projI (w), but also a (β + ε′)-approximation for all weights in
conv({w, projI (w)}). This suggests the following definition:

Definition 4.4 Given 0 < ε′ < 1 and β ≥ 1, the factor used in Lemma 4.3 is denoted
by

c := ε′ · LB
β · UB ∈ (0, 1). (2)

Additionally, for any index set ∅ �= I � {0, . . . , K }, we define

P<(I ) :=
{

w ∈ R
K+1
� :

∑
i∈I

wi < c · w j for all j /∈ I

}
. (3)

The set P≤(I ) is defined analogously by replacing “<” by “≤” in (3). Note that P≤(I )
is a polyhedron. Moreover, we define

P=(I ) := P≤(I ) \ P<(I )

and, finally,

W cone := R
K+1
� \

⎛
⎝ ⋃

∅�=I�{0,...,K }
P<(I )

⎞
⎠ .
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Fig. 1 Illustration of the sets P=(I ), P≤(I ), andW cone for a linear multi-parametric problem with K = 2.
Top left: Visualization of P=({0, 1}) and P=({2}). Top right: Visualization of the corresponding full-
dimensional sets P≤({0, 1}) and P≤({2}). Bottom: Visualization of all sets P≤(I ). The set W cone is the
complement of the union of the sets P<(I ) = P≤(I ) \ P=(I ) for ∅ �= I � {0, . . . , K }. Note that none of
the visualized sets are bounded from above

Figure 1 provides a visualization of the sets defined in Definition 4.4.
Let w̄ ∈ W cone be such that w̄ ∈ P=(I ) for some index set ∅ �= I � {0, . . . , K }.

Lemma 4.3 implies that a β-approximation for w̄ is a (β + ε′)-approximation for
conv(w̄, projI (w̄)). However, the reverse statement is needed: Forw ∈ R

K+1
� \W cone,

does there exist a weight w̄ ∈ W cone such that a β-approximation for w̄ is a (β +
ε′)-approximation for w? Proposition 4.7 will show that this holds true. In fact, the
corresponding proof is constructive and relies on the lifting procedure described in
the following.

Consider some weight w ∈ R
K+1
� \ W cone, i.e., w ∈ P≤(I ) for some index

set ∅ �= I � {0, . . . , K }. Instead of computing an approximate solution for
w, a β-approximation for the corresponding lifted weight w̄ ∈ P=(I ) (satisfying
w ∈ conv({w̄, projI (w̄)})) can be computed, which is then a (β + ε′)-approximation
for w. The next lemma formalizes the lifting.

123



1472 Journal of Combinatorial Optimization (2022) 44:1459–1494

Lemma 4.5 Let ∅ �= I � {0, . . . , K } be an index set and let w ∈ P<(I ). Define

w̄i :=

⎧⎪⎪⎨
⎪⎪⎩

wi∑
j∈I w j

· c · min j /∈I w j , if i ∈ I and
∑

j∈I w j > 0,
1
|I | · c · min j /∈I w j , if i ∈ I and w j = 0 for all j ∈ I ,

wi , if i /∈ I .

Then, w̄ ∈ P=(I ) and w ∈ conv({w̄, projI (w̄)}). In particular, w̄i ≥ wi for all i ∈ I .

Proof First consider the case that w j = 0 for all j ∈ I . Then it holds that

∑
i∈I

w̄i =
∑
i∈I

1

|I | · c · min
j /∈I w j = c · min

j /∈I w j = c · min
j /∈I w̄ j ,

which yields that w̄ ∈ P=(I ). Moreover, w = projI (w̄) ∈ conv({w̄, projI (w̄)}). Now
consider the case that w j �= 0 for some j ∈ I . Here, it holds that

∑
i∈I

w̄i =
∑
i∈I

wi∑
j∈I w j

· c · min
j /∈I w j = c · min

j /∈I w j = c · min
j /∈I w̄ j ,

which again yields that w̄ ∈ P=(I ). Note that, since w ∈ P<(I ), we must have
c ·min

j /∈I w j >
∑
j∈I

w j ≥ 0. Thus, the weight w can be written as a convex combination

of w̄ and projI (w̄) by

w =
∑

j∈I w j

c · min j /∈I w j
· w̄ +

(
1 −

∑
j∈I w j

c · min j /∈I w j

)
· projI (w̄),

which concludes the proof. ��
When given a weight w ∈ P<(I ) for some index set I , a lifted weight w̄ ∈ P=(I )

can be constructed using Lemma 4.5. A β-approximation for w̄ is then a (β + ε′)-
approximation for w due to Lemmas 4.2 and 4.3. Next, it is shown that this idea
generalizes to the set W cone in the following way: For each weight w /∈ W cone, a
weight w̄ ∈ W cone can be found such that any β-approximation for w̄ is a (β + ε′)-
approximation for w. The remaining task is to prove that this holds true for weights
contained in P<(I )∩P<(I ′) for two (ormore) different index sets I and I ′, since using
the previous construction for I might result in a lifted weight that is still contained
in P<(I ′) and vice versa. Notwithstanding, such weights can inductively be lifted
with respect to different index sets and, if this is done in a particular order, a weight
is obtained that is contained in W cone after at most K lifting steps.

The following lemma states that, for a weight w that is not contained in P<(I ) for
some index set I , increasing any of its components wi with indices i ∈ I preserves
the fact that the weight is not contained in P<(I ).
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Lemma 4.6 Let w ∈ R
K+1
� \ P<(I ) for some index set ∅ �= I � {0, . . . , K }. Let

w̄ ∈ R
K+1
� be a weight such that w̄i ≥ wi for all i ∈ I and w̄ j = w j for all j /∈ I .

Then, w̄ /∈ P<(I ).

Proof Since w ∈ P<(I ), it holds that

∑
i∈I

w̄i ≥
∑
i∈I

wi ≥ c · min
j /∈I w j = c · min

j /∈I w̄ j ,

which proves the claim. ��
Now,we can prove the central result for Property A. Note that the proof is constructive.

Proposition 4.7 Let 0 < ε′ < 1 and β ≥ 1 be given. Then, for any weight w ∈
R

K+1
� \W cone, there exists a weight w̄ ∈ W cone such that any β-approximation for w̄

is a (β + ε′)-approximation for w.

Proof Let w ∈ R
K+1
� . Without loss of generality, assume that w0 ≤ w1 ≤ · · · ≤ wK

holds (otherwise, the ordering of the indices can be changed due to symmetry of
W cone). First, it is shown that, in this case, all index sets I such that w ∈ P<(I ) are of
the form I = {0, . . . , k} for some k ∈ {0, . . . , K − 1}: Let i ∈ I and j /∈ I for some
index set ∅ �= I � {0, . . . , K } for which w ∈ P<(I ). Then,

wi ≤
∑
i ′∈I

wi ′ < c · min
j ′ /∈I

w j ′ ≤ w j ,

which implies that i < j and, thus, I = {0, . . . , k} for some k ∈ {0, . . . , K − 1}.
To shorten the notation, we use the abbreviations [K ] := {0, . . . , K } and [k̄] :=
{0, . . . , k̄} for k̄ ∈ [K ] in the remainder of this proof.

Since w /∈ W cone, we have w ∈ P<(I ) for at least one index set ∅ �= I � [K ].
Hence, we choose kmax ∈ [K − 1] to be the largest index such that w ∈ P<([kmax])
holds. Similarly, choose k0 ∈ [K −1] to be the smallest index such thatw ∈ P<([k0])
holds. This means that w /∈ P<([k]) for all k ∈ [K − 1] with 0 ≤ k < k0 and
kmax < k < K . Further, setw0 := w and construct a (finite) sequencew0, w1, . . . , wL

of weights and a corresponding sequence k0 < k1 < · · · < kL−1 of indices such that,
for each � ∈ {1, . . . , L}, the following statements hold:

1. w�
i ≥ w�−1

i for i = 0, . . . , k�−1 and w�
j = w�−1

j for j = k�−1 + 1, . . . , K .

2. 0 < w�
0 ≤ w�

1 ≤ . . . ≤ w�
K

3. w�−1 /∈ P<([k]) for k ∈ [K − 1] with 0 ≤ k < k�−1 or kmax < k < K .
4. w� ∈ P=([k�′ ]) for �′ = 0, . . . , � − 1.
5. w ∈ conv({w�} ∪ {proj[k0](w�), . . . , proj[k�−1](w�)}).
The construction, which is illustrated in Fig. 2, is as follows: Given a weight w� ∈
R

K+1
� \ W cone with w�

0 ≤ w�
1 ≤ . . . ≤ w�

K , we set k
� to be the smallest index such
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that w� ∈ P<([k�]) and, analogously to Lemma 4.5, define

w�+1
i :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w�
i∑k�

j=0 w�
j

· c · w�
k�+1

for i = 0, . . . , k� if
∑k�

j=0 w�
j > 0,

1
k�+1

· c · w�
k�+1

for i = 0, . . . , k� otherwise,

w�
i for i = k� + 1, . . . , K .

We repeat this construction until, for some L ∈ N, the weight wL is not contained
in P<([k]) for any k ∈ [K − 1]. Note that Statement 2 implies that, for any � ∈ N,
the weight w� cannot be contained in P<(I ) for any index set I that is not of the form
I = [k] for some k ∈ [K − 1]. Moreover, Statement 3 implies that kmax ≥ k� and
that, for � ≥ 1 and k ∈ [k�−1 − 1], it holds that∑k

i=0 w�−1
i ≥ c · w�−1

k+1. Therefore, if∑k�−1

j=0 w�−1
j > 0, it holds that

k∑
i=0

w�
i =

k∑
i=0

w�−1
i∑k�−1

j=0 w�−1
j

· c · w�−1
k� ≥ c · w�−1

k+1∑k�−1

j=0 w�−1
j

· c · w�−1
k� = c · w�

k+1.

Similarly, if w�−1
j = 0 for all j ∈ [k�−1], it holds that

k∑
i=0

w�
i =

k∑
i=0

1

k�−1 + 1
· c · w�−1

k�−1+1
= (k + 1) · w�

k+1 > c · w�
k+1.

Thus, in both cases, we obtain that w� /∈ P<([k]) for k = 0, . . . , k�−1 − 1. Since
Statement 4 implies that w� /∈ P<([k�−1]), this yields that k� > k�−1 (for � ≥ 1)
and, hence, the construction indeed terminates after at most kmax − k0 < K steps
with wL ∈ W cone.

Furthermore, Statement 4 and Lemma 4.3 imply that any β-approximation for wL

is a (β +ε′)-approximation for proj[k�′ ](wL) for each l ′ ∈ 0, . . . , L−1 and, thus, also
for w using Statement 5 and the convexity Lemma 4.2.

It remains to show that Statements 1–5 hold for each � ∈ {1, . . . , L}. Statement 1
holds due Lemma 4.5. Statements 2–5 are proven by induction over �:

For � = 1, in order to prove Statement 2, first consider the case that w0
0 > 0. In

this case, w1
0 > 0 by Statement 1. Next, consider the case that w0

0 = . . . , w0
k = 0

and w0
k+1 > 0 for some k ∈ [K − 1] (note that w cannot be the zero vector since

w /∈ W cone). In this case, we must have k = k0 by definition of k0, and, therefore,

w1
0 = 1

k0 + 1
· c · w0

k0+1 = 1

k + 1
· c · w0

k+1 > 0.

The inequality w1
k0

≤ w1
k0+1

even holds with strict inequality since, in both cases, it

holds that w1
k0

≤ c · w0
k0+1

< w0
k0+1

= w1
k0+1

. All other inequalities of Statement 2

follow from the corresponding inequalities for � = 0 (or trivially hold for i = 1, . . . , k1
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if w0
0 = · · · = w0

k0
= 0). Statement 3 is a direct consequence of our choice of k0

and kmax, and Statements 4 and 5 immediately follow from Lemma 4.5.
Now assume that Statements 2–5 hold for some � ∈ {1, . . . , L − 1}. Then, State-

ments 2–5 hold for �+1: The inequalityw�+1
0 > 0 holds sincew�+1

0 ≥ w�
0 > 0 due to

Statements 1 and 2. Again, the inequality w�+1
k� ≤ w�+1

k�+1
holds with strict inequality

since

w�+1
k� = w�

k�∑k�

j=0 w�
j

· c · w�
k�+1 ≤ c · w�

k�+1 < w�
k�+1 = w�+1

k�+1
,

and all other inequalities of Statement 2 immediately follow from the corresponding
inequalities for �. In order to prove Statement 3, note that, for k ∈ [k�−1], it holds that
w� /∈ P<([k]) by the choice of k�. For k = kmax + 1, . . . , K , we have w� /∈ P<([k])
by Statement 1 and Lemma 4.6. For Statement 4, we have w� ∈ P=([k�′ ]), i.e.,

k�′∑
i=0

w�
i = c · w�

k�′+1

for �′ = 0, . . . , � − 1. Thus,

k�′∑
i=0

w�+1
i =

k�′∑
i=0

w�
i∑k�

j=0 w�
j

· c · w�
k�+1 =

c · w�

k�′+1∑k�

j=0 w�
j

· c · w�
k�+1 = c · w�+1

k�′+1

for �′ = 0, . . . , �−1. Moreover, by Lemma 4.5, it holds thatw�+1 ∈ P=([k�]), which
concludes the proof of Statement 4. Finally, Statement 5 holds for �+1 since, by induc-

tion hypothesis, we know that w ∈ conv
(
{w�} ∪ {proj[k0](w�), . . . , proj[k�−1](w�)}

)
,

which means that there exist coefficients θ0, . . . , θ� ∈ [0, 1] such that

w = θ� · w� +
�−1∑
�′=0

θ�′ · proj[k�′ ](w�) and
�∑

�′=0

θ�′ = 1.

Lemma 4.5 implies that w� ∈ conv
(
{w�+1, proj[k�](w�+1)}

)
, i.e., there exists some

μ ∈ [0, 1] such that

w� = μ · w�+1 + (1 − μ) · proj[k�](w�+1).

Note that, since [k�′ ] ⊆ [k�] for �′ = 0, . . . , � − 1, it holds that

proj[k�′ ] (proj[k�](w�+1)
)

= proj[k�](w�+1)
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and, thus,

w = θ� · w� +
�−1∑
�′=0

θ�′ · proj[k�′ ](w�)

= θ� ·
(
μ · w�+1 + (1 − μ) · proj[k�](w�+1)

)

+
�−1∑
�′=0

θ�′ · proj[k�′ ] (μ · w�+1 + (1 − μ) · proj[k�](w�+1)
)

= θ� · μ · w�+1 + θ� · (1 − μ) · proj[k�](w�+1) +
�−1∑
�′=0

θ�′ · μ · proj[k�′ ](w�+1)

+
�−1∑
�′=0

θ�′ · (1 − μ) · proj[k�′ ](proj[k�](w�+1))

= θ� · μ · w�+1 +
�−1∑
�′=0

θ�′ · μ · proj[k�′ ](w�+1) + (1 − μ) · proj[k�](w�+1)

with

θ� · μ +
�−1∑
�′=0

θ�′ · μ + (1 − μ) = μ + (1 − μ) = 1,

i.e.,w ∈ conv
(
{w�+1} ∪ {proj[k0](w�+1), . . . , proj[k�](w�+1)}

)
, which completes the

induction and the proof. ��
The following corollary states that the same result holds true for the K -dimensional

simplex W1 = {w ∈ R
K+1
� : ∑K

i=0 wi = 1}, see Figure 3 for an illustration.

Corollary 4.8 For 0 < ε′ < 1 and β ≥ 1, define

W compact := W cone ∩ W1.

For each weight w ∈ W1 \ W compact, there exists a weight w′ ∈ W compact such that
any β-approximation for w′ is a (β + ε′)-approximation for w.

Proof Note that W cone is a cone, i.e., w ∈ W cone if and only if t · w ∈ W cone for each
t > 0. In particular, for each weight w ∈ R

K+1
� \ {0}, it holds that

w ∈ W cone ⇐⇒ 1∑K
i=0 wi

· w ∈ W compact.

Thus, the claim follows immediately from Observation 4.1 and Lemma 4.3. ��
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Fig. 2 Illustration of the sequence of (lifted) weights constructed in the proof of Proposition 4.7 for a
weight w /∈ W cone with w0 < w1 < w2 = 1. Left: Embedding of {w ∈ R

3
� : w2 = 1} into R

3
�. Right:

Cross-section at w2 = 1. Note that w2 ∈ W cone and w = w0 ∈ conv
(
{w2, proj{0}(w2), proj{0,1}(w2)}

)

Fig. 3 Illustration of the set W compact for a linear multi-parametric optimization problem (K = 2). Left:
W compact as a subset of R

3
�. Right: Schematic view of W compact. The dashed lines indicate the boundary

of W̄ compact defined in Lemma 4.9

The following lemma provides a lower bound on the components of weights w ∈
W compact. This allows us to derive lower and upper bounds on �compact, which will be
useful when proving the polynomial cardinality of the grid �Grid.

Lemma 4.9 Let 0 < ε′ < 1 and β ≥ 1. Define

W̄ compact :=
{
w ∈ W1 : wi ≥ 1

(K + 1)! · cK for all i ∈ {0, . . . , K }
}

.
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Then, W compact ⊆ W̄ compact ⊆ W1.

Proof Letw ∈ W compact. By symmetry ofW1,W compact, and W̄ compact, we can assume
without loss of generality that w0 ≤ w1 ≤ · · · ≤ wK holds. Since w ∈ W cone, w

satisfies w /∈ P<(I ) for all ∅ �= I � {0, . . . , K }. In particular, this holds for all
I = {0, . . . , k} with 0 ≤ k ≤ K − 1. Hence,

w0 ≥ c · w1, 2w1 ≥ w0 + w1 ≥ c · w2, . . . , K · wK−1 ≥
K−1∑
i=0

wi ≥ c · wK .

With (K + 1) · wK ≥ ∑K
i=0 wi = 1, it follows that wi ≥ 1

(K+1)! · cK for all i ∈
{0, . . . , K }. ��
Next, W compact is transformed to �compact, see Fig. 4 for an illustration. Recall that

φ : W1 ∩ {w : w0 > 0} −→ �, (w0, w1, . . . , wK ) �→
(

w1

w0
+ λmin

1 , . . . ,
wK

w0
+ λmin

K

)
.

Corollary 4.10 For 0 < ε′ < 1 and β ≥ 1, define �compact := φ(W compact). Then, for
each parameter vector λ ∈ �\�compact, there exists a parameter vector λ′ ∈ �compact

such that any β-approximation for λ′ is a (β + ε′)-approximation for λ.

Proof Let λ ∈ � \ �compact. Define w = (w0, . . . , wk) by

w0 := 1

1 + ∑K
k=1(λk − λmin

k )
, and wi := λi − λmin

i

1 + ∑K
k=1 λk − λmin

k

for i = 1, . . . , K .

Then, w ∈ W1 and, thus, there exists a weight w′ ∈ W compact such that any
β-approximation for w′ is a (β + ε′)-approximation for w by Corollary 4.8. Observa-
tion 4.1 implies that any β-approximation for φ(w′) ∈ �compact is a β-approximation
for w′, which in turn is a (β + ε′)-approximation for w. Applying Observation 4.6
again yields that any (β + ε′)-approximation for w is also a (β + ε′)-approximation
for λ = φ(w). ��
With ε′ = ε

2 and β = (1 + ε′), Corollary 4.10 states that the set �compact indeed
satisfies Property A.
Now, to prove Property B, the following lemma provides useful upper and lower
bounds on �compact.

Lemma 4.11 For 0 < ε′ < 1, β ≥ 1, and c defined as in (2), it holds that

�compact ⊆ {λmin} +
[

cK

(K + 1)! ,
(K + 1)!

cK

]K
.

In particular, �compact is compact.
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Fig. 4 Illustration of the set �compact (white region). Left: Full schematic view. Right: Focus on {λmin} +
[0, 1]K . The dashed lines indicate the boundary of the set �̄compact = φ(W̄ compact) considered in the proof
of Lemma 4.11

Proof Let W̄ compact ⊆ W1 be defined as in Corollary 4.8. Then, since W compact ⊆
W̄ compact, we have

�compact = φ
(
W compact) ⊆ φ

(
W̄ compact) .

Also, note that W̄ compact = conv
({w̄0, . . . , w̄K }), where, for i, k ∈ {0, . . . , K },

w̄k
i =

{
1 − K

(K+1)! · cK , for i = k,
1

(K+1)! · cK , otherwise.

Thus, for any parameter λ ∈ �compact, there exist scalars θ0, θ1 . . . , θK ∈ [0, 1] with∑K
k=0 θk = 1 such that λ = φ

(∑K
k=0 θkw̄

k
)
. Consequently, for i = 1, . . . , K , both

λi − λmin
i =

∑K
k=0 θkw̄

k
i∑K

k=0 θkw̄
k
0

≥
1

(K+1)! · cK · ∑K
k=0 θk(

1 − K
(K+1)! · cK

)
· ∑K

k=0 θk

= cK

(K + 1)! − K · cK

≥ cK

(K + 1)!
and

λi − λmin
i =

∑K
k=0 θkw̄

k
i∑K

k=0 θkw̄
k
0
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≤
(
1 − K

(K+1)! · cK
)

· ∑K
k=0 θk

1
(K+1)! · cK · ∑K

k=0 θk

= (K + 1)!
cK

− K

≤ (K + 1)!
cK

hold, which shows the claim. ��
Next, we construct a grid �Grid ⊆ � possessing Properties B and C. That is, the

cardinality is polynomially bounded in the encoding length of the instance and 1
ε
,

and computing a ((1 + ε
2 ) · α)-approximation for any λ ∈ �compact is possible by

computing an α-approximation for each grid point λ′ ∈ �Grid.
Let c = ε·LB

2·(1+ε′)·α·UB be defined as in (2) with ε′ = ε
2 and β = (1 + ε′) · α. We

employ the bounds on �compact given by Lemma 4.11, and define a lower bound as
well as an upper bound by

lb :=
⌊
log1+ ε

2

cK

(K + 1)!
⌋

and ub :=
⌈
log1+ ε

2

(K + 1)!
cK

⌉
. (4)

We then set

�Grid :=
{

� ∈ � : λ =
(
λmin
1 + (

1 + ε
2

)i1 , . . . , λmin
K + (

1 + ε
2

)iK )�
,

ik ∈ Z, lb ≤ ik ≤ ub, k = 1, . . . , K

}
. (5)

Now, Property B can be shown using the construction of �Grid:

Proposition 4.12 Let �Grid be defined as in (5). Then,

|�Grid| ∈ O
((

1

ε
· log 1

ε
+ 1

ε
· log UB

LB
+ 1

ε
· logα

)K
)

.

Proof We have |�Grid| = (ub − lb + 1)K , where

ub − lb + 1 =
⌈
log1+ ε

2

(K + 1)!
cK

⌉
−
⌊
log1+ ε

2

cK

(K + 1)!
⌋

+ 1

< 2 · log1+ ε
2

(K + 1)!
cK

+ 3

∈ O
(
log1+ ε

2

1

c

)

= O
(
log1+ ε

2

2 · (1 + ε
2 ) · α · UB

ε · LB
)

= O
(
log1+ ε

2

4 · α · UB
ε · LB

)
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= O
(
1

ε
· log 1

ε
+ 1

ε
· log UB

LB
+ 1

ε
· logα

)
,

since 0 < ε < 1. Here, note that a
ε
2 = a(1− ε

2 )·0+ ε
2 ·1 ≤ (1− ε

2 ) ·a0+ ε
2 ·a1 = 1+ ε

2 by
convexity of exponential functions with base a > 0, which implies ε

2 ≤ log(1+ ε
2 ). ��

It remains to prove that �Grid indeed satisfies Property C, for which the main
idea is motivated by the approximation of multi-objective optimization problems, cf.
Papadimitriou and Yannakakis (2000).

Proposition 4.13 Let λ̄ ∈ � such that λ̄i > λmin
i for i = 1, . . . , K. If x ∈ X is an

α-approximation for λ̄, then x is a ((1 + ε
2 ) · α)-approximation for all parameter

vectors

λ ∈
{
λ′ : λ̄k − λmin

k ≤ λ′
k − λmin

k ≤
(
1 + ε

2

)
· (λ̄k − λmin

k ), k = 1, . . . , K
}

.

Proof First let λ ∈ R
K such that λ̄k − λmin

k ≤ λk − λmin
k ≤ (1 + ε

2 ) · (λ̄k − λmin
k ) for

k = 1, . . . , K . Then, for any x ′ ∈ X , it holds that

f (x ′, λ) = f (x ′, λmin) +
K∑

k=1

(λk − λmin
k ) · bk(x ′)

≤ f (x ′, λmin) +
K∑

k=1

(1 + ε

2
) · (λ̄k − λmin

k ) · bk(x ′)

≤ (1 + ε

2
) ·

(
f (x ′, λmin) +

K∑
k=1

(λ̄k − λmin
k ) · bk(x ′)

)

= (1 + ε

2
) · f (x ′, λ̄) ≤ (1 + ε

2
) · α · f (x, λ̄)

= (1 + ε

2
) · α ·

(
f (x, λmin) +

K∑
k=1

(λ̄k − λmin
k ) · bk(x)

)

≤ (1 + ε

2
) · α ·

(
f (x, λmin) +

K∑
k=1

(λk − λmin
k ) · bk(x)

)

= (1 + ε

2
) · α · f (x, λ).

��
Note that �Grid is constructed in a way such that, for any parameter vector λ′ ∈

�compact, there exists a parameter vector λ̄ ∈ �Grid satisfying λ̄k−λmin
k ≤ λ′

k−λmin
k ≤

(1 + 1
ε
)(λ̄k − λmin

k ) for k = 1, . . . , K . Hence, Property C follows immediately by
Proposition 4.13. This concludes the discussion of the details.

Our general approximation method for multi-parametric optimization problems is
now obtained as follows: Given an instance �, an α-approximation algorithm ALGα
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for the non-parametric version, and ε > 0, we construct the grid �Grid defined in (5),
apply ALGα for each parameter vector λ ∈ �Grid, and collect all solutions in a set S.
Since, as shown before, Properties A–C hold true, the set S is indeed a ((1 + ε) · α)-
approximation set. Algorithm 1 summarizes the method.

Algorithm 1 Grid approach for the approximation of multi-parametric optimization
problems.
Require: An instance � of a multi-parametric optimization problem, ε > 0, an α-approximation algo-

rithm ALGα for the non-parametric version of �.
Ensure: A ((1 + ε) · α)-approximation set for �.
1: Compute LB and UB.
2: Compute LB and UB.
3: ε′ ← ε

2 .
4: β ← (1 + ε′) · α.
5: Set c as in (2).
6: Set lb, ub as in (4).
7: Set �Grid as in (5).
8: for λ ∈ �Grid do
9: x ← ALGα(λ)

10: S ← S ∪ {x}
11: end for
12: return S.

Theorem 4.14 Algorithm 1 returns a ((1 + ε) · α)-approximation set S in time

O
(
TLB/UB + TALGα ·

(
1

ε
· log 1

ε
+ 1

ε
· log UB

LB
+ 1

ε
· logα

)K
)

,

where TLB/UB denotes the time needed for computing the bounds LB and UB,
and TALGα denotes the running time of ALGα .

Proof By Lemma 4.12, the number of iterations and, thus, the number of calls to ALGα

is asymptotically bounded by

O
((

1

ε
· log 1

ε
+ 1

ε
· log UB

LB
+ 1

ε
· logα

)K
)

.

Now, it remains to show that the set S returned by the algorithm is a ((1 + ε) · α)-
approximation set, i.e., that, for each parameter vector λ ∈ �, there exists a parameter
vector λ̄ ∈ �Grid such that any α-approximation for λ̄ is a ((1+ ε) ·α)-approximation
for λ. Let λ ∈ � be a parameter vector. By Corollary 4.10, there exists a parameter
vectorλ′ ∈ �compact such that any ((1+ ε

2 )·α)-approximation forλ′ is a ((1+ ε
2 )·α+ ε

2 )-
approximation, and thus a ((1 + ε) · α)-approximation for λ. We set

λ̄i := λmin
i + (1 + ε)mi with mi := �log1+ε′(λ′

i − λmin
i )�.
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Then, by Lemma 4.11, we have lb ≤ mi ≤ ub for i = 1, . . . , K and, thus, λ̄ ∈ �Grid.
Moreover, λ̄i − λmin

i ≤ λ′
i − λmin

i ≤ (1 + ε
2 ) · (λ̄i − λmin

i ) and, hence, any α-
approximation for λ̄ is a ((1+ ε

2 ) · α)-approximation for λ′ by Proposition 4.13. This
concludes the proof. ��
In particular, Theorem 4.14 yields:

Corollary 4.15 Algorithm 1 yields a FPTAS if either an exact algorithm ALG1 or an
FPTAS is available for the non-parametric version of �. If a PTAS is available for
the non-parametric version, Algorithm 1 yields a PTAS.

Proof If an exact algorithm ALG1 is available, the statement directly follows from
Theorem 4.14. Otherwise, for any ε > 0, set δ := √

1 + ε−1. Then, by Theorem 4.14,
we can compute a (1 + ε)-approximation set in time

O
(
TLB/UB + TALG1+δ ·

(
1

δ
· log 1

δ
+ 1

δ
· log UB

LB

)K
)

.

��

5 Minimum-cardinality approximation sets

In this section, the task of finding a β-approximation set S∗ with minimum car-
dinality is investigated. It is stated in Vassilvitskii and Yannakakis (2005) that no
constant approximation factor on the cardinality of S∗ can be achieved in general
for multi-parametric optimization problems with positive parameter set and positive,
polynomial-time computable functions a, bk if only (1+δ)-approximation algorithms
for δ > 0 are available for the non-parametric problem. Thus, the negative result also
holds in the more general case considered here.

Theorem 5.1 For any β > 1 and any integer L ∈ N, there does not exist an algorithm
that computes a β-approximation set S such that |S| < L · |S∗| for every 3-parametric
minimization problem and generates feasible solutions only by calling ALG1+δ for
values of δ > 0 such that 1

δ
is polynomially bounded in the encoding length of the

input.

We remark that the corresponding proof (published in Diakonikolas (2011), Theo-
rem 5.4.12) is imprecise, but the idea remains valid with a more careful construction.
We provide a counterexample and a correction of the proof in the appendix.

Note that this result does not rule out the existence of a method that achieves a
constant factor if a polynomial-time exact algorithm ALG1 is available. We now show
that, in this case, there cannot exist a method that yields an approximation factor
smaller than K + 1 on the cardinality of S∗.

Theorem 5.2 For any β > 1 and K ∈ N, there does not exist an algorithm that
computes a β-approximation set S with |S| < (K + 1) · |S∗| for every K -parametric
minimization problem and generates feasible solutions only by calling ALG1.
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Proof Let β > 1. In the following, an instance of the augmented multi-parametric
optimization problem with parameter set given by the bounded K -dimensional sim-
plex W1 is constructed such that the minimum-cardinality β-approximation set S∗
has cardinality one, but the unique solution x ∈ S∗ cannot be obtained by ALG1, and
any other β-approximation set must have cardinality greater than or equal to K + 1.
Consider an instance with X = {x, x0, . . . , xK } such that

Fi (x) = (K + 1) · β for i = 0, . . . , K ,

and, for i = 0, . . . , K ,

Fi (x
i ) = K + 1 and Fj (x

i ) = (K + 2) · β − 1 for j �= i .

Weshow that the solution x cannot be obtained viaALG1, the set {x} aβ-approximation
set, and the only β-approximation set that does not contain x is {x0, . . . , xK } with
cardinality K + 1.

First, we show that x cannot be obtained via ALG1. For any w ∈ W1, there exists
an index i ∈ {0, . . . , K } such that wi ≥ 1

K+1 and, thus,

w�F(xi ) = (K + 1) · wi + ((K + 2) · β − 1) · (1 − wi )

= (K + 2) · β − 1 + (K + 1 − (K + 2) · β + 1) · wi

= (K + 2) · β − 1 + (K + 2 − (K + 2) · β) · wi

≤ (K + 2) · β − 1 + K + 2

K + 1
· (1 − β)

= (K + 2) · β − 1 + 1 − β + 1

K + 1
· (1 − β)

= (K + 1) · β + 1

K + 1
· (1 − β)

< (K + 1) · β

= w�F(x).

Hence, the solution x cannot be obtained via ALG1. Next, we show that the set {x} is
a β-approximation set. For any w ∈ W1 and any i = 0, . . . , K , it holds that

w�F(x) = β · ((K + 1) · wi + (K + 1) · (1 − wi ))

= β · ((K + 1) · wi + (K + 2 − 1) · (1 − wi ))

≤ β · ((K + 1) · wi + ((K + 2) · β − 1) · (1 − wi ))

= β · w�F(xi ).

Hence, the solution x is a β-approximation for any w ∈ W1. Finally, we show that the
only β-approximation set that does not contain x is {x0, . . . , xK }. Let ei ∈ W1 be the
i th unit vector. Then, for any j ∈ {0, . . . , K } \ {i}, we have

β · (ei )�F(xi ) = (K + 1) · β
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< (K + 1) · β + β − 1

= (K + 2) · β − 1 = (ei )�F(x j ).

Note that, by continuity of w�F(x) in wi for i = 0, . . . , K , there exists a small t > 0
such that, for each i ∈ {0, . . . , K }, the weight wi defined by wi

i := 1 − K ·t
K+1 and

wi
j = t

K+1 , j �= i , satisfies β · (wi )�F(xi ) < (wi )�F(x j ) for all j �= i . Hence,

the above arguments also hold for weights w ∈ W1 ∩ R
K+1
> . Therefore, the above

instance shows that no β-approximation set with cardinality less than K + 1 times
the size of the smallest β-approximation set can be obtained using ALG1 for linear
multi-parametric optimization problems in general.

��

6 Applications

In this section, the established results are applied to linear multi-parametric versions
of important optimization problems. The 1-parametric versions of the shortest path
problem, the assignment problem, linear mixed-integer programs, the minimum cost
flow problem, and the metric traveling salesman problem have previously been cov-
ered in Bazgan et al. (2022). By employing Theorem 4.14, it is easy to see that the
stated results generalize to the multi-parametric case in a straightforward manner. We
now apply Theorem 4.14 to several other well-known problems. Note that, for a max-
imization problem and some β ≥ 1, a β-approximate solution for the non-parametric
version �(λ) is a feasible solution x ∈ X such that f (x, λ) ≥ 1

β
· f (x ′, λ) for all

x ′ ∈ X .
Multi-parametricminimum s-t-cut problemGiven a directed graphG = (V , R)

with |V | = n and |R| = m, a multi-parametric cost function ar +∑K
k=1 bk,r for each

r ∈ R, where ar , bk,r ∈ N0, and two vertices s, t ∈ V with s �= t , themulti-parametric
minimum s-t-cut problem asks to compute an s-t-cut (Sλ, Tλ), s ∈ Sλ and t ∈ Tλ, of
minimum total cost

∑
r :α(r)∈Sλ,ω(r)∈Tλ

ar + ∑K
k=1 λkbr for each λ ∈ � (where α(r)

denotes the start vertex and ω(r) the end vertex of an arc r ∈ R). Here, λmin can be
defined by setting λmin

k := maxr∈R{− ar
K ·bk,r : bk,r �= 0} such that, for each parameter

vector greater than or equal to λmin, the cost of each s-t-cut is nonnegative.
A positive rational upper bound UB as in Assumption 1.3 can be obtained by

summing up the m cost components ar and summing up the m cost components bk,r
for each k, and taking the maximum of these K + 1 sums. The lower bound LB can
be chosen as LB := 1. The non-parametric problem can be solved in O (n · m) for
any fixed λ [cf. Orlin (2013)]. Hence, an FPTAS for the multi-parametric minimum
s-t-cut problem with running time O (

(n · m)( 1
ε
log 1

ε
+ 1

ε
log(mC))K

)
is obtained,

where C denotes the maximum value among all ar , bk,r .
The number of required solutions in an optimal solution set can be super-polynomial

even for K = 1 (Carstensen 1983b). Remarkably, a recent result shows that the number
of required solutions in an optimal solution set of the K -parametric minimum s-t-cut
problem with K > 1 can be exponential even for instances that satisfy the so-called
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source-sink-monotonicity (Allman et al. 2022), whereas instances of the 1-parametric
minimum s-t-cut problem satisfying source-sink-monotonicity can be solved exactly
in polynomial time (Gallo et al. 1989; McCormick 1999). Consequently, in the multi-
parametric case, an FPTAS is the best-possible approximation result even for instances
satisfying source-sink-monotonicity.

Multi-parametric maximization of independence systems Let a finite set E =
{1, . . . , n} of elements and a nonempty family F ⊆ 2E be given. The pair (E,F) is
called an independence system if ∅ ∈ F and, for each set x ∈ F , it follows that all its
subsets x ′ ⊆ x are also contained inF . The elements of F are then called independent
sets. The lower rank l(F) and the upper rank r(F) of a subset F ⊆ E of elements
are defined by l(F) := min{|B| : B ⊆ E, B ∈ F and B ∪ {e} /∈ F for all e ∈ E \ F}
and r(F) := max{|B| : B ⊆ E, B ∈ F}, respectively. The rank quotient q(E,F) of
the independence system (E,F) is then defined as q(E,F) := minF⊆E,l(F) �=0

r(F)
l(F)

.

Moreover, let a multi-parametric cost of the form ae +∑K
k=1 λkbk,e, where ae, bk,e ∈

N0, k = 1, . . . , K , be given for each element e ∈ E . Then, with λmin defined by
λmin
k := maxe∈E {− ae

K ·bk,e : bk,e �= 0}, k = 1, . . . , K , the multi-parametric max-
imization of independence systems problem asks to compute, for each parameter
vector λ greater than or equal to λmin, an independent set xλ ∈ F of maximum
cost

∑
e∈E ae + ∑K

k=1 λkbk,e.
Here, a positive rational upper bound UB as in Assumption 1.3 can be obtained by

summing up the n profit components ae and summing up the n profit components bk,e
for each k, and taking the maximum of these K + 1 sums. The lower bound LB
can again be chosen as LB := 1. For independence systems (E,F) with rank quo-
tient q(E,F), it is known that the greedy algorithm is a q(E,F)-approximation
algorithm for the non-parametric problem obtained by fixing any parameter vec-
tor λ (Korte and Hausmann 1978). Hence, for any ε > 0, the maximization version
of Theorem 4.14 yields a ((1 + ε) · q(E,F))-approximation algorithm with run-
ning timeO (

TGreedy · ( 1
ε
log 1

ε
+ 1

ε
log(nC))K

)
, whereC denotes themaximumprofit

component among all ae, bk,e, and TGreedy denotes the running time of the greedy
algorithm (which can often be seen to be in O(n log(n)) times the running time of
deciding whether F ∈ F holds for any set F ⊆ E of elements). Since the maximum
matching problem (with the assignment problem as a special case) in an undirected
graph G = (V , E) constitutes a special case of the maximization of independence
systems problem (Korte and Hausmann 1978), the number of required solutions in an
optimal solution set for the multi-parametric maximization of independence systems
problem can be super-polynomial in n even for K = 1 (Carstensen 1983a, b).

For example, our result yields a ((1 + ε) · 2)-approximation algorithm for the
multi-parametric b-matching problem and a ((1 + ε) · 3)-approximation algorithm
for the multi-parametric maximum asymmetric TSP [cf. Mestre (2006)]. Note that
the knapsack problem can also be formulated using independence systems. Here, an
approximation scheme for the non-parametric version is known:

Multi-parametric knapsack problem Let a set E = {1, . . . , n} of items and a
budget W ∈ N0 be given. Each item e ∈ E has a multi-parametric profit of the form
ae +∑K

k=1 λk ·bk,e, where ae, bk,e ∈ N0, k = 1, . . . , K , are nonnegative integers, and
a weight we ∈ N0. The parameter vector λmin is chosen by λmin

k := maxe∈E − ae
K ·bk,e :
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bk,e �= 0}, K = 1, . . . , K , such that, for each set x ⊆ {1, . . . , n} of items, the profit
components

∑
e∈x ae and

∑
e∈x bk,e, k = 1, . . . , K , are nonnegative. Then, the multi-

parametric knapsack problem asks to compute a subset x ⊆ E satisfying
∑

e∈x we ≤
W of maximum profit for each parameter vector λ greater than or equal to λmin.

For this problem, a positive rational upper bound UB as in Assumption 1.3 can
again be obtained by summing up the n profit components ae and summing up the
n profit components bk,e for each k, and taking the maximum of these K + 1 sums.
The lower bound LB can again be chosen as LB := 1. The currently best approx-
imation scheme for the non-parametric problem is given in Kellerer and Pferschy
(1999, 2004), which computes, for any ε′ > 0, a feasible solution whose profit
is no worse than (1 − ε′) times the profit of any other feasible solution in time
O (

n · min
{
log n, log 1

ε′
} + 1

ε′ log 1
ε′ · min

{
n, 1

ε′ log 1
ε′
})
. Assuming that n is much

larger than 1
ε′ [cf.Kellerer et al. (2004)], choosing ε′ = 1

2 ·ε and applying themaximiza-
tion version of Theorem 4.14with 1

2 ·ε yields an FPTAS for themulti-parametric knap-

sack problem with running time O
(
(n log 1

ε
+ 1

ε3
log2 1

ε
)( 1

ε
log 1

ε
+ 1

ε
log(nC))K

)
,

where C denotes the maximum profit component among all ae, bk,e.
Again, the number of required solutions in an optimal solution set can be super-

polynomial in n even for K = 1 (Carstensen 1983a).

7 Conclusion

Exact solution methods, complexity results, and approximation methods for multi-
parametric optimization problems are of major interest in recent research. In this
paper, we establish that approximation algorithms for many important non-parametric
optimization problems can be lifted to approximation algorithms for the multi-
parametric version of such problems. The provided approximation guarantee is
arbitrarily close to the approximation guarantee of the non-parametric approximation
algorithm. This implies the existence of a multi-parametric FPTAS for many impor-
tant multi-parametric optimization problems for which optimal solution sets require
super-polynomially many solutions in general.

Moreover, our results show that computing an approximation set containing the
smallest-possible number of solutions is not possible in general. However, practical
routines to reduce the number of solutions in the approximation set, based for exam-
ple on the convexity property of Lemma 4.2 and the approximation method in Bazgan
et al. (2022), might be of interest. Another direction of future research could be the
approximation of multi-parametric MILPs with parameter dependencies in the con-
straints. Here, relaxation methods or a multi-objective multi-parametric formulation
of the problems may provide a suitable approach.
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Appendix A Proof of Theorem 5.1

The proof of Theorem5.1 stated inDiakonikolas (2011), Theorem5.4.12, is imprecise,
as the following example shows.

Example A.1 We define two instances A1 and A2 of the augmented multi-parametric
problem of a multi-parametric optimization problem with parameter set � = R

2
�

following the construction presented in the proof of Theorem 5.4.12 in Diakonikolas
(2011). Instance A1 has feasible set X1 = {x, x1, x2, x3} and instance A2 has feasible
set x2 = {x, x1, x2, x3, x̄1, x̄2, x̄3}. Both instances have the same objective function

w�F(x) = w0 · F0(x) + w1 · F1(x) + w2 · F2(x).

For given β > 1 and z0 > 1, we construct a set Q = {x1, x2, x3} such that F0(x1) =
F0(x2) = F0(x3) = z0, and forwhich the smallestβ-approximation set for an instance
with feasible set Q is Q itself. Then, we construct a solution x such that F0(x) = β ·z0,
β · F1(x) < F1(x�), and β · F2(x) < F2(x�) for � = 1, 2, 3. Thus, {x} is a smallest
β-approximation set for A1. Finally, we choose x̄� such that F0(x̄ l) = z0−1, F1(x̄ l) =
F1(xl), and F2(x̄ l) = F2(xl) for � = 1, 2, 3. We have to show that, for large z0, the
set {x, x̄1, x̄3} is a β-approximation set for A2. Then, {x, x̄1, x̄2, x̄3} is not a smallest
β-approximation set as claimed in Diakonikolas (2011).
Let β > 1 and z0 > 1 and define

F0(x) := β · z0, F1(x) := 1, F2(x) := 1,

F0(x
1) := z0, F1(x

1) := β2, F2(x
1) := 2β6 − β2,

F0(x
2) := z0, F1(x

2) := β4, F2(x
2) := β4,

F0(x
3) := z0, F1(x

3) := 2β6 − β2, F2(x
3) := β2.

Then, β · Fi (x) < Fi (x�) for i = 1, 2 and � = 1, 2, 3. Further, define

F0(x̄
�) := z0 − 1, F1(x̄

�) := F1(x
�), F2(x̄

�) := F2(x
�),
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for � = 1, 2, 3. In the following, we show that:

1. The set {x1, x2, x3} is a smallest β-approximation set for the instance with solution
set {x1, x2, x3} and objective w�F(x). That is, there exists weights w1, w2, w3 ∈
R
3≥ such that

β(w1)�F(x1) < (w1)�F(x2) and β · (w1)�F(x1) < (w1)�F(x3),

β(w2)�F(x2) < (w2)�F(x1) and β · (w2)�F(x2) < (w2)�F(x3),

β(w3)�F(x3) < (w3)�F(x1) and β · (w3)�F(x3) < (w3)�F(x2).

2. For z0 ≥ β2

β−1 +1, the set {x, x̄1, x̄3} is a β-approximation set for the instance with

solution set {x, x1, x2, x3, x̄1, x̄2, x̄3} and objective w�F(x). More precisely, for
w ∈ R

3≥,

• if w0 ≤ β5−1
β

· (w1 + w2), then w�F(x) ≤ β · w�F(x̄2),

• if w0 ≥ β5−1
β

· (w1 + w2) and w1 ≥ w2, then w�F(x̄1) ≤ β · w�F(x̄2),

• if w0 ≥ β5−1
β

· (w1 + w2) and w1 ≤ w2, then w�F(x̄3) ≤ β · w�F(x̄2).

Note that these three statements suffice since Fi (x̄�) ≤ Fi (x�) for i = 1, 2, 3 and
� = 1, 2, 3.
In order to show Statement 1, choose w1 := (2β7 −β3 −β4 +1, β4 −β3, 0)�. Then,

β · (w1)�F(x1) = 2β11 − β7 + β3 − β7

< 2β11 − β7 + β4 − β7

= (w1)�F(x2)

and the inequality β · (w1)�F(x1) < (w1)�F(x3) is equivalent to

4β13 − 2β11 − 2β10 − 4β9 + 2β7 + 4β6 − β3 − β2 > 0,

which is satisfied for all β > 1.
Next, choose w3 := (β4 − β3, 2β7 − β3 − β4 + 1, 0)�. Then, the inequalities β ·
(w3)�F(x3) < (w3)�F(x1) and β · (w3)�F(x3) < (w3)�F(x2) can be shown
analogously.
Finally, choose w2 := (1, 1, 0)�. Then,

β · (w2)�F(x2) = 2β5 < 2β6 = 2β6 − β2 + β2 = (w2)�F(x1).

Since (w2)�F(x1) = (w2)�F(x3), this proves Statement 1.

In order to prove Statement 2, let w := (w0, w1, w2, ) ∈ R
3≥ with w0 ≤ β5−1

β
· (w1 +

w2). Then,

w�F(x) = β · w0 · z0 + w1 + w2
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= β · w0 · (z0 − 1) + w1 + w2 + β · w0

≤ β · w0 · (z0 − 1) + w1 + w2 + β · β5 − 1

β
(w1 + w2)

= β · w0 · (z0 − 1) + β5 · (w1 + w2)

= β · w�F(x̄2).

Next, let w := (w0, w1, w2)
� ∈ R

3≥ with w0 ≥ β5−1
β

· (w1 + w2) and w1 ≥ w2. The
latter inequality implies that

(1 − β4) · w1 ≤ (1 − β4) · w2

⇒ (1 − β4) · w1 ≤ (β4 + 1 − 2β4) · w2

⇒ w1 + 2(β4 − 1) · w2 ≤ β4 · (w1 + w2)

⇒ β2 · w1 + (2β6 − β2) · w2

≤ β6 · (w1 + w2).

Hence, for z0 ≥ β2

β−1 + 1,

w�F(x̄1) = w0 · (z0 − 1) + β2 · w1 + (2β6 − β2) · w2

≤ w0 · (z0 − 1) + β6 · (w1 + w2)

= β · w0 · (z0 − 1) + β6 · (w1 + w2) − (β − 1) · w0 · (z0 − 1)

≤ β · w0 · (z0 − 1) + β6 · (w1 + w2) − (β − 1) · β5 − 1

β

· (w1 + w2) · β2

β − 1

= β · w0 · (z0 − 1) + w1 + w2

< β · w�F(x̄2).

The remaining statement for w0 ≥ β5−1
β

· (w1 + w2) and w2 ≥ w1 now follows by
symmetry. �

Nevertheless, as we now show, the idea of Diakonikolas (2011) remains valid with
a more careful construction.

Proof Given L ∈ N and β > 1, two instances A1, A2 for an augmented multi-
parametric optimization problem of a multi-parametric optimization problem � are
constructed such that a smallest β-approximation set for A2 is L + 1 times as large as
a smallest β-approximation set for A1 and an algorithm has to call ALG1+δ for some δ

with 1
δ
exponentially large in the input size in order to distinguish between the two

instances.
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Let W = R
3
� and z0 ≥ β > 1. Define solutions x∗, x�, � = 1, . . . , L such that

F0(x∗) = β · z0 and F0(x�) = z0 for � = 1, . . . , L , and β · F1(x∗) < F1(x�) < 1 and
β · F2(x∗) < F2(x�) < 1 for � = 1, . . . , L , and such that, for each x�, there exists a
weight w� ∈ W with

((β − 1) · z0 + β) · (w�
1F1(x

�) + w�
2F2(x

�)) < w�
1F1(x

m) + w�
2F2(x

m) (A.1)

for all �,m ∈ {1, . . . , L} with � �= m.7 Further, define solutions x̄�, � = 1, . . . , L
with F0(x̄�) = z0 − 1, F1(x̄�) = F1(x�) and F2(x̄�) = F2(x�) for � = 1, . . . , L . Set
X := {x1, . . . , x L } and X̄ := {x̄1, . . . , x̄ L}.

Let instance A1 have feasible set X ∪ {x∗}, and instance A2 have feasible set X ∪
X̄ ∪ {x∗}. In order to distinguish between the two instances for some weight w, an
algorithm must be guaranteed to obtain different results when calling ALG1+δ on A1

and on A2. Therefore,δ and w have to be chosen such that neither x∗ nor any x� are
a (1+ δ)-approximation for w in A2. That is, for some � ∈ {1, . . . , L}, we must have
w�F(x) > (1+ δ) · w�F(x̄�) for all x ∈ X ∪ X̄ ∪ {x∗} \ {x̄�}. In particular, we need

w�F(x�) > (1 + δ)w�F(x̄�).

This implies that z0 > (1 + δ) · (z0 − 1), so δ < 1
z0−1 , i.e.,

1
δ

> z0 − 1.
Since z0 might be exponentially large in the instance size, δ might have to be chosen

such that 1
δ
is exponential in the instance size in order to distinguish between A1 and A2.

In remains to show that {x∗} is a β-approximation set of minimum cardinality
for A1, whereas X̄ ∪ {x∗} is a β-approximation set of minimum cardinality for A2.
Since

w�F(x∗) = w0F0(x
∗) + w1F1(x

∗) + w2F2(x
∗)

= β · w0F0(x
�) + w1F1(x

∗) + w2F2(x
∗)

≤ β · (w0F0(x
�) + w1F1(x

�) + w2F2(x
�)) = β · w�F(x�)

for all � = 1, . . . , L and w ∈ W , the set {x∗} is a β-approximation set with minimum
cardinality for instance A1.

The set X̄ ∪ {x∗} is also the β-approximation set with minimal cardinality for
instance A2:
Clearly,

X̄ ∪ {x∗} is a β-approximation set for A2 since {x∗} is a β-approximation set for
A1. Let d > 0 such that β · Fi (x∗) + d < Fi (x̄�) for i = 1, 2 and � = 1, . . . , L .
Choose w0 < d

β2z0
and w1 = w2 = 1

2 . Then

β · w�F(x∗) = β2 · w0 · z0 + w1β · F1(x∗) + β · w2F2(x
∗)

< d + 1

2
· β · F1(x∗) + 1

2
· β · F2(x∗)

7 For example F1(x∗) := F2(x
∗) := (2z0 ·β)−2−n and F1(x

�) := (2z0 ·β)�−L , F2(x�) := (2z0 ·β)1−�

with weights w�
1 := (2z0 · β)L−� and w�

2 := (2z0 · β)�−1.
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<
1

2
· F1(x̄�) + 1

2
· F2(x̄�)

≤ w�F(x̄�)

for � = 1, . . . , L . Therefore, the solution x∗ must be contained in every β-

approximation set. Set w̄� =
(

z0
z0−1 · (w̄�

1F1(x̄
�) + w̄�

2F2(x̄
�)), w�

1, w
�
2

)� ∈ W for

� = 1, . . . , L . Then,

w0F0(x̄
l) = z0 ·

(
w̄l
1F1(x̄

l) + w̄l
2F2(x̄

l)
)

.

On the one hand, it holds that

β · (w̄�)�F(x̄�) = β · (1 − z0) ·
(
w̄�
1F1(x̄

�) + w̄�
2F2(x̄

�
)

< z0 ·
(
w̄�
1F1(x̄

�) + w̄�
2F2(x̄

�)
)

+ w̄�
1F1(x̄

m) + w̄�
2F2(x̄

m)

= w̄�
0F0(x̄

�) + w̄�
1F1(x̄

m) + w̄�
2F2(x̄

m)

= w̄�
0F0(x̄

m) + w̄�
1F1(x̄

m) + w̄�
2F2(x̄

m)

= (w̄�)�F(x̄m)

≤ (w̄�)�F(xm)

for all �,m = 1, . . . , L with � �= m, where the last inequality holds by (A.1). On the
other hand, it holds that

β · (w̄�)�F(x̄�) = β ·
(
w̄�
0F0(x̄

�) + w̄�
1F1(x̄

�) + w̄�
2F2(x̄

�)
)

= β · (z0 + 1) ·
(
w̄�
1F1(x̄

�) + w̄�
2F2(x̄

�)
)

= β · z20
z0 − 1

·
(
w̄�
1F1(x̄

�) + w̄�
2F2(x̄

�)
)

= F0(x
∗) · z0

z0 − 1
·
(
w̄�
1F1(x̄

�) + w̄�
2F2(x̄

�)
)

= w̄�
0F0(x

∗)
≤ (w̄�)�F(x∗)

for � = 1, . . . , L . Hence, any β-approximation set for A2 must contain either x� or x̄�

for each � = 1, . . . , L , which proves the claim. ��
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