TOYING WITH JORDAN MATRICES

Eberhard Schock

It is shown that an important resolvent estimate is instable under small perturbations.

In many applications operators T are of interest which fulfill the condition: the resolvent set $\rho(T)$ contains the negative reals, and there is a constant $\gamma > 0$, such that for all positive reals s the "resolvent estimate" holds

$$\left\| (sI + T)^{-1} \right\| \le \frac{\gamma}{s} \,.$$

In the theory of semigroups (see e.g. J.A. GOLDSTEIN [1, p. 20]) or in the theory of evolutionary integral equations (J. PRUESS [4, p. 69]) this condition is well known. In the investigation of regularization methods for ill-posed equations in Banach spaces the condition (res) is necessary for the convergence of the so-called Lavrentiev regularization (see R. PLATO [3], E. SCHOCK/V. PHONG [6], SPECKERT [7]).

The following simple example will show that the condition (res) is unstable under arbitrary small perturbations. We will construct operators J built up with Jordan matrices which act on block subspaces of ℓ_p .

By $J_n(\lambda)$ we denote an $(n \times n)$ -Jordan matrix with the eigenvalue λ and with 1's in the upper diagonal. The following Lemma is well known.

Lemma 1. Let $\lambda \in \mathbb{C}$, $\lambda \neq 0$. Then

$$J_n(\lambda)^{-1} = \begin{pmatrix} \lambda^{-1} & -\lambda^{-2} & \cdots & (-1)^{n-1} & \lambda^{-n} \\ & \lambda^{-1} & \cdots & (-1)^{n-2} & \lambda^{-n+1} \\ & & \ddots & & & \\ & O & & \ddots & & \\ & & & \lambda^{-1} \end{pmatrix}$$

Lemma 2. In $X = \ell_p^n = (\mathbb{C}^n, || \cdot ||_p)$ for $0 < \lambda \le 1$ holds

$$||J_n(\lambda)^{-1}|| \ge \lambda^{-n}.$$

Proof. Let e_n be the n^{th} unit vector, then

$$||J_n(\lambda)^{-1}e_n||_p^p = \sum_{k=1}^n \lambda^{-pk} \ge \lambda^{-pn}.$$

Let $D_n(\lambda)$ be the $(n \times n)$ -diagonal matrix with the eigenvalue λ , then for $\varepsilon > 0$

$$D_n(\lambda) + \varepsilon J_n(0) = \varepsilon J_n\left(\frac{\lambda}{\varepsilon}\right).$$

Proposition 3. Let (λ_k) be a sequence of non-negative reals converging to zero, $\varepsilon > 0$, $n \in \mathbb{N}$ and

$$J_{\varepsilon} = \bigoplus_{k=1}^{\infty} \varepsilon J_n \left(\frac{\lambda_k}{\varepsilon} \right).$$

Then for all s with $0 < s \le \varepsilon$

$$\|(sI+J_{\varepsilon})^{-1}\| \ge \frac{\varepsilon^{n-1}}{s^n}.$$

Proof. We have

$$sI + J_{\varepsilon} = \bigoplus_{k=1}^{\infty} \varepsilon J_n \left(\frac{\lambda_k + s}{\varepsilon} \right).$$

By Lemma 2 for $x = e_{nm}$

$$\|(sI+J_{\varepsilon})^{-1}x\|_p^p = \sum_{k=1}^n \varepsilon^{-p} \frac{\varepsilon^{pk}}{(\lambda_m+s)^{pk}} \ge \left(\frac{\varepsilon^{n-1}}{(\lambda_m+s)^n}\right)^p$$
,

thus

$$\left\| \left(sI + J_{\varepsilon} \right)^{-1} \right\| \ge \sup_{m} \frac{\varepsilon^{n-1}}{(\lambda_{m} + s)^{n}} = \frac{\varepsilon^{n-1}}{s^{n}}.$$

Let $D = \bigoplus_{k=1}^{\infty} D_n(\lambda_k)$, then

$$||D - J_{\varepsilon}|| = \varepsilon$$

because $D - J_{\varepsilon} = \bigoplus_{k=1}^{\infty} \varepsilon J_n(0)$, and $J_n(0)$ acts as a shift operator.

Corollary 4. The operator D fulfills (res), but for every $\varepsilon > 0$ the operator J_{ε} , which is an ε -perturbation of D, violates this condition.

In [4] it is shown, that the Lavrentiev regularization diverges, if (res) is violated. On the other hand, in the treatment of ill-posed problems the discussion of perturbations is indispensable, hence the Lavrentiev method is useless for ill-posed equations in Banach spaces.

The smallest positive integer r, such that for all positive integers k

$$Ker(\lambda I - T)^r = Ker(\lambda I - T)^{r+k}$$

and

$$Range(\lambda I - T)^r = Range(\lambda I - T)^{r+k}$$

is called the Riesz number of the compact operator T. (see e.g. R. KRESS [2, p. 27]).

For compact selfadjoint operators in Hilbert spaces the Riesz number of each eigenvalue $\lambda \neq 0$ is equal to unity. An operator T in a Hilbert space X is said to be *highly non-selfadjoint*, if for any positive integer n there is a finite dimensional T-invariant subspace $E \subset X$, such that the restriction of T onto E has an eigenvalue λ with Riesz number > n.

The following construction of a highly non-selfadjoint operator is a refinement of the construction above.

Let (λ_k) be a sequence of non-negative reals, tending to zero. Then

$$T = \bigoplus_{k=1}^{\infty} J_k\left(\lambda_k\right)$$

is highly non-selfadjoint, since λ_k is an eigenvalue of T with Riesz-number k. The spectrum of T is the unit disk Δ and the sequence (λ_k) .

$$sI - T = \bigoplus_{k=1}^{\infty} J_k \left(s - \lambda_k \right).$$

The entry with number (1,k) of the matrix $(sI-T)^{-1}$ has the modulus $|s-\lambda_k|^{-k}$ hence $\sup_k |s-\lambda_k|^{-k} < \infty$, if $s \notin \{\lambda_k, k \in \mathbb{N}\}$ or if |s| > 1 (since $\lim \lambda_k = 0$). Of course, T is not compact.

Although each matrix $J_k(0)$ is nilpotent, $N = \bigoplus_{k=1}^{\infty} J_k(0)$ is not quasinilpotent, since the spectrum of N is the unit disk Δ .

REFERENCES

- [1] J.A. Goldstein. Semigroups of Linear Operators and Applications. Oxford 1985.
- [2] R. Kress. Linear Integral Equations. Springer, Heidelberg, 1989

- [3] R. Plato. On Resolvent Estimates for Abel Integral Operators and the Regularization of Associated First Kind Integral Equations. J. Integral Equations and Appl., to appear.
- [4] J. Prüss. Integral Equations and Applications. Birkhäuser, Basel 1993.
- [5] E. Schock. Bemerkungen zum Problem der Tikhonov Regularisierung in Banachräumen, in "Inproperly Posed Problems and Their Numerical Treatment", Ed. G. Hämmerlin, K.H. Hoffmann, p. 261-263, Birkhäuser, Basel 1983.
- [6] E. Schock and Vu Quoc Phong. Regularization of ill-posed problems involving unbounded operators in Banach spaces. *Hokkaido Math. J.* 20 (1991), 559-569.
- [7] M. Speckert. On Iterative Methods for Linear Equations Involving Unbounded Operators, in "Beiträge zur Angewandten Analysis und Informatik", Ed. E. Schock, p. 298-313, Shaker, Aachen 1994.

Department of Mathematics University of Kaiserslautern Erwin-Schrödinger-Str. 67663 Kaiserslautern Germany

AMS Subject Classification 47 A 10, 45 BO 5