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Abstract

We consider regularizing iterative procedures for ill-posed problems with ran-
dom and nonrandom additive errors. The rate of square—mean convergence for
iterative procedures with random errors is studied. The comparison theorem is
established for the convergence of procedures with and without additive errors.

1 Introduction
Many problems arising in mathematical applications may be represented in the form
(1) Tz=y

where 7' is a certain operator. In particular, one may regard at the components of
this equation as follows: z represents the unknown data or input, 7" — the known
transformation of these data, and y — the result or output. In slightly different language
one may regard at x as at input signal, T’ being a certain transformation and y — the
signal output. The problem is to reconstruct the input signal given y and 7. The
problem may be more difficult if this reconstruction problem is ill-posed and both y
and T are known with some errors. In this paper certain new results are established
both for deterministic and random additive errors. For random errors we, in some sense,
complete the theory of mean-square optimal order rate procedures.

Assume that T is a bounded linear operator in Hilbert space H, ||T|| < 1, equation
(1) has a unique solution Z. One of important regularizing methods has the form
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Ty =Tp1+ S(T*T)T*(Txp—1 — y), n>1,

where s()) is some real function of the variable A. Algorithms of this type in ill-posed
problems were considered in [5], [3] et al. We consider the case when the operator T
and the right-hand side y are not known exactly,

1Ty =TI <n, llys—yll <6,
and hence the algorithm has the form

(2) Tn = Tn 1+ 8(T, 1)1 (ThZn 1 — Ys), n> 1.

Below procedures with random additive errors will be considered. Let us denote r(\) =
14+ As(A). Then algorithm (4) may be represented in the form (with another s)

(3) Fn = (LT En + s(TT) Tys.

Assume that function s from (3) is measurable,

(4) 0<s(A) <1, sup. II1—As(N)|| <1 Ve > 0.
and o
(5) I (A) = r (A + [s(A) = s(X)]| < ClIA = XTI,

Then the following assertion holds true (see [4]): for any p > 0

(6) sup  ||IAPr(A)"||n? < C, < 0.
n>0,A€[0,1]

The regularizing parameter in algorithms (1) or (2) is often a discrepancy stop-rule of
the type

7 :=inf(n > 0: ||T,&, — ys|| < p),

p=>b0+by (b >2, b>2||z]).

Comment. The algorithm may be improved in a standard way so that it will use
the values [|7, | instead of ||Z]|, see for ex. [5]. Besides, inequalities b; > 2, b > 23|
may be improved to by > 1, b > ||Z||. It requires standard modifications in the proof.



2 Main results

At first we will consider general iterative methods with ”"exact” T' and deterministic
perturbations which make sense for random setting as well. Let

(7) Tpt1 — Tp = Sn(T*T)T*(Tjn - Z/n) — Up+1,

where (y,) is a sequence with limy, = y and (v,) is an arbitrary sequence. It was
shown in [2] that the sufficient general implicit iterative method is given by

(8) (I + fynT*T)jn—l—l = (I - ﬂnT*T)i’n + (ﬂn + ’Vn)T*yn + Wy

We compare the sequence (,) with the "exact” sequence (z,), defined by

Then we have the following result — ”comparison” theorem.

Theorem 1 Lety € R(T), y, € H, such that limy, = y. Let (w,) be a sequence in
H. Let B,y be positive reals with 0 < B, < v, + 2 and X (Bp + n) = 00. If

SOy < oo
=t V'
and
> llwnll < o0
then

limz, = .
(>-* indicates

) Bn + Tn
> ly —vall = D 1y =yl + D Bully = ynll )
n=1 V fyn " ,Yn?é() V ’Yn " 'yn:O " "

Corollary 1 Let, additionally to Theorem 1, T, : H — H be a sequence with

Z (1 +7n)HT_ TnH < 0.
Let (z,) be given by
9) I+ ’YnT;Tn)an =(I— ﬂnT;Tn)Zn + (Bn + %)Tr’fyn + wy

then
limz, = 2.



In the sequel the algorithm has a form
(10) .’IN','n — .’in,1 = S(T;Tn)T;(Tn.’Z'n,I — y(j) + wy,

where (w,) is a sequance of random values. Assume that (w,) are independent and
identically distributed random values (i.i.d.r.v.) in H and

(11) Ew, =0,  Elw,|?*<¢é%.

An important case in the deterministic theory is provided by the assumption
(12) Zo—2=|TPv, p>0, |p||[<r (r>0).

One has for the algorithm (10) the following result in this case.

Theorem 2 Let
e=0(0+n)

and
12> (1+26) (30 + n||2|)? + £2), k> 0.

Then under assumptions of (4)-(5) and (12)

(0 +n)*ET — 0,

Elz, — &[> = 0.

By virtue of theorem 2 we may expect (similar to the nonrandom case) that it is not
necessary to repeat steps of our procedure longer than ap 2 with any constant a > 0.
Moreover, by virtue of some technical reasons in random case it is necessary to stop
our procedure in such a way if we would like to obtain the optimal rate of convergence
(cf. [4]). So let us fix any a > 0 and consider a new stop-rule

(13) o :=min(inf(n > 0: [|T,2, — ys|| < ), ap™?).

Theorem 3 Let
e=0(0+mn), a>0.

Then under assumptions of theorem 2

(§ +n)*Eo — 0,

E|z, — 2| — 0.



The following theorem gives one the optimal convergence rate (compare with de-
terministic theory) under a certain restriction on random errors similar to that on the
initial value Zo. Note that similar results may be obtained in general case as well (cf.
with [6] for the rate of convergence in the mean) under more restrictive assumptions on
the value ¢ (at any rate, in general case ¢ = o(6 + 1)?).

Theorem 4 Let assumptions of theorem 2 be satisfied, € = O(§ + n)?,

(14) Wp = |T|p7)n7

for any n > 0, where (v,) are also i.i.d.r.v. and
Ev, =0, E||v,||? < Cpel Vq.
Then for the stop-rule (13)

Eo < Cyr(0 + 1) 2/ ®+D,
Eo? < Cppp(6 +n)~4/ 1),

E|i, — 2|2 < Cppt(8 + m)%/ D),

APPENDIX
Proof of theorem 1. Let z,, — x,, = d,,, then

dn+1 = Rndn + Qn(yn - y) + inn
with

R,=(I+ ’ynT*T)fl(I — B, T7T),

Qn = (/Bn + Vn)(] + rYnT*T)ilT*a

P, = (I +7,7*T)".

Then we see



[Bull <1, IRl <1,

||Qn|| < ﬂn\/_%yn resp ”Qn“ < B, if Yn =0,

By induction we obtain

dos1 = [[ Ride +>_ [I RiQi(y; —v)+ > [] RiPjwjs1.
=k

j=ki=j+1 j=ki=j+1

The condition Y (3; + ;) = oo implies the strong convergence of [] R; (see [2]), then

e s On t Y -
ldull < I T Ryeill + - ly = y5ll + 2 llwll
Jj=k Jj=k j=k

VI

and for all € > 0 there exist ky such that for all n > k > ky we have
ldn+1]l <e.

Theorem 1 is proved.
Proof of corollary 1. We will show lim (z, — z,) = 0, where (z,) is the ,exact“
sequence of Theorem 1. Let

(15) =T +7%T"T)znt1 — (L — B T*T) 2 — (Bn + )Ty,

then
(I + 7T T)(@ps1 — 2nt1) = (L = B T*T)(xr, — 20) — T

Because of Theorem 1 we have to show

2l < o0

We have, combining (9) and (15),
Tn = Yo (T*T — T:T,) 2041 + Bn(T*T — TT,) 2y,

+(/Bn + ’Yn)(T*y - T;yn) + Wy
Irnll < (v + Bo) (IT™T = T30l + 1Ty — Toymll) sup [|znll + [lwnll
hence Y ||| < oo and by Theorem 1 convergence holds true. Corollary 1 is proved.
Ezxample. To show that the conditions of Theorem 1 are sharp, we consider the real

equation
=0



ie. T=1I1d:IR— IR, y=0, and solve it using the Landweber iteration

Tp+1 = (1 - ﬁn)xn + wy,

with the special choice (3, =w, = % . Then we obtain

n—1 n—1 n—1
oo =1 A= Bpar + D w; [I 1-8)
j=k i=k =it
The first term tends to zero for n — oo.
Computation of the second term:
n—1 1 n—1 1 1
og [T 1-2)= 3 logl——)~ =3~
i=j+1 s ! v
no1 I+ 1
~ —/ —dz = log 1+
j+1 X n
"1 j+1 n—k k
J_kj n  n n

ie forall k£ andall n>2k wehave 2=k>

Thus the second term of the equation does not tend to zero.
Otherwise, if 3 |w,| < oo, then

n

n 1 n
Sw [T -2l <e,
i=k ik

i=j+1

if k is sufficiently large and n > k.

Comment. Usually it is presumed that 7™*ys is computed exactly. But, due to the
ill-posed nature of the operator 7' it may be very likely, that one actually deals with
a perturebed quantily 7*ys + w,, so that w does not belong to the range of 7. Such

situation in the finite dimensional framework has been considered in [1].
Proof of theorem 2. Denote

d:= (T, —=T)2+ Ys —Y); Gn=72.—%, By=1I-s(T;T,)T;T,
Let us consider the conditional expectation
(16) E([lgn+11%1gn) = 1 Botnll” — 2(Byan, s(T;T,) T, d)
(T Ty) T d||* + ElJwpsa ||
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Let us use the bounds (11),

(17) 2/(Bun, d)| < || Bygnll* + c2[ldI* (¢ >0)

<cépt+c?[df]* (n <o),

and

(18) 1By@all* = llaall® = 2{gn, (I = By)an) + | = By)gull?
= lgull® = 2{gn, s(T;Ty) T Tygn) + ||5(T; T) T Ty I
= [laall® = 2lIs(T; 1) > (T3 T,) 2l I
+[8(T; 1) Ty Tygnl®
< lgall® = (T3 7)) gnlI?

<l =12 (<o)
Now, (16)—(18) with ¢ =272 and n < o imply

E(||Qn+1||2|Qn) < ||qn||2 — 2_1(/,1,2 —3d? — 62)

< llgnll* — rd?.

Thus, for any n

EI(n+1<0)llgnull® < EI(n < 0)llgn1||*

< EI(n < 0)|gn|* — kd*EI(n < o).

If we take the sum from any m > 0 to n (n > m) we obtain

EI(n+1 < 0)llgn?

< EI(m < o)|lgmll* — kd*3}_,, EI(k < o).

8



As n — 0o, we have

(19) Kd? i EI(k <o) < EI(m < 0)|gn|*

k=m

In particular,

kd* > ElI(k <o) =kd’Eo < ||q|>.
k=0

Moreover, (19) implies for any m
(20) kd’Eo < kd®m + E||gn|*.

If we show that E||gn|*> — 0,8 + 7 — 0, then it will follow from (20) the assertion
d’Eo — 0.
Denote u := T ((T;, = T)Z — (ys — y))- Then we have the identity

n—1

(21) o = Blgo + Y BEs(TIT,) (u + way).
k=0

Then
Ellgm|l* < 2E||By ol|> + 2m?||ul|?> + me?.

So it is sufficient to prove the assertion
limlim sup E|| B]"g||* = 0,
m n—0
or, equivalently,
lim [B"gol? = 0 (B = Bylymo).

But this equality is well-known (see [4]). Theorem 2 is proved.

Proof of theorem 3 follows from the same considerations as in the proof of theorem
2.

Proof of theorem 4. From (21) one gets

n—1 n—1
Toan = TyBrao + Y T,BEs(Ty T u+ > T, BEs(T T ) wn—.
k=0 k=0

By virtue of lemma 3.2.2 [4] or lemma 4.1.2 [5] one finds
IT:Br ol < I(T;T)" /2 By (T, 1) o]+
HI(T 1) 2 By (T, TP = (T*T) )|

< Orn~@HD/2 4 One, 4y,

where €,, — 0, n — oco. Hence, for n = o — 1 one has
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W< Cr(o = 1) 0/2 1 O(o = 1) e,y +

+C| ZZ;S TnBﬁwalfk |

or

p<Crio—1)"®H2 4 Clo — 1) Y2ne, 1, +

+C|| 520 Ty By |T Prg—1 -

Further, since
152720 T By T Pvo—1 | <

< 300 1T By Ty [Pvg—1—ill + X6 1T, By | TP — TP vo—1ill,

then again due to lemma 3.3.2 [4] or lemma 4.1.2 [5] one gets
I 520 T By T1Pvo-1-k]| <

< CXRZs k™2 vgorkll + X220 mekpllvo-1-kl.

Because
o—2

E Y nekpllve-1-kll < meo(E(o — 1)) = o(u),
k=0

one obtains

o—2 g—2
p< CoB(o = 1) + (B Y [lvpa—il|) (B 30 K71 70)12

(We consider the main case with ¢ — oo in probability; otherwise, the estimate is

trivial.)
Since i
EY |lvg1 > < CB(o — 1) = o),
k=0
it follows

p < CE(oc —1)~?+D/2,
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1

Since 7" is a convex function, we get by virtue of Jensen’s inequality

E(c—1)<(E(oc— 1)*(p+1)/2)*2/(p+1) < Op~ 2y,

Similarly
E(0—-1)*< (E(o — 1),(1,“)/2),4/(”1) < Op ety
(Though we do not need it in this paper, note that similarly
E(c—1)!< (E(0 — 1)*(174'1)/2)*2(1/(174'1) < Oy 2/ D)

for any ¢ > 0.) This consideration corrects the calculations in [6] which were incorrect
for p < 1.
Let us prove the second inequality. Similarly to [6] we have

o—1 o—1
Ellgs|I> < 3(E| B qoll* + E| Y- Bfwo—k—1|I> + E|l Y_ BEDyv|),
k=0 k=0
where
—(T;, = T)& + (ys — y), Dy = s(T; 1)1,
We have

BByl = BBy (1T
< 2B\ By (T TP — (T*T))ul)? + 2B By (T; T, o]

< 2E||BS(T;T,)"?v||? + CnEes—1,p.

The value || B(T;T,)" /29||? may be estimated similarly to [5] and [6] with the help of
moments’ 1nequahty
||BZ—(T;T,’])1’/2U”2 S Cp,rﬂ%/(p_l—l)

(see the proof of theorem 2 in [6]). Next,
B ZBkD v|? = Ell(I = B)Dyv|” < |lvl| < w0
k=0

Let us estimate the second term:
E|| X028 Bfw,_i 1> = E|| Xi—g BF|T[Pvy_41

< 2B 2720 By Ty Pvo—rll” + 2Bl Si=g By (ITyf” — [T1P)ve—k1 ]I

11



Now,

B 23220 By Ty Pvo—pl® < (EXiZ0 lvoial®) (B ERZ kP2

< Ce(Bo)Y?2 < Cep2/th) = o(p2v/(e+D),

Finally, by virtue of the same lemma from [5]

B\ 382 By(ITl? = |TP)vo—1—s|”

< E(Cp 0P 75 lve-a-l)*.

We have
E(3720 llvo—1-kll)?
< 2E(X7 55 ([vo-1-kll = Ellvo—1-#1))? + 2E(Z7Z5 Bllvo-1-])?
< C(e?Eo + e2Eo?)
< O(pt=2/+1) 1A=t/ (1))
Thus,

o—1
nmm(l,p)E(Z ”'Ua—l—k”)2 — O(/LQP/(p+1))
k=0

both for p > 1 and p < 1. Theorem 4 is proved.
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