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Abstract
In this paper we investigate a utility maximization problem with drift uncertainty in a mul-
tivariate continuous-time Black–Scholes type financial market which may be incomplete.
We impose a constraint on the admissible strategies that prevents a pure bond investment
and we include uncertainty by means of ellipsoidal uncertainty sets for the drift. Our main
results consist firstly in finding an explicit representation of the optimal strategy and the
worst-case parameter, secondly in proving a minimax theorem that connects our robust util-
ity maximization problem with the corresponding dual problem. Thirdly, we show that, as
the degree of model uncertainty increases, the optimal strategy converges to a generalized
uniform diversification strategy.

Keywords Portfolio optimization · Drift uncertainty · Minimax theorems · Diversification

Mathematics Subject Classification 91G10 · 91B16 · 93E20

1 Introduction

Model uncertainty is a challenge that is inherent in many applications of mathematical mod-
els. Optimization procedures in general take place under a particular model. This model,
however, might be misspecified due to statistical estimation errors, incomplete information,
biases, and for various other reasons. In that sense, any specified model must be under-
stood as an approximation of the unknown “true” model. Difficulties arise since a strategy
which is optimal under the approximating model might perform rather badly for the true
model specifications. A natural way to deal with model uncertainty is to consider worst-case
optimization.

Model uncertainty, also called Knightian uncertainty in reference to the seminal book
by Knight [10], has been addressed in numerous papers. Gilboa and Schmeidler [9] and
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Schmeidler [27] formulate rigorous axioms on preference relations that account for risk
aversion and uncertainty aversion. A robust utility functional in their sense is a mapping

X �→ inf
Q∈QEQ

[
U (X)

]
,

where U is a utility function and Q a convex set of probability measures. Chen and Epstein
[4] give a continuous-time extension of this multiple-priors utility. In Maccheroni et al. [15]
the authors thoroughly axiomatize the robust approach to utility maximization via so-called
ambiguity-averse preferences.

Optimal investment decisions under such preferences are investigated in Quenez [23] and
Schied [25]. An extension of those results by means of a duality approach is given in Schied
[26]. Uncertainty about both drift and volatility in a continuous-time Brownian framework
under multiple priors is studied by Lin and Riedel [13]. Further papers addressing drift
uncertainty in financial markets are Garlappi et al. [8] and Biagini and Pınar [2]. The latter
also focuses on ellipsoidal uncertainty sets, as we do in this work. Neufeld and Nutz [18]
incorporate jumps of the price process by considering a Lévy processes setup.

A relation between model uncertainty and portfolio diversification is investigated in a
recent paper by Pham et al. [22]. Pflug et al. [21] study a one-period risk minimization
problemundermodel uncertainty and showconvergence of the optimal strategy to the uniform
diversification strategy. Our results generalize these findings to a continuous-time utility
maximization problem and provide an explanation for the good performance of the uniform
diversification strategy also in a continuous-time setting.

The optimization problem that we address here is a utility maximization problem in a
continuous-time financial market. The most basic utility maximization problem in a Black–
Scholes market is the Merton problem of maximizing expected utility of terminal wealth. It
can be written in the form

V (x0) = sup
π∈A(x0)

E
[
U (Xπ

T )
]
,

whereU : R+ → R is a utility function, Xπ
T denotes the terminalwealth that is achievedwhen

using strategyπ , andA(x0) is the class of admissible strategies starting with initial capital x0.
Merton [16] solves this problem for power and logarithmic utility in a multivariate financial
market model and gives a corresponding optimal strategy. However, the setup of the problem
assumes that an investor knows the market parameters, in particular the drift μ of asset
returns. This is a rather unrealistic assumption since drift parameters are notoriously difficult
to estimate. To obtain strategies that are robust with respect to a possible misspecification of
the drift we consider the worst-case optimization problem

V (x0) = sup
π∈A(x0)

inf
μ∈K Eμ

[
U (Xπ

T )
]
.

Here, we write Eμ[·] for the expectation with respect to a measure Pμ under which the drift
of the asset returns is μ ∈ R

d , with d denoting the number of risky assets in the market.
The set K ⊆ R

d is called the uncertainty set. Our aim is to study the structure of optimal
strategies, as well as their asymptotic behavior as the uncertainty set K increases. Since for
large uncertainty, investors usually do not invest in the risky assets at all, we restrict the class
of admissible strategies by imposing a constraint that prevents a pure bond investment. We
focus on ellipsoidal uncertainty sets K , see (4).

Our main results consist firstly in finding an explicit representation of the optimal strat-
egy and the worst-case drift parameter for the robust utility maximization problem with
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constrained strategies and ellipsoidal uncertainty sets. Secondly, by using this explicit repre-
sentation, a minimax theorem of the form

sup
π∈A(x0)

inf
μ∈K Eμ

[
U (Xπ

T )
] = inf

μ∈K sup
π∈A(x0)

Eμ

[
U (Xπ

T )
]

is proven. Thirdly, we show that the optimal strategy converges to a generalized uniform
diversification strategy. In case of K being a ball, this is the equal weight strategy, corre-
sponding to uniform diversification. This result is somewhat surprising since in the limit the
optimal strategy does not depend on the volatility structure of the assets anymore. In that
sense, our results help to explain the popularity of uniform diversification strategies by the
presence of uncertainty in the model.

The paper is organized as follows. In Sect. 2we state ourmultivariate, possibly incomplete,
Black–Scholes type financial market model and introduce the robust utility maximization
problem. Our main results are given in Sect. 3, where we solve our optimization problem
for power and logarithmic utility. The main idea is to solve the dual problem explicitly and
to show then that the solution forms a saddle point of the problem. We give representations
of the optimal strategy and the worst-case drift parameter and prove a minimax theorem. In
Sect. 4 we study the asymptotic behavior of the optimal strategy and the worst-case parameter
as the degree of uncertainty goes to infinity. We show that the optimal strategy converges to
a generalized uniform diversification strategy, where by uniform diversification we mean the
equal weight or 1/d strategy for the investment in the risky assets. Furthermore, we analyze
the influence of the investor’s risk aversion on the speed of convergence and investigate
measures for the performance of the optimal robust strategies. Section 5 gives an outlook on
more general financial market models with stochastic drift processes for which we state a
suitable problem formulation. Our results can then be used to derive an explicit representation
of the optimal strategy as well as a minimax theorem also in the more general model. For
better readability, all proofs are collected in Appendix A.
Notation.We use the notation Id for the identity matrix in Rd×d as well as ei , i = 1, . . . , d ,
for the i-th standard unit vector in Rd , and 1d for the vector in Rd containing a one in every
component.We shortly writeR+ = (0,∞). By 〈·, ·〉we denote the scalar product onRd×R

d

with 〈x, y〉 = x	y for x, y ∈ R
d . If x ∈ R

d is a vector, ‖x‖ denotes the Euclidean norm
of x .

2 Robust utility maximization problem

2.1 Financial market model

We consider a continuous-time financial market with one risk-free and various risky assets.
By T > 0we denote some finite investment horizon. Let (�,F,F,P) be a filtered probability
space where the filtration F = (Ft )t∈[0,T ] satisfies the usual conditions. All processes are
assumed to be F-adapted. The risk-free asset S0 is of the form S0t = er t , t ∈ [0, T ], where
r ∈ R is the constant risk-free interest rate. Aside from the risk-free asset, investors can also
invest in d ≥ 2 risky assets. Their return process R = (R1, . . . , Rd)	 is defined by

dRt = ν dt + σ dWt , R0 = 0,

whereW = (Wt )t∈[0,T ] is anm-dimensional Brownianmotion underPwithm ≥ d , allowing
for incomplete markets. Further, ν ∈ R

d and σ ∈ R
d×m , where we assume that σ has full

rank equal to d .
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We introduce model uncertainty by assuming that the true drift of the stocks is only known
to be an element of some set K ⊆ R

d with ν ∈ K and that investors want to maximize their
worst-case expected utility when the drift takes values within K . The value ν can be thought
of as an estimate for the drift that was for instance obtained from historical stock prices.
Changing the drift from ν to some μ ∈ K can be expressed by a change of measure. For this
purpose, define the process (Zμ

t )t∈[0,T ] by

Zμ
t = exp

(
θ(μ)	Wt − 1

2
‖θ(μ)‖2t

)
,

where θ(μ) = σ	(σσ	)−1(μ − ν). We can then define a new measure P
μ by setting

dPμ

dP = Zμ
T . Note that since θ(μ) is a constant, the process (Zμ

t )t∈[0,T ] is a strictly positive
martingale. Therefore, Pμ is a probability measure that is equivalent to P and we obtain
from Girsanov’s Theorem that the process (Wμ

t )t∈[0,T ], defined by Wμ
t = Wt − θ(μ)t , is a

Brownian motion under Pμ. We can thus rewrite the return dynamics as

dRt = ν dt + σ dWt = ν dt + σ
(
dWμ

t + θ(μ) dt
) = μ dt + σ dWμ

t ,

and see that a change of measure from P to Pμ corresponds to changing the drift in the return
dynamics from ν to μ. We thus shortly write Eμ[·] for the expectation under measure Pμ and
E[·] = Eν[·] for the expectation under our reference measure P = P

ν .
An investor’s tradingdecisions are describedby a self-financing trading strategy (πt )t∈[0,T ]

with values in Rd . The entry π i
t , i = 1, . . . , d , is the proportion of wealth invested in asset i

at time t . The corresponding wealth process (Xπ
t )t∈[0,T ] given initial wealth x0 > 0 can then

be described by the stochastic differential equation

dXπ
t = Xπ

t

(
r dt + π	

t (μ − r1d) dt + π	
t σ dWμ

t

)
, Xπ

0 = x0,

for any μ ∈ K . We require trading strategies to be F
R-adapted, where we have F

R =
(F R

t )t∈[0,T ] for F R
t = σ((Rs)s∈[0,t]). The admissibility set is defined as

A(x0) =
{
π = (πt )t∈[0,T ]

∣∣∣∣ π is FR-adapted, Xπ
0 = x0,

Eμ

[∫ T

0
‖σ	πt‖2 dt

]
< ∞ for all μ ∈ K

}
.

Our robust portfolio optimization problem can then be formulated as

V (x0) = sup
π∈A(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
]
, (1)

whereUγ is a power or logarithmic utility function, i.e.Uγ : R+ → R for any γ ∈ (−∞, 1),
where Uγ (x) = xγ

γ
for γ �= 0 denotes power utility, U0(x) = log(x) logarithmic utility.

2.2 Constraint on the admissible strategies

In the following, our aim is to investigate problem (1) in detail. First, wemake the observation
that for a large degree of model uncertainty the trivial strategy π ≡ 0 becomes optimal both
for logarithmic and for power utility. This result has been shown in a similar setting byBiagini
and Pınar [2, Sec. 3.1–3.2] who address in addition to the finite horizon setting also the case
with an infinite time horizon.
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Proposition 2.1 Let γ ∈ (−∞, 1) and K ⊆ R
d . If r1d ∈ K, then the strategy (πt )t∈[0,T ]

with πt = 0 for all t ∈ [0, T ] is optimal for the optimization problem

sup
π∈A(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
]
. (2)

This observation implies that as the level of uncertainty about the true drift parameter
exceeds a certain threshold, it is optimal for investors to not invest anything in the stocks.

Remark 2.2 Proposition 2.1 could be reformulated in terms of robust utility functionals by
assuming only that a martingale measure is in the ambiguity set. The statement of the propo-
sition is in line with Øksendal and Sulem [19,20] where the authors obtain a similar result
for optimality of π ≡ 0. They consider a jump diffusion model with a worst-case approach
where the market chooses a scenario from a fixed but very comprehensive set of probability
measures. In contrast, it is shown in Zawisza [29] that, if the model allows for stochastic
interest rate r , the optimal strategy does not invest exclusively in the bond. Lin and Riedel
[14] show that, when there is a large degree of uncertainty about interest rates, the investor
even puts all money in the risky assets.

Investing everything in the risk-free asset is a sensible but very extreme reaction to model
uncertainty.We are interested in finding out which strategies are reasonable under highmodel
uncertainty if investors still want to invest a part of their wealth into the risky assets, or,
alternatively, if they are forced to invest due to some external requirements. For that purpose,
we introduce a constraint on our strategies that prevents investors from solely investing in
the bond. Consider for some h > 0 the admissibility set

Ah(x0) = {
π ∈ A(x0)

∣∣ 〈πt , 1d〉 = h for all t ∈ [0, T ]}.
We do not want to exclude short-selling, so negative entries of π are possible. Taking h = 1
would imply that investors are not allowed to invest anything in the risk-free asset. They must
then distribute all of their wealth among the risky assets. For instance, a constraint of the
form 〈πt , 1d〉 = h > 0 typically applies for some mutual funds when investors are required
to invest a certain amount in risky assets. Moreover, it has been studied in DeMiguel et al. [6]
how constraining the norm of portfolio weight vectors in a one-period model can improve
portfolio performance in the presence of estimation errors.

Remark 2.3 The admissibility setAh(x0)might seem unnecessarily restrictive at first glance.
Instead of fixing 〈πt , 1d〉 = h one might want to consider utility maximization among the
larger class of strategies π with 〈πt , 1d〉 ≥ h. However, we are mainly interested in the
asymptotic behavior of the optimal strategies as the level of uncertainty increases. It is
intuitively clear that, when uncertainty is large, investors seek to invest as little as possible
in the risky assets. Therefore, we consider optimization among strategies in Ah(x0) and use
our results to show that enlarging the class of admissible strategies asymptotically does not
change the value of the optimization problem, see Sect. 4.2.

3 A duality approach

In this section we solve for power or logarithmic utility Uγ and for specific uncertainty sets
K the optimization problem

sup
π∈Ah(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
]
. (3)

123



372 Mathematics and Financial Economics (2022) 16:367–397

Remark 3.1 In the situation with logarithmic utility and uncertainty sets that are balls in some
p-norm, p ∈ [1,∞), it is possible to carry over methods from a one-period risk minimization
problem as in Pflug et al. [21] to our continuous-time robust utility maximization problem.
If K = {μ ∈ R

d | ‖μ − ν‖p ≤ κ}, then for every ε > 0 there exists a κ0 > 0 such that for
all κ ≥ κ0 the strategy π∗(κ) that is optimal for

sup
π∈Ah(x0)

π deterministic

inf
μ∈K Eμ

[
log(Xπ

T )
]

satisfies
∥
∥
∥
∥
1

T

∫ T

0

(
π∗
s (κ) − h

d
1d

)
ds

∥
∥
∥
∥
q

< ε,

where q ∈ (1,∞] with 1
p + 1

q = 1. See Westphal [28, Thm. 3.4] for a proof. This shows
that the optimal strategy among the deterministic ones converges, as uncertainty increases,
to a uniform diversification strategy πu with πu

t = h
d 1d for every t ∈ [0, T ]. Hence, as

uncertainty about the true drift parameter goes to infinity, investors split the proportion h of
their money more and more evenly among all risky assets.

This approach has several drawbacks. Firstly, we can follow the ideas from Pflug et al.
[21] in continuous time only for logarithmic utility and uncertainty sets K that are balls in
p-norm. Secondly, we have to restrict to the class of deterministic strategies to be able to use
their methods. However, it is by no means clear in the first place that an optimal strategy to
our problem should be a deterministic one. In fact, in manyworst-case optimization problems
it is even beneficial to use randomized strategies, see Delage et al. [5]. And lastly, the above
result does not yield an explicit solution to the robust optimization problem, it only gives
asymptotic results for large levels of uncertainty. To overcome these problems we follow
here a different approach that works for both power and logarithmic utility and that results
in an explicit solution of the optimization problem.

We study the case where the uncertainty set is an ellipsoid in R
d centered around the

reference parameter ν, i.e.

K = {
μ ∈ R

d
∣∣ (μ − ν)	Γ −1(μ − ν) ≤ κ2}. (4)

Here, κ > 0, ν ∈ R
d , and Γ ∈ R

d×d is symmetric and positive definite. The matrix Γ

determines the shape of the ellipsoid, the value of κ its size. Higher values of κ correspond
to more uncertainty about the true drift.

By means of Γ we can model that some (linear combinations of) drifts are known at a
higher degree of accuracy than others. A special case discussed in the literature is Γ = σσ	,
see e.g. Biagini and Pınar [2]. But also different forms of Γ can be motivated. For Γ = Id
we simply get a ball in the Euclidean norm with radius κ and center ν. By setting Γ equal to
a diagonal matrix different from the identity we can give different weights to the uncertainty
of the single asset drifts.

More generally, assume that the reference drift parameter ν is obtained as the value of
an unbiased estimator μ̂ for the true drift, say from observing historical returns. Then the
covariance matrix cov(μ̂) is a reasonable choice for Γ , because then the uncertainty set
K constitutes a natural (asymptotic) confidence region for the true drift. This flexibility in
the form of Γ is especially useful for a generalization of our model to a setting with time-
dependent drift and uncertainty sets, see Sect. 5, where we give a short outlook on Sass and
Westphal [24]. In that follow-up work a time-dependent uncertainty set is constructed based
on filtering techniques.
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3.1 Solution of the non-robust problem

To solve the optimization problem (3) we first address the non-robust constrained utility
maximization problem under a fixed parameter μ ∈ R

d . We repeatedly make use of a
specific matrix that we introduce in the following lemma.

Lemma 3.2 Consider the matrix

D =
⎛

⎜
⎝

1 0 −1
. . .

...

0 1 −1

⎞

⎟
⎠ ∈ R

(d−1)×d .

Then, given that σ ∈ R
d×m has rank d, Dσ has rank d − 1.

The matrix D defined in the lemma above comes up naturally in calculations when using
the constraint 〈πt , 1d〉 = h in the form πd

t = h−∑d−1
i=1 π i

t . This can be seen as a reduction of
the problem from d dimensions to d−1 dimensions. For better readability of the calculations
below we introduce the following notation.

Definition 3.3 We define the matrix A ∈ R
d×d and the vector c ∈ R

d by

A = D	(Dσσ	D	)−1D,

c = ed − D	(Dσσ	D	)−1Dσσ	ed = (Id − Aσσ	)ed ,

where D ∈ R
(d−1)×d is as given in Lemma 3.2 and ed is the d-th standard unit vector in Rd .

Note that we assume σ ∈ R
d×m to have full rank, hence by the previous lemma we

know that Dσ has full rank, in particular Dσσ	D	 = Dσ(Dσ)	 is nonsingular. Using
this notation we give the optimal strategy for the constrained optimization problem given a
fixed drift μ. The possible incompleteness of the market does not complicate our approach
here. The reason is that, for determining the optimal strategy, we can essentially reduce the
problem to an unconstrained less-dimensional financial market where the optimal strategy
can be obtained as a classical Merton strategy.

Proposition 3.4 Let μ ∈ R
d . Then the optimal strategy for the optimization problem

sup
π∈Ah(x0)

Eμ

[
Uγ (Xπ

T )
]

is the strategy (πt )t∈[0,T ] with

πt = 1

1 − γ
Aμ + hc

for all t ∈ [0, T ], with A and c as in Definition 3.3.

In the proof the d-dimensional constrained problem is reduced to a (d − 1)-dimensional
unconstrained problem. Using the form of the optimal strategy in the (d − 1)-dimensional
market which is known fromMerton [16] yields the following representation for the optimal
expected utility from terminal wealth.
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Corollary 3.5 Let μ ∈ R
d . Then the optimal expected utility from terminal wealth is

sup
π∈Ah(x0)

Eμ

[
Uγ (Xπ

T )
]

=
⎧
⎨

⎩

xγ
0
γ
exp

(
γ T

(
r̃ + 1

2(1−γ )

(
μ̃ − r̃1d−1

)	
(̃σ σ̃	)−1

(
μ̃ − r̃1d−1

)))
, γ �= 0,

log(x0) +
(
r̃ + 1

2

(
μ̃ − r̃1d−1

)	
(̃σ σ̃	)−1

(
μ̃ − r̃1d−1

))
T , γ = 0,

where

σ̃ = Dσ,

r̃ = (1 − h)r + he	
d μ − 1

2
(1 − γ )‖hσ	ed‖2,

μ̃ = Dμ − h(1 − γ )Dσσ	ed + r̃1d−1.

(5)

The previous results give a representation of the optimal strategy and the optimal expected
utility of terminal wealth under the constraint 〈πt , 1d〉 = h, given that the drift parameter μ

is known. Of course, both the strategy and the terminal wealth then depend on μ. However,
we aim at solving the robust utility maximization problem

sup
π∈Ah(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
]
.

For that purpose, we address in a next step the question what the worst possible parameter μ

would be for the investor, given that she reacts optimally, i.e. by applying the strategy from
Proposition 3.4. This corresponds to solving the dual problem

inf
μ∈K sup

π∈Ah(x0)
Eμ

[
Uγ (Xπ

T )
]
.

Note here that we do not know yet whether equality holds between our original problem
and the corresponding dual problem. In general the solution of the dual problem may not be
of great help. In the following, after deriving the solution to the dual problem, we prove a
minimax theorem that establishes the desired equality. Results from the literature, e.g. from
Quenez [23], do not directly carry over to our setting as we discuss in Remark 3.9 below.

3.2 The worst-case parameter

From Corollary 3.5 we have a representation of the optimal expected utility of terminal
wealth, depending on the transformed parameters r̃ , μ̃ and σ̃ . Note that for any γ ∈ (−∞, 1),
minimizing this expression in μ is equivalent to minimizing

r̃ + 1

2(1 − γ )

(
μ̃ − r̃1d−1

)	
(̃σ σ̃	)−1(μ̃ − r̃1d−1

)
.

We now plug in the representations of r̃ , μ̃ and σ̃ from the corollary and obtain

(1 − h)r + he	
d μ − 1

2
(1 − γ )‖hσ	ed‖2

+ 1

2(1 − γ )

(
Dμ − h(1 − γ )Dσσ	ed

)	
(Dσσ	D	)−1(Dμ − h(1 − γ )Dσσ	ed

)
.
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Our aim is to minimize the above expression in μ. We see that many terms do not depend on
μ. The minimization is therefore equivalent to the minimization of

1

2(1 − γ )
μ	D	(Dσσ	D	)−1Dμ + h

(
e	
d μ − (Dσσ	ed)	(Dσσ	D	)−1Dμ

)

= 1

2(1 − γ )
μ	Aμ + hc	μ

(6)

on the ellipsoid K , where A and c were introduced in Definition 3.3. To make this minimiza-
tion problem easier, we apply a transformation to the elementsμ ∈ K . For that purpose, note
that since Γ ∈ R

d×d is assumed to be symmetric and positive definite, there exists some non-
singular matrix τ ∈ R

d×d such that Γ = ττ	. The matrix τ can be obtained for example by
theCholesky decomposition. Thenwe can rewrite the constraint (μ−ν)	Γ −1(μ−ν) ≤ κ2 as

κ2 ≥ (μ − ν)	(ττ	)−1(μ − ν) = (μ − ν)	(τ	)−1τ−1(μ − ν)

= (
τ−1(μ − ν)

)	(
τ−1(μ − ν)

)
.

Hence, for an arbitrary μ ∈ K we define ρ := τ−1(μ− ν) so that μ = ν + τρ and ‖ρ‖ ≤ κ .
We can then rewrite (6) as

1

2(1 − γ )
μ	Aμ + hc	μ

= 1

2(1 − γ )

(
(τρ)	Aτρ + 2ν	Aτρ + ν	Aν

) + hc	τρ + hc	ν

= 1

2(1 − γ )
ρ	τ	Aτρ +

( 1

1 − γ
Aν + hc

)	
τρ + 1

2(1 − γ )
ν	Aν + hc	ν.

Minimizing (6) in μ ∈ K is therefore equivalent to minimizing the function g : Bκ (0) → R

with

g(ρ) = 1

2(1 − γ )
ρ	τ	Aτρ +

(
hc + 1

1 − γ
Aν

)	
τρ

in ρ and then setting μ = ν + τρ. The behavior of g is determined to a large extent by the
matrix A from Definition 3.3. So we analyze properties of A next.

Lemma 3.6 The matrix A is symmetric and positive semidefinite and ker(A) = span({1d}).
We immediately deduce that also τ	Aτ ∈ R

d×d is symmetric and positive semidefinite
with ker(τ	Aτ) = span({τ−11d}). Having collected these properties of the matrix A and of
τ	Aτ enables us to find the parameter ρ that minimizes g(ρ) on the set Bκ (0).

Lemma 3.7 Let 0 = λ1 < λ2 ≤ · · · ≤ λd denote the eigenvalues of τ	Aτ , and let further
v1 = 1

‖τ−11d‖τ−11d , v2, . . . , vd ∈ R
d denote the respective orthogonal eigenvectors with

‖vi‖ = 1 for all i = 1, . . . , d. Then the minimum of the function g : Bκ (0) → R with

g(ρ) = 1

2(1 − γ )
ρ	τ	Aτρ +

(
hc + 1

1 − γ
Aν

)	
τρ

on the domain Bκ (0) = {ρ ∈ R
d | ‖ρ‖ ≤ κ} is attained by the vector

ρ∗ = −
d∑

i=1

(
λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)−1〈

hτ	c + λi

1 − γ
τ−1ν, vi

〉
vi ,

where ψ(κ) ∈ (0, κ] is uniquely determined by ‖ρ∗‖ = κ .
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Note that ψ(κ) in the above lemma is the unique value in (0, κ] that makes ρ∗ lie on the
boundary of Bκ (0). In the representation ρ∗ = ∑d

i=1 aivi it holds a1 = −ψ(κ), i.e. ψ(κ) is
the negative of the coefficient belonging to v1. Recall that v1 is the eigenvector to eigenvalue
zero of τ	Aτ , hence it plays an important role in the minimization of the function g above.
In Sect. 4 we will study the asymptotic behavior for large uncertainty κ . It will turn out that
asymptotically v1 will be the dominant component in the representation ρ∗ = ∑d

i=1 aivi , a
claim that we show by analyzing the asymptotic behavior of ψ(κ). The previous lemma now
yields the solution of the dual problem to our original optimization problem.

Theorem 3.8 Let 0 = λ1 < λ2 ≤ · · · ≤ λd denote the eigenvalues of τ	Aτ , and let further
v1 = 1

‖τ−11d‖τ−11d , v2, . . . , vd ∈ R
d denote the respective orthogonal eigenvectors with

‖vi‖ = 1 for all i = 1, . . . , d. Then

inf
μ∈K sup

π∈Ah(x0)
Eμ

[
Uγ (Xπ

T )
] = Eμ∗

[
Uγ (Xπ∗

T )
]
,

where

μ∗ = ν − τ

d∑

i=1

(
λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)−1〈

hτ	c + λi

1 − γ
τ−1ν, vi

〉
vi

for ψ(κ) ∈ (0, κ] that is uniquely determined by ‖τ−1(μ∗ − ν)‖ = κ , and where (π∗
t )t∈[0,T ]

is for all t ∈ [0, T ] defined by

π∗
t = 1

1 − γ
Aμ∗ + hc.

Remark 3.9 The preceding theorem solves the problem

inf
μ∈K sup

π∈Ah(x0)
Eμ

[
Uγ (Xπ

T )
]
. (7)

This is the corresponding dual problem to our original optimization problem

sup
π∈Ah(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
]
, (8)

but in general the values of these two problems do not coincide. There are, of course, spe-
cial cases in which the supremum and the infimum do interchange. Those results are called
minimax theorems in the literature. In a portfolio optimization setting that is similar to ours
a minimax theorem has been shown in Quenez [23]. Here, the author applies classical tech-
niques from Kramkov and Schachermayer [11,12] for incomplete markets and embeds them
into a multiple-priors framework. However, there are two main points that distinguish our
setting from the one in Quenez [23]. Firstly, the results in that paper are only shown for
non-negative utility functions and therefore not directly applicable to power utility Uγ with
a negative γ . Secondly, the constraint 〈πt , 1d〉 = h that we put on the admissible trading
strategies alters the structure of attainable terminal wealths so that it would be necessary to
adjust the proofs and check several technical assumptions.

In addition, note that a minimax theorem does not endow us with the form of the optimal
strategy (or the worst-case drift) yet. To obtain an explicit representation of the same, we
would still need to go through the calculations done in this section. In the following, we
will use the explicit representation of the optimal strategy for (7) to show that it indeed also
solves (8) and that in this case, the supremum and the infimum can be interchanged.
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3.3 Aminimax theorem

The following representation of π∗ is useful for proving our minimax theorem.

Lemma 3.10 The strategy π∗ from Theorem 3.8 satisfies

π∗
t = − h

ψ(κ)‖τ−11d‖Γ −1(μ∗ − ν)

for all t ∈ [0, T ].
The preceding lemma characterizes the strategy π∗, which is the best strategy an investor

can choose when the drift of stocks is μ∗. In the following we show that, vice versa, μ∗ is
also the parameter the market has to choose to minimize the investor’s expected utility of
terminal wealth, given that the investor applies strategy π∗. It then follows that the point
(π∗, μ∗) is a saddle point of our problem, i.e. it holds

Eμ∗
[
Uγ (Xπ

T )
] ≤ Eμ∗

[
Uγ (Xπ∗

T )
] ≤ Eμ

[
Uγ (Xπ∗

T )
]

for all μ ∈ K and π ∈ Ah(x0). This property is essential for proving our minimax theorem.
Note that the inequality

sup
π∈Ah(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
] ≤ inf

μ∈K sup
π∈Ah(x0)

Eμ

[
Uγ (Xπ

T )
]

always holdswhen interchanging supremumand infimum, seeEkeland andTemam[7,Ch.VI,
Prop. 1.1], for example. For the reverse inequality the saddle point property is needed.

Theorem 3.11 Let K = {μ ∈ R
d | (μ − ν)	Γ −1(μ − ν) ≤ κ2}. Then the parameter μ that

attains the minimum in

inf
μ∈K Eμ

[
Uγ (Xπ∗

T )
]

is μ∗, where both μ∗ and π∗ are defined as in Theorem 3.8. In particular, it follows that

sup
π∈Ah(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
] = Eμ∗

[
Uγ (Xπ∗

T )
] = inf

μ∈K sup
π∈Ah(x0)

Eμ

[
Uγ (Xπ

T )
]
.

The previous theorem establishes duality between our original robust utility maximization
problem and the dual problem where supremum and infimum are interchanged. Addition-
ally, we now also know the solution to our original problem. The optimal strategy for our
constrained robust utility maximization problem is given in a nearly explicit way. Note that
the parameter μ∗ in Theorem 3.8 is not given explicitly since the parameter ψ(κ) is defined
in an implicit way. However, finding ψ(κ) numerically can be done in a straightforward way
by a numerical root search of a monotone function. For this reason, determining μ∗ and π∗
numerically does not pose any problems.

Remark 3.12 One can think of other reasonable sets K for modelling uncertainty about the
drift parameterμ. Our duality approach can also be applied to the optimization problemwith

K = {
μ ∈ R

d
∣∣ 1	

d μ = b
}

for some b ∈ R. The motivation for this uncertainty set is that one has an estimate for the
performance of a stock index, and therefore the overall average performance of the stocks,
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but not for the single stocks themselves. In that case, one can show that the optimal strategy
for the optimization problem

inf
μ∈K sup

π∈Ah(x0)
Eμ

[
Uγ (Xπ

T )
]

is (π∗
t )t∈[0,T ] with π∗

t = h
d 1d for all t ∈ [0, T ]. The worst-case parameter μ∗ can be

determined explicitly given the eigenvalues and eigenvectors of the matrix A. Further, one
can show a minimax theorem in analogy to Theorem 3.11. The optimal strategy is here just
a uniform diversification strategy given the constraint on the bond investment. In the next
section we show how this fits into the framework of our results for ellipsoidal uncertainty
sets when we let the degree of uncertainty κ go to infinity.

4 Asymptotic behavior as uncertainty increases

In this section we consider again the setting with ellipsoidal uncertainty sets as in (4) and
investigate what happens as the degree of uncertainty changes. Since K is an ellipsoid, we
increase the degree of uncertainty about the true drift parameter by increasing the radius κ ,
a lower value of κ corresponds to a more precise knowledge of the true drift.

4.1 Limit of worst-case parameter and optimal strategy

In the following, we address in detail the asymptotic behavior of the worst-case parameter
and the optimal strategy as uncertainty increases, i.e. as κ goes to infinity. To underline the
dependence on the degree of uncertainty, we write μ∗ = μ∗(κ) and π∗ = π∗(κ) in the
following.

Remark 4.1 The other asymptotic regime κ → 0 corresponds to a more and more precise
knowledge of the true drift. It is easy to see that

lim
κ→0

μ∗(κ) = ν and lim
κ→0

π∗
t (κ) = 1

1 − γ
Aν + hc

for all t ∈ [0, T ]. This means that the worst-case parameter converges to the reference drift
ν and the optimal strategy to the best constrained strategy, given that the drift equals ν. So
we retrieve in the limit κ → 0 the setting without model uncertainty.

We now focus on κ → ∞. Note that the only quantity in the representation of μ∗ from
Theorem 3.8 that depends on κ is ψ(κ).

Lemma 4.2 It holds limκ→∞ ψ(κ)
κ

= 1.

From this lemma we gain insights into the asymptotic behavior of μ∗.

Proposition 4.3 It holds

lim
κ→∞

1

κ
τ−1(μ∗(κ) − ν

) = −v1 = − 1

‖τ−11d‖τ−11d

and

lim
κ→∞

1

κ
μ∗(κ) = −τv1 = − 1

‖τ−11d‖1d .
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Hence, asymptotically the direction of the worst-case parameter is −1d . This means that,
as κ tends to infinity, the worst drift which the market can choose for an investor who applies
the optimal strategy π∗, is a drift vector where all entries are the same and negative. We have
the following result for the asymptotic behavior of the investor’s optimal strategy.

Theorem 4.4 For any t ∈ [0, T ] it holds

lim
κ→∞ π∗

t (κ) = h

1	
d Γ −11d

Γ −11d .

The theorem shows that the optimal strategy π∗(κ) converges as the degree of uncertainty
κ goes to infinity. IfΓ = σσ	, then the limit is a multiple of theminimum variance portfolio.
Another interesting special case is Γ = Id , i.e. when K is simply a ball with radius κ . In that
case we have

lim
κ→∞ π∗

t (κ) = h

d
1d

for any t ∈ [0, T ], hence the optimal strategy converges to a uniform diversification strategy,
given by h

d 1d at each point in time. Hence, when forced to invest a total fraction of h > 0 in
the risky assets, then in the limit for κ going to infinity investors will diversify their portfolio
uniformly. For general Γ we shall speak of a generalized uniform diversification strategy.

This asymptotic behavior of the optimal strategy is striking because the limit is independent
of the volatility matrix σ . In combination with the structure of the function g in Lemma 3.7
this indicates that it might also be possible to allow for misspecified volatility. For a high
level of uncertainty the optimal strategy is dominated by thematrixΓ shaping the uncertainty
ellipsoid whereas both the volatility structure of the assets and the reference drift ν become
negligible. This effect is caused by the investor’s reaction to the worst-case drift parameter
μ∗ which, as shown in Proposition 4.3, behaves asymptotically like a multiple of 1d . The
best reaction from the investor’s point of view is to diversify among all assets, weighted by
the uncertainty structure Γ . In the special case where K is a ball, this leads to a uniform
diversification strategy. This result is in line with Pflug et al. [21] who show convergence
of the optimal strategy to the uniform diversification strategy in a risk minimization setting
with increasing model uncertainty.

Remark 4.5 Note that plugging in κ = ∞ into the definition of the ellipsoid yields the
uncertainty set K = R

d , so that in fact every drift parameter μ ∈ R
d is deemed possible by

the investor. Then one easily obtains the worst-case utility

inf
μ∈Rd

Eμ[Uγ (Xπ
T )] =

{
0, γ ∈ (0, 1),

−∞, γ ∈ (−∞, 0],

for any admissible π . Hence, every strategy performs equally bad in the limit case. In par-
ticular, plugging in κ = ∞ into the ellipsoid in the first place does not provide us with the
optimal limit strategy of Theorem 4.4.

The intuition is that, as long as the uncertainty set is bounded, there exists a worst-case
drift to which the investor can react in an optimal way. Nevertheless, when uncertainty goes
to infinity, also the expected utility achieved by the best strategy will be driven to −∞ in
case that γ ∈ (−∞, 0], respectively to zero in case γ ∈ (0, 1).
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4.2 Relaxing the investment constraint

Weuse the above results to show that, as uncertainty κ goes to infinity, our robust optimization
problem yields the same optimal value as a slightly different optimization problem with a
more general class of admissible strategies. Recall that we have so far considered for h > 0
the set

Ah(x0) = {
π ∈ A(x0)

∣
∣ 〈πt , 1d〉 = h for all t ∈ [0, T ]}

as the class of admissible strategies. Requiring 〈πt , 1d〉 ≥ h instead of 〈πt , 1d 〉 = h obviously
enlarges this set. In the following, we show for logarithmic utility that maximizing worst-
case expected utility among bounded strategies in this larger set asymptotically leads to the
same value as our original problem. We write K = K (κ) for the uncertainty ellipsoid with
radius κ .

Proposition 4.6 Define for h > 0 the admissibility set

A′
h(x0) = {

π ∈ A(x0)
∣
∣ 〈πt , 1d〉 ≥ h for all t ∈ [0, T ]}

and let M > 0. Then there exists a κM > 0 such that for all κ ≥ κM it holds

sup
π∈A′

h(x0)‖π‖≤M

inf
μ∈K (κ)

Eμ

[
log(Xπ

T )
] ≤ sup

π∈Ah(x0)
inf

μ∈K (κ)
Eμ

[
log(Xπ

T )
]
.

Here we use ‖π‖ ≤ M as a short notation for ‖πt‖ ≤ M for all t ∈ [0, T ].
For power utility, the result is slightly weaker. We first give a lemma that states some

useful equalities concerning the matrix A and vector c from Definition 3.3.

Lemma 4.7 For the matrix A and the vector c we have

Aσσ	A = A, c	σσ	A = 0 and c	1d = 1.

The next proposition gives a result similar to Proposition 4.6 for power utility. We define
a different enlarged admissibility set Ah(x0) in this case. The reason is that, in contrast to
the logarithmic utility case, we cannot ensure that we can restrict to deterministic strategies
in A′

h(x0).

Proposition 4.8 Let γ �= 0 and h > 0 and define the admissibility set

Ah(x0) =
⋃

h′≥h

Ah′(x0).

Then there exists a κ ′ > 0 such that for all κ ≥ κ ′ it holds

sup
π∈Ah(x0)

inf
μ∈K (κ)

Eμ

[
Uγ (Xπ

T )
] = sup

π∈Ah(x0)
inf

μ∈K (κ)
Eμ

[
Uγ (Xπ

T )
]
.

The previous propositions show that as uncertainty increases it is reasonable for investors
to choose strategies π with 〈πt , 1d 〉 as small as possible. Even if the class of admissible
strategies is enlarged, the optimal value will for large uncertainty be attained by a strategy
fromAh(x0). This is in line with the intuition from Proposition 2.1, where we have seen that
as uncertainty exceeds a certain threshold, investors prefer to not invest anything into the
risky assets.
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4.3 Risk aversion and speed of convergence

As the class of admissible strategies we now take again

Ah(x0) = {
π ∈ A(x0)

∣
∣ 〈πt , 1d〉 = h for all t ∈ [0, T ]}

for some h > 0. We have seen in Sect. 4.1 that the optimal strategy π∗(κ) for our robust
optimization problemwith ellipsoidal uncertainty sets K converges as the level of uncertainty
κ goes to infinity. If the uncertainty set K is a ball, then the limit is a uniform diversification
strategy h

d 1d . In the following, we illustrate this convergence by an example and investigate
which influence the risk aversion parameter γ has on the speed of convergence. Note that for
our class of utility functions, the value 1− γ is equal to the Arrow–Pratt measure of relative
risk aversion. The smaller γ is, the more risk-averse is the investor.

Example 4.9 We consider a market with d = 8 risky assets. The volatility matrix has the
form

σ =

⎛

⎜
⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.3 0 0 0 0 0 0 0
0.2 0.3 0 0 0 0 0 0
0 0.2 0.3 0 0 0 0 0
0.3 0.2 0 0.4 0 0 0 0
0.2 0.3 0 0.1 0.3 0 0 0
0.1 0.1 0.1 0.1 0.2 0.2 0 0
0.2 0.1 0.2 0.1 0.2 0.2 0.4 0
0.1 0 0 0.2 0.1 0.1 0.2 0.4

⎞

⎟
⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Investors use strategies from Ah(x0) with h = 1. Further, we take Γ = Id and ν = 3
101d

as parameters of the uncertainty ellipsoid. Note that for this choice of the parameter ν the
optimal strategy in the situation without model uncertainty, i.e. with κ = 0, does not depend
on γ . We then compute the constant optimal portfolio composition π∗(κ) based on different
values of γ and for all κ ∈ (0, 0.5), and plot the result in Fig. 1 against κ . For any fixed
level of uncertainty κ , the optimal composition π∗(κ) is plotted as a stacked plot where every
color corresponds to one stock.

For small values of κ , the optimal strategy π∗ is negative in some components. This
leads to an overall investment larger than one on the positive side. As κ becomes larger, the
composition gets closer and closer to the uniform diversification vector. When comparing
the different subplots one sees that the convergence is faster for higher values of γ , an effect
that has been shown to hold in general, seeWestphal [28, Rem. 5.9]. This might be surprising
at first glance since one expects a more risk-averse investor to choose a “safer” strategy
sooner than a less risk-averse investor does. However, the effect becomes more intuitive
when keeping in mind that we address a robust optimization problem where an investor is
confronted with the worst possible drift parameter in the uncertainty set. An investor with
a high, positive value of γ would, in the non-robust problem, invest in the assets with the
allegedly highest drift. In the worst-case market this undiversified strategy would allow the
market to choose a very extreme drift parameter with high absolute values for exactly these
assets. This implies that a less risk-averse investor is much more prone to the market’s choice
of a drift parameter. To make up for this, there is more diversification, which can even be
amplified by the constraint using h = 1, and thus the optimal robust strategy converges very
fast, so that even for small values of uncertainty κ , the investor is already driven into the
diversified uniform strategy.
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Fig. 1 Optimal portfolio composition π∗ plotted against κ for different values of γ . The model parameters
are given in Example 4.9. For any γ , we observe convergence against a uniform diversification strategy. For
larger values of γ , convergence appears to take place faster than for smaller values of γ

4.4 Measures of robustness performance

We have seen that introducing uncertainty in our utility maximization problem leads to more
diversified strategies. The question arises what an investor gains from using robust strategies
andwhat downside comeswith behaving in a robustway in situationswhere it is not necessary.
These two antithetic effects can be rated by the measures cost of ambiguity and reward for
distributional robustness that have been studied in a different context in Analui [1, Sec. 3.4].
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For our robust maximization problem, the center ν of the uncertainty ellipsoid can be seen
as an estimation for the true drift of the stocks. If an investor was sure that the estimation
was correct, she would simply maximize Eν[Uγ (Xπ

T )]. From Proposition 3.4 we know that
the optimal strategy is then of the form (π̂t )t∈[0,T ] with

π̂t = 1

1 − γ
Aν + hc (9)

for all t ∈ [0, T ]. In the presence of uncertainty, the solution to our utility maximization
problem is the strategy (π∗

t )t∈[0,T ] with

π∗
t = 1

1 − γ
Aμ∗ + hc (10)

for all t ∈ [0, T ], see Theorem 3.11.We now define measures for the robustness performance
that consider the difference in the corresponding certainty equivalents when using π̂ or π∗.
Definition 4.10 We define the cost of ambiguity as

COA = U−1
γ

(
Eν

[
Uγ

(
X π̂
T

)]) −U−1
γ

(
Eν

[
Uγ

(
Xπ∗
T

)])

and the reward for distributional robustness as

RDR = U−1
γ

(
Eμ∗

[
Uγ

(
Xπ∗
T

)]) −U−1
γ

(
Eμ∗

[
Uγ

(
X π̂
T

)])
.

The cost of ambiguity captures how big the loss in the certainty equivalent is when using
the robust strategy π∗, given that the estimation ν for the drift was actually correct. Note that
π̂ is the best strategy given drift ν and thatU−1

γ is a strictly increasing function, hence COA
is non-negative. The reward for distributional robustness reflects how much an investor is
rewarded when using the robust strategy π∗ compared to the “naive” strategy π̂ , assuming
that indeed the worst possible drift parameter μ∗ is the true one. We see that also RDR is
non-negative since π∗ maximizes expected utility given μ∗.
Remark 4.11 A different definition of COA and RDR is possible where one measures the
difference in expected utility rather than the difference of the certainty equivalents. The
asymptotic behavior of the reward for distributional robustness for large uncertainty is then
heavily affected by the parameter γ of the investor’s utility function. In particular, as κ goes
to infinity, the reward for distributional robustness goes to zero if γ > 0 and to infinity if
γ < 0.

Proposition 4.12 Independently of γ ∈ (−∞, 1) it always holds COA ≥ RDR.

Furthermore, COA andRDR converge as κ goes to infinity.WewriteCOA(κ) andRDR(κ)

to emphasize the dependence on the degree of uncertainty.

Proposition 4.13 Asκ goes to infinity,COA(κ) converges to anon-negative limit andRDR(κ)

goes to zero.

Figure 2 illustrates the behavior ofCOAandRDR in dependence on the level of uncertainty
κ . We consider a market with d = 8 stocks, where the underlying market parameters are
those from Example 4.9. The figure shows COA and RDR plotted against κ for different
values of γ . Note that the scaling in the second row of subfigures is different from the scaling
in the first row. The absolute values of COA and RDR become smaller as γ increases.

We observe that the qualitative behavior of COA and RDR is the same for any value of the
risk aversion coefficient γ . For any fixed γ and κ , RDR is always less than COA, a property
that we have proven in Proposition 4.12. As κ increases, COA goes to a finite positive limit,
whereas RDR tends to zero, as we have shown in Proposition 4.13.
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Fig. 2 The behavior of COA and RDR plotted against uncertainty radius κ for different values of the risk
aversion coefficient γ . The parameters are those from Example 4.9

5 Outlook on stochastic drift and time-dependent uncertainty sets

In this section we want to give a brief outlook on how the results of this paper can be
applied also in more general financial market models with a stochastic drift process. This
generalization is the topic of our follow-up work Sass and Westphal [24]. Here we only give
a short outline of the setup to illustrate the relevance of this work.

In Sass and Westphal [24] the results of the present paper are generalized to a financial
market with a stochastic drift process and time-dependent uncertainty sets (Kt )t∈[0,T ]. This
is motivated by the idea that information about the hidden drift process, as e.g. obtained
from filtering techniques, might change over time. A surplus of information should then be
reflected in a smaller uncertainty set. More precisely, we assume that under the reference
measure returns follow the dynamics

dRt = νt dt + σ dWt ,

where the reference drift (νt )t∈[0,T ] is adapted to the filtration (Gt )t∈[0,T ] representing the
investor’s information.This is justifiedby a separationprinciplewhere oneperforms afiltering
step before solving the optimization problem, i.e. (νt )t∈[0,T ] represents the investor’s filter
for the drift process. We introduce a time-dependent uncertainty set (Kt )t∈[0,T ] that is a
set-valued stochastic process adapted to (Gt )t∈[0,T ], meaning that the investor knows the
realization of Kt at time t .

It is not obvious how to set up a worst-case optimization problem in this time-dependent
setting. The problem lies in the fact that the realization of the uncertainty sets (Kt )t∈[0,T ]
is not known initially but gets revealed over time. A worst-case drift process (μt )t∈[0,T ] is
characterized by being the worst one with the property that μt ∈ Kt for all t ∈ [0, T ].
However, optimization with respect to this worst-case drift process is not feasible for an
investor since it is not known initially. Instead, it makes sense to consider the following
local approach. For any fixed t ∈ [0, T ], the current uncertainty set Kt is known. Given this
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Kt , investors take model uncertainty into account by assuming that in the future the worst
possible drift process having values in Kt will be realized, i.e. the worst drift process from
the class

K(t) = {
(μ(t)

s )s∈[t,T ]
∣
∣μ(t)

s ∈ Kt and μ(t)
s is Gt -measurable for each s ∈ [t, T ]}.

Investors then solve at each time t ∈ [0, T ] the local optimization problem

sup
π(t)∈Ah(t,x)

inf
μ(t)∈K(t)

Eμ(t)

[
U
(
Xt,x,π(t)

T

)]
. (11)

Here, we write Xt,x,π(t)

s for the wealth at s ∈ [t, T ] when starting at t with x and using
strategy π(t) ∈ Ah(t, x), where the admissibility set is defined analogously to Ah(x0) for
strategies starting at t . This leads to an optimal strategy (π

(t),∗
s )s∈[t,T ]. In our continuous-time

setting this decision will be revised as soon as Kt changes, possibly continuously in time.
The realized optimal strategy of the investor is then given by π∗

t = π
(t),∗
t for any t ∈ [0, T ].

This setup of the local optimization problems is reasonable from an investor’s point of
view. The uncertainty sets Kt change continuously in time due to new incoming information
along with return observations, for example. Naturally, the optimal strategy of the investor
will then also be adapted continuously. In Sass andWestphal [24] it is shown in detail how the
results of this paper can be used to solve the above described more complicated problem. An
explicit representation of the optimal strategy and a minimax theorem can be derived. Those
results then also apply to much more general financial market models. The convergence
results from Sect. 4, however, do not have a straightforward analogon in the setting with
time-dependent uncertainty sets.

Remark 5.1 Initially it is not clear whether we have an inconsistent control problem, cf. Björk
et al. [3], in our original formulation (3). But for the special case of (11) with a constant
uncertainty set K , the results in Sass and Westphal [24] show that one obtains at time t the
same optimal risky fractions as when starting at time 0. In combination with the Bellman
principle, which implies that at time t we only need the information Xt = x , this proves
that our robust utility maximization problem with optimal solution π∗ obtained in Sect. 3
is time-consistent. A generalization to allowing for more probability measures than those
corresponding to a constant drift in a formulation based on a robust utility functional may
raise consistency issues and would need assumptions on the structure of this set. This may
then be treated as in Müller [17] under appropriate conditions.
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A Proofs

For better readability of the paper, all proofs are collected in this appendix.

Proof of Proposition 2.1 Let μ ∈ K and π ∈ A(x0). We consider the case γ = 0 first. The
expected logarithmic utility of terminal wealth under measure Pμ is

Eμ

[
log(Xπ

T )
] = log(x0) + Eμ

[∫ T

0

(
r + π	

t (μ − r1d) − 1

2
‖σ	πt‖2

)
dt

]
.

Since the vector r1d is an element of the set K , we immediately see that

inf
μ∈K Eμ

[
log(Xπ

T )
] ≤ Er1d

[
log(Xπ

T )
] ≤ log(x0) + rT ,

so we can deduce that the trivial strategy π ≡ 0 is optimal for (2), since π ≡ 0 leads to
expected utility of terminal wealth log(x0) + rT under each of the measures Pμ.

For power utility, i.e. γ �= 0, the argumentation is similar. Since r1d ∈ K , we have

inf
μ∈K Eμ

[
Uγ (Xπ

T )
] ≤ xγ

0

γ
eγ rT

Er1d

[
exp

(
−γ

2

∫ T

0
‖σ	πt‖2 dt + γ

∫ T

0
π	
t σ dWr1d

t

)]

and we can rewrite the expectation on the right-hand side as

Er1d

[
exp

(
γ

∫ T

0
π	
t σ dWr1d

t −1

2
γ 2

∫ T

0
‖σ	πt‖2 dt

)
exp

(
−1

2
γ (1−γ )

∫ T

0
‖σ	πt‖2 dt

)]
.

Thus,

inf
μ∈K Eμ

[
Uγ (Xπ

T )
] ≤ xγ

0

γ
eγ rT

Er1d

[
exp

(
γ

∫ T

0
π	
t σ dWr1d

t − 1

2
γ 2

∫ T

0
‖σ	πt‖2 dt

)]
.

But the exponential local martingale in the expression above has expectation less or equal
than one, so

inf
μ∈K Eμ

[
Uγ (Xπ

T )
] ≤ xγ

0

γ
eγ rT .

Again, as for logarithmic utility, the trivial strategy π ≡ 0 is optimal for (2) if r1d ∈ K ,

since the zero strategy leads exactly to expected power utility
xγ
0
γ
eγ rT . ��

Proof of Lemma 3.2 Since d ≤ m and σ ∈ R
d×m has rank d , the rows of σ are independent

vectors in R
m . Now Dσ ∈ R

(d−1)×m and due to the specific form of D, the i-th row of Dσ

is σi,· − σd,·, i = 1, . . . , d − 1. Here, σi,· denotes the i-th row of matrix σ . Now from the
independence of σ1,·, . . . , σd,· it follows for any a1, . . . , ad−1 ∈ R that if

0 =
d−1∑

i=1

ai (σi,· − σd,·) =
d−1∑

i=1

aiσi,· −
d−1∑

i=1

aiσd,·,

then a1 = · · · = ad−1 = 0. So, the rows of Dσ are independent, and rank(Dσ) = d − 1. ��
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Proof of Proposition 3.4 Let π ∈ Ah(x0). Then πd
t = h − ∑d−1

i=1 π i
t for all t ∈ [0, T ],

therefore we can transform

π	
t (μ − r1d) =

d−1∑

i=1

π i
t (μ

i − r) +
(
h −

d−1∑

i=1

π i
t

)
(μd − r) = h(e	

d μ − r) + π̃	
t Dμ,

(A.1)

π	
t σ =

d−1∑

i=1

π i
t σi,· +

(
h −

d−1∑

i=1

π i
t

)
σd,· = he	

d σ + π̃	
t Dσ, (A.2)

where π̃t := π1:d−1
t for all t ∈ [0, T ], and where σi,· denotes the i-th row of matrix σ . In the

representation of the wealth process we first plug in (A.2) into the stochastic integral. For
γ �= 0 we perform a change of measure

dP̃

dPμ
= ZT = exp

(∫ T

0
γ he	

d σ dWμ
t − 1

2

∫ T

0
‖γ hσ	ed‖2 dt

)
,

such that under the measure P̃, the process (W̃μ
t )t∈[0,T ] with W̃μ

t = Wμ
t − ∫ t

0 γ hσ	ed ds is
a Brownian motion by Girsanov’s Theorem. We obtain

Eμ

[
exp

(
γ

∫ T

0

(
π	
t (μ − r1d) − 1

2
‖σ	πt‖2

)
dt + γ

∫ T

0
π	
t σ dWμ

t

)]

= Ẽ

[
exp

(
γ

∫ T

0

(
π	
t (μ − r1d) − 1

2
‖σ	πt‖2 + 1

2
γ ‖hσ	ed‖2

)
dt +

∫ T

0
γ π̃	

t Dσ dWμ
t

)]

= Ẽ

[
exp

(
γ

∫ T

0

(
π	
t (μ − r1d) − 1

2
‖σ	πt‖2 + 1

2
γ ‖hσ	ed‖2 + γ hπ̃	

t Dσσ	ed
)
dt

+
∫ T

0
γ π̃	

t Dσ dW̃μ
t

)]
.

By straightforward calculations using (A.1) and (A.2) the integrand in the Lebesgue integral
above can be rewritten as

π̃	
t

(
Dμ − h(1 − γ )Dσσ	ed

) − 1

2
‖(Dσ)	π̃t‖2 + he	

d μ − hr − 1

2
(1 − γ )‖hσ	ed‖2.

If we now substitute

σ̃ = Dσ,

r̃ = (1 − h)r + he	
d μ − 1

2
(1 − γ )‖hσ	ed‖2,

μ̃ = Dμ − h(1 − γ )Dσσ	ed + r̃1d−1,

(A.3)
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then the expected utility of terminal wealth is given by

Eμ

[
Uγ (Xπ

T )
]

= xγ
0

γ
Ẽ

[
exp

(
γ

∫ T

0

(
r̃ + π̃	

t (μ̃ − r̃1d−1) − 1

2
‖σ̃	π̃t‖2

)
dt + γ

∫ T

0
π̃	
t σ̃ dW̃t

)]
.

(A.4)

In the case γ = 0, like in the power utility case, we can represent expected utility of terminal
wealth as

Eμ

[
log(Xπ

T )
] = log(x0) + r̃ T + E

[∫ T

0

(
π̃	
t

(
μ̃ − r̃1d−1

) − 1

2
‖σ̃	π̃t‖2

)
dt

]
, (A.5)

where we use the same substitution with r̃ , μ̃ and σ̃ as in (A.3) for γ = 0.
In both cases γ �= 0 and γ = 0 we realize that the expressions in (A.4) and (A.5) are again

the expected utility of terminal wealth in a financial market with d − 1 risky assets where
the risk-free interest rate is r̃ , the drift of the d − 1 risky assets is given by μ̃ ∈ R

d−1, and
the volatility matrix is σ̃ ∈ R

(d−1)×m . So we have reduced the d-dimensional constrained
problem to a (d − 1)-dimensional unconstrained problem. When trying to maximize the
right-hand side of (A.4), respectively (A.5), over all admissible strategies π̃ with values in
R
d−1, we know from Merton [16] that the optimal strategy is constant in time and has the

form

π̃t = 1

1 − γ
(̃σ σ̃	)−1(μ̃ − r̃1d−1) = 1

1 − γ
(Dσσ	D	)−1(Dμ − h(1 − γ )Dσσ	ed

)
.

We now return to our original d-dimensional market, using the relation πt = D	π̃t + hed ,
giving us the optimal strategy π with

πt = 1

1 − γ
D	(Dσσ	D	)−1Dμ + h

(
Id − D	(Dσσ	D	)−1Dσσ	)

ed

= 1

1 − γ
Aμ + hc.

��
Proof of Lemma 3.6 Note that Dσσ	D	 is symmetric. Hence, the same is true for its inverse
and thus for D	(Dσσ	D	)−1D. Also, Dσσ	D	 = (Dσ)(Dσ)	 is positive definite since
σ ∈ R

d×m has rank d and therefore by Lemma 3.2, Dσ has full row rank d − 1. It follows
that also the inverse (Dσσ	D	)−1 is positive definite. So since

x	Ax = x	D	(Dσσ	D	)−1Dx = (Dx)	(Dσσ	D	)−1(Dx) ≥ 0

for any x ∈ R
d , the matrix A is positive semidefinite. Furthermore, it is easy to check that

ker(D) = span({1d}) and ker(D	) = {0}. Hence, it holds Ax = D	(Dσσ	D	)−1Dx = 0
if and only if (Dσσ	D	)−1Dx = 0, which is equivalent to Dx = 0. Hence we can deduce
ker(A) = ker(D) = span({1d}). ��
Proof of Lemma 3.6 Recall that τ	Aτ has an eigenvalueλ1 = 0with a corresponding normed
eigenvector of the form v1 = 1

‖τ−11d‖τ−11d . The other eigenvalues of τ	Aτ are positive and

due to symmetry we can assume that v1, . . . , vd form an orthogonal basis of Rd . Firstly, we
observe that the gradient of g is

∇g(ρ) = 1

2(1 − γ )
2τ	Aτρ + τ	(

hc + 1

1 − γ
Aν

)
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= τ	
(
A
( 1

1 − γ
(τρ + ν) − hσσ	ed

)
+ hed

)
.

It follows that there is no ρ ∈ Bκ (0) with ∇g(ρ) = 0, since τ	 is nonsingular and hed is not
in the range of A = D	(Dσσ	D	)−1D. The minimum of g on Bκ (0) is therefore attained
on the boundary.

Let ρ ∈ Bκ (0) be arbitrary. Since v1, . . . , vd form a basis of Rd , we are able to write
ρ = ∑d

i=1 aivi , where a1, . . . , ad ∈ R are uniquely determined. Since we know that a
minimizer of the function g must lie on the boundary of Bκ (0) we obtain the constraint

κ2 = ‖ρ‖2 =
d∑

i=1

a2i (A.6)

on the coefficients. Before doing the minimization, we first notice that for our minimizer, the
coefficient a1 will be less or equal than zero. This is because

g

( d∑

i=1

aivi

)
= 1

2(1 − γ )

( d∑

i=1

aivi

)	
τ	Aτ

( d∑

i=1

aivi

)
+

(
hc + 1

1 − γ
Aν

)	
τ

( d∑

i=1

aivi

)

= 1

2(1 − γ )

d∑

i=1

a2i λi +
d∑

i=1

ai hc
	τvi + 1

1 − γ

d∑

i=1

aiν
	λi (τ

	)−1vi

= 1

2(1 − γ )

d∑

i=2

a2i λi +
d∑

i=2

ai
(
hc + λi

1 − γ
Γ −1ν

)	
τvi + a1hc

	τv1.

Next, one easily sees that

c	τv1 = e	d (Id − Aσσ	)	τ
1

‖τ−11d‖ τ−11d = 1

‖τ−11d‖ e
	
d (1d − σσ	A1d ) = 1

‖τ−11d‖ ,

since A1d = 0 by Lemma 3.6. By plugging in this representation we deduce that, when
looking for the minimizer of g, we can restrict to the parameters ρ with coefficient a1 ≤ 0.
We obtain

g̃(a2, . . . , ad) := g

( d∑

i=1

aivi

)
= 1

2(1 − γ )

d∑

i=2

a2i λi +
d∑

i=2

ai
(
hc + λi

1 − γ
Γ −1ν

)	
τvi

− h

‖τ−11d‖

√√√√κ2 −
d∑

i=2

a2i ,

and minimize this expression in a2, . . . , ad . The domain of g̃ is {x ∈ R
d−1 | ‖x‖ ≤ κ}. In the

interior of this domain, the partial derivative of g̃ with respect to ak , k = 2, . . . , d , is given
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by

∂ g̃

∂ak
(a2, . . . , ad)

= 2akλk
2(1 − γ )

+
(
hc + λk

1 − γ
Γ −1ν

)	
τvk − h

2‖τ−11d‖
√

κ2 − ∑d
i=2 a

2
i

(−2ak)

=
(

λk

1 − γ
+ h

‖τ−11d‖
√

κ2 − ∑d
i=2 a

2
i

)
ak +

(
hc + λk

1 − γ
Γ −1ν

)	
τvk .

When setting this expression equal to zero, we obtain

ak = −
(

λk

1 − γ
− h

‖τ−11d‖a1
)−1〈

hτ	c + λk

1 − γ
τ−1ν, vk

〉
. (A.7)

Note that this representation does not provide the coefficients ak explicitly since a1 here is a
function of (a2, . . . , ad). However, it is easy to check that the function

[−κ, 0) � a1 �→ a21 +
d∑

i=2

(
λi

1 − γ
− h

‖τ−11d‖a1
)−2〈

hτ	c + λi

1 − γ
τ−1ν, vi

〉2

has a strictly negative derivative on [−κ, 0). For a1 = −κ , the value of the function is greater
or equal κ2, for a1 tending to zero from below it converges to zero, hence there is a unique
value of a1 ∈ [−κ, 0)where the function has value κ2. So (A.7) together with (A.6) uniquely
determines a1, . . . , ad .

Moreover, by some straightforward calculations we see that the Hessian of g̃ is of the
form

1

1 − γ
�̃ + h

‖τ−11d‖
√

κ2 − ∑d
i=2 a

2
i

Id−1

+ h

‖τ−11d‖
(
κ2 − ∑d

i=2 a
2
i

)3/2 (a2, . . . , ad)
	(a2, . . . , ad),

where �̃ ∈ R
(d−1)×(d−1) is a diagonal matrix with diagonal entries λ2, . . . , λd > 0. Obvi-

ously, the first two summands are positive-definite matrices. The last summand is positive
semidefinite. So we conclude that the Hessian of g̃ is positive definite on the whole interior of
the domain of g̃. In particular, in the point (a2, . . . , ad) defined via (A.7) together with (A.6),
there is a global minimum of the function g̃.

��
Proof of Theorem 3.8 For any fixed parameter μ ∈ R

d , Proposition 3.4 gives the optimal
strategy for the optimization problem

sup
π∈Ah(x0)

Eμ

[
Uγ (Xπ

T )
]
.

With the help of Corollary 3.5 we have seen that minimizing the above expression in μ on
the set K = {

μ ∈ R
d
∣∣ (μ− ν)	Γ −1(μ− ν) ≤ κ2

}
is equivalent to minimizing the function

g : Bκ (0) → R from Lemma 3.7 in ρ and then setting μ = ν + τρ. The claim now follows
from Lemma 3.7 together with the representation in Proposition 3.4. ��
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Proof of Lemma 3.10 Throughout the proof, let

ai = −
(

λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)−1〈

hτ	c + λi

1 − γ
τ−1ν, vi

〉

for i = 1, . . . , d , so that τ−1(μ∗ − ν) = ∑d
i=1 aivi . Due to the form of the ai we can write

d∑

i=1

( λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)
aivi = −

d∑

i=1

〈
hτ	c + λi

1 − γ
τ−1ν, vi

〉
vi .

Since the vectors v1, . . . , vd form an orthonormal basis of Rd and are eigenvectors to the
eigenvalues λ1, . . . , λd of the symmetric matrix τ	Aτ , the right-hand side equals

−hτ	c − 1

1 − γ

d∑

i=1

〈τ−1ν, λivi 〉vi = −hτ	c − 1

1 − γ

d∑

i=1

〈τ−1ν, τ	Aτvi 〉vi

= −hτ	c − 1

1 − γ

d∑

i=1

〈τ	Aν, vi 〉vi = −hτ	c − 1

1 − γ
τ	Aν.

On the other hand, we get

d∑

i=1

( λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)
aivi = 1

1 − γ

d∑

i=1

aiτ
	Aτvi + h

ψ(κ)‖τ−11d‖τ−1(μ∗ − ν)

= 1

1 − γ
τ	A(μ∗ − ν) + h

ψ(κ)‖τ−11d‖τ−1(μ∗ − ν).

In conclusion,

1

1 − γ
τ	Aμ∗ = − h

ψ(κ)‖τ−11d‖τ−1(μ∗ − ν) − hτ	c,

and therefore

π∗
t = 1

1 − γ
Aμ∗ + hc=(τ	)−1

( 1

1 − γ
τ	Aμ∗+hτ	c

)
= − h

ψ(κ)‖τ−11d‖Γ −1(μ∗ − ν)

for all t ∈ [0, T ]. ��
Proof of Theorem 3.11 Since π∗ is a strategy that is constant in time and deterministic, we
can rewrite the expected utility of terminal wealth as

Eμ

[
Uγ (Xπ∗

T )
] =

⎧
⎪⎨

⎪⎩

xγ
0
γ

exp

(
γ T

(
r + (π∗

0 )	(μ − r1d ) − 1
2‖σ	π∗

0 ‖2
)

+ 1
2γ 2T ‖σ	π∗

0 ‖2
)

, γ �= 0,

log(x0) + T
(
r + (π∗

0 )	(μ − r1d ) − 1
2‖σ	π∗

0 ‖2
)
, γ = 0.

Obviously, for any γ ∈ (−∞, 1) the parameter μ ∈ K that minimizes the expression above
is the parameter that minimizes (π∗

0 )	μ. For an arbitrary θ ∈ R
d , θ �= 0, an easy calculation

shows that the parameter μ ∈ R
d that minimizes θ	μ such that (μ − ν)	Γ −1(μ − ν) ≤ κ2

has the form

μ̃ = ν − κ√
θ	Γ θ

Γ θ. (A.8)
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Hence it is sufficient to show that the parameter μ∗ is equal to μ̃ from (A.8) for θ = π∗
0 .

Using Lemma 3.10 we have

(π∗
0 )	Γ π∗

0 = h2

ψ(κ)2‖τ−11d‖2 (μ∗ − ν)	Γ −1(μ∗ − ν) = h2κ2

ψ(κ)2‖τ−11d‖2
and

√
(π∗

0 )	Γ π∗
0 = hκ

ψ(κ)‖τ−11d‖ . (A.9)

When rearranging the representation in Lemma 3.10 for μ∗ and plugging in (A.9) we obtain

μ∗ = ν − ψ(κ)‖τ−11d‖
h

Γ π∗
0 = ν − κ

√
(π∗

0 )	Γ π∗
0

Γ π∗
0 .

We conclude that μ∗ is the parameter that minimizes (π∗
0 )	μ over all μ ∈ K and therefore

the worst possible parameter for the strategy π∗.
Now, for an arbitrary parameterμ ∈ K , letπ(μ) = (πt (μ))t∈[0,T ] denote the strategy from

Ah(x0) that is optimal, given that the drift parameter is μ. Then we know from Theorem 3.8
that

inf
μ∈K sup

π∈Ah(x0)
Eμ

[
Uγ (Xπ

T )
] = inf

μ∈K Eμ

[
Uγ (Xπ(μ)

T )
] = Eμ∗

[
Uγ (Xπ∗

T )
]
.

On the other hand, the fact that μ∗ is the worst parameter for an investor using strategy π∗
yields

Eμ∗
[
Uγ (Xπ∗

T )
] = inf

μ∈K Eμ

[
Uγ (Xπ∗

T )
] ≤ sup

π∈Ah(x0)
inf
μ∈K Eμ

[
Uγ (Xπ

T )
]
. (A.10)

Furthermore, we also have

sup
π∈Ah(x0)

inf
μ∈K Eμ

[
Uγ (Xπ

T )
] ≤ inf

μ∈K sup
π∈Ah(x0)

Eμ

[
Uγ (Xπ

T )
]

since the inequality always holds when interchanging supremum and infimum, see for exam-
ple Ekeland and Temam [7, Ch. VI, Prop. 1.1]. Consequently, the inequality in (A.10) is an
equality and the claim follows. ��

Proof of Lemma 4.2 By acknowledging the dependence on κ , we write ai (κ) for the coef-
ficients of ρ∗ = τ−1(μ∗ − ν). We have already seen in the proof of Lemma 3.7 that
a1(κ) = −ψ(κ). Hence, the constraint ‖τ−1(μ∗ − ν)‖ = κ implies

1 = ‖τ−1(μ∗ − ν)‖2
κ2 =

d∑

i=1

(ai (κ)

κ

)2 =
(ψ(κ)

κ

)2 +
d∑

i=2

(ai (κ)

κ

)2

due to orthonormality of v1, . . . , vd . In the following, we show that the sum in the expression
above goes to zero as κ goes to infinity. To prove this, take some i ∈ {2, . . . , d}. We know
that

(ai (κ)

κ

)2 = 1

κ2

(
λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)−2〈

hτ	c + λi

1 − γ
τ−1ν, vi

〉2
,
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where the expression in the inner product does not depend on κ . For the other factor, recall
that ψ(κ) > 0 and λi > 0. Hence,

λi

1 − γ
+ h

ψ(κ)‖τ−11d‖ >
λi

1 − γ
> 0

and therefore

1

κ2

(
λi

1 − γ
+ h

ψ(κ)‖τ−11d‖
)−2

≤ 1

κ2

(
λi

1 − γ

)−2

,

where the upper bound goes to zero as κ goes to infinity. The claim now follows from the
fact that ψ(κ) is positive for each κ . ��
Proof of Proposition 4.3 Using the same notation as before, as well as the result from the
previous lemma, we can deduce that

1

κ
τ−1(μ∗(κ) − ν

) = a1(κ)

κ
v1 +

d∑

i=2

ai (κ)

κ
vi = −ψ(κ)

κ
v1 +

d∑

i=2

ai (κ)

κ
vi

goes to −v1 as κ goes to infinity. The second claim follows immediately. ��
Proof of Theorem 4.4 Recall that by Lemma 3.10 we can write

π∗
t (κ) = − h

ψ(κ)‖τ−11d‖Γ −1(μ∗(κ) − ν
) = − h

‖τ−11d‖
κ

ψ(κ)

1

κ
Γ −1(μ∗(κ) − ν

)

for any t ∈ [0, T ]. We then obtain

lim
κ→∞ π∗

t (κ) = h

‖τ−11d‖ (τ	)−1v1 = h

‖τ−11d‖2 (ττ	)−11d = h

1	
d Γ −11d

Γ −11d

by combining the results from Lemma 4.2 and Proposition 4.3. ��
Proof of Proposition 4.6 Let π ′ ∈ A′

h(x0) with ‖π ′‖ ≤ M . Then π ′ can be decomposed as
π ′
t = πt + εt1d for all t ∈ [0, T ], where π = (πt )t∈[0,T ] ∈ Ah(x0) and εt ≥ 0 for all

t ∈ [0, T ]. For any fixedμ ∈ K (κ)we rewrite the expected logarithmic utility given strategy
π ′ as

Eμ

[
log(Xπ ′

T )
] = Eμ

[
log(Xπ

T )
] + Eμ

[∫ T

0
εt

(
1	
d (μ − r1d ) − 1

2
εt‖σ	1d‖2 − 1	

d σσ	πt

)
dt

]
.

In particular, we have

inf
μ∈K (κ)

Eμ

[
log(Xπ ′

T )
] ≤ Eμ∗

[
log(Xπ ′

T )
]

= Eμ∗
[
log(Xπ

T )
] + Eμ∗

[∫ T

0
εt

(
1	
d
(
μ∗(κ) − r1d

) − 1

2
εt‖σ	1d‖2 − 1	

d σσ	πt

)
dt

]
,

(A.11)

whereμ∗ = μ∗(κ) is theworst-case parameter fromTheorem3.8.Our assumption‖π ′‖ ≤ M
implies that also ‖πt‖ is bounded for every t ∈ [0, T ], and so is 1	

d σσ	πt . Hence there exists
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a κM > 0 such that the second summand in (A.11) is non-positive for κ ≥ κM . That is because
εt ≥ 0 for all t ∈ [0, T ] and

lim
κ→∞ 1	

d μ∗(κ) = 1	
d ν − lim

κ→∞ ψ(κ)1	
d τv1 = 1	

d ν − lim
κ→∞ ψ(κ)

d

‖τ−11d‖ = −∞.

Since κM depends only on M but not on the strategy π ′ or its decomposition, we can further
deduce

sup
π∈A′

h(x0)‖π‖≤M

inf
μ∈K (κ)

Eμ

[
log(Xπ

T )
] ≤ sup

π∈Ah(x0)
Eμ∗

[
log(Xπ

T )
] = sup

π∈Ah(x0)
inf

μ∈K (κ)
Eμ

[
log(Xπ

T )
]

for all κ ≥ κM , which completes the proof. ��
Proof of Lemma 4.7 Using the definition of A in Definition 3.3 we see that

Aσσ	A = D	(Dσσ	D	)−1Dσσ	D	(Dσσ	D	)−1D = D	(Dσσ	D	)−1D = A,

and hence in particular

c	σσ	A = e	
d (Id − σσ	A)σσ	A = e	

d (σσ	A − σσ	A) = 0.

Further, due to A1d = 0 we also have

c	1d = e	
d (Id − σσ	A)1d = e	

d 1d = 1.

��
Proof of Proposition 4.8 Take an arbitrary strategyπ ∈ Ah(x0). Then there exists someh′ ≥ h
such that π ∈ Ah′(x0) and we know that

inf
μ∈K (κ)

Eμ

[
Uγ (Xπ

T )
] ≤ inf

μ∈K (κ)
Eμ

[
Uγ (Xπ ′

T )
] = Eμ′

[
Uγ (Xπ ′

T )
]
,

where μ′ = μ′(κ) is the minimizer of the function

μ �→ 1

2(1 − γ )
μ	Aμ + h′c	μ

on the uncertainty set K (κ) and π ′ = π ′(κ) ≡ 1
1−γ

Aμ′ + h′c. In the following we show
that for sufficiently large level of uncertainty

Eμ′
[
Uγ (Xπ ′

T )
] ≤ Eμ∗

[
Uγ (Xπ∗

T )
]

(A.12)

where μ∗ = μ∗(κ) and π∗ = π∗(κ) are the worst-case parameter and the optimal strategy
for the utility maximization among strategies in Ah(x0). Note that for showing (A.12) it is
sufficient to prove

(π ′
0)

	(μ′ − r1d) − 1 − γ

2
‖σ	π ′

0‖2 ≤ (π∗
0 )	(μ∗ − r1d) − 1 − γ

2
‖σ	π∗

0 ‖2.
(A.13)

Using the representation of π ′ we obtain

(π ′
0)

	(μ′ − r1d) − 1 − γ

2
‖σ	π ′

0‖2

= 1

1 − γ
(μ′)	Aμ′ + h′c	(μ′ − r1d) − 1

2(1 − γ )
(μ′)	Aμ′ − 1 − γ

2
(h′)2c	σσ	c

= 1

2(1 − γ )
(μ′)	Aμ′ + h′c	μ′ − h′r − 1 − γ

2
(h′)2c	σσ	c.
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Here we have used the identities from Lemma 4.7. An analogous computation can be done
for π∗ and μ∗. We then see that, since μ′ minimizes

μ �→ 1

2(1 − γ )
μ	Aμ + h′c	μ

on K (κ), in particular it holds

1

2(1 − γ )
(μ′)	Aμ′ + h′c	μ′ ≤ 1

2(1 − γ )
(μ∗)	Aμ∗ + h′c	μ∗.

Using again c	1d = 1 it is easy to show that c	μ∗ = c	μ∗(κ) goes to minus infinity as κ

goes to infinity. Hence we can choose κ ′ > 0 such that c	μ∗ ≤ 0 for all κ ≥ κ ′. Note that
κ ′ does not depend on π ′. For all κ ≥ κ ′ we then have

(π ′
0)

	(μ′ − r1d) − 1 − γ

2
‖σ	π ′

0‖2

≤ 1

2(1 − γ )
(μ∗)	Aμ∗ + hc	μ∗ + (h′ − h)c	μ∗ − h′r − 1 − γ

2
(h′)2c	σσ	c

≤ 1

2(1 − γ )
(μ∗)	Aμ∗ + hc	μ∗ − hr − 1 − γ

2
h2c	σσ	c

= (π∗
0 )	(μ∗ − r1d) − 1 − γ

2
‖σ	π∗

0 ‖2,
which proves (A.13) and hence (A.12). Since κ ′ was chosen independent of h′ or π ′, we
deduce in particular

sup
π∈Ah(x0)

inf
μ∈K (κ)

Eμ

[
Uγ (Xπ

T )
] ≤ Eμ∗

[
Uγ (Xπ∗

T )
] = sup

π∈Ah(x0)
inf

μ∈K (κ)
Eμ

[
Uγ (Xπ

T )
]

for all κ ≥ κ ′. The reverse inequality holds trivially. ��
Proof of Proposition 4.12 Since both π∗ and π̂ are constant in time and deterministic, we can
show for γ �= 0 that

COA = x0e
rT

(
exp

(
T
(
(π̂0)

	(ν − r1d) − 1 − γ

2
‖σ	π̂0‖2

))

− exp
(
T
(
(π∗

0 )	(ν − r1d) − 1 − γ

2
‖σ	π∗

0 ‖2
))) (A.14)

and

RDR = x0e
rT

(
exp

(
T
(
(π∗

0 )	(μ∗ − r1d) − 1 − γ

2
‖σ	π∗

0 ‖2
))

− exp
(
T
(
(π̂0)

	(μ∗ − r1d) − 1 − γ

2
‖σ	π̂0‖2

)))
.

(A.15)

For γ = 0 we obtain the same representations as in (A.14) and (A.15) with γ = 0. We now
plug in the representations from (9), respectively (10), of the strategies π∗ and π̂ and use the
properties A1d = 0, c	σσ	A = 0 and Aσσ	A = A, see Lemma 4.7. We obtain

COA

x0erT
= L(γ, κ) exp

(
T
(
−hr − 1 − γ

2
h2c	σσ	c + hc	ν + 1

2(1 − γ )
ν	Aν

))
,

RDR

x0erT
= L(γ, κ) exp

(
T
(
−hr − 1 − γ

2
h2c	σσ	c + hc	μ∗ + 1

2(1 − γ )
(μ∗)	Aμ∗)),
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where

L(γ, κ) = 1 − exp
(
− T

2(1 − γ )
(μ∗ − ν)	A(μ∗ − ν)

)
.

Hence, we can deduce in particular that

COA

RDR
=

exp
(
T
(

1
2(1−γ )

ν	Aν + hc	ν
))

exp
(
T
(

1
2(1−γ )

(μ∗)	Aμ∗ + hc	μ∗
)) ≥ 1,

since μ∗ minimizes the function μ �→ 1
2(1−γ )

μ	Aμ + hc	μ on the set K . ��
Proof of Proposition 4.13 Firstly, note that by the same reasoning as in the proof of Theo-
rem 3.11 we have

(π̂0)
	μ∗ ≤ (π∗

0 )	μ∗ = (π∗
0 )	ν − κ

√
(π∗

0 )	Γ π∗
0 ,

and that the right-hand side goes to −∞ as κ goes to infinity. It follows that

lim
κ→∞Eμ∗

[
Uγ (X π̂

T )
] = lim

κ→∞Eμ∗
[
Uγ (Xπ∗

T )
] =

{
−∞, γ ≤ 0,

0, γ > 0,

and therefore limκ→∞ RDR(κ) = 0.
For COA we observe that Eν[Uγ (Xπ∗

T )] converges to a finite value as κ goes to infinity,
with that limit being different from zero if γ �= 0. It follows that U−1

γ (Eν[Uγ (Xπ∗
T )]) also

converges. We thus deduce convergence of COA(κ). Since COA(κ) ≥ 0 for any κ , we know
that the limit is non-negative. ��
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