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Abstract

This thesis focuses on the operation of reliability-constrained routes in wireless
ad-hoc networks. A complete communication protocol that is capable of guar-
anteeing a statistical minimum reliability level would have to support several
functionalities: first, routes that are capable of supporting the specified Quality
of Service requirement have to be discovered. During operation of discovered
routes, the current Quality of Service level has to be monitored continuously.
Whenever significant deviations are detected and the required level of Quality
of Service is endangered, route maintenance has to ensure continuous operation.
All four functionalities, route discovery, route operation, route maintenance and
collection and distribution of network status information, will be addressed in
this thesis.

In the first part of the thesis, we propose a new approach for Quality-of-
Service routing in wireless ad-hoc networks called rmin-routing, with the pro-
vision of statistical minimum route reliability as main route selection criterion.
To achieve specified minimum route reliabilities, we improve the reliability of
individual links by well-directed retransmissions, to be applied during the oper-
ation of routes. To select among a set of candidate routes, we define and apply
route quality criteria concerning network load.

High-quality information about the network status is essential for the dis-
covery and operation of routes and clusters in wireless ad-hoc networks. This
requires permanent observation and assessment of nodes, links, and link met-
rics, and the exchange of gathered status data. In the second part of the thesis,
we present cTEx, a configurable topology explorer for wireless ad-hoc networks
that efficiently detects and exchanges high-quality network status information
during operation.

In the third part, we propose a decentralized algorithm for the discovery and
operation of reliability-constrained routes in wireless ad-hoc networks called
dRmin-routing. The algorithm uses locally available network status information
about network topology and link properties that is collected proactively in order
to discover a preliminary route candidate. This is followed by a distributed,
reactive search along this preselected route to remove imprecisions of the locally
recorded network status before making a final route selection. During route
operation, dRmin-routing monitors routes and performs different kinds of route
repair actions to maintain route reliability in order to overcome varying link
reliabilities.
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1. Introduction

Communication in a wireless network is inherently error-prone. This is different
from most wired networks, where one may assume that a single communication
attempt is usually successful. For wireless communication in an ad-hoc network
(i.e. a spontaneously created wireless network without prior setup of special
infrastructure), the way of avoidance and handling of failed communication at-
tempts is a defining characteristic of almost all modern protocols at the physical,
data link and network layer.

The reason behind the fragility of wireless communication is simple: the com-
munication medium is shared, and successful reception requires a certain min-
imum signal strength. It is shared not only between all participants of a sin-
gle network, but all members of all networks in vicinity. Even devices not de-
signed for wireless communication at all, such as microwave ovens, emit electro-
magnetic waves that significantly impact wireless communication.

The number of measures devised to facilitate sharing of the communication
medium is high. It ranges from obvious measures such as spatial or temporal
separation, to sophisticated modulation and encoding schemes for the informa-
tion to be transmitted to make wireless communication more reliable.

With some protocols, the network can be operated in a deterministic fashion,
e.g. by assigning exclusive time slots for communication to each node in the
network. This determinism can be leveraged to provide an application with re-
altime guarantees about the Quality of Service (QoS), which is a requirement by
many industry applications. Those guarantees however can only be met as long
as all emitters of (sufficiently powerful) electromagnetic waves in proximity of
the network adhere to the same protocol, which implies the assumption of the
so-called single network property. As the communication medium however is
shared, as in many real world scenarios, this property usually does not hold.
This applies especially to wireless ad-hoc networks, as assuring absence of any
interfering networks, and more generally interfering emitters of electromagnetic
waves is not straight-forward and is comparable to the prior set up of network
infrastructure, which ad-hoc networks by definition do not require. This justifies
a closer look at wireless communication protocols that incorporate functionali-
ties to cope with dynamic levels of interference from arbitrary emitters.

One of the major protocol families that incorporates functionalities for assur-
ing a specific QoS level for multi-hop communication in wireless ad-hoc net-
works is routing protocols. Routing is a core functionality of multi-hop net-
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1. Introduction

works in general, and of wireless ad-hoc networks in particular. The purpose
of routing is the discovery and operation of routes to provide end-to-end com-
munication between sets of nodes. A route is a tree of links, where a link is a
direct connection between a pair of nodes. Depending on the application con-
text, routes may be required to satisfy certain QoS requirements, for instance,
regarding throughput, delay, reliability, and resource consumption. In this the-
sis, we will focus on reliability-constrained routing, where routes have to satisfy
minimum statistical reliability targets.

1.1. Routing in Ad-Hoc Networks

Routing is an essential functionality for directing communication across large
networks. However, with the vast array of applications for wireless ad-hoc net-
works, finding a single routing protocol suitable for every application is chal-
lenging. As a result, several routing protocols have emerged over years of ex-
tensive research, each specifically designed to address the unique requirements
of different wireless communication domains.

The demands and challenges posed on routing protocols are vast and diverse.
On the one hand, many applications require a minimum quality of service with
respect to latency, reliability, jitter or bandwidth. A network might also consist
of several different types of nodes, varying in power, battery size or other ca-
pabilities (a so-called heterogeneous network). An especially hard challenge to
a routing protocol poses node mobility, which is relevant with communication
protocols for a swarm of flying drones for instance.

As addressing all these demands by a single protocol is close to impossible,
especially as some of the demands might be almost mutually exclusive (minimal
power consumption and minimal latency for instance), a common approach is
to define the intended application domain of a routing protocol beforehand.
Thus, only the demands common to the specified application domain need to be
met. A consequence of this is the evidently vast number of specialized routing
protocols available today. Unsurprising to the experienced reader, the already
large family of specialized routing protocols for wireless ad-hoc networks will
gain another member in the course of this thesis.

1.2. Quality-of-Service Routing in Ad-Hoc Networks

QoS routing plays a crucial role in networks that support distributed applica-
tions with real-time requirements, including distributed control and production
systems. Its primary objective is to find routes that meet specific constraints
on performance, reliability, and resource consumption. By taking into account
these constraints, QoS routing reduces the number of potential route candidates

2



1.3. Reliability-Constrained Routing in Ad-Hoc Networks

compared to pure best effort routing, thereby leading to a selection of routes
with more predictable behavior.

QoS route discovery relies on network status information, which may either be
collected proactively or reactively at runtime. This information could be central-
ized in a routing manager or distributed across a network’s nodes. Ultimately,
the quality of QoS route selection depends on the amount, type, accuracy, and
timeliness of the available network status data.

However, achieving QoS requirements in wireless networks presents a unique
set of challenges due to the dynamic and fragile nature of wireless communi-
cation links. A wireless link can frequently break and restore multiple times
within seconds, making it necessary to continuously monitor the link state to
determine its suitability for a route is supposed to meet specific QoS require-
ments.

1.3. Reliability-Constrained Routing in Ad-Hoc
Networks

The reliability of links in wireless ad-hoc networks varies due to several factors
such as distance, terrain, signal strength, and interference. Therefore, the choice
of proper links to form a route is of crucial importance for reliability-constrained
routing. Unlike wired networks, selecting the shortest routes based on the num-
ber of hops is not recommended in wireless networks due to the preference
given to weaker and therefore less reliable links. Instead, it is better to prioritize
routes with sufficiently strong links as those with weak links necessitate more
retransmissions and are prone to failing. Therefore, wireless networks require
careful consideration in selecting the right links in order to form reliable routes.

To increase the perceived strength or reliability of a link, retransmission of
lost frames is a common approach. In WiFi networks, the same frame may be
transmitted up to 7 times. Knowing this, we can conclude that the perceived
reliability of a communication link strongly depends on the current level of
abstraction. For instance, a distributed application that runs on top of a wireless
ad-hoc network may experience a perfect link to a destination node, whereas on
link level 30 % of transmitted frames are not received correctly.

In this thesis, we will explore the impact of individual retransmission bud-
gets adjusted for the raw reliability of each link in a route on a route’s end-to-
end reliability. We show that through optimal distribution of a fixed budget of
transmissions, careful and continuous monitoring of link state and sophisticated
route repair mechanisms operation of routes that satisfy minimum reliabilities
targets set by the application is possible.

The structure of this thesis is as follows. In Chapter 2, a route discovery al-
gorithm called rmin-routing for routes that satisfy a minimum reliability level is

3



1. Introduction

introduced. We prove the optimality of our transmission budget allocation and
define a routing metric for efficient search of feasible routes. As rmin-routing
assumes availability of complete and up-to-date topology information, a config-
urable topology detection and distribution protocol called cTEx was developed
and is presented in Chapter 3. The chapter includes a complete specification of
the protocol, a thorough evaluation in simulation and testbed experiments in-
cluding a thorough comparison to a related protocol from the literature. Chap-
ter 4 introduces dRmin-routing, a complete, decentralized routing protocol that
supports discovery, operation and maintenance of rmin routes. In the course of
the chapter, dRmin-routing is specified semi-formally in form of pseudocode, im-
plemented, evaluated in simulation experiments and compared with the often
cited OLSR protocol. A summary of preconditions for a real world evaluation
of dRmin-routing is provided towards the end of the chapter. As illustration
of the capabilities of complex communication protocols to a layman audience
can be challenging, a demonstrator testbed and framework was designed and is
presented in Chapter 5. In this chapter the extensible design and architecture
of the framework for runtime control of a protocol stack is outlined. We also
introduce so-called playbooks, which describe a tested sequence of actions on
the demonstrator for showcasing specific communication protocol capabilities.
Chapter 6 contains a summary of the findings of this thesis and an outlook with
remarks on future work.
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2. rmin-Routing – Discovery of
Reliability-constrained Routes in
Wireless Ad-Hoc Networks

As outlined in the introduction, the concept of reliability-constrained routing is
an aspect of Quality of Service in wireless ad-hoc networks: Routes are selected
such that a specified quality requirement, such as reliability, is satisfied. In this
chapter, we show an approach for the discovery of routes in wireless ad-hoc
networks that satisfy a specified reliability target during route operation.

Reliability is an important requirement with many applications. Imagine a
factory where production is monitored wirelessly using data provided by sen-
sors. Some loss of sensor data might be tolerable to assuring safe operation. In
case the level of tolerable loss is exceeded, production has to be stopped. Often
the level of tolerable loss can be specified precisely enough such that a Quality of
Service requirement can be constructed, which can then be ensured by the com-
munication protocol. Another application are scenarios, where error-correcting
codes (ECC) are used to reconstruct lost messages, using redundancy informa-
tion embedded in received messages. The degree of loss where reconstruction is
possible is known exactly, as it depends on the amount of redundancy informa-
tion included in each message. The corresponding reliability requirement is then
enforced by the communication protocol. Whenever lost messages can be recon-
structed instead of having to be re-transmitted, a request for a re-transmission,
which would have to be sent in the opposite direction of the data flow, is saved.
This also reduces delay caused by re-transmission requests. Furthermore, such
a request may be lost. This approach is especially useful when communica-
tion is asymmetric, i.e. the sender almost exclusively sends, whereas the sink is
supposed to receive only (e.g. in case of multicast or one-way communication
links).

A complete communication protocol that is capable of guaranteeing a statisti-
cal minimum reliability level would have to support several functionalities: first,
routes that are capable of supporting the specified Quality of Service require-
ment have to be discovered. This requires collection and exchange of accurate
network status information, such as link qualities. During operation of discov-
ered routes, the current Quality of Service level has to be monitored continu-
ously. Whenever significant deviations are detected and the required level of
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2. rmin-Routing

Quality of Service is endangered, route maintenance has to ensure continuous
operation. Route maintenance includes the decision whether a route can be re-
paired or needs to be re-established. All four functionalities, route discovery,
route operation, route maintenance and collection and distribution of network
status information, will be addressed in this thesis.

In this chapter a solution for the first functionality, the discovery of routes,
is proposed. As the objective is to find routes satisfying a minimum level of
reliability, the proposed approach is called rmin-routing [KMG19]. We begin by
establishing some common terminology as well as a network model, which is
also the base of most formalisms introduced in later chapters of this thesis. The
model is designed to capture the influence of re-transmissions on the perceived
reliability of a link. This is an important aspect of rmin-routing: to increase
the perceived reliability of specific links, a budget of transmission attempts is
distributed over the links of a route. Thus, weaker links can be compensated for
such that a route becomes capable of satisfying a specified reliability target.

Next, a novel routing metric is introduced to quantify the aptness of a route
candidate for the fulfillment of the specified reliability requirement. This is
followed by a detailed description of the discovery phase of rmin-routing, where
viable route candidates are searched in a global view of the network state. As the
number of all possible paths between a source and destination quickly exceeds
the computationally feasible, several filtering steps are applied to reduce the set
of route candidates. In a final step of filtering a single route is selected that is
expected to satisfy the minimum reliability target.

Towards the end of this chapter, we will present simulation experiments show-
ing that the route selection heuristic in combination with the newly developed
metric leads to routes that satisfy the specified reliability target. In addition, we
show that existing routing metrics that are not tailored to the requirements of
reliability-constrained routing, fail to continuously meet reliability targets.

2.1. Terminology

As several terms specific to the networking community, such as packet and frame,
are sometimes used interchangeably though subtle differences matter in some
contexts, we will establish a common terminology in this section. An overview
of the established terms for each layer of abstraction is provided in Table 2.1.

In the network model specified in Section 2.2, the network is modeled as
a directed graph of vertices, connected through edges. A sequence of vertices
connected directly through directed edges is called a path. The outcome of a
single communication attempt along an edge in the network model is captured as
probability of success.

In the context of communication protocols, wireless communication interfaces
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2.1. Terminology

Table 2.1: Established terminology in tabular form, per layer of abstraction.

Network Model MAC Layer Network Layer

Vertex Node Network Address
Edge Link –
Path Route Connection / Established Route

Probability of Success Reliability –
Communication Attempt Transmission Transport

– Frame Packet

installed on physical network nodes exchange data over wireless communication
links. Though several wireless communication interfaces per node are possible,
we assume one communication interface per node, unless stated otherwise. A
wireless communication link has two properties: a channel and a data rate. Each
physical node in the network is represented by a vertex in the network model,
and each link corresponds to a directed edge in the graph. In analogy to paths
from the network model, a sequence of interconnected links is called a route. A
communication attempt via an edge between vertices in the network model is
called a transmission over a link between physical nodes, consequently. The se-
quence of bits that is sent in a single transmission is called a frame. The probability
of success of communication attempts over edges between vertices in the network
model is a value we can in practice only approximate through observations, so
we refer to the respective concept as reliability of a link between network nodes
to reflect that fact in the context of communication protocols. Different from the
probability of success for communication attempts, which is a clearly defined
mathematical concept, the reliability of a link leaves room for interpretation. In
this thesis, we assume the reliability to be the value assigned to each link by a
reliability-focused link quality metric of some sort.

One layer of abstraction above, at the network level, packets are exchanged
between network addresses via connections, or established routes. In analogy with
communication interfaces and network nodes, we assume a single network ad-
dress per communication interface, unless specified otherwise. A packet is a
sequence of bits formatted for communication over a sequence of wireless links
(a route), which is eventually transmitted in one or more frames. A sequence of
packets that travels in the same direction along an established route between a
pair of addresses is a stream.

The established terms will be used consistently throughout this thesis and
shall also serve the reader as indicators of the current level of abstraction.
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2. rmin-Routing

2.2. Network Model

In standard literature [vS10, Zwe16], a communication network is often modeled
as a graph G = (V, E), with vertices v ∈ V and edges e ∈ E, where E ⊆ V × V,
where vertices and edges model physical nodes and links, respectively. This def-
inition is suitable for modeling simpler networks, where the cost of traversing an
edge is equal for all edges. For the definition of complex quality requirements
however, the model turns out to be insufficient. A possible initial remedy to this
deficit is the introduction of a function w : E → R+, which assigns a weight to
each edge. With w, the model supports the definition of more sophisticated link
quality metrics: w can be defined to capture latency, load or reception strength
of links between network nodes. With an appropriate routing metric, the model
supports selection of routes satisfying specified quality requirements. It is how-
ever, lacking flexibility regarding the set of edges. Currently, the set of edges
is just a collection of pairs of vertices (v1, v2), with v1, v2 ∈ V: no additional
properties of the set of edges, such as asymmetry, can be specified.

Route discovery in rmin-routing is based on a network model G = (V, r), with
vertices v ∈ V and reliability function

r : V × V → R0,1 (2.1)

Based on r, the set of asymmetrical edges is derived as

E =df {(v, v′) ∈ V × V | r(v, v′) > 0} (2.2)

With this definition, links modeled as edges in G are inherently asymmetrical
and the set E is equivalent to the set of node pairs where transmission attempts
can be successful. For edges e = (v, v′) ∈ E, we will abbreviate r(v, v′) to re. We
will further call a sequence of edges p, with p = ⟨ (v0, v1), (v1, v2), ..., (vn−1, vn) ⟩ ∈
E+ a path. Usually, we write path p as ⟨ v0, v1, v2, ..., vn ⟩ for legibility. Note that
the length |p| of a path p is always the number of hops, i.e. the number of edges
in the path. We also restrict r to single-hop communication only: For v, v′ ∈ V,
we assume r(v, v′) = 0, if v′ is not in communication range of v. To model
multi-hop communication along a path p, we introduce rp : E∗ → R0,1. A key
assumption is that the sequential traversal of edges e in a path p is a Bernoulli
trial, such that

rp =
e∈p

∏ re (2.3)

holds.
To this point, the exact semantics of the quality function r was left open. As

our aim is to discover routes with a specified minimum end-to-end reliability,
we define re as the probability that a single communication attempt between the
pair of vertices connected through e succeeds. A consequence from Eq. (2.3) is
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that the success probability of communication attempts is assumed to be inde-
pendent and identically distributed. In reality, this assumption is too strong and
necessitates careful measures to retain validity of the model.

As stated above, re captures the probability of success for a single communi-
cation attempt. Especially in wireless networks, links are inherently unreliable
and re-transmissions are common. Based on the introduced network model and
the assumption that repeated communication attempts are Bernoulli trials, the
probability of success after up to n ∈ N+ attempts is equal to the inverse of the
probability of all n attempts failing, which gives

re,n =df 1 − (1 − re,1)
n where re,1 = re (2.4)

for the probability of success of n communication attempts over edge e. We
call edges with n > 1 boosted.

For a given path p ∈ P and up to ne communication attempts on edge e ∈ p,
we obtain the maximum number of attempts np over all edges in p, and end-to-
end reliability of p under up to np communication attempts rp,np

np = ∑
e∈p

ne (2.5)

rp,np = ∏
e∈p

re,ne (2.6)

2.3. Route Discovery

The process of route discovery in rmin-routing relies on accurate and up-to-date
topology information, including precise estimates of the reliability of each link
in the network. For this section, we assume this information is locally avail-
able on each node. A sophisticated protocol for collection and distribution of
information on network topology and network status is introduced in Chapter 3.

2.3.1. Motivation

The core objective of rmin-routing is to discover routes that satisfy a specified
reliability target. This reliability target rmin imposes a minimum end-to-end
reliability requirement over a specified time frame d on the selected route, i.e.
at any point in time, the ratio of packets received to packets sent over the last d
seconds is greater than or equal to rmin.

Fig. 2.1 depicts a small topology, where each edge e is annotated with the
respective success probability re of a single communication attempt. For a path
between vertex v1 and v3, this topology contains two options: the path p1 =

⟨ v1, v3 ⟩, with aggregated path reliability rp1 = 0.7 and the path p2 = ⟨ v1, v2, v3 ⟩,
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2. rmin-Routing

with rp2 = 0.8075. If we specify the minimum reliability rmin for the path be-
tween v1 and v3 as 0.7, all cycle-free paths in the given topology satisfy this
requirement. For 0.7 < rmin ≤ 0.8075, only the longer path is possible.

v1

v2

v3

.95

.8
5

.7

Figure 2.1: Example topology

To support more demanding end-to-end re-
liability targets, rmin-routing applies link boost-
ing (in analogy to boosting of edges as intro-
duced with the network model in Section 2.2),
to increase the perceived reliability of a link.
If we specify rmin = 0.9, boosting of edges
is necessary to find a feasible path. For the
small example topology depicted in Fig. 2.1,
we will increase the number of communica-
tion attempts globally to 2 per edge.

Table 2.2: Path and edge properties after boosting

Path p Edge e re,1 ne re,2 np rp,np

p1 ⟨ v1, v3 ⟩ (v1, v3) .70 2 .910 2 .910
p2 ⟨ v1, v2, v3 ⟩ (v1, v2) .95 2 .998 4 .985

(v2, v3) .85 2 .978 4 .985

By assigning one additional communication attempt to the edges (v1, v2) and
(v2, v3), path p2 becomes feasible and meets the specified rmin requirement. One
additional attempt over edge (v1, v3) is also sufficient to render the second can-
didate path p2 feasible. The changed path and edge properties after application
of the boost mechanism are listed in Table 2.2.

So through boosting, previously unfeasible paths can be made feasible for a
given reliability target. In this example, we increased the limit for communi-
cation attempts globally. Hence, initial transmission attempts on every link are
retried once, when a failure is detected. However, this approach of increasing a
global transmission limit does not scale for larger networks and more demand-
ing reliability targets.

With a global limit of communication attempts of 2 from the example above
we observe that the boosted reliability rp2,4 of path p2 = ⟨ v1, v2, v3 ⟩ is 0.985 after
the assignment of extra attempts, which is well above the reliability target of
0.9. In fact, p2 would still meet the specified rmin requirement, with n(v1,v2) = 1.
However, for rmin requirements lower than 1, some failed communication at-
tempts (and consequently lost frames and packets) can be tolerated. Any extra
attempts boost the path in question to an unnecessarily high reliability level.
Hence, we call paths such as p2, where a lower limit of communication attempts
still satisfies the rmin requirement over-provisioned. As wireless networks operate
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on a shared medium, over-provisioning should be avoided, as additional trans-
missions are not necessary to satisfy the reliability requirement but reduce band-
width available to other nodes. A transmission limit configured globally would
lead to excessive over-provisioning. This calls for a more elaborate strategy,
which increases the transmission limit only on specific links, where feasibility is
still assured while over-provisioning is kept at a minimal level.

At this point, we can summarize our observations as two requirements on the
path selection strategy and for the assignment of communication budgets:

• Feasibility: The reliability target rmin can be satisfied, i.e. there exists, for
each edge e ∈ p, a value ne such that rp,np ≥ rmin.

• Optimality: Bandwidth consumption is minimized (no over-provisioning),
i.e. np is minimal.

We call a path p feasible, if it can match the reliability target rmin; otherwise,
it is unfeasible. We further call p optimal, if only the minimum number of com-
munication attempts ne necessary to achieve rmin over p is assigned to each edge
e ∈ p. The terms feasible and optimal are also used with regards to routes, where
they convey the same semantics.

The requirements for routes discovered with rmin-routing are now quite clear.
The requirements regarding the different components of rmin-routing with re-
spect to the fulfillment of the specified route properties are stated and addressed
in the following sections:

• rmin-routing requires accurate estimates of link reliabilities to select routes,
so a link quality metric supporting this requirement is necessary (Sec-
tion 2.3.2).

• Routes should be both feasible and optimal regarding the specified reli-
ability target. A routing metric that accommodates both requirements is
needed (Section 2.3.3).

• As an exhaustive search for feasible and optimal paths is computationally
unfeasible, a strategy for careful preselection of viable paths is necessary
and introduced (Section 2.3.4).

• For an expressive performance evaluation of the devised route discovery
strategy, we will consider several additional routing metrics for wireless
ad-hoc networks from the literature for comparison (Section 2.3.6).

2.3.2. Link Quality Metric

rmin-routing requires accurate estimates of link reliability to select routes. How
these estimates are obtained exactly, is not part of the specification of rmin-
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routing. rmin-routing however imposes several requirements upon the link qual-
ity metric.

• Normalized The value range of the metric is R0,1 and perfect links have the
value 1.0. This is the simplest of the requirements to fulfill and is needed
for network model compatibility.

• Aggregatability The product of the reliability of links of a route should be
indicative of the end-to-end reliability of the route1. This requirement
is also needed for compatibility with the network model introduced in
Section 2.2.

• Actuality The metric value of a link is predictive of the outcome of the next
transmission attempt. As routes are searched for future operation, ideally,
the metric value should aim to predict future link behavior.

• Conservativeness The actual probability of success for the next communi-
cation attempt is preferably higher than the value of the metric. This
requirement is detrimental to the goal of optimal routes with minimal
bandwidth consumption. If the link metric was perfectly accurate, and the
assumption of transmission attempts behaving like Bernoulli trials made
in the network model was realistic, this requirement could be dropped.
As achieving both is unlikely, slightly higher bandwidth consumption is
preferred over higher fail rate of established routes.

For the remainder of this chapter, we use the packet delivery ratio (PDR) of
the recent past as link quality metric. PDR satisfies the requirements normal-
ized, aggregatability and actuality. A more sophisticated solution is introduced
in one of the following chapters in this thesis as part of a complete protocol
implementing rmin-routing.

2.3.3. SMTX – A New Routing Metric

In this section, we introduce the novel routing metric SMTX (smallest maximum
number of transmissions), and derive an algorithm to compute SMTX from a
path p and reliability target rmin. SMTX captures, for a given path, the smallest
number of communication attempts that is needed to statistically guarantee a
specified end-to-end reliability target. When applied to each of several candi-
date paths, selecting the path with lowest SMTX value satisfies both require-
ments stated in Section 2.3.1: Feasibility and optimality. Feasibility is achieved

1This requirement could be dropped, if there was a protocol that accurately and proactively esti-
mated the end-to-end reliability of routes directly (i.e. without deriving end-to-end reliability
from estimates of link reliabilities). We are not aware of such a protocol.
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because SMTX defines the necessary communication budget (and its optimal
distribution) to achieve the reliability target, while optimality is achieved by
selecting the path with lowest budget requirement.

The formal definition of SMTX for a path p and a reliability target rmin is
concise and straightforward:

SMTXp,rmin = min{np ∈ N | rp,np ≥ rmin} (2.7)

As introduced in Section 2.2, rp,np is the product ∏e∈p re,ne of the reliabilities of
each edge e in p, including a limit of communication attempts of ne. SMTXp,rmin

is defined as the minimal np (which is the sum over all ne of edges in the path)
sufficient to achieve rmin.

In its current form, SMTXp,rmin has no upper bound. As this can introduce
difficulties with regards to designing an algorithm to calculate the metric value,
an additional, bounded definition is provided:

SMTXnmax
p,rmin

= min{nmax · |p|, np ∈ N | rp,np ≥ rmin} (2.8)

This definition introduces an upper limit nmax, which is used as the metric
value whenever np > nmax · |p|. This also means that a result of SMTXnmax

p,rmin
=

nmax · |p| implies that p is not feasible. The previous notation from Eq. (2.7) is
equivalent to SMTX∞

p,rmin
, such that we will refer to Eq. (2.8) only, from here on.

For the purpose of deriving an algorithm that calculates SMTXnmax
p,rmin

, we can
think of np as a budget, which needs to be distributed optimally over all edges
in p. Initially, the budget can be set to the length |p| of p, as at least one commu-
nication attempt is required even for edges with perfect probability of success.
The algorithm would then need to increase the budget until the reliability target
rmin is met for the complete path p, or the maximum value nmax · |p| for the com-
munication budget is reached. Whenever the budget is incremented, one of the
edges is assigned one additional communication attempt. An optimal number
of attempts is achieved, if we always allocate another attempt to the edge where
this additional attempt results in the strongest proportional increase of success
probability. The proportional increase q(k, re) in success probability re, when
allocated another attempt, for an edge e that currently has k attempts allocated
can be expressed as:

q(k, re) =
re,k+1

re,k
(2.9)

We show now, that q(k, re) is decreasing in k, for all re ∈ (0, 1). The restriction
of re to the interval (0, 1) is sensible, as a link with re = 1, i.e. a link of perfect
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quality won’t have to be boosted and a non-existing link (i.e. re = 0) cannot be
boosted. Monotonicity is an important property as this implies that q(k, re) <

q(k + 1, re), such that a link budget of size b may be selected only after all lower
budget levels are already tried.

Lemma 2.3.1. q(k, re) is a decreasing function of k for re ∈ (0, 1).

Proof. We show that the derivative of q(k, re) is less than 0.

∂q(k, re)

∂k
=

∂

∂k

(
1 − (1 − re,1)

k+1

1 − (1 − re,1)k

)
=

re,1(1 − re,1)
k log(1 − re,1)

(1 − (1 − re,1)k)2

As re,1 ∈ (0, 1), and log(x) < 0 for x ∈ (0, 1), we know ∂
∂k (q(k, re)) < 0.

Based on re,n, the probability of success re,n+1 over edge e when allocated
another communication attempt can be expressed as:

re,n+1 = 1 − (1 − re,n) · (1 − re,1) (2.10)

As the increase in probability of success of an edge under allocation of one
additional communication attempt re,n+1 − re,n = re,1 · (1− re,n) is always greater
than 0, we know that re,n is strictly increasing under allocation of additional
communication attempts for edges e, where 0 < re < 1. An algorithm that
iteratively allocates each transmission to the link e, where q(k, re) is maximal,
therefore results in an optimal allocation sequence, as this approach maximizes
rp,np . The last term of below equation is maximal for maximal q(k, re), so rp,np is,
too.

rp,np

(2.6)
= ∏

e∈p
re,ne

= ∏
e∈p

(
re,1 ·

re,2

re,1
· re,3

re,2
· · · re,ne

re,ne−1

)
(2.9)
= ∏

e∈p

(
re,1 ·

ne−1

∏
k=1

q(k, re)

)

=

(
∏
e∈p

re,1

)
︸ ︷︷ ︸

rp

·∏
e∈p

ne−1

∏
k=1

q(k, re)︸ ︷︷ ︸
maximize
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1 // p is a sequence of edges, while an edge is a struct
2 // with attributes r and tx, where r is the un-boosted
3 // reliability and tx = 1 initially
4

5 // Initialize transmission counters
6 for e in p { e.tx = 1 }
7

8 while r(p) < r_min and
9 cost(p) < n_max * p.length {
10 let e_max = p[0]
11 for e in p {
12 if q(e) > q(e_max) {
13 e_max = e
14 }
15 }
16

17 e_max.tx += 1
18 }

Listing 2.1: Pseudocode for calculation of SMTXnmax
p,rmin

19 func r(p) {
20 // Calculate reliability of p, incl. boosts
21 let rel = 1.0
22 for e in p {
23 // pow(a, b) := ab

24 rel *= 1 - pow(1 - e.r, e.tx)
25 }
26 return rel
27 }
28

29 func cost(p) {
30 // Calculate sum over all e.tx in p
31 let sum = 0
32 for e in p { sum += e.tx }
33 return sum
34 }
35

36 func q(e) {
37 // Calculate proportional increase if e is allocated
38 // one additional transmission
39 let r_next = 1 - pow(1 - e.r, e.tx + 1)
40 let r_now = 1 - pow(1 - e.r, e.tx)
41 return r_next / r_now
42 }

Listing 2.2: Helpers r(p), cost(p) and q(e)
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An algorithm in the form of pseudocode that finds an optimal allocation se-
quence for a given path is provided in Listing 2.1. To determine SMTXnmax

p,rmin
,

we start with e.tx = 1 for all edges. The while-loop (line 8) terminates either
when the reliability target (captured as r_min) is met, or when the sum over all
transmissions assigned to edges exceeds the budget determined by n_max. In
case neither rmin is met, nor the budget nmax · |p| is exhausted, a search for the
edge with maximum proportional increase in q(k, re) is executed in lines (11-15).
Finally, the optimal edge is assigned the additional transmission and the condi-
tions in line 8 are checked again. In case p is unfeasible, meaning the available
budget nmax · |p| is not sufficient to boost p such that rmin can be met, the second
part of the condition in line 8 terminates the procedure. After the procedure
terminates, the optimal distribution of communication attempts is recorded in
form of the tx attribute values of the edges. To tell whether the procedure termi-
nated because p was unfeasible or not, one additional check whether r(p) > r_min

evaluates to true is necessary.

Properties of SMTX

In this section we will show that SMTX is monotonic and non-additive. We also
show that the respective optimization problem of finding a path with minimum
SMTX costs cannot be solved using a greedy algorithm, as SMTX does not satisfy
the greedy choice property.

First, we show that SMTXnmax
p,rmin

is a monotonic function of paths. I.e. for two
given paths p1, p2 with p1 the shorter path in case both paths are of different
length, if p1 only contains links of equal or better (i.e. higher) reliability under
element-wise comparison than p2, the SMTX value of p1 will be better (i.e. lower)
than that of path p2. In other words, under the stated circumstances, SMTX is
monotonic in the sense of that it preserves the ordering of p1 and p2.

Lemma 2.3.2. SMTXnmax
p,rmin

is a monotonic function of paths, i.e. for two paths p1, p2

p1 ≤ p2 =⇒ SMTXnmax
p1,rmin

≤ SMTXnmax
p2,rmin

holds. Let |p1| ≤ |p2| without loss of generality. We define ≤ on the set of paths P ⊆ E∗

as a reflexive partial order relation

p1 ≤ p2 ⇐⇒ ∀i . 0 ≤ i < |p1| =⇒ rp1[i] ≥ rp2[i]

Proof. Assume the contrary that SMTXnmax
p,rmin

is a non-monotonic function of paths.
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Let p1, p2 paths and if SMTXnmax
p,rmin

is indeed non-monotonic, then

∃ p1, p2 . p1 ≤ p2 ∧ SMTXnmax
p1,rmin

> SMTXnmax
p2,rmin

2.8
=⇒ np1 > np2

2.5
=⇒ ∑

e∈p1

ne > ∑
e∈p2

ne

2.4
=⇒ ∃ i . 0 ≤ i < |p1| ∧ rp1[i] < rp2[i]  p1 ≤ p2

This contradicts our assumption and thus, SMTX is monotonic.

Above definition of ≤ on the set of P implies a partial order only and no total
order, as ≤ is not defined for all pairs of paths.

Next we will show that SMTX is a non-additive function of paths. We define
addition with respect to paths intuitively as the concatenation of the respective
edge sequences. Two paths can only be concatenated, if the last vertex of the
first path and the first vertex of the second path are the same vertex.

Lemma 2.3.3. SMTXnmax
p,rmin

is a non-additive function of paths.

Proof. Assume the contrary that SMTXnmax
p,rmin

is an additive function. Let p1 =

⟨ v1, v2 ⟩ with r(v1,v2) = 0.9, p2 = ⟨ v2, v3 ⟩ with r(v2,v3) = 0.9 and p3 = p1 + p2 =

⟨ v1, v2, v3 ⟩. If SMTX is indeed additive, then

SMTX∞
p1,0.9 + SMTX∞

p2,0.9 = SMTX∞
p3,0.9

should hold. However, SMTX∞
p1,0.9 = 1 and SMTX∞

p2,0.9 = 1, so SMTX∞
p1,0.9 +

SMTX∞
p2,0.9 = 2 but SMTX∞

p3,0.9 = 4. This contradicts our assumption and thus,
SMTX is non-additive.

Furthermore, the corresponding optimization problem of finding a path of
minimal SMTX cost does not satisfy the greedy choice property, which is to-
gether with the optimal substructure property a requirement for the applicabil-
ity of greedy algorithms.

Lemma 2.3.4. The minimum SMTX cost problem does not satisfy the greedy choice
property, i.e. there are cases, where a globally optimal choice cannot be obtained by
greedily selecting the locally optimal choice.

Proof. We assume the contrary that SMTX satisfies the greedy choice property
and construct a counter example. In Fig. 2.2, the path of minimum SMTX cost
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Figure 2.2: Greedy choice property counter example

from vertices vs to vd, for rmin = 0.8 is p1 = ⟨ vs, va, vb, vc, vd ⟩, as SMTX∞
p1,0.8 = 7,

while SMTX∞
p2,0.8 = 8 with p2 = ⟨ vs, v1, v2, v3, vd ⟩.

However, when making the greedy choice of the local optimum, starting at
vs, edge (vs, v1) is picked, which is not part of the global optimum. This is a
contradiction to the assumption that by selecting the locally optimal choice we
obtain a globally optimal solution.

Theorem 2.3.5. The minimum SMTX cost problem cannot be optimally solved by a
greedy algorithm.

Proof. An optimization problem can be optimally solved by a greedy algorithm
if two properties hold: the optimal substructure property and the greedy choice
property. Thus, the proof is immediate by Lemma 2.3.4.

The fact that the minimum SMTX cost problem cannot be optimally solved us-
ing greedy algorithms is very important, as this also rules out common shortest-
path algorithms such as Dijkstra’s algorithm.

Time Complexity of SMTX

To determine the runtime complexity of calculating SMTXnmax
p,rmin

we analyze the
algorithm provided in Listing 2.1. The outer loop (line 8) is bounded by |p|, as
exactly one additional communication attempt is assigned per iteration and the
loop is terminated after nmax · |p| assignments in the worst case. To find the edge
with maximum impact (lines 11-15), |p| comparisons are required, while each
comparison takes constant time. It is however possible to improve the runtime
complexity of these comparisons by storing the results of q(e) as a max-heap:
After the initial run, only a single value (the value for the edge assigned the
additional communication attempt) needs to be updated per iteration. With a
max-heap, retrieval of the optimal edge to boost is possible in constant time.
Using this optimization, the runtime complexity of lines 11-15 is reduced from
O(|p|) to O(log p). This results in an average-case time complexity of

O(|p| · log |p|) (2.11)
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2.3. Route Discovery

for calculating SMTX for a single path p. In practice however, SMTX is used to
search for the best among several paths. As the optimization problem for finding
a path with minimal SMTX value does not have the greedy choice property (see
Lemma 2.3.4), a greedy algorithm (such as Dijkstra’s shortest path) cannot be
applied. An alternative would be exhaustive search, however the time complex-
ity of an exhaustive search of all paths between a pair of vertices in the network,
of which there are (|V| − 2)! in a complete graph, is O(|V|2 · (|V| − 2)!). The
assumption of a complete graph surely is a worst-case scenario, albeit realistic
for small-area networks, where all nodes are in communication range of each
other.

From these considerations we can conclude that an exhaustive search is com-
putationally infeasible in some and algorithmically inelegant in most cases, as
the vast majority of evaluated paths will resemble significant detours. Hence,
an alternative to exhaustive search is introduced in the following section.

2.3.4. Route Selection Heuristic

As stated in Section 2.3.3, an exhaustive search for feasible and optimal paths
is computationally unfeasible, as the number of paths between two vertices in
a graph grows exponentially with the number of edges. This results in a vast
search space even for smaller networks. To keep algorithm runtime within man-
ageable bounds, we apply the following strategy: First, a set of candidate paths
is generated using an efficient k-shortest-paths algorithm supporting additive
edge weights. This set of candidates is then filtered using several criteria, where
candidates with unwanted properties are discarded, e.g. paths with an exces-
sive length, or paths containing edges that have a low probability of successful
communication attempts. It is important that each of the filter criteria is not
overly strict, so only sub-optimal paths are filtered and that each criterion can
be computed efficiently. After the filtering steps, SMTX is applied to the remain-
der of candidates, to assure feasibility and optimality (see Section 2.3.1) of the
final path selection. For each step, a formal definition will be provided.

In the first step, Yen’s algorithm [Yen71] is used to determine the set of k-
shortest paths, with k ∈ N for given source and destination vertices vs and vd
of V. As Yen’s algorithm supports additive edge weights only, we cannot use
SMTX, which we have shown to be non-additive. Instead, we use the inverse
of each edge’s success probability 1

re
as weight. This is a sensible choice, as we

prefer routes to be reliable as well as short. As a consequence, the set of paths
produced by Yen’s algorithm contains the k paths where

∑
e∈p

1/re (2.12)
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2. rmin-Routing

is minimal. The time complexity of Yen’s algorithm is O(k · |V| · (|E|+ |V| ·
log |V|)) [BELR07].

Step 1. Given source and destination vertices vs and vd of V, and k ∈ N, we
first compute a set of route candidates PC1(vs, vd) ⊂ P as follows:

PC1(vs, vd) = Pmin ⊂ P, where |Pmin| = k

∧ ∀p ∈ Pmin . ∀p′ ∈ P \ Pmin . w(p) ≤ w(p′)

with w(p) =d f ∑
e∈p

1/re

These k-shortest paths with respect to w are calculated using Yen’s al-
gorithm [Yen71] and are therefore cycle-free.

The value for k needs to be chosen carefully: If it is too small, the set of
candidates might not contain any feasible paths that satisfy rmin although such
paths might exist in G. On the other hand, the larger k is chosen, the more paths
with sub-par reliability are included in the set, significantly increasing algorithm
runtime without contribution to the quality of the path selected in the final step.

To reduce the size of set PC1 , we will filter and discard paths in PC1 that do
not satisfy certain criteria. The time complexity of all path properties checked
during the filter steps should be low.

In Step 2, we discard all paths that exceed a length limit. We choose the limit
relative to the length nsp of the shortest path between vs and vd with respect to
hop count. As the hop count metric gives preference to longer and therefore less
reliable hops, we not only consider paths p of length nsp, but also longer routes
up to a maximum length of ⌈ fsp · nsp⌉, with a suitable factor fsp ≥ 1.

Step 2. Given a set of paths PC1 , remove paths that exceed a length limit:

2a. Determine the length nsp of the shortest path (w.r.t. hop count)
between vs and vd in P.

2b. Compute

PC2(vs, vd) = { p ∈ PC1(vs, vd) | |p| ≤ ⌈ fsp · nsp⌉ }

We suggest to choose fsp = 3, for the following reasons: Fig. 2.3 shows three
line topologies with two, three and four vertices, respectively. The Euclidean dis-
tance between vs and vd is the same in each topology. What varies is the number
of vertices placed between vs and vd. Using a simulation model, we have deter-
mined the success probability of each edge based on its length, i.e. the Euclidean
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Figure 2.3: Three paths between two vertices. Edges with higher success proba-
bilities result in more efficient paths, despite higher number of hops.

Table 2.3: Properties of paths in Fig. 2.3, boosted for rmin = 0.8

Path p Edge e re,1 ne re,ne np rp,np

⟨ vs, vd ⟩ (vs, vd) 0.13 12 .812 12 .812
⟨ vs, v1, vd ⟩ (vs, v1) 0.83 1 .830 3 .806

(v1, vd) 0.83 2 .971 3 .806
⟨ vs, v2, v3, vd ⟩ (vs, v2) 0.99 1 .990 3 .970

(v2, v3) 0.99 1 .990 3 .970
(v3, vd) 0.99 1 .990 3 .970

distance between the edge’s respective source and destination vertices. The path
p1 = ⟨ vs, vd ⟩ using the directed edge between vs and vd has very poor reliabil-
ity of 0.13, so rp1 = 0.13. The 2-hop path p2 = ⟨ vs, v1, vd ⟩ already provides an
increased path reliability rp2 of 0.69. With the 3-hop path p3 = ⟨ vs, v2, v3, vd ⟩,
we even get rp3 = 0.97. The Euclidean distance covered is the same in all three
scenarios, what varies is only the number of hops (i.e. edges) used to bridge
this distance. Now, fsp should be chosen such that p3 remains in the candidate
set, as p3 is the most efficient path (see Table 2.3). By choosing fsp ≥ 3, the
candidate set for paths between vs and vd would include p3, as nsp = 1 and
|p3| = 3 ≤ ⌈ fsp · nsp⌉. Including paths longer than p3 (e.g. with fsp = 4) would
not further improve the situation, as the reliability of each individual link of p3

is close to 1 already. Based on these observations, we conclude that paths with
a length of up to 3 · nsp should be kept as route candidates in this early stage of
route selection.

Next, in Step 3, all paths that contain edges with low success probability
are discarded, as the corresponding links for these edges are likely to become
bottlenecks during route operation and usually require significant boosting. As
we consider heavy boosting of links an emergency measure that also comes with
a cost, we aim to keep the requirement for boosts in candidate paths at a low
level.
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Step 3. Given a set of candidate paths PC2 , we keep only paths with sufficiently
strong edges. In other words, we filter out all paths that contain at least
one weak edge. Formally:

PC3(vs, vd) = { p ∈ PC2(vs, vd) | ∀e ∈ p . 1/re ≤ nmaxAvg }

Here, nmaxAvg denotes the maximal average number of communication at-
tempts required for successful reception. For instance, by setting nmaxAvg = 2.0,
paths with at least one edge e of success probability re < 0.5 are filtered out.

So after Step 3, all overly long paths and paths containing very weak edges
are discarded from the candidate set. In an implementation of this route selec-
tion heuristic, the filtering steps 2 and 3 may be merged and executed efficiently
using a single iteration over the set of candidate paths. In the next step, the
remaining paths are filtered according to their efficiency at supporting the spec-
ified reliability requirement rmin.

Step 4. Given a set of candidate paths PC3(vs, vd) and a reliability target rmin, we
keep only paths that are sufficiently bandwidth-efficient, i.e. paths with
a small value for SMTX∞

p,rmin
. Formally:

PC4(vs, vd) = { p ∈ PC3(vs, vd) | SMTXnmax
p,rmin

≤ fsmtx · nsmtx,min∧
nmax · |p| > fsmtx · nsmtx,min }

where

nsmtx,min =min{ SMTXnmax
p,rmin

| p ∈ PC3(vs, vd) ∧
SMTXnmax

p,rmin
< nmax · |p| }

nmax = fb

The intention of Step 4 is the following: After this step, the set of candidates
should contain only paths that are capable to support the required reliability
target rmin, with sufficient efficiency. This purposefully includes paths less ef-
ficient than the optimal path, such that further filter criteria may be applied in
subsequent steps. This enables us to support additional quality requirements,
captured by additional metrics. Whether the efficiency of a path is sufficient
is controlled by the parameter fsmtx. A path is excluded from the set of candi-
dates, if the number of necessary communication attempts exceeds that of the
most efficient path in the set by more than the factor fsmtx. To only keep the
most efficient paths in the set of candidates, fsmtx = 1.0 can be set. We illus-
trate this filtering step by means of a small example: Consider the following
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sequence S = [7, 8, 8, 9, 10, 13, 17] of SMTX metric values for paths in the candi-
date set PC3(vs, vd) connecting a pair of vertices vs, vd. For fsmtx we choose the
value of 1.2. For the given S, the value of nsmtx,min is 7, so fsmtx · nsmtx,min = 8.4.
Consequently, all paths where SMTX exceeds 8.4 are discarded and the filtered
sequence S′ is [7, 8, 8].

Furthermore, we limit the average budget of communication attempts per
edge to fb, e.g. fb = 4. This acts as a bound on the metric value not least to
provide an upper limit on runtime complexity for calculation of SMTX. Care
has to be taken that the product fb · |p| is actually greater than fsmtx · nsmtx,min,
otherwise unfeasible or sub-optimal paths may be included in PC4(vs, vd).

Route selection stops if PC4(vs, vd) is empty or contains only one element,
which then becomes the selected route. Otherwise, we continue with Step 5. As
values returned by SMTX are integer, there may remain several, equally well-
suited candidate paths (with respect to SMTX) after Step 4. Depending on the
value of fsmtx there might be even more sufficiently efficient candidate paths.
Hence, to make a final selection, an additional step applying a metric which
provides more granularity is necessary:

Step 5. Depending on the routing objective, we now sort the paths in PC4 and
select the path ranked top. Any routing metric can be applied here, as
all remaining paths satisfy the reliability requirement.

Selection Heuristic Example

To illustrate the process of filtering the set of candidate paths for route selection,
we work with the example 11-node topology depicted in Fig. 2.4. The objective
will be to find a route between nodes 9 and 10, with rmin = 0.9.

In Step 1, the k shortest paths with respect to weight function ∑e∈p 1/re, are
calculated. For this example, we assume k = 300. Due to the small size of the
topology, there are only 239 possible paths between nodes 9 and 10, so after Step
1, the set of candidates contains all 239 possible paths.

During Step 2, all paths that exceed the length of the shortest path by a factor
of 3 or more are discarded from the initial set. In the given example, the shortest
path psp (with respect to hop count) is ⟨ 9, 2, 6, 10 ⟩, so |psp| = 3. Consequently,
all paths with length > 9 are discarded. In this topology, from the initial 239,
only 1 path is affected and therefore removed, leaving a remainder of 238 paths
in the set.

In Step 3, all paths that contain at least one edge e, with re ≤ 0.5 (which
corresponds to nmaxAvg = 2.0) are filtered out. Hence, we avoid links where
failure of a single transmission attempt is more likely than its success. This
criterion affects 173 paths, such that after Step 3, 65 paths remain in the set of
candidates.
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Figure 2.4: Example topology with 11 nodes for illustration of the route selection
heuristic. Dotted lines indicate a weak link (r ≤ 0.5).

We now apply SMTX to the 65 paths left and filter inefficient paths with re-
spect to meeting the reliability target as Step 4. The most efficient path pef is ⟨ 9,
4, 2, 6, 7, 10 ⟩ with SMTX∞

pef ,0.9 = 10. We choose fsmtx = 1.3, so all paths p, where
SMTX∞

p,0.9 > 13 are removed. For the example topology depicted in Fig. 2.4 this
leads to removal of another 59 paths, leaving 6 paths.

In Step 5, the final selection among any remaining path candidates is made.
Which metric is used in this step is left open intentionally, such that further
quality criteria can be applied, without endangering the specified route reliabil-
ity target.

2.3.5. Route Operation

The route selected according to the heuristic described in Section 2.3.4 is now
ready for operation. The selected route (i.e. the sequence of network addresses)
as well as the corresponding vector of transmission limits is embedded in every
packet sent along the established route. Upon reception, each intermediate node
along the route extracts the correct transmission limit from the vector and for-
wards the packet via unicast, while enforcing that limit. With each transmission
attempt, an acknowledgement (ACK) is requested. If the ACK is not received,
which is detected using a timeout, the transmission is retried until all attempts
are exhausted. In case the final attempt also fails, the frame is lost (usually
along with the corresponding packet). Any further attempts of transferring the
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Figure 2.3: Small example topology (repeated from page 21)

complete packet to the destination node of the route need to be triggered by the
application layer.

It is important to note that this simple approach of route operation described
above is functionally incomplete regarding various aspects: Monitoring of the
achieved end-to-end reliability and repair of breaking routes are not handled,
while adequate handling of both is vital in environments with dynamic link
qualities. Also, there is no mechanism for shutting down an established route
after it is no longer needed. These aspects and more will be addressed in Chap-
ter 4 of this thesis, where a functionally complete implementation of rmin-routing
is introduced. In this first description of the approach, these details are left un-
specified on purpose, however.

2.3.6. Routing Metrics for Wireless Ad-Hoc Networks

Reliability-constrained Quality of Service routing is an established sub-topic in
the wireless routing community. Though to our knowledge there is no solution
that claims to support statistical reliability guarantees comparable to those pro-
vided by rmin-routing, there are several link and routing metrics that are based
on reliability. In this section, we will address ETX (Expected number of Trans-
missions), a routing metric introduced by de Couto et al. in [DCABM03] as
well as the routing metric ETOP (Expected number of Transmissions On a Path),
which is itself based on ETX. As another example for a link metric focused on
reliability we will address ML (Minimum Loss), together with the classic SP
(Shortest Path) metric. All metrics will be evaluated in simulation experiments
and compared against SMTX as employed in rmin-routing in a later section of
this chapter.

Shortest Path The most prevalent routing metric is Shortest Path (SP) in
hops, which minimizes the number of hops between source vs and destination
vd:

SPp = |p| (2.13)
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Table 2.4: Properties of paths in Fig. 2.3, with the optimal choice according to
each metric underlined.

Path ETX ETOP4 SMTX∞
0.9 ML SP

⟨ vs, vd ⟩ 7.69 7.35 17 0.13 1
⟨ vs, v1, vd ⟩ 2.40 2.41 4 0.69 2
⟨ vs, v2, v3, vd ⟩ 3.03 3.03 3 0.97 3

While this metric has its merits in wired networks, it is not the first choice
for wireless networks, as it gives preference to longer and therefore less reliable
links. This is also illustrated in the example in Fig. 2.3 together with Table 2.4:
with the SP metric, the least reliable path ⟨ vs, vd ⟩ is favored, as it covers the most
distance per hop. To achieve a more usable reliability level of e.g. 0.9, the single
link in the favored path would require an expected number of 17 transmission
attempts per frame.

Expected Transmission Count Another routing metric is Expected Trans-
mission Count (ETX). ETX has been published in [DCABM03] and is especially
suitable for wireless mesh networks. In the original paper, ETX is defined as
the multiplicative inverse of a link’s packet delivery ratio (PDR) and therefore
captures the expected number of transmissions required to successfully trans-
mit over the link in question. We slightly adapt this definition to fit our network
model and use the success probability of an edge re instead of the PDR. The
formal definition is as follows:

ETXp = ∑
e∈p

1/re (2.14)

As does SMTX, ETX considers link reliabilities. However, different from
SMTX, no reliability target is considered. To assess the quality of a route, ETX
uses only the average number of transmissions for successful delivery. By choos-
ing a route with the smallest ETX value, average bandwidth consumption is
minimized. Another drawback is that ETX is only accurate if there is no upper
bound nmax for the number of transmissions on a link [JEH+12]. For instance,
with nmax = 4, a link e with re = 0.2 would require an average number of
transmissions of 1/re = 5, which would not be feasible. Therefore, ETX yields
meaningful results only for high quality links.
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Expectednumberof TransmissionsOnaPath In [JEH+12], ETX is adapted
to correctly reflect the effect of an existing upper bound K for the number of
transmissions, as well as the position of links in the route. This is based on the
observation that a weak link close to the source of a route does not waste as
much transmissions upon loss of frames when compared to an equally reliable
link closer to the destination, as a failed end-to-end attempt is always retried
from the source node. The result of this work is called Expected number of
Transmissions On a Path, ETOP in short.

ETOPp,K =
n−2

∑
i=0

(Ei
ρi+1

ρn
) + K

1 − ρn

ρn
+ En−1 (2.15)

Here, K is the maximum number of communication attempts for each edge,
including the initial attempt. Ei is the expected number of communication at-
tempts necessary to communicate successfully over edge (vi, vi+1) and ρi is the
probability that each of the first i edges is traversed with at most K attempts per
edge.

Although ETOP fixes some of the shortcomings of ETX, it also inherits some
of its drawbacks. Link reliabilities are considered, however no reliability target
can be specified.

Minimum Loss A straightforward routing metric that considers link reliabili-
ties achieved by a single transmission is Minimum Loss (ML) [PTMS+06], which
we define here for reasons of comparison:

MLp = rp = ∏
e∈p

re (2.16)

For route selection, this simple metric is certainly a candidate. Experiments
by the original authors show that in combination with dynamic source routing
(DSR) as routing protocol, ML has benefits over ETX. However, different from
SMTX, no reliability target is considered.

2.4. Simulation Experiments

For evaluation and analysis of SMTX, extensive simulation experiments were
carried out. The set of topologies used during these experiments is random
generated with a uniform distribution of nodes. Links are modeled as Bernoulli
processes2, where the probability of success of a single communication attempt

2Refer to Section 2.2 for some implications this model has.
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depends only on the distance between the communicating nodes plus a random
propagation loss that is independent of the distance between the nodes. The
additional random propagation loss applied to each link is necessary to create
asymmetric links. During execution of experiments, the simulated reliability of
each link is static. Furthermore, no internal or external interference is modeled.
Transceivers are assumed to switch back and forth between transmission and
reception modes instantaneously, such that these blind periods do not cause
any additional frame losses. Frame size is not simulated and consequently has
no influence on the success probability of communication attempts.

2.4.1. Experiment Setup

TopologyGeneration To achieve the necessary level of generality, 200 topolo-
gies of varying size and density were generated. Topology sizes range from 10
to 50 nodes, while the network density as the normalized ratio of existing links
to possible links ranges from 0.3 to 0.6. For each of these topology classes, 10
variants were generated:

| {10, 20, 30, 40, 50}︸ ︷︷ ︸
Topology sizes

×{0.3, 0.4, 0.5, 0.6}︸ ︷︷ ︸
Network densities

| ·
Variants︷︸︸︷

10 = 200 (2.17)

The process for generation of a topology consists of several steps: first, ran-
dom node positions are drawn from a uniform distribution. Then for each pair
of nodes, the respective link’s reliability is determined by calculating the prop-
agation loss between the node pair (see next paragraph for details). For most
experiments, only links with reliability > 0.5 are kept. If after this step the
network model graph is strongly connected, i.e. there is a directed path from
every vertex to every other vertex, the graph is stored and used in experiments,
otherwise it is discarded. To obtain topologies of desired density, the area for
node placement is increased whenever enough generated topologies resulted in
graphs of duplicate density. Figures showing all 200 generated topologies can
be found in Figs. A.1 to A.4.

Propagation Loss The simulated path loss for each link is static and calcu-
lated offline using a so-called log-distance propagation model. This model is
an extension to the Friis free space model and adds parametrization to account
for different degrees of obstruction and shadowing by means of a path-loss dis-
tance exponent. The resulting path loss Le for a link represented by edge e in
the model is calculated as follows:
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Le = L0 + 10 · n log10
de

d0
(2.18)

In our model, the path loss L0 at reference distance d0 = 1 m is set to 46.677 dB
and the path loss distance exponent n is set to 3.0, which resembles a level of
shadowing and obstruction similar to what is typically found in a production
factory hall. Le is calculated for distance de, which is the Euclidean distance in
meters between source and destination nodes of the respective link. This path
loss Le is then subtracted from the initial transmission power Ptx, which in our
experiments is set to 20 dB.

In addition to distance-based loss, some random loss is applied to simulate
asymmetric links. This additional random loss is drawn from a normal distri-
bution N (µ, σ) with mean µ = 0 dB and standard deviation σ = 16 dB. If this
random loss was also applied directly and offline, the reliability of each link
would be either 0 or 1, depending on whether the nodes are close enough to
compensate for path as well as random loss. As a network of binary links is not
our intention, a link’s reliability value is determined by calculating the proba-
bility that the random loss drawn from the normal distribution N (µ, σ) is low
enough for the transmission to be decoded by the destination node’s transceiver.
In other words, we calculate the probability that the remaining signal strength
after application of both path loss and random loss is higher than the receiver’s
reception sensitivity Prx, which is set to -106 dB. This is done by evaluating the
cumulative distribution function3 (CDF) of the normal distribution Φµ,σ at posi-
tion x = Ptx − Le − Prx. Finally, the reliability of a link captured by the success
probability re of the respective edge e in the network model is calculated as
follows:

re = Φµ,σ(Ptx−Le−Prx) (2.19)

Link Properties As mentioned above, the simulated reliabilities of links are
static. Hence, the outcome of a transmission attempt is a Bernoulli process, just
as defined in Section 2.2, where the network model was introduced. This implies
also statistical independence of subsequent transmissions attempts. Hence, we
can assume that the expected packet delivery ratio (PDR) over some link is equal
to re of its corresponding edge and further that the expected end-to-end PDR of
a whole route is equal to rp (or rp,np if there is link boosting) of the corresponding
path p.

3The CDF of a random variable X evaluated at x is the probability that X will take a value less
than or equal to x.
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2.4.2. Assessment of rmin-Routing

The main objective of rmin-routing is to find routes that satisfy the specified re-
liability target. Hence, this is also where the focus lies in this first sequence
of experiments. In the introduction of rmin-routing in Section 2.3 this goal was
summarized as the requirement for routes to be feasible. To evaluate whether
a selected route is actually feasible, i.e. the reliability target is met, we request
routes from every node to every other node in the network and record whether
the specified end-to-end reliability target is met in the simulations. Routes are
requested with different rmin targets specified, to verify that the requested reli-
ability is also met for ambitious reliability requirements. The desired outcome
with respect to feasibility of routes would be that the requested minimum re-
liability is always met, i.e. there are no routes, where the packet delivery ratio
(PDR) falls below the rmin target.

Another aspect to be assessed is, whether routes discovered with rmin-routing
are also efficient, i.e. optimality4 is achieved by avoiding over-provisioning. We
consider a route over-provisioned if the route’s end-to-end reliability exceeds
the specified reliability target significantly. In the introduction to Section 2.3, we
explored some of the implications of over-provisioning and why it should be
avoided. For achieving optimality, the desired outcome would be that the PDR
of a route is as close as possible to the specified rmin target, though never below.

Results of this first sequence of experiments are depicted in Figs. 2.5a to 2.5d.
The figures show aggregated results from simulation runs over all 200 topolo-
gies. Box-plots5 are used to visualize the range of end-to-end route reliability
over the length of the respective routes. We observe that both optimality and
feasibility are achieved. For very short routes, optimality is harder to achieve, as
the size of the assigned transmission budget is always integer. So the constel-
lation, where the reliability of a selected route is significantly higher than what
was requested, while assignment of one less transmission would not satisfy the
required reliability target anymore, occurs quite frequently. This constellation
becomes less frequent with increasing route length, as the additional degrees
of freedom for the distribution of the transmission budget allow for more fine-
grained control of the resulting end-to-end reliability. Another takeaway from
the results is the decrease in over-provisioning for routes of higher end-to-end
reliability. This observation is also a consequence of the additional degrees of
freedom while distributing the transmission budget. Albeit this time the addi-
tional degrees of freedom stem from the higher number of transmissions that
need to be assigned to achieve the more ambitious reliability targets. With re-
spect to feasibility the route selection process leads to flawless results: there is

4Refer to Section 2.3 for a definition of optimality and over-provisioning.
5The box extends from the lower to upper quartile, the colored horizontal line indicates the

median. The whiskers cover the whole range of the data.
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(b) SMTX0.9
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(c) SMTX0.95
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(d) SMTX0.98

Figure 2.5: Reliability of routes found with SMTX metric, under different con-
figurations of rmin.
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Table 2.5: Parametrization of rmin-routing selection heuristic.

Parameter Value Description

k 100 Number of initial path candidates, controls size of
search space

fsp 3 Shortest path factor, controls removal of long routes
(relative to shortest route)

nmaxAvg 2.0 Maximum of expected communication attempts per
edge , controls removal of routes with weak links

fb 4 Budget of communication attempts per edge (for sat-
isfaction of rmin target), controls removal of ineffi-
cient routes

fsmtx 1.3 Tolerance regarding efficiency of feasible paths, rela-
tive to most efficient feasible path

not a single route (note also the lack of downward outliers), where the specified
target reliability was not met. It is important to note that this achievement is
due to the assumption of static link reliabilities and statistical independence of
the success of transmission events. Later in this thesis, these assumptions will
be dropped, which requires additional measures.

To conclude this first assessment of rmin-routing, we will examine whether
rmin-routing is capable of discovering a sufficiently reliable route when such a
route exists, i.e. whether a path that could satisfy the requirement is detected,
or if the selection heuristic is too restrictive and discards too many viable candi-
dates. Whether a potentially viable route is detected depends on several factors:
First, there is the size of the search space. In Section 2.3.4, the initial candidate
set is initialized using a k-shortest-paths algorithm. The parameter k configures
the number of paths in the set and consequently the size of the search space. Is
k chosen too small, the candidate set might not contain any viable paths. A very
large k leads to higher computational overhead. Another aspect to consider is
the quality level of links in the network topology that is searched. If links are
sufficiently reliable, there are often several feasible routes in the network. As
we need to find only one, chances improve that a feasible path is contained in
the initial candidate set with increasing link reliabilities in the network. Con-
sequently a feasible route is much harder to find in network topologies where
reliability of most links is insufficient to support the end-to-end reliability target.
It is also clear that there are networks, where especially high reliability require-
ments cannot be satisfied at all for some node pairs, while keeping transmission
overhead within a pre-defined transmission budget. In this case, even a com-
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plete search (with k = ∞) would not lead to the discovery of a feasible route,
as no such route exists. On the other hand, no routing algorithm will manage
to maintain routes between these node pairs with the requested reliability in
that case. At last, there is the selection heuristic (as detailed in Section 2.3.4)
itself. After a first step, where the set of candidates is initialized, it is filtered
rigorously. Paths of excessive length and paths that contain weak edges are
discarded. If this filtering is configured too strictly, all feasible path candidates
might have been discarded before the final selection step.

In all our experiments the rmin-routing selection heuristic parameters were
configured as shown in Table 2.5.

• The first parameter is k, which controls the number of initial path candi-
dates. The configured value of 100 is a compromise between size of search
space and computation effort and works well, as experiments show.

• The shortest path factor fsp controls the maximum length of paths to be
kept in the candidate set. As detailed in Section 2.3.4, a choice of fsp = 3
provides a good balance between route length and link reliability.

• With nmaxAvg a maximum for the expected number of transmissions per
link can be configured. If the expected number of necessary transmissions
for successful reception via a link exceeds nmaxAvg, the respective path can-
didate is discarded. By setting nmaxAvg = 2.0, all paths with at least one
edge e with re < 0.5 are removed from the set of candidates. This is a sen-
sible choice in general, as this excludes only edges where a single commu-
nication attempt is more likely to fail than to succeed. For some networks
however, it might be necessary to increase nmaxAvg to allow routes with
weaker links, e.g. when the overall link reliability is low and route search
terminates without a result often. We note that in this series of simulation
experiments, filtering with nmaxAvg has no effect on the set of candidates,
as links with re < 0.5 are already discarded from generated topologies.

• The end-to-end transmission budget available for distribution in SMTX
is controlled by fb. When comparisons between different routing metrics
regarding route reliability are performed, fb should be set to the global
per-link transmission limit (which is the enforced limit for non-SMTX met-
rics) as the number of allowed transmission attempts has strong influence
on the end-to-end reliability of a route. Keeping fb and the global per-
link transmission limit synchronized is of key importance to fairness of
comparison. In existing wireless technologies, the maximum number of
transmission attempts is commonly also set to a global default value, inde-
pendent of link reliabilities. For instance, in IEEE 802.11, the default values
are between 4 and 7 depending on the size of the frame to be transmitted
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and whether the size category qualifies for transmission with RTS/CTS or
not [IEE16]. Hence, we choose fb = 4 for our simulations, too.

• At last, the SMTX tolerance factor fsmtx was set to 1.3, which gives a toler-
ance of 30 % for the efficiency (i.e. number of required attempts to satisfy
rmin) of feasible path candidates. Candidate paths that would satisfy the
rmin target, but require >30 % attempts when compared to the most efficient
feasible path are therefore removed from the candidate set. It is important
to note that the SMTX tolerance factor has no influence on whether a route
is found at all. It controls only filtering of excess feasible candidates before
a final route decision is made in the last step. For our experiments, we
picked ETOP as metric for the final selection step.

With this configuration rmin-routing was capable of finding a feasible route
for every pair of nodes and every reliability target in all simulation runs. This is
remarkable, though it is important to note that the used topologies are purpose-
fully generated in a way that ensures that feasible routes exist (see Section 2.4.1).

2.4.3. Comparison with Other Metrics

The experiments from the previous section show that with rmin-routing, routes
that satisfy different reliability requirements are discovered consistently across
a variety of network configurations. To illustrate novelty of this achievement,
we compare the results obtained with rmin-routing with other routing metrics.
In this section, the routes discovered with rmin-routing, which uses the novel
routing metric SMTX are compared to routes selected with ETX, ETOP, ML and
SP. Formal definitions of all metrics used for this comparison are provided in
Section 2.3.6.

In Figs. 2.6a, 2.6b, 2.7a, 2.7b and 2.8 the range of reliabilities of all routes
detected by the respective routing metric is visualized in the form of box-plots.
Setup of this series of experiments is the same as with the previous sequence
and is described in the preceding section. The global per-link transmission limit
is set to 4, i.e. after 4 failed transmission attempts a frame is dropped and not
re-transmitted further. A transmission limit of 4 per link also corresponds to
the configured end-to-end transmission budget used in rmin-routing, where fb
was also set to 4. This ensures a fair comparison, as the available transmission
budget influences the perceived end-to-end route reliability strongly.

The routes discovered with the SP metric (see Fig. 2.6a) are the shortest among
all evaluated metrics, which is expected as SP minimizes the number of hops
necessary for each packet to reach the destination node. The end-to-end reli-
abilities of routes selected with the SP metric are quite high, with most routes
achieving a reliability of at least 0.85. In an extra run (depicted in Fig. 2.6b),
where only very unreliable links (re < 0.2) are discarded from the network, the
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(a) SP with reliable links only
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(b) SP including unreliable links

Figure 2.6: Reliability of routes found with SP, 2.6a with reliable links only (r ≥
0.5) and 2.6b including unreliable links (r ≥ 0.2) .
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(b) ETOP

Figure 2.7: Reliability of routes found with ETX and ETOP.

reliability of routes is significantly lower. In addition, length of routes is shorter
than in the previous run, as the additional links present in this topology directly
connect nodes previously not connected. This striking preference of short and
unreliable routes is due to the fact that SP does not consider link quality in
any form during route selection. As long and therefore less reliable links cover
greater distances per hop in the network, these links are preferred with SP. This
result confirms results from many other works, where metrics minimizing hop
count prove unfit for networks that contain unreliable links.

For the closely related ETX and ETOP metrics, (Figs. 2.7a and 2.7b) results
are very similar and are therefore discussed jointly: short routes exhibit high
reliabilities, which decline as the lengths of selected routes increase. This is
expected, as the longer the bridged distance, the more likely it is that a weaker
link is included in the route. Both ETX and ETOP do not apply any measures
to weaken the impact of less reliable links on the end-to-end reliability of the
whole route, hence the visible decline in reliability for longer routes. The overall
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Figure 2.8: Reliability of routes found with ML metric.
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Figure 2.9: Ratio of routes that match the respective reliability target on the x-
axis. In Fig. 2.9b, single hop routes are ignored.

length of selected routes is very similar to that observed with SMTX.
With ML, results are different. Median route reliability is very high across

all route lengths, though there are some downward outliers. What is unique
for the ML metric is a significantly increased length of selected routes. Due to
the definition of ML, close to perfectly reliable links cause only a diminishing
decrease on the metric’s value and are therefore included in routes very often.
There is also no punishing effect for excessive route lengths, as long as each
link’s reliability is close to 1. In practice, network-wide application of ML leads
to excessive use of the most reliable links in the center of the network, increasing
the risk of congestion.

In Figs. 2.9a and 2.9b, the ratio of routes matching different reliability targets
is depicted for all metrics. Note that in Fig. 2.9a, this ratio is calculated over all
routes selected by the respective metric, which includes a high count of trivial
single hop routes. We observe that the ratio of routes matching the respective
reliability target is close to 100 % up to a reliability target of 0.85 for all met-
rics. With SMTX, all routes satisfy their respective target, even with ambitious
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reliability requirements of up to 0.98. Routes found with the ML metric proved
quite reliable in previous experiments, already. This observation is confirmed
to a degree in this experiment, too. The reliability target of 0.9 is still met by
all ML-routes. The two highest targets prove to be too ambitious for routes de-
tected with ML: 0.95 is met by 90 %, 0.98 by a mere 65 %. ETX and ETOP again,
show very similar results in this experiment. A reliability target of up to 0.85
is met by almost all routes found with ETX or ETOP. The higher targets of 0.95
and 0.98 are only met by about 60 % and 30 % of routes, respectively. Routes
found with the SP metric are similarly reliable, with a ratio of reliability not too
far off that achieved by ETX and ETOP. On first look, this seems surprising, as
link reliabilities are not considered at all in the SP metric. We suspect that this
level of performance of the SP metric stems in part from a high number of very
short routes being included in the experiment. As the densities of the random
generated topologies range from 0.3 up to 0.6, we can estimate that about 45 %
of routes detected using the SP metric are single-hop routes. As detailed in Sec-
tion 2.4.1, a pair of nodes is only considered connected if the direct link between
them has a reliability of at least 0.5. Each transmission is tried up to 4 times,
which results in a perceived minimum reliability of 0.94 (according to Eq. (2.6))
for all single-hop routes in the network. Even for two-hop routes, the perceived
minimum end-to-end reliability is still slightly above 0.87.

To assess the strength of the influence of very short routes on the ratio of
reliable routes in Fig. 2.9a, we evaluated this experiment another time, with all
single-hop routes filtered from the results. Results of this second evaluation are
depicted in Fig. 2.9b. Up to a reliability target of 0.85, results are very similar
to the previous run, while the ratio of reliable routes declines significantly with
all metrics apart from SMTX for reliability targets > 0.95. The ratio of reliable
routes selected by SP for a reliability target of 0.95 drops by about 30 points from
52 % down to 22 %, solely due to exclusion of single-hop routes from the data set.
Furthermore, without single-hop routes, only very few routes (< 3 %) selected
by ETX, ETOP or SP satisfy a reliability target of 0.98. ML-selected routes are
not affected negatively by exclusion of single-hop routes from the results. This
is consistent with the observation that with ML, longer routes are preferred as
the metric does not sanction route length as long as the links are of high quality.
To conclude this chain of thought, the influence of single-hop routes on the
aggregated ratio of reliable routes is significant for metrics ETX, ETOP and SP.
Of the assessed metrics, only SMTX selects routes in a way that maintains a
very high ratio of reliable routes across all specified reliability targets and route
lengths.
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2.5. Conclusion

In this chapter, we have introduced rmin-routing, a route selection algorithm
capable of discovering routes that satisfy a specified minimum reliability target,
called rmin. It was shown that through so-called boosting of some less reliable
links, the perceived reliability of individual links can be improved to a degree
that makes ambitious end-to-end route reliabilities possible. As an increase of
the global per-link transmission limit is undesirable for various reasons, rmin-
routing incorporates an algorithm for optimal distribution of a transmission
budget among links of a route. This way, end-to-end route reliabilities can be
improved without increasing the global transmission limit.

To evaluate whether rmin-routing lives up to what is promised, extensive sim-
ulation experiments were carried out. The key takeaway from these experiments
is that even ambitious statistical reliability targets can be satisfied, while over-
provisioning is avoided. In addition, rmin-routing is capable of finding feasi-
ble routes with remarkable consistency. Other metrics evaluated, such as ETX,
ETOP and ML result in significantly less reliable routes, they fail when ambi-
tious end-to-end reliability requirements are to be met, or overprovision.

However, rmin-routing is not designed to be a functionally complete routing
protocol. There are no mechanisms for route monitoring and maintenance,
which are crucial as soon as link reliabilities are dynamic. Key requirements
for application of rmin-routing, such as the availability of accurate network state
information, as well as a link quality metric that provides aggregatable, nor-
malized and conservative link quality estimates of sufficient actuality are left
unspecified and still have to be addressed.

Because of several simplifying assumptions made for the simulation exper-
iments, further evaluation of the proposed route discovery and selection al-
gorithm is necessary once a more complete implementation of rmin-routing is
available. In the following chapter, a first step in that direction is taken: we will
introduce a protocol for the acquisition and distribution of sufficiently accurate
and up-to-date network status information, along with a link quality metric that
satisfies the requirements stated in this chapter for use with rmin-routing.
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For communication functionalities of wireless ad-hoc networks such as route
discovery or cluster formation, network status information is to be collected and
updated. Depending on the specifics of routes and clusters, this information
may range from aggregated data to detailed information about network topol-
ogy, consisting of nodes, links, and paths. Furthermore, link and path proper-
ties, e.g., regarding reliability, delay, throughput, and load, may be required.

In the previous chapter, we have introduced rmin-routing, a route selection
mechanism for routes that satisfy a configurable minimum reliability level. Dur-
ing specification of this mechanism, some requirements for applicability of the
presented approach were stated. In particular, availability of accurate and up-
to-date information on the reliability of individual links is among these require-
ments. A solution that provides the necessary network status information re-
quired for application of rmin-routing is presented in this chapter.

Functionality to discover and update network status information is typically a
part of routing and clustering protocols. This has the advantage that the amount
of data to be collected can be tailored to the needs of the specific protocol. How-
ever, less attention is often paid to the quality of the collected network status
data, as the focus is on the main functionality, i.e. routing or clustering. For in-
stance, classical routing protocols for wireless ad-hoc networks such as Dynamic
Source Routing (DSR) [JM96] or Ad-hoc On-Demand Distance Vector (AODV)
routing [PR99] use links that have been detected by a single successful unidi-
rectional transmission – the broadcast of a route request frame – for route for-
mation. Furthermore, they try to establish short routes (in terms of the number
of hops), which gives preference to weaker (and therefore less reliable) links, as
these links can cover larger distances than stronger (and therefore more reliable)
links. Therefore, more retransmissions are required during route operation, and
routes tend to break. This problem is to some degree remedied by Quality-of-
Service (QoS) routing protocols, which collect information about link properties,
too. Examples are QoS Mobile Routing Backbone over AODV (QMRB-AODV)
[IPQ06] and Link Availability-based QoS-aware (LABQ) [YMSF07] routing. Yet,
the functionality for network status discovery of these protocols is very specific,
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and it is not straightforward to reuse it in different protocols.
High-quality information about the network status is crucial for the discovery

and operation of routes and clusters in wireless ad-hoc networks. Generally, it
depends on the application context – e.g., best effort routing, QoS routing, clus-
tering – what amount of network status is required. The importance of different
attributes of the network status information also depends on the requirements
of the respective application. High accuracy of status information for instance
is a common requirement and requires continuous observation and assessment
of nodes, links, and link metrics, and distribution of gathered status data. How-
ever, especially in networks where energy resources are constrained, stability
of the distributed information is often valued higher than adaptivity (i.e. up-
to-dateness) and high accuracy is to be weighed against the increased amount
of effort it incurs. In addition, some applications (such as rmin-routing) profit
from conservative estimates, such that the probability the environment actually
supports the communicated quality levels is higher. As a consequence, a pro-
posed solution should be carefully designed for a high degree in configurability
in order to support many different requirement profiles. Therefore, we argue
that network status discovery and exchange is a core functionality of wireless
ad-hoc networks that should receive special attention.

In this chapter, we present cTEx, a configurable Topology Explorer for wire-
less ad-hoc networks. cTEx consists of functionality for the efficient detection
and exchange of high-quality network status information. To this end, cTEx is
composed of link metrics, link probing algorithm, and status exchange protocol,
which are parameterized to match the given application context. The structure
of the chapter is as follows: First, a general overview of the cTEx algorithm is
provided. This is followed by a presentation of the OB-EWMA link quality met-
ric, which is the default link quality metric used by cTEx. Then, the complete
cTEx algorithm is specified in detail supported by formal notation. cTEx shares
some principles with a protocol from the literature called Efficient and Accurate
link-quality monitor (EAR), hence an outline of the EAR protocol is provided
before we move on to a conceptual comparison of cTEx and EAR. This section
is followed by an evaluation of the cTEx protocol in simulation as well as real-
world experiments, along with a performance comparison between cTEx and
EAR. Towards the end of the chapter, we provide an overview of related work
and some concluding thoughts.
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3.1. cTEx Algorithm Overview

cTEx – the configurable Topology Explorer – is a modular protocol for the effi-
cient detection and exchange of network status information. In this section, we
will provide an overview of its two main components: link status detection and
distribution of topology information.

3.1.1. Link Status Detection

In its link detection component, cTEx uses hybrid probing, a combination of
the concepts active probing and passive probing, to estimate link quality. Both
active and passive probing are classes of techniques for deriving the quality of
a link [LL17]. As suggested by the name, active probing techniques involve
the creation and transmission of probe messages of some kind, whereas pas-
sive probing techniques derive link quality by mere observation, e.g. of phys-
ical layer properties such as received signal strength. For the applicability of
passive probing techniques, some network traffic is usually required, though
mechanisms controlling the generation of this traffic are not part of the passive
probing technique.

The advantage of active probing is that the knowledge about the topology
does not degrade during times where the network is used sparsely for appli-
cation data. At specific intervals, extra probe messages can be transmitted and
used for a continuous evaluation of link quality. This comes with the drawback
that in situations of high network load, the probe messages decrease the capacity
of the network for application data.

Passive probing techniques usually have no influence on a network’s capacity.
The metrics used for link quality estimation like the delivery ratio of frames or
physical parameters are acquired by observation only. An active participation in
the network is no part of passive probing techniques. Consequently, link quality
and topology information degrades during periods where parts of the network
are unused, as passive probing techniques rely on metadata created from regular
transmissions.

Hybrid probing techniques aim to combine advantages of both techniques,
while trying to minimize their drawbacks. In cTEx, active probing is applied
only when there are extended periods without transmissions. In situations of
high network load, no additional traffic for probing of links is created, as there
are enough transmissions generating metadata. In combination, these mecha-
nisms lead to a constant stream of metadata to base the link quality estimations
on.

Different from many other link quality estimation techniques, cTEx does not
evaluate outgoing, but incoming links. The most important advantage of this
approach is that by observing ingress traffic, a single transmission of a node can
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be used to improve the link quality estimation for all of its neighbors. By oper-
ating each node’s transceiver in monitor mode, this advantage also holds in case
of unicast transmissions. With approaches where outgoing links are evaluated,
a single transmission either contributes to the link quality estimation towards
a single destination node only, or requires some kind of separate acknowledge-
ment from all destination nodes.

cTEx bases its estimations of link quality (and by extension its view of the
topology) solely on observations of the frame delivery ratio1 (FDR). At this time,
physical parameters such as the received signal strength are not used for link
quality estimation. As mentioned above, the interpretation of hybrid probing
employed in cTEx is that the protocol remains passive, as long as regular trans-
missions occur and only resorts to an active mode, when there are no transmis-
sions generated by upper layers for a configured amount of time.

The goal of this mechanism is to ensure at all times that there is enough traffic
such that accurate estimations of link quality can be made continuously. The
impact on network load is kept low, as each node transmits dedicated probe
frames only in the absence of application traffic. However, this mechanism is
not perfect in that regard: for instance, a node that is mainly receiving will con-
tinuously transmit dedicated probe frames. This would be tolerable, if the node
is expected to also transmit application data in the future, but this is not true in
all scenarios. A sink node for example is generally neither a source node nor
an intermediate hop of a routed network packet. With this mechanism the sink
node will continuously transmit dedicated probe frames to enable evaluation of
its otherwise unused outgoing link, which, at least in this case, is an unneces-
sary strain on network capacity. To alleviate this issue one might disable active
probing for nodes known to not use their outgoing links, such as dedicated sink
nodes. This is, however, also detrimental to the efficacy of mechanisms in cTEx
for distribution of topology information, which rely on a node’s egress traffic.

To process the stream of transmission metadata collected by each node for
each of its neighbors, cTEx divides time into so-called FDR-slots of a config-
urable length. At the end of each FDR-slot, the received transmission metadata
is processed and an FDR value for the current slot is calculated. To detect poten-
tial loss of frames, cTEx requires every transmission to carry a sequence number.
This allows detection of failed transmissions by searching for gaps in the stream
of sequence numbers and lets us calculate the ratio of successful frame trans-
missions. The result of this first step of processing is a vector of FDR values,
with one value for each FDR-slot.

In the second and final step the vector of FDR values is processed according

1On the network layer, this metric is well-known and called packet delivery ratio (PDR). In this
context however, PDR would not be the correct term, as cTEx solely monitors MAC layer
frame delivery, ignoring any potential aggregations of individual frames into packets. See
Section 2.1 for details on terminology used in this thesis.
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to the specification of a link quality metric. To maintain a high degree of mod-
ularity, cTEx is designed to work with any metric that operates on this stream
of FDR values provided by cTEx. This metric controls key aspects of the nature
of link quality values, e.g. reactivity, conservativeness or stability. For example,
to achieve maximum reactivity, a metric might simply choose the most recent
FDR value in the vector as link quality. To obtain a more smoothed sequence
of values not as much affected by outliers, one might prefer to factor in values
from several FDR-slots and calculate an average. In case the link quality is also
required to be a conservative estimate, the vector of FDR values may need to
be filtered for upward outliers first. We find that the the optimal choice of link
quality metric strongly depends on the environment the link quality values are
to be used. As cTEx aims to be a configurable, universal protocol for topol-
ogy exploration with wide applicability we consider a configurable link quality
metric a mandatory feature. Nonetheless, cTEx comes with a link quality met-
ric called Outlier Bounded Exponential Weighted Moving Average (OB-EWMA)
[MG21], which will be outlined in Section 3.2.

3.1.2. Distribution of Topology Information

In addition to providing mechanisms for generation of high quality network
status information cTEx also incorporates a sophisticated scheme for fast and
efficient network-wide distribution of topology information. Topology infor-
mation is embedded in form of so-called topology chunks into network frames.
One topology chunk describes the current state of a single link and contains
identifiers for source and destination node, the link’s reliability value, and a
timestamp. This information is condensed into a data structure that occupies
only 5 Bytes per link. Depending on the combination of distribution strategies,
topology chunks for every link are embedded in every frame, only periodically
at specific intervals, or only for links that experienced a significant change in
quality since last embedment.

Distribution Strategies

For every packet that passes through the cTEx layer (from top to bottom) and
every probe message created in active mode by the cTEx layer itself, an algo-
rithm decides based on the configured distribution strategies, whether topology
chunks are embedded into the resulting network frames and if so, for which
links.

If the strategy PERIODICALLY_FULL is configured, topology information for ev-
ery link known to a node is embedded at specific intervals. That includes links
for which the respective node is authoritative (any direct incoming links), as
well as link information relayed from other nodes, for which this node is non-
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authoritative. Depending on the size of the network, the size of data to be added
may exceed the maximum size for a frame. In this case, subsequent frames are
used to embed remaining topology chunks. With respect to a node’s memory
resources however, topology size usually remains manageable. The protocol is
designed for networks of up to 100 nodes, which results in a maximum number
of 100 · (100 − 1) = 9900 entries in the list of (asymmetric) links in case of a
fully connected network. As each entry can be stored in 5 Bytes, a single2 topol-
ogy table should never exceed a size of 49.5 Kilobytes. However, to transmit
this topology of maximum size with 802.11 WiFi frames, at least 23 frames are
required to embed all chunks.

One drawback of the PERIODICALLY_FULL strategy is that drastic changes in
link quality just after the interval triggered may take a while to be reported to
other nodes and propagate through the network. A more reactive strategy could
help remedy that. The second distribution strategy available in cTEx called
ONLY_UPDATED provides the reactivity PERIODICALLY_FULL is lacking. Based on two
thresholds3, one for link improvement and one for link deterioration, a link’s
state is included in the next frame. For this strategy, the last reported quality
value of a link is stored. Before a frame is finalized, the current quality of each
link is compared to the quality value last reported. If their difference exceeds
any of the configured thresholds, the link is queued for embedment in the frame.
This way, significant changes of link quality are allowed to propagate quickly
through the network, while links of more or less constant quality cause almost
no additional distribution overhead.

The two distribution strategies are non-exclusive and can be combined. Should
the need arise, more strategies can be added easily.

Topology View Updates

cTEx maintains an internal data structure that reflects the current view of the
topology. This view is kept up-to-date with link quality estimates performed by
the node itself (for links the node is authoritative for) and via received topology
chunks embedded into network frames received from neighboring nodes. For
every frame that is received, the dedicated cTEx monitoring component checks
whether topology information is embedded. Any embedded chunks are ex-
tracted and decoded. Topology chunks for links that were previously unknown
to this node trigger the creation of that link in the node’s topology view. Ex-
isting links are updated when comparison of the timestamp embedded in the

2cTEx supports maintenance of several topology tables, as it is often necessary to manage dif-
ferent topology views per communication channel, frame size category and transmission rate.

3We use two thresholds here to optionally allow faster reaction towards link deterioration with-
out increasing overhead incurred by communicating improvements of link quality, as some
protocols (e.g. rmin-routing) need to react when a link drops below a minimum link quality.
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topology chunk with the timestamp of the corresponding link in the node’s lo-
cal topology view indicates the received topology chunk contains more recent
information.

3.2. Reference Link Quality Metric for cTEx

cTEx is designed to work well with rmin-routing (see Chapter 2), a route selec-
tion algorithm that aims to find routes that satisfy a minimum reliability tar-
get. The approach relies on high quality network status information and on the
availability of link quality estimates that satisfy the requirements aggregatabil-
ity, actuality and conservativeness. cTEx provides the framework to obtain and
distribute these link quality estimates, whereas the applied link quality metric
must be constructed in a way that ensures the resulting estimates are normal-
ized, aggregatable, sufficiently recent as well as conservative.

The OB-EWMA link quality metric, introduced in [MG21] manages to pro-
duce link quality estimates of sufficient quality to be used in the context of
rmin-routing. In this section, an outline of the mechanisms and ideas employed
in OB-EWMA will be provided, along with a summary of the evaluation of
OB-EWMA in the context of rmin-routing as carried out in [MG21].

OB-EWMA works on sequences of FDR values, where each FDR value is cal-
culated as the ratio of successfully received frames over a time period of length
dfs, called an FDR-slot. For a link e, we name the resulting sequence of FDR
values fdre. A single OB-EWMA link quality estimate for some link e is then
calculated over a sequence of sliding windows that move over the vector f dre

of FDR values. The number of moving windows is nmw and the size of each
window (i.e. the number of spanned FDR-slots) is smw. To filter upward and
downward outliers and in order to obtain a conservative estimate, only the p-
percentile of the FDR-slots in each window is used. As usual, an exponential
weighting of nmw − 1 previous windows is achieved by introducing a factor α.
The complete formula that defines the OB-EWMA metric is given below:

OBe
p(nmw, smw) = empirical p-percentile from the set

{fdre[k] | nmw − smw + 1 ≤ k ≤ nmw}

OB-EWMAe
α,p(nmw, smw) =

undefined, if nmw < smw

OBe
p(nmw, smw), if nmw = smw

α · OB-EWMAe
α,p(nmw − 1, smw)+

(1 − α) · OBe
p(nmw, smw), if nmw > smw

(3.1)
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The stated properties of the metric were verified in extensive real-world exper-
iments by its original authors with the following setup: The testbed consisting
of 11 nodes is placed in a university building. To collect data on the quality of
links in the network, 802.11g WiFi frames were transmitted at regular intervals
between each pair of nodes and the outcome of each transmission was recorded.
These data are then used to calculate OB-EWMA values in an offline analysis.

The results show that OB-EWMA is indeed capable to provide accurate con-
servative estimates of link quality, with sufficient adaptability. For the stronger
links in the network (average FDR > 0.8), results show the quality value re-
sulting from OB-EWMA is an overestimate of the actual FDR value for 12 % of
FDR-slots, so OB-EWMA values can be considered conservative estimates.

In a separate experiment, the aptness of OB-EWMA link quality estimates for
operation of rmin-routes (see Chapter 2) was tested. The values provided by OB-
EWMA were used to set the transmission budget for each link in a single 3-hop
route. The reliability target was set to rmin = 0.95. During route operation, the
reliability of the established route (i.e. ratio of packets4 received to packets sent)
during each FDR-slot was calculated. The results suggest stable route operation
is possible, though the reliability target is missed in some slots. Evaluation of
OB-EWMA in the context of rmin-routing is continued in Chapter 4 of this thesis.

3.3. Formal Specification of cTEx Algorithm

In Section 3.1 a general overview of the mechanisms employed in the cTEx pro-
tocol was provided. In this section, a detailed specification supported by formal
notation of the core functionalities is introduced along with some background
on the design and implementation decisions made. The protocol specification
consists of four core functionalities:

• Link detection

– Reception and processing of probe frames (Section 3.3.3)

– Transmission of probe frames (Section 3.3.4)

• Maintenance of a local view of the global network status

– Exchange of network status information (Section 3.3.5)

– Processing of network status information (Section 3.3.6)

4In this scenario, it is in fact the packet delivery ratio, as the rmin target refers to a ratio of
delivered network layer packets, not frames.
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3.3.1. Network Model

The network model at the foundation of all formal notations used in this and the
following sections is largely the same as introduced in Section 2.2 of Chapter 2.
Special care has to be taken when referring to the concepts of link reliability
and quality. The reliability re of an edge e in the network model is the success
probability of only the next communication attempt. The quality qe of a link
(identified by its corresponding edge e in the model) is the output value of a
link quality metric at some point in time.

Compared to the model introduced in Chapter 2, we extend the definition
of the communication topology slightly to include network status for different
points in time, channels, transmission rates and frame sizes. Consequently, we
model communication topology as a tuple G = (V, q, c, rtx, s f ), consisting of a set
of vertices V, a statistical quality function q : Time × V × V → R0,1 for single-
hop communication, a channel c, a transmission rate rtx, and a frame size s f .
Based on q, the set of (asymmetrical) links at time t is derived as

E(t) =d f {(t, v, v′) ∈ Time × V × V | q(t, v, v′) > 0} (3.2)

and thus also captures the dynamic of network status over time. This model
comprises several aspects that are of particular importance in wireless ad-hoc
networks:

• Asymmetrical links e. In wireless ad-hoc networks, links are often asymmet-
rical, resulting, e.g., from interference and reflections. In the model, this is
captured by a set of directed edges E(t).

• Statistical quality function q. In many scenarios, it is not sufficient to model
links as either existing or non-existing. Therefore, we adopt a statistical
approach and associate a quality value q(t, v, v′) with each pair of vertices
at time t. If this value is greater than zero, the pair of vertices constitutes
an edge e = (t, v, v′). By having a time value as parameter of q, we can
model varying link quality. The definition of q is to be chosen to fit the
scenario. For instance, for reliability-constrained routing, quality can be
defined as packet delivery ratio or as expected number of transmissions.

• Channel c. An important factor that influences link quality is the quality
and utilization of the communication channel, i.e. the portion of the elec-
tromagnetic spectrum that is used for frame transmissions. For technolo-
gies supporting channel hopping, it is not sufficient to model the commu-
nication topology independently of the used channel. Rather, one topology
per channel is to be considered.
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Table 3.1: Functions used in pseudocode descriptions of cTEx

Name Type Description

node() Address → V Function mapping a node address to the corre-
sponding element of V. Inverse of addr().

addr() V → Address Function mapping an element of V to the cor-
responding node address. Inverse of node().

metric() Real[ ] → Real Link quality metric

size() Void → Real Obtain size of a frame

embed() Tuple → Void Reduce and embed topology information into
a frame

• Transmission rate rtx. In IEEE 802.11 networks, different transmission rates
can be used. For instance, broadcasting may use a low data rate, e.g.,
2 Mbps, that is more tolerant to bit errors than higher rates used for uni-
casting. Therefore, ideally, one topology per transmission rate is to be
considered.

• Frame size s f . Link quality depends on frame size, where the frame delivery
ratio decreases with increasing frame size. Therefore, ideally, one topology
per frame size should be considered. This, however, is not feasible in
practice, as this would produce an extreme amount of management traffic.
Therefore, a small number of typical frame sizes may be considered.

To keep topology detection manageable, the number of channels, transmission
rates, and frame sizes should be kept small. For instance, a single channel could
be used, and one or two typical frame sizes and transmission rates could be
chosen.

3.3.2. Functions, Global Parameters and State Variables of cTEx

Tables 3.1 to 3.4 list functions, global parameters, and state variables of nodes
and link state automata used in the specification of the cTEx algorithms. Fol-
lowing, we provide some information about their meaning and usage.

Table 3.1 contains five functions. The function node() is defined to obtain the
sending node v ∈ V from its node address f .snd contained in every received
frame f . Its inverse operation is handled by addr(). The function metric() deter-
mines how link quality is to be derived. It is defined to operate on a sequence
of FDR values. For instance, metric() can be instantiated by most metrics intro-
duced in the previous Chapter 2, such as ETX or ML. In the context of this thesis
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Table 3.2: Global configuration parameters of cTEx

Name Type Description

dfs Duration FDR-slot duration

rpf ,min Real Minimum rate of probe frames

dpf Duration Maximum time between two subsequent probe
frames, dpf = (rpf ,min)

−1

dterm Duration Termination delay in case of link inactivity

qdiff↑ Real Minimum difference of reported and current
(lower) link quality to trigger a report, a nega-
tive value

qdiff↓ Real Minimum difference of reported and current
(higher) link quality to trigger a report, a posi-
tive value

drep Duration Maximum time between two reports of a link

the reference link quality metric OB-EWMA [MG21] as outlined in Section 3.2 is
used unless stated otherwise. The size() function calculates the size in bytes of
any given frame, while embed() is a helper function encapsulating the process of
reduction and embedment of a link state tuple into a frame.

Table 3.2 lists global configuration parameters of cTEx. Local time is struc-
tured into FDR-slots of duration dfs. An FDR value is calculated at the end of
each FDR-slot, based on the received probe frames in this slot. Probe frames
are transmitted with the minimum rate rpf ,min. If for a duration of length dpf
no frame is sent, a dedicated explicit probe frame is created to maintain rpf ,min.
The parameter dterm determines after what duration of link inactivity a link state
automaton terminates. The parameter qdiff determines when the difference be-
tween reported and current link quality of a link e should trigger a status report,
i.e. the link’s changed status should be communicated to the rest of the network.
Similarly, drep specifies the maximum time allowed between two subsequent re-
ports of the same link. These last two parameters control the two distribution
strategies available, event-triggered and time-triggered (previously introduced
as ONLY_UPADTED and PERIODICALLY_FULL, respectively).

Table 3.3 summarizes the state variables of a node v. Each node v maintains an
initially empty set lsav of link state automata lsae for incoming active links e. An
automaton lsae is created and added to lsav when a new link e is detected, and
terminated and removed from lsav when an existing link e is deemed inactive.
The network status information of node v is represented by an initially empty
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Table 3.3: State variables of each cTEx node

Name Type Description

lsav Set of LSA Set of link state automata lsae of node v ∈ V,
e = (v′, v) ∈ V × V. Initially, lsav = ∅

Tv Set of Tuple Network status of node v ∈ V. Initially, Tv = ∅

cv
local Clock Local clock

timerv
pf Timer Explicit probing timer

nv
txCtr Int Counter for probe frames sent by v

set Tv of tuples Te, further detailed in Section 3.3.5. Nodes have a local clock
cv

local used to set timers and to timestamp update events. The timer timerv
pf is

set to trigger creation of explicit probing frames, in case conventional outgoing
traffic is insufficient to maintain rpf ,min. With nv

txCtr all frames sent by node v are
counted.

Table 3.4 lists the state variables of link state automata lsae. The current link
quality qe is updated at the end of each FDR-slot, using the function metric().
The link quality qe of link e is associated with a sequence number ne

q,seq, which is
updated every time the link quality is re-computed. This way, nodes receiving
network status information can determine which reported quality value is the
most recent one. The counter ne

fs keeps track of the current FDR-slot number,
starting with 0. State variables ne

seqLow and ne
seqHigh keep track of the lowest and

highest sequence number of probe frames received in the current FDR-slot so
far. The counter ne

rxCtr retains the number of probe frames received in this FDR-
slot. Time te

start is the starting point of the current FDR-slot. In the array fdre, the
history of FDR values collected in the corresponding FDR-slots is collected, to
be used to calculate qe. Timers timere

fs and timere
term are set to trigger actions at

the end of an FDR-slot and in case of link inactivity, respectively.

3.3.3. Reception and Processing of Probe Frames

Nodes listen for probe frames in order to detect and assess links. Received probe
frames are processed to derive status information about incoming links. For
each incoming link e, channel c, transmission rate rtx, and frame size category
scat, nodes create and maintain a link state automaton. In this section, we will
omit the distinction of links by c, rtx, and scat, to simplify the exposition. With
this simplification we can write the link state automaton that handles link e as
lsae, instead of lsae,c,rtx,scat .

Listings 3.1 and 3.2 show transitions of link state automata. Here, transitions
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1 when receive f then {
2 // Derive respective link from sender and receiver addresses
3 let e = (node( f .snd), v) in {
4 if lsae ∈ lsav then {
5 // Link is already known, state variables are
6 // initialized
7 // Increment frame counter of current slot
8 ne

rxCtr = ne
rxCtr + 1

9 // Update max sequence number of current slot
10 ne

seqHigh = f .txCtr
11 // Reset termination timer
12 set timere

term = cv
local + dterm

13 } else {
14 // Link is new, create link state automaton
15 // and initialize state variables
16 create lsae

17 // Add lsa to set
18 lsav = lsav ∪ {lsae}
19

20 // Initialize state variables
21 qe = 0
22 ne

fs = 0
23 ne

rxCtr = 1
24 ne

seqLow = ne
seqHigh = f .txCtr

25 ne
q,seq = 0

26 te
start = cv

local
27

28 // Initialize link state tuple in topology view Tv

29 Tv = Tv ∪ {(e, qe, ne
q,seq, true, 0, cv

local, cv
local)}

30

31 // Initialize FDR-slot timer
32 set timere

fs = te
start + dfs

33 // Initialize termination timer
34 set timere

term = cv
local + dterm

35 }
36 }
37 }

Listing 3.1: Pseudocode for the link state automata of cTEx, part 1

53



3. cTEx – Decentralized Topology Detection using a Link State Algorithm

38 when expiry timere
fs then {

39 // Current FDR-slot is over, so calculate its frame
40 // delivery ratio and re-initialize state for next slot
41 // Determine number of frames sent over this link
42 nsent = max(⌊rpf ,min · dfs⌋, ne

seqHigh − ne
seqLow)

43 // Calculate and store FDR value for last slot

44 fdre[ne
fs] = min(1, ne

rxCtr
nsent

)

45 // Re-calculate link quality with metric over updated fdre

46 qe = metric(fdre)
47

48 // Re-initialize state variables for next slot
49 ne

rxCtr = 0
50 ne

fs = ne
fs + 1

51 ne
seqLow = ne

seqHigh
52 te

start = te
start + dfs

53 ne
q,seq = ne

q,seq + 1
54

55 // Create updated link tuple, with qe
rep and te

rep unmodified
56 // and te

upd set to local time

57 Te
upd = {(e, qe, ne

q,seq, Te.be
rep or qdiff↑ < (Te.qe

rep − qe) < qdiff↓,
58 Te.qe

rep, Te.te
rep, cv

local)}
59 // Update Tv with Te

upd
60 Tv = Tv \ {Te} ∪ Te

upd
61

62 // Reset FDR-slot timer
63 set timere

fs = te
start + dfs

64 }
65

66 when expiry timere
term then {

67 // No frames were received over link e for duration dterm,
68 // so this link is considered broken
69 terminate lsae

70 lsav = lsav \ {lsae}
71 }

Listing 3.2: Pseudocode for the link state automata of cTEx, part 2
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Table 3.4: State variables of each link state automaton lsae

Name Type Description

qe Real Current link quality

ne
q,seq Int Sequence number of current link quality

ne
fs Int FDR-slot number

ne
seqLow Int Lowest sequence number of probe frames re-

ceived in this FDR-slot

ne
seqHigh Int Highest sequence number of probe frames re-

ceived in this FDR-slot

ne
rxCtr Int Counter for probe frames received in this FDR

slot

te
start Time Local start time of this FDR-slot

fdre Real[] Array of FDR values observed in FDR-slots

timere
fs Timer FDR-slot timer

timere
term Timer Termination timer

are triggered by the reception of probe frames and the expiration of timers:
When node v ∈ V receives a probe frame f with sender node address snd
and probe sequence number txCtr, it checks whether for the incoming link
e = (node( f .snd), v), a link state automaton already exists (line 4). In this case,
the counter ne

rxCtr is incremented (line 8), and ne
seqHigh is updated (line 10). In ad-

dition, the termination timer is set (line 12). If no link state automaton for link
e exists, lsae is created and initialized (lines 16-26), followed by initializations of
the respective link state tuple Te in Tv (line 29) and FDR-slot and termination
timers.

When timere
fs expires (line 38 in Listing 3.2) at the end of the current FDR-

slot ne
fs, the frame delivery ratio is determined (lines 42-44), and the function

metric() is applied to pdre, yielding the current reliability estimate qe (line 46).
Subsequently, the next FDR-slot is initialized (lines 49-53), and the updated link
status is incorporated into the local topology view Tv (lines 57-60), where access
of an element elem of a tuple T is denoted as T.elem. The network status informa-
tion of a node is represented as a set Tv of tuples Te = (e, qe, ne

q,seq, be
rep, te

upd, te
rep),

where e = (v1, v2) ∈ V × V and qe and ne
q,seq as described in Table 3.4. be

rep
indicates whether a link is to be published according to the event-triggered dis-
tribution strategy (see below), te

upd is the local time of the last link status update,
and te

rep is the local time this link status was reported last. Finally, timere
term is
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reset to indicate the link is still active.
When timere

term expires (line 66), this indicates a longer period of frame losses
for link e, as every received frame resets timere

term in line 34 of Listing 3.1. In this
case, the link state automaton is terminated and removed from lsav.

In cTEx, nodes operate in monitor mode (also called promiscuous mode) in
order to overhear all incoming (implicit and explicit) probe frames. This has the
advantage that unicast frames are actually perceived as broadcast frames, which
avoids the drawback of a fixed and low transmission rate.

3.3.4. Transmission of Probe Frames

cTEx-nodes ensure a regular stream of (implicit or explicit) probe frames to en-
able the detection of links by direct neighbors. A probe frame is any unicast
frame that is created to either transport data from a higher layer packet (an im-
plicit probe frame) or to serve as a dedicated probe message (an explicit probe
frame). To reduce traffic, unicast frames of regular or management traffic are
interpreted as implicit probe frames. Only when there is not enough unicast
regular or management traffic, dedicated explicit probe frames are sent. Thus,
a minimum rate of probing is supported, with short reaction times to create ex-
plicit probe frames. The maximum rate depends on the frequency of implicit
probe frames, with no enforced upper bound. To detect probe frames, nodes
have to operate in monitor mode (also called promiscuous mode), where all
frames regardless the destination address are received by the wireless commu-
nication interface and handed over to the protocol stack. Implicit probe frames
(i.e. conventional unicast traffic) are sent to the MAC address of an existing
node. Explicit probe frames are sent to an unused MAC address. Each probe
frame f carries sender node address snd, transmission rate rtx, frame size s f , and
probe sequence number txCtr.

Creation of explicit probe frames by request of the cTEx layer follows specific
rules that ensure a specified minimum rate rpf ,min of outgoing frames. In List-
ing 3.3 the mechanism is described in pseudocode. The transitions in Listing 3.3
are triggered upon transmission of frames and by expiry of timers. Refer to
Tables 3.1 to 3.3 for descriptions of the functions and state variables used.

During initialization of a network node, timerv
pf is configured to expire when-

ever there is a period of length dpf , where no probe frame was transmitted.
Every transmitted unicast frame will reset this timer (see line 7). When timerv

pf
expires (line 10), a new explicit probing frame is created (line 12) and initial-
ized (lines 14-17). When this explicit probe frame is finally transmitted, it also
resets this timer (again per line 7). An illustration of the resulting stream of
frames is depicted in Fig. 3.1: A red vertical bar indicates transmission of an
implicit probe frame, usually triggered by creation of a new application layer
packet. Whenever the period between subsequent implicit frames exceeds dpf ,
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1 when send f then {
2 // Increment frame counter
3 nv

txCtr = nv
txCtr + 1

4 // Set frame counter field of frame f
5 f .txCtr = nv

txCtr
6 // Reset timer that triggers next explicit probe frame
7 set timerv

pf = cv
local + dpf

8 }
9

10 when expiry timerv
pf then {

11 // Create new explicit probe frame of length s f
12 create f
13 // Set tx rate, frame size, sender and destination addresses
14 f .rtx = rv

tx
15 f .s f = size( f )
16 f .snd = addr(v)
17 f .dst = UNUSED_ADDRESS
18

19 // Trigger send event for new frame
20 emit send f
21 }

Listing 3.3: Pseudocode describing the generation of explicit probe frames
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t
dpf dpf dpf dpf

Timer Reset
New App Packet
New cTEx Probe

Figure 3.1: Timing of probe creation (cTEx active mode) under sporadic egress
application layer traffic.

an explicit probe frame (blue vertical bars) is transmitted to maintain rpf ,min.
Only unicast frames qualify as probe frames, as link quality measurements

based on broadcast frames have been described to yield inaccurate results, due
to different PHY settings and a fixed and low transmission rate [KS06]. Another
benefit is that unicast usually enables several transmission rates. Furthermore,
probe frames are sent without RTS/CTS, and with automatic retransmission
disabled. With these settings, we keep control over retransmissions, which are
triggered from a higher layer.

For each topology to be determined, i.e. per channel, transmission rate, and
frame size category, and for each sending node, probe frames f carry consec-
utive probe sequence numbers txCtr. This way, all receiving nodes can detect
frame losses and determine the actual frame delivery ratio (see Section 3.3.3).
In particular, no feedback of receiving nodes to the sender, e.g. ACKs or accu-
mulated ACKs, is required for this purpose. This improves the accuracy of link
assessment, as it is not biased by the possible loss of ACKs.

3.3.5. Exchange of Network Status Information

Local network status information may be extracted from the link state automata
of a node and reported to other nodes. Non-local information may be received,
transformed, and reported to other nodes. All (implicit and explicit) probe
frames may carry network status information. When reported via probe frames,
tuples Te ∈ Tv are reduced to Te

rep = (e, qe, ne
q,seq), so be

rep, te
upd and te

rep are not
communicated between nodes.

cTEx applies two strategies to exchange network status information contained
in Tv with nodes in 1-hop neighborhood of v. A description of both strategies
in the form of pseudocode is given in Listing 3.4.

The event-triggered strategy is applied when the quality value qe of a link
changes significantly compared to the previous value, i.e. when be

rep is true for
some link e (see line 57 of Listing 3.2 for incoming local links and line 9 of
Listing 3.5 for external links). When the next probe frame is to be transmitted,
the set of tuples Te ∈ Tv where be

rep is set is extracted from Tv (line 3), reduced
to tuples Te

rep, and included in the probe frames (lines 7-18). Furthermore, for all
reported tuples Te, be

rep is set to false (line 13), and te
rep is set to the local time cv

local
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1 when send f then {
2 // Set of significantly changed links (event-triggered)
3 Tsig = {Te ∈ Tv | be

rep = true }
4 // Set of links due for periodic distribution (time-triggered)
5 Tdue = {Te ∈ Tv | te

rep < (cv
local − drep)}

6

7 for Te
tx in Tsig ∪ Tdue {

8 // We embed until frame is at maximum capacity
9 if (size( f ) + TOPO_CHUNK_SIZE) < MAX_FRAME_SIZE {

10 // reduce and embed Te
tx into f

11 embed(Te
tx, f )

12 // Update report flag and timestamp
13 Te

tx.be
rep = false

14 Te
tx.te

rep = cv
local

15 } else {
16 break
17 }
18 }
19 }

Listing 3.4: Pseudocode describing the embedment of network status informa-
tion into outgoing frames

(line 14).

The time-triggered strategy ensures all links known to a node are reported at
least once in a time interval of length drep, i.e. all tuples Te ∈ Tv not reported
in the last drep seconds are selected for reporting (line 5). This information is
included in the next probe frame(s) to be transmitted. As in the event-triggered
case, for all reported tuples Te, be

rep is set to false, and te
rep is set to the local time

cv
local (lines 7 and 18). Time-triggered reporting ensures that new network nodes

can synchronize their network status information also for stable links, which are
not reported by the event-triggered strategy. Furthermore, it enables nodes to
detect inactive (i.e. broken) links (see Section 3.3.6).

As probe frames have a maximum frame size, not all link status information
scheduled for reporting may fit into a single frame. Here, reporting happens in
the order of update times, given by te

upd. In this case, several probe frames are
required for the exchange. In our implementation, a tuple Te

tx has a size of 5
bytes only.
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1 when receive f then {
2 // Extract topology information from received frame
3 Trx = f .tuples
4

5 // Set of new links, unknown to this node up to now
6 Tnew = {(Te

rx.e, Te
rx.qe, Te

rx.ne
q,seq, true, 0, cv

local, cv
local)

7 | Te
rx ∈ Trx ∧ ∄Te

local ∈ Tv . Te
local.e = Te

rx.e}
8 // Set of known links with an update in the received frame
9 Tupd = {(Te

rx.e, Te
rx.qe, Te

rx.ne
q,seq, qdiff↑ < (Te.qe

rep − qe) < qdiff↓,
10 Te

local.q
e
rep, Te

local.t
e
rep, cv

local)

11 | Te
rx ∈ Trx ∧ Te

local ∈ Tv ∧ Te
local.n

e
q,seq < Te

rx.ne
q,seq}

12

13 // Remove links we have an update for
14 Tv = Tv \ {Te

local ∈ Tv | ∃Te
rx ∈ Tupd . Te

rx.e = Te
local.e}

15 // Add new and updated links
16 Tv = Tv ∪ Tupd ∪ Tnew
17 }

Listing 3.5: Pseudocode describing the processing of received network status in-
formation for incoming frames

3.3.6. Processing of Network Status Information

Network status information extracted from the link state automata (i.e. gathered
locally) and received from other nodes is transformed into a joint local view of
the global network status. The amount of detail of this local view depends on the
amount of collected network status information and the degree of abstraction.

Updates for locally evaluated links are continuously integrated into the local
view Tv, as per lines 57-60 in Listing 3.2. When node v receives a probe frame
with link status information, it also updates its network status Tv. This mech-
anism is described in Listing 3.5. For each Te

rx = (e, qe, ne
q,seq) contained in the

probe frame, v checks whether there is a corresponding tuple Te
local ∈ Tv. If not,

a new tuple is inserted, with the values of Te
rx (line 7). Otherwise, the existing

tuple is updated, if Te
local.n

e
q,seq < Te

rx.ne
q,seq (line 9), i.e. if the link status is more

recent. In this case, be
rep is set to true if the received update is significant (as

determined by thresholds qdiff↑ and qdiff↓, line 9).
Periodically, outdated link status information is removed from Tv, i.e. Tv =

Tv \ {Te
local ∈ Tv | cv

local − Te
local.t

e
upd > dterm}. This way, broken links are detected

by each node, without having to be reported.
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3.4. EAR – Efficient and Accurate Link Monitor

Though conceived independently, cTEx shares some attributes with Efficient and
Accurate link-quality monitor (EAR), published in [KS06]. There are however
differences in key aspects of the protocols, resulting in cTEx being the more
accurate, more modular and also less complex approach. In this section, EAR
will be presented, before we focus on the differences and commonalities between
EAR and cTEx in the next section.

EAR is devised by its authors as a measurement framework for link quality
in wireless mesh networks. The core objectives of its design are low overhead,
high accuracy and awareness of asymmetric wireless links. In order to achieve
these goals the authors emphasize four key characteristics of their solution.

• Hybrid approach: Depending on the availability of existing network traffic,
EAR applies either a passive, cooperative or active measurement scheme.

• Unicast-based uni-directional measurement: As broadcasts use a fixed and
low data rate, which is usually more robust against bit errors, accuracy
(and by extension applicability) of measurements can be improved by us-
ing unicast measurements, as unicast is typically used for communication
of application data. In addition, each direction of a link is measured sepa-
rately.

• Distributed and periodic measurement: As link quality often varies over time,
link quality is re-evaluated periodically.

• Cross-layer interaction: EAR consists of two main components, one that col-
lects information on the success and failure of transmissions (called outer
EAR), and one that processes these transmission statistics and performs
link quality estimation at the network layer (called inner EAR).

During operation, EAR first measures link quality during its measurement pe-
riod using the appropriate measurement scheme (either active, passive or co-
operative) for the respective link. The duration of this measurement period as
suggested by the authors is 9 s. After the measurement period, nodes enter the
update period, where link qualities are re-calculated and the measurement scheme
for each link for the next measurement period is determined.

3.4.1. Link Quality Metric

In EAR, link quality estimates are based on the frame delivery ratio. A link’s
quality value is re-calculated at fixed intervals, namely at the end of each mea-
surement period. The link quality metric used in EAR is a simple EWMA metric,
defined as follows:
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Passive Cooperative ActiveTegrs < Pthresh Tcrss < Cthresh

Tegrs ≥ Pthresh Tcrss ≥ Cthresh Tcrss < Cthresh

Tcrss ≥ Cthresh

Tegrs ≥ Pthresh

Figure 3.2: Transition mechanism between measurement schemes as applied in
EAR. The direct transitions from cooperative and active modes back
to passive take precedence. The necessary negation of Tegrs ≥ Pthresh
for all other transitions is omitted for legibility. Source: Adapted
from [KS06].

di = (1 − α) · di−1 + α · ns

nt
(3.3)

Here, di is the smoothed delivery ratio for measurement period i and ns and
nt are the number of successful transmissions and number of transmission and
re-transmissions, respectively.

In addition to the link quality, EAR also collects statistics on the data rates
used over each link. From this information, estimates of link capacity are de-
rived, which can then be used in link quality metrics such as ETX [DCABM03]
and ETT [DPZ04].

3.4.2. Measurement Schemes

EAR applies hybrid probing, i.e. depending on some conditions, links are evalu-
ated using existing traffic only, or by actively sending dedicated probe messages.
To keep overhead low, EAR uses the passive measurement scheme when possi-
ble and switches to cooperative mode in case there is no egress, but sufficient
cross-traffic to the destination node. Only in absence of both, egress and cross-
traffic, EAR operates in active mode.

Passive Mode

In passive mode, EAR uses only existing traffic between source and destination
node of the link to be measured. The outer EAR component, which monitors the
network device driver, collects statistics about successfully transmitted frames
and manages counters for total number of transmission attempts and retrans-
missions. After each measurement period, these values are communicated to
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the inner EAR component, where Eq. (3.3) is used to derive current link cost, i.e.
a link quality value. As is shown in Fig. 3.2, passive mode is used whenever the
amount of egress traffic, captured by Tegrs, exceeds the threshold set for passive
mode Pthresh.

Cooperative Mode

EAR’s cooperative mode is applied when the amount of direct unicast traffic
between two nodes is not sufficient (i.e. Tegrs < Pthresh, see Fig. 3.2). In this case,
the source node vsrc instructs the destination node vdst of the link e = (vsrc, vdst)

to be measured, to selectively overhear and count all frames sent by vsrc to a
third node v′ for which traffic from vsrc exceeds Cthresh. v′ is selected by vsrc such
that the commonly used data rates for transmissions from vsrc to vdst and v′ are
similar. Node vsrc uses a CooperateREQ message at the end of the update period
to request cooperation from vdst and to communicate v′. After the subsequent
measurement period, vdst sends results (i.e. the number ns of successfully over-
heard frames between vsrc and v′) back to vsrc using a CooperateREP message. vsrc

can now calculate the delivery ratio of frames for link e using the total num-
ber of frames nt sent from vsrc to v′ and the number of frames ns successfully
overheard at vdst.

Handling of retransmissions of frames is delicate in cooperative mode, as
retransmissions (i.e. duplicate frames) are not received by the cooperative node
(even in monitor mode). Hence, any frame for which the retry bit is set is
ignored by EAR and does not increment counters nt and ns.

Furthermore, we note that in cooperative mode, the delivery ratio of non-
acknowledged frames is measured. This is different from both active and pas-
sive modes, where the delivery ratio of only acknowledged frames is measured.
Depending on the degree of asymmetry of links, this might cause significant
inaccuracies during estimation of link quality.

Active Mode

In situations where there is neither sufficient egress- nor cross-traffic for a pair
of nodes (i.e. Tcrss < Cthresh), EAR transitions to active mode and starts sending
dedicated probe messages. When existing egress and cross-traffic is insufficient
between vsrc and several of its neighbors, dedicated probe messages are sent
between vsrc and one other node v′ only. The remaining nodes switch to co-
operative mode by request from vsrc and start overhearing the dedicated probe
messages sent from vsrc to v′. However, this optimization is only applied where
data rates between all nodes are sufficiently similar.

In cases where links are idle (i.e. only little egress- and cross-traffic) and
data rates are heterogeneous, only a subset of rates and links is probed per
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Figure 3.3: Performance of EAR in active, passive and cooperative mode ver-
sus Broadcast-based Active Probing (BAP) on dynamic link (A, B) of
topology T1. Source: Adapted from [KS06].

measurement cycle. The lengths of intervals a single link is actively probed at
depend on its activity and quality-variance, such that probing overhead incurred
by stable or unused links is kept low.

3.4.3. Communication Overhead

The communication overhead incurred by EAR depends on the applied mea-
surement scheme. With passive mode, the overhead is zero. Measurements are
based on existing unicast traffic only, and no further messages are produced.
Overhead strongly increases when EAR operates in active mode for some links,
as explicit probe messages are created. Under the assumption of homogeneous
data rates in the network however, each node may only apply active probing on
a single link, as cooperative mode can be used to measure links to the remainder
of its neighborhood. Existing unicast traffic between nodes that does not exceed
thresholds Pthresh and Cthresh is not used by EAR.

3.4.4. Accuracy of EAR

The authors of EAR evaluate accuracy, scalability and awareness of link asym-
metry of their protocol using simulation and real-world experiments. Results are
compared to Broadcast-based Active Probing (BAP), an approach widely used
e.g. for the adoption of link quality metrics Expected Number of Transmis-
sions (ETX) and Expected Transmissions Time (ETT). In BAP, simple broadcast
frames are sent at a fixed and low data rate of 2 Mbps. The delivery ratio of
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these broadcast frames is then used to derive link quality.

A

B

Figure 3.4: Topology T1.

Results show (see Fig. 3.3 for a performance
plot copied from the original paper) that accu-
racy of EAR is very high in passive and coop-
erative modes. In active mode however, accu-
racy is lacking. When compared to the perfor-
mance of BAP in this experiment, EAR’s ac-
tive mode is still an improvement. However,
in scenarios where consistently accurate link quality estimates are a require-
ment, for instance for the application of rmin-routing, the accuracy provided by
EAR’s active mode is insufficient.

3.5. cTEx and EAR

cTEx and EAR both are sophisticated protocols for topology detection. In ad-
dition, cTEx contains a component for the efficient distribution of the collected
networks status information. EAR does not cover this functionality. In this sec-
tion, commonalities as well as key differences between the two protocols are
presented.

Both protocols use a metric similar to what is commonly known as PDR of
unicast transmissions for link quality estimation. To maintain consistency with
the terminology established in previous chapters of this thesis (see Section 2.1),
we will refer to this metric as frame delivery ratio (FDR). We note that the au-
thors of EAR refer to the same concept as PDR. As broadcast messages are
limited to a low and fixed data rate, link quality estimates based on FDR of
broadcast messages are usually inaccurate for unicast transmissions. The po-
tential of opportunistic usage of existing network traffic to collect FDR statistics
is leveraged by both protocols. This approach is key to maintain a low com-
munication overhead for link quality estimation and also increases accuracy, as
estimations are based on real network traffic. Links are modelled as asymmetric
in both protocols. Furthermore, both protocols perform a continuous monitor-
ing of detected links. This is in contrast with many other link quality metrics
and topology detection mechanisms, where link quality is often evaluated only
once in a dedicated measurement phase (e.g. in ETX [DCABM03]) or even re-
duced to a binary attribute based on the successful delivery of a single broadcast
frame (e.g. in AODV [PR99]).

The key difference between both protocols lies in the respective measure-
ment scheme applied. EAR operates in three different modes, depending on
the amount of existing network traffic. In its active mode, unicast probing mes-
sages are transmitted to support FDR-based link quality estimation. In case
of sufficient egress network traffic, EAR switches to passive mode, where only
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3. cTEx – Decentralized Topology Detection using a Link State Algorithm

existing transmissions are used for estimation of link quality. These transmis-
sions may be triggered by actions in other network management layers or by
the application. As EAR uses the sender as the measuring node for the quality
of outgoing links (in contrast with cTEx where the receiver estimates incoming
links), an additional cooperative mode is necessary to optimize for the case where
a measuring node has no egress traffic via the link that is to be measured, but
has traffic to other nodes. In this situation, the destination node of the link to be
measured is sent a CooperateREQ message and starts overhearing the traffic sent
by the measuring node and collects statistics, which are then reported back to
the measuring node where the link quality estimation is done. Application of
cooperative mode significantly reduces overhead, as without it, any links with
insufficient direct unicast traffic would have to be measured in active mode. In
cooperative mode however, the un-acknowledged delivery ratio is measured. As
the measurement mode applied by EAR may change after every measurement
cycle, delivery ratios of un-acknowledged frames (from cooperative mode) are
mixed deliberately with delivery ratios of un-acknowledged frames (from active
and passive modes), which may introduce significant inaccuracies.

In cTEx, the receiving node is responsible for collecting transmission statis-
tics and performing link quality estimation. This is achieved by operating each
node’s transceiver in monitor mode at all times. With EAR, monitor mode is
only necessary when a node is asked to cooperate. Due to cTEx’s frame genera-
tion mechanism, a scenario where network traffic is insufficient for link quality
estimation does not occur and a cooperative mode is not necessary. cTEx always
measures delivery ratio of un-acknowledged frames.

3.6. Simulation Experiments

In this section, cTEx is evaluated in simulation as well as real-world experiments.
The analyzed performance metrics are accuracy of link quality measurements,
latency of topology distribution and overhead incurred by the protocol. In the
experiments on accuracy, cTEx is compared to EAR. In a last set of experiments,
cTEx is run on real hardware to illustrate that the protocol works as intended in
real world scenarios in addition to simulated environments.

3.6.1. Simulator Setup

Simulations are done in ns-3, a sophisticated, “discrete-event network simulator
for internet systems”, as per its authors. The input topologies for the simulations
are provided to the simulator as a list of tuples, where each tuple consists of
three values: source node, destination node and raw reliability (rraw,e for a link e).
The distinction between rraw, as a raw statistical property of a simulated link, and
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Figure 3.5: Architecture of the WiPS framework

the link’s reliability, as the output of the link quality metric is important. In the
specification of an input topology the simulator runs on top of, it is indeed just
a statistical property of the link itself and directly corresponds to the probability
of a successful communication attempt re of the network model (see Section 2.2
of Chapter 2). During operation of that link in a network and through the
evaluation of the statistics collected during operation, the link is assigned a
dynamic link quality value, which in case of cTEx is determined using OB-
EWMA in these experiments.

The described input topology data structure is then used to initialize a custom
ns-3 propagation model. A propagation model in ns-3 is responsible for the
calculation of path loss (also called path attenuation, for the attenuation a wave
receives while it propagates. In this context, path refers to a single link). The
higher the path loss, the lower is the received signal strength. To understand
how the configured raw reliability of a link, given as a decimal number between
0 and 1.0, manifests itself in the simulator it is useful to follow the way of a
single transmission frame through the layers of the simulator.

After a packet is created in the application layer, it passes through the layers
of WiPS, see Fig. 3.5 for an overview of the WiPS architecture. The lowest WiPS
layer is the WiPS MAC layer. There, the frame is constructed and passed on
to the PHY layer of the simulator. For each simulated node, there is a virtual
network device. Once the frame reaches this device of node v, the configured
propagation model(s) become important. For every node vi ∈ V \ {v} in the
network, the configured raw link reliability rraw,(v,vi) is obtained. Then, for each
node vi, a random number between 0 and 1.0 is drawn from a uniform distri-
bution. If this number is larger than the configured raw reliability rraw,(v,vi), the
frame’s path loss is set to infinity, which prohibits reception of this frame by
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A

B

(a) Topology T1.

A

B

C

(b) Topology T2.

Figure 3.6: Topologies T1 and T2, as described in [KS06]. Black lines represent
links with regular traffic (consisting of implicit probe frames), grey
lines represent links without regular traffic.

node vi. If the number drawn is smaller or equal to the configured raw reliabil-
ity, no path loss is added.

It is important to note, that even if the dice roll described above succeeds and
no path loss is added, the frame may still fail to be received due to collisions. At
this point it becomes clear, why distinguishing between the raw reliability and
the link quality as determined through the link quality metric is important: the
raw reliability is the configuration for the result of the dice roll, in aggregation
not all too different from the distance between two nodes, whereas the metric’s
link quality value is a dynamic attribute assigned to a link during operation of
the network, which is influenced by the configured raw reliability as well as
other factors like history or collisions.

This approach abstracts from the geographical positions of nodes. It might
occur, that there is no possible mapping of all nodes onto a 2-D plane, where
the distance between any two nodes is proportional to the raw reliability of their
link. However, in the real world, path loss is not a function of only the distance
between two nodes, either. Interference and obstacles of different materials in-
fluence the loss added to a frame during transit. In our case, this abstraction
from geographical positions should not be detrimental to the applicability of
results to real-world scenarios and simplifies the setup of experiments.

3.6.2. Accuracy of Link Quality Measurements

In several simulation experiments, we investigate the accuracy of link quality
as measured with cTEx and compare it to the accuracy achieved by Efficient
and Accurate link-quality monitor (EAR) [KS06]. For this, we have recreated
experiments reported in [KS06], for topologies T1 and T2 shown in Fig. 3.6.

In topology T1, regular unicast traffic consisting of implicit probe frames in
both directions is available to determine link quality, which causes EAR to op-
erate in passive mode (see Section 3.4 for an introduction of EAR). In topology
T2, regular unicast traffic is only sent from node B to node A, causing EAR to
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Figure 3.7: Delivery ratio for link B to A over time as measured by cTEx and a
passive probing implementation similar to EAR’s for topology T1.
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Figure 3.8: Delivery ratio for link B to C over time as measured by cTEx and a
cooperative probing implementation similar to EAR’s for topology
T2.
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adopt a cooperative mode with node C. Regular traffic is created by UDP-like
data streams with a frame size of 35 bytes and a frame rate of 91 fps, yielding
25.4 kBit/s. During the experiment, the configured raw reliability of all links
starts with 0.8 and drops by 0.2 every 400 s.

Fig. 3.7 shows the results of the experiment for topology T1 for the link from
B to A. Here, the FDR measured with cTEx is always very close to the config-
ured FDR, i.e. the measured link quality is highly accurate. However, the FDR
measured with an EAR-alike implementation is significantly lower. This results
from an important difference between cTEx and EAR: cTEx always measures
incoming links, while EAR measures outgoing links. To detect frame loss, cTEx
uses consecutive probe sequence numbers (see Sections 3.3.3 and 3.3.4), which
makes feedback from receiving nodes obsolete. However, EAR requires such
feedback, i.e. ACKs. It follows that EAR measures the ratio of frames that are
both successfully received and ACKed, yielding a reduced FDR. We point out
that this reduced accuracy of EAR cannot be compensated by increasing the rate
of probe frames.

Fig. 3.8 shows the results of the experiment for topology T2 for the link from
B to C. Here, the FDR measured with cTEx is again very close to the configured
FDR, and so is the FDR measured with EAR. The reason is that in this exper-
iment, EAR operates in cooperative mode, which uses an accumulated ACK
at the end of a measurement cycle, i.e. a CooperateREP message from node C,
but otherwise operates similar to cTEx for this particular link. Nevertheless,
the accuracy for the link from B to A measured by EAR is similar to the one
shown in Fig. 3.7. However, with EAR, nodes may change measurement modes
after every measurement period. Hence, delivery ratios acquired from coop-
erative mode may be mixed with ratios acquired in active and passive mode.
From Fig. 3.7 we observe that this it makes a significant difference, whether
only acknowledged or also un-acknowledged frames are counted. Mixing both,
introduces inaccuracies in the resulting link quality proportional to the asym-
metry of the respective link. The authors of EAR neither propose a solution to
this deficiency, nor acknowledge the problem in the original paper [KS06].

3.6.3. Topology Distribution Latency

Several simulation experiments on different topologies were carried out to eval-
uate the topology distribution latency. As topology distribution is not covered
by EAR, we cannot compare cTEx and EAR for this series series of experiments.
The results are illustrated on a lattice topology with 36 nodes as seen in Fig. 3.9,
as the behavior is easiest to follow in a regular topology with limited density.

In this experiment, the raw reliability of all links is configured as 0 at the
start of simulation. Over a period of 10 minutes, the configured raw reliability
increases linearly from 0 to 1.0 (see the solid black lines in Figs. 3.10a and 3.10b).
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Figure 3.9: The graph used during the experiments, 36 nodes, 120 edges (due to
directedness).

This continuous change is tracked by the link detection component of cTEx and
the current quality values are distributed in the network. As each link’s quality
constantly changes in a controlled way, the point in time a specific quality value
is updated in a distant node (the red dots in Figs. 3.10a and 3.10b) can be used
to estimate the topology distribution latency. The further away the dots are from
the black line – in horizontal direction – the higher the latency.

It is important to note that topology distribution utilizes the same links we are
evaluating, and is therefore also affected by the very low frame delivery ratio
in the early stages of the experiment. Only a few frames containing topology
information are received correctly, as the configured raw reliability of all links is
still low. The frame delivery ratio improves as the whole network becomes more
reliable and consequently, link status updates travel faster through the network.

For this experiment, cTEx was configured to embed a link’s status into a frame
at least every 120 s (marked by the dotted vertical lines in Figs. 3.10a and 3.10b).
Additional reports are triggered whenever a link’s quality changes by at least
2.5 % in either direction from the last reported value. The configured link metric
was OB-EWMA [MG21] as outlined in Section 3.2.

We observe that the latency for topology distribution is generally low. Apart
from a few exceptions in the early phase of the simulation (over still unreliable
links), link information propagates through the network of 36 nodes in a few
seconds. In a network with reliable links, a piece of information on a link’s
quality propagates one hop further through the network at least with the con-
figured frequency for probe frames. With additional traffic even faster: If there
is an average of only 10 fps per node, the link information propagates at 10 hops
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(a) Distribution latency of link quality of
the link between nodes 0 and 1, as
measured at node 1.
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(b) Distribution latency of link quality of
the link between nodes 21 and 15, as
measured at node 15.

Figure 3.10: Distribution latency of topology information in a 36 node graph.
The dots in Figs. 3.10a and 3.10b mark the points in time other
nodes update their topology w.r.t. the link quality on the y-axis.
The dashed vertical lines mark a full topology dump event. For
better readability, two excerpts of the diagrams are enlarged.

per second in every direction.
Link status information also propagates fastest along sequences of good links.

As these links are also the most likely ones to to be used during routing, the
network reaches a usable state quickly.

3.6.4. Overhead

The maximum overhead for link detection with cTEx is linear in the number of
nodes in the network. Each node v creates a maximum number of explicit probe
frames based on the configured minimum probe rate rpf ,min. This maximum
number of explicitly created probe frames is reduced by the number of implicit
probe frames sent by node v, i.e. by the egress traffic generated by protocol
layers above cTEx, yielding the actual overhead.

This is substantially different from EAR [KS06], which considers the traffic
on each outgoing link separately. For EAR to operate in passive mode for an
outgoing link (v, v′), node v has to produce enough egress traffic to node v′,
i.e. Tegrs ≥ Pthresh (refer to Section 3.4 for details). If there is not enough egress
traffic on any outgoing link, then node v chooses some link (v, v′) for which it
operates in active mode, and operates in cooperative or active mode for all other
outgoing links. This implies that even if the sum of all egress traffic on outgoing
links is above Pthresh, node v may have to operate in active mode on one or more
links, which yields higher overhead compared to cTEx. Even worse, different
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Table 3.5: Parameters of Overhead Experiments

Parameter Value Description

spf 16 bit Net size of a probe frame, i.e. additional field
txCtr (2 bytes)

dpf 251 ms Maximum time between subsequent probe
frames, so rpf ,min = 3.98 s−1

slinkDesc 40 bit Size of an encoded link status tuple Te
rep

drep 120 s Maximum time between two reports of a link

nnodes 36 Number of nodes

nlinks 120 Number of links

from cTEx, the overhead caused by the active mode on one link is not reduced
by combined egress traffic of all outgoing links. Finally, if EAR does not record
sufficient cross traffic on a link operated in cooperative mode, it switches to
active mode for this link. This implies that the maximum overhead of EAR with
respect to the number of probe frames is linear in the number of links in the
network, and not in the number of nodes, as in case of cTEx.

It should be mentioned that different from EAR, cTEx appends some status
data to each frame to exchange the network status among nodes, a functionality
that is not addressed by EAR. This slightly increases the size of frames, which
may reduce the delivery ratio. As the size of the status data is usually small, we
consider this a sensible tradeoff.

Another important aspect when analyzing the overhead of a link estimation
protocol is the amount of data caused by the protocol’s management traffic. An
upper bound for the total number of bits exchanged during link estimation and
distribution with the time-triggered strategy (see Section 3.3.5) in cTEX is given
by the following equations:

odet = spf · d−1
pf (3.4)

odist = slinkDesc · nlinks · d−1
rep (3.5)

ototal = (odet + odist) · nnodes (3.6)

A description of each parameter along with the value set is provided in Ta-
ble 3.5. odet and odist is the respective overhead in bps for detection and distribu-
tion per node. ototal gives the total overhead in bps for detection and distribution
for the whole network.

In Fig. 3.11, Eq. (3.6) is experimentally validated, with parameters set as
shown in Table 3.5. During the experiment, each node sends an explicit probe
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Figure 3.11: Comparison of calculated to measured overhead in bits. Overhead
was measured on a 36 node graph with 120 links (due to directed-
ness).

frame every 251 ms. To calculate the overhead odet, we have assumed that reg-
ular unicast 802.11 WiFi frames were available for this purpose. These frames
already carry sender address snd, transmission rate rtx, and frame size s f . Thus,
the only extra field to be added is the probe sequence number txCtr, which re-
quires 2 extra bytes as overhead spf . In addition, the topology is distributed by
each node every 120 s, yielding odist.

The analytical line in Fig. 3.11 represents the upper bound and is determined
by inserting the parameter values in Table 3.5 into Eqs. (3.4) to (3.6). The empir-
ical line results from a simulation experiment using the same parameter values,
with periodic topology distribution only (i.e. event-triggered link status report-
ing is turned off). The upper bound is not hit by the empirical results, because
link status distribution does not always cover all links, especially in the early
phase. Overhead of event-triggered link status distribution is bounded by the
number of links, the interval the set Tv is updated by a node v, and the maxi-
mum frame rate.

As shown in Fig. 3.11, a network of 36 nodes and 120 links, operated over
30 minutes, causes a total accumulated overhead of slightly more than 6 Mbit,
which is an average overhead of about 28.5 bps per link to estimate and dis-
tribute link quality in this experiment. We note that this kind of assessment
cannot be made for EAR, as EAR does not address network status exchange.
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Figure 3.12: Node placement of our 11-node real-world testbed.

3.6.5. Testbed Experiments

To verify that cTEx also works in real-world scenarios, several experiments were
carried out on our 11-node testbed. The nodes are placed in an office building
and are permanently exposed to interference from several WiFi access points
and client devices such as laptops and smartphones. The WiFi chipset used in
all the nodes is Atheros AR9280, the nodes run Linux 5.3 with an unmodified
ath9k wireless chipset driver. The placement of the nodes in the building is
displayed in Fig. 3.12.

The cTEx framework was executed on the nodes for an hour at a time, while
the experiment data was logged to a database and evaluated offline. The con-
figuration parameters are listed in Table 3.6. The results from these experiments
meet the expectations raised by the results from our simulations.

In Fig. 3.13, the resulting quality values over time for two exemplary pairs of

Table 3.6: Parameters of Real-World Experiments

Parameter Value Description

metric() OB-EWMA Link quality metric

dfs 12 s FDR slot duration

dpf 251 ms Maximum time between subsequent probe
frames, so rpf ,min = 3.98 s−1

qdiff 0.025 Minimum difference of reported and current
link quality to trigger a report

drep 120 s Maximum time between two reports of a link
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Figure 3.13: Results from one of the testbed experiments for a selection of links.
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Figure 3.14: Snapshot view of the network topology as detected by cTEx. Links
with quality < 0.8 are not displayed.
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links are depicted. The results show that real-world links are inherently asym-
metric, which is reflected by cTEx. As an example, compare the two links be-
tween nodes 1 and 5. The general increase of link quality after about 1800 s
into this experiment can be attributed to lunchtime, where the building is less
crowded. These characteristics were observed consistently in several runs of
these experiments.

Fig. 3.14 shows a snapshot view of the network topology detected by cTEx.
The experiment was run on a subset of 8 testbed nodes, with cTEx configured
according to Table 3.6. For better readability, only links with a quality value
qe > 0.8, as determined by cTEx at this point in time, are depicted. Together
with links not shown, the nodes form a network, i.e. between any pair of nodes,
there is a path of communication links.

We note that different from simulation experiments, link qualities could not
be controlled in testbed experiments. This is due to the office environment
where the testbed experiments were conducted, with other nodes using the same
frequency spectrum. Also, to assess the accuracy of link quality measurements
in the testbed experiments, feedback about the successful operation of reliability-
constrained routes would be needed, which was not available. However, given
the high accuracy of link quality measurements in our simulation experiments,
we are confident that cTEx will perform well in real-world scenarios, providing
high-quality network status information for routing protocols and clustering
algorithms. The real-world performance of cTEx in the context of rmin-routing
will be evaluated in the following chapter, where a complete routing protocol is
introduced.

3.7. Related Work

The core of cTEx is its link probing algorithm. Network airtime is precious, so
the overhead messages caused by a link probing algorithm should be minimal,
especially in high load situations, while still yielding high-quality status data.
Hence, several protocols use existing network traffic to probe links. This strat-
egy is often called passive mode, in contrast to an active mode, where additional
frames are created for link probing. In [KS06], an Efficient and Accurate link-
quality monitor (EAR) is proposed as a sophisticated link measurement frame-
work for multi-hop wireless mesh networks. EAR adaptively employs three
measurement schemes and operates in monitor mode to opportunistically use
existing unicast network traffic to estimate link quality by calculating the packet
delivery ratio (PDR). Additional probing packets5 are only created when nec-
essary. However, two of EAR’s three measurement schemes calculate the PDR

5This is the term used in the original work. With respect to the terminology established in this
thesis, the correct term would be frame.
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of acknowledged packets, whereas its cooperative scheme does not. In combi-
nation with the adaptive switching between schemes, this potentially leads to
inconsistent measurements. Links for which there is neither sufficient egress
nor cross-traffic are probed separately in EAR’s active mode, which comes with
a considerable message overhead.

The concept of overhearing existing unicast traffic for link probing is also
employed in more recent work. In [LCZH17], the concept is applied in Wire-
less Sensor Networks (WSNs) by counting wake-up frames. The authors eval-
uated their protocol as an integration into the Four Bit Wireless Link Estimator
[FGJL07], a popular link estimation framework with wide applicability from
Zigbee WSNs to 802.11 WiFi networks.

The choice of link metric heavily depends on the intended application of the
network, to provide enough flexibility for a wide range of applications. cTEx
does not assume a specific link metric. Any metric based on packet (or frame)
probing data should be compatible. This includes many software-based link
quality estimators [BKM+12] such as ETX [DCABM03] and most of its vari-
ants and implementations [TMK15, DPZ04, JEH+12, ZSA10] as well as Four-Bit
[FGJL07] or WMEWMA [WTC03].

In related works, the mechanisms for link probing, determination of link qual-
ity according to a link metric, and distribution of status information are usually
designed as part of a routing protocol, e.g. as part of 802.11s with Hybrid
Wireless Mesh Protocol (HWMP) [IEE11]. HWMP is a routing protocol with
proactive and reactive components, where airtime multiplied by the expected
number of transmissions (ETX) is used as link metric, and routing information
is distributed by flooding. It is left, however, unspecified how the error rate used
to define ETX is determined.

3.8. Conclusion

In this chapter cTEx was introduced, a protocol for the efficient detection of
links and distribution network status information. cTEx uses existing network
traffic to reduce overhead incurred by the protocol and to improve accuracy of
the derived link status information. With respect to the particular link metric
employed as part of cTEx, many link metrics based on packet (or frame) deliv-
ery ratio data can be applied. The reference link quality metric of cTEx, Outlier
Bounded Exponential Weighted Moving Average (OB-EWMA) provides accu-
rate, normalized and conservative link quality estimates, especially well-suited
for rmin-routing algorithms.

As cTEx shares similarities with a protocol from literature called Efficient and
Accurate link-quality monitor (EAR), various aspects of cTEx and EAR were
compared throughout this chapter. In conclusion, cTEx can be viewed as supe-
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rior solution to the problem of acquiring link status information, as it is more
efficient with respect to overhead, simpler in its implementation with respect to
the link estimation mechanism and more accurate with respect to the derived
link quality values.

In addition, cTEx features mechanisms to not only detect links, but also dis-
tribute this acquired information among all nodes of the network. By append-
ing small chunks describing a link’s status, either periodically or on-demand,
into network frames, network status information is distributed in the network
in a quick and bandwidth-efficient manner. Both, distribution speed and band-
width efficiency are supported by the requirement that cTEx nodes operate their
transceiver in monitor mode, in order to receive all frames sent by nodes in
communication range, not only frames with the respective node’s destination
address.

Though cTEx is intended as a configurable and universal topology exploration
protocol, its design was heavily influenced by the objective of providing suffi-
ciently accurate network status information for rmin-routing algorithms. Hence,
in the following chapter, we will introduce dRmin-routing, a complete, decen-
tralized routing protocol for wireless ad-hoc networks that supports discovery,
operation and maintenance of rmin-routes (i.e. routes of a minimum end-to-end
reliability with statistical guarantee), while relying on high quality network sta-
tus information provided by cTEx.
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4. dRmin-Routing – Decentralized
Discovery, Operation and
Maintenance of
Bandwidth-constrained Routes

In the introductory section of this thesis four core functionalities for a commu-
nication protocol capable of guaranteeing a statistical minimum reliability level
for end-to-end communication were identified. The functionalities stated are:

1. Route discovery

2. Route operation

3. Route maintenance

4. Collection and distribution of network status information

The rmin-routing algorithm, introduced in the Chapter 2, covers the core of the
route discovery process. This includes selecting optimal route candidates and
assigning transmission budgets to each link along the route. In Chapter 3 of
this thesis, we introduced the cTEx protocol for network topology detection and
distribution. With cTEx, the fourth functionality is addressed. This leaves func-
tionalities for route operation and maintenance as well as the decentralization
of route discovery open.

In this chapter dRmin-routing [KG22] is introduced. dRmin-routing implements
the rmin-routing route discovery algorithm in a decentralized manner and adds
mechanisms for route operation and maintenance. It performs a distributed,
reactive search along a route candidate preselected with rmin-routing to remove
imprecisions of the locally available network status before making a final route
selection. While routes are operated, dRmin-routing monitors them and performs
different kinds of dynamic route repair actions to maintain route reliability in
order to cope with varying link reliabilities. By utilizing the cTEx-protocol,
dRmin-routing becomes a functionally complete routing protocol capable of han-
dling route discovery, operation, and maintenance while meeting the minimum
route reliability level set by the application.
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The wireless communication technology we target with dRmin-routing is WiFi,
for its wide availability as an off-the-shelf product at affordable prices. In addi-
tion, in its latest iterations, WiFi supports very high link rates of up to 9.6 Gbps.
On the other hand, only a best effort Quality of Service (QoS) level is sup-
ported by the IEEE 802.11 group of wireless communication standards that form
the foundation of WiFi. Strictly speaking, this is valid for WiFi in DCF mode
only. In PCF mode, QoS guarantees are supported. This facilitates operation of
reliability-constrained routes. In wireless mesh networks however, PCF mode is
unusable, as the mode restricts a network to single-hop communication.

This chapter is structured as follows: Following this introduction, we present
dRmin-routing in Section 4.1. Similar to other protocols covered in this thesis,
this section on dRmin-routing also includes a complete, semi-formal specifica-
tion of the protocol. In Section 4.2 we assess dRmin-routing and compare it to
OLSR, an often cited routing protocol from the literature, by extensive simula-
tion experiments in Section 4.3. Experiments in a real-world testbed are out of
the scope of this thesis, however, a summary of prior considerations for an eval-
uation of dRmin-routing on hardware is provided in Section 4.4. Related work is
presented in Section 4.5. In the last part of this chapter, Section 4.6, a summary
and discussion of the results are provided.

4.1. The dRmin Routing Protocol

dRmin-routing is a decentralized protocol for reliability-constrained routing in
wireless ad-hoc networks. The objective of dRmin-routing is to discover, main-
tain, and operate routes with specified minimum route reliabilities. In accor-
dance with [KMG19] and Chapter 2 of this thesis, we call this minimum route
reliability rmin. It is defined as the end-to-end packet delivery ratio of an estab-
lished route, which is measured over a moving time interval of specified length
dw. The reliability target is considered met, while there exists no time interval
of duration dw, where the ratio of received to transmitted packets over a route is
less than rmin. To achieve this objective, the following measures are taken:

• Network status information about network topology and statistical link
reliabilities is collected, updated, and exchanged (Section 4.1.1).

• Based on locally available network status information, the source node of
a route preselects a route candidate providing a specified minimal route
reliability (Section 4.1.2).

• Starting with the preselected route candidate, an initial route is determined
by a distributed search, which removes imprecisions of the locally available
network status (Section 4.1.3).
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• To maintain route reliabilities, routes are monitored during operation, and
several kinds of route repair actions are taken if the reliability target is
(about to be) missed (Section 4.1.4).

4.1.1. Network Status Information

For the discovery of routes p with a specified minimal end-to-end reliability tar-
get rmin, dRmin-routing needs high quality information about network topology
and link reliabilities. In a dynamic environment, this requires permanent mon-
itoring and adaptation of the set of nodes, links, and link metric values, as well
as the exchange of collected status data. For dRmin-routing, we model a network
as a graph G = (V, q), where V is a set of vertices and q : V × V → R0,1 is a sta-
tistical single-hop reliability metric. This definition deviates from the network
model used in previous chapters, as q is not defined as the success probabil-
ity of a communication attempt, but as the estimated reliability value that is
the output of a link quality metric. Hence, we will occasionally refer to q(v, v′)
simply as the reliability1 of edge (v, v′). This implicitly defines the set of edges
E =df {(v, v′) ∈ V × V | q(v, v′) > 0}.

To detect and exchange network status information, we have adopted cTEx, a
configurable topology explorer for wireless ad-hoc networks introduced in the
previous chapter and published in [KG21]. For link detection, nodes transmit
unicast probe frames with sequence numbers. Since nodes operate in mon-
itor mode, all direct neighbors may receive and process these probe frames.
By checking sequence numbers, nodes can detect frame loss without providing
feedback to senders, which serves as a statistical basis for a sophisticated link
metric q. To reduce bandwidth consumption, regular unicast frames are also
interpreted as probe frames. Furthermore, nodes create and update their local
view of the global network status by exchanging and processing network status
data.

As link metric q, we have adopted Outlier Bounded Exponential Weighted
Moving Average (OB-EWMA) [MG21]. OB-EWMA is based on frame delivery
ratio (FDR), which makes it generally suitable for reliability-constrained rout-
ing. Furthermore, it reflects dynamic changes of FDR to cope with varying link
reliability, is sufficiently stable to keep route changes manageable, and provides
conservative estimates to avoid frequent route failures. For the link modelled
as edge e and parameters α, p ∈ R0,1, qe = OB-EWMAe

α,p(nmw, smw) is the link
metric value of sliding window nmw of size smw, taking the history of link metric
values into account, where α is the weight that is given to the history, and p

1Strictly speaking, this is a deviation from the terminology established in Section 2.1. As both,
the term reliability and the value of q(v, v′), which is the output of a link quality metric,
correspond to the MAC layer abstraction level we consider this deviation justified.
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defines the set of downward outliers. For more details on OB-EWMA, refer to
Section 3.2 in Chapter 3 of this thesis.

In the description of the dRmin-routing algorithm in form of pseudocode in
Section 4.1.5, the topology view (which is provided by cTEx) of a node modelled
as vertex v is captured as the set Tv, which contains a tuple Te = (e, qe) for each
link known to v.

4.1.2. Preselection of a Route Candidate

When a route with a specified reliability target rmin is requested, the source
node preselects a route candidate based on locally available network status
information. In dRmin-routing, we have adopted rmin-routing (introduced in
Chapter 2 and [KMG19]), a centralized algorithm for the discovery of reliability-
constrained routes, for this purpose.

Given the network model G = (V, q) and the derived set of edges E (see
Section 4.1.1), the set P ⊂ E∗ denotes the set of all cycle-free paths in G, i.e.
the set of all unicast routes. Assuming statistical independence of transmission
events2, the reliability qp of a path p ∈ P is given as the product of the reliabilities
qe of edges e along p.

With increasing length of a path p in hops, the product qp decreases, if reli-
abilities qe are smaller than 1. This reduces the chances of discovering routes
that satisfy rmin. Here, rmin-routing improves perceived link reliabilities by well-
directed retransmissions, thereby increasing the number of route candidates.
Assuming statistical independence of transmission events, the success probabil-
ity of up to ne

max (re)transmissions of a frame on the link modelled as edge e
is increased to qe

ne
max

= 1 − (1 − qe)ne
max , thereby increasing the reliability qp

np
max

of
a path p to the product of reliabilities qe

ne
max

of edges e along p. For a pair of
vertices s, d ∈ V, rmin-routing determines a candidate path p from s to d such
that (i) qp

np
max

≥ rmin and (ii) the maximum number of communication attempts

np
max on p, i.e. the sum of ne

max of the edges along p, is minimal, provided there
exists a path that corresponds to a sequence of sufficiently strong links and is
sufficiently bandwidth-efficient.

The calculations described above for preselection of a route candidate are
captured as Rmin(Tv, s, d, rmin) in the description of the dRmin-routing algorithm
provided in Section 4.1.5.

To illustrate effective reliability of links and corresponding routes, Table 4.1
lists the respective reliability values for different levels for np

max, where p =

⟨ v1, v2, v3, v4 ⟩ as depicted in Fig. 4.1. In each row of Table 4.1, ne
max and qe

ne
max

are
underlined for the edge that is assigned the additional transmission. The relia-

2In practice, this assumption is too strong; therefore, dRmin-routing applies a conservative link
metric q and further measures to cope with a certain degree of deviation from this property.

84



4.1. The dRmin Routing Protocol

v1 v2 v3 v4e1 0.99 e2 0.55 e3 0.4

Figure 4.1: Example topology

Table 4.1: Effective reliability of edges in Fig. 4.1

np
max ne1

max qe1

ne1
max

ne2
max qe2

ne2
max

ne3
max qe3

ne3
max

qp

4 1 .99 1 .55 2 .64 .34

5 1 .99 2 .80 2 .64 .51

6 1 .99 2 .80 3 .78 .62

7 1 .99 3 .91 3 .78 .71

8 1 .99 3 .91 4 .87 .78

9 1 .99 3 .91 5 .92 .83

10 1 .99 4 .96 5 .92 .88

11 1 .99 4 .96 6 .95 .91

bility target value rmin is set to 0.9, which requires a total transmission budget of
11 transmissions to reach in this example. As stated above, the route candidate
selection is based solely on topology information local to the respective source
node (vertex v1 in case of this example), which may be outdated. The process of
refinement of this route candidate is covered in the following section.

4.1.3. Cooperative Discovery of an Initial Route

To preselect a route candidate satisfying rmin, the source node relies on its local
view Tv of the global network status. This local view may not be completely
accurate, as network status data exchanged via cTEx may have aged towards
the end of update periods or due to loss of probe frames containing such data.
Therefore, dRmin-routing performs a cooperative search along the preselected
route candidate p in order to improve the accuracy of the initial route. A de-
scription of this process in the form of pseudocode is provided in Section 4.1.5,
Listings 4.1 to 4.5.

To start the cooperative search, the source node creates a REQUEST packet car-
rying the addresses of source node s and destination node d, route candidate
p = (e1, ..., en), reliability target rmin, the duration of the target time interval
dw, a ticket counter ctrt, and the initial number of tickets ctri. Tickets represent
permissions for concurrent route searches. In our experiments, we have set ctri
to 4. For each edge ei ∈ p, qei and nei

max are included in the REQUEST packet (in
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form of vectors q⃗p and n⃗p). Then, the REQUEST packet is sent as a unicast frame
to the next node, with the acknowledgment mechanism enabled. This ensures
that lost REQUEST packets are retransmitted, which improves the reliability of
the route search and differs from reactive routing protocols that use broadcast
transmissions for this search.

When an intermediate node vi receives a REQUEST packet, it recalculates qei and
nei

max of the next link, based on its local network status, and replaces these values
in the REQUEST packet to be sent. Furthermore, it performs a route search with
rmin-routing, with itself as source node, based again on its local network status
Tvi . For this search of an optimal suffix route pvi ,d from vi to d, the reliability
target rmin needs to be adapted, such that the combination of the prefix route
ps,vi from s to node vi with the suffix route pvi ,d still satisfies the initial rmin
requirement. As the product of reliabilities of ps,vi and pvi ,d needs to be greater
or equal to rmin, we calculate r′min = q

ps,vi

n
ps,vi
max

/rmin. If this alternative route p′ (the

concatenation of ps,vi and pvi ,d) is different from the route recorded in the REQUEST
packet, it is considered better, as it is based on newer topology information and
the following action is taken:

• If the next hop of the alternative route is different from the next hop of the
route of the REQUEST packet and ctrt > 1, another REQUEST packet is created
containing the route so far concatenated with the alternative route, and the
tickets are split among the REQUEST packets.

• The remainder of the route recorded in the REQUEST packet is replaced by
the alternative route otherwise.

Then, all REQUEST packets are sent to their next hop. Processing of received
REQUEST messages in intermediate nodes is also described in pseudocode in
lines 19-50 in Listing 4.1 of Section 4.1.5.

Upon reception of a REQUEST packet, the destination node compares ctri and
ctrt. If tickets are missing, i.e. ctri > ctrt, it waits for the reception of further
REQUEST packets. When all REQUEST packets have arrived or when a maximum
waiting time has expired, the destination node selects the best route as the ini-
tial route. Then, it creates a RESPONSE packet containing the initial route and
sends it as a unicast frame on the backward route to notify the source node and
intermediate nodes.

4.1.4. Route Repair during Operation

Once a route over path p = (e1, ..., en) has been established, route operation
starts, i.e. TRANSPORT messages carrying a payload are transferred from source
to destination. dRmin-routing monitors active routes during operation in order
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to obtain feedback whether their actual reliability is sufficient to maintain the
end-to-end reliability target rmin.

As a first measure, dRmin-routing observes each link of a route as edge ei of the
corresponding path p to check whether the actual link reliability still matches
the required link reliability. In case there is a significant drop, i.e. the actual
link reliability falls below the reliability requirement for this link established
during route discovery, nei

max is increased. Each route is assigned a budget for
this purpose, which is initially set to twice the number of edges in p, and is
carried by messages along the route. This mechanism enables an immediate
route repair, without the need for a new route search. If the initial budget has
been consumed, the route is aborted by sending an ABORT message to the source
as well as the destination node of the route, and a new route is searched (see
Sections 4.1.2 and 4.1.3).

As a second measure, dRmin-routing monitors the packet delivery ratio (PDR)
along the route to check whether the reliability target rmin is still satisfied for
moving time windows of duration dw, where dw is specified when the route is
requested. By monitoring sequence numbers, the PDR of the current window
can be calculated at every hop along the route, including the destination node.
When a node detects a PDR value below rmin, the route is aborted and reestab-
lished. A description of route repair during operation is given in Section 4.1.5,
Listing 4.6, lines 117-158.

4.1.5. Pseudocode of the dRmin-Routing Algorithm

In Listings 4.1 to 4.5, a slightly simplified version of the algorithm for dRmin-
routing is depicted. All mathematical terms used are listed in Table 4.2, whereas
a description of several helper functions used in the algorithm can be found in
Table 4.3. The receive events (keyword when) for each of the four message types
REQUEST, RESPONSE, ABORT and TRANSPORT, together with application layer requests
for connection and data transmission provide the structure of the algorithm.

In Section 4.1.3 the message types responsible for cooperative discovery of
an initial route, REQUEST and RESPONSE, were introduced. During route repair
(Section 4.1.4), ABORT messages are used to communicate a route failure to source,
destination and intermediate nodes. TRANSPORT messages are the only messages
that carry a payload and are used for regular communication along established
routes. In addition to the payload, each TRANSPORT message carries a budget ctrr

for route repairs, as stated in Section 4.1.4.
As mentioned above, the depicted pseudocode describes a slightly simpli-

fied version of the dRmin-routing algorithm. Processing of a fifth message type
(called DONE) for cleanly shutting down established routes is omitted for the sake
of brevity. Another aspect omitted from this version is handling of the special
case of non-existence of a route with sufficient quality. In this case, the request-
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ing application layer is informed that no route was found. It is then up to the
requesting layer to retry the search, possibly with an increased number of tick-
ets. The cleanup procedure for stale half-established routes is also omitted, as
well as queuing of TRANSPORT messages during route discovery and repair. The
selection of functionalities to be omitted from this specification in pseudocode
was done based on novelty of concepts and complexity. The omitted parts men-
tioned above are nonetheless vital to the implementation, albeit conceptually
straight-forward and of low complexity.
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Table 4.2: Definitions used in Listings 4.1 to 4.5

Definition Description

ps,d = (e1, ..., en) Path between s and d, where e1 = (s, v1)

and en = (vn−1, d)
n⃗p = (ne1

max, ..., nen
max) Vector of transmission limits for

TRANSPORT frames
q⃗p = (qe1 , ..., qen) Vector of link qualities values for path p
rid = unique identifier Route identifier, unique for each initial

route request
Rs,d = (rid, ps,d, n⃗ps,d , q⃗ps,d ,

rmin, dw)
Route tuple

nmgmt Transmission limit for management
frames (REQUEST, RESPONSE, ABORT)

nrx(Rs,d, t) Number of packets sent over Rs,d during
last dw seconds before t

ntx(Rs,d, t) Number of packets received over Rs,d
during last dw seconds before t

pdr(Rs,d, t) = nrx(Rs,d,t)
ntx(Rs,d,t) Definition of packet delivery ratio. Route

reliability targets are met, as long as
∀t . pdr(Rs,d, t) ≥ rmin

qe = OB-EWMAe
α,p(nmw, smw) Current link quality as determined and

maintained by cTEx, see Section 4.1.1
and [KG21].

Te = (e, qe) Status of link e = (v, v′) ∈ V × V.

Tv = set of Te Network status of v ∈ V.
Rmin(Tv, s, d, rmin) Function, returning a route Rs,d, satisfy-

ing rmin (see Section 4.1.2 and [KMG19]
for details). Based on information local
to v.

REQs,d = (Rs,d, ctrt, ctri) REQUEST packet tuple
RSPs,d = (Rs,d) RESPONSE packet tuple
ABRTs,d = (Rs,d) ABORT packet tuple
TRNSs,d = (Rs,d, ctrr, data) TRANSPORT packet tuple

Rest Set of established routes Rs,d

Rwait Set of half-established routes Rs,d

Rmon Set of tuples (Rs,d, Tv) of monitored route
and network state
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Table 4.3: Helper Functions used in Listings 4.1 to 4.5

Definition Description

send() Send packet to the next hop as ACKed unicast, with
specified transmission limit.

reliability() Calculate boosted reliability qp
np

max
of provided route.

next_hop() Extract next hop of provided node in provided route.

reverse() Reverse ps,d, n⃗ps,d and q⃗ps,d of provided route.

prefix() Extract a prefix of provided route up to provided
node.

best() Select the route with minimal np
max still satisfying rmin

get_est() Get route with provided rid from set Rest

search_done() Check if all tickets were received, i.e. compare sum
over ctrt for rid of provided route request, with ctri
and check whether the maximum waiting time has
elapsed. In each case, route search is complete and
true is returned.

check() Check status of the provided monitored route
against current Tv. Returns REPAIR if the actual link
reliability falls below the required level, FAULT if the
rmin target is not met in last time window of duration
dw and OK otherwise.

boost() Calculate number of transmissions necessary to
reach the same level of link quality as when the pro-
vided route was established.

conn_req() Application layer request for a connection satisfying
provided rmin requirement. Triggers route request.

conn_ind() Indicate to application layer that a connection is es-
tablished.

data_req() Application layer request to transport data along es-
tablished route with provided rid.

data_ind() Indicate to application layer that new data was re-
ceived on an established connection.
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1 when receive REQs,d then {
2 if d = v {
3 // -> This node is the destination node
4 // Add request to the waiting set
5 Rwait ∪ {REQs,d.Rs,d}
6 if search_done(Rwait, REQs,d) {
7 // -> All route requests sent by the source were
8 // -> received, select a route
9 // Create set of route candidates and select best
10 let C = {r ∈ Rwait | r.rid = REQs,d.Rs,d.rid}
11 RSPs,d = (best(C))
12 RSPs,d.Rs,d = reverse(RSPs,d.Rs,d)
13 // Send RSP message with selected route,
14 // notify application and clean up waiting set
15 send(RSPs,d, nmgmt)
16 conn_ind(rid, s, d, rmin)
17 Rwait \ {r ∈ Rwait | r.rid = RSPs,d.Rs,d.rid}
18 }
19 } else {
20 // -> This node is not the destination, but an
21 // -> intermediate hop
22 // Construct alternative route from s to d, with
23 // fixed prefix and optimized suffix
24 let p′ = prefix(REQs,d.Rs,d, v)
25 r′min = reliability(p′) / rmin
26 R′

s,d = p′ + Rmin(Tv, v, d, r′min)

27

28 if next_hop(R′
s,d, v) != next_hop(REQs,d.Rs,d, v)

29 // -> Next hop of alternative route is different from
30 // -> route suggested in REQ message
31 if REQs,d.ctrt > 0 {
32 // -> Budget for parallel search is not yet exhausted
33 // Create another REQ message containing the
34 // alternative route and send it
35 REQs,d.ctrt = REQs,d.ctrt − 1
36 REQ′

s,d = (R′
s,d, 1, ctri)

37 send(REQ′
s,d, nmgmt)

38 } else {
39 // -> Budget for parallel search is exhausted
40 // Create REQ message containing the alternative
41 // route, send it and exit without forwarding
42 REQ′

s,d = (R′
s,d, 0, ctri)

43 send(REQ′
s,d, nmgmt)

44 return
45 }
46 }
47 // Forward the received REQ message along
48 // route suggested inside
49 send(REQs,d, nmgmt)
50 }
51 }

Listing 4.1: Pseudocode describing the processing of REQUEST messages
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52 when receive RSPs,d then {
53 if s = v {
54 // -> This is the source node, add route to set
55 // -> of established routes
56 Rest ∪ { reverse(RSPs,d.Rs,d) }
57 } else {
58 // -> This is an intermediate node, forward RSP message
59 send(RSPs,d, nmgmt)
60 }
61

62 // In either case, start monitoring outgoing links for
63 // the respective route
64 Rmon ∪ {(reverse(RSPs,d.Rs,d), Tv)}
65 }

Listing 4.2: Pseudocode describing the processing of RESPONSE messages

66 when receive ABRTs,d then {
67 // On route abort, remove the respective route from set
68 // of monitored routes
69 Rmon \ {(Rs,d, Tv) | Rs,d.rid = ABRTs,d.Rs,d.rid}
70

71 if s = v {
72 // -> This is the source node
73 // Remove route from set of established routes
74 Rest \ {ABRTs,d.Rs,d}
75 }
76

77 if (v ̸= s) and (v ̸= d) {
78 // -> This node is an intermediate node
79 // Forward ABRT message
80 send(ABRTs,d, nmgmt)
81 }
82 }

Listing 4.3: Pseudocode describing the processing of ABORT messages
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83 when receive TRNSs,d then {
84 if d = v {
85 // -> This is the destination node
86 // Extract and pass received data to application layer
87 data_ind(TRNSs,d.Rs,d.rid, TRNSs,d.data)
88 } else {
89 // -> This is an intermediate node
90 // Forward the message along the established route
91 send_transport(TRNSs,d)
92 }
93 }

Listing 4.4: Pseudocode describing the processing of TRANSPORT messages

94 // This event is triggered by the application layer
95 // to request a new connection to a node
96 when conn_req (s, d, rmin) then {
97 // Find a route candidate
98 Rs,d = Rmin(Tv, s, d, rmin)
99 // Construct REQ message for candidate route
100 REQs,d = (Rs,d, ctri, ctri)
101 // Send request message
102 send(REQs,d, nmgmt)
103 }
104

105 // This event is triggered by the application layer to
106 // send data via an established connection
107 when data_req (rid, data) then {
108 // Obtain established route
109 Rs,d = get_est(Rest, rid)
110 // Initialize repair budget
111 ctrr = 2 · Rs,d.ps,d.hops
112

113 // Create and send TRNS message to transport data
114 TRNSs,d = (Rs,d, ctrr, data)
115 send_transport(TRNSs,d)
116 }

Listing 4.5: Pseudocode describing the processing of application layer events
conn_req and data_req
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117 def send_transport(TRNSs,d) {
118 // Before each transmission of a TRNS message,
119 // health of the corresponding route is checked
120 switch check(TRNSs,d.Rs,d, Tv, Rwait) {
121 case OK:
122 // -> Route is ok
123 // Transmit message with retransmission
124 // limit configured after route discovery
125 send(TRNSs,d, ne,max)
126 case REPAIR:
127 // -> Route needs repair, i.e. the respective outgoing
128 // -> link’s quality deteriorated since route discovery
129

130 // Calculate number of necessary boosts to maintain
131 // reliability link had after route discovery
132 let n′

e,max = boost(TRNSs,d.Rs,d, Tv, Rwait)
133 if (TRNSs,d.ctrr − n′

e,max) > 0 {
134 // -> Repair budget allows to apply boost
135 // Update repair budget in TRNS message and send
136 // with additional boost
137 TRNSs,d.ctrr = TRNSs,d.ctrr - n′

e,max
138 send(TRNSs,d, n′

e,max)
139 } else {
140 // -> Repair budget is exhausted
141 // Send message without additional boost
142 send(TRNSs,d, ne,max)
143 }
144 case FAULT:
145 // -> Route has failed, i.e. specified rmin target
146 // -> was not met in the last dw seconds
147

148 // Create and send ABRT message in forward direction
149 ABRTs,d = (TRNSs,d.Rs,d)
150 send(ABRTs,d, nmgmt)
151 // Create and send ABRT message in backward direction
152 ABRT′

s,d = (reverse(TRNSs,d.Rs,d))
153 send(ABRT′

s,d, nmgmt)
154

155 // Remove route from set of monitored routes
156 Rmon \ {(Rs,d, Tv) | Rs,d.rid = ABRTs,d.Rs,d.rid}
157 }
158 }

Listing 4.6: Pseudocode describing the process for sending TRANSPORT messages
including route repair

94



4.2. Assessment of dRmin-Routing

4.2. Assessment of dRmin-Routing

dRmin-routing claims to discover, maintain and operate routes with specified
minimum route reliabilities for time windows of a specified duration. We have
devised extensive experiments to support this claim and show that dRmin-routing
is a viable alternative to existing routing protocols. In this section, we will pro-
vide results showing that

• routes discovered and operated with dRmin-routing match their specified
reliability targets over the specified time windows,

• the latency introduced by the cooperative route discovery mechanism used
in dRmin-routing (see Section 4.1.3) is low, and usually smaller than 10 ms,

• and that the employed route discovery mechanism finds suitable routes
even when the network is under load.

4.2.1. Experiment Setup

The experiments were carried out in the discrete event network simulator ns-33,
using YansWifiPhy for simulation of the PHY layer and AdhocWifiMac for the
MAC layer. The WiFi standard was set to 802.11g, with a constant transmission
rate of 54 MBit/s for unicast as well as broadcast frames. To model propagation
loss, the class LogDistancePropagationLossModel from ns-3 was used, configured
with an exponent of 2.0 and a reference loss of 46 dB at 1 m, in addition to
a random propagation loss drawn from a normal distribution with a mean of
0 dBm and a variance of 8 dBm.

The experiments on dRmin-routing were carried out with our own implemen-
tation of a network and MAC layer protocol on top of AdHocWifiMac, to allow
for the necessary control over retransmissions. For the OLSR experiments car-
ried out in Section 4.3, the protocol implementation that comes with ns-3 was
used, with UDP as the transport protocol and IP as the underlying network layer
protocol.

The topologies used in the experiments are all random generated, with a uni-
form distribution of the static nodes’ positions. The nodes are scattered over
a square area of 500 m width for the smaller, and 1000 m width for the larger
topologies. To obtain interesting node pairs to evaluate the routing performance
of the protocols, we calculated the node pairs with the greatest Euclidean dis-
tance. This approach avoids trivial routes between close nodes, which pose no
real challenge for most routing protocols.

3Source code is available at https://gitlab.com/nsnam/ns-3-dev
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(a) Comparison of dRmin-routing with and without route repair.
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(b) Five routes operated simultaneously between the same node pair, with different
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Figure 4.2: Experiments illustrating the necessity of route repair, and successful
matching of different reliability targets.

4.2.2. Analysis of Route Reliabilities

To achieve the specified reliability targets, dRmin-routing applies two measures:
use of a stable, adaptive, and conservative link metric for route discovery, and
continuous monitoring with route repair mechanisms, which are applied when
the end-to-end reliability target rmin is (about to be) missed. Fig. 4.2a shows
by the example of a single, selected route that with route repair, the reliabil-
ity target was matched throughout route operation. The displayed reliability
values are the ratio of successfully received packets at the destination node, cal-
culated for a moving window of dw = 10 s. In Fig. 4.2b, the reliabilities of several
routes operated simultaneously between the same pair of nodes, with different
target reliabilities rmin is depicted. The configured reliability targets are always
matched. The topology consists of 30 nodes, all routes transport a stream of
datagrams of 50 KiB/s.

4.2.3. Latency and Overhead of Route Search

The cooperative route discovery process introduces a latency for each route
search, depending on the length of route candidates in hops. In a series of
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Figure 4.3: Distribution of latency caused by route discovery for successful
searches in a 30-node topology with dRmin-routing.

experiments on a 30-node topology, the latency between transmission of the
REQUEST message and reception of the respective RESPONSE message at the source
node was recorded. The results in Fig. 4.3 show that the latency introduced by
route discovery is almost always (>98 %) below 40 ms and in 57 % of cases below
10 ms. In the 62 experiments of this series, the number of simultaneous routes
ranges from 1 to 35, and the data rate of the operated routes varies between
2.5 KiB/s and 75 KiB/s. In Fig. 4.3, only successful route searches are depicted.
A route search is successful if the destination node was reached and responded
with a RESPONSE message that was received by the source node before the request
timed out.

The management overhead of dRmin-routing in terms of bandwidth consump-
tion is determined by the overhead for topology detection and exchange with
cTEx, and the overhead for cooperative route discovery. In [KG21], the overhead
of cTEx amounts to 26.5 bps per link in a network of 36 nodes and 120 links. The
overhead for cooperative route discovery is bounded by the maximum number
of exchanged REQUEST and RESPONSE frames, which depends on the number of
links of route candidates, the length of the selected route, and the maximum
number of retransmissions per link. Here, the number of route candidates is
limited by the number of tickets. In summary, the management overhead of
dRmin-routing is low.

4.2.4. Route Discovery Success Ratio

dRmin-routing claims to discover and maintain routes that satisfy a given end-
to-end reliability target. Depending on the quality of the protocol, the topology
and existing traffic, such a route might not be found for every pair of nodes.
Hence, the ratio of source and destination node pairs for which a suitable route
is found is an important performance criterion for any routing protocol. dRmin-
routing manages to find routes in most environments, given the network con-
tains a sufficient amount of reliable links and has enough free bandwidth to
accommodate the additional traffic. To illustrate this, a sequence of experiments
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Figure 4.4: Ratio of node pairs, where no route satisfying the specified reliability
requirement of rmin = 0.8 could be found.

with different numbers of simultaneously operated routes under different data
rates were carried out on several 30-node topologies with a field width of 500 m.
The source and destination node pairs were picked randomly, while nodes were
only picked a second time after every other node was picked once. The aggre-
gated results are displayed in Fig. 4.4. We observe that dRmin-routing is capable
of discovering suitable routes in the majority of cases analyzed. In cases where
data rates >40 KiB/s in combination with a high number of routes operated in
parallel (>30) are requested, dRmin-routing struggles to find routes. On the other
hand, the network consists of 30 nodes placed in a 500 m × 500 m area, which
suggests that the problem stems in part from a lack of available bandwidth.

4.3. Comparison of dRmin-Routing with OLSR

We now compare the performance of dRmin-routing and Optimized Link State
Routing (OLSR) [CJ03]. OLSR optimizes the control overhead of the classical
link state algorithm for wireless local area networks. For this, the concept of
multipoint relays (MPRs) is introduced and applied. MPRs provide an efficient
way for broadcasting control traffic by reducing the number of transmissions.
This works especially well in dense networks. Furthermore, OLSR determines
routes with the smallest number of hops. A mature implementation of OLSR is
available for the network simulator ns-3. The setup for all experiments in this
section has been stated in Section 4.2.1.
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Figure 4.5: Comparison of route reliability over time for the same node pair in a
30-node topology, with rmin = 0.8.

4.3.1. Comparison of Route Reliability

In Section 4.2, it was shown that dRmin-routing can find and operate routes that
conform to specified reliability targets. To show that finding and operating these
routes requires a specialized routing protocol, the reliability of routes detected
by OLSR was analyzed. In Fig. 4.5, the reliability of routes between a single node
pair is displayed. For the route discovered by OLSR, the reliability oscillates and
is generally much lower than for the route discovered with dRmin-routing. It is
important to note that the upper limit of MAC layer transmissions for a frame
is the same for both setups.

To evaluate whether the specified reliability targets are met for arbitrary routes
and under a variety of network conditions, another set of experiments was car-
ried out. On a 30-node topology, between 1 and 40 routes were operated simul-
taneously with data rates between 2.5 KiB/s and 75 KiB/s. In total, 1448 routes
were evaluated, the achieved reliability of each route with dRmin-routing was
recorded and is displayed in Fig. 4.6a. For comparison, the same experiments
were run with OLSR, which does not employ any mechanisms to discover partic-
ularly reliable routes. The resulting reliability of each route is shown in Fig. 4.6b.
In very rare cases, dRmin-routing may not detect deteriorating route reliability
in time to repair the route before it falls below the specified target. Routes op-
erated with OLSR between the same pairs of nodes are mostly unreliable. This
is due to the simple topology detection mechanism of OLSR, and because OLSR
favors short routes in terms of hops.

To further evaluate the reliability of routes detected and maintained with
dRmin-routing for different topology sizes and to compare them with OLSR,
we have introduced 5 topology size classes ranging from 10 to 50 nodes. For
each size class, we have generated 10 topologies. For each topology, 5 node
pairs with maximum Euclidean distance were calculated. Between each of these
node pairs, a packet stream of 20 packets per second, with a payload of 128
Bytes each is generated, resulting in a payload traffic of 2.5 KiByte/s per route.
The reliability of a route was measured as the packet delivery ratio (PDR) over
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Figure 4.6: Comparison of route reliabilities of 1448 routes operated in a 30-node
topology of size 500 m × 500 m. The dRmin-routing reliability target
for all routes was set to 0.8.
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Figure 4.7: Comparison of average reliabilities of dRmin-routing and OLSR

a moving window of length 10 s. The obtained PDR sequence for each route is
then aggregated using the arithmetic average. The resulting average reliabilities
of all routes in a single topology are then also aggregated into a single value us-
ing the arithmetic average, such that 10 aggregated reliability values remain over
a total of 10 topologies with the same number of nodes each. The results are
depicted in Fig. 4.7 and show that routes operated with dRmin-routing have a
very high reliability over all five topology size classes analyzed. This is different
for OLSR, which also degrades with larger topology sizes.
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Figure 4.8: Required time to transmit 1 MiB through the network in different
topologies (10 topologies per size class).

4.3.2. Comparison of Network Throughput

To illustrate that routes discovered and operated with dRmin-routing can sup-
port applications where network throughput is of concern, we devised another
series of experiments. Network throughput was analyzed by transmitting 1 MiB
between the two most distant nodes in the network for each topology. The re-
quired time for this transfer is measured for each topology, resulting in 10 values
per topology size class. The results are depicted in Fig. 4.8.

For the dRmin experiment, a packet with 512 Byte payload was created every
10 ms at the source node, as the mechanisms employed by dRmin for route relia-
bility monitoring and bandwidth reservation benefit from periodic traffic. As it
takes about 20 s to generate 1 MiB of data at 51,200 B/s, a lower limit is visible
for the transfer durations in the dRmin-routing results in Fig. 4.8. The OLSR
experiment was configured to use the same payload size per packet, but with-
out any delay between the generation of consecutive packets. For the smaller
topologies, OLSR has higher throughput in some cases, the median experiment
however already indicates a network throughput that is below the minimum
throughput achieved over all runs with dRmin-routing. As the number of nodes
or the network area increases, the difference in network throughput between
OLSR and dRmin-routing becomes wider. In the experiments with 50 nodes, the
median transfer duration for 1 MiB with dRmin-routing is less than a quarter of
the time necessary with OLSR.

4.4. Preparations for Real-World Experiments

In the previous section we summarized the results from simulation experiments
in the network simulator ns-3. The simulator was used to evaluate dRmin-
routing performance with respect to reliability, throughput and route discov-
ery latency. As the results and especially the comparison of dRmin-routing with
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the OLSR protocol give reasons for the dRmin protocol to be considered for real
application scenarios, a thorough evaluation in real world experiments is the
next step. A full evaluation of dRmin-routing in a real world testbed is beyond
the scope of this thesis. We did however look into the necessary preparations
and caveats for a move of the dRmin-protocol from a simulated to a real-world
environment. Several aspects need addressing for this transition:

• Success of transmission events over simulated links (without collisions)
is statistically independent and identically distributed, which we cannot
assume for real world transmissions.

• The single network property is valid for the simulated environment, it may
not be for a real world testbed.

The first aspect, regarding statistical independence of success of transmission
events, is a common assumption made in the context of reliability-focused proto-
cols. However, success of a transmission is usually not statistically independent.
In scenarios of periodic traffic patterns, or in sparse networks, the sequence of
transmission failure and success is often bursty [SKAL08], i.e. a successful trans-
mission is more likely to be followed by several more successful transmissions.
Also, a transmission failure is more likely to be followed by another failure as
well. The assumption of independence of transmission success, however, is at
the base of the link boosting mechanism of dRmin-routing. As dRmin-routing
relies heavily on link boosting to achieve target reliability levels, this issue needs
to be addressed with great care, in order for dRmin to work reliably. In [Mat22],
the question of what statistical properties a link is required to exhibit for the
boost mechanism (i.e. targeted retransmissions) to work is posed and answered
in great detail. The authors evaluate efficacy of link boosting for links with dif-
ferent statistical properties and with synthetic as well as real world data. Three
different statistical properties of wireless links are presented and evaluated:

• the µ-value for statistical independence, which is a component of the
discrete-time 2-state Markov model published in [Gil60, Ell63] and known
as the Gilbert-Elliott model,

• p and z-values, as components from the Wald-Wolfowitz Runs-test [Bra68],
which indicate whether the sequence of transmission success and failure
is random,

• and at last the Chi-square goodness-of-fit test of the observed event out-
comes against a Bernoulli distribution.

The statistical properties are then compared with respect to their capacity
to predict the efficacy of link boosting, i.e. whether a link that is supposedly
boosted to a specific reliability level actually meets the specified reliability target.
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The results suggest that using the Gilbert-Elliott model for monitoring sta-
tistical independence in form of the µ-value is sufficient to form a decision on
whether a specific link’s statistical properties fully support link boosting directly,
only after application of additional measures such as an increased retransmis-
sion budget, or not at all. By incorporating the µ-value as an additional metric
into the route selection process, links that do not support boosting with suf-
ficient bandwidth efficiency can be identified and avoided. As the authors of
[Mat22] obtained their results from an offline analysis of real testbed transmis-
sion event data, the conclusions may only be valid for scenarios, where failed
transmission events do not trigger an immediate retransmission. Success or
failure of the retransmission is modelled by repurposing the outcome of the
subsequent transmission made by the node, possibly occurring several hundred
milliseconds later, depending on the transmission interval. This is an important
takeaway, as this ensures a continuously uniform distribution of transmission
events over time and does not lead to a cluster of (re-)transmissions as soon as
some frames are dropped.

Another conclusion drawn by the authors of [Mat22] is that in the analyzed
scenarios, most links exposed the necessary statistical properties to allow link
boosting. This suggests that promising simulation results for a routing protocol
such as dRmin-routing, which relies on boostability of links, may actually apply
(with limits) to real world scenarios.

4.4.1. The Gilbert-Elliott Model

As stated above, the µ-value as part of the Gilbert-Elliott model can be used to
measure the boostability of a wireless link. Hence, a short summary is provided
in the following paragraphs.

The Gilbert-Elliott model is defined as a discrete-time 2-state Markov chain
and was introduced by Gilbert in [Gil60] and extended later by Elliott in [Ell63].
We map the two two states of the Markov chain Fig. 4.9, named Good and Bad,
to successful tranmission attempt and failed transmission attempt, respectively.
The probability the state switches, for instance the probability that a successful
transmission is followed by a failed one, is captured by pb, whereas pg corre-
sponds to the probability that a failed transmission is immediately followed by
a successful transmission attempt.

Channel memory µ ∈ [0, 1] can then be calculated as

µ = 1 − pb − pg (4.1)

and expresses the degree of statistical independence of a link. If for a given
sequence of transmission events of a link, channel memory value µ is close to
1, the respective link is bursty and success and failure of transmission events on
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Figure 4.9: Gilbert-Elliott model

that link strongly depend on the outcome of the previous attempts. A µ close
to zero indicates a link with statistically independent transmission outcomes,
whereas a µ close to −1 suggests that the link is oscillatory.

A scenario not covered in [Mat22] is one where routes are actually operated
in a real testbed network. Only a periodic traffic pattern, where transmissions
are carried out by each node at semi-regular intervals was evaluated. This traf-
fic pattern however is different from the patterns induced by nodes forwarding
packets back and forth along an established route. The frame intervals are vari-
able and set by the application, and several routes may be in operation simul-
taneously, leading to heterogeneous load patterns at the nodes in the network.
As a result, the distribution of transmission events over time may deviate from
an uniform distribution, which may be detrimental to the boostability of links
required by dRmin-routing.

A possible countermeasure is provided in another chapter of [Mat22], where
Time Token Bucket Algorithm (TTBA) is introduced. TTBA is a traffic shaping
algorithm that can be applied to improve randomness of transmission events
over time, or in other words, helps to reduce the burstiness of links and subse-
quently improves their statistical independence property.

4.4.2. Time Token Bucket Algorithm

The TTBA uses a token bucket to distribute transmissions over time. This works
as follows: For each transmission, the expected medium occupancy time is cal-
culated. Then, the algorithm checks whether the corresponding number of to-
kens is available in the token bucket and if so, consumes the tokens. In case
the remaining token budget is insufficient to pay for the medium occupancy
time, the transmission is delayed and no tokens are consumed. The refill rate of
the token bucket and token size control the total medium occupancy time per-
mitted to each node. The maximum size of the bucket controls the maximum
burst length, as transmissions are performed only while the size and number of
tokens in the bucket is sufficient.

To decouple the timing of transmission events from the clocking of both ap-
plication and token bucket refill timer, the token bucket refill interval can be
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configured with a lower and upper bound. The algorithm then picks a random
interval after each refill event. Simulation experiments by the authors suggest
this mechanism reduces the chance of frame loss due to collisions and results in
a higher frame delivery ratio than static refill. Further simulation experiments
show that this dynamic refill mechanism also improves the statistical link prop-
erties (as captured for instance by the µ-value from the Gilbert-Elliott model)
necessary for successful link boosting.

Under the proper configuration of protocol parameters, TTBA effectively dis-
tributes transmissions over time and thus reduces the burstiness of wireless
links. As a reduction in burstiness implies an increase in a link’s statistical
independence property, TTBA may serve as a supplementary protocol below
dRmin-routing to assist in ensuring links are boostable.

4.4.3. Preliminary Experiments and Future Work

The implementation of the dRmin-routing protocol used in the simulation ex-
periments of this chapter (see Section 4.2) can be used for real-world experi-
ments with minimal additional effort. Preliminary experiments suggest that the
promising results from the simulation environment do not immediately carry
over to real-world scenarios. Thus, future work should focus on integration of
a monitoring mechanism for the statistical properties of links required for suc-
cessful link boosting (based on the Gilbert-Elliott model) into dRmin-routing. In
addition to this, we recommend adding traffic shaping based on the Time Token
Bucket Algorithm to further improve the statistical properties of links for link
boosting.

4.5. Related Work

The pattern of initiating a route discovery reactively with a request message,
in combination with fixing and communicating the route decision with a corre-
sponding response message sent by the destination node is also used in the
classical Ad-hoc On-demand Distance Vector (AODV) [PR99] algorithm and
Dynamic Source Routing (DSR) [Joh94] protocol. Both protocols also require
nodes to monitor established routes and indicate route failures with route er-
ror messages. dRmin-routing employs a similar, though much more sophisti-
cated monitoring and repair mechanism. Different from AODV, dRmin-routing
uses directed unicast messaging instead of flooding the network with request
messages for route discovery. dRmin-routing also applies a much more flexible
approach for topology exploration and link quality estimation, which adds a
proactive component to the reactive approach of DSR and AODV.

In more recent works, quality of service in wireless networks is of increasing
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interest. QOLSR [MF07] extends the well-known OLSR protocol with metrics
for delay and bandwidth and proposes additional MPR selection heuristics. In
[YMSF07] a link availability-based QoS-aware (LABQ) routing protocol is intro-
duced, where the availability of links between mobile nodes is monitored to
inform the route decision and produce routes with high availability and energy
efficiency. The link quality metric is ETX [DCABM03], which is a well-known
metric for ad-hoc wireless networks with some similarities to OB-EWMA, which
is used in dRmin-routing, as both are based on the measured packet (or frame)
delivery ratio of a link. The focus with LABQ however, lies on the discovery
of routes with high availability. ETX is not used to the extent, where a specific
end-to-end route reliability target would be supported.

Optimized Link State Routing v2 (OLSRv2) [Cla14] is a revision of the original
routing protocol for mobile ad hoc networks, OLSR. OLSRv2 supports arbitrary
link metrics for route discovery, with the requirement that the metric is additive.
This provides support of link metrics which can support some QoS require-
ments. Maintenance and repair of routes in accordance with the selected link
quality metrics and QoS specifications, however, would require extensions to the
protocol.

The cooperative discovery of an initial route of dRmin-routing has some sim-
ilarities with Ticket Based Probing (TBP) [CN99]. TBP addresses delay- and
bandwidth-constrained routing. When a route is requested, a number of green
and yellow tickets are issued for a concurrent route search. Green tickets are
permissions to search for cost-effective routes satisfying the QoS-requirement,
yellow tickets increase the probability of success by searching for an optimal
path, without considering cost. To preselect next hops, TBP assumes availability
of distance vectors for delay, bandwidth, and cost. However, TBP is not func-
tionally complete, and does not address reliability-constrained routing.

4.6. Conclusion

In this chapter we introduced dRmin-routing, a functionally complete routing
protocol that aims to provide applications with routes that satisfy the reliability
requirement requested by the application. The dRmin-routing protocol uses the
rmin-routing algorithm to extract reliable routes from topology information and
includes mechanisms for monitoring and repair of established routes. We use
the cTEx protocol in combination with the OB-EWMA link quality metric for
topology detection and distribution to obtain an accurate view of the topology
of the network, including normalized and conservative estimates of each link’s
quality.

In order to facilitate reproduction of our results, a detailed and semi-formal
specification of dRmin-routing is provided in the form of pseudocode. As all
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additional components of dRmin-routing, namely the rmin-routing algorithm, the
cTEx protocol for topology detection and the OB-EWMA link quality metric are
fully specified at a similar level of detail, an implementation of the dRmin-routing
protocol functionally equivalent to the one used in this thesis may be created by
anyone in the research community.

dRmin-routing was assessed in simulation experiments, which also include a
comparison with the OLSR protocol.
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5. A Demonstrator and Runtime
Controller for a Small
Demonstration Network

In previous chapters, two protocols for wireless ad-hoc networks were intro-
duced: the cTEx protocol for topology detection and dRmin-routing, a func-
tionally complete routing protocol for discovery, operation and maintenance of
routes that satisfy a specified reliability target. These protocols were specified at
detail, implemented and evaluated in various simulation and real-world exper-
iments. The results of this analysis were then published in research articles and
are discussed over several sections of this thesis. For the introduction of the com-
plex concepts behind communication protocols for wireless ad-hoc networks to
a community of fellow researchers, this approach is well-suited.

However, in order to showcase core mechanisms and capabilities of these com-
munication protocols to an audience without a deep background in the corre-
sponding field of research, a less scientific and more practice-oriented approach
would be helpful. Hence, a demonstrator framework and testbed was devised.
The goals of this endeavor were set as follows:

• Visualization of network state: As the use case of the demonstrator is show-
casing specific capabilities of complex communication protocols to a lay-
man audience, dynamic visualizations of network state are necessary to
keep impact of the respective communication protocols on the network
state traceable.

• Modular and extensible: Architecture of the demonstrator framework should
be devised such that the demonstrator can be used to showcase several
different protocols, while integration of new protocols should be possible
with low implementation effort.

• Simple and robust setup: The demonstrator hardware and software should
be simple to set up, dismantle and configure, and work reliably e.g. when
set up at an exhibition.

• Few hardware components: In order for the demonstrator setup to be still
portable, only a few network nodes, an ethernet switch and cables as well
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Figure 5.1: Demonstrator testbed setup.

as a laptop should be sufficient for showcasing. No infrastructure apart
from an energy source should be required.

The demonstrator testbed setup is explained in Section 5.1. In the process of
creating the demonstrator framework, a modular mechanism for runtime con-
trol of a protocol stack was implemented (see Section 5.2). For visualization
of network state and control of the demonstrator through the operator, a web-
based interface was implemented (details in Section 5.3). At last, a series of
showcase experiments for each protocol was devised (Section 5.4).

In the last section of this chapter (Section 5.5), a short introduction to the tools
and frameworks used during evaluation of the numerous experiments carried
out in the context of this thesis is provided.

5.1. Testbed Setup

The demonstrator testbed consists of four network nodes, a laptop and an eth-
ernet switch. A diagram of the testbed setup is shown in Fig. 5.1. The network
nodes are PC Engines APU21, which are equipped with two PCIe WiFi Cards2

and three Ethernet ports. Two antennas are attached to each WiFi Card. The
four network nodes run Linux in version 5.10. The laptop is used to control the
testbed and can be of any type and operating system, as the only requirements
are availability of a web browser and an ethernet port. To prevent interference
through the exchange of control and status information between the network
nodes and the demonstrator interface this information is exchanged over a sep-
arate wired network. To provide said wired network, an ethernet switch and
five cables are necessary. Network nodes, laptop and switch are connected by
cables as shown in Fig. 5.1.

1AMD Embedded G series GX-412TC, 1 GHz quad Jaguar core, 2 GiB RAM
2Compex WLE200NX, compatible with 802.11n, ath9k Linux kernel driver
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5.2. Runtime Control of a Protocol Stack

To illustrate the capabilities of the reliability-focused protocol stack for topology
detection and routing introduced in this thesis, we designed a series of showcase
experiments. These showcase experiments are implemented utilizing a demon-
strator application framework for small wireless ad-hoc networks, that allows
for runtime control and configuration of protocol and application parameters.
Runtime control of protocol parameters is a key prerequisite, as it is necessary to
transfer a network into a sequence of states where a communication protocol’s
impact on network behavior and performance becomes apparent.

The core of the demonstrator framework is the component for runtime con-
trol of protocols. This component is protocol-agnostic, such that implementation
of runtime control capabilities for additional communication protocols requires
only minimal modification (or none at all). To achieve this level of generality
for the runtime control component, we developed a modular architecture where
each protocol layer can advertise a set of actions that may be triggered by the
operator of the demonstrator. For instance, a protocol that is an optional part of
a layered protocol stack may allow for its deactivation (and activation) at run-
time. During startup, such a protocol would register an action identifier string
and a corresponding callback function implementation with the stack controller.
The stack controller then communicates all available actions to the demonstra-
tor application. The demonstrator application stores protocol and action identi-
fiers and automatically adds a control element to the web-based user interface,
through which the operator may issue the control command for the respective
protocol layer. The command is then sent to the respective network node, where
the stack-controller component schedules a command event for the respective
protocol layer. When the event is processed, the new protocol parameter is set.
The described mechanism also supports a single, optional string parameter per
action. A visualization of this architecture is depicted in Fig. 5.2.

This architecture requires usually no changes at the demonstrator side to add
runtime control capabilities for a protocol. At protocol side, the framework
provides functions for registration of controllable parameters of a protocol. Re-
porting of controllable parameters is done by the stack-controller component
during startup of the node.

In addition to any controllable parameters, protocols may emit state variable
updates. These may include for instance the total number of transmissions a
node has performed or current end-to-end reliability of an established route.
The reported values of state variables are visualized as tables, plots or charts
in the demonstrator user interface. The reporting mechanism for state variable
updates is very similar to the mechanism for registering controllable parameters
(see also Fig. 5.2): Publishing a state variable on the protocol side is as simple as
calling the framework-provided publish function with three parameters, the first
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Figure 5.2: Architecture diagram of the runtime control mechanism.

is an identifier string for the respective state variable, the second is an identifier
for the desired visualization type (e.g. table, graph or scatter plot, details in
Section 5.3) and the last is a description of the current variable state, i.e. the
value to be reported.

As the underlying protocol for the exchange of messages between the net-
work nodes and the demonstrator application, we chose the WebSocket protocol.
As the demonstrator is implemented as a web application, the chosen protocol
should be well supported in common web browser’s JavaScript engines. An-
other requirement is bandwidth efficiency of communication. Report of state
variables in short intervals improves traceability of changes in protocol behavior
via the user interface, however also increases load on the network connection
between demonstrator and testbed. To keep the bandwidth requirement and
processing times of the reporting mechanism at manageable levels, a lightweight
protocol with low overhead is preferable. Another requirement is support for
full-duplex communication, i.e. the server (in this case the program executed
on the testbed node) may push data via an established WebSocket without an
explicit prior request by the client (the demonstrator application running on the
laptop). This is a requirement not met by half-duplex protocols such as HTTP,
where the client needs to regularly poll the server. The WebSocket protocol sat-
isfies all three requirements, i.e. JavaScript compatibility, bandwidth efficiency
and full-duplex communication. We also considered plain HTTP for communi-
cation, however WebSockets are superior with respect to bandwidth efficiency,
as no headers are used. As mentioned above, HTTP also supports half-duplex
communication only.

112



5.3. Visualization of Network State

5.3. Visualization of Network State

During protocol operation, the protocol implementation may report values of
state variables to the demonstrator. As these reports are initiated at the nodes the
protocol implementations run on (and not by the demonstrator), a full-duplex
connection (e.g. through the WebSocket protocol) to the demonstrator if prefer-
able to keep communication efficient, as with half-duplex connections (as used
in HTTP) regular polling of each node by the demonstrator is necessary.

The web interface at the demonstrator supports a pre-defined set of visualiza-
tions. For each visualization type, there exists a format requirement for report-
ing values. A protocol implementation may report values of any state variable,
as long as the reporting is done according to a specific format, depending on
the desired visualization type for the reported value. For instance, each node
may regularly report the reliability of all links it is aware of to the demonstrator
node. When aggregated, link state information of all nodes in the network can
be used to construct a graph, where each edge is annotated with the respective
link reliability value. So for each link reliability report, we require some iden-
tifier for the kind of value that is reported, a timestamp, a chart type and the
value itself. With respect to our example, where the reliability of an incoming
link is reported, a suitable identifier would be topology, the timestamp would be
a UNIX timestamp in milliseconds, the chart type is specified as an index into
the list of available chart types, which is 2 for a topology plot, and at last the
reported value, which is a tuple consisting of identifiers for source and destina-
tion nodes, as well as the quality of the link that connects both. The information
is collected in an object and serialized as JSON before communication to the
demonstrator. A JSON string that corresponds to the example discussed above
is given in Listing 5.1.

1 {
2 "identifier": "topology",
3 "chart-type": 2,
4 "timestamp": 1671901200000,
5 "value": {
6 "source-node": 3,
7 "destination-node": 5,
8 "reliability": 0.85
9 }
10 }

Listing 5.1: Example of report of a single value in JSON format.

This JSON string is then sent to the demonstrator over the WebSocket con-
nection. At the demonstrator the reporting node’s network address is extracted
from the message header and the JSON string is parsed. The reported value
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together with the timestamp is then passed on to the respective plot function,
where the value is visualized in the chart corresponding to the reported iden-
tifier, and according to the specified chart type along with any other values
reported under the same identifier. Reported values are collected in separate
data structures for each reporting node at the demonstrator. This way, plots can
be grouped by reporting node.

Figure 5.3: Topology plot.

In Fig. 5.3, an exemplary topology
plot is depicted. The thickness of an
edge reflects the quality of the respec-
tive link, as does the distance between
nodes. The position of each node is
calculated automatically using a grav-
ity based spring layout mechanism,
where the value assigned to each edge
is used to model a force that pull
source and destination node together.
Between nodes without a direct link,
a force that pushes both nodes apart is simulated. The resulting plots may not
serve to provide insights on the real network’s physical geometry, proximity of
nodes in the plot however indicates reliable links, which often correlate with
physical proximity in the real network.

All recently reported values are stored in data structures at the demonstra-
tor and incorporated into the respective visualizations. Depending on the fre-
quency state variables are reported, the stream of value reports may be of high
volume. Visualizations are updated in a lazy manner, i.e. only when visible on
the operator’s viewport. A screenshot of the web-based demonstrator interface
is depicted in Fig. 5.4.

As mentioned above, there is a fixed (yet easily expandable) set of visualiza-
tion types available in the web interface of the demonstrator. A complete list of
the supported plot types is provided in Table 5.1. Separate larger depictions of
some of the visualization types in the demonstrator web interface are shown in
Fig. 5.5

5.4. Showcase Experiments using the Demonstrator

The purpose of the demonstrator framework is to showcase the capabilities of
complex communication protocols for wireless ad-hoc networks to a layman au-
dience. To facilitate tracing network state changes for viewers, network state
is visualized continuously in the demonstrator web interface and protocol pa-
rameters may be controlled and configured at runtime. The operator may also
control the application that runs on top of the protocol stack and for instance
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Figure 5.4: Screenshot of the demonstrator web interface.

Table 5.1: Available Demonstrator Chart Types

Identifier Chart type

1 Scatter plot (single sequence)

2 Graph

3 Table

4 WebView

5 Scatter plot (multiple sequences)

6 Tree
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(a) Screenshot of a scatter plot. (b) Screenshot of a graph plot.

(c) Screenshot of a tree plot.

Figure 5.5: Screenshots of scatter, graph and tree plots. All are available visual-
ization types in the demonstrator web interface.
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schedule regular transfer of messages to a destination address.
As ad-hoc construction of expressive example experiments that adequately

showcase a specific protocol capability poses a challenge, several tested experi-
mentation playbooks were created which when followed illustrate the respective
protocol capability. In this section, we will go over a single exemplary playbook.
More playbooks are available in Tables B.1 to B.3.

In Table 5.2 an exemplary playbook is given in tabular form. We assume
the following assumptions hold before the operator begins performing the steps
declared in the playbook:

• Demonstrator is set up correctly (as depicted in Fig. 5.1), i.e. all nodes and
the laptop are powered on and connected to the ethernet switch.

• All transceivers are tuned to the same channel and there are no strong
emitters of signals at carrier frequencies also used by WiFi in the immedi-
ate vicinity of the testbed setup.

• Testbed nodes are placed very close to each other (within a circular area of
diameter 2 m or less), so near perfect link reliabilities can be expected.

The protocol stack that runs on the demonstrator testbed for the exemplary
playbook in Table 5.2 (and Tables B.1 to B.3 as well) consists of a custom MAC
layer3 capable of controlling retransmissions, the cTEx protocol (see Chapter 3),
the dRmin-routing protocol (see Chapter 4) and an application layer. As men-
tioned in Section 5.2, each protocol layer may register actions that can be trig-
gered directly from the demonstrator web interface. There exist actions for most
of the configurable parameters of each protocol. In the playbooks included in
this thesis however only a subset of the available actions is used:

• MAC layer: This layer registers actions to set and remove artificial reliabil-
ity limits on a link. This includes setting the limit to 0, which causes the
MAC layer to drop all frames received over the link. The limit is imple-
mented in a straight-forward manner: For every frame received, a random
number from (0, 1) is drawn from an uniform distribution. If the number
drawn is higher than the configured reliability limit, the current frame is
dropped. The default reliability limit is set to 1.0.

• cTEx layer: The cTEx protocol layer also provides several actions for remote
control through the operator of the demonstrator: activation and deactiva-
tion of the protocol and configuration of a specific dissemination strategy
(details in Section 3.3.5).

3The MAC layer works on top of an unmodified 802.11n WiFi MAC
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Table 5.2: Example Playbook for Showcasing dRmin-Routing

Step � Operator Action Audience Instruction / Observations Comments

1 0:00 Activate cTEx and dRmin-routing proto-
col layers

Observe topology detection process dRmin layer is passive, no applica-
tion packets by default

2 3:00 Control MAC: Set reliability limit of all
links to 0.0, apart from links in path
⟨ 0, 1, 2, 3 ⟩

Link quality estimations adapt to configura-
tion. Updates propagate quickly through net-
work

Refer audience to topology plot

3 4:00 Control Application: Schedule regular
packets from 0 to 3 (rmin = 0.9, i = 0.5 s,
dw = 10 s)

Observe successful route discovery and opera-
tion

Refer audience to received packets
counter for destination node

4 4:30 Control MAC: Remove limit on link (1, 3)
in both directions

No change at established route Refer audience to topology plot,
where the re-enabled link should
be visible again

5 5:30 Control MAC: Limit reliability on link
(2, 3) to 0.0

End-to-end route reliability and link quality
estimation drop. Route is re-established via
⟨ 1, 2, 3 ⟩ before route fails.

Refer audience to table of estab-
lished routes, topology and link
quality plots
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• dRmin layer: At the dRmin-routing layer actions exist for activation and de-
activation, as well as for toggling the route repair mechanism (see Sec-
tion 4.1.4).

• Application layer: The application layer registers an action to schedule the
creation of messages (once, or at regular intervals). Creation of a packet
triggers a route search with the parameters rmin and dw. rmin is the re-
quested target reliability of the route and dw the moving window duration
the reliability limit has to be met for.

The playbook from Table 5.2 is intended to showcase the route discovery
mechanism of the dRmin-routing protocol (for a detailed explanation of the dis-
covery mechanism see Sections 4.1.2 and 4.1.3). Route discovery is carried out
by dRmin-routing for two different scenarios. An initial route discovery is per-
formed whenever a route (of required reliability) to the destination node set in
an application packet is not yet established. Additional route discovery may
occur when an already established route is about to fail. In this playbook, both
scenarios are covered: We first let dRmin-routing discover a route in a constrained
topology and subsequently disable a link (via a MAC layer action) that is part
of the established route to trigger an additional route discovery.

In step 1 the cTEx and dRmin-routing protocol layers are activated by the oper-
ator on all nodes in the demonstrator testbed. After this step the dRmin-routing
layer is still passive, the application does not create packets by default. The cTEx
layer however commences topology detection and distribution through regular
transmission of dedicated probing frames, as there is no application layer traffic
yet. Before the operator continues with step 2, initial topology detection by cTEx
should be complete. In step 2, the operator instructs the MAC layer to disable
all links that are not on the path ⟨ 0, 1, 2, 3 ⟩. After the respective set of actions
is issued, the topology plot in the demonstrator web interface quickly reflects
the changes in link reliabilities. As in its default configuration the cTEx protocol
embeds topology chunks informing other nodes as soon as a significant change
in link quality is detected, the updated topology propagates quickly through the
network. The process of adaptation to the updated topology is complete once
the topology plot shows a line topology. In step 3, the application layer at node 0
is configured to create regular messages with the destination address of node 3
every 0.5 s. The messages are configured with an rmin target of 0.9 over a window
of 10 s. As the testbed topology is a line with nodes ⟨ 0, 1, 2, 3 ⟩, there is only a
single route option. The expected delay between triggering the action at the ap-
plication layer to the begin of route operation is very short, usually below 50 ms
and will likely be perceived as instant by the audience. After step 3, there is a
tabular visualization in the demonstrator’s web interface with an entry for the
total number of received packets at each node. The entry for received packets at
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Figure 5.6: Information flow diagram of the experiment evaluation process.

node 3, which is the destination node of the route that was just established now
increases twice per second. After the audience is convinced the route operation
works as expected, the operator continues with step 4, where the link (1, 3) is
re-enabled via an action for the MAC layers of nodes 1 and 3. This does not af-
fect the established route along ⟨ 0, 1, 2, 3 ⟩. The now enabled link between node
1 and 3 however reappears in the topology visualization. Before the operator
proceeds with step 5, the estimated link reliability of link (1, 3) should return to
its original level (i.e. the level right before step 2). In the final step, reliability
of link (2, 3) is reduced to 0, again via an action to the MAC layers at nodes 2
and 3. As this link is part of the established route via ⟨ 0, 1, 2, 3 ⟩ the route repair
mechanism of dRmin-routing (at nodes 2 and 3) will soon initiate a shutdown
of the established route. The next message that is created by the application
layer on node 0 triggers the route discovery mechanism and a new route is es-
tablished along the path ⟨ 0, 1, 3 ⟩. Again, this process is likely to be perceived
as instantaneous by the audience. This concludes this exemplary playbook and
the discussion of the demonstrator testbed.

5.5. Tools and Frameworks for Experiment Evaluation

As thorough evaluation of the communication protocols and algorithms pre-
sented in this thesis demands collection of detailed records of protocol and net-
work state as well as dozens of performance metrics, several tools and frame-
works for management of this data were applied in the process. Usage of these
tools allows us to record experiment data in great detail first, and filter and an-
alyze at a later stage. Fig. 5.6 illustrates the flow of data and also provides an
overview of the topics covered in this section.
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app_rx run_id="drmin-eval-17",route="82 -> 91",msg_id="JMoSo7" \
src=93,dst=91,size=512 16721712007163091000

Listing 5.2: InfluxDB line protocol example

At experiment runtime, protocol state, network state and performance metrics
are recorded in the open source time series database InfluxDB4. An InfluxDB
server accepts records (also called data points) over network via the so-called
line protocol. A series of points that refer to the same sensor attribute form a so-
called measurement. Each individual point consists of a measurement name, tags,
and several fields of data in the form of keyed values. Points may also contain
a timestamp. An example of a data point that corresponds to the reception of a
message at the application layer is given in Listing 5.2. In this example, app_rx
is the name of the measurement and run_id, route and msg_id are its tags. The
field keys are src, dst and size. The timestamp in nanoseconds marks the end of
the line. In relational database terms, a measurement (i.e. a collection of points
with the same measurement name) is a table, and tags and fields represent
columns. The difference between tags and fields is that tags are indexed, such
that response times for queries that filter by tag are short.

Millions of these lines can be stored and queried efficiently with InfluxDB,
without the need to have a database schema specified up front. The sophis-
ticated mechanisms for automatic aggregation of lines for long-term archiving
provided by InfluxdDB are not used, as in this scenario all data are required at
their original granularity for analysis.

Records stored in an InfluxDB database can be queried with the Flux query
language. In Flux, measurements are selected, filtered and transformed through
a chain of commands, where the output of the previous command is the input
for the next. In Listing 5.3, an example script to obtain the number of received
packets, aggregated over windows with a duration of 10 s is provided. First,
the bucket from which the records are to be fetched is specified, then the time
range as a pair of Unix timestamps5. The subsequent filter() function uses the
specified predicate to filter for records of a specific measurement name that are
also tagged with the specified run_id. It also selects the column of interest, in
this case size. The window() function assigns each point (i.e. row) that is output
by the filter() function to a table that represents a 10 s window, based on the
timestamp of each row. The last function in the chain, count(), reduces each
table to its respective size value.

Execution time for a single batch of experiments quickly exceeds several hours
(for simulation as well as real-world experiments). Thus, it is often desirable

4Source code available at https://github.com/influxdata/influxdb
5A Unix timestamp is the number of seconds since January 1st, 1970 at 00:00 UTC.
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1 from(bucket: "drmin/autogen")
2 |> range(start: 1672219930, stop: 1672220030)
3 |> filter(fn: (r) =>
4 r.run_id == "drmin-eval-17" and
5 r._measurement == "app_rx" and
6 r._field == "size")
7 |> window(every: 1s, duration: 10s)
8 |> count()

Listing 5.3: Flux query language example. This script calculates the number of
packets received at the application layer over a moving 10 s window.

to verify an experiment runs as expected already at runtime, so configuration
mistakes are spotted early. For visualization of experiment data during runtime,
the Grafana6 tool can be used. Grafana includes a web-based dashboard for
visualization and analysis and has support for InfluxDB as database backend
and also the Flux query language. This allows for reuse of most of the Flux
scripts written to query data during offline analysis also for live monitoring,
with only few modifications.

In Fig. 5.7, a screenshot of the Grafana dashboard is displayed. The dashboard
supports filtering of data through definition of variables and time ranges. In
our dashboard for instance, a variable definition that provides a list of available
experiment run_ids was used to quickly select a specific experiment run for
analysis. The run_id variable is automatically populated using the connected
data source (in our case InfluxDB) and presented to the user as a dropdown
selection menu.

For in-depth analysis of experiment data as well as tuning and debugging of
the implemented communication protocols the Grafana dashboards lack flexibil-
ity. Hence, a combination of Flux (for querying InfluxDB) and Python (for data
transformation and plotting) was used for this task. Python is an interpreted
programming language with comprehensive support libraries for data analysis,
data transformation, plotting and visualization.

5.6. Conclusion

The demonstrator framework presented in this chapter is intended to showcase
complex communication protocols to an audience without a deep background
in the respective field of research. However, a certain level of knowledge about
communication protocols, wireless ad-hoc networks and the respective vocabu-
lary of technical terms is still required. The requirements regarding the demon-

6Source code available at https://github.com/grafana/grafana
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Figure 5.7: Screenshot of the Grafana dashboard.

strator testbed and framework stated in the introductory part of the chapter
are addressed fully: The demonstrator web interface provides rich visualiza-
tions of network state, including real-time updates. The modular framework
architecture facilitates extensions and addition of new protocols with low im-
plementation effort. The testbed setup, consisting of only four network nodes,
a laptop, 5 ethernet cables and a network switch is still portable, easy to set up
and dismantle and requires no additional infrastructure apart from a source of
electricity.

The exemplary playbook presented as part of this chapter illustrates how the
demonstrator testbed can be used to showcase the route repair mechanism of
dRmin-routing. Additional examples of playbooks are provided in the appendix
of this thesis.

Storage, processing, analysis and evaluation of vast amounts of experiment
data has its challenges. Some of the tools and frameworks we used to overcome
these challenges were introduced towards the end of this chapter. From the
suggestions outlined there, the possibility for reuse of Flux query scripts from
offline evaluation to visualize protocol behavior at runtime proved especially
helpful.
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6.1. Summary

Chapters 2 to 4 contain the principal contributions of this dissertation. In Chap-
ter 2, the rmin-routing algorithm is presented and evaluated. To discover rmin-
routes, a network model with statistical link reliabilities is utilized, where the
link reliabilities are aggregated to model end-to-end route reliabilities. To meet
the defined minimum route reliabilities, targeted retransmissions are employed
to improve the reliability of individual links during route operation. To constrain
bandwidth consumption, a transmission budget proportional to the number of
hops in the route is distributed optimally with respect to the resulting end-to-
end route reliability among the links of the route. A corresponding routing
metric called SMTX for the efficient search for feasible routes is also defined in
the chapter. As the minimum cost problem that corresponds to SMTX does not
satisfy the greedy choice property, an efficient greedy route search algorithm
does not exist. Hence, route discovery applies a heuristic that considers only
a subset of paths. To further reduce the subset of candidate paths, a series of
filtering steps targeted at removing sub-optimal paths is applied. At the end of
the filtering process, all remaining paths satisfy the reliability target set by the
application at a similar degree of bandwidth efficiency.

The rmin-routing discovery algorithm is evaluated in simulation experiments
on a variety of random-generated topologies of different sizes. The results are
compared to those of a set of often cited route metrics from the literature, in-
cluding shortest path and ETX. Results show that the rmin-routing algorithm
is capable of discovering routes that match ambitious reliability targets con-
sistently. The level of consistency is not matched by any of the other routing
metrics we evaluated.

A core foundation of rmin-routing is the assumption that success of a particular
communication attempt is statistically independent and identically distributed.
However, this assumption does not hold for real networks in general and addi-
tional measures are necessary to retain validity of the underlying network model
in reality.

rmin-routing assumes the availability of complete, accurate and up-to-date
topology information at every node of the network. In Chapter 3 we intro-
duce cTEx, a protocol for topology detection and distribution that is supposed
to meet this requirement set by rmin-routing. cTEx uses both dedicated probing
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frames and general network traffic for link quality estimation. The estimation of
a link’s quality takes place at the destination node. This involves operating the
wireless transceiver in monitor mode and observing the sequence numbers in
transmitted frames to calculate the frame delivery ratio. The resulting sequence
of frame delivery ratios is then combined into a single value to represent the link
quality metric. cTEx supposedly works with any link quality metric that bases
its estimations on a sequence of frame delivery ratios. The chapter includes
a reference link quality metric from literature, called OB-EWMA, which is also
used for evaluation of cTEx. As cTEx shares some concepts with EAR evaluation
includes a comparison of the two protocols. It is emphasized that the scopes of
EAR and cTEx are not identical, as cTEx also includes a solution for the efficient
distribution of obtained topology information. Experiment results show that
cTEx in combination with OB-EWMA provides accurate, normalized and con-
servative link quality estimates. Key takeaways from the comparison with EAR
are that cTEx uses less overhead, has a lower implementation complexity and
provides a higher accuracy in link quality estimates. In addition to that, results
indicate the topology information distribution is fast and bandwidth efficient.

rmin-routing and the cTEx protocol both are applied by the protocol intro-
duced in Chapter 4, dRmin-routing. The chapter introduces a complete and
decentralized implementation of a routing protocol that is capable of discov-
ery, operation and maintenance of rmin routes in a wireless ad-hoc network.
For this, the route discovery mechanism from rmin-routing is adopted and aug-
mented through a subsequent cooperative refinement mechanism: A route re-
quest packet is sent along a candidate route based on topology information local
to the respective source node, along the way, the candidate route is refined with
topology information available at intermediate nodes that is more recent until
the request packet reaches the destination node. Once a route is established
it is continuously monitored. When a link’s quality deteriorates significantly,
the protocol may automatically slightly increase the transmission budget for the
link temporally. If a route threatens to break, it is aborted preemptively. With
the next packet a new route along a possibly different path is established. Lo-
cal availability of topology information is contributed by cTEx. In simulation
experiments, dRmin-routing is evaluated and compared to OLSR, an often cited
routing protocol for ad-hoc networks. The routes operated using dRmin-routing
match the specified reliability target and are more reliable than those discovered
and operated by OLSR. A simulation experiment that compares the respective
throughput of both protocols suggests dRmin-routing is superior in this regard,
too.

However, OLSR is a well-tested, mature and proven routing protocol for wire-
less ad-hoc networks and deployed in countless real-world applications. Hence,
its fitness for purpose is beyond question. With respect to dRmin-routing, only
small, preliminary experiments were carried out on real hardware. The chap-
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ter includes a discussion of necessary preconditions for a successful operation
of dRmin-routing on real hardware and elaborates on the consequences of as-
sumptions made for the underlying network model. To retain validity of the
network model, especially regarding the assumption that repeated communi-
cation attempts are Bernoulli trials, several measures are suggested. Using the
Gilbert-Elliott model, the independence of success and failure of communica-
tion attempts on a link can be measured and quantified. A metric derived from
the Gilbert-Elliott model may serve as an additional criterion during route dis-
covery and may help to avoid links that do not exhibit the statistical properties
necessary for effective link boosting. A second measure is traffic shaping. Dis-
tributing transmission events over time more evenly improves a link’s statistical
properties with respect to link boosting at the cost of increased end-to-end la-
tencies.

In Chapter 5 a demonstrator framework and testbed setup with the purpose
of showcasing the capabilities of the protocols presented in this thesis to a lay-
man audience is introduced. The demonstrator supports addition of further
protocols for showcasing with minimal implementation effort. The chapter also
includes a playbook containing the description of steps to showcase the route
repair functionality of dRmin-routing. Towards the end of the chapter a survey
of to the tools and frameworks used in context of experiment evaluation and
analysis for this thesis is given.

6.2. Limitations and Future Work

The lack of an evaluation of dRmin-routing on real hardware is evident and
should be addressed. For this, the additional measures to retain validity of the
underlying network model as suggested in Section 4.4 have to be incorporated
into the dRmin-routing protocol. Implementation of a metric based on the µ

value from the Gilbert-Elliott model is a rather straight-forward task, as the
process of route selection already considers several different metrics. The second
measure suggested likely requires significantly higher effort, as a compatible
implementation of the suggested time token bucket algorithm has to be created
and incorporated into the framework. This is to be followed by the often time-
consuming process of tuning protocol parameters towards an optimal result.

The comparison between OLSR and dRmin-routing should be extended with
results from experiments on a real-world testbed. An implementation of OLSR
is available, a replication of the simulation experiments carried out as part of this
thesis on hardware will provide valuable insights on performance characteristics
of both protocols and real-world applicability of our simulation results as well.
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A. Appendix A

On the following pages, plots depicting the topology of the networks used for
the evaluation of rmin-routing in Section 2.4 are displayed. The topologies are
all randomly generated with node position coordinates drawn from a uniform
distribution.
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Figure A.1: Topologies for rmin-Routing simulations
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Figure A.2: Topologies for rmin-Routing simulations
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Figure A.3: Topologies for rmin-Routing simulations
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Figure A.4: Topologies for rmin-Routing simulations
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B. Appendix B

The tables displayed on the subsequent pages contain three playbooks intended
to showcase the communication protocols developed in this thesis to an audi-
ence without a deep background in the respective field of research. A fourth
playbook including a quick walkthrough is presented in Section 5.4.
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Table B.1: Playbook for showcasing dRmin-routing route repair mechanism

Step � Operator Action Audience Instruction / Observations Comments

1 0:00 Activate cTEx and dRmin-routing proto-
col layers

Observe topology detection process dRmin layer is passive, route repair
is enabled, no application packets
by default

2 3:00 Control MAC: Limit reliability of all links
at 0, except links in path ⟨ 0, 1, 2, 3 ⟩

Link quality estimations adapt to configura-
tion. Updates propagate quickly through net-
work

Refer audience to topology plot

3 4:00 Control Application: Schedule regular
packets from 0 to 3 (rmin = 0.9, i = 0.5 s,
dw = 10 s)

Observe successful route discovery and opera-
tion

Refer audience to received packets
counter for destination node

4 5:00 Control MAC: Limit reliability of link
(2, 3) to 0.8

Link quality deteriorates, no change at estab-
lished route

On-demand route repair allocates
additional transmissions to keep
the route working

5 5:30 Control MAC: Limit reliability on link
(1, 2) to 0.8

Link quality deteriorates, no change at estab-
lished route

See above.

6 7:00 Control MAC: Restore realibility of links
(1, 2) and (2, 3)

No change at established route, link quality in-
creases

Refer audience to topology plot

7 8:00 Control dRmin: Deactivate route repair
mechanism

No change at established route

8 8:10 Control MAC: Limit reliability of link
(2, 3) to 0.8

Link quality deteriorates, established route
fails

As there is no route repair mech-
anism, the change in link quality
causes end-to-end route reliability
to drop below the configured tar-
get of rmin = 0.9
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Table B.2: Playbook for showcasing cTEx topology distribution mechanism

Step � Operator Action Audience Instruction / Observations Comments

1 0:00 Activate cTEx and dRmin-routing proto-
col layers

Observe topology detection process cTEx topology distribution is acti-
vated (event- and time-triggered),
dRmin layer is passive, no applica-
tion packets by default

2 3:00 Control MAC: Limit reliability on link
(2, 3) to 0.5

Link quality estimation by node 3 adapts, other
nodes are notified

Refer audience to per-node topol-
ogy plots

3 4:00 Control cTEx: Configure topology dis-
tribution strategy to time-triggered only
(every 1 minute)

No change in estimated link quality

4 4:10 Control MAC: Restore reliability on link
(2, 3)

Link quality estimation by node 3 adapts, other
nodes are not notified

Refer audience to per-node topol-
ogy plots

5 5:10 No action Nodes 0, 1, 2 receive updated link quality Refer audience to per-node topol-
ogy plots
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Table B.3: Playbook for showcasing cTEx passive mode

Step � Operator Action Audience Instruction / Observations Comments

1 0:00 Activate cTEx and dRmin-routing proto-
col layers

Observe topology detection process cTEx starts topology exploration
using active probing at rate
1/50 ms, dRmin layer is passive,
no application packets by default.
Refer audience to probing frame
counters.

2 1:30 No action Topology exploration continues, probing frame
counters increase

3 3:00 Control MAC: Limit reliability of all links
to 0, apart from links in path ⟨ 0, 1, 2, 3 ⟩

Link quality estimations adapt to configura-
tion. Updates propagate quickly through net-
work

Refer audience to topology plot

4 4:00 Control Application: Schedule regular
packets from 0 to 3 (rmin = 0.9, i = 0.05 s,
dw = 10 s)

Observe successful route discovery and opera-
tion

Refer audience to received packets
counter for destination node

5 4:15 Control Application: Schedule regular
packets from 3 to 0 (rmin = 0.9, i = 0.05 s,
dw = 10 s)

Observe successful route discovery and opera-
tion

Refer audience to received packets
counter for destination node

6 4:30 No action Probe frame counters do not increase further
as passive probing is used

7 5:30 Control MAC: Restore reliability of all
links

Previously non-existing links are discovered.
Probe frame counters do not increase further
as only passive probing is used

Refer audience to topology plot
and probing frame counters.
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