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Abstract

Complete presentations provide a natural solution to the word
problem in monoids and groups. Here we give a simple way to con-
struct complete presentations for the direct product of groups, when
such presentations are available for the factors. Actually, the con-
struction we are referring to is just the classical construction for direct
products of groups, which has been known for a long time, but whose
completeness-preserving properties had not been detected. Using this
result and some known facts about Coxeter groups, we sketch an algo-
rithm to obtain the complete presentation of any finite Coxeter group.
A similar application to Abelian and Hamiltonian groups is mentioned.
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Introduction.

From the computational viewpoint it is very useful to have group presenta-
tions that make possible the solution of the word problem, and the obtain-
ment of such presentations has received increasing attention in recent years.
In a pioneering article, Gilman gave a computational procedure to convert
(when possible) an arbitrary group presentation into a complete one, which is
a presentation that makes it possible to solve the word problem, and thereby
give answer to several basic questions in regard to the corresponding group,
such as its finiteness [8].

Later on, Le Chenadec used an implementation of the Knuth-Bendix pro-
cedure [14] to obtain complete presentations for some important groups, in-
cluding a large subfamily of Coxeter groups [15, 16, 17].

Following the trend left by Le Chenadec, researchers at the University of Ori-
ente have found complete presentations for dicyclic and dihedral groups [3],
symmetric groups [2, 19], Dyck groups [20, 12], fractional linear groups [24],
alternating groups [9], and Coxeter groups with three generators [25]. To
obtain these results, an implementation of Mora’s procedure for the compu-
tation of Grobner bases in noncommutative algebras has been used [21, 23].
In fact, when it is applied to monoid and group presentations, Mora’s proce-
dure is equivalent to the aforementioned Knuth-Bendix procedure.

It is well known that the Knuth-Bendix procedure may not stop because
there is no finite complete presentation based on a specific set of generators,
whereas there may be a finite complete presentation on a different set of
generators. In order to overcome the computing difficulties, it may be nec-
essary to change the generating set, or to change the ordering used for the
computations, or both; for examples of these manipulations see the work of
Hermiller [10]. A common feature of all the presentations obtained at the
University of Oriente is that they keep the original ”standard” generators.
Keeping the standard generators could be advantageous in many cases, for
these generators usually have a straightforward geometric interpretation, and
several associated results; this is the case of Coxeter groups, for example (see
section 3).

In 1995, Hermiller and Meier showed that the graph product of finitely many
groups that admit finite complete presentations, also admits a finite complete
presentation [11] (the graph product is a group operation that involves direct
and free products). The construction by Hermiller and Meier introduces a



new set of generators, that are tuples of the original ones. In general, the
new presentation thus defined may be substantially larger than the union of
the input presentations.

In section 2 of this paper we re-address the issue of computing complete pre-
sentations for direct products, and give a simple (though useful) result for
that special case. Basically, we show that the classical straightforward con-
struction of direct product presentations preserves completeness. The clas-
sical procedure to construct the presentation of a direct product of groups
amounts to a little more than the mere union of the input presentations,
and thus, it is simpler than the more general construction of Hermiller’s and
Meier’s, and the resulting presentations are smaller.

In section 3 we show how the latter result can be used to construct the com-
plete presentation of any finite Coxeter group. In order to accomplish this,
it is first necessary to have complete presentations for the irreducible Cox-
eter groups, on the standard generators, because the standard generators are
needed to decompose an arbitrary finite Coxeter group in irreducible com-
ponents of the same type. Similar applications to Abelian and Hamiltonian
groups are detailed in section 4.

1 Basic Definitions.

Let T be a finite set of symbols; we shall denote by (T') the free monoid
generated by T, i.e. the set of words on the alphabet T together with the
operation of concatenation of words, where the identity element is the empty
word, and will be denoted as 1. If we have a binary relation R on (T),
then (R) will stand for the congruence generated by R, i.e. the reflexive-
symmetric-transitive closure of R, that is compatible with the concatenation
operation. To make it simpler, we shall write the pairs of words (¢, ) € R,
as rewriting rules of the form a — 3, or equalities of the form o = 3, and @
will be the equivalence class of @ modulo (R). The rules a — [ could also be
written as binomials oo — 3, thus enabling the use of the concepts and tools
of non commutative polynomial ring theory, such as Grébner bases [5, 18].
Let 7! be the set of inverse symbols of T':

T '={s'|zeT), and I={zz'=a"'2=1|2eT}.



The set [ is a binary relation on (T"U T '), and the quotient monoid

_ (TuT™)
=

is the free group generated by T'. Now, if R is any binary relation on (TUT 1),
then it is said that (T; R) is a presentation of the group

(TUT™)
(RUI) "’

or any group canonically isomorphic to G.

Clearly, if we let T = TUT !, and R = RU I, then we have a monoid
presentation, so we can restrict ourselves to presentations of this kind.

The theory of rewriting systems and its applications to group theory is ex-
tensively treated by Book and Otto [4], and also surveyed by Cohen [6]. The
monographs by Le Chenadec [16] and Sims [26] contain more specific, as well
as introductory material on groups. In the remaining part of this section we
summarize some basic notions and results of this theory that will be used
throughout the paper.

If there is (o, ) in R, and v, w are arbitrary words of (T'), then we say that
vaw reduces or rewrites to vBw (with respect to R), and we also write
vaw — vPBw. In this case, the word vaw is called reducible; otherwise, it is
said to be irreducible (notice that — now stands for a new binary relation
R' on (T, such that (vaw,vfw) € R'iff (o, ) € R). From the computa-
tional viewpoint, it would be desirable that there be exactly one irreducible
word in each equivalence class modulo (R) and that this irreducible word can
be computed by repeated application of a finite number of reduction steps
a— f.

We write = for the reflexive-transitive closure of R/, and we say that the
words «, # are joinable (denoted « | f3) if there exists a word v such that
a = v and B> v. R is called terminating, well-founded or noetherian
if there is no infinite sequence a; — a9 — ... =& a,, — ...; R is called conflu-
ent if « = 3 and a = «y implies 3 | 7, and it is called locally confluent if
a — [ and o — ~ implies # | v. If R is terminating then local confluence
amounts to confluence (Diamond Lemma or Newman’s Lemma).

R is said to have the Church-Rosser property if a = § (mod(R)) implies
a | B. If R is both terminating and Church-Rosser, it is said to be com-
plete, canonical or convergent; completeness guarantees the existence of

G =
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a unique irreducible word in each equivalence class modulo (R). Since the
Church-Rosser property is equivalent to confluence, in order to check for
completeness, it suffices to check first for termination, and then for local
confluence.

The termination property is undecidable (as well as confluence), but we could
prove it if we could find a well-founded strict partial ordering <, such that
< is admissible (i.e. u < v implies zuy < zvy, for all u,v,z,y € (T)), and
< is compatible with R (i.e. § < « for all rules @« —  in R). In fact, ter-
mination of R is equivalent to the existence of such an ordering. Admissible
well-founded orderings are also called term orderings.

Once R is proved terminating, completeness can be checked with the aid of
the Knuth-Bendix criterion, [14], given below. Let R be terminating, and
let LRED(«) denote the irreducible word of @, obtained from a by repeated
reduction of the leftmost possible substring. An overlap ambiguity is a
triple of non-empty strings, «, u, 3 such that there are rules oy — ~; and
uB — 9 in R; the pair of strings ;3 and «ay, is then called a critical pair,
since auf reduces to them both.

The triple «, u, B is called an inclusion ambiguity if there are rules y — v,
and auf — v9 in R, where v, # 7, if @ and 8 are both empty. The pair of
words ay; 3 and 7, is the corresponding critical pair.

The terminating set of rules R is locally confluent (and hence complete) if,
and only if, for any critical pair 1, d, we have LRED(61) = LRED(62) [14];
clearly, it suffices to check whether d; | . In this case we say that the criti-
cal pair resolves. In fact, the equality between the corresponding irreducible
words of §; and &, should be true no matter the reduction strategy one uses
to obtain them.

The Knuth-Bendix procedure receives a terminating set of rules R as input,
and produces a complete one R’ (if it ever stops) by adding the critical pairs
that do not resolve. The procedure makes use of the underlying ordering
< in an essential way: pairs are added so that the new set of rules remains
compatible with <, in order to guarantee its termination. A group given
by a complete presentation (T’; R) has a solvable word problem. Since R is
terminating and finite, we can always compute LRE D(«) for every word «,
and LRED(«) is the only irreducible word in the class @.

R is called normalized if for every rule « —  of R, § € Irr(R), and
a € Irr(R\ {a — [)}); normalized presentations do not contain relations
that are obviously redundant.



2 Complete Presentations of Direct
Products.

Let G; and G5 be groups with finite disjoint generating sets 77 and 75, and
finite sets of defining relations R; and Ry on T} and 75 respectively. Let us
define the set B of bridge relations between 77 and 75 as follows:

B={yz —azy|zeT,ye T}

It is well known that the set 17 UT, generates the directproduct G; x G4, and
R; U Ry U B is a set of defining relations for G; x Gy ([7], p- 3). Moreover,
we are going to prove the following, stronger result:

Theorem 1: Let G; and G, be groups, let 11,71y, R, Ry and B be defined
as above, and let us assume that (77; R;) and (T»; Ry) are complete presen-
tations of G and G respectively. Then (73 UT5; Ry U Ry U B) is a complete
presentation of the direct product G; x Gy. Moreover, if Ry and R, are nor-
malized, sois R URy,UB

Proof: First we have to show that R; U Ry, U B is terminating, which is
equivalent to finding an admissible well-founded strict partial ordering <
on (T} UTy), compatible with R; U Ry U B. As R; and R, are terminating,
there exist admissible well-founded orderings <; and <s, such that <; is
compatible with R; and <5 is compatible with Ry. Let us construct <, from
<1 and <, as follows.

Every word « in (T} U T5) can be transformed in a finite number of steps,
with the aid of the bridge rules only, into a word of the form «;ay where
a; € (T1) and as € (T3). In order to transform « into this ”canonical form”,
we may apply the bridge rules in different ways, but the number of steps
needed is constant. Let «, 5 € (T3 U Ty) and let ayap and (132 be their
corresponding ”canonical forms”; moreover, let us suppose that we needed &
steps to obtain ajas from a, and m for 6,6s. If o <; 1 and ay <9 Bs, or if
a1 <1 f1 and ay <5 B9, then we take a <7 (3. On the other hand, if a; =
and ap = 9, and k < m, then we take o <r  too (notice that <7 need not
be a total ordering). It is easy to see that <t coincides with <; on (7}), and
with <, on (T3). Moreover, it is easy to verify that <t is admissible, well
founded and compatible with R, U Ry U B, thus proving that this set of rules
is terminating.



Now, we only have to prove that for every critical pair v, w that arises from
R1UR2UB, viw.

First, every critical pair arising from R; is obviously joinable, since R; is
complete, and the same happens if the critical pair arises from two relations
in Ry. On the other hand, no unresolved ambiguities can arise from R; U Ry,
so we only have to examine possible overlap ambiguities resulting from a
bridge relation together with a relation in R; or Rs.

Let yr — xy be a bridge relation, and xaa — (3 a relation in R;, where
a, € (T1). This pair of relations gives rise to the critical pair zy«, yg.
Now, y € Ty and o, 3 € (T1), hence rya — zay — By and yB = [y, hence
zyo L yp.

Similarly, if oy — [ is a relation in R, then we have the critical pair azy, Bz,
where x € T} and o, 8 € (T3), so azy = zay — x3 and Br = x3, hence

axy | Bx.
That R; U Ry U B is normalized, if R; and R, are, is a triviality. O

Obviously, we obtain the same result if we define the set of bridge relations
as B ={zy — yx | x € T1,y € Tz}. Notice also that, as explained in the
proof, we can work with two complete presentations that have been obtained
with the aid of different orderings: <; and <3, to construct the complete
presentation of the direct product.

3 Application to Coxeter Groups.

A Coxeter group on the n generators x1, T, ..., T, is defined by a presen-
tation of the form
ri=1,1<i<n,

(izj)™ =1, 1<i<j<n,

where the m;; are integers that are either zero or greater than one. If m;; =0
then we have the trivial relation 1 = 1. The generators z, zo, ..., x, can be
seen as reflections of a real Euclidean vector space V', with respect to n diffe-
rent hyperplanes of V. Coxeter and Moser devote one chapter of their book
[7] to the study of these groups; and the monograph by Humphreys [13] is
also a good source on the subject.

Given a Coxeter group G as defined above, the Coxeter graph H of G is
constructed as follows: the vertex set of H is {z1,z,...,%,}, and there is
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an edge joining x; and xz; iff m;; # 2; that edge (z;, z;) is then labeled with
m;;; labels equal to 3 are conventionally not written.
If H is connected then the corresponding group G is called irreducible or
indecomposable, otherwise it is said to be reducible or decomposable.
A reducible Coxeter group is the direct product of smaller irreducible groups
of the same family, corresponding to the connected components of its graph
H. Figure 1 shows the finite irreducible Coxeter groups.

Every finite Coxeter group is either irreducible or it is the direct product of
two or more irreducible ones.
If we had a complete presentation for each one of these irreducible groups,
then, with the aid of Theorem 1 and the results mentioned above, we could
easily construct a complete presentation for any finite Coxeter group.

Le Chenadec’s general result covers the Coxeter groups, for which all the ex-
ponents m;; are different from 2, and he treated the finite irreducible Coxeter
groups as special cases that do not fit in this general setting [15, 17]. Our
approach differs essentially from Le Chenadec’s, and it looks more promising
for obtaining complete presentations in the cases where they are still missing.
The groups in the family A,, are precisely the symmetric groups; i.e. A, =
Snt1, where S, ;1 is the symmetric group of degree n + 1 and order (n + 1)!,
taking as generators the transpositions z; = (i 7+ 1). A complete normal-
ized presentation for these groups, based on the degree lexicographic ordering
(deglex), is given by Le Chenadec [17]:

22 =1 (1<i<n),
TiTj = T;T; B<i<mnl1<j<i—2),
Tili—1 - -Tj—jT; = Li—1T3T5—1 - - - Tj—j (2 <1< n; 1 S_] <1i-— 1)

Curiously, this same presentation has been obtained by H. Martinez-Silva
[19] using another term ordering, proposed by Mora [22], which is defined as
follows: Let us assume that there is a linear ordering defined on the set T,
and let M S(w) denote the maximal symbol that occurs in the word w € (T).
Given w; and wy with wy # wo, if MS(w1) < MS(w,), then w; < wsy, oth-
erwise if M S(wy) = MS(wq) = x, then we can write:

W1 = UITULT . .. Up_1TUy, aNd Wy = V1TVT ... Vp_1TV,, Where the u; and v;
do not contain any occurrences of x; then if » < p we take w; < ws. Finally,
if » = p then we set ¢ = max{i/u; # v;}, and if u, < v, then w; < w,.

This ordering has been shown to have useful properties [5] and it has been
used to calculate a number of complete presentations, mentioned earlier, in
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Figure 1: The irreducible finite Coxeter groups



the introduction of this paper [2, 3, 12, 20, 25, 19, 24, 9]. Moreover, unless
otherwise stated, this is the ordering that we have used in all the computa-
tional results that we are going to present from now on. (Also, all presenta-
tions shown in this paper are normalized).

Le Chenadec also gives complete presentations for the families B, and I»(m),
as well as for the individual group Hs (based on the deglex ordering), which
are shown below. In turn, we have computed complete presentations for Hy
and F4, which are given in the appendix.

B, :

=1 (1<i<n),

TiTj = T;T; B<i<n1<j<i—2),
Tili—1 - -Tj—jT; = Li—1T3T5—1 - - - Tj—j (2 < 1 <n-— 1,1 S] SZ— 1),

(TnTn—1 . Tn_j)? =
= T 1TnTn_1 - Tn_jTnlp_1 ... Tnjr1 (1 <j<n-—1).
I2(m) .
a?=b =1,
baba . .. (m entries) = abab. .. (m entries).
H3 :
= =c=1,
babab = ababa, ca = ac, cbc = beb,
cbac = bcba, cbabch = bebabe, cbabacbaba = bebabacbab.

For the family D,, and the individual groups Eg, E7 and Eg , Le Chenadec
reported not being able to obtain complete presentations. We have managed
to compute a complete presentation for Eg (see appendix), but we too have

failed so far with D, E; and Eg.

4 Abelian and Hamiltonian Groups.

It is well known that every finitely generated Abelian group G is isomorphic

to a direct product of cyclic groups of the form

Zr1prgzx---pr;lanxe---xZ (4.1)

by

10



where the p; are prime and not necessarily distinct; or G is also isomorphic

to a direct product of the form

Ly X Ly X ooo X Ly X L XL X=X 4 (4.2)

where m; divides m; 1, for © = 1,2,...,r — 1. These decompositions are
unique except for rearrangements of the factors.

Now, if a is a generator of the cyclic group Z,, , then ™ = 1 is a complete
presentation of Z,,, , and Z is a free group generated by one element. Hence,
if we have the canonical decomposition (4.1) or (4.2) of an Abelian group
G, then, with the aid of Theorem 1 we can readily construct a complete
presentation for (G. For example, a complete presentation of Zy x Zg x Z
would be

{a,b,c,d; a®> =0 =cd=dc=1, ba= ab,

ca = ac, cb=be, da=ad, db=bd)

These complete presentations for Abelian groups are, of course, well known;
our intention here is to exhibit them as a straightforward consequence of our
main result.

Conversely, if we have any complete presentation of an Abelian group G,
then it is also possible to obtain its canonical decomposition (4.1) (see, for
example, [16] and [26]).

These facts can also be used to obtain complete presentations of the Hamilto-
nian groups, i.e. the non-Abelian groups, all of whose subgroups are normal.
The finite Hamiltonian groups have the form @) x A x B, where @ is the
quaternion group, A is an Abelian group of odd order and B is an Abelian
group of type Zy X Zy X - -+ X Zy (m times, m > 0) (7], p. 8).

For the quaternion group @, Coxeter and Moser give two presentations:
(a,b; a®> = b*> = (ab)?) and {(a,b,c; a®> = b?> = ¢®* = abc) , from which
we have computed the complete presentations:

(a,b; a* =1, ba=d®h, b*>=ad?)

and
{a,b,c; a*=1, ba=a’h, b>=a? c=ab),

respectively. Note that in the second presentation we are rewarded with the
fact that generator c is superfluous. For these computations we have also
used Mora’s order.
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Appendix: Complete presentation
of some irreducible finite Coxeter groups.
H, :
d=v==d"=1,
babab = ababa, ca = ac, da = ad, db = bd, cbc = beb, ded = cdc,
cbac = bcba, debd = cdcb, debad = cdcba, cbabcb = bebabe,
dcbabd = cdcbab, dcbabad = cdcbaba, dcbabede = cdcbabed,
dcbabacdc = cdcbabacd, cbabacbaba = bebabacbab,
debabacbdch = cdcbabacbde, dcbabacbadcbaba = cdcbabacbadcbab,
dcbabacbabdcbabacbab = cdcbabacbabdcbabacha,
dcbabacbabedcbabacbabdcebabacba = cdebabacbabedcbabacbabdcebabach,
dcbabacbabedcbabacbabedcbabacbadebab = . . .
... = cdcbabacbabedcbabacbabedcbabacbadcha,
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dcbabacbabedcbabacbabedcbabacbabdcbabe = . . .
... = cdcbabacbabedcebabacbabedcebabacbabdcebab,
dcbabacbabedcbabacbabedcbabacbabdcbabac = . . .
... = cdcbabacbabedcbabacbabedcebabacbabdcebaba,
dcbabacbabedcbabacbabedcbabacbabedcbabed = . . .
... = cdcbabacbabedcebabacbabedcebabacbabedcbabe,
dcbabacbabedcbabacbabedcbabacbabedcbabacd = . . .
... = cdcbabacbabedcebabacbabedcebabacbabedcebabac,
dcbabacbabedcbabacbabedcbabacbabedcbabacbd = . . .
... = cdcbabacbabedcbabacbabedcbabacbabedebabach,
dcbabacbabedcbabacbabedcbabacbabedcbabacbad = . . .
... = cdebabacbabedcebabacbabedcbabacbabedcbabacha,
dcbabacbabcdcbabacbabedcbabacbabedcbabacbabd = . . .
... = cdcbabacbabedcebabacbabedebabacbabedebabacbab,
dcbabacbabedcbabacbabedcbabacbabedcbabacbabede = . ..
... = cdcbabacbabedebabacbabedcbabacbabedcbabacbabed.

c===d"=1,
ca = ac,da = ad, db = bd, bab = aba, dcd = cdc,
cbeb = bebe, debd = cdceb, debad = cdcba, cbacba = bebach,
dcbedce = cdcebed, debacde = cdcebacd, debacbdcbe = cdcbacbdcb,
dcbacbdcbac = cdcbacbdcba, dcbacbedcbed = cdcbacbedcbe,
dcbacbedcbacd = cdcbacbedcbac,
debacbedebacbd = cdebacbedcbach,
dcbacbcedcbacbede = cdcbacbedcebacbed.
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dd=P=C=d*=e2=f=1,
cb = be,db = bd, dc = cd, ea = ae, eb = be, ec = ce,
fa=af fb=10f, fd=df, fe =ef,bab = aba, cac = aca,
dad = ada, ede = ded, fed = dfc, fce = efc, fef = cfe,
caba = bcab, cabc = acab, daba = bdab, dabd = adab,
daca = cdac, dacd = adac, edae = deda, fcae = efca,
feaf = cfca,dabed = adabe, edabe = dedab, edace = dedac,
feabe = efcab, fecabf = cfcab, fecada = df cad, fcadf = cfcad,
dabcab = cdabca, edabce = dedabe, fcabdf = cfcabd,
feaded = efcade, fcadef = cfcade, dabcada = adabcad,
edabcae = dedabca, fcabdab = df cabda, fcabdaf = cfcabda,
feabded = e fcabde, fcabdef = cfcabde, fcabdaef = cfcabdae,
edabcaded = dedabcade, fcabdacfc = cfcabdacf,
fecabdaeda = e fcabdaed, fcabdaedf = cfcabdaed,
feabdace fc = cfcabdacef, fcabdacedac = efcabdaceda,
feabdacedfc = cfcabdacedf, fcabdacedabe = e fcabdacedab,
feabdaceda fca = cfcabdacedafc, fcabdacedab fcab = cfcabdacedabf ca.

16



List of papers published in the Reports on
Computer Algebra series

[RCA:24] M. A. Borges-Trenard and H. Pérez-Rosés. Complete Presentations of
Direct Products of Groups. July 1999.

[RCA:23] Birgit Reinert. Observations on coset enumeration. Nov 1998.

[RCA:22] K. Madlener and F. Otto. Some Applications Of Prefix-Rewriting In
Monoids, Groups, And Rings. November 1998.

[RCA:21] G.-M. Greuel, G. Pfister, and H. Schonemann. Singular version 1.2 user
manual. June 1998.

[RCA:20] B. Reinert and D. Zeckzer. MRC — A System for Computing Grobner
Bases in Monoid and Group Rings. July 1998.

[RCA:19] B. Reinert, K. Madlener, and T. Mora. A note on nielsen reduction and
coset enumeration. February 1998.

[RCA:18] O. Bachmann and H. Schonemann. Monomial Representations for
Grobner Bases Computations. January 1998.

[RCA:17] Thomas Siebert. An algorithm for constructing isomorphisms of mod-
ules. January 1998.

[RCA:16] K. Madlener and B. Reinert. String Rewriting and Grobner Bases — A
General Approach to Monoid and Group Rings. October 1997.

[RCA:15] B. Martin and T. Siebert. Splitting Algorithm for vector bundles.
September 1997.

[RCA:14] K. Madlener and B. Reinert. Relating rewriting techniques on monoids
and rings: Congruences on monoids and ideals in monoid rings. September

1997.

[RCA:13] O.Bachmann. MPT — a library for parsing and Manipulating MP Trees.
January 1997.

[RCA:12] O. Bachmann, S. Gray, and H. Schénemann. MP Prototype Specifica-
tion. Dec 1997.

[RCA:11] O. Bachmann. Effective simplification of cr expressions. January 1997.



[RCA:10] O. Bachmann, S. Gray, and H. Schonemann. A proposal for syntactic
data integration for math protocols. January 1997.

[RCA:09] B. Reinert. Introducing reduction to polycyclic group rings — a compar-
ison of methods. October 1996.

[RCA:08] T. Siebert. On strategies and implementations for computations of free
resolutions. September 1996.

[RCA:07] G.M. Greuel. Description of SINGULAR: A computer algebra system for
singularity theory, algebraic geometry, and commutative algebra. 1996.

[RCA:06] G.M. Greuel and G. Pfister. Advances and improvements in the theory
of standard bases and szyzygies. 1996.

[RCA:05] O. Bachmann, S. Gray, and H. Schénemann. MPP: A Framework for
Distributed Polynomial Computations. 1996.

[RCA:04] O. Bachmann and H. Schénemann. A Manual for the MPP Dictionary
and MPP Library. 1996.

[RCA:03] R. Stobbe. FACTORY: a C++ class library for multivariate polynomial
arithmetic. 1996.

[RCA:02] H. Schonemann. Algorithms in singular. June 1996.

[RCA:01] H. Grassmann, G.-M. Greuel, B. Martin, W. Neumann, G. Pfister,
W. Pohl, H. Schénemann, and T. Siebert. Standard bases, syzygies and their
implementation in singular. July 1996.

18



