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Abstract

Hajósʼ conjecture asserts that a simple Eulerian graph

on n vertices can be decomposed into at most

n( − 1)/2⌊ ⌋ cycles. The conjecture is only proved for

graph classes in which every element contains vertices

of degree 2 or 4. We develop new techniques to

construct cycle decompositions. They work on the

common neighborhood of two degree‐6 vertices. With

these techniques, we find structures that cannot occur in

a minimal counterexample to Hajósʼ conjecture and

verify the conjecture for Eulerian graphs of pathwidth at

most 6. This implies that these graphs satisfy the small

cycle double cover conjecture.
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1 | INTRODUCTION

It is well‐known that the edge set of an Eulerian graph can be decomposed into cycles. In this
context, a natural question arises: How many cycles are needed to decompose the edge set of an
Eulerian graph? Clearly, a graph G with a vertex of degree V G| ( )| − 1 cannot be decomposed
into less than V G(| ( )| − 1)/2⌊ ⌋ many cycles. Thus, for a general graph G, we cannot expect to
find a cycle decomposition with less than V G(| ( )| − 1)/2⌊ ⌋ many cycles. Hajósʼ conjectured
that this number of cycles will always suffice. (Originally, Hajósʼ conjectured a bound of
V G| ( )| /2⌊ ⌋. Dean [4] showed that Hajósʼ conjecture is equivalent to the conjecture with bound
V G(| ( )| − 1)/2⌊ ⌋).

Conjecture 1 (Hajósʼ conjecture (see [11])). Every simple Eulerian graph G has a cycle
decomposition with at most V G(| ( )| − 1)/2 many cycles.
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Consider a sequence T T, …, k1 of triangles such that V T V T| ( ) ( )| = 1i i+1∩ for
i k{1, …, − 1}∈ and V T V T( ) ( ) =i j∩ ∅ for all i j k, {1, …, }∈ with i j| − | > 1. The graph
G T T=k k1 ∪ ⋯∪ has a unique cycle decomposition into the k triangles T T, …, k1 and
V G k( ) = 2 + 1. This shows that the bound V G(| ( )| − 1)/2⌊ ⌋ is best possible.

More generally, Granville and Moisiadis [7] showed that for every n 3≥ and every
i V G{1, …, (| ( )| − 1)/2 }∈ ⌊ ⌋ , there exists a connected graph with n vertices and maximum
degree at most 4 whose minimal cycle decomposition consists of exactly i cycles.

A simple lower bound on the minimal number of necessary cycles is the maximum degree
divided by 2. This bound is achieved by the complete bipartite graph K k k2 ,2 that can be
decomposed into k Hamiltonian cycles (see [10]). In general, all graphs with a Hamilton
decomposition (eg, complete graphs K k2 +1 [1]) trivially satisfy Hajósʼ conjecture.

Hajósʼ conjecture remains wide open for most classes. Heinrich, Natale, and Streicher [9]
verified Hajósʼ conjecture for small graphs by exploiting Lemma 6, 8, 10, and 11 of this paper as
well as random heuristics and integer programming techniques:

Theorem 2 (Heinrich, Natale, and Streicher [9]). Every simple Eulerian graph with at
most 12 vertices satisfies Hajósʼ Conjecture.

Apart from Hamilton decomposable (and small) graphs, the conjecture has (to our knowledge)
only been shown for graph classes in which every element contains vertices of degree at most 4.
Granville and Moisiadis [7] showed that Hajósʼ conjecture is satisfied for all Eulerian graphs with
maximum degree at most 4. Fan and Xu [6] showed that all Eulerian graphs that are embeddable in
the projective plane or do not contain the minor K6

− satisfy Hajósʼ conjecture. To show this, they
provided four operations involving vertices of degree less than 6 that transform an Eulerian graph
not satisfying Hajósʼ conjecture into another Eulerian graph not satisfying the conjecture that
contains at most one vertex of degree less than 6. This statement generalizes the work of Granville
and Moisiadis [7]. As all four operations preserve planarity, the statement further implies that
planar graphs satisfy Hajósʼ conjecture. This was shown by Seyffarth [12] before. The conjecture is
still open for toroidal graphs. Xu and Wang [13] showed that the edge set of each Eulerian graph
that can be embedded on the torus can be decomposed into at most V G(| ( )| + 3)/2⌊ ⌋ cycles.
Heinrich and Krumke [8] introduced a linear time procedure that computes minimum cycle
decompositions in treewidth‐2 graphs of maximum degree 4.

We contribute to the sparse list of graph classes satisfying Hajósʼ conjecture. Our class
contains graphs without any vertex of degree 2 or 4—in contrast to the above mentioned graph
classes.

Theorem 3. Every Eulerian graph G of pathwidth at most 6 satisfies Hajósʼ conjecture.

As graphs of pathwidth at most 5 contain two vertices of degree less than 6, it suffices to
concentrate on graphs of pathwidth exactly 6. All such graphs with at most one vertex of degree
2 or 4 contain two degree‐6 vertices that are either nonadjacent with the same neighborhood or
adjacent with four or five common neighbors. We use these structures to construct cycle
decompositions.

With similar ideas, it is possible attack graphs of treewidth 6. As more substructures may
occur, we restrict ourselves to graphs of pathwidth 6.

A cycle double cover of a graph G is a collection of cycles of G such that each edge of G is
contained in exactly two elements of . The popular cycle double cover conjecture asserts that
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every 2‐edge connected graph admits a cycle double cover. This conjecture is trivially satisfied
for Eulerian graphs. Hajósʼ conjecture implies a conjecture of Bondy regarding the Cycle double
cover conjecture.

Conjecture 4 (Small Cycle Double Cover Conjecture (Bondy [3])). Every simple 2‐edge
connected graph G admits a cycle double cover of at most V G| ( )| − 1 many cycles.

As a cycle double cover may contain a cycle twice, we can conclude the following directly
from Theorem 3.

Corollary 5. Every Eulerian graph G of pathwidth at most 6 satisfies the small cycle
double cover conjecture.

2 | REDUCIBLE STRUCTURES

All graphs considered in this paper are finite, simple and Eulerian. We use standard graph
theory notation as can be found in the book of Diestel [5].

To prove our main theorem, we consider a cycle decomposition of a graphG as a coloring of
the edges of G where each color class is a cycle. We define a legal coloring c of a graph G as a
map

c E G V G: ( ) {1, …, (| ( )| − 1)/2 }↦ ⌊ ⌋

where each color class c i( )−1 for i V G{1, …, (| ( )| − 1)/2 }∈ ⌊ ⌋ is the edge set of a cycle of G. A
legal coloring is thus associated to a cycle decomposition of G that satisfies Hajósʼ conjecture.

Using recoloring techniques we show the following lemmas for two degree‐6 vertices with
common neighborhood N of size 4, 5, or 6. All proofs can be found in Section 4.

Lemma 6. Let G be an Eulerian graph with two degree‐6 vertices u v, with

N u N v N v N u( ) = { } ( ) = { }.∪ ∪

Let all Eulerian graphs obtained from G u v− { , } by addition or deletion of edges with both
end vertices in N have a legal coloring.

IfG N[ ] contains at least one edge, or ifG u v− { , } contains a vertex that is adjacent to at
least three vertices of N , then G also has a legal coloring.

Lemma 7. Let G be an Eulerian graph with two degree‐6 vertices u v, with

N u N v x N v N u x( ) = { , } ( ) = { , }.v u∪ ∪

Let P be an xu–xv‐path in G u v N− { , } − . Further, let all Eulerian graphs obtained from
G u v− { , } by addition and deletion of edges with both end vertices in N x x{ , }u v∪ and by
optional deletion of E P( ) have a legal coloring.

226 | FUCHS ET AL
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IfG N x x[ { , }]u v∪ contains at least one edge not equal to x xu v, or ifG u v− { , } contains a
vertex that is adjacent to at least three vertices of N , then G also has a legal coloring.

Lemma 8. Let G be an Eulerian graph with two degree‐6 vertices u v, with

N u N v N( ) = ( ) = .

Let all Eulerian graphs obtained from G u v− { , } by addition or deletion of edges with both
end vertices in N have a legal coloring.

IfG N[ ] contains at least one edge, or ifG u v− { , } contains a vertex that is adjacent to at
least three vertices of N , then G also has a legal coloring.

The next two results are not necessary for the proof of Theorem 3. We nevertheless state
them here.

The first lemma is useful for graphs with an odd number of vertices.

Lemma 9. Let G be an Eulerian graph on an odd number n of vertices that contains a
vertex u of degree 2 or 4 with neighborhood N . If all Eulerian graphs that can be obtained
fromG u− { } by addition or deletion of arbitrary edges inG N[ ] have a legal coloring, thenG
has a legal coloring.

If a graph G contains a degree‐2 vertex v with independent neighbors x x,1 2, then it is clear
that a legal coloring ofG v x x− + 1 2 can be transformed into a legal coloring ofG. Granville and
Moisiadis [7] observed a similar relation for a degree‐4 vertex.

Lemma 10 (Granville and Moisiadis [7]. LetG be an Eulerian graph containing a vertex v
with neighborhood N x x= { , …, }1 4 such that G N[ ] contains the edge x x1 2 but not the edge
x x3 4. If G vx vx x x− { , } + { }3 4 3 4 has a legal coloring, then G also has a legal coloring.

Generalizing this idea, we analyze the neighborhood of a degree‐6 vertex.

Lemma 11. Let G be an Eulerian graph that contains a degree‐6 vertex u with
neighborhood N u x x( ) = { , …, }G 1 6 such that x x x x{ , , , }1 2 3 4 is a clique and x x E G( )5 6 ∉ . If
G G x u ux x x′ = − { , } + { }5 6 5 6 has a legal coloring, then G has a legal coloring.

3 | RECOLORING TECHNIQUES

In this section, we provide recoloring techniques that are necessary to prove Lemma 6, 7,
and 8. For a path P or a cycle C we write c P i( ) = or c C i( ) = to express that all edges of P
respectively C are colored with color i. We start with a statement about monochromatic
triangles.

Lemma 12. Let H be a graph with legal coloring c that contains a clique x x x y{ , , , }1 2 3 .
Then there is a legal coloring c′ of H in which the cycle x x x x1 2 3 1 is not monochromatic.

FUCHS ET AL | 227
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Proof. Figure 1 illustrates the recolorings described in this proof. Assume that x x x x1 2 3 1 is
monochromatic of color i in c. First assume that

j c y y yan edge of colour ( ) is adjacent to1 2≔ (1)

for two distinct vertices y y,1 2 in x x x{ , , }1 2 3 . Without loss of generality, the path P′ of color
j between y and y2 along the path c j yy( ) − { }−1

1 does not contain the vertex y3 (where
y x x x y y{ } = { , , } − { , }3 1 2 3 1 2 ). Flip the colors of the monochromatic paths y y1 2 and y yP y′1 2,
ie, set c y y j c y yP y c y y′( ) = , ′( ′ ) = ( )1 2 1 2 1 2 and c e c e′( ) = ( ) for all other edges e E H( )∈ . The
obtained coloring is legal: By construction, all color classes are cycles and at most
V H(| ( )| − 1)/2⌊ ⌋many colors are used. Further, the cycle x x x x1 2 3 1 is not monochromatic.
If (1) does not hold, we can get rid of one color. Set c x x y c x y c x x y′( ) = ( ), ′( ) =1 2 1 2 3

c x y c x x y c x y( ), ′( ) = ( )2 3 1 3 , and c e c e′( ) = ( ) for all other edges e E H( )∈ . By construction,
all color classes are cycles and x x x x1 2 3 1 is not monochromatic. □

Figure 2 illustrates the following simple observation.

Observation 13. Let P1 be an x1‐y1‐path that is vertex‐disjoint from an x2‐y2‐path P2. Then
there are three possibilities to connect x y{ , }1 1 and x y{ , }2 2 by two vertex‐disjoint paths that
do not intersect V P x y( ) − { , }i i i for i = 1, 2. Two of the possibilities yield a cycle—the
third way leads to two cycles.

Lemma 14, 15, and 16 are all based on the same elementary fact: LetG andG′ be graphs with
V G V G| ( )| = | ( ′)| + 2. If G′ allows for a cycle decomposition with at most V G(| ( ′)| − 1)/2⌊ ⌋

cycles, then any cycle decomposition of G that uses at most one cycle more than the cycle
decomposition of G′ shows that G is not a counterexample to Hajósʼ conjecture.

FIGURE 1 The two possible cases in Lemma 12 to obtain a coloring in which a fixed triangle is not
monochromatic; the different styles of the edges represent the colors

FIGURE 2 The three possible ways to connect the end vertices of two paths P1 and P2; the connection
between the end vertices is drawn with jagged lines

228 | FUCHS ET AL
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This fact leads us to the following inductive approach: Given a graph G with two
vertices u and v of degree 6, we remove u and v from G and might remove or add edges to
obtain a graph G′. If G′ has a cycle decomposition with at most V G(| ( ′)| − 1)/2⌊ ⌋ cycles we
construct a cycle decomposition of G from it. We reroute some of the cycles in an
appropriate way such that u and v are each touched by two cycles. Now, there remain some
edges in G that are not covered. If those edges form a cycle, we have found a cycle
decomposition of G. If a cycle is not rerouted to u or v twice, the cycle decomposition of G
satisfies Hajósʼ conjecture.

To describe this inductive approach in a coherent way, we regard the cycle decomposition of
G′ as a legal coloring. Then we regard the above reroutings as recolorings where we have to
make sure that no color appears twice at u or v. If the edges that have not yet received a color
form a cycle, we associate the new color V G(| ( )| − 1)/2⌊ ⌋ to this cycle. The obtained coloring of
the edges then uses at most V G(| ( )| − 1)/2⌊ ⌋many colors and each color class is a cycle. Thus,
we have constructed a legal coloring.

Lemma 14. LetG be an Eulerian graph without legal coloring that contains two adjacent
vertices u and v of degree 6 with common neighborhood N x x= { , …, }1 5 . Define
G G u v′ = − { , } and let c′ be a legal coloring of G′.

(i) If G N[ ] contains a path P y y y y′ = 1 2 3 4 of length 3 then P′ is monochromatic in c′.
(ii) Let G N[ ] contain an independent set S y y y= { , , }1 2 3 of size 3. If N is not an

independent set or if there is a vertex in G′ that is adjacent to y y,1 2, and y3, then
G G y y y y y y″ = ′ + { , , }1 2 2 3 3 1 does not have a legal coloring.

(iii) If G N[ ] contains an induced path y y y y1 2 3 4 of length 3 then G G y y″ = ′ − { } +2 3

y y y y y y{ , , }2 4 4 1 1 3 does not have a legal coloring.
(iv) If G N[ ] contains a triangle y y y y1 2 3 1, a vertex y4 that is not adjacent to y1 and y3 and a

vertex y N y y y y− { , , , }5 1 2 3 4∈ adjacent to y4 then G G y y y y y y″ = ′ − { } + { , }1 3 1 4 3 4 does
not have a legal coloring.

Proof of (i). If y y3 4 has a color different from y y1 2 and y y2 3, then set

c y uy c y y c y vy c y y c y uvy c y y( ) = ′( ) ( ) = ′( ) ( ) = ′( ).1 2 1 2 2 3 2 3 3 4 3 4

If y y2 3 has a color different from y y1 2 and y y3 4, then set

c y uy c y y c y vuy c y y c y vy c y y( ) = ′( ) ( ) = ′( ) ( ) = ′( ).1 2 1 2 2 3 2 3 3 4 3 4

The case distinction makes sure that the modified color classes remain cycles. By further
setting c y y y y uy vy V G( ) = (| ( )| − 1)/21 2 3 4 5 1 ⌊ ⌋ and c e c e( ) = ′( ) for all other edges e we
have constructed a legal coloring c of G. □

Proof of (ii). Set y y N y y y{ , } = − { , , }4 5 1 2 3 and let c″ be a legal coloring of G″.
First assume that c y y c y y c y y″( ) { ″( ), ″( )}1 2 2 3 3 1∉ . Then one can easily check that the

following is a legal coloring of G.

FUCHS ET AL | 229
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c y uvy c y y c y vy c y y c y uy c y y

c y uy vy V G

c e c e e

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2

( ) = ″( ) for all other edges

2 1 2 1 2 3 2 3 3 1 3 1

4 5 4 ⌊ ⌋ (2)

By symmetry, we are done unless the triangle y y y y1 2 3 1 is monochromatic in c″. By Lemma
12, we can suppose that there is no vertex y inG″ that is adjacent to y y,1 2 and y3. Suppose
that N is not independent. Without loss of generality, we can assume that G N[ ] contains
an edge, say y y4 1 incident to one of the vertices of the independent 3‐set. (Otherwise, we
can choose another suitable independent 3‐set in G N[ ]). Then by construction the
following is a legal coloring of G.

c y uvy c y y c y uy c y y c y vy c y y y

c y y uy vy V G

c e c e e

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2

( ) = ″( ) for all other edges

1 4 1 4 2 3 2 3 2 3 2 1 3

1 4 5 1 ⌊ ⌋

(3)

□

Proof of (iii). Let G″ have a legal coloring c″ and let y5 be the unique vertex in
N y y y y− { , , , }1 2 3 4 .

If c y y c y y c y y″( ) = ″( ) = ″( )2 4 4 1 1 3 , set

c y uy c y y c y vuy c y y y y c y vy c y y

c uy vy y y y u V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

1 2 1 2 2 3 2 4 1 3 3 4 3 4

5 1 2 3 4 ⌊ ⌋

If c y y″( )1 3 is different from c y y″( )2 4 and c y y″( )4 1 , set

c y uvy c y y c y vy c y y c y uy c y y

c uy vy y u V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

1 3 1 3 4 1 4 1 2 4 2 4

5 2 3 ⌊ ⌋

If c y y″( )2 4 is different from c y y″( )1 3 and c y y″( )1 4 , the coloring is defined similarly by
relabeling the vertices y y, …,1 5.

If c y y″( )4 1 is different from c y y″( )1 3 and c y y″( )2 4 , set

c y vy c y y c y vuy c y y c y uy c y y

c uy vy y u V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

1 3 1 3 4 1 4 1 2 4 2 4

5 2 3 ⌊ ⌋

Further set c e c e( ) = ″( ) for all other edges e in all cases. Again, the case distinction
makes sure that all color classes are cycles and we have constructed a legal
coloring. □

Proof of (iv). Let c″ be a legal coloring of G″. First assume that
c y y c y y c y y″( ) { ″( ), ″( )}2 3 3 4 1 4∉ . Then set

230 | FUCHS ET AL
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c y vuy c y y c y uy c y y c y vy c y y

c uy vy y y u V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .
2 3 2 3 1 4 1 4 3 4 3 4

5 1 3 2 ⌊ ⌋

If c y y c y y c y y″( ) { ″( ), ″( )}1 2 3 4 1 4∉ , the coloring is defined as above by interchanging the
roles of y1 and y3.

Now assume that c y y c y y c y y c y y″( ), ″( ) { ″( ), ″( )}2 3 1 2 3 4 1 4∈ . If c y y c y y″( ) = ″( )3 4 1 4 , then the
cycle y y y y y1 2 3 4 1 is monochromatic. Set

c y uvy c y y

c y vy y uy c y y y y y c y y uy y vy y V G

( ) = ″( )

( ) = ″( ) ( ) = (| ( )| − 1)/2 .
4 5 4 5

1 3 2 1 1 2 3 4 1 1 3 5 4 2 1 ⌊ ⌋

If c y y c y y″( ) ″( )3 4 1 4≠ , then either c y y c y y″( ) = ″( )2 3 3 4 or c y y c y y″( ) = ″( )2 3 1 4 . If
c y y c y y″( ) = ″( )2 3 3 4 , set

c y uy vy c y y y c y vuy c y y

c y uy vy y y V G

( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .
2 3 4 2 3 4 1 4 1 4

1 5 2 3 1 ⌊ ⌋

If c y y c y y″( ) = ″( )2 3 1 4 , set

c y uy c y y c y vy c y y c y vuy c y y

c y uy vy y y V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

2 3 2 3 1 4 1 4 3 4 3 4

1 5 2 3 1 ⌊ ⌋

By setting c e c e( ) = ″( ) for all other edges e we have constructed a legal coloring for G in
all cases. □

If u and v are adjacent degree‐6 vertices that have a common neighborhood N of size 4, we
call the two vertices that are adjacent with exactly one of u v, the private neighbors of u and v.
Here, we denote them by xu and xv. If there is a xu–xv‐path P inG u v N− { , } − , it is possible to
translate all techniques of Lemma 16. It suffices to delete u v, and E P( ) to obtain another
Eulerian graph: In all recolorings of Lemma 16, the edges uy vy, for one vertex y N∈ are
contained in the new color class V G(| ( )| − 1)/2⌊ ⌋. If we have two private neighbors xu and xv it
suffices to replace the path uyv by the path ux Px vu v in this color class. This means, we can
regard x Pxu v as a single vertex y.

Lemma 15. LetG be an Eulerian graph without legal coloring that contains two adjacent
vertices u and v of degree 6 with common neighborhood N x x= { , …, }1 4 and
N u N x v( ) = { , }G u∪ as well as N v N x u( ) = { , }G v∪ . Let P be an xu–xv‐path in
G u v N− { , } − . Define G G u v E P′ = − { , } − ( ) and let c′ be a legal coloring of G′.

(i) If G N x x[ { , }]u v∪ contains a path P y y y y′ = 1 2 3 4 with y y y N, ,2 3 4 ∈ of length 3 then P′
is monochromatic in c′.

(ii) Let G N[ ] contain an independent set S y y y= { , , }1 2 3 of size 3. If G N x x[ { , }]u v∪

contains an edge x x x xi j u v≠ or if there is a vertex inG′ that is adjacent to y y,1 2 and y3

then G G y y y y y y″ = ′ + { , , }1 2 2 3 3 1 does not have a legal coloring.
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(iii) IfG N x x[ { , }]u v∪ does not contain the edges x y y y y x, ,u v1 1 2 2 for two vertices y y N,1 2 ∈

but contains an edge with end vertex y1 or y2 then G G u v x y y y y x″ = − { , } + { , , }u v1 1 2 2

does not have a legal coloring.
(iv) If G contains the edges y y y y y y, ,1 2 3 4 1 5 with y y y y N, , ,1 2 3 4 ∈ and y x x{ , }u v5 ∈ but not

the edges y y y y,1 3 2 3 then G G y y y y y y″ = ′ − { } + { , }1 2 1 3 3 2 does not have a legal coloring.
(v) If G N x x[ { , }]u v∪ contains a triangle y y y y1 2 3 1 with y y y N, ,1 2 3 ∈ , a vertex

y N y y y− { , , }4 1 2 3∈ that is not adjacent to y1 and y3 and a vertex y x x{ , }u v5 ∈

adjacent to y4 then G G y y y y y y″ = ′ − { } + { , }1 3 1 4 3 4 does not have a legal coloring.

Proof of (i). The proof is very similar to the proof of Lemma 14.(i) if we regard x Pxu v as
one single vertex. We will nevertheless give a detailed proof. By symmetry of u and v (and
thus of xu and xv), we can assume that y1 is either contained in N or is equal to xu.
Suppose that P is not monochromatic.

If c y y c y y c y y′( ) { ′( ), ′( )}1 2 2 3 3 4∉ , then set

c y uvy c y y c y uy c y y c y vy c y y( ) = ′( ) ( ) = ′( ) ( ) = ′( ).1 2 1 2 2 3 2 3 3 4 3 4

If c y y c y y c y y′( ) { ′( ), ′( )}2 3 1 2 3 4∉ , then set

c y uy c y y c y vuy c y y c y vy c y y( ) = ′( ) ( ) = ′( ) ( ) = ′( ).1 2 1 2 2 3 2 3 3 4 3 4

If c y y c y y c y y′( ) { ′( ), ′( )}3 4 1 2 2 3∉ , then set

c y uy c y y c y vy c y y c y uvy c y y( ) = ′( ) ( ) = ′( ) ( ) = ′( ).1 2 1 2 2 3 2 3 3 4 3 4

If y N1 ∈ the following completes by construction a legal coloring c of G:

c y y y y ux Px vy V G

c e c e e

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

u v1 2 3 4 1 ⌊ ⌋

Now suppose that y x= u1 and that x x, v4 are not contained in the path y y y y1 2 3 4. Then,
the following completes by construction a legal coloring c of G:

c y y y y ux vx Py V G

c e c e e

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

v1 2 3 4 4 1 ⌊ ⌋

□

Proof of (ii). The proof is very similar to the proof of Lemma 14.(ii) if we regard x Pxu v as
one single vertex. □

Proof of (iii). Assume that c″ is a legal coloring of G″ and let y y N y y{ , } = − { , }3 4 1 2 . By
symmetry of u and v (and thus of y1 and y2) we can suppose that y y E G( )1 4 ∈ .

If y xu1 has a color different from the color of y y1 2 and y xv2 , set
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c x uvy c x y c y uy c y y c y vx c y x

c y uy vy V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

u u v v1 1 1 2 1 2 2 2

3 4 3 ⌊ ⌋

An analogous coloring can be defined if x yv 2 has a color different from the color of y y1 2

and x yu 1.
If y y1 2 has a color different from the color of y xu1 and y xv2 , then set

c x uy c x y c y vuy c y y c y vx c y x

c y uy vy V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

u u v v1 1 1 2 1 2 2 2

3 4 3 ⌊ ⌋

Now suppose that all three edges x y y y y x, ,u v1 1 2 2 have the same color. Then, y y1 4 has a
different color. Set

c x uy c x y y c y uvy c y y c y vx c y x

c uy vy y u V G

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2 .

u u v v2 1 2 1 4 1 4 2 2

3 1 4 ⌊ ⌋

In all cases, set c e c e( ) = ″( ) for all other edges e. The case distinction now makes sure
that we constructed a legal coloring for G . □

Proof of (iv). Assume that c″ is a legal coloring of G″. Without loss of generality let
y x= u5 .

First suppose that all three edges x y y y y y, ,u 1 1 3 3 2 have the same color. Then, y y3 4 has a
different color and the following gives by construction a legal coloring for G:

c x uy c x y c y vy c y y y c y uvy c y y

c uy y x Px vy y u V G

c e c e e

( ) = ″( ) ( ) = ″( ) ( ) = ″( )

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

u u

u v

1 1 1 2 1 3 2 3 4 3 4

2 1 3 4 ⌊ ⌋

Now suppose that x y y yu 1 3 2 is not monochromatic.
If x yu 1 has a color different from the colors of y y1 3 and y y3 2, set

c x uvy c x y c y uy c y y c y vy c y y( ) = ″( ) ( ) = ″( ) ( ) = ″( ).u u1 1 1 3 1 3 3 2 3 2

If y y1 3 has a color different from the colors of x yu 1 and y y3 2, set

c x uy c x y c y vuy c y y c y vy c y y( ) = ″( ) ( ) = ″( ) ( ) = ″( ).u u1 1 1 3 1 3 3 2 3 2

If y y3 2 has a color different from the colors of x yu 1 and y y1 3, set

c x uy c x y c y vy c y y c y uvy c y y( ) = ″( ) ( ) = ″( ) ( ) = ″( ).u u1 1 1 3 1 3 3 2 3 2

By setting c uy y x Px vy u V G( ) = (| ( )| − 1)/2u v2 1 4 ⌊ ⌋ and c e c e( ) = ″( ) for all other edges
e, we obtain by construction in all cases a legal coloring for G. □
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Proof of (v). The proof is very similar to the proof of Lemma 14.(iv) if we regard x Pxu v as
one single vertex. □

In our last recoloring lemma, we consider two degree‐6 vertices that are not adjacent but
have six common neighbors x x, …,1 6. Some of the recoloring techniques of this lemma need a
somewhat deeper look into the cycle decomposition. They rely on a generalization of the
recolorings used in Lemma 14 and 12. We introduce two pieces of notation. For two distinct
vertices x x N x x, = { , …, }i j 1 6∈ , a path Px xi j

always denotes an xi–xj‐path that is not intersecting
with N x x− { , }i j .

For a cycle C and two distinct vertices x x N x x V C, = { , …, } ( )i j 1 6∈ ∩ there are two xi–xj‐
paths along C. If there is a unique path that is not intersecting with N x x− { , }i j , we denote this
path by Cx xi j

.

Lemma 16. Let G be an Eulerian graph without legal coloring and let G contain two
degree‐6 vertices u and v with common neighborhood N x x= { , …, }1 6 . Define
G G u v′ = − { , } and let c′ be a legal coloring of G′.

(i) If G′ contains two vertex‐disjoint paths P Py y y y1 2 2 3
and P Py y y y′ ′ ′ ′1 2 2 3

with
y y y y y y N{ , , , ′ , ′ , ′ } =1 2 3 1 2 3 where the four paths P P P P, , ,y y y y y y y y′ ′ ′ ′1 2 2 3 1 2 2 3

are mono-
chromatic in c′, then at least three of the four paths have the same color in c′.

(ii) Let G′ contain a path P P P P P′ = y y y y y y y y1 2 2 3 3 4 4 5
with y y N{ , …, }1 5 ⊂ where Py yi i+1

is
monochromatic in c′ for each i {1, 2, 3, 4}∈ . Then ( ) ( )c P c P′ = ′y y y y1 2 3 4

or
( ) ( )c P c P′ = ′y y y y2 3 4 5

.
(iii) If G N[ ] contains an independent set S y y y= { , , }1 2 3 of size 3 and if G N[ ] contains at

least one edge or there is a vertex in G′ that is adjacent to y y,1 2 and y3 then
G G y y y y y y″ = ′ + { , , }1 2 2 3 3 1 does not have a legal coloring.

(iv) If G N[ ] contains a path P y y y y′ = 1 2 3 4 of length 3, then P′ is monochromatic in c′.

Proof of (i). Suppose that less than three of the paths have the same color. Then, without
loss of generality c P c P′( ) ′( )y y y y′ ′1 2 1 2

≠ and c P c P′( ) ′( )y y y y′ ′2 3 2 3
≠ and the following is by

construction a legal coloring of G:

c y uy c P c y vy c P

c y uy c P c y vy c P

c y P P y uy P P y vy V G

c e c e e

( ) = ′( ) ( ) = ′( )

( ′ ′ ) = ′( ) ( ′ ′ ) = ′( )

( ′ ′ ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

y y y y

y y y y

y y y y y y y y

1 2 2 3

1 2 ′ ′ 2 3 ′ ′

1 3 3 ′ ′ ′ ′ 1 1

1 2 2 3

1 2 2 3

1 2 2 3 3 2 2 1
⌊ ⌋

□

Proof of (ii). Suppose that ( ) ( )c P c P′ ′y y y y1 2 3 4
≠ and ( ) ( )c P c P′ ′y y y y2 3 4 5

≠ and let y6 be the
vertex of N not contained in P′. Then, the following is by construction a legal coloring
of G:
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c y uy c P c y vy c P

c y uy c P c y vy c P

c y P P P P y uy vy V G

c e c e e

( ) = ′( ) ( ) = ′( )

( ) = ′( ) ( ) = ′( )

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

y y y y

y y y y

y y y y y y y y

1 2 2 3

3 4 4 5

1 5 6 1

1 2 2 3

3 4 4 5

1 2 2 3 3 4 4 5
⌊ ⌋

□

Proof of (iii). The proof uses ideas of the proof of Lemma 14.(ii).
Let c″ be a legal coloring of G″. First suppose that i c y y c y y c y y″( ) { ″( ), ″( )}1 2 2 3 3 1≔ ∉

and let C c i= ( )−1 be the monochromatic cycle in G″ with color i.
If there is a vertex y N y y y− { , , }6 1 2 3∈ that is not contained in C set

y y N y y y y{ , } = − { , , , }4 5 1 2 3 6 and use the recoloring (2) where the edge uv is replaced by
the path uy v6 .

Otherwise, y y y N y y y{ , , } − { , , }4 5 6 1 2 3≔ is a subset of V C( ). Without loss of generality,
we may assume that Cy y6 5

and Cy y6 1
exist. (The cycle C is either of the form

C y y Cy y C C C= i y y y y y y1 2 2 i j j k k 1
with y y y y y y{ , , } = { , , }i j k 4 5 6 or C y y Cy y C C C C= i y y y y y y y y1 2 2 i j j k k l l 1

with y y y y y y y y{ , , , } = { , , , }i j k l 3 4 5 6 . We may assume by the symmetry of the elements in
y y y{ , , }4 5 6 and those in y y{ , }1 2 that Cy y6 1

and Cy y6 5
exist). By construction, the following is a

legal coloring of G:

c y uy c y y c y vy c y y c y vy C y uy c y y

c y vy uy C V G

c e c e e

( ) = ″( ) ( ) = ″( ) ( ) = ″( ),

( ) = (| ( )| − 1)/2 and

( ) = ″( ) for all other edges .

y y

y y

2 3 2 3 1 3 1 3 2 6 1 5 1 2

5 4 6

6 1

5 6
⌊ ⌋

Assume that the triangle y y y y1 2 3 1 is monochromatic in c″. By Lemma 12, there is no
vertex y inG′ that is adjacent to y y,1 2 and y3. Suppose that N is not independent. Without
loss of generality G N[ ] contains the edge y y4 1. Set y y N y y y y{ , } = − { , , , }5 6 1 2 3 4 .

If there is a vertex in y y{ , }5 6 , say y6, that is not contained in the cycleC c j= ( )−1 of color
j c y y′( )1 4≔ , use the recoloring (3) where the edge uv is replaced by the path uy v6 .

If y5 and y6 are both contained in C, let S be the segment of C y y− { }1 4 that connects y4
with y5. By symmetry of y5 and y6, we can suppose that y S6 ∉ . By construction, the
following is a legal coloring of G:

c y vy c y y c y uy c S

c y uy vy c y y y y c y y Sy vy uy V G

c e c e e

( ) = ″( ) ( ) = ″( )

( ) = ( ) ( ) = (| ( )| − 1)/2

( ) = ″( ) for all other edges

1 4 1 4 5 4

2 3 2 1 2 3 1 1 4 5 6 1 ⌊ ⌋

□

Proof of (iv). Suppose that P is not monochromatic in c′ and set
y y N y y y y{ , } = − { , , , }5 6 1 2 3 4 .

First assume that c y y c y y c y y′( ) { ′( ), ′( )}3 4 1 2 2 3∉ . LetC be the cycle of color c y y′( )3 4 inG′.
If there is a vertex in y y{ , }5 6 , say y5, that is not in C, then by construction the following

is a legal coloring of G:
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c y uy c y y c y vy c y y c y uy vy c y y

c y y y y uy vy V G

c e c e e

( ) = ′( ) ( ) = ′( ) ( ) = ′( )

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

1 2 1 2 2 3 2 3 3 5 4 3 4

1 2 3 4 6 1 ⌊ ⌋

Now assume that y5 and y6 are contained inC. IfC C C, ,y y y y y y5 1 6 1 5 4
orCy y6 4

exists then we can
apply (ii). Thus, Cy y5 6

must exist and by symmetry Cy y5 2
and Cy y6 3

exist. We can apply (ii) to
y y y y C, , y y1 2 2 3 3 6

and Cy y5 6
.

Thus, for the rest of the proof we can assume that

c y y i c y y c y y′( ) { ′( ), ′( )}.2 3 1 2 3 4≕ ∉

Let C c i′ = ( )−1 be the cycle of color i in G′. If there is a vertex in y y{ , }5 6 , say y5, that is
not in C′, then by construction the following is a legal coloring of G:

c y uy c y y c y vy c y y c y vy uy c y y

c y y y y uy vy V G

c e c e e

( ) = ′( ) ( ) = ′( ) ( ) = ′( )

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

1 2 1 2 3 4 3 4 2 5 3 2 3

1 2 3 4 6 1 ⌊ ⌋

Thus, we can assume that

y y Cand are contained in ′.5 6

Now, there are three cases up to symmetry: y1 and y4 both are not contained in C y′, 1 is
contained in C′ but y4 is not, and y1 and y4 are both contained in C′.

First assume that y1 and y4 are not contained in C′. Then, by symmetry, C′ is the cycle
consisting of y y C C C, , ,′ ′ ′y y y y y y2 3 3 6 6 5 5 2

. We are done by applying (i) to the vertex‐disjoint
paths y y C, ′y y1 2 2 5

and y y C, ′y y4 3 3 6
.

Next assume that y1 is contained in C′ and y4 is not contained in C′. First suppose that
C′y y6 3

exists. As C′y y5 1
or C′y y5 2

must exist, we are done with (i).
By symmetry, we can now suppose that neither C′y y6 3

nor C′y y5 3
exists. Then C′y y3 1

exists.
We can suppose without loss of generality that C′ is the cycle consisting of
C y y C C C, , , ,′ ′ ′ ′y y y y y y y y3 21 3 2 6 6 5 5 1

and by construction the following is a legal coloring of G:

c y uy c y y c y vy c y y

c y y vy C C y uy y i

c y uy vy C y y C y V G

c e c e e

( ) = ′( ) ( ) = ′( )

( ) =

( ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

′ ′

′ ′

y y y y

y y y y

1 2 1 2 3 4 3 4

3 2 1 6 4 3

3 5 6 2 1 3

1 5 5 6

6 2 1 3
⌊ ⌋

Last, assume that y1 and y4 are both contained in C′. First, suppose that C′y y5 6
does not

exist. Without loss of generality, we can suppose that C′y y5 1
exists. Now neither C′y y6 3

nor
C′y y6 4

exists; otherwise, we are done with (i). Thus, C′y y6 1
and C′y y6 2

must exist. Thus, C′y y5 4

exists and we are done with (i).
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Now suppose that C′y y5 6
exists. First, suppose that C′y y5 2

exists. Then, we are done with
(i) if C′y y6 3

or C′y y6 4
exists. As C′ is a cycle, C′y y6 1

and thus also C′y y4 1
and C′y y4 3

exist. The
following is by construction a legal coloring of G:

c y uy c y y c y vy c y y

c y vy C C y y uy C y i

c y y y vy C y uy C y V G

c e c e e

( ) = ′( ) ( ) = ′( )

( ′ ′ ′ ) =

( ′ ′ ) = (| ( )| − 1)/2

( ) = ′( ) for all other edges

y y y y y y

y y y y

3 4 3 4 1 2 1 2

5 3 1 2 6 5

2 3 4 6 1 5 2

3 4 4 1 6 5

6 1 5 2
⌊ ⌋

Thus, we can suppose that none of C C C C′ , ′ , ′ , ′y y y y y y y y5 2 5 3 6 2 6 3
exists. Without loss of

generality, C′y y5 1
exists. As C′y y6 4

must exist we are done with (i). □

4 | PROOFS FOR THE REDUCIBLE STRUCTURES

In this section, we prove Lemma 6, 7, 8, 9, and 11. In the first three proofs, we use the following
observation:

Observation 17. Let x be a vertex of degree at least 3 in a graph H with a legal coloring.
Then the neighborhood N x( )H of x contains an independent set of size 3 or
G x N x[{ } ( )]H∪ contains a path of length 3 that is not monochromatic.

Proof of Lemma 6. IfG N[ ] contains a vertex of degree at least 3 we are done by applying
Observation 17 as well as Lemma 14.(i) and (ii).

Now, suppose that G N[ ] contains a vertex, say x1 of degree 0. As we have seen, G N[ ]

contains no vertex of degree 3 or 4. Thus, G N x[ ] − { }1 contains two nonadjacent vertices,
say x2 and x3. Then, x x x{ , , }1 2 3 is an independent set and we are done by Lemma 14.(ii).

We can conclude that all vertices inG N[ ] have degree 1 or 2. Consequently, the graph
is isomorphic toC K P P P, ˙ , ˙5 3 2 3 2∪ ∪ or P5. The 5‐cycleC5 contains an induced P4, the graph
K P˙3 2∪ contains a triangle and a vertex that is not adjacent to two of the triangle vertices,
the latter two graphs contain an independent set of size 3. Thus, we are done by (iii), (iv),
and (ii) of Lemma 14. □

Proof of Lemma 7. IfG N[ ] contains a vertex of degree at least 3 we are done by applying
Observation 17 as well as Lemma 15.(i) and (ii). Thus,G N[ ] must be isomorphic to one of
the graphs that we will treat now.

First, suppose that G N[ ] is isomorphic to K P K,4 2 2∪ or P K3 1∪ . Then, G N[ ] contains
an independent 3‐set and, hence, G has a legal coloring by Lemma 15.(ii).

Next, suppose that the edge set of G N[ ] is equal to x x x x{ , }1 2 3 4 or to x x x x x x{ , , }1 2 1 3 3 4 . If
xu is adjacent to x2, apply Lemma 15.(iv) to get a legal coloring: the edges x x x x x x, ,u 2 2 1 3 4

exist while x4 is neither adjacent to x1 nor to x2. Similarly, we can apply Lemma 15.(iv) if
x x E G( )v3 ∈ . Thus, we can suppose that neither x xu2 nor x xv3 exists inG and we are done
with Lemma 15.(iii): the edges x x x x x x, ,u v2 2 3 3 do not exist while x x E G( )2 1 ∈ .

Now, suppose that the edge set ofG N[ ] consists of x x x x x x, ,1 2 2 3 3 1. If xu is adjacent to x1,
not all paths of length 3 can be monochromatic and we can apply Lemma 15.(i). Thus we
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can suppose that x x E G( ).u 1 ∉ If x x E G( )v4 ∉ then we can apply Lemma 15.(iii) to
x x x x x x E G, , ( )u v1 1 4 4 ∉ and x x E G( )1 3 ∈ to obtain a legal coloring of G. If x x E G( )v4 ∈

we are done by Lemma 15.(v).
Last, suppose that the edge set ofG N[ ] consists of x x x x x x x x, , ,1 2 2 3 3 4 4 1. If the 4‐cycle is

not monochromatic, the cycle contains a P4 that is not monochromatic and we are done
by Lemma 15.(i). Suppose that x xu1 is an edge of G. Then, x x x xu 1 2 3 is a P4 that is not
monochromatic. By symmetry, we get that neither xu nor xv is adjacent to a vertex of N .
But then apply Lemma 15.(iii) to x x x x x x E G, , ( )u v1 1 3 3 ∉ and x x E G( )1 2 ∈ to obtain a legal
coloring of G. □

Proof of Lemma 8. IfG N[ ] contains a vertex of degree at least 3 we are done by applying
Observation 17 as well as Lemma 16.(iii) and 16.(iv).

Now, suppose that G N[ ] contains a vertex, say x1 of degree 0. As we have seen, G N[ ]

contains no vertex of degree at least 3. Thus, G N x[ ] − { }1 contains two nonadjacent
vertices, say x2 and x3. Then, x x x{ , , }1 2 3 is an independent set and we are done by Lemma
16.(iii).

We can conclude that all vertices inG N[ ] have degree 1 or 2. Thus,G N[ ] is isomorphic
to one of the following graphs: C C C C P C P P P P P P P P˙ , , ˙ , ˙ , ˙ , ˙ , ˙ ˙3 3 6 4 2 3 3 3 3 4 2 2 2 2∪ ∪ ∪ ∪ ∪ ∪ ∪ .

If G N[ ] is isomorphic to C C˙3 3∪ , we can apply Lemma 16.(i). It is not possible that all
pairs of 3‐paths have three edges of the same color. In all other cases, we can apply
Lemma 16.(iii). □

Proof of Lemma 9. The proof is based on the following observation: a legal coloring c′ of
G′ consists of at most V G V G(| ( )| − 2)/2 = (| ( )| − 3)/2⌊ ⌋ ⌊ ⌋ colors while a legal coloring
of G can consist of V G V G(| ( )| − 3)/2 + 1 = (| ( )| − 1)/2⌊ ⌋ ⌊ ⌋ many colors. We will now
consider the neighborhood of u in G.

If u has exactly two neighbors x1 and x2 that are nonadjacent, setG G u x x′ = − { } + { }1 2

and set c x ux c x x( ) = ′( )1 2 1 2 .
If u has exactly two neighbors x1 and x2 that are adjacent, setG G u x x′ = − { } − { }1 2 and

set c x ux x V G( ) = (| ( )| − 1)/21 2 1 ⌊ ⌋. Further, set c e c e( ) = ′( ) for all other edges in both
cases to obtain a legal coloring.

If u has exactly four neighbors x x, …,1 4 such that x x x x E G, ( )1 2 3 4 ∉ set
G G u x x x x′ = − { } + { , }1 2 3 4 and set c x ux c x x( ) = ′( )1 2 1 2 and c x ux c x x( ) = ′( )3 4 3 4 . If
c x x c x x′( ) ′( )1 2 3 4≠ , setting c e c e( ) = ′( ) for all other edges gives a legal coloring. If
c x x c x x′( ) = ′( )1 2 3 4 , we again set c e c e( ) = ′( ) for all other edges. Now, c is a coloring of G
where one color class consists of two cycles intersecting only at u. We can split up this
color class into two cycles to obtain a legal coloring of G.

By Lemma 10, we are done unless u has four neighbors x x x x, , ,1 2 3 4 that form a clique.
In that case, set G G u x x x x′ = − { } − { , }1 3 2 4 and set c x ux c x x c x x x ux x( ) = ′( ), ( ) =1 2 1 2 1 2 4 3 1

V G(| ( )| − 1)/2⌊ ⌋ and c e c e( ) = ′( ) for all other edges. □

Proof of Lemma 11. We transform the legal coloring c′ of G′ into a legal coloring c of G.
For this, we first note that u has degree 4 in G′, that is, x x x x{ , , , }1 2 3 4 splits up into two
pairs a a{ , ′} and b b{ , ′} with c ua c ua′( ) = ′( ′) and c ub c ub′( ) = ′( ′) and c ua c ub′( ) ′( )≠ .

If the color c x x′( )5 6 is not incident with u in G′, set c x ux c x x( ) = ′( )5 6 5 6 and leave all
other edge colors untouched to get a legal coloring.
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Now suppose that c x x′( )5 6 is incident with u (say c aua c x x′( ′) = ′( )5 6 ), but the set
c ua c aa c ub c bb{ ′( ), ′( ′), ′( ), ′( ′)} consists of at least three different colors. Then, there are
two possible configurations. First, let c aa c x x′( ′) ′( )5 6≠ and c aa c bub′( ′) ′( ′)≠ . Then, set
c x ux c x x( ) = ′( )5 6 5 6 , flip the colors of the edges aua′ and aa′ and leave all other edge
colors untouched to get a legal coloring.

If c aa c bub′( ′) = ′( ′) and c bb c x x′( ′) ′( )5 6≠ , set c x ux c x x( ) = ′( )5 6 5 6 , flip the colors of
the edges aua′ and aa′ and the colors of the edges bub′ and bb′, and leave all other edge
colors untouched to get a legal coloring.

Thus, without loss of generality c x x c aua c bb′( ) = ′( ′) = ′( ′)5 6 and c aa c bub′( ′) = ′( ′).
That is, among the considered edges there are only two colors. We may assume that
c a b c x x′( ′ ) ′( )5 6≠ and c a b c x x′( ′ ′) ′( )5 6≠ . Because, if eg, then c ab c x x′( ) ′( )5 6≠ and
c ab c x x′( ′) ′( )5 6≠ . This is symmetric to the assumption.

If c a b c bub′( ′ ) = ′( ′) and c a b c bub′( ′ ′) ′( ′)≠ the following is a legal coloring for G:

c aa c aua c a ub c a b

c auba b c aa bub c x ux c x x

c e c e e

( ′) = ′( ′) ( ′ ′) = ′( ′ ′)

( ′ ′) = ′( ′ ′) ( ) = ′( )

( ) = ′( ) for all other edges
5 6 5 6

If c a b c bub c a b c bub′( ′ ′) = ′( ′), ′( ′ ) ′( ′)≠ , the following coloring for G is legal:

c aa c aua c a ub c a b

c aub a b c aa b ub c x ux c x x

c e c e e

( ′) = ′( ′) ( ′ ) = ′( ′ )

( ′ ′ ) = ′( ′ ′ ) ( ) = ′( )

( ) = ′( ) for all other edges
5 6 5 6

Otherwise by Observation 13, one of the following is a legal coloring for G:

c aub c aa c a b c aa

c a ub c a b c aa c aua

c x ux c x x

c e c e e

( ′) = ′( ′) ( ′ ) = ′( ′)

( ′ ) = ′( ′ ) ( ′) = ′( ′)

( ) = ′( )

( ) = ′( ) for all other edges

1 1

1 1

1 5 6 5 6

1

or

c aub c aa c a b c aa

c a ub c a b c aa c aua

c x ux c x x

c e c e e

( ) = ′( ′) ( ′ ′) = ′( ′)

( ′ ′) = ′( ′ ′) ( ′) = ′( ′)

( ) = ′( )

( ) = ′( ) for all other edges

2 2

2 2

2 5 6 5 6

2

□

5 | PATH ‐DECOMPOSITIONS

For a graph G a path‐decomposition ( , ) consists of a path and a collection
B t V= { : ( )}t ∈ of bags B V G( )t ⊂ such that
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• V G B( ) =
t V

t
( )

⋃
∈

,

• for each edge vw E G( )∈ there exists a vertex t V ( )∈ such that v w B, t∈ , and
• if v B Bs t∈ ∩ , then v Br∈ for each vertex r on the path connecting s and t in .

A path‐decomposition ( , ) has width k if each bag has a size of at most k + 1. The pathwidth
of G is the smallest integer k for which there is a width k path‐decomposition of G.

In this paper, all paths have vertex set n{1, …, ′} and edge set i i i n{ ( + 1) : {1, …, ′ − 1}}∈ .
We denote with | | the length of , that is, n| | = ′ − 1. A path‐decomposition P( , ) of width
k is smooth if

• B k| | = + 1i for all i n{1, …, ′}∈ and
• B B k| | =i i+1∩ for all i n{1, …, ′ − 1}∈ .

A graph of pathwidth at most k always has a smooth path‐decomposition of width k; see
Bodlaender [2]. Note that this path‐decomposition has exactly n V G k′ = | ( )| − many bags.

If ( , ) is a path‐decomposition of the graphG, then for any connected vertex setW ofG we
denote by W( ) the subpath of that consists of those bags that contain a vertex ofW . Further,
if W( ) is the path on vertex set s s t t{ , + 1, …, − 1, } with s t≤ we denote s by s W( ) and t by
t W( ). ForW v= { }, we abuse notation and denote W s W( ), ( ) and t W( ) by v s v( ), ( ) and t v( ).

We note: in a smooth path‐decomposition, for an edge st E ( )∈ , there is exactly one vertex
v V G( )∈ with v Bs∈ and v Bt∉ . We call this vertex v s t( , ). Thus for any vertex v of G, the
number of vertices in the union of all bags containing v is at most v k| ( )| + and

v v kdeg( ) | ( )| + − 1.≤ (4)

The vertex set of P v i i( ( , + 1)) is contained in i{1, 2, …, } and the vertices of
P v n i n i( ( ′ + 1 − , ′ − )) are a subset of n n n i{ ′, ′ − 1, …, ′ − + 1}. With (4) we obtain:

v i i v n i n i k i

i n

deg( ( , + 1)), deg( ( ′ + 1 − , ′ − )) + − 1

for every {1, …, ′ − 1}.

≤

∈
(5)

Based on (5) and on Lemma 6, 7, and 8 we finally show that Hajósʼ conjecture is satisfied for
all Eulerian graphs of pathwidth 6.

Theorem 18. Every Eulerian graph G of pathwidth at most 6 satisfies Hajósʼ
conjecture.

Proof. To prove a slightly more general statement, we introduce the following classes:

G

G

G p V G p G p p

{ is a simple graph of pathwidth at most 6},

{ is a simple graph of pathwidth 7},

{ : ( ): deg ( ) = 2, pw( − ) = 6, lies on a triangle}.G

6

7

7
−

7

≔

≔

≔ ∈ ∃ ∈
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The class 7
− is the natural extension of 6 in the context of minimal counterexamples to

Hajósʼ Conjecture. A detailed explanation of this is given in the Appendix. We prove the
following statement: The class 6 7

−∪ satisfies Hajósʼ conjecture. Suppose toward a
contradiction that there exists a counterexample to Hajósʼ Conjecture in 6 7

−∪ . Let
G 6 7

−∈ ∪ be a counterexample of minimum order. By Theorem 2, G has at least 13
vertices. By Lemma 22 we may assume that

G contains at most one vertex of degree 2 or 4. (6)

In the rest of the proof, we show that a certain vertex has at most five possible neighbors.
SinceG is even, we conclude that the degree of this vertex is either 2 or 4. We then exploit
(6) and conclude that this vertex is the unique vertex with a degree in {2, 4}.

Case A: G 6∈ : By (6) the three vertices v i i( , + 1) with i = 1, 2, 3 or the three
vertices v i i( , − 1) with i n n n= ′, ′ − 1, ′ − 2 all have degree at least 6. (Observe that
V G| ( )| 13≥ implies that these vertices are distinct). Without loss of generality,

u v w u v v v w vdeg( ), deg( ), deg( ) 6 for (1, 2), (2, 3), (3, 4).≥ ≔ ≔ ≔ (7)

As u and v are both of degree 6 and N u B N v B B( ) , ( )G G1 1 2⊆ ⊆ ∪ , there are three
possibilities, cf. Figure 3.

(I) u and v have common neighborhood N x x= { , …, }1 6 , or
(II) u and v are adjacent with common neighborhood N x x= { , …, }1 5 , or
(III) u and v are adjacent with common neighborhood N x x= { , …, }1 4 and private

neighbors xu and xv.

We will now always delete u and v and optionally some edges. Further, we optionally add
some edges in the neighborhood of the two vertices. The obtained graph is still of pathwidth
at most 6 since all elements of N (respectively N x x{ , }u v∪ ) are contained in the bag B2 and
consequently, it has a legal coloring.

FIGURE 3 Smooth width‐6 path decompositions
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First assume (I) or (II). By Lemma 8 and Lemma 6, N is an independent set and there
is no vertex in G u v− { , } that has at least three neighbors in N . This is not possible as w
must have at least six neighbors in B B B1 2 3∪ ∪ by (7) and, hence, either w N∈ and w
has a neighbor in N , or, w N∉ and w has at least three neighbors in N .

Last assume (III) and define u v n n v v n n′ = ( ′, ′ − 1), ′ = ( ′ − 1, ′ − 2) and
w v n n′ = ( ′ − 2, ′ − 3). Observe that

B u v x x x x x

B v x x x x x x

= { , , , , , , } and

= { , , , , , , }
u

u v

1 1 2 3 4

2 1 2 3 4

(8)

as depicted in the upper drawing of Figure 4.
If u v wdeg ( ′), deg ( ′), deg ( ′) 6G G G ≥ and the two vertices u′ and v′ are twins or u′ and v′

are adjacent with five common neighbors, then with the same reasoning as above for u
and v, we obtain a contradiction. Consequently,

a) u′ and v′ are two adjacent degree‐6 vertices with common neighborhood
N x x′ = { ′ , …, ′ }1 4 and private neighbors x′u and x′v and wdeg( ′) 6≥ , or

b) there is a vertex y of degree less than 6 among u v w′, ′, ′.

Our aim is to find a path between xu and xv inG R− with R N u v= { , }∪ (respectively
a path between xu′ and xv′ in G R− ′ with R N u v′ = ′ { ′, ′}∪ ). The existence of this path
implies that N is an independent set and there is no vertex in G u v− { , } that has at least
three neighbors in N by Lemma 7. This is not possible as w must have at least six
neighbors by (7) and N w B B B( )G 1 2 3⊆ ∪ ∪ by the choice of w. Consequently, either
w N∈ and w has at least one neighbor in N , or, w x x{ , }u v∈ has exactly one neighbor in
u v{ , } and at least three neighbors in N , or, w R x x{ , }u v∉ ∪ , that is, w v v= (3, 4) = (3, 2).
Thus N w B w( ) = \{ }3 .

Suppose that there is no path between xu and xv in G R− and denote the set of
vertices in the component of xu inG R− by Vu. Similarly, we define Vv. The vertex z of Vu

FIGURE 4 Two smooth path‐decompositions for the same graph in the case: u vdeg( ) = deg( ) = 6 and
N u N v| ( ) ( )| = 4G G∩
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(respectively Vv) that maximizes s z( ) is denoted by zu (respectively zv). Note that the
neighborhood of za (for a u= and a v= ) satisfies

N z B( )a s z( )a⊆ (9)

since every neighbor of za is contained in a common bag with za, and, by the choice of za
no neighbor of za appears first in a bag of higher index than s z( )a . By (8) it holds that

s V s V( ) = 1 and ( ) = 2.u v (10)

If t V t V( ) = ( )u v , then t V t V n( ) = ( ) = ′u v since B B| \ | = 1i i+1 for i n{1, … ′ − 1}∈ by the
smoothness of ( , ). (In particular, at most one of the two components may have its last
vertex in Bi). Together with (10) it follows that every bag Bi with i n{2, …, ′}∈ contains a
vertex of Vu and a vertex of Vv. By (9), the neighbors of zu and zv are contained in the sets
Bs z( )u and Bs z( )v . Now zdeg( ) 4v ≤ since Bs z( )v contains a vertex from Vu. Analogously, if
s z( ) 2u ≥ , we obtain that zdeg( ) 4u ≤ . Observe that s z( ) = 1u implies z x=u u. Since xu is
uʼs private neighbor, the vertex v Bs x( )u∈ is not adjacent to xu and we obtain from (9) that

xdeg( ) 4u ≤ . This contradicts (6).
It remains to consider the situation

t V t V n( ) < ( ) ′.u v ≤ (11)

(The case t V t V( ) < ( )v u is analogous to (11) by interchanging the roles of u and v, see
Figure 4).

Now, zv might have degree 6, but

z has degree less than 6,u

since the bag Bs z( )u contains a non‐neighbor of zu as in the case t V t V( ) = ( )u v . We split up
the proof.

First assume (a). We apply the previous part of the proof and find a vertex z′u′ of
degree 2 or 4 in the component V V′ ′u v′ ′≠ in G R− ′ (with R u v N′ = { ′, ′} ′∪ ). It holds
that z z= ′u u′ by (6). Since z V V ′u u u′∈ ∩ , there is an xu–zu‐path Px z,u u

in G R− and an
x z′ −u u‐path Px z,u u

′ inG R− ′. There is no xu–xu′′ ‐path Px x,u u′
′ inG R R− − ′ by (11). Hence,

Px z,u u
contains a vertex r′ of R B′ n′⊆ or Px z′ ,u u

contains a vertex of R B1⊆ which
contradicts (11).

Now assume that (b) holds. We obtain from (6) that y z= u.
If z y u= = ′u , then t V n( ) = ′u which contradicts (11). If z y v= = ′u , then

t V n( ) = ′ − 1u and t V n( ) = ′v by (11). Hence, z u= ′v since B V N u( ′)n v G R′ −∅ ≠ ∩ ⊆ by
(6). In particular, N z B z B z N z( ) \ { } = \{ } = ( )u n u n v v′−1 ′⊆ . There exists an xu–zu‐path Pu in
Vu and an xv–zv‐path Pv in Vv. The neighbor of zu in Pu is not contained in R since Pu is a
subgraph of Vu and it is a neighbor of zv. Thus, the paths Pu and Pv can be combined to an
xu–xv‐path in G R− (possibly using edges from G B B[ ]n n′−1 ′∪ ). This contradicts the
assumption that no such path exists.

It remains the case z y w= = ′u . We obtain u vdeg ( ′) = deg ( ′) = 6G G by (b). If u′ and v′
are adjacent with exactly four common neighbors, then we apply (a). If u′ and v′ are
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adjacent with five common neighbors, then v n ndeg ( ( ′ − 3, ′ − 4)) 6G ≥ by (6) and
N v n n B B( ( ′ − 3, ′ − 4))G n n′−3 ′⊆ ∪ ⋯∪ . The set on the right contains exactly ten
elements of which eight are contained in B Bn n′−1 ′∪ and, hence, v n n( ′ − 3, ′ − 4) is
either contained in N u N v( ′) ( ′)G G∩ and has a neighbor in N u N v( ′) ( ′)G G∩ or it is not
contained in N u N v( ′) ( ′)G G∩ and has three neighbors in N u N v( ′) ( ′)G G∩ . Thus we can
apply Lemma 6 to get a legal coloring of G.

The remaining case is that u′ and v′ are degree‐6 twins with common neighborhood
N′. In particular, B u N= { ′} ′n′ ∪ and B v N= { ′} ′n′−1 ∪ . By (11), we have that Bn′−1

contains a vertex ofVv. Consequently v V′ v∈ since v R′ ∉ and N v B v( ′) = \{ ′}G n′−1 . Hence,
there is an xu–w′‐path Qu in Vu and an xv–v′‐path Qv in Vv. If w N′ ′∈ , then w a neighbor
of v′. If, otherwise w N′ ′∉ , then B w N\ { ′} = ′n′−2 and N w N( ′) ′G ⊆ . We obtain that the
unique neighbor of w′ inQu is a neighbor of v′. In both cases, the pathsQu and Qv can be
combined to an xu–xv‐path in G R− which is a contradiction.

Case B: G 7
−∈ : By (6), G does not contain a degree‐4 vertex and G contains exactly

one degree‐2 vertex p. The vertex p lies on a triangle pq q p1 2 and G ppw( − ) = 6. By
Corollary 24, there is a path‐decomposition ( , ) of G with:

(i) There exists exactly one bag Bi* containing p,
(ii) i n n{1, 2, ′ − 1, ′}* ∉ ,
(iii) for all i n i i{1, …, ′ − 1} { − 1, }* *∈ ⧹ it holds that B B| | = 6i i+1∩ ,
(iv) B B B p= = \{ }i i i+1 −1* * * ,
(v) only the bags B B,i i−1* * and Bi +1* contain both vertices q1 and q2,
(vi) B| | = 8i* and B = 7i∣ ∣ for all i n{1, … ′}∈ with i i*≠ ,
(vii) q q B{ , } i1 2 ⊆ holds only for the bags B B,i i−1* * and Bi +1* .

For each i n i{1, …, ′ − 1}\ { − 1}*∈ , let v i i( , + 1) be the unique vertex in B B\i i+1. For
each j n i{2, … ′}\{ + 1}*∈ , let v i i( , − 1) be the unique vertex in B B\i i−1. From the
structure of the decomposition ( , ), we obtain that n′ 8≥ (B1 contains seven vertices
and every bag except Bi +1* contributes exactly one new vertex). Without loss of generality
i {3, 4}* ∉ . (If i {3, 4}* ∈ , we change the labels of the bag such that they appear in reversed
order). Since i n n{1, 2, 3, 4, ′ − 1, ′}* ∉ , we obtain that the vertices

u v

v v

w v

u v n n

(1, 2),

(2, 3),

(3, 4) and

′ ( ′, ′ − 1)

≔

≔

≔

≔

exist and

u v u

w

deg ( ) = deg ( ) = deg ( ′) = 6 and

deg ( ) 6.
G G G

G ≥

As in Case A, there are three possibilities:

(I) u and v have common neighborhood N x x= { , …, }1 6 , or
(II) u and v are adjacent with common neighborhood N x x= { , …, }1 5 , or
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(III) u and v are adjacent with common neighborhood N x x= { , …, }1 4 and private
neighbors xu and xv.

If (I) or (II) holds true, then we obtain a contradiction along the same lines as in Case A.
Now assume (III). The bags B1 and B2 appear as described in (8), and, by symmetry of the
two sides of the path of Gʼs path‐decomposition, we can suppose that

a) u′ and v′ are two adjacent degree‐6 vertices with common neighborhood
N x x′ = { ′ , …, ′ }1 4 and private neighbors x′u and x′v, or,

b) i n= ′ − 2* , or,
c) i n= ′ − 3* .

Our aim is now to find a path between xu and xv in G R− with R N u v= { , }∪

(respectively a path between xu′ and xv′ inG R− ′ with R N u v′ = ′ { ′, ′}∪ ). This settles the
claim as described in Case A. Suppose toward a contradiction that there is no path
between xu and xv in G R− with R N u v= { , }∪ . Define V V z, ,u v u and zv as in Case A.
Again, the neighborhood of za (for a u v{ , }∈ ) satisfies

N z B( ) .a s z( )a⊆ (12)

By (8) it holds that

s V s V( ) = 1 and ( ) = 2.u v (13)

In analogy to Case A, we have that t V t V( ) = ( )u v implies t V t V n( ) = ( ) = ′u v and, hence,
every bag Bi with i n{2, …, ′}∈ contains a vertex of Vu and a vertex of Vv. In the following,
we lead this to a contradiction to (6) (as in Case A) by showing that both vertices zu and zv
are of degree less than six:

If s z i( ) = *a for a u v{ , }∈ , then z p=a and, hence, zdeg ( ) = 2G a .
By (12), the neighbors of zu and zv are contained in the sets Bs z( )u and Bs z( )v . If

s z i( ) *v ≠ , then zdeg( ) 4v ≤ since Bs z( )v contains a vertex fromVu and s z i( ) *v ≠ yields that
there are only five potential neighbors of zv in Bs z( )v .

Analogously, if s z( ) 2u ≥ and s z i( ) *u ≠ , we obtain that zdeg( ) 4u ≤ .
If, otherwise, s z( ) = 1u then z x=u u. By assumption v is not adjacent to xu and we

obtain from (12) that xdeg( ) 4u ≤ . This contradicts (6). Thus we can assume that

t V t V n( ) < ( )( ′).u v ≤ (14)

(The case t V t V( ) < ( )v u is analogous by interchanging the roles of u and v as in Case A, cf.
Figure 4). The vertex zv might have degree 6, but zu has degree less than 6 since the bag
Bs z( )u contains a non‐neighbor of zu if s z i( ) *u ≠ . In particular,

p z= .u (15)

As in Case A, we split up the proof.
First, assume that (a) holds. We obtain a contradiction in analogy to Case A.
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Now assume that (b) holds. This situation is illustrated in Figure 5. We may assume
that q Bn1 ′∈ without loss of generality.

Observe that s z s z( ) > ( )v u (Otherwise, Bs z( )v contains a nonneighbour of zv which
yields zdeg ( ) < 6G v . This contradicts (6)). This implies that z u= ′v and, hence, there
exists an xv–u′‐path Px u, ′v

in G R− . There exists a path Pp x, u
in G R− . At least one of the

two neighbors q q,1 2 of p is contained in Pp x, u
. Since t V n( ) < ′u and p Bn1 ′∈ , we have that

( )q V Pp x2 , u
∈ and ( )q V Pp x1 , u

∉ .
If q R1 ∉ , then P uq pPx u p x, 1 ,v u

is an xu–xv‐path in G R− which is a contradiction. If,
otherwise, q R1 ∈ , then q1 is contained in every bag of the path decomposition. In
particular, q Bn2 ′−4∉ since B B B, ,n n n′−3 ′−2 ′−1 are the only bags containing both neighbors
of p. But now, the following is a width‐6 path decomposition of G: Set

X B q q

B q u X

B q q X

B q q p

\ { , },

˜ { , ′} ,

˜ { , } and

˜ { , , }.

n

n

n

n

′−3 1 2

′−3 1

′−2 1 2

′−1 1 2

≔

≔ ∪

≔ ∪

≔

Remove the vertex n′ from and replace Bi with B̃i for i n n n{ ′ − 1, ′ − 2, ′ − 3}∈ to
obtain a path‐decomposition of G of width 6. This contradicts G 7

−∈ .
Last, assume that (c) holds, that is i n= ′ − 3* . The vertex v v n n′ ( ′ − 1, ′ − 2)≔ exists

and has degree 6. If u′ and v′ have four common neighbors and are adjacent, then (a)
holds and we are done. If u′ and v′ have five common neighbors and are adjacent, or, u′
and v′ have six common neighbors, then by Lemma 8 and Lemma 6, N′ is an independent
set and there is no vertex in G u v− { ′, ′} that has at least three neighbors in N . This is
impossible since the vertex w v n n′ ( ′ − 4, ′ − 5)≔ has degree not less than 6 and satisfies

N w B B B B B B B B( ′) = ,G n n n n n n n n′−4 ′−3 ′−2 ′−1 ′ ′−3 ′−1 ′⊆ ∪ ∪ ∪ ∪ ∪ ∪

since n i′ − 3 = * and Bi* contains its neighboring bags. The set on the right side contains
ten elements of which at least five are in N′. If w N′ ′∈ , then w has at least one neighbor
in N′. If, otherwise, w N′ ′∉ , then w′ has at least four neighbors in N′, since w′ is neither
adjacent to u′ nor to v′. □

FIGURE 5 The bags B B B, ,n n n′−3 ′−2 ′−1 and Bn′ of a smooth path‐decomposition of a graph G 7
−∈ with

i n= ′ − 2* are illustrated
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APPENDIX

Fan and Xu [6] considered a generalized version of Hajósʼ conjecture that includes loopless
graphs with parallel edges.

Conjecture 19 (Generalized Hajósʼ conjecture). If G is a loopless Eulerian graph, then G
allows for a cycle decomposition with not more than

V G m G( ) + ( ) − 1

2

⎢
⎣⎢

⎥
⎦⎥

cycles, wherem G( ) is the minimum number of edges in G that need to be removed to obtain
a simple graph.
Observation 20. Let G be obtained from a graph G′ by subdividing an edge e E G( ′)∈

which is parallel to some other edge of G′ with a new vertex u. A minimum cycle
decomposition of G clearly corresponds to a minimum cycle decomposition of G′.
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Furthermore, it holds that m G V G m G V G( ) + | ( )| = ( ′) + | ( ′)|. As a consequence G

satisfies the generalized Hajósʼ conjecture if and only if G′ satisfies Hajósʼ conjecture. In
particular: Every counterexample to the generalized Hajósʼ conjecture can be transformed
into a simple counterexample to Hajósʼ conjecture by subdivision of parallel edges.

The following notion is introduced in [6]: Let G be a graph. A reduction of G is a graph
obtained by recursively applying one of the following operations:

(i) Remove the edges of a cycle.
(ii) Delete an isolated vertex.
(iii) Remove a vertex u of degree 2 and add an edge joining its two neighbors.
(iv) Let u be a degree‐4 vertex with distinct neighbors x y z w, , , such that xy E G( )∈ and

zw E G( )∉ . Delete u and add two new edges – one joining x and y and the other one
joining z and w.

Now we are ready to state Fan and Xuʼs Theorem:

Theorem 21 (Fan and Xu [6]). If G is an Eulerian graph that does not satisfy the
generalized Hajósʼ conjecture, then there exists a reduction H of G that does not satisfy the
generalized Hajósʼ conjecture and the number of vertices of degree less than six in H plus
m H( ) is at most one.

It is observed in [6] that none of the above reduction operations changes the minor‐free
property if the minor is a simple graph. In particular,

H G H GIf is a reduction of , then pw( ) pw( ).≤ (A1)

Our aim is to transfer these reductions to simple graphs to show that a minimum
counterexample to Hajósʼ conjecture for graphs of pathwidth at most six contains at most one
vertex of degree at most 2. Observation 20 leads to a straight‐forward approach: Subdivide
parallel edges that may arise by operation (iii) or (iv). The resulting graph is simple and a
counterexample to Hajósʼ conjecture. However, as demonstrated in Figure A1, this is not
pathwidth‐preserving.

The removal of the subdivision vertex always leads to a graph of pathwidth at most 6. We
exploit this operation and enlarge the considered class to save the subdivision approach.

Let 6 be the class of all simple graphs of pathwidth at most 6. Further, let 7
− be the class of

all simple graphs G of pathwidth 7 with the following property: There exists a degree‐2 vertex
p V G( )∈ such that the two neighbors of p are adjacent and G ppw( − ) = 6.

Lemma 22. Let G 6 7
−∈ ∪ be a graph that does not satisfy Hajósʼ conjecture. There

exists a reduction H′ of G that does not satisfy the generalized Hajósʼ conjecture and the
number of vertices of degree less than six in H′ plus m H( ′) is at most one. The graph
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H
H m H

H e q p q p m q q e q q

′ if ( ′) = 0,

′ − + + if ( ) = 1 and is an edge joining and ,1 2 1 2 1 2

⎧⎨⎩≔

has the following properties:

(i) H is a counterexample to Hajósʼ conjecture,
(ii) H contains at most one vertex of degree less than six,
(iii) H 6 7

−∈ ∪ , and,
(iv) V H V G| ( )| | ( )|≤ and E H E G| ( )| | ( )|≤ .

Proof. Set

G
G G

G p e G
′

if and

− ′ + if ,q q

6

′ ′ 7
−

1 2

⎧⎨⎩≔
∈

∈

where p′ is a degree‐2 vertex lying on a triangle p q q p′ ′ ′ ′1 2 inG with G ppw( − ′) = 6, and,
eq q′ ′1 2

denotes a new parallel edge joining q′1 and q′2. Observe that G′ is a reduction of
G G, ′ is a counterexample to the generalized Hajósʼ conjecture by Observation 20 and

Gpw( ′) = 6. We apply Theorem 21 to obtain a reduction H′ of G′ which satisfies:

FIGURE A1 Applying first operation (iv) and then subdividing the new parallel edge can increase the
pathwidth. The left and the upper graph are of pathwidth 6, the lower graph is of pathwidth 7
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m H( ′) {0, 1}∈ , at most one vertex in H′ is of degree less than 6, and, ifm H( ′) = 1, then
H′ does not contain a vertex of degree less than 6.

It holds that H is simple. Applying Observation 20, we obtain that (i) is satisfied.
If H′ is simple, then H H= ′ and (ii) is clearly satisfied. If, otherwise,m H( ′) = 1, then

H′ does not contain any vertex of degree less than 6 and, hence, H ʼs only vertex of degree
less than 6 is the subdivision vertex p, that is, (ii) holds.

By (A1), we have that H G Gpw( ′) pw( ′) pw( )≤ ≤ . It follows from the construction of
H that (iii) holds.

It remains to prove (iv). This is clear if H H= ′. Otherwise, H H e q p q p= ′ − + +1 2

andm H( ′) = 1. SinceG is a simple graph and H′ is a reduction ofG, we conclude that at
least one of the reductions (iii) and (iv) is applied to G to obtain H′ (the other two
reduction operations do not generate parallel edges). Both operations (iii) and (iv) have
the property that they strictly decrease the order of the graph and the number of edges.
Altogether, we obtain that (iv) holds. This settles the claim. □

Lemma 23. Let G be an Eulerian pathwidth‐7 graph that contains a degree‐2 vertex p

lying in a triangle pq q p1 2 . If G ppw( − ) = 6 and ( ′, ′) is a smooth width‐6 path
decomposition of G p− , then

(i) there is exactly one bag B ′i′ ∈ containing both vertices q1 and q2, and,
(ii) i′ is not a leaf of ′.

Proof. Suppose that G p− allows for a smooth path‐decomposition ( ′, ′) such that
there are two distinct bags B B′, ′ ′j k ∈ containing both vertices q1 and q2. This implies
that each bag on the subpath of ′ with ends j and k every bag contains q1 and q2. In
particular, a neighboring bag of B ′j , say Bj+1

′ , contains q1 and q2. The decomposition
( ′, ′) can be extended to a width‐6‐decomposition of G: Add the bag
B B B p{ }j j j+
′ ′

+1
′

1
2
≔ ∩ ∪ and replace the edge j j( + 1) in ′ with the length‐2 path

( )j j j+ ( + 1)
1

2
. This is a contradiction to Gpw( ) = 7.

We may now assume that ( ′, ′) is a smooth path decomposition of G p− such that
exactly one bag B ′i′ ∈ contains q1 and q2. Suppose for a contradiction that i′ is a leaf of
′. Let u B q q\ { , }i′ 1 2∈ . Set B B u p( \ { }) { }i0 ′≔ ∪ . We obtain a smooth path‐decomposition

( , ) of G, where B′ { }0≔ ∪ and is obtained by adding the vertex 0 and the edge
i0 ′ to ′. This is a contradiction since ( , ) is a width‐6 decomposition. □

Corollary 24. Let G be an Eulerian pathwidth‐7 graph that contains a degree‐2 vertex p
lying in a triangle pq q p1 2 . If G ppw( − ) = 6, then G allows for a path decomposition
( , ), where is a path on the vertex set n{1, …, ′} and edge set i i i n{ ( + 1): 1 ′ − 1}≤ ≤ ,
with the following properties:

(i) There exists exactly one bag Bi* containing p, both neighbors of p are also contained in
Bi*, and,

(ii) i n n{1, 2, ′ − 1, ′}* ∉ ,
(iii) for all i n i i{1, …, ′ − 1}\ { − 1, }* *∈ it holds that B B| | = 6i i+1∩ ,
(iv) B B B p= = \{ }i i i+1 −1* * * ,
(v) B| | = 8i* and B| | = 7i for all i n{1, … ′}∈ with i i*≠ , and,
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(vi) q q B{ , } i1 2 ⊆ holds only for the bags B B,i i−1* * and Bi +1* .

Proof. Let ( ′, ′) be a smooth path decomposition of G p− of width 6. According to
Lemma 23, there is exactly one bag B̃ ′ĩ ∈ with q q B{ , } ˜

1 2 ∈ . Set

B B p

B B B

˜ { } and

˜ .

i i

i i i

˜

−1 +1 ˜

*

* *

≔ ∪

≔ ≔

We obtain a path by replacing the subpath i i i(˜ − 1) ˜(˜ + 1) of ′ with the new subpath
i i i i i(˜ − 1)( − 1) ( + 1)(˜ + 1)* * * . Set

B B B B( ′\ ˜ ) { , , }.i i i i˜ −1 +1* * *≔ ∪

Now, ( , ) is a path‐decomposition of G and we may assume that it is labeled as in the
claim. Properties (i)– (vi) are satisfied by construction. □
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