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The efficiency of many chemical engineering applications depends on the surface/volume ratio of the dispersed phase.

Knowledge of this particle size distribution is a key factor for better process control. The challenge of measurements

acquired by optical imaging techniques is the segmentation of overlapping particles, especially in high phase fraction flows.

In this work, a convolutional neural network is trained to segment droplets in images acquired by a shadowgraphic

approach. The network is trained on artificial images and implemented into a droplet size algorithm. The results are com-

pared to an OpenSource segmentation approach.
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1 Introduction

Many processes in chemical engineering involve multiphase
flows, where the efficiency is often dependent on the parti-
cle size distribution of the dispersed phase. In a liquid-
liquid extraction column, a smaller droplet size has a favor-
able surface/volume ratio, which enables a higher mass
transfer but has negative effects on the column hydro-
dynamics. Due to the small droplet volume, the throughput
is limited and the risk of flooding the column increases. In
summary, there has to be a trade-off between the particle
size and column hydrodynamics during apparatus design
and in operation, where knowledge of the droplet size dis-
tribution (DSD) plays a major role in process optimization.
There are many ways to measure this distribution, e.g., nee-
dle and ultrasonic probes as well as optical image process-
ing, all with different advantages and drawbacks [1]. The
main problem of optically acquired images is the segmenta-
tion of the overlapping objects of interest to assign a diame-
ter to the droplets or particles. An often-used approach for
this task is the watershed algorithm [2], which works well
for images of low disperse phase fractions, but with increas-
ing clusters of droplets, the segmentation gets worse. This
issue can be overcome using a convolutional neural network
(CNN), like U-Net introduced by Ronneberger et al. [3].
The network was designed for biomedical cell segmentation
– a research field, where the usage of neural networks is
well-established.

In this work, U-Net is trained in a segmentation task for
chemical engineering applications and implemented into an
analysis algorithm enabling a measurement of droplet size
distributions. Different from other works, training of the
network, which is usually done on already existing database
or manually evaluated images, an approach of artificially
generated images, is used. This enables a more flexible
training of the network on different applications, with dif-
ferent demands, where no databases of evaluated images
exist. The combination of trained network and postprocess-
ing algorithm is used to evaluate the droplet size distribu-
tion in a multiphase flow of paraffin oil and water using a
shadowgraphic imaging approach known as optical multi-
mode online probe (OMOP) [4]. This imaging technique
enables an easy segmentation in low to mid phase fractions
due to their sharp contrast between particle and back-
ground. For higher phase fractions, the lack of information
between the boundaries of overlapping particles complicates
the analysis of the particle size distribution. The trained
CNN provides a solution for better segmentation in these
high phase fraction multiphase flows.
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Jan Schäfer, Philipp Schmitt, Dr.-Ing. Mark W. Hlawitschka,
Prof. Dr. techn. Hans-Jörg Bart
bart@mv.uni-kl.de
Technische Universität Kaiserslautern, Chair of Separation Science
and Technology, Gottlieb-Daimler-Straße, 67663 Kaiserslautern,
Germany.

1688 Research Article
Chemie
Ingenieur
Technik

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcite.201900099&domain=pdf&date_stamp=2019-09-02


2 Convolutional Neural Networks

Image processing tasks are of major interest across different
industries from self-driving cars to augmented reality in
industry applications. Convolutional neural networks are
designed to solve such visual tasks. Their basic applications
are image classification tasks, where a label is assigned to
objects in an image, e.g., street sign detection for cars. A
digital image represents a large matrix, where each cell is a
pixel in the image with values from 0 to 255 in a standard
grayscale image. The main idea of CNNs is feature extrac-
tion, which is achieved by convolution and pooling opera-
tions. Convolution is a linear operation, where the element-
wise product of the image matrix (tensor) and a smaller ker-
nel matrix is calculated. The information in the original
image is rearranged, using activation kernels to the feature
map. Since the kernel cannot overlap the edges of the tensor
(Fig. 1), the feature map has a reduced height and width
compared to the input. This can be overcome by padding
the edges with an extra layer. [5]

The kernels are the learnable parameter in this operation
and are adapted in the training of the network. In every net-
work layer, there can be a number of different convolution
steps resulting in different feature maps. To the output of
the convolution, a nonlinear activation function is applied,
here, the most common function is the rectified linear unit
(ReLU) operation, which is [5]:

f xð Þ ¼ max 0; xð Þ (1)

The second operation is the
pooling of the resulting feature
maps. Pooling reduces the di-
mensions of the feature maps
with no learnable parameters.
The most common method and
the one used in U-Net is max
pooling. This extracts small
patches from the feature map, for
example a 2 ·2 grid (Fig. 1) and
returns the maximum value of
this patch as output. [5]

An advantage of U-Net is that
it can produce a local segmenta-
tion. The output of the network
is a segmentation mask, which
can be used to analyze images
considering the diameter of the
segmented object. This is realized
by the network architecture of
U-Net, which consists of a down-
sampling path with n layers of
convolution and max pooling
operations. Each layer can have c
different learnable kernels (con-
volution operations). In the low-
est layer of the U-Net architec-

ture, the up-sampling path starts. In this process, the
smallest feature map is upscaled to the segmentation mask
with the size of the original input image (Fig. 2). This path
has also n layers and in each layer learnable kernels.

For programming and training the network, the Python
distribution Anaconda was used, which provides all the
needed tools via installable packages and shows very good
cross-platform compatibility. All the pre- and postprocess-
ing of the images was done using Python (v 3.6) and the
corresponding OpenCV version.

3 Image Acquisition

The setup to acquire the images from the experiments, the
OMOP [4], consists of two probes facing each other: a cam-
era (Basler AcA 1300-gm) on one side and an LED for illu-
mination on the other side. The camera uses a telecentric
lens, which means only parallel light rays are transmitted to
the imaging sensor of the camera. On the illumination side,
a plano-convex lens refracts the light emitted from the LED
into parallel rays. The advantage of this approach is that the
size of an object is independent of the distance to the
camera, as long as it is in the depth field of the lens. Also,
due to the sharp contrast between the dark projected objects
and the bright background, there is a clear segmentation
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Figure 1. Example for convolution and max pooling operation.

Figure 2. Simplified representation of the U-Net network architecture (for a detailed view see
[3]).
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between them. The setup, which was used simi-
lar in both experiments, is shown in Fig. 3. The
spacing between the two probes can be adjusted
for higher phase fractions to minimize the over-
lapping of particles.

4 Training Samples

The artificially created images, used for training,
need to represent the later acquired images in
the experiment that the segmentation is able to
work properly. Since the investigated experi-
ments involve liquid-liquid multiphase flows
with relatively small droplets, they are assumed
to be spherical. The generated images are created
by modeling the measuring volume of the
OMOP system in three dimensions. In the vol-
ume spanned between the two probes, spherical
droplets were generated and drawn onto a two-
dimensional image, with random positions and
size. The droplet size distribution for these
images is set to be log-normal distributed. Hold-
up, probe distance, mean and the variance of the
log-normal distribution can be varied. The final
images are drawn as a two-dimensional projec-
tion of the three-dimensional measurement zone. The main
idea for creating generated images with a good representa-
tion of the real experiment is similar to the feature extrac-
tion of CNN’s. Both, the generated images and the ones
acquired in the experiment are preprocessed in a way that
only the feature of interest for the segmentation task is used
as input for the CNN. Since the droplets are spherical, the
most important information about them can be represented
using the Euclidean distance transform [6] of the images.
This calculates the minimal distance of each pixel to the
next boundary pixel, in a binary image. Considering only
one droplet in an image, the point with the maximum value
of this transformation marks the center of the droplet and
the value its radius. An example of this transformation,
which was used as input for the CNN can be seen in Fig. 4a.

The following algorithm creates the images, which is used
for training the network. In a first step, a random mean
diameter m for the particle size distribution is set. The val-
ues range between m ∈ [0.1,0.3] mm, which are the expected
values for one of the experiments. The variance is assumed
to be 5 % of the mean with v = 0.05m. With these values,
the mean m and the standard deviation s of the log-normal
distribution were calculated.

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

v
m2 þ 1
� �r

(2)

m ¼ log
mffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ v

m2

q
0
B@

1
CA (3)

f xjm; sð Þ ¼ 1

xs
ffiffiffiffi
2p
p exp � logx�mð Þ2

2s2

n o
; for x > 0 (4)

Further, the phase fraction a was varied between 10 and
25 % and the probe distance from 2 to 3 mm. The droplet
size distribution, phase fraction, and probe distance were
used to create the images by filling the image with randomly
chosen circular shapes until the phase fraction in the vol-
ume spanned from image height, width, and spacing
between the virtual probes was reached. To ensure that the
network was not trained on droplets located directly in
front or behind other droplets, it was checked if a newly
created circle was within a previously drawn circle on the
image. This was done by calculating the distance between
the centers of the two circles similar to Eq. (6). Is this dis-
tance smaller than the sum of the radii, the new circle is dis-
regarded. This is necessary due to the fact that in the experi-
ment droplets in the shadow of other droplets are
impossible to detect. The circles on the images are created
in two steps. In the first step, all the circles are drawn in
white color and filled with no visible boundaries between
overlapping shapes. This image is used for preprocessing
the input to the CNN. In the second step, only the bound-
aries of the circles are drawn in black color, so that overlap-
ping circles can be separated correctly. Otherwise, the latest
created circle would obscure the older circles. This image
represents the ground truth (segmentation mask, Fig. 4b)
used as training target for the network. The network is then
trained using the distance transform as input and the

www.cit-journal.com ª 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Ing. Tech. 2019, 91, No. 11, 1688–1695

Figure 3. Optical multimode online probe setup.

Figure 4. Training sample set: a) input, b) ground truth, c) segmentation map
of the CNN.
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ground truth as target for calculating the loss function of
the training.

5 Training the Network

The database for training the network was created by split-
ting the 5000 computer-generated images with a resolution
of 1280 ·1024 pixel, which matches the resolution of the
Basler camera (AcA 1300-gm) into 496 ·496 image seg-
ments. The stride size is set to 496 pixels. Consequently,
there is no overlapping of the image segments. The database
was split into a training and a test set, with a test set size of
10 % of the total images. The used network was set to be
5 layers deep with 5 learnable kernels in each layer, which
corresponds to 7 765 442 total learnable parameters The
final training of the CNN used the stochastic gradient
descent method implemented in PyTorch [7], with a learn-
ing rate of 10–4, a momentum of 0.99 and a weight decay of
5 � 10–4. The training was done on a Nvidia Tesla K80m and
completed within two days with a loss on the test batch of
0.18.

6 Postprocessing the Output of the CNN

The final output of the CNN is a segmentation mask
(Fig. 4c) which has to be postprocessed for evaluating the
droplet size distribution. The segmentations between the
different particles are visible as darker lines in the image
and the particles are marked as brighter areas. Still challeng-
ing are areas with many overlapping particles, where no
clear segmentation could be found. Two different approach-
es were used to overcome this issue, each with different
advantages. The first uses the Canny edge detection algo-
rithm [8] to find the edges of the droplets, which are used
for the Hough circle transform algorithm to find the parti-
cle diameters. The second approach uses a threshold opera-
tion to segment the particles into single contours. A simple
approach to get the final segmentation of the droplets
would be a simple thresholding operation. In this case, the
clusters of overlapping droplets, where the predicted
boundaries are blurred in the segmentation mask, are not
clearly separated and due to the lower pixel values inside

the droplets, they might vanish from the final segmentation.
This issue is overcome by using an adaptive threshold, in
which the value for the threshold is not set globally but
locally, in a segment of the image, which strides over the
whole image. This resulted in a finer segmentation and
enabled a better separation of droplet clusters.

The resulting image (Fig. 5, segmentation image) was
then scanned, using a connected component analysis, find-
ing the contours of the separated droplets in the image. Due
to the overlapping droplets, the area of single particles is
separated, and it is necessary to find the contours that
belong together to get the diameter of the droplets in the
image. This can be seen in Fig. 5. The box marks a droplet,
which gets separated into two different contours by the
overlapping larger drop. Humans can easily find the con-
tours belonging to each other by deciding which of them
form together a circle. Here, a similar approach was used to
fit circles to the contours in the image. The corresponding
diameter to the contours was found using the minimal
enclosing circle fitted to the area. In a first evaluation step
to decide whether the fitted circle was acceptable, the area
of the contour (Ac) and the area of the fitted circle (Aci)
were compared.

R ¼ Ac

Aci
¼ Ac

pr2 > 0:7 (5)

In this work, decision threshold for this ratio R was 70 %.
All circles with a smaller ratio were disregarded. Hence,
only single droplets or droplets with a minor overlap were
fitted in the first step. The next step was to identify con-
tours, which were enclosed by the same circle. This was
done using the extreme points of all the other contours
(Pe,b, Pe,t, Pe,l, Pe,r) on the bottom, top, left, and right edges
of the areas. If the distance between the center of the fitted
circle and the extreme points of the other contour was
smaller than the radius r of the circle, the contour must lie
inside the circle.

r >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xce � xe;i
� �2 þ yce � ye;i

� �2
q

(6)

The area of the contour (Ac,n) was added to the area of
the contour Aci = Aci + Ac,n the circle was fitted to in the
first place. Subsequently, the same criteria were used for the

Chem. Ing. Tech. 2019, 91, No. 11, 1688–1695 ª 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cit-journal.com

Figure 5. Example evaluation of an OMOP image using the CNN.
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area ratio R to decide if the fitted circle was good, but with a
higher threshold value of 80 %.

7 Preprocessing the Images Captured by the
OMOP

Since the network was trained with distance transform im-
ages as input, the images acquired in the experiment needed
to be preprocessed to match the trained images. Here, the
first step was to apply an Otsu threshold to the image, to
segment the background from the particles of interest. In a
second step, again a connected component analysis was
used to get all the contours of the droplets. The center of
each droplet is in this case not segmented correctly from
the background due to light passing through the droplet.
This is corrected by redrawing all contours filled on a blank
image. Small imperfections in the acquired images were fil-
tered out in this step. After this, the Euclidean distance
transform was applied to the images and they were then
used as input for the CNN.

8 Alternative Method: Segmentation Using
Watershed

The results of the CNN evaluation are compared to an anal-
ysis of the droplet size distribution using the standard tool
ImageJ (Fiji [9]). Here, a batch processing script, using the
ImageJ Particle Analyzer, evaluates the images taken by the
OMOP probe. In a first step, thresholding of the gray scale
images will segment them into two classes of pixels. All pix-
el values smaller than a certain value become the fore-
ground. All pixel values larger than this value are declared
as background. Due to the refraction of the parallel-trans-
mitted light at the surface of particles, they get depicted
dark on the image sensor. This refraction is low in the cen-
ter of the particle, which results in a bright spot (‘‘hole’’) in
their middle. In the second step, this
hole is filled with the Fill Holes algo-
rithm of ImageJ. Spatial particle
overlays are separated with the
watershed algorithm because they are
imaged on the camera sensor as a
common surface. Image width is cor-
related with the horizontal number
of pixels for determination of droplet
distributions (1280 pixels/6.8 mm).
With the already implemented water-
shed algorithm of ImageJ and the
partial superposition of many par-
ticles, lying behind each other, it is
not possible to separate all particles
completely from each other. For this
purpose, only particles with a certain
roundness (0.7), the ratio between

minimal and maximal Feret diameter, should be eval-
uated in the automated analysis of particles. The diame-
ter of the droplets is calculated as the area-equivalent
diameter.

d ¼
ffiffiffiffiffiffi
4A
p

r
(7)

9 Evaluation of the Trained Network

9.1 Validation on Generated Images

Since the pre- and postprocessing algorithms of the images
have the potential to falsify the distribution, a first valida-
tion step was tested on generated images, where the log-
normal distribution was known. For this, the tool for creat-
ing the training images was used, but with fixed mean
diameter, phase fraction, and probe distance. The results of
the CNN were compared to the original distribution and
ImageJ evaluation. The result is shown as q0 distribution of
the different measurements in Fig. 6.

The algorithm is able to reconstruct the correct shape of
the distribution in every case with the largest deviation on
the lower end (100 mm) with a phase fraction of 10 %. Con-
sidering the mean diameter of the measured distribution,
the average error is 6.4 % for the CNN and 8.9 % for
ImageJ.

The next step in the validation process was to generate
images with a known monodisperse distribution to evaluate
the smallest detectable diameter in the setup with a 1· mag-
nification lens. The phase fraction was set constant to 10 %
and the diameter was varied from 20 to 500 mm. Due to the
resolution of the image, the measurements on smaller drop-
lets than 80 mm have a high deviation, which is above 10 %.
Droplets larger than 90 mm show a maximal deviation of
6.2 % (Fig. 7). As a result, the smallest evaluated diameter in
the experiments is set to 100 mm.

www.cit-journal.com ª 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Ing. Tech. 2019, 91, No. 11, 1688–1695

Figure 6. Distribution of generated images and CNN analysis on different mean diameters.
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In the last step of the validation process, im-
ages were analyzed manually by setting marker
points at the droplet edges. Three marker points
are then used for fitting a circle. Taken into con-
sideration were only droplets that could be
clearly segmented from clusters. A problem of
this approach and all the other measurements
were smaller droplets. With the used camera
lens, with a 1x magnification, particles smaller
than 50 mm have a radius of only 10 pixels and
are difficult to evaluate properly in the given im-
age material. To evaluate droplets in this range,
a lens with a higher magnification is needed.

9.2 Measurement in Different
Applications

The segmentation algorithm using the CNN was
tested on two different laboratory setups, a cen-
trifugal pump test rig and a mixer-settler. The
two test rigs differ from each other in their dis-
persing effect. Whereas the mixer settler consists
of a classic stirring tank unit and a settler, the
dispersion in the pump is generated by the im-
peller rotation in the pump housing. These two
experiments are executed in various DSD ranges,
due to different distribution mechanism but
using the same substances (paraffin oil/water).

9.2.1 Centrifugal Pump Test Rig

For experimental dispersion tests, a centrifugal
pump test rig was built (Fig. 8). The aim is to in-
vestigate dispersion characteristics of centrifugal
pumps installed in industrial plants. A radial
centrifugal Schmitt MPN 101 pump was used
here. The two-phase flow is investigated for vari-
ation of flow rate, pump speed, and holdup.

The two-phase flow passes a static mixer (SM)
installed in a horizontal pipe. Analysis of the dis-
persed two-phase flow resulting from the static
mixer can be made using pressure difference
sensors and an OMOP device. The fluid then
flows through the pump, before entering the set-
tler. A secondary OMOP device is integrated
into the hydraulic test loop downstream of the
test pump.

9.2.2 Mixer-Settler

The second line of experiments are acquired from a test set-
up to investigate knitted meshes as a coalescing aid in a
DN100 mixer-settler laboratory plant (Fig. 9). The two
phases, paraffin oil and water, are dispersed in a mixer. At
the entry of the settler, the DSD is measured using the
OMOP probes.

Different operating points of the centrifugal pump test rig
(B1-3) and the mixer settler setup (A1-3) were considered
in these experiments. For this purpose, flow rate, phase
ratio, and pump/mixer rotation speed were varied (Tab. 1).
The measurements of the CNN are compared to the ImageJ
and the manual evaluation of the same two images in every
experiment (Fig. 10).

The measurements from the pump test rig are in the
range of mean diameters the network was trained on.
Different to this all, the experiments in the mixer-settler

Chem. Ing. Tech. 2019, 91, No. 11, 1688–1695 ª 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cit-journal.com

Figure 7. Deviation of measured diameter on generated monodisperse distribu-
tions.

Figure 8. Centrifugal pump test rig.

Figure 9. Mixer-settler setup for investigation of knitted meshes.
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have a higher mean diameter. Nevertheless, both evalua-
tions with the CNN show a good agreement with the man-
ual evaluation of the images.

10 Conclusion and Outlook

The trained CNN combined with the algorithm for detect-
ing the droplet diameter shows good results considering the
validation with artificially created images. The deviation of
the measured mean diameter from generated distributions
is in average 6.9 %. Further, the network shows an improve-
ment on the accuracy compared to the open-source ImageJ
evaluation in the considered experiments. The mean devia-
tion for the Sauter mean diameter was 4.26 % for the CNN
and 11.4 % for ImageJ.

Main advantage of this approach is the flexibility enabled
by using generated images for training the network. This
allows easy adaption of the CNN on different segmentation
tasks in multiphase flows with spherical particles with

varying mean diameters of the distribution. The validation
showed that droplets below 100 mm cannot be detected
properly. This is due to the combination of image sensor
resolution and magnification of the camera lens. Larger par-
ticles are separated in the preprocessing step, where the
image has to be split for the input into the CNN and, thus,
are not detected correctly. This is true for particles larger
than 500 mm, which corresponds to a third of the input im-
age of the CNN. These problems can be solved partially by
using a lens with a different magnification for multiphase
flows with a mean diameter near those edges. An adaption
of this method for different multiphase systems has to be
further investigated. Of main interest are systems with a
lower surface tension, with wider DSD, and a higher mean
diameter, where not only spherical but also ellipsoidal
shapes occur, e.g., bubbly flows. Overall, training a CNN
using artificially created images on segmentation tasks
enables a flexible adaption of the approach on different
applications. In comparison to a segmentation algorithm of
ImageJ, a notable improvement in measurement accuracy
can be achieved using CNN.

We would like to thank the AiF for sponsoring our
research in the two involved projects ‘‘Effiziente Tropfen-
abscheidung an Gestricken’’ (ERNA) and ‘‘Dispergier-
und Koaleszierphänomene in Zentrifugalpumpen’’
(DisKoPump), also we would like to thank the ‘‘Regio-
nales Hochschulrechenzentrum Kaiserslautern’’ (RHRK)
for enabling us to use the Elwetrisch Cluster.

Symbols used

A [mm2] area
c [–] number of different learnable kernels
d [mm] diameter
m [mm] mean diameter
n [–] number of layers of convolution
P [pixel,pixel] point in two-dimensional space
r [mm] radius
R [–] ratio between two quantities

www.cit-journal.com ª 2019 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Chem. Ing. Tech. 2019, 91, No. 11, 1688–1695

Table 1. Listing of experiments and results of the image analysis.

Experiment Flow rate [m3h–1] Holdup [vol %] Pump/mixer rotation speed
[rpm]

Manual d32 (d10)
[mm]

CNN d32 (d10)
[mm]

ImageJ d32 (d10)
[mm]

A1 0.1 20 250 804 (563) 709 (432) 938 (446)

A2 0.15 20 300 645(436) 668 (450) 620 (376)

A3 0.15 10 250 650 (392) 645 (354) 625 (358)

B1 0.5 1 870 332 (238) 324 (233) 327 (232)

B2 0.5 5 870 384 (269) 360 (261) 394(260)

B3 0.5 10 870 406 (282) 403 (282) 465 (262)

Figure 10. Comparison of the segmentation of CNN (top) and
ImageJ watershed (bottom).
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v [–] variance
x [pixel] coordinate of a point
y [pixel] coordinate of a point

Greek letters

a [%] phase fraction
m [–] mean of logarithmic values
s [–] standard deviation of logarithmic

values

Sub- and superscripts

b bottom
c contour
ce center
ci circle
e extreme points
i component i
l left
n component n
r right
t top

Abbreviations

CNN convolutional neural network
DSD droplet size distribution

OMOP optical multimode online probe
SM static mixer
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