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ABSTRACT: Nounlinear dissipativity, asymptotical stability, and contractivity of (or-
dinary) stochastic differential equations (SDEs) with some dissipative structure and their
discretizations are studied in terms of their moments in the spirit of Pliss (1977). For this
purpose, we introduce the notions and discuss related concepts of dissipativity, growth—
bounded and monotone coefficient systems, asymptotical stability and contractivity in wide
and narrow sense, nonlinear A-stability, AN-stability, B—stability and BN-stability for
stochastic dynamical systems — more or less as stochastic counterparts to deterministic
concepts. The test class of in a broad sense interpreted dissipative SDEs as natural anal-
ogon to dissipative deterministic differential systems is suggested for stochastic-numerical
methods. Then, in particular, a kind of mean square calculus is developed, although most
of ideas and analysis can be carried over to general ‘stochastic LP—case’ (p > 1). For ex-
ample, we prove mean square dissipativity, asymptotical mean square stability in wide and
narrow sense, and mean square contractivity for fully drift-implicit Euler method for any
choice of ‘admissible’ step sizes Ay > 0. (A sequence of step sizes is called ‘admissible’
if0 < Ay < SUp,,cIN A, < +oo and Z;’Lﬁ% A, = +o00.) By this natural restriction, the
new stochastic concepts are theoretically meaningful, as in deterministic analysis. Since the
choice of step sizes then plays no essential role in related proofs, we even obtain nonlinear
A-stability, AN-stability, B-stability and BN—stability in the mean square sense for this
implicit method with respect to appropriate test classes of moment-dissipative SDEs.

AMS (MOS) subject classification. 60H10, 65C05, 65C20, 65U05

1. INTRODUCTION

Numerous applications in Natural Sciences, Engineering, Environmental Sciences and
Econometrics lead to models governed by nonlinear, but dissipative differential and
difference systems perturbed by additive or parametric random noise. The occuring
systems are often considered as systems of nonlinear (stochastic) differential and
difference equations in IR?. Therein and here, the concept of dissipativity can be
interpreted in a fairly wide sense. Roughly speaking, a dissipative system in a Banach
space E is a dynamical system (e.g. an evolution equation) which possesses a bounded
set of F into which every orbit eventually enters and remains.
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Here we want to study dissipative stochastic dynamical systems where the dissi-
pativity can be observed in terms of their absolute moments. A general classification
with respect to dissipativity, stability and contractivity and a presentation of an uni-
fied approach to qualitative analysis of (nonlinear) stochastic dynamical systems with
different time scales is the main objective of this paper. For this purpose, the related
notions and concepts need to be introduced and justified. In particular, we will ex-
amine classes of (ordinary) stochastic differential equations and related (adequate)
discretizations.

The paper is organized as follows. Section 2 commences with statement of very
general definitions of (p—th mean and uniform) dissipativity for stochastic dynami-
cal systems on time scales. In section 3 we discuss the related concepts. The p-th
mean dissipativity of absolute norm as well as of initial perturbations are proven for
stochastic differential equations (SDEs) driven by standard Brownian motions and
for their discretizations by implicit Euler methods. For this purpose we will state
nonautonomous linear variation of constants inequalities (see section 7) as natural
generalizations of well-known Bellman-Gronwall inequality. In section 4 we continue
with some refinements of presented concepts of dissipativity. So further classifying
notions are introduced: uniform boundedness and monotonicity of coefficient sys-
tems, asymptotical stability and contractivity in wide and narrow sense, i.e. notions
related to qualitative behaviour of absolute norm of state and initial perturbations
of dynamical systems as integration time ¢ goes to infinity, respectively. Section 5 is
devoted to property of asymptotical p—th mean stability for nonlinear stochastic dy-
namical systems. Sufficient conditions for mean square exponential stability in wide
and narrow sense are stated for continuous time stochastic systems. Additionally we
shall prove a new theorem concerning asymptotic behaviour of absolute norm of state
process for their discretizations (3.6). Since the obtained result will be independent
of ‘admissible step sizes’ and valid in an uniform sense with respect to appropriate
test class of nonlinear SDEs in case of fully drift-implicit Euler method (i.e. the
implicit Euler method with implicitness o = 1 taking into account only implicitness
in the drift part), one receives the properties of nonlinear (mean square) A— and AN—
stability of this method. Thereafter, in section 6, the stochastic dynamical systems
are investigated in view of initial perturbations and its propagation. For this purpose
we introduce the notions of contractivity of initial perturbations in wide and narrow
sense for stochastic dynamical systems. Mean square contractivity of continuous time
SDEs in wide and narrow sense is proven at first. Then the same property can be
verified for fully drift-implicit Euler method. Since this fact is valid for all ‘admissible
step sizes’ and in an uniform sense with respect to appropriate test class of nonlinear
SDEs, the fairly general notions of mean square B— and BN-stability are introduced
for parameterized stochastic dynamical systems in view of deterministic counterparts
(cf. Burrage and Butcher [4], [5], and related discussions of Dahlquist [7], [8], Hairer
and Wanner [13] Hundsdorfer and Spijker [16] Van Veldhuizen [42] Verwer [43]). Thus
mean square B— and BN-stability of fully drift implicit Euler method can be noticed.
For convenience, section 7 supplements the presented analysis with some linear vari-
ation of constants inequalities. A brief summary and remarks finish this contribution
to nonlinear stochastic dynamical systems by section 8.
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2. CONCEPTS OF DISSIPATIVITY ON TIME SCALES

To unify first considerations and reduce the space taken by necessary new definitions,
let T be a (completely ordered) time scale with minimum element ¢,; > —oo,
with no maximum element, but supremum +oo. For deterministic, theoretical back-
ground, see e.g. [15]. For simplicity of stochastic analysis (e.g. difficulties may arise
when considering anticipating random or stopping times), we exclusively refer to the
case of deterministic time scales (or time scales whose elements are monotone random
variables being independent of naturally underlying filtration). The most popular ex-
amples of time scales are given by T = [0, +o00) or T = {t; € R: ¢; < t;41,7 € N}
which correspond to classical time horizons of continuous time or discrete time dy-
namical systems, respectively, as occuring in numerical integration of continuous time
differential systems. Furthermore, let Xy, x,(¢)(= X;) denote the value of stochastic
real-valued dynamical system at time ¢t € I, started at value X, at time ¢y € TI. ID
is supposed to be a sufficiently large domain of IR? where the given dynamical system
is defined and which is left invariant by its dynamic mapping (a.s.). For simplicity,
we will only consider dynamical systems forward in time, i.e. we impose ¢t > ¢, (recall
the existence of a minimum element of that time scale). Let ||.|| be the Euclidean
vector norm for the sake of simplicity. (In principle other norms can be treated, but
statements and above all the conditions below will slightly change while refering to
other norms.) Throughout this paper we suppose that corresponding stochastic basis
(Q, F, (F)tew,IP ) is given with natural filtration F;.

Then the following definition — in analogy to deterministic counterpart (i.e. in the
sense of Pliss [25] and Hale [14] — can be introduced, provided that related moments
globally exist on that time scale T C IR'.

Definition 2.1 A stochastic dynamical system {X,:t € T} C D C R* is called
p—th mean dissipative (p € IR'\{0} fired) iff there exist finite positive real numbers
Tp, I, such that

limsup B X, ()P < R, (2.1)

t—4o00
for allty € T, all Xy € ID which are measurable with respect to F;, with
IFE ||X0||p < Tp .

In addition, it is said to be uniformly p—th mean dissipative (p € IR'\ {0} fized)
iff there exist finite positive real numbers 7,, R, such that

lim [E sup || Xyx,(8)|IP < R, (2.2)

t—-+oc to<s<t
for allty € T, all Xy € ID which are measurable with respect to Fy, with
IE || Xo|P < 7p.

Remark. The concept of uniform p—th mean dissipativity (2.2) seems to be a very
strong requirement in general (caused by nature of unbounded random noise). In
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fact, to our knowlege it makes only sense when the stochastic dynamical system is
uniformly bounded (a.s.). Because of this restriction in mind we do not pursue the
uniform analysis with (2.2) here. For simple examples to manifest our opinion one
may consider stochastic differential equations with purely additive noise or innovation
diffusions as in Schurz [31]. Rather we want to devote our studies to systems with
property of p—th mean dissipativity (2.1), in particular when p = 2, here. In case
of p = 2 we also term related property as mean square dissipativity. As the
(stochastic) dynamical system itself, we call the generating mapping, flow, equation,
method, scheme, solution as dissipative ones in the sense as above. That this definition
is meaningful in stochastic analysis too is an objective of this paper.

So far we have considered the absolute norm of dynamical systems and concept
of dissipativity. One can also introduce a similar characterization of temporal pro-
pagation of their initial perturbations. In doing so we meet the following convention.

Definition 2.2 A stochastic dynamical system {X,:t € '} CID C R* has p—th
mean dissipative initial perturbations (p € IR'\ {0} fized) iff there exist finite
positive real numbers r,, R, such that

lim sSup FE ||Xt0,X0(t) - Xto,Yo(t)”p < Rp (23)

t—+4o0

for allty € T, all Xy, Yy € ID which are measurable with respect to Fy, with
IE || Xol]” < +oo, E[Y,|” < +o0, IE || Xo — Yo" < 7.

In addition, their initial perturbations are said to be uniformly p—th mean
dissipative (p € IR'\ {0} fized) iff there exist finite positive real numbers 7,, R, such
that

lim IE sup || Xt x,(5) — Xtovo ()P < R, (2.4)

t——+o0 tOSSSt

for allty € T, all Xo,Yy € ID which are measurable with respect to Fy, with

IE || Xo|[” < +o0, IE[[Yo|]” < o0, IE[|Xo — Yol <7p.

Remarks. Note that concepts of dissipativity arising by both definitions 2.1 and
2.2 do not coincide in general! However, p—th mean dissipativity of norm of state
process implies p-th mean dissipative initial perturbations. This fact can be seen by
application of triangular or Minkowski’s inequality. Besides, (p+¢)-th mean dissipa-
tivity guarantees p—th mean dissipativity for p> 1,¢ > 0 — a fact which is verified by
use of Lyapunov’s inequality. For systems satisfying the requirement of dissipativity
on the propagation of their initial perturbations, see below. Systems with property
of dissipative initial perturbations can not possess exploding perturbations in p-th
moment sense on that given time scale TI'. Thus one may also speak of systems
with p—th mean controlled propagation of perturbations. The concept of
controllable perturbations has large importance in qualitative analysis of numerical
methods for continuous time SDEs (error propagation control).

As already said, we are particularly interested in examinations with respect to
dissipativity in terms of given squared norm. We have seen that there are two basic
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directions where investigations will go to, when following the definitions from above.
First, dissipativity of state evolution of dynamical systems leading to assertions on
global boundedness and asymptotical stability — in consence with definition from
above. Second, dissipativity of initial perturbations yielding some control on ‘initial
error propagation’ of those stochastic dynamical systems to be discussed.

3. MOMENT-DISSIPATIVITY OF STOCHASTIC SYSTEMS

At first, let us turn to continuous time dynamical systems governed by stochastic
differential equations (SDEs) with traditional time scale TI' = [t, +00) on determin-
istic domains ID C IR%. In statements below, if not additionally stated, let indices j
run in {1,2,...,m}.

3.1 Dissipativity of continuous time SDEs

Given (ordinary) stochastic differential equations (SDEs)

dX; = a(t, X;)dt + > V(t, X,) AW/ (3.1)

=1

where a,b’ are d-dimensional, real-valued vectors, and th represent real-valued,
scalar, independent, identically distributed, continuous time martingales with boun-
ded quadratic variation. Then one may consider th as standard Wiener processes,
thanks to the well-known and fundamental work of P. Levy. Let us do so. (In
general, one might even think about carrying over the approach to be presented
here to semimartingales Zg with some appropriately bounded variation instead of
W/.). Assume that solution of (3.1) exists in an appropriate sense, i.e. at least in
mean square (p-th mean) sense on any finite time-interval [to, 7|, and solutions are
measurable with respect to natural filtration

Fi=o{Wi:ty<s<tj=1,2,..m}.

Without loss of generality, we may suppose that system (3.1) is given in It6 interpre-
tation (Otherwise one transforms given stochastic calculus to It6 one.). For theory on
SDEs, see Arnold [1], Khas'minskij [18], Gard [12], Karatzas and Shreve [17], Protter
[26] or Rogers and Williams [27].

Theorem 3.1 Assume that T = [ty,+00) and coefficients a, ¥ of SDE (5.1) are
measurable with respect to time t € T and continuous in x € ID C IR® where domain
D is (a.s.) left invariant by this SDE.

Then SDE of type (3.1) is mean square dissipative (i.e. p = 2) if there exist locally
L'—integrable functions K (t), Ko(t) with t € T with respect to Lebesque measure on



H. Schurz: On moment-dissipative stochastic dynamical systems 6

T such that, for all x € ID, it holds

2 < zalt,z) > + SV < Kilt) + Kalt)- (3.2)

=1

where

sup 7:Kg(u) du + sup (/: K;(u) exp (/ut Ky (v) dv) du) < +o0. (3.3)

t,s€ M:t>s s t,s€ M:t>s

Proof. Apply well-known Dynkin’s formula (see Dynkin [10] or It6 formula) to
functional f(z) = ||z|?>,> € R% Define v(t) := IE || X, x,(¢)||>. Then one obtains

=1

v(t) = v(s) + /:IE l? < X, x,(u), a(u, X x, (u)) > +i 1|67 (u, Xs,Xs(U))||2] du,

thanks to assumptions of Theorem 3.1, for all ¢ > s where t,s € TI'. Under condition
(3.2) it follows

v(t) < v(s) + /: Ki(u) du + /: [KQ(u) -1E ||X3,Xs(u)||2] du .

Using generalized Bellman—Gronwall-type estimates (as in Mao [21] or variation of
constants inequalities as in section 7) one receives

t u t
v(t) < (]E 1 X|1? + / K (u) exp < —/ K;(v) dv) du) - exp (/ Ky(u) du)
for all t > s, all s € TI'. Then requirement (3.3) yields mean square dissipativity of
related SDE with dissipativity constant

R, < sup (7'2 + /St K (u) exp(— /u Ky (v) dv) du) - exp (/:Kg(u) du) ,

t,s€ M:t>s s

hence Ry < +o0. This proves Theorem 3.1. ¢

Remarks. One notices that the choice of vector norm |.|| (here Euclidean norm)
is essential for the verification of (mean square) dissipativity of absolute norm and
initial perturbations of SDEs (for latter property, see below). This fact results from
possible changings in application of Dynkin’s formula (or Ité formula). Other norms,
in general, can lead to different inequalities in Theorem 3.1, and hence to changings in
functions (or constants) K; and K, or difficulties to find efficient estimations. Thus,
for verification of dissipativity, it arises the problem to choose an efficient vector norm
under application of Dynkin’s formula (or It6 formula). This is where ‘real art’ of
presented qualitative analysis begins. Note that similar effects have been observed in
deterministic analysis.

Theorem 3.2 Assume that T = [tg,+00) and coefficients a, b of SDE (5.1) are
measurable with respect to time t € I and continuous inx € ID C IR* where domain
D is (a.s.) left invariant by this SDE.
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Then SDE of type (3.1) has mean square dissipative (i.e. p = 2) initial pertur-
bations if there exist locally L'—integrable functions Kj(t), Ky(t) with t € T with
respect to Lebesque measure on T such that, for all t € T, for all x,y € DD, it
holds

2<z-y,a(t,z)—alt,y) > + f:lllbj(t, 2) =V (Yl < Ka(t) + Ka(t) - [lx -y
(3.4)

where

sup tK4(u) du + sup (/: K3(u) exp </ut Ky (v) dv) du) < +oo. (3.5)

t,s€ M:it>sYs t,s€ M :t>s

Proof. Introduce new stochastic process (X, x,(t), X1y, () on IR** where single
components satisfy SDE (3.1) with start-values X, € R? and Y; € IR?, respectively.
Apply once again Dynkin’s formula (or It6 formula) to functional

flzy) =z —y|*z,y e R?
in order to obtain
E || X,x, () — Xov.(0)|? = E || X, - Yi|]> +

+ / [2 < Xyx, (0) — Ko, (w), alu, Xox, () — alu, Xy, (w) > +

+ Z 1 (s X, () = b (u, X, (w)[1°] du
7j=1
thanks to assumptions of Theorem 3.2, for all ¢ > s where t,s € TI'. Now, define the
expression v(t) := E || X x,(t) — X, v,(¢)||>. Under condition (3.4) it follows

o(t) < o(s) + [ Ky(u)du + [ [Ka(u) T8 X, x, (0) — X ()] ds

Using generalized Bellman—Gronwall-type estimates (as in Mao [21]) and done in
proof before, cf. also section 7 with variation of constants formula) one receives

v(t) < (U(S) + /: K3(u) exp ( = /su Ky (v) dv) du) - exp (/: Ky(u) du)

forallt > s, all s € . Then requirement (3.5) yields mean square dissipative initial
perturbations of related SDE with dissipativity constant

Ry < sup (fg + /St K3(u) exp ( - /Su Ky(v) dv) du) - exp (/: Ky(u) du) ,

t,s€ M :t>s
hence Ry < +00. This proves Theorem 3.2. ¢

Remark. The conditions (3.3) and (3.5) of Theorems 3.1 and 3.2 are trivially satisfied
if indefinite integrals over positive parts of that characteristics K, Ky and K3, K, of
dissipativity exist, respectively.

Let us turn our attention to frequently discussed discrete time stochastic dynami-
cal systems. In the following subsection we only refer to classical (deterministic) time
scales of the form TI' = {t; € IR : ¢; < ;41,7 € IN} satisfying sup, N [tit1 — | < +o0
and related discrete time systems which leave some deterministic domain ID C IR?
invariant.



H. Schurz: On moment-dissipative stochastic dynamical systems 8

3.2 Dissipativity of some discrete time systems

The previously discussed continuous time stochastic systems have a large variety of
counterparts under discretization. For examples, see [12], [19], [22] - [24], [28], [30]
- [35] and [39]. We are especially interested in qualitative behaviour of the simplest
and most used numerical methods as integration time tends to infinity. The simplest
numerical methods are performed by the family of implicit Euler methods. Their
schemes applied to system (3.1) with current deterministic step size A, = t,11—t, > 0
and (bounded) deterministic, real implicitness «, have the implicit form

Xn+1 = Xn + [an a’(tn+17Xn+l) + (1 - an) a(tnaXn)]An + V An Zb](tnaXn) 5%
Jj=1

(3.6)
where independent scalar random variables &, for example

& = (W (tus1) — W () /A (3.7)

can be considered as centered, identically distributed with normalized second mo-
ments, along given time—discretization —oo < tg < t1 < ... < tp < tpyr < ... (ie.
on related discrete time scale). Well-known members of this family are (explicit)
Euler (i.e. oy, = 0), implicit trapezoidal (i.e. a;, = 0.5, sometimes called improved
FEuler method which is also identical with midpoint method in linear autonomous case)
and implicit Euler method (i.e. o, = 1). For sake of identification, we also term
the latter method as fully drift—implicit Euler method. All these methods be-
long to the more general classes of stochastic 6—methods (for introduction, see [28]
and stochastic Runge-Kutta methods (see [19] or [39]). Note that most of the
schemes of these classes only take into account an incorporation of implicitness in
those terms carried by drift part of underlying continuous time dynamics. For our
purposes, such type of implicitness shall be sufficient. An appropriate incorporation
of stochastic-implicit terms is fairly complicated without changing stochastic calcu-
lus in the presence of multiplicative noise. For such a treatment, see [22]. Besides
‘stochastic implicitness’ shall not be necessary for the purpose of our considerations.
This fact also follows from papers [30], [32]. Thereby we do not need to consider such
representatives here.

The class of implicit Euler methods (3.6) while using random variables (3.7) pro-
vides numerically mean square converging solutions to SDEs (3.1) with convergence
order (rate) v = 1.0, under natural assumptions of growth—boundedness and Lip-
schitz continuity of @’ = &’ in space coordinate. For the class of in the wide sense
mean square dissipative and contractive stochastic systems of [t6 SDEs, one receives
the same result for the fully drift-implicit Euler methods at least. For showing this
fact one has to verify that related discretization is dissipative, nonlinearly stable and
contractive in wide sense too.

In this subsection, for sake of simplicity, we commence with analysis of implicit
FEuler method with «,, = 1 (i.e. the fully drift-implicit Euler method) with respect to
dissipativity. Other members of family of implicit Euler methods could be treated in a
similar way. One arrives at the following result concerning mean square dissipativity
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of the fully drift-implicit Euler method. Set > y_, ., ¢x = 0, no matter what c; is to
be.

Theorem 3.3 Assume that T = [ty,+00) and coefficients a, b’ of SDE (3.1) are
measurable with respect to timet € T and continuous in z € ID C IR®. Furthermore,
let domain ID be left invariant (a.s.) by implicit Euler method (3.6) with «, = 1.

Then the implicit Euler method (3.6) with o, = 1 is mean square dissipative (i.e.
p = 2) if there exist locally L'—integrable functions K&(t), K&(t), K®(t), K5(t) with
t € T with respect to Lebesque measure on T such that, for all x € 1D, it holds

<za(t,z) > < Kit) + K$(t) - ||z|]? and (3.8)
Zlnbj(t, D)2 < K'(t) + K2(t) - ||z (3.9)

where related coefficients

[2Kf(tn+1) + Kf(tn)]
il o) = R ) (s — ] 1)

[2K§l(tn+1) + Kg(tn)]
Coltn o) = SR ) s — 1] )

satisfy 1 — 2KS(tps1)(tne1 — tn) > 0 for alln € IN and

sup Z Cg(tl, tl_|_1) < 400, (310)
nke INn>k 1=k

sup Z Ci(ty, tyy1) - exp ( Z C'Q(t,,tr+1)) < 4o00.

nkeINmn>k 1=k r=l+1

These conditions on coefficients of fully drift—implicit Euler method yield the estimate

n
limsup IF || Xp41]|> < Ry < 79-exp sup ZC’Q(tl,tlH) +
ne n,keﬂV:nZk =k

n n
+ sup ch(tlatl—l—l) * €Xp ( Z 02(tratr+1)) < +oQ.
nkeINin>k 1=k r=l+1

Proof. First, rearrange the scheme (3.6) of implicit Euler methods to
Xn—l—l - anAn a(tn—l—la Xn—l—l) = Xn + (1 - an) a(tna Xn) An + V An Z b](tna Xn) 6{1 :
j=1

Square the rearranged scheme with respect to Euclidean vector norm. After taking
expectation on both sides one gets

E | Xn1ll? = 20,A0 E < Xpp1,a(tngs, Xot1) > + AL [[a(tnr1, Xng1)|”
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= IE | X,|> + 2(1 — an) A TE < X, a(ty, Xp) > + (1 — a)’A2E |la(tn, Xo)||* +

+ A, Z IE (|67 (tn, X0)||* -
7j=1
Now, take a;,, = 1 and estimate the right hand side by using requirements (3.8) and
(3.9). By this procedure one receives

Vpi1 = B || Xnp)?

S IE ||AXvn||2 + AnIE 2 < Xn+1,a'(tn+laXn+1) > + Z ||b](tnaXn)||2
j=1
< [1 + Kg(tn)An} n [QK?(th) + K{)(tn)]
Un
B [1 - QKS(th)An] [1 - QKg(th)An]
Now, apply auxiliary Lemma 7.1 (i.e. discrete version of variation of constants formula

from section 7) and Corollary 7.13 in order to obtain claimed assertions. This proves
Theorem 3.3. ¢

Ap if 1= 2K%(tai1)A, > 0.

Remarks. If positive parts of occuring coefficients C'; and Cy are zero then one even
receives mean square dissipativity of the state process with

limsup v, < ry < +o00.
nelN

Analogous results one can find for autonomously drift—implicit Euler methods
with scheme

Xop1 = X+ [ atn, Xnt1) + (1—aw) a(tn, Xn)]An + /Ay YV (t, X,) € (3.11)
j=1

which only differs from method (3.6) in nonautonomous situation. In special case
a, = 1 we also term this method as autonomously fully drift—implicit Euler
method. For analysis of this method (as in Theorem 3.3), one has to substitute
coefficients C7, Cy in Theorem 3.3 by

—t,) and

R [2K“ )+ KOt ]
Cl(tnytn-}-l) = +

[1 = 2K5(tn) (tns1 — tn)] (s

[2K3 (1) + Kb(t)]
1= 2K () (s — ta)] 1)

while requiring 1—2K$(t,)A, > 0 for all n € IN. A similar procedure can be carried
out for (nonautonomously) drift—implicit midpoint method with scheme

é2 (tna tn—l—l) =

tn tn, X, X
Xni1 = Xu + [af +12+ , +1+ + /A Zlﬂ tny Xn) &, (3.12)

for (nonautonomously) fully It6—implicit midpoint method with scheme

tnatr +tn Xpa1 + X, L :
Xo = Xo o [a(55 240 + A 300 (P X)) € (3.13)
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or for semi—implicit, linear-implicit methods and their ‘autonomously implicit deri-
vates’, etc., as well as for other sequences of implicitness (o), cIN- These refinements
are left to the interest of readership. It is worth noting that numerical methods
(3.12) and (3.13) coincide with implicit trapezoidal method in linear case with time—
independent coefficient a = a(z), e.g. a(x) = a® + Az with constant vector a® and
matrix A of underlying SDE.

To complete dissipativity analysis of fully drift-implicit Euler methods we con-
tinue with investigation with respect to propagation of their initial perturbations. In
stating assertions for discrete time dynamical systems, X,,Y,, € ID denote the val-
ues of related dynamical system at discrete time ¢, € TI, started at values X, Yy,
respectively, at initial time ¢y € TIT.

Theorem 3.4 Assume that T = [ty,+00) and coefficients a, b’ of SDE (3.1) are
measurable with respect to timet € T and continuous in z € ID C IR®. Furthermore,
let domain ID be left invariant (a.s.) by implicit Euler method (3.6) with «, = 1.

Then the implicit Euler method (3.6) with o, = 1 has mean square dissipative
initial perturbations (i.e. p = 2) if there exist locally L' —integrable functions K4(t),
K§(t), Kb(t), KL(t) with t € T with respect to Lebesque measure on T such that,
for all z,y € ID, 4t holds

<z—yalt,z)—alt,y) > < Kit) + Kit)-|lz—yl> and (3.14)
YoVt Yt yl®? < K3(t) + Kit) - |z -yl (3.15)

7j=1
where related coefficients
2Ka(tn+1) + Kg(tn)]
Cu(tp tpel) = 2K o —t, d
bt = S ) e — ] )"
(255 (tn1) + KR (ta)]
AR tor — 1
Wt = R ) (o — ]
satisfy 1 —2K$(tpi1)(tnyr —tn) >0 for alln € IN and

sup > Cu(ty, ti41) < +00, (3.16)
nkeIN:n>k 1=k

sup Y Cs(ty, ti41) - exp ( > 04(tratr+1)) < +o0.

nkeINn>k 1=k r=l+1
These conditions on coefficients of fully drift—implicit Euler method yield the estimate

n
limsup IE || Xpy1 — Yoii|* € Ry < 75 -exp sup Y Culty, tipr) | +
ne nkeINm>k 1=k

+ sup ZCS(tl,tl-i—l) + eXp ( Z 04(tr,t1~+1)) s

nke INn>k 1=k r=I+1

hence RQ < +00.



H. Schurz: On moment-dissipative stochastic dynamical systems 12

Proof. In view of a fair comparison with respect to dissipativity of initial perturba-
tions, let numerical schemes of (X)), .y and (Y,), .y be constructed on a common
probability space. First, rearrange the scheme (3.6) of implicit Euler methods to

Xnt1 — Apaltyr1, Xnt1) = X+ (L—an) altn, Xn) Ay + /AR YV (t,, X0) &
j=1

Consider this scheme for different start—values Xy, Yg, respectively. Square the differ-
ence of related schemes for X,,,Y,, with respect to Euclidean vector norm while using
the same sequences of step sizes A, and implicitnesses o,. After taking expectation
on both sides one gets

IE ||Xn+1 _}/n—H”2 - 2anAn E < Xn+1 _Yn—|—1a a'(tn—|—1> Xn—l—l) _a(tn—l—la Yn—H) > +

+ AL [la(tsr, Xns1) = @b, Y
= IE ”*Xvn_Yvn”2 + Q(I_Q’n)An]E < Xn_Yna a'(tn: Xn)_a(tna Yn) >+

+ (1= )’ A2 E |la(tn, Xn) — altn, Ya)|I> + An Y E ||V (tn, Xn) — U (ta, Ya)||*.
j=1
Now, take o, = 1 and estimate the right hand side by using requirements (3.14) and
(3.15). By this procedure one receives

g1 = IE || Xy — Yn-I—IH2
2
< EXn Yol + AuE [2 < Xpp1 — Yarr, altngs, Xns1) — altng, Yosr) >

n f: 16 (, X,) — bj(tn,Yn)HZ]

j=1
o [+EEA] 2Kt + K
Un
B [1 - QKZ(trH-l)An] [1 - QKZ(tTH—l)An]
Now apply auxiliary Lemma 7.1 (i.e. discrete version of variation of constants formula

from section 7) and Corollary 7.13 in order to obtain claimed assertions. This proves
Theorem 3.4. ¢

Ap if 1= 2K (tps1)An > 0.

Remarks. If positive parts of occuring coefficients C's and C; are zero then one even
receives dissipativity of initial perturbations with

limsup 0, < 75 < 400
nelN
for fully drift-implicit Euler method. Analogous results one can find for autonomously
fully drift-implicit Euler method with scheme (3.11). For this purpose one has to
substitute coefficients C3, Cy in Theorem 3.4 by

[2K5 (tn) + K2(tn)]
[1_2K4( )( n+l = tn)] n+1

[QKZ(tn) + Kg(tn)]
= 2K () (s — o] 1)

Ci(tn, tyi1) = —t,) and

Cultn, tnyr) =
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while requiring 1—2K§(t,)A, > 0 for all n € IN. A similar procedure can be carried
out for other (nonautonomous) implicit methods (like midpoint method) or for other
sequences of implicitness (a,), N (but this is left to the reader).

4. FURTHER CLASSIFICATION OF DISSIPATIVE SYSTEMS

The main attention in the further exposition is drawn to the case of time—independent
characteristics K; and the following classes of SDEs. However, we emphasize that this
restriction is made only for convenience and clearness of main ideas.

4.1 Linearly growth—bounded coefficient systems

Definition 4.3 A stochastic process governed by SDE (3.1) as well as its SDFE is
said to have an (uniformly ) mean square linearly growth—bounded coefficient
system (a,b) on domain ID C IR® on any finite time—interval iff there exist finite,
time—independent real constants K¢, K¢, K, Kb such that

<z,a(t,z) > < Ki + K3 - ||” (4.1)
YV < K + Ky el (4.2)
7j=1

for allt € IR, for all x € ID C IR%.
Additionally, if
2K+ K <0 and 2K§+K5<0

the mean square linearly growth—bounded coefficient system (a,®’) is called
mean square dissipative in narrow sense, otherwise mean square dissipative
in wide sense. An in the narrow sense mean square dissipative coefficient
system (a,b’) is said to be strictly (uniformly) mean square dissipative if
2K + Kb < 0.

Remarks (Existence of solutions, dissipativity, stationarity). Such class of processes
guarantees global existence of mean square solutions for SDEs. In case of additive
noise (state-independent diffusion parts »’), it additionally implies global existence
of strong solutions for SDEs in general (cf. [35]). The growth-boundedness (more
general for p—th mean) in the sense of this definition allows to find a weighted norm
of the form

IX e = sup [exp (= (IKG|+ K3+ ) (t = to)) - T | Xioxa (D]

such that the original dynamical system gets the property of (p—th mean) dissipativity
with respect to this new norm for all ¢ > 0. Besides, if ¢ = 0 and 2K¢ + K? < 0
then one receives at least dissipativity constant Ry < r5. In case of time—independent
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coefficient system (a,b’) with K¢ < 0 one may apply Khas'minskij’s stationarity
criterion which also gives the existence of a stationary Markovian solution (see [18]).
If 2K$ + K5 < 0 then one can establish the property of global dissipativity.

Corollary 4.1 Let the assumptions of Theorem 8.1 for SDE (8.1) be satisfied. Fur-
thermore, assume that coefficient system (a, ) related to SDE (3.1) is mean square
linearly growth-bounded on domain ID C IR® with real constants K& K¢ K K} sa-
tisfying 2K$ + K35 < 0.

Then the stochastic process X, x,(t) governed by SDE (3.1) is (global) mean
square dissipative on domain ID C IR with

R, < 2EI+KIL

4.3
- 2K$ + K& (43)

where [.]. represents the positive part of inscribed expression.
For the one—dimensional Ornstein—Uhlenbeck process X; € IR' (see [1]) satisfying
SDE

dX; = —cXidt + odW,

where parameter ¢ > 0, and W; (t € IR') is a standard one—dimensional Wiener
process, this estimate (4.3) turns out to be sharp with Ry = 0 /2c.

Proof. Plug in time-independent values K; = [2K¢ + K?], and K, = 2K$ + K3
into conclusion of Theorem 3.1. Then one receives the mean square dissipativity with
claimed (4.3). For Ornstein-Uhlenbeck Process X;, take K¢ = 0, K¢ = —c, K? =
o2, Kb =0. ¢

Remark. For linear, homogeneous, one-dimensional SDE driven by multiplicative
White noise with o2 — 2¢ < 0, (global) mean square dissipativity reduces to (global)
asymptotical mean square stability (i.e. Ry = 0).

4.2 A-— and AN-dissipativity

Let us classify dissipative numerical methods in view of dissipative SDEs to be solved.
For this purpose we consider the generated sequence of discrete time values X, as
stochastic dynamical system on countable, discrete time scale as discretization of
underlying continuous time scale. Recall that one speaks of an autonomous SDE
if related coefficient system (a(x),d’(x)) does not depend on time ¢t € T, otherwise
nonautonomous SDE.

Definition 4.4 A numerical method (X,), v applied to SDEs (3.1) with step size
sequences (Ap), v i called mean square AN-dissipative iff it holds

Vne N : E||Xnl? < E|X,])? (4.4)

for all nonautonomous SDEs (3.1) with in the narrow sense mean square dissipative
coefficient systems (a(t,z),b(t,z)) and for any step size sequences (An),c IV with
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Yio Ar = +oo. A numerical method (X,), v applied to SDEs (3.1) with step
size sequences (An), . v s said to be mean square A—dissipative iff relation (4.4)
holds for all autonomous SDEs (3.1) with in the narrow sense mean square dissipa-
tive coefficient systems (a(x),b (x)) and for any step size sequences (Ay), v with

Remark. In an analogous way one might think of the notion of p—th mean A(N)-
dissipativity of numerical methods or of parametrized dynamical systems.

Theorem 4.5 The autonomously fully drift—implicit Euler method with (3.11) is
mean square AN-dissipative. Fully drift—implicit Euler methods are mean square A—
dissipative.

Proof. Consider autonomously drift-implicit Euler method (3.11) with «,, = 1
and return to estimation in proof of Theorem 3.3 with coefficients C’l <0, ég <0
corresponding to autonomously fully drift-implicit Euler method. For in the narrow
sense dissipative coefficient systems, estimation in that proof reduces here to relation
(4.4). As this relation holds for all sequences of step sizes the first assertion is proven.
The second assertion is verified in a similar way. This completes the proof of Theorem
4.5. ¢

Remark. Other methods could be examined with respect to A(N)-dissipativity in
an analogous way. However, this examination is omitted here. It is clear that there
exist simple examples of numerical methods which are not A (N)-dissipative (Consider
explicit methods with step size large enough and linear systems, cf. Schurz [30]).

4.3 Monotone coefficient systems

To examine qualitative behaviour of stochastic dynamics in view of initial pertur-
bations and asymptotic stability, we introduce a further definition motivated by the
notion of monotone functions in mathematical treatment of partial differential equa-
tions (PDEs).

Definition 4.5 A stochastic process governed by SDE (3.1) as well as its SDE have
an (uniformly) mean square monotone coefficient system (a,%’) in the wide
sense on domain D C IRY on any finite time—interval iff there exist finite, real
constants K§, K$, K8 K% such that

<z—y,alt,r) —a(t,y) > < K§ + K -||lz -yl (4.5)

2 (te) =Vt y)l* < K5+ Ki- o=yl (4.6)
j=1
for allt € R, for all z,y € ID C IR%.
Additionally, the monotone coefficient system (a, &’) is called (uniformly ) mean
square nonexploding if 2K¢ + K} < 0, (uniformly) mean square monotone
nonincreasing if 2K$ + K¢ < 0,2K¢ + K? < 0 and strictly (uniformly) mean
square monotone decreasing if 2K{ + K} < 0 and 2K$ + K% < 0.



H. Schurz: On moment-dissipative stochastic dynamical systems 16

Remarks (Perturbation analysis). The first property with 2K$ + K2 < 0 yields
mean square uniqueness of SDEs in general, and strong uniqueness of SDEs in case
of additive noise on any finite time—interval (i.e. global uniqueness). The latter two
properties even imply some uniform control on mean square initial perturbations, i.e.
that they are not ‘mean square expansive’ or even ‘mean square contractive’ on any
finite time—interval.

Corollary 4.2 Let the assumptions of Theorem 8.2 for SDE (8.1) be satisfied. Fur-
thermore, assume that coefficient system (a,) related to SDE (8.1) is mean square
monotone in the wide sense with real constants K§, K¢, K8, K% and 2K{ + K? < 0.

Then the stochastic process Xi, x,(t) governed by SDE (3.1) has (global) mean
square dissipative initial perturbations with
A _ [2K3 + K3,

R, <

4.7
- 2K§ + K} (47)

where [.]. represents the positive part of inscribed expression.
For the one-dimensional Ornstein—Uhlenbeck process X; € IR' (see [1]) satisfying
SDE

dX; = —cXpdt + odW;

where parameter ¢ > 0, and W, (t € IR') is a standard one—dimensional Wiener
process, this estimate (4.7) turns out to be sharp with Ry = 0.

Proof. Plug in time-independent values K3 = [2K$ + K%], and K; = 2K? + K?
into conclusion of Theorem 3.2. Then one receives the mean square dissipativity with
claimed (4.7). For Ornstein—Uhlenbeck Process X;, take K¢ = 0, K§ = —c, K} =
0,K!=0. 0

Remark. For linear, homogeneous, autonomous, one-dimensional SDE driven by
multiplicative White noise with 02 — 2¢ < 0, mean square dissipativity of initial
perturbations follows from mean square stability of trivial solution (i.e. Ry, =0
in case of asymptotical stability). Hence, we have seen that, for bilinear SDEs with
multiplicative noise, the concepts of mean square dissipativity can coincide. However,
for example, these concepts differ when linear dynamical systems with additive noise
are considered. An illustrative example is given by d-dimensional, real-valued SDEs

m. . m +oo ;
dX, = S V() dW/ with Z/t 16 (w)|[> du = +o0 (4.8)
Jj=1°%

=1

where Wf are independent, standard Wiener processes, and t > t3. These stochastic
processes X; possess an exploding mean square evolution. In contrast to that, one
notices a constant propagation of initial perturbations with

0 < B[ Xox(®) ~ Xow@OI? = B X - Yol < 72 = Ry

as time ¢ advances. In that case (asymptotical) mean square stability does not hold,
but mean square dissipativity of initial perturbations does. This observation can also
be found for systems with inhomogeneouities in principle (thus also for ODEs).
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4.4 B- and BN-dissipativity

Numerical methods applied to SDEs with monotone coefficient systems (a, ') can be
classified further. In stating definition and assertions below, we suppose that X,, and
Y,, denote the value of one and the same numerical method with start—values Xy and
Ys, respectively. We also assume that their related second moments globally exist.

Definition 4.6 A numerical method (X,,), v applied to SDEs (3.1) with the step
size sequences (Ay), v is called mean square BN—dissipative iff it holds

VneIN : E||Xp1— Yol < E|X, - Y, (4.9)

for all nonautonomous SDEs (3.1) with mean square monotone nonincreasing coeffi-
cient systems (a(t, ),V (t,x)) and for any sequences (Ay), . v with 325 Ay = +o0.
A numerical method (Xy), v applied to SDEs (3.1) with the step size sequences
(An),c v 15 said to be mean square B—dissipative iff relation (4.9) holds for all
autonomous SDEs (3.1) with mean square monotone nonincreasing coefficient systems
(a(z), ¥ (x)) and for any sequences (Ay), . v with X325 Ay = +00.

Remark. In an analogous way one might introduce the notion of p—th mean B(N)-
dissipativity of numerical methods or more general of parametrized dynamical sys-
tems.

Theorem 4.6 The autonomously fully drift—implicit Euler method with (38.11) is
mean square BN—-dissipative. Fully drift—implicit Euler methods are mean square B—
dissipative.

Proof. Consider autonomously drift-implicit Euler method (3 11) with o, = 1 and
return to estimation in proof of Theorem 3.4 with coefficients Cs, Cy corresponding to
autonomously fully drift-implicit Euler method. For monotone nonincreasing coeffi-
cient systems, estimation in that proof reduces here to relation (4.9). As this relation
holds for all sequences of step sizes the first assertion is proven. The second assertion
is verified in a similar way. This completes the proof of Theorem 4.6. ¢

Remark. Other methods could be examined with respect to B(N)-dissipativity in
an analogous way. However, this examination is omitted here. It is clear that there
exist simple examples of numerical methods which are not B(N)—dissipative (Consider
explicit methods with step size large enough and linear systems).

Let us reconsider dissipative stochastic dynamical systems with uniform mean
square growth-bounded and monotone coefficient systems, respectively.

4.5 Estimates for growth—bounded coefficient systems

Consider stochastic dynamical systems with mean square growth-bounded coeffi-
cient systems (a,b’) on deterministic, traditional time scales T = [t;in, +00) oOT
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its discretization I = {t, : t, < tpi1,tn € [tmin, +00)} where t,;, > —oo. Then
the following two basic assertions concerning the temporal mean square evolution in
nonlinear dynamical systems come up (in p—th mean calculus analogous assertions).
These assertions are natural implications of Theorems 3.1 and 3.3, respectively, un-
der additional assumptions of mean square growth-boundedness on related coefficient
systems (a, b”). Therefore there is no extra need to prove these statements.

Corollary 4.3 Let the assumptions of Theorem 8.1 for SDE (8.1) be satisfied. Fur-
thermore, assume that coefficient system (a,b’) related to SDE (3.1) is (uniformly)

mean square linearly growth—bounded on domain ID C IR® with real constants K &, K¢
Kb, K®.

Then the stochastic process X x,(t) governed by SDE (3.1) and started at Fs—
measurable X, € ID, satisfies
exp(C’z-(t—S)) -1
Co

E|X,x,(0)I* < B|X|* exp(Co-(t=5)) + Ci- (4.10)

forallt,s € T with t > s, where

C, = 2K+ K? Cy = 2K$ + KJ.

Remarks. In case of Cy = 0 we understand the occuring expressions in (4.10) as limit
taken Cy towards zero. The obtained estimate is asymptotically sharp (i.e. as time
t tends to infinity). For verification of latter fact, consider bilinear, one-dimensional
SDEs.

Define 37;_ . ¢, := 0, no matter what ¢ is to be.

Corollary 4.4 Let the assumptions of Theorem 8.3 for SDE (3.1) be satisfied. Fur-
thermore, assume that coefficient system (a,b’) related to SDE (8.1) is (uniformly)
mean square linearly growth-bounded on domain ID C IR with real constants K &, K3,
K% K&. Let domain ID be left invariant by fully drift-implicit Euler method (3.6)
and autonomously fully drift—implicit Euler method (3.11), respectively.

Then the fully drift—implicit Euler method (3.6) and autonomously fully drift—
implicit Euler method (3.11) applied to SDE (3.1) and started at JF;, —measurable
X, € D, satisfy

n+l—1 n+i—1 n+l—1
E|[Xpul® < E|X*exp( Y k) + X ak)-exp( Y clr)) (4.11)
k=n k=n r=k+1

for all n,l € IN with | > 1, where c¢1(.) and cy(.) are coefficient sequences with

2K¢ + K?|
c1(k) == Ci(te, thrr) = m ks

[2Kg + K3
ea(k) = Colts ) = [~ g 1%

Ag =tge1 —tg, ty € T and 1 —2K$A, >0 for all k € IN.
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Remark. The coefficient sequences C1(.,.) and Ci(.,.) as well as Cy(.,.) and Cy(.,.)
for fully drift-implicit methods (3.6) and (3.11), respectively, coincide in case of uni-
formly mean square growth-bounded coefficient systems (a, %’). Thus, both numerical
methods have same mean square estimations of their state process.

4.6 Propagation of initial perturbations under monotonicity

Consider stochastic dynamical systems with in the wide sense mean square monotone
coefficient systems (a,?’) on deterministic, traditional time scales T = [t,in, +00)
or its discretization TN = {t,, : t, < tpi1,tn € [tmin, +00)} where t,,;, > —oo. Then
the following two basic assertions concerning the propagation of initial mean square
perturbations / errors in dynamical systems come up within the framework of mean
square calculus (in p—th mean calculus analogously). These assertions are natural
implications of Theorems 3.2 and 3.4, respectively, under additional assumptions of
mean square monotonicity on related coefficient systems (a, ). Therefore there is no
need to prove it extra.

Corollary 4.5 Let the assumptions of Theorem 8.2 for SDE (8.1) be satisfied. Fur-
thermore, assume that coefficient system (a,b’) related to SDE (3.1) is (uniformly)

mean square monotone in the wide sense on domain ID C IR with real constants
a a b b

Then the stochastic process X x,(t) governed by SDE (3.1) and started at Fs—
measurable X,,Y, € ID, respectively, satisfies

exp(C’4-(t—s)) -1
on
where v(t) = IE || X; x,(t) — Xy, (0)|* for all t,s € T with t > s, and where

v(t) < wv(s)-exp (04 - (t— s)) + Cj - (4.12)

Cs = 2K$+ Kb, Cy = 2K{ + K.

Remarks. In case of Cy = 0 we understand the occuring expressions in (4.12) as limit
taken Cy towards zero. The obtained estimate is asymptotically sharp (i.e. as time

t tends to infinity). For verification of latter fact, consider bilinear, one-dimensional
SDEs.

Set again >, ¢, = 0, no matter what ¢ is to be.

Corollary 4.6 Let the assumptions of Theorem 8.4 for SDE (8.1) be satisfied. Fur-
thermore, assume that coefficient system (a,b’) related to SDE (3.1) is (uniformly)
mean square monotone in the wide sense on domain ID C IR* with real constants
K$, K¢, Kb K. Let domain ID be left invariant by fully drift-implicit Euler method
(8.6) and autonomously fully drift-implicit Euler method (3.11), respectively.

Then the fully drift—implicit Euler method (3.6) and autonomously fully drift—
implicit Fuler method (3.11) applied to SDE (3.1) and started at F;, —measurable
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X,, Y, € D, respectively, satisfy

n+l—1 n+l—1 n+l—1

B[ Xpa=Youl* < BIXo=Yalexp (32 k) + 3 calk)exp (3 alr))

k=n r=k+1

(4.13)
for all n,l € IN with | > 1, where c3(.) and c4(.) are coefficient sequences with

2K¢ + K?]
c3(k) := Cs(tg, tyy1) = mAk,

2K3 + K?)
ca(k) := Cyltp, tpsr) = m k>

A =tgp1 — g, tg € M and 1 —2K{A, >0 for all k € IN.

Remark. The coefficient sequences Cs(.,.) and Cs(.,.) as well as Cy(.,.) and Cy(.,.)
for fully drift-implicit methods (3.6) and (3.11), respectively, coincide in case of
uniformly mean square monotone coefficient systems (a, ). Thus, both numerical
methods have same mean square estimations concerning propagation of initial per-
turbations (errors).

Further Remark. One could continue with reformulation of latter estimates in case
of equidistant (i.e. constant step size) or other numerical methods. Then interesting
relations involving discrete time series and number theory come up. However, this
detailed analysis is omitted here.

5. P-TH MEAN STABILITY IN WIDE AND NARROW SENSE

The traditional concepts of asymptotical stability usually refer to an equilibrium
(steady state, trivial solution, etc.) of dynamical system to be examined. These
concepts are termed as stability concepts in narrow sense in this paper. It is
of more general nature to describe the asymptotical behaviour of dynamical systems
without refering to an equilibrium solution. In concern with asymptotical stability,
we are just requiring that the related dynamics should asymptotically be declining to
zero. This fairly general concept we are calling stability concept in wide sense.
The same distinguishing by-names are used for the concept of exponential stability.
We will mostly devote the following examinations to the more general approach of
stability in the wide sense. Thus, for convenience, we may drop the additional words
‘of trivial solution’, ‘of equilibrium’, of ‘steady state’, etc. as well as ‘in the wide
sense’ in general in this section.

In stochastic analysis one has already discussed a plenty of stability concepts.
We follow the ‘p—th mean approach’ here, and, in particular, the analysis related to
second moment behaviour (i.e. mean square stability with p = 2). For this purpose
p—th moments of related dynamical system are assumed to exist globally on that
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time scale T C R' (i.e. p—th mean dissipativity of state process should be clarified
before). In stating definitions below, let ID C IR¢ be a domain which contains a open
centered ball with positive (finite or infinite) radius. We also assume that this domain
ID almost surely contains all image values of considered dynamical systems, provided
that it has started at domain ID.

5.1 Asymptotical p—th mean stability on time scales

The following definitions — in analogy to deterministic counterparts — can be intro-
duced.

Definition 5.7 A stochastic dynamical system {X,:t € T} C D C R* is called
asymptotically p—th mean stable in wide sense (p € IR'\ {0} fized) iff there
exists a finite positive real number €, such that

lim IF || X x,(@)]” = 0 (5.1)

t—4o00

for allty € T, all Xy € D which are measurable with respect to Fy, with
IE [ Xl <ep.

In addition, if constant €, can be taken as e, = 400 an in the wide sense asymp-
totically p—th mean stable dynamical system is said to be globally asymptotically
p—th mean stable in wide sense.

A stochastic dynamical system {X, :t € T} C ID C IR* is called (globally) ex-
ponentially p—th mean stable in wide sense (p € IR' \ {0} fized) iff there exist
finite, positive real numbers C1(p), Ca2(p) > 0 such that

IE | Xi,x, ()P < Ci(p) - B || Xoll” - exp ( = Calp) (t — to) ) (5.2)
for allty € T, all Xy € ID which are measurable with respect to F;, with

IE || Xo|P < 4+00.

Remarks. Since the introduction of concept of uniform p—th mean stability seems
to be a very strong requirement (i.e. contrary to nature of unbounded random noise),
we do not pursue the related approach and analysis here. For illustrative effects in
this respect, however, consider bilinear stochastic differential equations with time—
independent, purely additive White noise. We rather want to study stochastic sys-
tems with respect to property of p—th mean stability (5.1), in particular when p = 2,
here. In case of p = 2 we also term related property as asymptotical mean square
stability. As the (stochastic) dynamical system itself, we call the generating map-
ping, flow, equation, method, scheme, solution as asymptotically mean square stable
(in the wide sense as above) ones. Of course, the requirement of exponential p—th
mean stability is much stronger than that of asymptotical p—th mean stability as in
deterministic analysis.
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5.2 Exponential stability for nonlinear SDEs in wide sense

Confine to continuous time SDEs for simplicity of first considerations.

Corollary 5.7 Let the assumptions of Theorem 3.1 for SDE (3.1) be satisfied. Fur-
thermore, assume that coefficient system (a, V) related to SDE (3.1) is strictly (uni-
formly) mean square dissipative on domain ID C IR® with real constants K e K¢, K?,
K.

Then the stochastic process X, x,(t) governed by SDE (3.1) is (globally) expo-
nentially mean square stable with

C1(2) =10 and Cy(2) < —[2K$+ KJ]. (5.3)

Proof. Plug in time-independent values K; = 2K¢ + K? and K, = 2K¢ + K into
conclusion of Theorem 3.1 (or use Corollary 4.3). Then one receives the exponential
mean square stability with claimed constants (5.3).0

Remark. Consider systems (3.1) with trivial solution X = z,. In traditional stability
theory it is common to require that a(t,z,) = 0,0/ (¢, z,) = 0 for all ¢ > g, for all
7 = 0,1,2,...,m. Under these additional presumptions Corollary 5.7 also tells us
about sufficient conditions for exponential stability in narrow sense, i.e. exponential
stability of trivial solution of related dynamical system.

5.3 Exponential stability for nonlinear numerical methods
Consider families of drift—implicit Euler methods governed by (3.6) or (3.11).

Corollary 5.8 Let the assumptions of Theorem 8.3 for SDE (3.1) be satisfied. Fur-
thermore, assume that coefficient system (a, V') related to SDE (3.1) is strictly (uni-

formly) mean square dissipative on domain ID C IR* with real constants K¢, K¢, K?,
K3, and it holds

+o0

0 < Ay < sup 4, < o0, ZAk = +o00. (5.4)
nelN k=0

Then the fully drift-implicit Euler methods (Xy), . v following schemes (3.6) or

(8.11) while applying to SDE (3.1) with step size sequence (Ay), v are (globally)
exponentially mean square stable with

2KY + K&

2) =1. 2) = - 2 2
Ci(2) =1.0 and Cy(2) < 1 —2K§ sup A;’

icIN

(5.5)

and thus they satisfy
B (| Xo|?* < Ci(2) B | Xo|* - exp ( — Ca(2) - (t—1o) ) (5.6)
for allty € T, all Xy € ID which are measurable with respect to Fy, with
E || Xy]]* < +o0.
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Proof. Plug in time-independent values K¢ = K° = 0, K¢, K& with the relation
2K$ + Kb < 0 into conclusion of Theorem 3.3 (or use Corollary 4.4). Then one
receives the exponential mean square stability with claimed constants (5.5).¢

Remark. Other numerical methods can be considered as well. This is left to the
interest of readership. Since the observed fact is fairly independent of ‘admissible
sequences’ of step sizes, we obtain the following property.

5.4 Nonlinear A— and AN-stability

The properties of A— and AN—stability have attracted many researchers so far. It is
natural to prefer such numerical method which can be used without any restriction
on step size or their parameters while keeping the property of asymptotical stability,
and hence control on error propagation. The key idea originates from outstanding
work of Dahlquist. For some of his highlights, see [7], [8].

Definition 5.8 A numerical method (X,), v applied to SDEs (3.1) with the step
size sequences (Ay),, . v 18 called mean square AN-stable iff it holds

Jim B Xl = 0 6:7)
for all nonautonomous SDEs (8.1) with strictly (uniformly) mean square dissipative
coefficient systems (a(t,x), b (t,x)) and for any admissible sequences (Ay), v satis-
fying (5.4).
A numerical method (Xy,), .y applied to SDEs (3.1) with the step size sequences
(An),c v i said to be mean square A-stable iff relation (5.7) holds for all au-
tonomous SDEs (8.1) with strictly (uniformly) mean square dissipative coefficient
systems (a(x), b (z)) and for any admissible sequences (Ay), v satisfying (5.4).

Remark. In an analogous way one might introduce and think of the notion of p-th
mean A (N)-stability of numerical methods or more general of parametrized stochastic
dynamical systems.

Consider once again families of drift-implicit Euler methods governed by schemes
(3.6) and (3.11).

Corollary 5.9 The fully drift—implicit Fuler methods (Xn)nelN following schemes
(8.6) or (3.11) with admissible step size sequences (Ay), . v are mean square A— and
AN-stable.

Proof. Plug in time-independent values K¢ = K? = 0, K¢, K} under the condition
2K$ + K% < 0 into conclusion of Theorem 3.3. (Or, alternatively, take estimation
(5.6) from exponential stability). Then one trivially receives the property of nonlinear
mean square AN— and A—stability as claimed in Corollary 5.9. ©

Remark. Other numerical methods can be considered as well. However, it seems
to be extremely difficult to find nonlinear A(N)-stable stochastic methods. The



H. Schurz: On moment-dissipative stochastic dynamical systems 24

requirement of admissible sequences of step sizes turns out to be essential for efficient
estimation concerning A— and AN-stability while permitting variable step sizes.

6. MOMENT-CONTRACTIVITY IN WIDE AND NARROW SENSE

This section exhibits some results on contractivity of initial perturbations of stochas-
tic dynamical systems as time ¢ advances. We follow the ‘p-th mean approach’ here,
and, in particular, the analysis related to asymptotical propagation of second mo-
ments of initial perturbations (i.e. mean square contractivity with p = 2). For this
purpose p—th moments of related dynamical system are assumed to exist globally on
that time scale T C IR' (i.e. p-th mean dissipativity with respect to initial per-
turbations should be clarified before). In stating definitions below, let ID C IR% be a
(deterministic) domain which contains a open centered ball with positive radius. We
also assume that this domain ID almost surely contains all image values of considered
dynamical systems, provided that it has started at domain ID.

6.1 Contractivity of initial perturbations on time scales

The following definitions — in analogy to deterministic counterparts — can be intro-
duced.

Definition 6.9 A stochastic dynamical system {X,:t € T} C D C IR* is called
asymptotically p—th mean contractive in wide sense (p € R'\ {0} fized) iff
there exists a finite positive real number c, such that

lim F ||Xto,X0(t) - Xto,Yo(t)”p =0 (6'1)

t—+o00
for allty € T, all Xy, Yy € ID which are measurable with respect to Fy, with
IE || Xoll? + IE ||[Yoll” < 400, IE[[Xo = Yol <¢p.

In addition, if constant c, can be taken as c, = +00 an in the wide sense asymptoti-
cally p—th mean contractive dynamical system s said to be globally asymptotically
p—th mean contractive in wide sense.

A stochastic dynamical system {X,:t € TI'} CID C IR? is called (globally) expo-
nentially p—th mean contractive (p € IR'\ {0} fized) iff there exist finite, positive
real numbers C1(p), Ca(p) > 0 such that

IE || X1o,x0(t) = Xioyo ()P < Ci(p) - B || Xo = Yo||” - exp (= Ca(p) (t—t0) ) (6.2)
for allty € T, all Xy, Yy € ID which are measurable with respect to Fy, with

E (| Xol” + E[[Yo|]” < +o00.
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Remarks. Since the introduction of concept of uniform p—th mean contractivity
seems to be a very strong requirement (i.e. contrary to nature of unbounded random
noise), we do not pursue the related approach and analysis here. For illustrative effects
in this respect, however, consider bilinear stochastic differential equations driven by
multiplicative White noise. We rather want to study stochastic systems with respect
to property of p—th mean contractivity (6.1), in particular when p = 2, here. In case of
p = 2 we also term related property as asymptotical mean square contractivity.
As the (stochastic) dynamical system itself, we call the generating mapping, flow,
equation, method, scheme, solution as asymptotically mean square contractive (in
the wide sense as above) ones. One may also consider the concept of exponential
contractivity as the one of asymptotical contractivity in the narrow sense.

6.2 Contractivity of initial perturbations of SDEs

Let us turn our attention to continuous time systems governed by continuous time
SDEs.

Corollary 6.10 Let the assumptions of Theorem 8.2 for SDE (3.1) be satisfied. Fur-
thermore, assume that coefficient system (a, V) related to SDE (3.1) is strictly (uni-
formly) mean square monotone decreasing on domain ID C IR* with real constants
K¢, K¢ K8 KS.

Then the stochastic process Xy, x,(t) governed by SDE (3.1) is (globally) expo-
nentially mean square contractive with

C3(2) = 1.0 and C4(2) < 2K+ K]. (6.3)

Proof. Plug in time-independent values K3 = 0 and K, = 2K¢ + K} into conclusion
of Theorem 3.2 (or use Corollary 4.5). Then one receives (global) exponential mean
square contractivity with claimed constants (6.3).¢

Remarks. Consider systems (3.1) with trivial solution X = z,. In traditional
stability theory, as already noted, it is common to require that a(t,z,) = 0, ¥ (t, z,) =
0 forallt > ty, forall j = 0,1,2,...,m. Under these additional presumptions Corollary
6.10 also tells us about sufficient conditions for exponential stability in narrow sense,
i.e. exponential stability of trivial solution of related dynamical system.

Examples. Many examples can be found for illustration of asymptotically contrac-
tive SDEs. Most simple ones are provided with bilinear SDEs when the eigenvalues
of Jacobian of related diffusion matrices B’(t) are ‘dominated’ by eigenvalues of Ja-
cobian drift matrix A(¢) in appropriate manner (i.e. in terms of corresponding real
parts) for all ¢ € [ty,+00). An interesting example for exponentially mean square
contractive, nonlinear SDEs driven by standard Wiener processes W/ is given by
one—dimensional dynamics of

dXt = — [ao |Xt| . sign (Xt) +a Xt + - (Xt)2n+1] dt + Z [0';) + 0'; Xt] de (64)

Jj=1
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where 2a; — ;-”:1(0]1-)2 > 0, ag,y > 0, n € IN, and sign (z) represents the signum of

inscribed real expression. In passing we note that it has exponentially mean square
stable trivial solution X = 0 provided that additionally o7 = 0 (for all j).

6.3 Contractivity of some numerical methods

As before, we want to investigate nonlinear, fully drift-implicit Euler methods (3.6)
or (3.11) in concern with stochastic asymptotical contractivity.

Corollary 6.11 Let the assumptions of Theorem 8.4 for SDE (3.1) be satisfied. Fur-
thermore, assume that coefficient system (a, V) related to SDE (8.1) is strictly (uni-

formly) mean square monotone decreasing on domain ID C IR* with real constants
K¢, K¢, Kb K¢, and it holds (5.4)

Then the fully drift-implicit Euler methods (Xy), .y following schemes (3.6) or
(8.11) while applying to SDE (3.1) with step size sequence (Ay), v are (globally)
exponentially mean square contractive with

2K + K?
Cs3(2) =1.0 d Cu2) < — 4 4
3(2) and C4(2) < T 51 sup A

icIN

(6.5)

and thus they satisfy
E || Xni1 = Yo |? < C3(2) - B || Xo — Yol1? - exp ( — Cu(2)- (¢t - to)) (6.6)
for allty € T, all Xy, Yy € ID which are measurable with respect to Fy, with
IE || Xol[* + I ||Yo||* < +o0.

Proof. Plug in time-independent values K§ = K¢ = 0, K¢, K¢ with 2K§ + K} <0
into conclusion of Theorem 3.4 (or use Corollary 4.6). Then one receives (global)
exponential mean square contractivity with claimed constants (6.5). ¢

Since the result of our corollary is fairly independent of ‘admissible’ sequences of
step sizes A, the concepts of stochastic B- and BN—stability can be introduced and
related properties can be verified for some numerical methods.

6.4 Nonlinear B— and BN-—stability

The following notions and concepts are motivated by deterministic counterparts, see
e.g. Burrage and Butcher [3] - [5] to a certain extent. For this purpose, assume that
involved numerical methods are defined on corresponding domains.

Definition 6.10 A numerical method (X,), v applied to SDEs (3.1) and started
at Fo—measurable initial values Xy, Yy € ID with step sizes (An)nE IN s called mean
square BN-—stable iff it is mean square BN—dissipative with

lim F ||Xn_|_1 — Yn+1||2 =0 (67)

n—+0o0
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for all nonautonomous SDFEs (8.1) with strictly (uniformly) mean square monotone
decreasing coefficient systems (a(t,x),b (t,x)) and for any admissible sequences of
step sizes (An), o [V satisfying (5.4).

A numerical method (X,), . v applied to SDEs (3.1) with step sizes (Ay),, v is said
to be mean square B—stable iff it is mean square B-dissipative and relation (6.7)
holds for all autonomous SDEs (3.1) with strictly (uniformly) mean square monotone
decreasing coefficient systems (a(x),b (z)) and for any admissible sequences of step

sizes (An), N satisfying (5.4).

Remark. In an analogous way one might introduce and think of the notion of p-th
mean B(N)-stability of numerical methods or more general of parametrized stochastic
dynamical systems.

Consider once again families of drift—implicit Euler methods governed by schemes
(3.6) and (3.11).

Corollary 6.12 The fully drift—implicit Euler methods (Xn)nelN following schemes
(3.6) or (3.11) with admissible step sizes (A,), v are mean square B- and BN-
stable.

Proof. From Theorem 4.6, we know about mean square BN— and B-dissipativity
of fully drift-implicit Euler methods, respectively. Now, plug in time-independent
values K¢ = K} = 0, K§, K} with 2K§ + K. < 0 into conclusion of Theorem 3.4.
(Or, alternatively, take estimation (6.6) from exponential contractivity). Then one
receives the properties of nonlinear mean square BN— and B-stability, respectively,
as claimed in Corollary 6.12. ©

Remark. Other numerical methods can be considered as well. However, it seems to
be extremely difficult to find nonlinear B(N)-stable stochastic methods. Besides, as in
the analysis concerning AN— and A-stability, the restriction to admissible sequences
of step sizes turns out to be essential in analysis with respect to BN— and B—stability
while permitting variable step sizes.

7. LINEAR VARIATION-OF-CONSTANTS INEQUALITIES

The following lemmas have often been used in proofs before. They represent natural
generalization of the well-known Bellman-Gronwall Lemma. Define >3 ¢ := 0,
no matter what ¢ is to be. For certain relations to discrete time estimations which,
for example, might occur in numerical analysis, let T = {t, € R : ¢, < tpy1,n € IN}
with finite minimum element ¢y, with no maximum element, but with the supremum
lioo < F00.

Remark. The following estimate can be called discrete time version of varia-
tion of constants formula for linear integral inequalities, c¢f. Coddington and
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Levinson [6] for some motivation arising from deterministic, continuous time differen-
tial systems. We clearly recognize the additively separated contributions which come
from the homogeneous part and which come from the variation over the inhomoge-
neous part of considered inequality - in analogy to corresponding continuous time
situation.

Lemma 7.1 Let (v,), v be a sequence of nonnegative, finite real numbers related
to given time scale T and satisfying the estimate

Un+1 S Up - (1 + Cl(tn:tn-i—l)) + CO(tnatn-f-l) (71)

with finite values Cy(tn, tni1), C1(tn, tns1) for all n € IN along that time scale T .

Then it holds the discrete variation of constants inequality, i.e.

vnir < vo-exp (Y Cilte,trin)) + D Colte, tiyr) -exp (D2 Culti,tign)) - (7.2)
k=0 k=0 I=k+1

Proof. Via induction on n € IN. For n = 0, the assertion is trivially satisfied. Now
assume that the assertion of Lemma 7.1 has already been proven for n—1,n € IN\ {0}.
Then, from (7.1), it follows

Un+1 S Up, - €XP (01 (tna tn-l-l)) + Co(tn, t'fl-l-l) (73)

for all n € IN along that time scale TI'. Using assumption of induction and relation
(7.3) yields

n—1
Upy1 < |Up - €XPp ( > Cilty, tk+1)) +
k=0
n—1 n—1
+ > Co(th, tesr) - exp ( > Cl(tlatl-{—l)) “exp (Cl(tn: tn-f—l)) + Co(tn, tni1)
k=0 I=k+1
n n—1 n
< UO‘eXP(ZCI(tkatk+1)) + ZCO(tk:tk+l)'eXP( > 01(tz,tz+1)) + Coltn, tny1)
k=0 k=0 I=k+1

= g -exp (Z Cl(tk,tk+1)) + Z Co(tk,tk—H) - exp ( Z Cl(tl,tH—l))

k=0 k=0 I=k+1
Consequently, the validity of Lemma 7.1 has been proven. ¢

Example. The most popular example arising in numerical analysis as application of
this type of inequalities is given by the case when Cj and C; can be chosen with

A N

Co(s,t) = Co(s)- (t—s), Ci(s,t) = Ci(s)-(t—5); t>s; t,s € R

where Cy(s),Cy(s),s € IR' are absolutely integrable functions (with respect to Le-
besque measure on ]Rl). This could also be seen in previous sections to a large extent.
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Corollary 7.13 Let (vn)nelN be a sequence as assumed in Lemma 7.1. Furthermore,
assume that

n n
Vig, ter1 € T 2 Coltg, trr1) < K and limsupZeXp( > C’l(tl,tl+1)) < +00.
n=too g I=k+1

where K > 0 s an appropriate real constant.

Then it holds

+oo n n
limsup v, < wp-exp (Z Cl(tkatlﬁ—l)) + K -limsup ) exp ( > Cl(tlatl+1)) ;
n—+00 k=0 n—=+00 p—g I=k+1

i.e. ‘dissipativity’ of sequence (Un)ne IN- Moreover, if constant K <0, then

+o0 n n
lfﬂf&p v, < g - exp (kE_:OCl(tk,tkH)) + K- I}Lglggof,;eXp (l_%lcl(tz,tm)),

Remarks. The assertion of Corollary 7.13 immediately follows from lemma above,
hence there is no need to prove it here. Further refinements concerning the size
or estimates of limits as n goes to infinity are possible, but left to the interest of
readership. We have essentially made use of Lemma 7.1 in the course of previous
sections in order to examine nonautonomous systems in view of their asymptotic
qualitative behaviour.

The continuous time version of Lemma 7.1 can be obtained through taking the
limit as step sizes go to zero in variation of constants formula of that Lemma. Thus,
proof is either not needed to state additionally it. It can be called continuous time,
as before, version of the variation of constants formula for linear integral
inequalities.

Lemma 7.2 Let v(t),t > ty be a nonnegative real-valued function which is absolutely
integrable on [to, +00). Assume that K1(t), Ky(t) are absolutely integrable with

/St K1(U)-€xp(/ut Ky (v) dv) du < +oo

for all t,s with t > s > to. Furthermore, v(t) satisfies

vmgug+[mwm+fmwm@m (7.4)

for all t,s witht > s > tg. Then it holds the continuous variation of constants
inequality, i.e.

v@gv@ﬂﬂfmw@+
+ (/:Kl(u)-exp<—/suK2(v) dv) du) -exp(/:KQ(u) du) (7.5)

for all t,s witht > s > t.
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Remark. The uniform requirement ‘for all ¢,s with £ > s > ¢;’ is essential for
validity of this assertion in certain cases, cf. also Mao [21]. This uniform condition is
not necessary in Bellman—Gronwall Lemma with nonnegative kernel K,(¢). For some
linear systems, the estimates of Lemmas 7.1 and 7.2 are asymptotically sharp (i.e. as
time t goes to +00). See examples in section 4.

8. CONCLUSIONS AND REMARKS

This paper represents a trial to unified approach to the qualitative analysis of moment-
dissipative stochastic dynamical systems such as continuous time stochastic differen-
tial equations (SDEs) and their discretizations. The basic notions of dissipativity, sta-
bility, contractivity and their refinements have been introduced for nonlinear, nonau-
tonomous stochastic systems. We have essentially studied the related concepts by the
use of monotonicity arguments, as already noted by Krylov [20]. Moment-dissipative
SDEs perform a reasonable test class for the qualitative behaviour of numerical me-
thods. In particular, we have seen the ‘theoretical goodness’ of fully drift-implicit Eu-
ler method in numerical treatment of nonlinear, nonautonomous SDEs. This method
is mean square A—, AN-dissipative, B—, BN—dissipative, A—, AN—stable, contractive,
B- and BN-stable for natural test classes. Eventually, one gets a justification for
applying theses numerical methods to study the (global) asymptotical behaviour and
characteristics of nonlinear SDEs through controlled numerical dynamics.

Further detailed studies could now follow concerning qualitative (asymptotical)
analysis of nonlinear and nonautonomous stochastic systems using the same and
similar ideas as here. For example, estimation of asymptotical characteristics from
below instead of the presented estimation from above are of special interest too. This
can be carried out by similar mathematical techniques as those used in this paper.
Furthermore, a computation or estimation of the exponential growth rates of moment
evolutions is a desirable task to be solved, both within the concept of stability and
contractivity without using the classical idea of linearization (e.g. by monotonicity
argumentation, see also the forthcoming paper of the author [34] in this respect).

Many interesting questions are left open. Among them: Can one find other
A— and AN-dissipative numerical methods? Which role do linear-implicit or semi-
implicit methods play for the asymptotically adequate integration of dissipative sys-
tems? Is the midpoint method p—th mean BN-stable? Does there other stochas-
tic nonlinear AN-stable numerical methods exist (e.g. stochastic Runge-Kutta me-
thods)? What can one say about convergence of nonlinear stochastic numerical me-
thods for dissipative continuous time systems? Which rules have to be paid attention
during choice of variable step size algorithms for numerical solution of dissipative
stochastic differential equations? When do the gobal (or local) attractors of continous
time and related discrete time dynamical systems coincide? Which numerical methods
are appropriate to approximate stochastic attractors fairly accurate? How efficient
is the presented analysis in numerical integration of infinite-dimensional stochastic
dynamical systems or singularly perturbed stochastic systems?
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