W) Check for updates

|

DO 10,111 1/cgf. 13899 COMPUTER GRAPHICS forum
Volume 39 (2020), number 6 pp. 5-18

ConceptGraph: A Formal Model for Interpretation and Reasoning
During Visual Analysis

B. Karer , L. Scheler, H. Hagen and H. Leitte

TU Kaiserslautern, Germany
{karer, scheler} @rhrk.uni-kl.de, {hagen, leitte} @cs.uni-kl.de

Abstract

In order to discuss the kinds of reasoning a visualization supports and the conclusions that can be drawn within the analysis
context, a theoretical framework is needed that enables a formal treatment of the reasoning process. Such a model needs to
encompass three stages of the visualization pipeline: encoding, decoding and interpretation. The encoding details how data
are transformed into a visualization and what can be seen in the visualization. The decoding explains how humans construct
graphical contexts inside the depicted visualization and how they interpret them assigning meaning to displayed structures
according to a formal reasoning strategy. In the presented model, we adapt and combine theories for the different steps into
a unified formal framework such that the analysis process is modelled as an assignment of meaning to displayed structures
according to a formal reasoning strategy. Additionally, we propose the ConceptGraph, a combined graph-based representation
of the finite-state transducers resulting from the three stages, that can be used to formalize and understand the reasoning process.
We apply the new model to several visualization types and investigate reasoning strategies for various tasks.

Keywords: information visualization, visualization, scientific visualization, visual analytics

ACM CCS: ¢ Human-centred computing — Visualization theory, concepts and paradigms, ¢ Theory of computation —
Automata extensions, Transducers, Theory and algorithms for application domains

1. Introduction to take into account. It is important to understand which parts of a
visualization can be understood by means of the appropriate tech-
nical skills and provided information (e.g. a legend), and which
aspects require domain-specific knowledge. The goal of this pa-
Consider the chart given in Figure 1 (left). Its interpretation per is to provide (1) a formal model that captures the information-
will strongly depend on the observer’s experience and background and knowledge flow in the visual design- and analysis process and
knowledge: A five-year old child may state that they see multiple (2) a visual representation of this model that supports the analysis,
lines starting from the same point and that one of the lines has beads understanding and communication of the reasoning process.
on it. They may also recognize text that they cannot read yet. An
adult with chart literacy may be able to tell that this is a line chart that
tells how speedup changes with the number of processes. A statis-

Every insight to be obtained from a visualization is subject to the
viewer’s ability to perceive, recognize and interpret what is shown.

The first question that arises is how we can arrive at such a model
that describes the interpretation and reasoning process about a visu-
alization. First, we need to subdivide the process into the key stages.

tician will comment tbat they observg linear dependence between Mackinlay, Wilkinson and others [Mac86, WW10, TGOA15] ex-
the dependent and the independent variable and a parallel program- plained the creation and reading of visualizations as an encoding—

mer will be delighted that they wrote an optimal parallel program. decoding mechanism, where the encoding maps data to its graphical
All observer§ get thf: syntactically same information. Nevertheless, representation and the decoding is the capability of viewers to prop-
Fhey draw w1de.31y.d1fferent .conc.lusmns f.rom the presented figure, erly understand what they see in the graphical display. In our model,
i.e. the semantic interpretation is very different. As stated above, the encoding is a visualization pipeline that maps data to a (poten-

this orlgmz.ltes from tl}e obser.vers varleq bac.kgrf)unds, .eXperlences tially interactive) visualization. The decoding is the recognition and
and analysis perspectives which we, as visualization designers, need

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

https://orcid.org/0000-0002-1311-837X
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fcgf.13899&domain=pdf&date_stamp=2020-02-28

6 B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

11{ Linear

Actual —e—

Speedup

<«—— shows
parallel <— for <— speedup \
program

+
> speedup

chart \ .

canvas —» mapping —» scales —> axes —» —> line chart /)
" \ linearly
/ / - —> correlated
i l depicts variables
2 e
1 data ———— > mapping —> line glyph linear optimal
0 — - - - correlation speedup

) 1 : 3 N S 6 ’ L] % 10 11 12
Number of Processors

Figure 1: Visualizing the reasoning process: (left) the interpretation of the speedup diagram strongly depends on the observer’s background
knowledge; (right) the ConceptGraph illustrates the information flow during visualization generation (blue nodes) and chart interpretation
(orange nodes). The reasoning process is modelled using situation semantics and knowledge representations such as ontologies.

interpretation of relevant structures within the visualization which
then form the input for the reasoning strategy.

As we have seen in the introductory example of the speedup chart,
a chart’s interpretation is highly context sensitive. In general, this
is highly difficult to model. Hence, we restrict our model for the
reasoning strategy to pre-determined rules represented, for exam-
ple, as an ontology or an inference network. Such knowledge for
visualization interpretation is provided, for example, through the
framework of data visualization literacy (DVL) [Borl6, BBG19,
Woml5]. DVL provides us with a hierarchical typology of core
concepts in data visualizations, their interpretation and an assess-
ment strategy for users to quantify their DVL. In this sense, DVL
provides us with a pre-determined reasoning strategy modelling
inference and interpretation rules to be applied by the (literate) ana-
lyst. Such knowledge has already been integrated in several systems
to design better visualization defaults and make recommendations.
Examples are ShowMe [MHS07] and Draco [MWN*19]. Applying
such knowledge to novel visualizations has been researched by Lee
et al. [LKH*15], which makes our model extendable to new types
of visualizations as well.

Aggregating these considerations, the formal model we propose
requires three components:

1. Encoding: A description of the visualization’s generation.
Decoding: A specification of the structures read from the visu-
alization.

3. Interpretation: A model for the interpretation and deduction
scheme specifying the reasoning strategy.

As we want the model to be actionable, all three processes must
be executable. This means that the visualization generation model
should be capable of processing actual data into a visualization
and the reasoning strategy should somehow process the structures
assumed to be read from the visualization in order to determine
the meaning to be assigned to them in terms of semantic informa-
tion. This is achieved by modelling the processing of data and its
interpretation as a system of coupled automata such that the visual-
ization, the structures being read from the display and the semantics
assigned to them can be described in terms of formal languages.

Modelling the processes as the generation of a formal language,
additionally allows us to assess the reasoning process’ complexity
and thus enables the user to identify potential optimization of the
visualization such that a simplified reasoning strategy is supported.

In summary, we make the following contributions:

® We present a formal model for the reasoning process about a
given data visualization.

® We detail its construction using concepts from grammar of graph-
ics for encoding, DVL for decoding and situation semantics for
the semantic analysis.

® We unify all concepts in a coherent framework and explain the
modelling of the transitions between the three aspects of visual
understanding.

® We present the ConceptGraph, a graph-based representation of
the framework that eases its understanding, analysis and com-
munication.

2. Related Work

As detailed in the ‘Introduction’, visualization interpretation is a
multi-stage process: encoding, decoding and reasoning. The model
we present covers the encoding—decoding interpretation aspect of
this information communication problem, and many fields of re-
search have been concerned with the various aspects of this prob-
lem. The most important ones for our work: grammars for graphics
as representations of encoders (Section 2.1), low-level decoding
through visual literacy and the respective knowledge representa-
tion (Section 2.2) and alternative models considering semantics in
visualization (Section 2.3).

2.1. Grammars for graphics

As most visualizations nowadays are generated through automa-
tized process or at least aided by appropriate languages that in-
tegrate hierarchical typologies and semantic interpretations of ag-
gregate structures, we can more easily model the decoding phase.
The earliest examples of such languages are R [IG96] and gg-
plot2 [Wic09] for statistical data analysis and chart generation that

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis 7

integrate pre-designed charts that can be adjusted using parame-
ters. A component-oriented approach was presented in the various
grammars of graphics: the grammar of graphics [Will2], a lay-
ered grammar of graphics [Wicl0] and the stochastic grammar
of images [ZMO06]. Declarative languages such as D3 [BOH11],
Vega [SRHH15] or Atom [PDFE17] extend these concepts integrat-
ing high-level concepts such as scales or axis and interactive ma-
nipulation of the visualization. Most of these languages target users
with varying levels of expertise and use highly descriptive names
for the concepts in order to indicate their respective semantics. Mei
et al. [MMWC18] provide an overview of declarative systems and
propose design spaces that summarize different design patterns in
those languages which provide extracted knowledge for theoretical
models such as ours.

We will use Vega [SRHH15] as reference graphic language in
this paper to illustrate the concepts. Vega is a visualization gram-
mar for interactive visualization designs. It is build on top of D3
and generates web-based views using the HTML canvas or SVG
[Veg19]: We chose Vega as it is a widely accepted graphic language
that includes many of the important concepts and gives a good level
of abstraction. Examples are provided online and can be tested in
the online editor [Veg19]. Limitations will be discussed later (We
only look at charts so far, only things that can be shown in SVG,
recomputation after each interaction, and so forth).

2.2. Semantic analysis of visualizations and influence of tasks

Petre and Green [PG93] report evidence that understanding visu-
alization is unlikely a native ability of humans but can be learned
and is supported by the DVL framework [Borl6, BBG19]. Find-
ings like this indicate that cognitive load and other human factors
might actually be the expressions of the process underlying the un-
derstanding of graphical displays and the reasoning about them.
Hence, there must be a collection of mappings between the graph-
ical display, how it is understood by a viewer, the viewer’s tool set
for reasoning about the presentation and the data and phenomenon
being represented by the graphical display. Towards this direction,
Vickers et al. [VFR13] propose a theoretical framework for the
process of reasoning with visualizations based on category theory
and semiotics. Explicitly taking into account perceptive and cogni-
tive abilities as well as knowledge, they are capable of describing a
number of effects commonly observed in visualization applications.

There is also an increasing corpus of literature on the under-
standing of diagrams. For example, Elzer et al. [EWCHO04, ECD06]
investigate models to capture the intended message of information
graphics. Their approach determines an action plan the designer
intends the viewer to follow when working with the visualization.
Yet, their work is focused on perceptual aspects while we are more
interested in the cognitive aspects combining several messages the
graphical representation communicates into more complex conclu-
sions. Other research concentrating on the extraction of higher level
information from graphical depictions concentrates on the reading
of structures like sets of points, chains of edges in node-link dia-
grams and the like [GWK93, MRGTBDOS, TSK12]. In this work,
we refer to such structures as graphical contexts. Although they play
an important role in the model we propose, the focus of this work is
not their identification and recognition but rather their interpretation

with respect to the general investigative context the visualization is
being viewed in. On the foundational level, Coppin discusses the
highly important question what actually constitutes a graphical ele-
ment and causes the viewer to recognize it as a carrier of meaning
rather than simply another part of a picture [Cop12]. Again, such
a fundamental discussion would exceed this paper’s scope by far.
Yet, the question what constitutes a graphical element should be
kept in mind when following our discussion of how structures in
visualizations are interpreted.

The second aspect that influences the semantic interpretation is
the analysis task at hand. The assignment of meaning in human vi-
sual information processing is performed in short-term memory by
mapping the observation to learned structures in long-term memory
[Kos89]. In general, deriving global information such as trends and
patterns from the data triggers different and more complex cognitive
processes in the human brain and is harder than locating information
that can simply be read off [GWKO93]. This is already reflected in
Bertin’s distinction between presentation and layout and Rensink’s
triadic architecture for the description of visual data representations
[Ber83, Ren00]. The three-level model is supported by experimental
data gathered by Ratwani, Trafton and their colleagues in a series
of experiments [TTO1, RTBD04, TMMTO02]. In a series of user
studies on information visualization, they found three categories of
insight to be obtained according to the difficulty users experienced
in obtaining these insights. The first level is concerned with under-
standing the presentation itself. The second level reveals relations,
patterns and trends depicted in the visualization.

The third category is the inference of additional information based
on reasoning about the obtained information with the help of user
knowledge external to the visualization.

From a task perspective, Nazemi and Kohlhammer associate the
first category with search tasks, the second with exploration and
the third with the actual analysis process [NKH*14]. A particu-
larly interesting finding in this direction has been reported by Smuc
et al. who found in a user study that while insight about the data
could only be generated after the viewers obtained insight about
the visualization, they only needed to understand those parts of the
visualization they actually applied for their reasoning [SML*08].

2.3. Models for the reasoning strategy

Such structuring of visualization knowledge extraction has been an
active field over several decades, and several models of visualiza-
tion structure and content have been proposed in order to define
the structures the reasoning is actually performed on and how the
structures perceived in a visualization are interpreted.

Early research focuses on low-level processes that are close to
the data. Typically, they apply algebraic, information theoretic or
other formal constructions to describe visual encodings. Examples
date back to Mackinlay’s presentation tool [Mac86] and Wilkinson’s
grammar of graphics [Wil05]. More recent representatives of this
category are the visual embedding of Demiralp e al. [DSK*14], the
algebraic design process by Kindlmann and Sheidegger [KS14] and
Tominski’s event-based approach [Tom11]. The theory presented in
this paper touches this direction by formalizing a model of infor-
mation content and how this information is mapped to the graphical

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

8 B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

elements composing the visualization. Otto and Schumann propose
a model similar to the one presented in this paper, in that, it at-
tempts to combine data wrapped into information objects [CG02].
Doleisch et al. develop a feature description language to interac-
tively define features of high-dimensional data based on the user’s
interest [DGHO3].

Modelling the reasoning strategy essentially as a collection of
objects and their relations, our approach formalizes relevance by
reachability in an ontology-like structure rather than by defining
relevance functions. The second direction of theory is the develop-
ment of general frameworks of visualization design. Typical rep-
resentatives of this direction are high-level models that either aim
to support the visualization expert directly by providing feedback
or guidance (e.g. [AS13, SASS16, SSL*12]) or model the design
process as a whole (e.g. [SSL*12, Mun09]). The theory proposed in
this paper is more low level but can also be applied as a design tool.
Examples for possible applications are the assessment whether a vi-
sualization supports the solution of a given task or finding possible
optimizations towards more efficient reasoning.

3. Methodology

As stated earlier, the modelling of chart interpretations requires
three steps: encoding, decoding and interpretation. Encoding and
its visual representation are detailed in Section 3.1. Decoding and
interpretation are closely coupled and are treated in Section 3.2.
Section 3.3 presents the ConceptGraph, which is a graph-based
representation of the information flow in these two processes.

3.1. Encoding: Information obtained from a visualization

Modern declarative graphics languages provide a high level of ab-
straction as they incorporate key concepts of visualization design.
This enables us to derive the information contained in the visualiza-
tion from its declarative description. Towards the incorporation of
this knowledge, we need to understand the grammars of such declar-
ative languages (Section 3.1.1), turn them into a formal automaton
that has a graphical representation (Section 3.1.2) and think about
an abstraction level for compound graphical objects (Section 3.1.3).

3.1.1. Syntactic description of visualizations

Consider for a running example Figure 2 which presents a line
chart along with a compact representation of the Vega code from
which it was created. We see that the Vega syntax already provides
a lot of semantic information. It comprises components that define
the data, scales, axes and marks. References between the entities
are given in textual form, for example, marks are drawn for each
data point and as multiple datasets may be specified, the interpreter
needs to know which one is considered. The respective reference is
provided by means of a textual entry in the ‘from’ field. To identify
the relevant structural units in a chart and their interdependence,
we need to formalize Vega’s grammar. The grammar of Vega is
provided through the API and we will summarize key concepts and
relevant structures.

In this work, we consider a visual representation as a descriptive
language, referred to as a visual language Ly that is commonly

generated by a grammar G(Ly) = (N, Ty, Sy, —A>), where N is a set
of non-terminal symbols, 7y is a set of terminal symbols, Sy is a

start symbol and 4 are production rules. The production rules for
Vega in EBNF notation take the following form:

Sy = {“schema” : URL, (Canvas), {(Data), {Scales), (@))]

(Projections), (Axes), (Legends), (Marks)} 2)
Data ::= “data” : [||Dataset||] 3)

Dataset ::= “name” : Name, (Source|Url|Values) @)
Marks ::= “mark” : [||Mark]||] ®)

Mark ::= {Type, From, Encode} (6)

nl «

area

Type ::= “type” : (“arc 7| “image”| “line”|...) (7)

The first line (1) gives the general structure of a valid chart de-
scription. The description is enclosed by braces and starts with the
specification of a schema. Optional components (marked by (-)) are
canvas descriptions, definitions of data, scales and projections, as
well as descriptions of axes, legends and marks. If the user wants to
specify data (line 3), they have to start with the field name ‘data:’
and may provide multiple datasets (indicated by || - ||). Each dataset
needs a name and exactly one specification—either source, url or
values. A definition of a mark (line 6), in contrast, requires the
specification of three properties (type, from and encode).

3.1.2. From grammars to graph-based representations

A grammar can be used to verify that a given text is syntactically
correct, i.e. in our case, we can check if a given specification is
a valid description of a visualization in Vega or not. For context-
free grammars, as occurred in most programming languages, this is
commonly done by converting the input to a syntax tree. The root of
this tree is the start symbol of the grammar. Inner nodes are the non-
terminal symbols. Leaf nodes are the terminals and tokens. Edges
are defined by the production rules. The syntax tree for the first level
of the line chart code is given in Figure 3. The pink edges indicate
that data from a source node is used by the target node, e.g. scales
need to know about the canvas’ width and height. To model our data
flowchart, we remove all forward edges, visually these are shortcuts
to nodes, e.g. the edge between start and marks and re-layout the
graph (Figure 3, right).

Vega already uses the concept of a dataflow graph to represent
data transformation and information flow during the chart generation
process.! Vega’s dataflow graph, however, strongly concentrates on
the internal operations from which we want to abstract. Hence, we
chose the syntax tree approach on the specification file.

One aspect that is not yet modelled in the graph representation of
the visualization are data processing and transformation operations.
Consider the definition of a scale which describes the mapping from

Uhttps://observablehq.com/@vega/how-vega-works

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

65 1 { "$schema": "https://vega.github.io/schema/vega/v5.json",
60| 2 "width": 500,
55+ 3 "height": 400,
50 4 “data": [
45 5 ® { "name": "table", "values": [{"x": @, "y": 20},
40 15 1},
35 16 “scales": [
17 {"name": "x", “"type": "point", “range": "width", “domain": {"data": "table", "field": "x"}},
30 18 {"name": "y", "type": "linear", "range": "height", "domain": {"data": "table", "field": "y"}}],
25+ 19 “axes": [
20 20 {"orient": "bottom", “scale"
154 21 {"orient": "left", "scale": "y"
10| 22 “marks": [
5 23 {"type": "line", "from": {"data": "table"},
0 24 "encode": {"enter": {"x": {"scale": "x", "field": "x"}, "y": {"scale": "y", "field": "y"}}}}]
0 1 2 3 4 5 6 7 8 9 25}
Figure 2: Line chart created using Vega: the Vega code (right) describes the relevant syntactic components of a line chart (left).
(:i 1 2 3 4 5 6 7 8 9
start start Time (days)
// ; \\‘ /N Ty Trera—r
canvas data | P scales P axes marks canvas data
W i / Figure 5: Same graphical elements, different meaning: The same
set of graphical elements is combined in two different ways. Top:
scales structured spacing and annotation of tick marks indicates an axis;
—> Edge induced by the grammar bottom: sorted arrangement of the same elements with no inherent
—— Edge induced by a reference i

axes marks

Figure 3: Graph generation process: (left) the syntax tree for the
first level of the code in Figure 2 including edges that are induced by
references, (right) deleting forward edges gives the data flowchart.

/y canvas —> —>» scales —>» axes

start

S

data |——» ——> line glyph

Figure 4: Dataflow graph of the line chart: nodes represent states,
arrows production rules. The start node is coloured in grey, classes
and concepts in blue and blue-orange nodes encode visual elements.

data units to image coordinates and that are used to position axes
and marks in the visualization. We have already seen that the inter-
preter needs information from the canvas and the data in order to
create the scales. From the canvas, it needs the width and/or height
of the targeted visualization and from the data the ranges of the
target variable. Using this information, a mapping function between
the two variables (data value — image position) is computed. Simi-
lar considerations hold for marks where image point locations have
to be computed. To communicate such complex computations that
may be relevant for the interpretation and understanding process,
we augment the flowgraph with additional glyphs for transforma-
tion and filter operations. The final dataflowgraph for the linechart

meaning.

example is given in Figure 4. A legend of structures in the flowgraph
is provided in Figure 8.

3.1.3. Graphical sentences and contexts

The current design of the flowgraph using Vega as an input legend
already provides a high level of abstraction and interpretation of the
visualization. For example, we readily obtain a node for complex
visual structures such as an axis or a pie chart. More difficult to
handle are manually constructed aggregate structures like a boxplot
that is not (yet) integrated in the language. To handle such aggregate
structures or the combination of multiple views, we need to define
the concepts of graphical sentences and contexts.

Aggregate structures are commonly constructed using simpler
primitives such as points, lines and text. Often the combination of
a set of graphical elements provides more meaning than the sum
of its pieces. The meaning of a set of symbols, its semantics, has
been learned in life and is often understood as common sense and
no longer explained. Take, for example, the two sets of graphical
primitives in Figure 5. While the upper configuration of graphi-
cal elements can be easily recognized as an axis, the lower one is
simply an ordered collection of the same set of graphical primi-
tives. In the lower case, users can recognize the sorting, but do not
associate specific semantics with the set of graphical elements. In
the upper case (axis), most users learned that a straight line with
tick marks and associated numeric tick labels refers to a quanti-
tative scale, and that the label close to this structure refers to the
name of the encoded variable—here Time. Users can also deduce
from experience that the text in braces ‘(days)’ refers to the unit
of the encoded variable. All this information is not explicitly given

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

10 B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

@ v Wilster

Figure 6: Traffic signs in Germany: Depending on the type of reg-
ulation and the possibility to represent it, the interpretation of the
signs varies in difficulty.

in the chart, but was learned and constitutes common chart literacy
[BBG19].

In our flowgraph, we have already used such abstracted nodes
that contain multiple graphical primitives and form a more complex
object, namely, axes and line glyph in Figure 4. Formalizing such
abstracted concepts and including them in the flowgraph is important
as the goal is to concentrate on semantics and not pure data flow.
In a visualization software, knowledge is explicitly encoded and
commonly classes are named accordingly. This knowledge shall be
represented and reused in the flowgraph.

We distinguish two types of aggregate structures that may occur:
graphical sentences and graphical contexts. Graphical sentences
originate from syntax, i.e. the systematic layout of the constituent
pieces is defined by the visualization software and is fixed apart
from aspects that can be manipulated through parameter changes. A
graphical context emanates purely from the position of the graphical
primitives after rendering and requires manual interpretation. Ex-
amples are clusters and outliers in scatterplots or periodic patterns in
a temporal visualization. These features have not been stored in the
visualization code, but need to be recognized by the viewer. Rep-
resentations of graphical sentences and contexts in the flowgraph
can be distinguished by colour. As the semantics of graphical sen-
tences are included in the code, we colour the representing nodes
blue. Graphical contexts require human reasoning and hence, are
coloured orange.

3.2. Modelling the reasoning process

In the previous section, we discussed which information is encoded
in a visualization and can be seen by an observer. The flowgraph
also contains the dependency structure of the different graphical
sentences that a user has to (at least in part) understand in order
to understand a given visualization. In this section, we continue
with the reasoning about graphical contexts and start with an ex-
ample from daily life—interpretation of traffic signs in a given
situation.

Figure 6 depicts multiple traffic signs that provide instructions
or information to road users [Uni68]. The upper row depicts three
triangular signs with ared boundary and different signs in the centre.

The lower row depicts a circular sign, a give way sign and a town
sign. Interpreting the signs poses varying levels of difficulty. If the
observer is not familiar with traffic signs at all, they probably have
a hard time interpreting them correctly. This is because some of
the encoded information is literal, some is metaphoric, and some
is conventional [Eng02]. Literal signs feature physical or structural
similarity to the real object like the pedestrian. Metaphoric signs are
based on an analogy between the sign and the real phenomenon like
the windsock representing wind. Conventional signs often lack this
clear connection and seem to be arbitrary like the cross for crossroad
or the shape of the signs. From these interpretations, the observer
may deduce that the signs are related to the respective hazards or
situations (pedestrian, wind, crossroad). The precise interpretation
requires another piece of information, namely, the conventions for
sign shapes and colouring. According to the UN convention on Road
Signs and Signals [Uni68], eight convention classes exist. Class A
represents danger warning signs and is represented by an equilateral
triangle with one corner at the top (top row of Figure 6). Class B
represents priority signs and its representation is an upside-down
triangle (give way sign, bottom row centre). Prohibitory signs are
represented by circles (first sign in the bottom row). Combining
these two pieces of information gives the observer a good access
to the interpretation of road signs, even some that they may have
never encountered before. For example, a triangular sign pointing
upwards with a cow in the centre means ‘potential hazard of cos on
the road’. A cow in a circle means that one is not allowed to herd
kettle on the road.

3.2.1. Situation semantics

Now that we have a basic understanding of the conventions in traffic
signs, the question arises how we can formalize this interpretation
and transfer it to a wider field of applications in visualization that
may not have such rigid and well-defined interpretations. We pro-
pose the application of situation semantics [Dev06] as a formalism
to encode semantic interpretation of visual information. Situation
semantics has originally been introduced in the context of natu-
ral language processing where the meaning of a spoken sentence
strongly depends on the speaker’s context, i.e. where they are, to
whom they talk, what they know about the world [BP83, Bar86].
Similarly, a viewer’s capability of understanding and applying vi-
sualization depends on personal factors such as educational back-
ground and expertise, as well as data-related factors like the domain
of interest or a given analysis question to be answered [BBG19,
LS10]. To demonstrate the fundamental concepts, we again start
with the formulation of traffic sign interpretations using situation
semantics and then move on to charts.

The smallest carriers of information in situation semantics are
infons. Infons are of the form «A, X, » where A denotes a type
or relationship name, X is a number of subjects and objects whose
states of affairs the infon expresses and the polarity 7 € {0, 1} in-
dicates whether, in the currently observed context, the expression
encoded by the infon holds or not. In this paper, we use a restricted
form of situation semantics and allow only infons of the forms
«A, x, m», and «r, x, y, 7». The former type encodes the informa-
tion that an entity x is of some type A while the latter encodes a
relation r between two entities x and y.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis 11

In this way, we can define that if certain properties for a sign x
hold, this is a danger warning sign:

(«upward equilateral triangle, x, I»A
«white ground, x, 1»A

«red boundary, x, 1») — «danger warning sign, x, 1».

What we also see in this example is that infons can be used as lit-
erals in logical predicates and functions and can be used to define
more complex objects using constraints. They are called constraints
because they constrain the possible combinations of objects by im-
plementing an implication of the form

a=.b:=(«A,a, I»A«r,a, b, 1») - «B, b, 1»,

which translates into: If a is of type A, and a and b are in relation
r, then b is of type B, which may represent, for example, ‘a is a
warning sign’ and ‘b is the central glyph of a’, hence, ‘b is something
traffic participants are warned of’. If required, constraints can also
be subject to a condition involving further background information.
Sometimes it is useful to define alias terms allowing to refer to
complex structures by a more simple notation. In the above example,
the implication establishes a relation determining that whenever
some object x is a warning sign, it must be an upward-pointing
equilateral triangle with a red boundary on a white background.
Expressing this information as an abstract type

WarningSign := [x|S | «upward equilateral triangle, x, I»A
«white ground, x, I»A

«red boundary, x, 1»]

allows to introduce danger warning signs into a context S by sim-
ply declaring S |= «WarningSign, x, 1». In situation semantics, this
process is called type abstraction. Types denote the regularities or
commonalities shared by objects or situations [Dev99]. Thereby,
it specifies an abstract collection of features that all instances of
this type have in common—much like classes in object-oriented
programming. We distinguish object types (obj) and situation types
(sit):

obj := [x|S |= properties of x]

sit := [S|S [= object instances and relations].

The restriction S = means that we bind our expressions to a
certain situation S determining the context the current observation
resides in. A viable situation for the traffic sign case is, for exam-
ple, ‘Someone takes part in traffic and sees a traffic sign’. In the
context of a different situation, the meaning encoded by infons can
be entirely different. As an example, consider a situation ‘kids are
drawing their homes and families’, where the red triangle instead of
atraffic sign represents the roof of a house. A situation expresses the
context according to which the meaning of the objects, that are ob-
servable within the situation, is determined. Therefore, it describes
the states of affairs between those objects. Like object types can
be obtained from objects, situations can be abstracted into situation
types. Other than for object types, the definition of situation types
is self-referential. Therefore, while an instance of an object type
always requires a containing situation, instances of situation types

can exist on their own. Towards a better understanding of the idea
underlying the definition of situation types, consider the situation
of a person driving a car along a street. One interesting feature of
situation semantics is that we do not need to know the situation
completely. In order to draw the conclusions we are interested in,
it is enough to know the part of the situation sufficient to draw
these conclusions. Empirical studies show that this is also the case
for visualization [SML*08]. In fact, situation semantics assumes
to never know the situation completely. This so-called partiality is
also the reason why every infon is bound to a situational context and
why situation semantics react to changes in the context. Let us now
specify the situation that the driver is passing a traffic sign from the
driver’s perspective:

SignPassed := [Driver|Driver = «Sign, x, 1»].

‘We can now model the situation of a neutral observer watching
drivers passing signs:

Traffic := [S|S = «Driver, d, 1»A«Sign, x, I»A«passes, d, x, 1»
— «SignPassed, d, 1»].

The dots denote variables as parameters which are essentially place-
holders allowing the specification of properties and relations for
multiple entities simultaneously. In the example, traffic is a situa-
tion where a single driver d and a number of signs x exist. This
situation is further constrained by the fact that whenever the driver
passes any sign, the driver also switches to state ‘Sign passed’.

Let us further assume, the sign in the above example would be
a warning sign. Depending on the type of potential hazard drivers
identify on the sign, they may adjust their driving and find them-
selves in a new situation—general driving S versus driving under
a particular danger SD. In this paper, we are concerned with the
interpretation of the traffic sign and the required information the
driver needs to make the transition from one situation to the other
(S = SD). To interpret the traffic sign, they need to be familiar
with the concept of danger-warning signs, glyphs used to encode
potential dangers and the concept that a glyph inside the sign warns
of this danger. Since we have already defined the general idea of a
warning sign, this specification can be described as a form of rein-
terpretation, specifying the following equivalence relation on the
sign object:

(«WarningSign, x, 1» A
«contains, x, g, I»A

«PedestrianGlyph, g, 1») <> «PedestrianWarning, x, 1».

Thereby, a warning sign containing a glyph showing a pedestrian is
reinterpreted as a warning about pedestrians.

What we have not modelled thus far are the consequences drawn
from the traffic sign’s interpretation. Indeed, the interpretation of
the sign motivates drivers to re-evaluate their own situation and
change their behaviour according to the sign. For example, they
may slow down due to the warning, changing their own situation
from ‘normal driving’ to ‘cautious driving’. Thus, reinterpretations
do affect not only objects but also situations. Modelling this aspect
more formally helps us to better understand the different sources of

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

12 B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

knowledge involved in the interpretation of (visual) information and
in the process of drawing conclusions from what is seen. To this end,
we extend situation semantics by an (re-)interpretation operation
t: (X, Ry, B) = «¥,y, 1». An interpretation depends mainly on
two arguments: a set of objects X = «X;, x;, 1» together with the
relations Ry connecting them. Additional background information
B can be provided, for example, to impose further conditions on the
reinterpretation. The interpretation operation maps this information
to an equivalent target type.

3.2.2. Situation semantics in visualization

Much like the driver in the traffic situation, an observer of a visual-
ization changes their situation during the reasoning process. Once
they recognize a particular type of chart, they understand how to
read it and which types of features they may look for, e.g. read
values of data points in a scatterplot or identify clusters. We can
also model transitions between different tasks where users are dif-
ferently primed to look out for particular features, or may switch
between overview analysis and detail analysis. Before we look into
these more complex situations, we first translate the concepts from
situation semantics we have applied to traffic signs in the previ-
ous section to data visualization using the speedup chart example
detailed in the ‘Introduction’ and represented in Figure 1.

The interpretation of a speedup chart by an observer strongly de-
pends on the observer’s background knowledge—whether they are
achild, a visualization literate person, a statistician or a parallel pro-
grammer.

It also depends on experience and analysis perspective, all of
which needs to be taken into account when designing a visualization
and reasoning about the observer’s reasoning process. It is important
to understand which parts of a visualization can be understood by
means of the appropriate technical skills (e.g. data visualization
literacy) and provided information (e.g. a legend), and which aspects
require domain-specific knowledge. Situation semantics can help us
formalize required knowledge. Combining this information with the
syntactic information we obtained through the graphical language
discussed in Section 3.1, we have all required means to investigate
chart interpretation analysis which will follow in Section 3.3.

Many of the concepts we have seen in the previous section directly
apply to visualization. We will work through them using again the
line chart example from Figure 2. Object types that we can see in this
chart are axis (two instances) and polyline (one instance). Denoting
this in situation semantics notation for our general situation V gives:

V E «Axis, x, I»A«Axis, y, I» A«Polyline, p, 1». (8)

Each of these objects feature properties that are modelled in the
type definition, e.g. an axis contains a line, ticks and tick marks.
For simplicity, we also accept implicit definitions, especially where
the details are specified by the syntax structure or where they are
not needed for modelling the interpretation and reasoning process.
The aforementioned concept of partiality guarantees the formulation
in situation semantics to remain sound even for such incomplete
models.

From the syntactic description and chart design conventions, we
know that axes commonly bound the line glyph. This is expressed
by the following infons:

V E «bounds bottom, x, p, I»A«bounds left, y, p, 1». (9)

These pieces of information are the ones that the viewer can derive
directly from the visualization and a child without chart literacy
will stop at this interpretation. An interpretation ¢ : (X, Rx, B) —
«Y, y, 1» requires three inputs: a set of relevant objects X, relations
between them Ry and background information B. The objects are
the visible structures defined in (8), the relations the relative posi-
tions to each other (orthogonality of axes and bounding of polyline)
defined in (9) and the background information that is required is
DVL. If all this information is available, the viewer will interpret
the given chart as a line chart:

«Axis, x, I»A«Axis, y, I»A«Polyline, p, I»A
«bounds bottom, x, p, 1» A«bounds left, y, p, I»A
«is orthogonal, x, y, I»>A«DVL, v, 1» <

«LineChart, c, 1». (10)

We can now combine the understanding of a line chart with do-
main knowledge in order to model an actual reasoning process.
Figure 1 features a line chart to show the speedup of a parallel
program depending on the number of processors used for the com-
putation. A high performance computing engineer is interested in
this kind of measurement to evaluate the performance of a program.
Optimal speedup behaviour is close to linear increase. The engineer
now extends the above recognition of the line chart by three further
interpretation. First, introducing the knowledge that the analysis is
conducted in a parallel programming context and that this chart is
showing speedup (which is concluded from the y-axis’ label), the
engineer reinterprets the line chart to be a speedup chart:

«LineChart, ¢, InA«shows, speedup, c, 1» <

«SpeedupChart, ¢, 1», (11)

where a chain of constraints embed the speedup chart in its general
context by declaring the particular chart ¢ to be linked to some
parallel program p:

«SpeedupChart, ¢, 1 A«shows, speedup, ¢, I»A
«for, speedup, p, I»A«ParalellProgram, p, 1»». (12)

To judge the program’s speedup behaviour, the engineer next eval-
uates the depicted speedup curve according to the interpretation
rule:

«LineGlyph, ¢, 1» A«LinearCorrelation, [, 1»A
«LineChart, ¢, I»Adepicts, c,l, 1 <

«LinarlyCorrelated Variabes, ¢, 1». (13)

Note that if the viewer does not recognize the line glyph to
show linear correlation, the observed situation would show V =
«LinearCorrelation, /, O» and the interpretation could thus not be
made. However, in the example shown in Figure 1, the correlation

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis 13

visual illiterate viewer

x-axis DVL

N

bounds bottom

is orthogonal
l polyline >

—> line chart

e

bounds left

y-axis

visual literate viewer

Figure 7: Graph-based model of situation semantics: This model
represents types (nodes), relations (edges) and interpretations
(hexagon) performed in the reasoning process about the type of
a given chart (line chart). Equation 10 shows the expression mod-
elling this interpretation in situation semantics.

fortunately is linear allowing the engineer to apply the last interpre-
tation rule, concluding that a program p features optimal speedup if
its speedup chart shows linearly correlated variables. For the mod-
elling, we leverage the fact that interpretations implicitly specify
situations by subsuming the objects and relations to the left of the
equivalence relation under the object of the new type specified to its
right. We can thus use type abstraction to combine (11) with (13)
and the additional background information given in (12) into the
following interpretation rule:

«SpeedupChart, ¢, 1 A«LinarlyCorrelated Variabes, ¢, 1»A
«shows, speedup, ¢, I»A«for, speedup, p, I»A
«ParalellProgram, p, I»» <

«OptimalSpeedup, p, 1».

Again note that p refers to a general program because no specific
instance of a program is given in this example. The line chart instead
is bound to a specific instance ¢ of a chart. In general, objects
that are not part of the visualization are never instantiated and thus
modelled as parametric objects when used in the reasoning structure.
Parameters allow to specify general rules meant to apply to any
object of the given type once the particular object is introduced. In
the example, a particular program could, for example, be introduced
by adding a caption with the program’s name to the chart.

3.2.3. Graph-based visualization of situation semantics

As we have seen in the two previous examples (traffic signs and line
charts), the semantic description quickly becomes quite complex.
To keep track of all components and their relations, we propose a
graphical language for situation semantics in the context of visual-
ization.

Similar to the flowchart for the syntax, we will also design a
graph-based representation for situation semantics which primarily
consists of types and relations. Object types and concepts are the
nodes of the graph. Object types appear as abstract, purely semantic
models just as they are defined in situation semantics. Where we are
referring to actual instances of objects that are part of the visualiza-
tion, the object becomes a hybrid of its syntactic representation in

the graphical language and the abstract semantic information being
anchored in the depicted instance of the object. To emphasize the du-
ality of being a semantic object to reason about that at the same time
is anchored to an actual instance and thus depends on the data and
visualization technique, we refer to this kind of node as a concept.
Other than type nodes which always remain abstract, concept nodes
can be reasoned about in the abstract but can also appear as instances
of graphical elements or sentences whose behaviour on the seman-
tic level might be different due to the properties of each respective
instance. For semantic analysis, this means concepts have to be
evaluated by instance, and the polarity of several infons within the
object definition might differ between different instances of the same
concept. In the line chart example we have three concepts: x-axis,
y-axis and polyline which are depicted in Figure 7 by labelled nodes
with a blue—orange boundary. Constraints between objects are de-
picted as annotated edges, e.g. the x-axis is orthogonal to the y-
axis («is orthogonal, x, y, 1»). Interpretations are represented by a
hexagon with a plus sign. Relevant objects are directly connected to
the hexagon. The background information is linked to the plus sign.
The constraints involved are simply the ones to be found between
any two nodes being connected to the interpretation. The resulting
type is marked by the single outgoing edge from the hexagon.

‘We have also seen that situations play a critical role. As situations
are sets of types and relating relations, they can be represented by
bounding areas in the chart. In Figure 7, we distinguish between the
visual literate and illiterate viewer that obtain different information
from the same chart. The illiterate viewer can recognize objects
and their spatial relationship, the literate viewer will understand the
graphical context.

As detailed before, situation semantics is partial, i.e. we model
only the aspects that are relevant to our analysis at the level of
detail that is appropriate. As we can see from this simple example
of a line chart, the graph is already very complex. Hence, we will
summarize structures into single nodes where appropriate to reduce
visual complexity and clutter.

The reasoning process can now be modelled in terms of reach-
ability via constraints and interpretations. Thus, to determine the
possible conclusions to be drawn about an object (type/concept)
or a situation, one simply has to follow the constraints and inter-
pretations through the graph. For example, the reasoning process
discussed for the line chart example above is completely encoded
in the graph to the right of Figure 1. Thereby, the graph modelling
the reasoning implicitly defines a formal automaton allowing to
compute the language of possible interpretations and conclusions
to be drawn from an type/concept or situation as the collection of
all reachable types/concepts and the constraints and interpretations
between them. This can be implemented algorithmically in terms of
an altered breadth-first search on the graph that takes into account
the conditions that have to apply before an interpretation can be
executed. In this sense, the computation resembles a Petri net up to
the point that more complex conditions than the mere presence of a
token can be required for an interpretation to be triggered.

3.3. The ConceptGraph: combining syntax and semantics

In the previous two sections, we described two formal ap-
proaches to turn syntactic and semantic information obtained from

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

14 B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

object GEsiE > backgrognd
type information
interpretation
A
constraint graphical
object "4/ (re)interpretation using —> type
background information
relation
-~
graphical
object
situation supporting syntax

node

L a reasoning process

derived e/ peration €———
object

syntax
node

Figure 8: Overview over the ConceptGraph’s notation: The con-
cept nodes (both colours) establish the mapping between the visu-
alization, its generation and the mental model. The blue subgraph
is the automaton modelling the visualization process. The graphical
sentences and contexts (blue—orange nodes) that can be read as
structures in the result of running this automaton serve as the input
to be processed by the reasoning strategy represented by the orange
subgraph.

visualizations into a graph-based representation. As our goal is
a unified analysis of these two aspects that constitute the visual
reasoning process, we need to combine the two models. The
coupling of the two automata directly originates from the fact that
the output of the first is the input to the second, i.e. the grammar of
graphics defines an automaton which produces graphical elements
and sentences. The reasoning process as modelled above can also
be interpreted as a finite state transducer whose input language is
the reading language defined as graphical contexts over the visual-
ization automaton’s output. Thereby, the two automata share a set of
nodes. These shared nodes are exactly the concept nodes specified
above as nodes that at the same time feature abstract semantics
but can also be instantiated by the visualization. In the depiction,
we overlap these nodes in the joint visualization and indicate the
sharing by mixed colour. As introduced before, we will continue to
colour syntactic aspects of the interpretation in blue and semantic
aspects in orange. Shared nodes are coloured in blue and orange.
The combination of the two graphs is called a ConceptGraph.

Figure 1 (right) depicts the ConceptGraph of the speedup chart.
The blue—orange parts are the visible items. Blue nodes and opera-
tions (hexagons) represent syntactic information which was derived
from the visualization Vega specification. The orange parts repre-
sent the reasoning process derived from situation semantics. What
this graph nicely illustrates is the different insights that may be ob-
tained from people with varying backgrounds. The child will only
be able to recognize mixed colour nodes which are directly visi-
ble without additional semantic information. A chart-literate person
understands the graphical context and interprets it as line chart. It
is also likely that they understand about scales and how they affect
axes and the line placement. The statistician will extend this knowl-
edge by the concept of linear correlation and hence, probably be able
to apply this to the chart and evaluate the linear dependence of the
two presented variables. The parallel programmer understands the

application background and can make sense of what is shown, i.e.
that the chart is a speedup chart. To understand the concept of an opti-
mal parallel program, they also need to understand linear correlation.

A summary of the graphical encoding used in the ConceptGraph
is given in Figure 8. The ConceptGraphs were manually drawn using
Draw.io.

4. Applications

In the following two scenarios, we will apply the proposed model
to two additional use cases. In the first one, we investigate linked
views and the resulting reasoning process and in the second one, we
investigate varying complexities of tasks.

4.1. Conditional views

Figure 9 presents a scatterplot of the MPG dataset [Qui93]. The
variables horsepower and miles per gallon are encoded as position,
and origin as colour. The legend is interactive and selecting either
of the regions fades out the others. The example is available in the
Vega website.’

The respective ConceptGraph (Figure 9, right) contains informa-
tion the user may obtain when browsing this task. Visible concepts
(bi-colour nodes) are the axes, point glyphs, and the legend. The
user may recognize that there are points of different colour and fo-
cus on them individually (— filter operation). Thus, they are able
to recognize gray and coloured points. Reasoning about the entire
plot (left side of ConceptGraph), they may interpret this chart as a
scatterplot (— scatterplot node) and applying this knowledge back
on the individual parts, they understand that each point in the chart
represents a car (— car node) and each axis an attribute of the cars
(— attributes node + relationship). Combining these two pieces
of information (point information + global chart information) and
applying the knowledge they obtained from the knowledge, the ob-
server can conclude that the green points are European cars and the
grey cars originate either from the United States or Japan.

From the ConceptGraph, we see that it takes several interpreta-
tions to understand the presented chart and that this type is already
much more complex than the line chart we saw earlier. What we
also learn is which concepts need to be explained to a novice user
that is trying to understand the given visualization.

To a literate user, we may pose the task to compare European and
non-European cars with respect to their horsepower. They would
have to understand the aspects we have discussed so far and make ad-
ditional interpretations and operations (top part of ConceptGraph).
Assuming they did interpret the data points correctly, they also need
to identify the correct axis and compare the grey and green points
with respect to this axis. In this way, we can discover potential error
sources in the reasoning process and reason about the difficulty of
the various steps.

Zhttps://www.draw.io
3https://vega.github.io/vega/examples/interactive-legend/

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis 15

differences

compare ———— 3
/ between cars
>, filter 5 horsepower. \ \
7 axis

Origin non)
45- ® European u gsrea
40 ° attributes €&—— S — axes car
0 & Europe
0 35- 0°
S T 3R . gray origin
ul 30 o Ve filter —— point > legend
5 25— o °qw, Q A not selected
°'| ° e 2% of scatter point
g 20~ e 2 plot glyphs
- L2
g1°- Ny iter color
selected point - —>
10- glyphs
5- car «— \
| 1 I I | origin
0 50 100 150 200 legend > select = selection
Horsepower

Figure 9: ConceptGraph of a linking+brushing example: (left) An interactive scatterplot of the mpg—dataset encoding horsepower, miles per
gallon and origin of cars. The legend is interactive and European cars are highlighted. Cars from the United States and Japan are coloured in
grey. (right) The concept graph for chart browsing and comparative analysis of European and non-European cars. (Data: auto-mpg [Qui93])

4.2. Task-based reasoning complexity

In the second example, we discuss the application of the Concept-
Graph for different analysis tasks. Figure 10 shows a force-directed
layout of the co-occurrence network data of the Les Miserable
dataset. Communities are provided in the data and colour-coded
in the visualization. The ConceptGraph in the same figure repre-
sents the information flow in the algorithmic part. Starting from
this initial concept graphs, we will look into several tasks and the
necessary reasoning processes.

The first question is as follows: How many communities does
the network contain? The literate user will understand that they
can obtain this information quickly from the legend by counting
the number of entries. Alternatively, the user has to do the compu-
tational work manually and identify all different colours in graph
visualization. We do not depict this concept graph as it is similar
to the one in the next task. In the various task classification frame-
works (see related work), this task belongs to the lowest level which
is considered to be easy. This agrees with our observation.

The second task is: What is the size of the largest community?
Here, we assume that the user iterates over all colours they see,
count the respective nodes and keep track of the maximal value.
We observe that multiple pieces of information have to be held in
working memory and the more operations are required than in the
previous task. Count, sort and compare tasks are commonly consid-
ered to be of medium difficulty which is true from the perspective
of an intellectual challenge. Figures 11 and 12 show concept graphs
modeling reasoning for counting finding the largest community.

The most difficult types of tasks are the ones that require analyt-
ical reasoning using background knowledge, like: Does the olive-
coloured community feature a clique structure? or Why does the
pink node form its own community? While the first question can
still be answered if the user is familiar with the concept of a clique,
the second one requires in-depth knowledge of the algorithm and
probably additional information about the data like the edge weights
which are not depicted in the presented chart.

5. Discussion and Future Work

In the above discussion, we introduced a theoretical framework
describing how viewers reason with and about visualizations. The
model is based on a solid theoretical foundation formalizing the
processes of visualization generation and interpretation in terms of
formal languages and logic. Because the formalism is represented
in terms of formal automata, it scales well with increasingly large
and complex visualizations displaying large amounts of data.

What sets our framework apart from applying ontologies to vi-
sualization is the idea of computing the semantics rather than just
assigning it. The focus of the presented model is on processing and
relating interpretations in order to obtain more information. One
major design goal was to obtain an actionable model, in which
the semantics associated with depicted graphical structures can be
computed with respect to a pre-determined model for the reasoning
process. We achieved this by modelling the visualization generation
and interpretation as a two-step process. First, a formal automaton
models the visualization generation. In our formalization, it is based
on Vega but may as well use other existing grammars for visual-
ization specification. The reasoning process is formalized in terms
of situation semantics extended by an additional interpretation re-
lation. The possibility of an interpretation is thereby determined by
its reachability in a network of consecutively evaluated implications
and equivalence relations.

Perhaps the most appealing feature of the presented model is its
graphical annotation in terms of the ConceptGraph. By the Con-
ceptGraph, the complexity of modelling the reasoning strategy is
reduced to specifying a sophisticated mind map rather than having
to directly define all semantic types and their relations explicitly.
This renders the theoretical framework applicable to a wide range
of possible users.

There are, however, some limitations to the framework. At this
point of the development, the exact translation between the graphi-
cal language and a language of the exact structures being recognized
and investigated by the viewer is left open. Being concerned only

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

16
o1
2
3
: 4 (XX] °
o5 []
®0 o
6 ° ® °
L
8 [J
[X] L] b
@10 o ® o o ® o
° {]
—9 =
[BN
[]
L X)
p o
° o _* %
® e o ® o
° [J
o
o e . ©®
o (]
colormap
filter unique color color legend
—> — —
unique > groups scale communities
node - —> node
data 7\ mapping color
Y has
~
node
compute marks
references B
\ node » has *
position
connect
force
Zd?e directed
ata layout
4 edge
/ marks

Figure 10: Reasoning process for a network: (top) co-occurrence
network of the LesMiserable datas, (bottom) ConceptGraph for the
syntactic aspects.

color
legend —
communities

count # com-
entries munities

Figure 11: ConceptGraph for the counting task.

with the cognitive processing of interpretations and not with per-
ceptual issues, closing this gap is beyond the scope of the presented
model. However, there is a wide range of existing theory concerned
with this problem. For example, information theory has been shown
to be a useful model for the transport of information from the vi-
sualization to the viewer, rendering it an interesting candidate for
modelling the translation between the graphical and the reading lan-
guage [CJ10]. Another approach could be to model the transport of
information in terms of lossy channel systems. This kind of system
allows to drop portions of information before it is being received
and therefore is an interesting candidate for considerations on the
robustness of a reasoning strategy subject to missing components in
the graphical sentences and contexts. Indeed, it will be interesting to
apply the new model to analyse this robustness and to thereby find

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

max size €— compare & update €—— gjze

counted

commu-

nities
A add has

o~
counted
node new

marks > select new /> community ot) Com{;‘“'

Figure 12: ConceptGraph for the find largest community task.

mechanisms determining information critical for solving a given
task and to identify patterns in the ConceptGraph that help design-
ing visualizations effectively preventing this information from not
being recognized by the viewer.

An inherent problem of the reasoning process itself is its sub-
jectivity. Sometimes, it is not clear when exactly to apply a certain
interpretation or there are interpretations for which the exact cri-
teria when they might be applied are not known. An example for
such a situation is a continuous scale like a heat map. Every viewer
will interpret the colours slightly differently. Yet, it can still be
expected that they will attempt to interpret the data into similar
classes. Therefore, the presented model considers the applicable se-
mantics following all possible interpretations simultaneously. The
actual semantics determined by the viewer’s interpretation can still
be computed by specifying which of the applicable interpretations
should actually be applied. Note, however, that this does by no
means advocate for modelling huge ConceptGraphs attempting to
capture as many different interpretations as possible as it is some-
times attempted for ontologies. Other than being sound, the rea-
soning strategy still should attempt to match the actual reasoning
applied by domain experts as best as possible. After all, the answers
obtained by evaluating applicable interpretations in the presented
model can only be as good as the reasoning strategy’s fitting to the
domain of investigation.

6. Conclusion

The theoretical framework introduced in this paper allows to explain
how viewers reason about structures displayed in a visualization.
Due to its solid mathematical underpinning based on the theories of
formal automata and situation semantics, the framework allows to
specify formal models of the reasoning processes to be applied in
order to draw conclusions from the structures depicted in a visual-
ization. Its concise graphical annotation, the ConceptGraph, renders
it simple to apply for a wide audience.

The model along with the ConceptGraph is therefore not only of
theoretical interest but also bears interesting potential for visualiza-
tion design.

Acknowledgements

The authors would like to thank Alina Freund, Julio Palacios and
Christoph Garth for the productive and fruitful discussions help-
ing us to shape our formalism. We would also like to thank the

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis 17

anonymous reviewers for their patience, their insightful and con-
structive remarks and their overall support during the process of
authoring this paper.

References

[AS13] ANGELINI M., Santucct G.: Modeling incremental visual-
izations. In EuroVis Workshop on Visual Analytics (2013), M.
Pont, and H. Scnumann (Eds.), The Eurographics Association.

[Bar86] Barwise J.: The situation in logic. In Logic, Methodol-
ogy and Philosophy of Science VII Proceedings of the Seventh
International Congress of Logic, Methodology and Philosophy
of Science. G. J. D. RutH BArRcaN Marcus, and P. WEINGART-
NER (Eds.), vol. 114 of Studies in Logic and the Foundations of
Mathematics. Elsevier, 1986, pp. 183-203.

[BBG19] BORNER K., BUECKLE A., GINpDA M.: Data visualization
literacy: Definitions, conceptual frameworks, exercises, and as-
sessments. Proceedings of the National Academy of Sciences of
the United States of America 116, 6 (2019), pp. 1857-1864.

[Ber83] BERTIN J.: Semiology of Graphics: Diagrams, Networks,
Maps. University of Wisconsin Press, Madison, 1983.

[BOH11] Bostock M., OGIEVETSKY V., HEEr J.: D® data-driven
documents. IEEE Transactions on Visualization and Computer
Graphics 17,12 (2011), 2301-2309.

[Bor16] BOrNER K.: Data Visualization Literacy. Proceedings of the
27th ACM Conference on Hypertext and Social Media (2016), 1.

[BP83] Barwisk J., PErrY J.: Situations and Attitudes. MIT Press,
Cambridge, MA, 1983.

[CGO02] CeLentaNO A., Gagal O.: Schema modelling for auto-
matic generation of multimedia presentations. 27 (2002), 593—
600. https://doi.org/10.1145/568760.568864.

[CJ10] CHEN M., JaENICKE H.: An information-theoretic framework
for visualization. IEEE Transactions on Visualization and Com-
puter Graphics 16, 6 (Nov 2010), 1206-1215.

[Cop12] CorppIN P. W.: Pictures are visually processed; symbols are
also recognized. In Diagrammatic Representation and Inference.
P. Cox, B. PLimMER and P. Robpcers (Eds.). Springer, Berlin,
Heidelberg (2012), pp. 334-336.

[Dev99] DevLIN K. J.: Infosense: Turning Information Into Knowl-
edge. WH Freeman & Co., New York, 1999.

[Dev06] DevriN K.: Situation theory and situation semantics. In
Handbook of the History of Logic.J. Woobs and D. M. Gappay
(Eds.), vol. 7. Elsevier, Amsterdam, 2006, pp. 601-664.

[DGHO3] DoLEeiscH H., Gasser M., HAuser H.: Interactive feature
specification for focus+context visualization of complex simula-
tion data. In Proceedings of the Symposium on Data Visualisation
2003 (Aire-la-Ville, Switzerland, Switzerland, 2003), VISSYM
’03, Eurographics Association, pp. 239-248.

[DSK*14] DemiraLP C., ScHEDEGGER C. E., KinoLmann G. L.,
LaibLaw D. H., Heer J.: Visual embedding: A model for visu-
alization. IEEE Computer Graphics and Applications 34, 1 (Jan
2014), 10-15.

[ECD06] Evrzer S., CARBERRY S., DEMIR S.: Communicative sig-
nals as the key to automated understanding of simple bar
charts. Proceedings of the 4th International Conference on
Diagrammatic Representation and Inference (Springer-Verlag,
Stanford, CA, 2006) pp. 25-39. https://doi.org/10.1007/11783
183_5.

[Eng02] ENGELHARDT Y.: The Language of Graphics: A Framework
for the Analysis of Syntax and Meaning in Maps, Charts and Di-
agrams. PhD thesis, (Universiteit van Amsterdam, Amsterdam,
The Netherlands, 2002).

[EWCHO04] EvrLzer S., WHITE M., CARBERRY S., HoFFmAN J.: Incor-
porating perceptual task effort into the recognition of intention
in information graphics. Lecture Notes in Artificial Intelligence
(Subseries of Lecture Notes in Computer Science) 2980, 255—
268.

[GWKO93] GutHriEJ. T., WEBER S., KimmERLY N.: Searching docu-
ments: Cognitive processes and deficits in understanding graphs,
tables, and illustrations. Contemporary Educational Psychology
18,2 (1993), 186-221.

[IG96] Inaka R., GENTLEMAN R.: R: A language for data analysis
and graphics. Journal of Computational and Graphical Statistics
5,3 (1996), 299-314.

[Kos89] KossLyn S. M.: Understanding charts and graphs. Applied
Cognitive Psychology 3,3 (1989), 185-225.

[KS14] KinpLMANN G., SCHEIDEGGER C.: An algebraic process for
visualization design. IEEE Transactions on Visualization and
Computer Graphics 20, 12 (Dec 2014), 2181-2190.

[LKH*15] LEeE S., K S.-H., HunG Y.-H., Lam H., KaNG Y.-A., Y1
J. S.: How do people make sense of unfamiliar visualizations?: A
grounded model of novice’s information visualization sensemak-
ing. IEEE Transactions on Visualization and Computer Graphics
22,1 (2015), 499-508.

[LS10] Lw Z., Stasko J.: Mental models, visual reasoning and
interaction in information visualization: A top-down perspective.
IEEE Transactions on Visualization and Computer Graphics 16,
6 (2010), 999-1008.

[Mac86] MackiNLAY J.: Automating the design of graphical presen-
tations of relational information. ACM Transactions on Graphics
5,2 (Apr. 1986), 110-141.

[MHS07] MackiNLAy J. D., HANRAHAN P., StoLTE C.: Show me:
Automatic presentation for visual analysis. I[EEE Transactions
on Visualization and Computer Graphics 13, 6 (2007), 1137-
1144.

[MMWC18] Mer H., Ma Y., WEer Y., CHEN W.: The design space
of construction tools for information visualization: A survey.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

18 B. Karer et al. / Formal Model for Interpretation and Reasoning During Visual Analysis

Journal of Visual Languages & Computing 44, (2018), 120-132.
https://doi.org/10.1016/j.jv1c.2017.10.001.

[MRGTBDO08] M Rarwani R., GREGORY TRAFTON J., BOEHM-DAvis
D.: Thinking graphically: Connecting vision and cognition dur-
ing graph comprehension. Journal of Experimental Psychology.
Applied 14 (04 2008), 36—49.

[Mun09] Munzner T.: A nested model for visualization design and
validation. IEEE Transactions on Visualization and Computer
Graphics 15, 6 (Nov. 2009), 921-928.

[MWN#*19] Moritz D., WanG C., NELsoN G. L., LiN H., SmitH A.
M., Howk B., HeEr J.: Formalizing visualization design knowl-
edge as constraints: Actionable and extensible models in Draco.
IEEE Transactions on Visualization and Computer Graphics 25,
1 (2019), 438-448.

[NKH*14] Nazemi K., Kuuper A., HUTTER M., KOHLHAMMER J.,
FELLNER D. W.: Measuring context relevance for adaptive seman-
tics visualizations. In Proceedings of the 14th International Con-
ference on Knowledge Technologies and Data-driven Business
(New York, NY, USA, 2014), i-KNOW ’14, ACM, pp. 14:1-
14:8.

[PDFE17] Park D., DRUCKER S. M., FERNANDEZ R., ELMQVIST N.:
Atom: A grammar for unit visualizations. I[EEE Transactions on
Visualization and Computer Graphics 24,12 (2017), 3032-3043.

[PG93] PetrRe M., Green T.: Learning to read graphics: Some
evidence that ’seeing’ an information display is an acquired skill.
Journal of Visual Languages & Computing 4, 1 (1993), 55-70.

[Qui93] QuinLaN R.: Combining instance-based and model-based
learning. In Proceedings on the Tenth International Conference
of Machine Learning (University of Massachusetts, Amherst,
Morgan Kaufmann, 1993).

[Ren00] REensink R. A.: The dynamic representation of scenes.
Visual Cognition 7, 1-3 (2000), 17-42.

[RTBDO04] Rarwani R. M., TrartoN J. G., BoEam-Davis D. A.:
From specific information extraction to inferences: A hierarchical
framework of graph comprehension. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 48, 16 (2004),
1808-1812.

[SASS16] Scuurz H. J., ANGELINI M., SaNTUCCI G., SCHUMANN
H.: An enhanced visualization process model for incremental
visualization. IEEE Transactions on Visualization and Computer
Graphics 22,7 (July 2016), 1830-1842.

[SML*08] Smuc M., Mayr E., LAMMARScH T., BERTONE A., AIGNER
W., Risku H., MikscH S.: Visualizations at first sight: Do insights
require training? In HCI and Usability for Education and Work.
A. HorziNnger (Ed.), Springer, Berlin, Heidelberg (2008), pp.
261-280.

[SRHH15] SATYANARAYAN A., RUSSELL R., HOFFSWELL J., HEER J.:
Reactive vega: A streaming dataflow architecture for declarative

interactive visualization. IEEE Transactions on Visualization and
Computer Graphics 22, 1 (2015), 659-668.

[SSL*12] StrEIT M., Schurz H.-J., LEX A., SCHMALSTIEG D., ScHU-
MANN H.: Model-driven design for the visual analysis of hetero-
geneous data. IEEE Transactions on Visualization and Computer
Graphics 18, 6 (June 2012), 998-1010.

[TGOA15] TreLLMANN K., GaLKIN M., Orranpr F., AuUer S.:
LinkDaViz—Automatic Binding of Linked Data to Visualizations.
(Springer-Verlag, Berlin, Heidelberg, 2015).

[TMMTO2] TrarTON J. G., MARSHALL S., MiINTZ F., TRICKETT S. B.:
Extracting explicit and implicit information from complex visual-
izations. In International Conference on Theory and Application
of Diagrams (2002), Springer, pp. 206-220.

[Tom11] Tominski C.: Event-based concepts for user-driven visu-
alization. Information Visualization 10, 1 (2011), 65-81.

[TSK12] Takemura R., SHIMosMA A., KaTaGirT Y.: A logical inves-
tigation on global reading of diagrams. In Diagrammatic Rep-
resentation and Inference. P. Cox, B. PLiMMER, and P. RODGERS
(Eds.). Springer, Berlin, Heidelberg (2012), pp. 330-333.

[TTO1] TrartoN J. G., TRICKETT S. B.: A New Model of Graph and
Visualization Usage. Tech. rep., Naval Research Lab Washington,
DC, 2001.

[Uni68] Unitep Nations, GENERAL AsSsEMBLY: Convention on road
signs and signals, 8 November 1968.

[Vegl9] VEGA weBsITE: https://vega.github.io, accessed August
2019.

[VFR13] Vickers P., Fart J., RossiTer B. N.: Understanding visual-
ization: A formal approach using category theory and semiotics.
CoRR 19, (2013), 1048-1061.

[Wic09] Wickuam H.: Elegant Graphics for Data Analysis. Media
(Springer-Verlag, New York, 2009).

[Wic10] WickHam H.: A Layered grammar of graphics. Journal of
Computational and Graphical Statistics 19, 1 (2010), 3-28.

[Wil05] WiLkiNsoN L.: The Grammar of Graphics (Statistics and
Computing). Springer-Verlag, Berlin, Heidelberg, 2005.

[Wil12] WiLkinsoN L.: The grammar of graphics. In Handbook of
Computational Statistics. J. E. GeNTLE, W. K. HARDLE and Y.
MorI (Eds.). Springer, Berlin, Heidelberg (2012), pp. 375-414.

[Wom15] Womack R.: Data Visualization and Information Literacy.
IASSIST Quarterly, 38, 1 (2015), 12.

[WW10] WiLLs G., WiLkINsoN L.: Autovis: Automatic visualiza-
tion. Information Visualization 9, 1 (2010), 47-69.

[ZMO06] Znu S. C., MumForDp D.: A stochastic grammar of images.
Foundations and Trends in Computer Graphics and Vision, 2, 4
(2006), 259-362.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

85U8017 SUOWILLIOD BA 181D 3(edl|dde ayy Aq peusenob ake sspive YO 88N JO S9N 1o} AkeIq1T8UIIUQ AB]IAN UO (SUORIPUOO-pUR-SLLBI IO A8 1M ARRIq 1 Ul 1UO//SAIY) SUORIPUOD Pue SWS 18U} 88S *[7202/70/80] UO AIqiTaulluO A8]IM ‘NMepue-Uueines sy 1SN 8YISIUL0S | 3YISIZIld-PuelulUy Ad 668ET 1BO/TTTT OT/I0P/W00 A 1M Akeiqpuljuo//Sdny woiy papeojumod ‘9 ‘0202 ‘6598297 T

