Experiments in the Automatic Selection of
Problem-solving Strategies™

Matthias Fuchs
Centre for Learning Systems and Applications (LSA)
Fachbereich Informatik, Universitat Kaiserslautern
Postfach 3049, 67653 Kaiserslautern

Germany
E-mail: fuchs@informatik.uni-k1.de

September 26, 1996

Abstract

We present an approach to automating the selection of search-guiding heuris-
tics that control the search conducted by a problem solver. The approach centers
on representing problems with feature vectors that are vectors of numerical val-
ues. Thus, similarity between problems can be determined by using a distance
measure on feature vectors. Given a database of problems, each problem being
associated with the heuristic that was used to solve it, heuristics to be employed
to solve a novel problem are suggested in correspondence with the similarity
between the novel problem and problems of the database.

Our approach is strongly connected with instance-based learning and nearest-
neighbor classification and therefore possesses incremental learning capabilities.
In experimental studies it has proven to be a viable tool for achieving the final
and crucial missing piece of automation of problem solving—namely selecting an
appropriate search-guiding heuristic—in a flexible way.

*This work was supported by the Deutsche Forschungsgemeinschaft (DFG).

1 Introduction

Problem solving in artificial intelligence often amounts to search. A problem solver
generally needs to employ some problem-solving strategy which in the common case
that the problem solver conducts a search means that it needs a search-guiding strat-
eqy or heuristic. Most interesting and demanding problems require substantial search
effort that must be kept within acceptable limits by using sophisticated search-guiding
heuristics.

Unfortunately, there is no such thing as a “universal heuristic”: Different problems
(possibly even from the same small problem class) necessitate different heuristics in
order to solve them in acceptable time. That is, a problem P to be solved must be
associated with an appropriate heuristic that allows to solve P (in acceptable time).
This crucial and difficult task is mostly taken on by the user himself. This missing
piece of automation is—besides being unsatisfactory—putting off potential users since
it requires expertise and experience, which becomes most apparent in connection with
automated deduction. There, even experts of the field have difficulties and need some
time to get familiar and to work effectively with an automated deduction system other
than their own.

The well-known theorem prover OTTER alleviates this problem with its ‘autonomous
mode’ (cp. [Mc94]) that attempts to pick an appropriate search-guiding heuristic after
analyzing the current problem. But the “selection heuristic” is built-in and hence in-
flexible in the sense that it encodes the knowledge its designers had at some point in
time. We, however, intend to automate choosing an appropriate heuristic by means of a
database of previously solved problems. That is, we provide machine-learning capabil-
ities that make it possible for an automated deduction system (respectively a problem
solver in general) to profit from its problem-solving experience. Each problem P’ in
the database is associated with a heuristic H’ that is the best (known) heuristic for
solving P’. Given a problem P to be solved, a heuristic H to solve it is picked on the
basis of the similarity between P and problems in the database.

To this end, each problem is represented by its feature vector. Each component of a
feature vector is a feature value, i.e., a numerical value that represents a property (i.e.,
a feature) of the respective problem. Similarity between problems is defined in terms of
a distance measure regarding their feature vectors. The heuristic to be applied to solve
a problem P is determined with the help of the nearest-neighbor rule (NNR, [CH6T]):

The heuristic associated with the problem most similar (i.e., nearest) to P is selected.

Naturally, the choice of features is crucial for a sensible estimation of similarity. For
our experiments in connection with automated deduction, however, a rather small
number of obvious and easy to define features sufficed to obtain satisfactory results.
At this point we would like to emphasize that our approach should be applicable to
all kinds of problem solvers although we experimented solely in the area of automated
deduction. But this is more a challenge than a restriction: Automated deduction
not only poses some of the hardest (search) problems, but also has the property that
often tiny variations of a problem description can cause significant changes in the
solution, and therefore require different search-guiding heuristics, which makes choosing

an appropriate heuristic based on the similarity of problems even harder.

This report is organized as follows. Section 2 reviews the fundamentals and explains
details of our NNR-based approach. Our experiments are documented in section 3. A
discussion in section 4 concludes this report.

2 Details of the NINR-based Approach

Section 1 already sketched our approach in the context of automated deduction. In
this section, we shall review and give details of our approach for problem solving based
on search in general (which of course includes automated deduction).

2.1 Basics

The major difficulty from a user’s point of view when working with a problem solver
(based on search) is to select an appropriate search-guiding heuristic that allows him to
solve his problem in acceptable time (where “acceptable” both depends on the user’s
demands and on the problem domain).

Usually, a problem solver PS has m > 1 search-guiding heuristics Hy,..., H,, at its
disposal. Given a problem P to be solved, a H € {H;,..., H,} must be chosen that
guides the search conducted by PS. The quality of this choice is reflected by the time
PS needs to solve P when employing H.

When dealing with search problems—in particular in connection with automated de-
duction—it is often the case that the discrepancy between an appropriate and an
inappropriate heuristic is enormous: An appropriate heuristic may solve a problem
within a couple of seconds, whereas an inappropriate heuristic may take several hours
or even days. Since neither human nor automated selection of a heuristic can guarantee
that always the (most) appropriate heuristic is selected, we adopt the following common
procedure: Instead of choosing a single heuristic, a sequence S of heuristics is set up.
The heuristics are then tried out in the order given by S. As a consequence, a maximal
run time, i.e., a time-oul T must be imposed on each heuristic in order to apply this
principle in a purposeful way. Hence, the time-out is a (rather reasonable) means to
anticipate failure to succeed in acceptable time. If a heuristic exceeds T', a new attempt
is started with the next heuristic as given by S.

2.2 Assessing the Performance of a Sequence of Heuristics

Given the set {Hq,..., H,} of available heuristics, a sequence S is represented by a
permutation o of {1,...,m},ie., S =S, = H,1y,..., Hy(n). When being confronted
with n > 1 problems Pi,..., P,, a sequence S,, must be set up for each problem P;.

Assuming that the time required by heuristic H; to solve P; is t;;, where {;; = T if

H; cannot solve P; before time-out, and 0 < #;; < T" otherwise, the time S;, needs to
solve P; is 7;(o;), where

and ¢;(o) indicates the ordinal of the first heuristic of S, that succeeds in solving P,
before time-out, i.e.,

¢i(0) = min({j | tixy < T} U {m}).
(Note that 7;(¢) = m - T if none of the heuristics Hy,..., H,, can solve P; before
time-out.) Thus,

TV = Z 7—2'(0'2')
i=1
is the total time required to solve Pp,..., P,. Ty is used to measure the performance
of an approach to setting up sequences of heuristics, and it will be used to assess the
performance of our NNR-based approach.

The index “V” of Ty signifies that the sequences involved are variable in the sense that
they may differ from problem to problem, as opposed to the special case where a single
fized sequence S, is applied to all problems resulting in a total time

Besides such a fixed sequence, we shall also use the optimal total time 7,,;, as a point
of reference, where
=1

(Naturally, we have Ty, Tp > T, regardless of op and o4,...,0,.)

2.3 Determining Variable and Fixed Sequences

Both the variable sequences and the fixed sequence are determined with the help of
previous problem-solving experience given in form of problems that are each paired
with a heuristic that is the best (known) to solve the respective problem. Hence, we
have a database of pairs (F;, Hy)), where b(i) € {1,...,m} denotes the best heuristic
(among Hy,..., Hy,) for solving P;, i.e., tjpq) = min({t;; | 1 < j < m}).

In order to evaluate the performance of our approach, a certain subset of given problems
Py, ..., P, will be considered to be previous experience. That is, problems in {P; |
i € I} for some I C {1,...,n} are regarded as training problems that constitute the
database DB = {(F;, Hy;)) | ¢ € I}. Fixed sequence and variable sequences are
determined with the help of DBj;. Their performance is measured in terms of the total
times 7p and 7Ty required to solve all n problems. Since DBy (respectively I) naturally
has a crucial influence on performance, tests will be made with respect to various
(randomly chosen) I, and we shall use best, worst, and average cases for assessment
(cp. section 3).

Based on DBy, the fixed sequence S, , that is optimal for solving all training problems

Z 7i(oF) < Z (o)

el el

satisfies

for all permutations o. For our experiments (section 3), S,, will be employed as
a competitor for the variable sequences in order to demonstrate that the problems
tackled there are not so uniform that a fixed sequence can be a match for variable
sequences that may vary depending on the problem to be solved.

Variable sequences are determined according to our NNR-based approach: Given a
problem P; to be solved, DBy is searched for those P; (i € I) that are most similar
to P;. In order to make the assessment of similarity amenable to computation, a
problem P; is represented by a feature vector v(P;) = (vi,...,v}). Each v} is a feature
value of a feature fi, i.e., v} = fi(P;), 1 <1< k. The features fi,..., fi each represent
a property of a problem F; with a numerical value, i.e., the feature value. Similarity
can then be assessed by using a distance measure D. The distance (similarity) between
a problem P; to be solved and a problem P; of the database is then given by

The sequence S,, for solving P; should be set up so that the heuristics tried out first
are the ones associated with the problems P; (¢ € I) that are most similar (nearest)
to P;. That is we compute 6;(¢) for all © € I, and then sort these distances so that
6;(11) < -+ < 6(1,), where {11,...,1,} = [. From this we derive the sequence S}J =
Hyiyy, - -, Hy,y from which we remove all multiple occurrences of the same heuristic
except for the respective first occurrence. To the resulting sequence, heuristics H €
{Hy,...,H,} not appearing in it are appended to it in arbitrary order, which finally
produces S,,.

The following section will show that this rather simple approach achieves remarkable
results. Naturally, its performance is crucially affected by the choice of features and
the distance measure. But again, rather simple and intuitive choices on that score were
sufficient in our experiments, although the chosen problem domain, namely automated
deduction, must be considered one of the most difficult domains in every respect.

3 Experiments

We conducted our experiments in equational reasoning, an important and difficult
branch of automated deduction. Our problem solver hence is a system for equational
reasoning. We employed the DISCOUNT system ([ADF95]) that is based on the unfailing
Knuth-Bendix completion procedure ([BDP89]). The problems are taken from the
public TPTP problem library version 1.2.0 ([SSY94]). More precisely, we selected a
total of 264 problems from six problem classes B0Q, COL, GRP, LCL, RNG, and ROB. (These
abbreviations are used and explained by the TPTP library.)

For our experiments, DISCOUNT had m = 5 heuristics at its disposal.’ Since the
working method of these heuristics is here immaterial, they will henceforth be “anony-
mously” denoted by Hi,...,Hs. (They are all based on the common weighting re-
spectively counting of symbols.) Given the time-out 7' = 600 seconds, for each of the
264 problems there was at least one H € {Hy,..., Hs} that allowed DISCOUNT to
find a proof before time-out (on a SPARCstation 10). That is, we omitted problems
that DISCOUNT could not prove before time-out no matter which one of Hy,..., Hs it
employed as its search-guiding heuristic. This makes sense, because each such problem
would simply increase the total times 7p and 7y by m - T' = 3000 seconds regard-
less of fixed or variable sequences used, and therefore does not help in assessing the
performance of our approach.

Obviously, the time-out T affects 7y and 7p, because every heuristic employed that
does not succeed before time-out increases 7y respectively 7 by T seconds. Therefore,
a large T' will make differences between the performance of fixed and variable sequences
much more noticeable than a small 7. A large T, however, is in practice not desir-
able, because too much time is spent on runs that will finally time out in the hardly
avoidable event that inappropriate heuristics occur first in a suggested (variable or
fixed) sequence. Moreover, increasing T' beyond a certain value augments the number
of problems that can be solved before time-out only marginally, whereas of course too
small a time-out diminishes that number dramatically. Thus, 7' = 600 seconds must
be considered to be a compromise (regarding DISCOUNT) that attempts to take into
account all of these aspects.

Problems of equational reasoning are specified like problems of automated deduction
in general by giving a set Az of axioms and the goal X to be proved. In equational
reasoning, all axioms are equations, i.e., Az = {s; = #1,...,8, = t,}. Both sides
s;y 1; of an equation s; = {; are first-order terms composed of variables and function
symbols. A goal is a negated and Skolemized equation s # t. (Variables are implicitly
all-quantified.)

Hence, each problem P; = (Az;, \;). We deployed the following k& = 10 rather obvious
and simple features fi,..., fio to obtain a feature vector v(F;) of P;.

o fi: |Az,|, i.e., the number of axioms;

e f5: number of distinct function symbols occurring in axioms only;

e f3: number of distinct constants occurring in axioms only;

e f4: number of distinct unary function symbols occurring in axioms only;
e f5: number of distinct binary function symbols occurring in axioms only;
o f¢: number of distinct ternary function symbols occurring in axioms only;

e f7: number of distinct function symbols occurring in goal \; only;

'For these experiments DISCOUNT always used a LPO as reduction ordering with a precedence
determined automatically according to some simple heuristic criteria.

Table 1: All problems are training problems (“recall precision”)

Name # N Toin Ty Tr 1% var. | 1% fixed
BOO 30 || 465 s | 469 s | 1494 s 100% | 96.67%
coL 70 || 1270 s | 5809 s | 10936 s || 95.71% | 84.29%
GRP 108 || 1597 s | 1707 s | 13802 s || 100% | 85.19%
LCL 24 || 561s | H62s | 1775 s 100% | 91.67%
RNG 22| 165s | 165 s | 2136 s 100% | 86.36%
ROB 10 || 186 s | 786 s 235 s 90% 100%

all 264 || 4244 s | 9502 s | 43913 s || 98.48% | 85.93%

o fs: number of distinct variables occurring in goal \;;
o fy: total number of symbols occurring in the smallest side of A;;

e fi0: total number of symbols occurring in the biggest side of \;
Thus, all features produce a natural number. In order to assess the similarity of
respectively to measure the distance between feature vectors we chose the distance
measure D to be the Fuclidean distance.

Table 1 shows 7., Tv, and T for each problem class separately (B0Q,...,ROB) and
for all problems together (“all”) when all respective problems are included in the
database DBj. That is, 100% of the respective problems are considered to be training
problems. Hence, table 1 in a way displays “recall precision”. The column labeled
‘#’ lists the respective number of problems. Columns “1%* var.” and “1* fixed” show
the percentage of problems solved by the first heuristic of the respective variable and
fixed sequences. In other words, these columns show the likelihood of not incurring a
time-out, and thus reflect how well 7,,;, can be approximated.

Note that since problems are represented by rather abstract feature vectors, several
different problems may be represented by the same feature vector. This general dif-
ficulty of feature-based methods—which results from features that are not distinctive
enough—Dbecomes particularly evident in connection with automated deduction: Tiny
variations in a problem specification can hardly be grasped by features other than very
specific ones. As a consequence, a problem P may be considered as similar to some
other problem P’ as to itself. If P and P’ are associated with different heuristics H
and H', then it is not guaranteed that the best one, namely H, is applied first to
solve P (even though P is in DBy).

Such kind of “confusion” occurred for instance in connection with problem class ROB.
There, Ty = 7,.;n + T because one problem P was confused with some other prob-
lem P’ for reasons just explained, and heuristic H' associated with P’ did not allow
DISCOUNT to prove P before time-out. The fixed sequence performed better than vari-
able sequences for ROB, because one of the five heuristics was the only one that could
prove all 10 problems, and it was also either the best heuristic or not significantly

7

Table 2: “Cross-validation”: 90% training problems

variable sequence (7y) fixed sequence (7F)

Name || best | average | worst 1%t best average | worst 15t

BOO 469s 541 s 1669 s | 99.64% | 1494 s | 1586 s | 5461 s | 96.09%
COL 3412 s | 5895 s | 12483 s | 95.29% || 10936 s | 11154 s | 13924 s | 84.29%
GRP 1612 s | 2069 s | 7673 s | 99.66% | 13802 s | 13802 s | 13802 s | 85.19%
LCL 561 s 705 s 1765 s | 99.4% 1775 s | 1786s | 2975 s | 91.67%
RNG 165 s 349 s 1368 s | 99.3% 2136s | 2224 s | 8809 s | 86.36%
ROB 186 s 805 s 1386 s | 90.21% 235 s 235 s 235 s | 98.64%
all 7704 s | 11674 s | 19161 s | 97.71% || 43913 s | 43975 s | 44632 s | 85.93%

inferior to the best heuristic for solving a ROB-problem. Such a constellation naturally
favors a fixed sequence. But except for ROB, table 1 demonstrates that at least for this

“recall precision” test variable sequences clearly outperform fixed sequences.?

The more interesting case, however, is when not all problems are training problem:s.
Table 2 displays the results when 90% of the respective problems are designated as
training problems. Since there is mostly an astronomical number of possibilities to
designate 90% of the problems as training problems, we randomly select training prob-
lems ¢t times, and then determine best, average, and worst case with respect to these
{ trials.® In our experiments, we set ¢ = 1000.

Table 2 again demonstrates that variable sequences outperform fixed sequences. The
columns labeled “15*” display the this time average likelihood that the variable respec-
tively fixed sequences do not incur a time-out. Except for ROB-problems (for reasons
explained above), the average Ty (with respect to 1000 random trials) is significantly
smaller than the best case Tp of a fixed sequence. Moreover, it is often the case—in
particular when considering all problems—that the worst case regarding variable se-
quences is better than the best case of a fixed sequence. Thus, on the one hand, these
experiments document that the problems are not uniform in the sense that some rigid
pre-set fixed sequence can produce satisfactory results. On the other hand, the exper-
iments show that our straight-forward NNR-based approach does produce satisfactory
results, and hence must be considered to be a viable approach to flexibly automating
respectively learning the selection of search-guiding heuristics.

We want to emphasize at this point that our experiments were conducted under real-
istic and intricate conditions involving a generally difficult search problem (automated
deduction) and a diverse collection of problems (TPTP) that were rather deceptive
than supportive for our approach.

2In case a given problem P is as similar to P’ as it is to P, both P’ and P being in DBy, we
may resolve this ambiguity with the help of the fixed sequence: H’ associated with P’ is tested first
(second) if H' occurs before (after) H in the fixed sequence. But we shall not do this here in order to
keep variable and fixed sequences strictly separated so as to avoid diluting our experimental studies.

3This procedure is closely related to cross-validation known from classification (e.g., [MST94]).

Ty, Tr |

60000 s

50000 s

40000 s+

30000 st

20000 s

10000 s+

50% 60% 0% 0% 90% 100% p

Figure 1: Comparison of best, average, and worst case Ty (empty circles) and 7 (filled
circles).

Furthermore, we examined how the percentage p of training problems, i.e., the number
of problems in DB that determine fixed and variable sequences, affects performance.
Figure 1 depicts the best, average, and worst case 7y and 7 for all problems when
using p = 50%, 60%, ..., 100%. Best, average, and worst case 7y (7p) are represented
by the respective bottom, middle, and top empty (filled) circle. (Above 60% best
and average cases regarding fixed sequences do not differ significantly. Note that for
p = 100% there is only one way to designate training problems—mnamely all problems
are training problems. Hence, best, average, and worst case coincide.)

Figure 1 reveals that in particular worst case 7y deteriorates as p decreases. This
behavior is natural and explicable by the fact that if DB; contains fewer problems
(when p is smaller) then it is possible that a larger part or even all of the training
problems in D By are “atypical” or exceptions in the sense that they deviate significantly
from possible general tendencies and thus are deceptive and misleading.

This observation can also be made in connection with fixed sequences, although fixed
sequences are less sensitive regarding a decreasing size (and possibly quality) of DB;.
This is in part surely due to the fact that the performance of fixed sequences is consid-
erably inferior to variable sequences so that there is in a way less room for deterioration.
But also, establishing a good fixed sequence does not depend on DBy as critically as
variable sequences do. Therefore, the best case and in parts also the average case 7p
are unaffected by decreasing p down to 50% (cp. figure 1).

Please note that for p ranging from 70% to 90% the best case 7y is better than the
best case Ty for p = 100% (which coincides with average and worst case 7y). That is,
in a way less information improves performance. The explanation for this observation

is kind of dual with respect to the reason for the worst case 7y to be affected by far the
most when p decreases: When less problems are training problems, it is possible that
DBy contains only “typical” problems that conform with and represent best general
tendencies. The deceptive problems are the ones that are omitted. Such a D By is better
suited than a DBy that comprises all problems including the deceptive ones. Naturally,
if p falls short of some lower boundary (somewhere between 60% and 70% for this
experiment), then the best case 7y also starts to deteriorate, because then the training
problems cannot even cover the full spectrum of tendencies, and substantial lack of
information rather than deceptive information becomes a dominant factor. All in all,
identifying and discriminating “typical” from “atypical” (training) problems obviously
can improve performance and thus is an interesting object for further studies. (This
possibility has already been investigated in connection with general classification. See,

for instance, [Zh92] and [DK95].)

Finally, our experiments have demonstrated that the NNR-based approach produces
satisfactory results even for rather small percentages of training problems. (Note that
for general classification tasks classifiers are commonly evaluated using 90% of the given
data as training data.) Also, it clearly outperformed the rather “naive” and simplistic
use of a fixed sequence. Furthermore, we believe that the NNR-based approach can rival
human experts. Humans also often employ related (feature-based) criteria to select an
appropriate search-guiding heuristic in order to solve a given unknown problem.

4 Discussion

We have presented an approach to automating the selection of search-guiding heuristics
employed by a problem solver (based on search). The approach centers on representing
problems with vectors of feature values. Similarity between problems is determined
with the help of a distance measure on feature vectors. A database of problems, each
of which is associated with the heuristic that was employed to solve the respective
problem, is used to suggest heuristics to solve a novel problem based on the similarity
between problems. In order to cushion possible poor suggestions, it is imperative to
operate with a time-out and to suggest a list of alternative heuristics that are tried out
one by one—each attempt being limited by the time-out—until the first one succeeds.

Our approach is essentially a slight modification of instance-based learning with the
nearest-neighbor rule ([AKA91]). Despite its simplicity, our experimental studies have
revealed that it is a viable approach that can cope with hard problem areas like auto-
mated deduction. Furthermore, like any approach based on the nearest-neighbor rule,
it has simple, yet effective incremental learning capabilities that make it more flexible
and powerful than rigid “built-in” approaches. Its performance indicates that it is a
useful tool for closing one of the last and major gaps that prevent problem solvers
(and in particular automated deduction systems) from being widely accepted or even
acceptable, namely to automate the selection of adequate heuristics that are to control
the search conducted by a problem solver.

Naturally, limitations of instance-based learning are inherited by our approach. In par-
ticular finding an appropriate distance measure, dealing satisfactorily with noise (that

10

essentially corresponds to “atypical” problems in our case), and superfluous attributes
(features) are the most prominent problems for which (partial) remedies already exist

(e.g., [AK89], [KDO1], [FA6]).

11

References

[ADF95]

[AKS9)

[AKA91]

[BDPS9]

[CH6T]

[DK95]

[FA96]

[KD91]

[Mc94]

[MST94]

[SSY94]

[Zh92]

Avenhaus, J.; Denzinger, J.; Fuchs, M.: DISCOUNT: A system for
distributed equational deduction, Proc. 6" RTA, Kaiserslautern, GER, 1995,
pp- 397-402.

Aha, D.W.; Kibler, D.: Noise-Tolerant Instance-Based Learning Algo-
rithms, Proc. 11" 1JCAI, 1989, Detroit, MI, USA, pp. 794-799.

Aha, D.W.; Kibler, D.; Albert, M.K.: Instance-Based Learning Algo-
rithms, Machine Learning 6:37-66, 1991.

Bachmair, L.; Dershowitz, N.; Plaisted, D.A.: Completion without
Failure, Coll. on the Resolution of Equations in Algebraic Structures, Austin,

TX, USA (1987), Academic Press, 1989.

Cover, T.M.; Hart, P.E.: Nearest Neighbor Pattern Classification, IEEE
Transactions on Information Theory, Vol. IT-13, Jan. 1967, pp. 21-27.

Datta, P.; Kibler, D.: Learning Prototypical Concept Descriptions,
Proc. 12" International Conference on Machine Learning, Tahoe City, CA,

USA, 1995, pp. 158-166.

Fuchs, M.; Abecker, A.: Optimized Nearest-Neighbor Classifiers Using
Generaled Instances, Proc. 20" German Conference on AT (KI-96), Dresden,
GER, LNAT 1137, 1996, pp. 71-83.

Kelly, J.D.; Davis, L.: Hybridizing the genetic algorithm and the k nearest-
neighbor classification algorithm, Proc. 4*" International Conference on Ge-

netic Algorithms, San Diego, CA, USA, 1991.

McCune, W.W.: OTTER 3.0 reference manual and guide, Technical report
ANL-94/6, Argonne Natl. Laboratory, 1994.

Michie, D.; Spiegelhalter, D.J.; Taylor, C.C.: Machine Learning, Neu-
ral and Statistical Classification, Ellis Horwood, 1994.

Sutcliffe, G.; Suttner, C.; Yemenis, T.: The TPTP Problem Library,
Proc. CADE-12, Nancy, FRA, 1994, LNAI 814, pp. 252-266.

Zhang, J.: Selecting typical instances in instance-based learning, Proc. 9"
International Conference on Machine Learning, Aberdeen, Scotland, 1992,

pp- 470-479.

12

