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1 | INTRODUCTION

Let f : U — Cbe aholomorphic function, defined in some open neighborhood U C C" of 0 € C".
By considering arbitrarily small U, f can be considered as a convergent power series f € C{x}in
variables x = X, ..., Xx,,, which are local coordinates on C" at 0. Similarly, a local biholomorphic
map of C" at the origin can be seen as a C-algebra automorphism ¢ € Aut. C{x}, or a local coor-
dinate change of x.

The Jacobian ideal and extended Jacobian ideal of f are defined by

_/of of - _[of of
Jf—<a—x1,,a>ﬂc{x}y Jf_<a_x1,’a,f>ﬂc{x}’

respectively.
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Remark 1.1. The ideals J; and jf are analytic invariants of f € C{x} and of the ideal {f) < C{x},
respectively. This means that if p € Aut. C{x}is a C-algebra automorphism and u € C{x}"* a unit
power series, then

(TP = Tpipys  Jup = T
In particular, ¢ induces C-algebra isomorphisms
Cix}/ Ty~ O Ty YTy = XY T
However, J,,.; # J;, for instance, for f = x> +x2y2+x’andu=1+x.

In the language of analytic geometry, the arbitrarily small neighborhoods U C C" of 0 € C"
with functions f € C{x} on it form a smooth space germ

Y =(C"0), Oy =C{x}>(x)=my.
A subspace germ X =V (Iy,y) CY is the zero locus of an ideal Iy, <Oy, equipped with the
C-algebra Ox = Oy /Iy y.If Iy y is aradical ideal, that is, Oy and X are reduced, this algebraic
structure is redundant. If 7y ,» = (f) is generated by a single power series f € C{x}, then
B+£V(f) = 0€V(f) = femy, V(ICY < f+#0.
If both latter conditions hold true, then the subspace germ
0eX=V(HGY, Ox=0y/(f)>my/(f)=my,
is called a hypersurface singularity. This means that X is of (pure) codimension 1 in the smooth

space germ Y. The points in Y where all partial derivatives of f vanish are called critical points of
f, those in X, singular points of X. The corresponding subspace germ is the singular locus of X,

SingX = V(J;) X, Osingx = Oy/Jy = Ox/Ox ;.
If Sing X = ¢ is empty, then f is a coordinate and X = (C"~!, 0) is smooth. Otherwise,
0 € SingX < O;éfent%.

If Sing X = {0} is a point, then f has an isolated critical point 0, and X = V(f) is called an isolated
hypersurface singularity.

Remark 1.2. In more intrinsic terms, n equals the embedding dimension
edimX := dim¢(my/m3)
of the hypersurface singularity X = V(f), unless Sing X = @ where edim X = n — 1. Furthermore,

the Jacobian ideal Ox J; < Ox of X defining Sing X is the Fitting ideal of order dim X of the Ox-
module Q;{ of differential 1-forms on X, and . ¢ is its contraction to Oy.
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MONOMIAL JACOBIAN IDEALS | 1069

Any isomorphism X = X’ = V(f’) C Y lifts to an automorphism of Y, defined by some ¢ €
Aut, C{x} with ¢(f) = u - f’ for some unit u € C{x}*.

Definition 1.3. Two power series f, f' € C{x} are called contact equivalent if p(f) = u - f’ for
some C-algebra automorphism ¢ € Aut. C{x} and some unit power series u € C{x}*. They are
called right equivalent if u = 1.

Due to Remark 1.1, X = X’ then implies that Sing X = Sing X’. The converse implication is a
celebrated theorem of Mather and Yau in the case of isolated hypersurface singularities (see [13]),
and of Gaffney and Hauser for general hypersurface singularities (see [5, Part I] and [9, Theo-
rem 2]) under the following mild restriction (see [9, §3, Definition]).

Definition 1.4. The isosingular locus of the germ X = (X, x) of a space X at x is the subspace
germ

IsoX=(x" e x| (x,x')=X}x)CX.

Note that Iso X C IsoSingX if SingX # . If Iso X D IsoSing X, then X is called harmonic, and
dissonant otherwise.

Due to Ephraim (see [2, Theorem 0.2]),
IsoX = (Ck,0), X=X xIsoX, SingX = SingX’xIsoX. )
If k = 0, then we say that Iso X is trivial.

Theorem 1.5 (Mather-Yau, Gaffney-Hauser). If X and X’ are harmonic hypersurface singulari-
ties, then X = X' ifand only if dim X = dim X’ and Sing X = Sing X’.

In other words, the extended Jacobian ideal jf determines the geometry of the hypersurface
singularity X = V(f). This stunning fact has not been exploited systematically so far. It is natural
to study hypersurface singularities X where Sing X is particularly simple. In this spirit, Hauser
and Schicho (see [11, Problem 2°]) formulated the following

Problem 1.6 (Hauser-Schicho). Describe all power series f € C{x} for which the extended Jaco-
bian ideal J i is a monomial ideal, that is, generated by monomials in terms of some local coordi-
nates x on C" at 0.

Obviously this happens if f is of the following type.
Definition 1.7. We call a nonzero sum of non-constant monomials in disjoint sets of variables
a Thom-Sebastiani polynomial. The particular case of a nonzero sum of positive powers of all

variables is called a Brieskorn-Pham polynomial.

Example 1.8. The Whitney umbrella X = V(f) defined by the Thom-Sebastiani polynomial f =
x? + y?z has a monomial extended Jacobian ideal J; = (x,y?,yz).
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1070 | EPURE AND SCHULZE

‘We record some obvious properties of Thom-Sebastiani polynomials.

Remark 1.9. Let f € C{x} be a Thom-Sebastiani polynomial.

(a) Then f is quasihomogeneous (see Remark 4.3).

(b) Unless f is a monomial, it is squarefree. Indeed, any multiple factor g of f divides a monomial
%, which forces g and hence f to be a monomial.

(©) For any unitu € C{x}*, u - f is right equivalent to a Thom-Sebastiani polynomial. In fact, for
each monomial x* of f and a choice of i with «; # 0, considering % - X; as a new variable
eliminates u.

(d) By right equivalence, all degree two monomials of f can be turned into squares. Indeed, a

linear coordinate change replaces x;x; by xl.2 + sz..
Our main result solves Problem 1.6 of Hauser and Schicho.

Theorem 1.10. The extended Jacobian ideal jf of a power series 0 # f € (x) < C{x} is monomial
if and only if f is right equivalent to a Thom-Sebastiani polynomial.

Its proof in § 5 relies on a combinatorial study of monomial Jacobian ideals in § 2: By passing to
exponents of f, we introduce a notion of Jacobian semigroup ideal which implements the underly-
ing linear algebra in terms of a transversal matroid (see Definition 2.1 and Remark 2.2). In Proposi-
tion 2.4, we show that every such semigroup ideal arises from the exponents of a Thom-Sebastiani
polynomial f’. The claimed right equivalence of f and f’ then follows from a Mather-Yau-type
Theorem 3.4 for strongly Euler homogeneous power series (see Definition 3.1). The homogeneity
hypothesis is satisfied if J '+ is monomial due to Theorem 4.6, which generalizes a result of Xu and
Yau in the isolated singularity case (see [20, Theorem 1.2]).

We collect some consequences of Theorem 1.10. In the isolated singularity case, a result of K.
Saito yields

Corollary 1.11. If f € C{x} has an isolated critical point and J ¢ is monomial, then f is right equiv-
alent to a Brieskorn-Pham polynomial.

Proof. By Theorem 1.10, we may assume that0 # f € mé is a Thom-Sebastiani polynomial with
isolated critical point. In particular, f is quasihomogeneous by Remark 1.9.(a). Then there must
be, foreach i € {1, ..., n}, a monomial x" or x"x; in f where m > 1 (see [16, Korollar 1.6]). In the
second case, switching i and j forces m = 1 and Remark 1.9.(d) applies. O

In geometric terms, J '+ monomial means that Sing X is normal crossing (see Definition 5.1).
Using Remarks 1.9.(a) and (b) and Proposition 6.4, we obtain

Corollary 1.12. Any hypersurface singularity X = V() with normal crossing singular locus Sing X
is quasihomogeneous, holonomic and either reduced, or a (possibly non-reduced) normal crossing
divisor. O

Due to the Aleksandrov-Terao Theorem, the notion of Saito-free divisor generalizes by requiring
Cohen-Macaulayness of a generalized Jacobian ideal (see [8, Definition 5.1], [18, Definition 5.5],
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[15, Definition 4.3]). Results of Epure and Pol (see [15, Corollary 5.5] and [1, Theorem 2]) yield the
final conclusion in

Corollary 1.13. A reduced normal crossing singular locus of a hypersurface singularity is a Carte-
sian product of equidimensional unions of coordinate subspaces, and hence, a free singularity. []

We conclude with an application to E. Faber’s conjecture, which aims for characterizing non-
smooth normal crossing divisors as hypersurface singularities X = V(f) with J; radical and
equidimensional of height 2 (see [4, Conjecture 2]). From J radical, it follows that f is Euler
homogeneous (see [4, Lemma 1]). In particular, Jf = jf depends only on X.

Corollary 1.14. A non-smooth hypersurface singularity X = V(f) is a reduced normal crossing
divisor if and only if J; is monomial and radical of height 2.

Proof. Suppose that J; is monomial and radical of height 2. By Theorem 1.10, f is then a Thom-
Sebastiani polynomial of squarefree monomials in terms of variables x = x,, ..., x,,. Each mono-
mial contributes 1 to the height of 7. ¢ if quadratic, and 2 otherwise. Then either f = x% + x%, or
f € (x)? is a monomial. In the first case, f = x;x, after a linear coordinate change. Thus, X is a
reduced normal crossing divisor in both cases. O

2 | JACOBIAN SEMIGROUP IDEALS

In this section, we describe the combinatorics underlying our problem by combining the struc-
tures of semigroup ideals and transversal matroids.

Fix n € N and set [n] := {1, ..., n}. Recall that a matroid M on [n] axiomatizes the notion of
linear dependence of families of n vectors in a vector space (see [14]). Among other options, it
can be defined by the data of independent sets, or that of bases, that is, maximal independent sets.
Both are distinguished subsets of the ground set [n], subject to corresponding matroid axioms.
These latter implement standard theorems of linear algebra such as the Steinitz exchange lemma
and the basis extension theorem. The rank rk(S) of a subset S C [n] is the maximal cardinality of
an independent subset of S. The rank rk M : = rk([n]) of the matroid M equals the cardinality of
any basis.

Consider the commutative monoid M := (N, +). The support of an element a € M is the set

[a] :={i € [n]|a; # 0}, (2.1
its degree is defined by
la| :=aq + - + .
For any subset F C M, we consider the union of supports of all its elements,

[F] := U [a]. (2.2)

aceF
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1072 | EPURE AND SCHULZE

For any semigroup ideal I < M, the set of minima Min(I) with respect to the partial ordering is
the (unique) minimal set of generators. By Dickson’s Lemma, it has finite cardinality

u) := | Min(I)| < oo.

For i € [n], denote by e; :=(§; ;); € M the ith unit vector and define partial differentiation
operators

ifa; =0,
8 : M- MuU{w) &) =4 %=t
a —e; otherwise.

For F C M > a, we write

8(F) := | &i(P)\{w} M, 8(a) :=8({a).

ie[n]
Definition 2.1. Let F C M be a subset and consider the semigroup ideal
Jp i=(6(F))< M.
We call the transversal matroid My associated with the covering of Min(Jy)
{Min(Jp) N 8,(F) | i € [n]} € 2MnUF)

the Jacobian matroid of F (see [14, §1.6]). Its independent sets are the partial transversals of the
covering, that is, injective maps

P
[n] 2 1< Min(Jr), where (i) € §;(F)foralli el.

Note that the rank of  equals rk(y) = |I]. If tk M = u(JR), then refer to J; as the Jacobian semi-
group ideal of F.

Note that it is a strong requirement on F to have a Jacobian semigroup ideal J. In fact, typically
|u(Jg)| > n, whereas tk My < n.

Our terminology is motivated by the following

Remark 2.2. Consider the support of a power series in variables X = x, ..., X,

f=Y fx*€cix), F:=supp(f)={a€M]|f,#0}CM.

Suppose that J; is generated by monomials in terms of the variables x. Then Ji is the set of
exponents of monomials in J¢, and Min(Jp) is the subset of exponents of minimal monomial
generators of Jy. Since J; is generated by n many partial derivatives, its minimal number of
generators is bounded by

u(p) = ,U(Jf) <n.
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MONOMIAL JACOBIAN IDEALS | 1073

By Nakayama’s Lemma, any minimal generators %, i €1, of J; map to a basis of the C-vector

space J. [ /(x)JT iz which has a monomial basis with exponents in Min(J). Gaussian Elimination
yields a bijection ¢ : I — Min(Jz) such that x¥® is a monomial of %, and hence, (i) € §;(F)
foralli € I. Thus, ¥ is a partial transversal. It follows that

u(JTp) = Il < tkMp < u(Up) = u(Jy)
is an equality. This makes J a Jacobian semigroup ideal.

The impression that Jacobian semigroup ideals are quite special is further supported by our
main combinatorial result. It replaces F by the support of a Thom-Sebastiani polynomial leav-
ing Jr unchanged. We first illustrate its proof in the simple case of the Whitney umbrella from
Example 1.8.

Example 2.3. For f = x* + y?z with J; = (x,yz,y?), we obtain

F ={(2,0,0),(0,2,1)},
§,(F) ={(1,0,0)}, &,(F)={(0,1,1)}, &,(F)={(0,2,0)},
8((2,0,0)) = {(1,0,0)}, 8((0,2,1)) = {(0,1,1),(0,2,0)},
Min(J) = {(1,0,0), (0,1,1), (0,2,0)}.

We can reconstruct F from J as follows: Choose
P(1) :=(1,0,0) € Min(Jp), »(1)=76,(a), «a :=(2,0,0) €F,
to obtain a partial transversal ¢ : [1] & Min(Jg). Set F’ := {a}. Since
k() = |[1]] =1 <3 = u(Jp) = kMg,
1 extends to [2] by
P(2) € 8,(F) = {5,((0,2,1))}, (0,2,1) :=a,

and F’ u{a’} = F. Then

S(F") = (2D u{S5(a")},  d5(a’) =: %(3),
extends ¢ to [3] and the process terminates.

We now develop the approach of Example 2.3 into a general argument.

Proposition 2.4. Let F C M be a subset such that J is a Jacobian semigroup ideal. Then J =

Jpr for some subset F' C F \ {0} whose elements a € F' have disjoint supports [a] and contribute
minimal generators §(a) C Min(Jy) of Jp.
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Proof. For increasing #, we construct partial transversals
L
[£]< Min(Jp),
enumerating Min(J) by increasing degree, together with subsets F’ C F such that

[F'1= | |lal =], 8F") = (2.

aeF’
The claim is proven when equality has been reached in
k() = £ < u(Up) = rk M.
Otherwise, an o € F \ {0} extends 3 to a k € [«] \ [£] by a new minimal generator
B :=19(k) = §(a) € Min(Jp) \ ([Z]).
Since 1 is part of a basis of My, the degree |3| can be chosen minimal. Suppose that, for some

i €lal,d;(a) € Min(Jy) \ ¥([£]) is not a new minimal generator. Since 1) enumerates Min(J) by
increasing degree, this means that §;(«) € (([£])). Then there is a j € [#] such that

a—e; =06;(a) >9(j)=:7.
Using that
[a] 2k & [7] = [F'] 2 [6(F)] = [¥(£D] 2 [¥] = ax > 14
this leads to the contradiction
Min(Jp)38>pB—e=a—e; —e >y EJp.
It follows that all |[«]| elements of 6(a) C Min(Jy) \ ([¢]) are pairwise different new minimal
generators of J of minimal degree |a| — 1 = |B]. In particular, ¢ extends to [£] U [a]. Suppose
thati € [#] N [«a], and hence,
tk(®) = [[£]U[a]l < £ + |[a]| < u(Tp) = Tk Mg.

An extension of § yields a j & [#] U [a] and an «’ € F such that 6;(«) = &;(a’). Replace a by o
repeatedly to decrease ||| until [£] N [«] = @. Then reorder £ + 1, ..., n such that [£] U [a] =

[# + |[«]]]. Now including « in F’ increases ¢ by |[«]|. Iterating this procedure until # = u(J)
yields the claim. Ol

3 | MATHER-YAU UNDER STRONG EULER HOMOGENEITY

In this section, we discuss a Mather-Yau-type theorem for strongly Euler homogeneous power
series. We first recall the definition (see [7, p. 769]).
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Definition 3.1. A power series f € Oy = C{x} is called (strongly) Euler homogeneous if f € J;
(f € myJ; where my = (x)). In this case, a hypersurface singularity X = V(f) CY is called
(strongly) Euler homogeneous.

Remark 3.2.

(a) Euler homogeneity of f is equivalent to J; = J [

(b) If X = V() is strongly Euler homogeneous, then so is f. That is, strong Euler homogeneity
is invariant under contact equivalence.

(c) If X 2 X’ x(C,0), then X is strongly Euler homogeneous if and only if X’ is so (see [7,
Lemma 3.2]).

(d) For X with trivial Iso X Euler homogeneity must be strong (see [9, Theorem 1.(4°)]). Note also

that any X with non-trivial Iso X is already Euler homogeneous. Indeed, for f independent

8
of x,, X = V(exp(x,)f) and exp(x,)f = %ﬁf”” € Texp(x,)f-

Euler homogeneity and Theorem 1.5 are linked by the following

Remark 3.3. Suppose that the hypersurface singularity X = V(f) C Y is not smooth, that is, 0 €
Sing X. Then there is a modified singular locus

Sing*X 1= V(TK(f), TK(f) 1= myJ; + (f) <9 Oy,

defined by the tangent space TK(f) at f to the orbit of f under the contact group. The underly-
ing reduced space germs of Sing X and Sing* X agree. Note that TK(f) = myjf if X is strongly
Euler homogeneous.

Thus, for strongly Euler homogeneous hypersurface singularities X and X', Sing X = Sing X’
implies Sing” X = Sing* X’. By Gaffney and Hauser (see [5, PartI]), this further implies that X &~ X
ifdimX = dim X’.

However, Euler homogeneity is not a consequence of harmonicity. In fact, isolated hypersurface
singularities are trivially harmonic. Correspondingly, Euler homogeneity does not suffice for the
conclusion of Theorem 1.5 due to Remark 3.2.(d) and an example of Gaffney and Hauser (see [5,

§4D.

Strongly Euler homogeneous power series satisfy a Mather-Yau Theorem for right equivalence
(see [12, Theorem 9.1.10]).

Theorem 3.4. Let f, f' € C{x} be strongly Euler homogeneous power series. Then the following
statements are equivalent.

(a) The power series f and f' are right equivalent.
(b) The power series f and f' are contact equivalent.
(¢) The C-algebras C{x}/J; and C{x}/J;s are isomorphic.

Proof. (a) implies (b) by Definition 1.3, (b) implies (c) due to Remarks 1.1 and 3.2.(a). It remains
to show that (c) implies (a).
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An isomorphism C{x}/(x)J; = C{x}/(x)J induced by (c) is trivially one of algebras over
C{f} = C{f'} because the respective classes of f and f’ are zero. This implies (a) (see [12, The-
orem 9.1.10]). For the sake of self-containedness, we prove this latter implication:

By Remark 1.1, we may assume that

Jf=Jf/=: J

and consider this as an equality of ideal sheaves on some common domain of convergence 0 €
U C Y. Consider the homotopy from f toward f’

H:=f+t-(f = f) € Opyxe

depending on a parameter t € C with its relative Jacobian ideal sheaf

Iy =

(2.2

s e < Opye-
dx, axn> Uxc

By abuse of notation, we consider .J < Q. Then Jy; € J and

af af’  af .
— =t = -= t d foralli=1,..,n.
3, <6xi ax, €tJ mod Jyforalli n

Thus, J/Jy = t(J /Jy), and Nakayama’s Lemma yields equality
IJg =T 4 OUXC,(O,O) = C{x, t}. (3.1

In other words, the support Z of the quotient sheaf .7 /J;; does not contain (0, 0), and by sym-
metry not (0, 1) either. Due to coherence of the sheaf, Z C U X C is an analytic subset (see [12,
Corollary 6.2.9]), and Z n ({0} X C) identifies with a discrete subset D C C \ {0, 1} (see [12, Theo-
rem 3.1.10]). For any 7 € C \ D, strong Euler homogeneity of f and f” yields that

0H
a(t—1)

= f, - f € <X>J = <X>JH bl OUXC,(O,T) = C{X,t — T}.

By local triviality (see [12, Corollary 9.1.6]), it follows that

fr i=HEX,7) € Oy = C{x}
has locally constant right equivalence class for 7 € C \ D. Pick a continuous path y: [0,1] —
C\ D from y(0) = 0to y(1) = 1. By compactness, the right equivalence class of f, is then constant

for z € y([0,1]). In particular, f = f, ) and f” = f, ) are right equivalent, and hence, X = X" as
claimed. L]

4 | QUASIHOMOGENEOUS JACOBIAN ALGEBRAS

In this section, we deduce strong Euler homogeneity for a hypersurface singularity from a positive
analytic grading on the singular locus, generalizing a result of Xu and Yau (see [20, Theorem 1.2]).
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The geometric meaning of strong Euler homogeneity is rather subtle in general. It becomes
more transparent in the following special case.

Definition 4.1. An Euler derivation on a space germ X is a C-linear derivation y : Oy - Oy of
the form

n
0
X = Z WiX;z = W= W, e, Wy € Q., 4.1)
i=1 i

where x = x,, ..., x,, minimally generates my. If it exists, then X and all eigenvectors of y are
called quasihomogeneous.

Remark4.2. IfX = V(I ,y) C Y withY smoothand dim Y = edim X, then x are coordinateson Y
and y lifts to a C-linear derivation y : Oy — Oy with x(Ix,y) C Ix/y (see[19,(2.1)]). Conversely,
any such logarithmic Euler derivation long I ; induces an Euler derivation on X.

Remark 4.3. Any Thom-Sebastiani polynomial f = Zf;l x% € Oy is quasihomogeneous. In fact,
setting

1 .
@, IS [ij]’

1, i & I_lljzl[“j],

in (4.1) yields an Euler derivation y on Y such that y(f) = f.

Remark 4.4. Any quasihomogeneous f € my is (strongly) Euler homogeneous since Q. - f 2
x(f) € myJ; if f # 0. The converse holds true for isolated hypersurface singularities due to a
result of K. Saito (see [16]).

Remark 4.5. In more intrinsic terms, quasihomogeneity of X means that my is generated by
eigenvectors X = X;, ..., x, of y with eigenvalues w € Q” . By clearing denominators such that
w € Z , this becomes equivalent to a positive analytic grading over (Z, +) in the sense of Scheja
and Wiebe on the analytic algebra (O, m) : = (Ox, my), whose kth homogeneous part is the k-
eigenspace of y,

n
O = (x* [ (W,a) =k)e, (W,a) =) wa,
i=1

spanned by monomials of w-weighted degree k (see [19, §1-3]). This means that the vector spaces
O, C O, k € 7, induce a grading of O/m’, for all £ € Z,, compatible with the canonical surjec-
tions @/m’ — @/m?, forall £ > £'. Note, however, that O # @, , Oy in general.

Using Remark 4.5, we can generalize a result of Xu and Yau (see [20, Theorem 1.2]) as follows.

Theorem 4.6. Ifa hypersurface singularity X = V() has quasihomogeneous singular locus Sing X,
then f is strongly Euler homogeneous.
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Proof. To reduce to the case where Iso X is trivial in (1.1), apply Lemma 4.7 to Sing X and use
Remark 3.2.(b). Then, by Remark 3.2.(d), it suffices to to show that f is Euler homogeneous. This
follows from the argument of Xu and Yau (see proof of [20, Theorem 1.2]) using Lemma 4.8 and a
positive analytic grading on Og;,, x = Oy / J '+ (see Remark 4.5). O

Lemma 4.7. If a Cartesian product X = X' X Z of space germs is quasihomogeneous and Z is
smooth, then X' is quasihomogeneous.

Proof. Quasihomogeneity of X yields an Euler derivation y as in (4.1). By the Implicit Mapping
Theorem (see [12, Theorem 3.3.6]), reordering x yields

X 2X" :=V(xy,...,x) CX, k=dimZ.
The derivation induced by y makes X"’ and hence X’ quasihomogeneous. O

Lemma 4.8. Let O be an analytic algebra with maximal ideal m, and y an Euler derivation as in
(4.1). Then y induces a C-linear automorphism on any y-invariant ideal T C m.

Proof. By Remark 4.2, clearing denominators of w and reordering variables, we may assume that
O = C{x} in the situation of Remark 4.5 with

w; € - < w, = wla] <(w,a) <w,|af. (4.2)
Expanding an element

Z frem=(x), [fr€O,

kez.q

in terms of w-weighted homogeneous parts, one finds a unique preimage

/Xf:=k€ZZ>of—k", [ n=

Writing f = 3,50 /X" in terms of monomials, then using (4.2) we obtain

/s

for all t € R}, and hence, fx f € m (see [6, §1.2, Satz 3’, §3.3]).
If 7 C misa y-invariant and hence w-weighted homogeneous ideal, then /. p leaves all homo-
geneous parts I, k € Z, and hence 1 itself invariant. O

Z |fa < 1 Z |fo( < 2 |fa|ta_”l{)|1|t<oo

t  |a>0 (W, a) “> W1 1430 |“| w; &[>0

5 | MONOMIAL JACOBIAN IDEALS

In this section, we combine Proposition 2.4 and Theorems 3.4 and 4.6 to prove our main Theo-
rem 1.10.
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We consider the following extremal variant of quasihomogeneity given by a maximal number
of linearly independent weight vectors.

Definition 5.1. We call an ideal of an analytic algebra @ monomial if it is generated by monomials
in terms of some minimal generators of the maximal ideal m < O. A space germ X C Y is normal
crossing if its defining ideal 7 )y < Oy is monomial. Note that such space germs are quasihomo-
geneous.

Remark 5.2. In more intrinsic terms, maximal quasihomogeneity of X means that Aut: Oy con-
tains an algebraic torus of dimension edim X (see Remark 1.2) as a subgroup in the sense of Hauser
and Miiller (see [10, §1)]). Indeed, such a torus acts linearly in terms of suitable coordinates and
lifts to any smooth space germ Y 2 X with dimY = edim X (see [10, Satz 6.i)]). The dimension
condition is redundant because a general such embedding is isomorphic to X X Z C Y X Z with
Z smooth. The torus invariant defining ideal Iy, 90Oy is then generated by monomials. The
converse implication holds trivially.

We are ready to prove our main result.

Proof of Theorem 1.10. Sufficiency is due to Remark 1.1. Suppose that 7, '+ is monomial for some 0 #
f € (x).ThenSing X = V(Jy)isquasihomogeneous, and hence, f is strongly Euler homogeneous
by Theorem 4.6. By Remark 2.2, the support F := supp(f) of f defines a Jacobian semigroup
ideal J. Then F’ obtained from Proposition 2.4 is the set of exponents of a Thom-Sebastiani
polynomial

f, = Z x* € C{x}, Jf =Jf/,

aeF’!

which is strongly Euler homogeneous by Remarks 4.3 and 4.4. Then f and f’ are right equivalent
due to Theorem 3.4, proving the claim. O

6 | LOGARITHMIC DERIVATIONS AND HOLONOMICITY

In this section, we describe the logarithmic derivations along hypersurface singularities defined
by Thom-Sebastiani polynomials and show that they define a finite logarithmic stratification in
the sense of K. Saito (see [17]).

Definition 6.1. The Ox-module of logarithmic derivations along the hypersurface singularity
X =V(f) CY (see Remark 4.2 and [17, (1.4)]),

Der(—logX) C Der. Oy =: Oy,

consists of all C-linear derivations § : Oy — Oy with 8(f) C (f).

The logarithmic stratification of X on Y by smooth connected immersed submanifolds is charac-
terized by the fact that, for all y € Y, the tangent space at y of the stratum containing y is spanned
by the evaluations of all elements of Der(— log X) at p (see [17, (3.3)]). If this stratification is finite,
then X is called holonomic (see [17, (3.8)]).
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Remark 6.2.

(a) Replacing f by its squarefree part, that is, X by the associated reduced space germ X4, does
not affect logarithmic derivations and stratification.

(b) The complement Y \ X and the connected/irreducible components of X \ Sing(X™d) are
(finitely many) logarithmic strata (see [17, (3.4) iii)]).

(c) The derivations annihilating f form an Ox-submodule

Der(—logX) 2 Der(—log f) := anngy(f) = syz(Jf),

isomorphic to the syzygy module of J;. Euler homogeneity of X = V(f) yields a logarithmic
vector field y such that y(f) = f. If suitably chosen, this yields a direct sum decomposition

Der(—logX) = Oy - y @ Der(—log f).

Remark 6.3. Consider a monomial (Thom-Sebastiani polynomial) f = x* defining a normal
crossing divisor X = V(f). With the Euler derivation y from Remark 4.3, one verifies that

ann, () = (v — ;- x| 1€ [al) + (= | i €[]\ [a]).

Since Xed = U ] V(x;) it follows with Remark 6.2.(c) that

i€la
o o

<xia_xi’ axj

Der(—log X)|yred = anngy(f)lxred = lielal,jel[n]\ [a])]xrea.

This shows that anng, (f) defines the logarithmic stratification of X on X, and that the strata are
relative complements of coordinate subspaces. In particular, X is holonomic by Remark 6.2.(b).

Proposition 6.4. Any Thom-Sebastiani polynomial defines a holonomic hypersurface singularity.

Proof. Let f = Zle x% be a Thom-Sebastiani polynomial with support F := {a; | i € [k]}, defin-
ing a hypersurface singularity X = V(f) C Y. In the case where k =1, the claim is due to
Remark 6.3. The monomials of f define (normal crossing) hypersurface singularities (see (2.1))

X, =vxcEckl o=y, i=1,..,k

such that (see (2.2))
k
X =v(Hc[]ri=Y, X=Xx'xzcY'xz=Y, Z:=("\Flq),
i=1

and all logarithmic strata of X are products of strata of X’ with Z. We may thus assume that
Z = {0}, that is, [F] = [n]. Then

k

SingX = H Sing X;;.
i=1

The Euler derivation from Remark 4.3 restricts to that in Remark 6.3 on each Y;. The syzygies
syz(J) are generated by all syz(Jy« ) and the Koszul relations. These latter vanish on Sing X. By
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Remarks 6.2.(c) and 6.3, it follows that the logarithmic strata of X in Sing X are products of finitely
many strata of the X; in Sing X;. Thus, X is holonomic by Remark 6.2.(b). O

ACKNOWLEDGEMENTS

Groundwork for this article was laid in the Ph.D. thesis of the first-named author (see [3]) under
the direction of the second named author. We thank Herwig Hauser for reviewing this thesis and
for many valuable comments and suggestions.

JOURNAL INFORMATION

The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES

1. R.Epure and D. Pol, On constructions of free singularities, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 64(112)
(2021), no. 1, 35-48.
2. R. Ephraim, Isosingular loci and the Cartesian product structure of complex analytic singularities, Trans. Amer.
Math. Soc. 241 (1978), 357-371.
3. R.-P. Epure, Explicit and effective Mather-Yau correspondence in view of analytic gradings, PhD thesis, TU
Kaiserslautern, 2020.
4. E. Faber, Characterizing normal crossing hypersurfaces, Math. Ann. 361 (2015), no. 3-4, 995-1020.
5. T. Gaffney and H. Hauser, Characterizing singularities of varieties and of mappings, Invent. Math. 81 (1985),
no. 3, 427-447.
6. H. Grauert and R. Remmert, Analytische Stellenalgebren, Unter Mitarbeit von O. Riemenschneider, Die
Grundlehren der mathematischen Wissenschaften, Band 176, Springer, Berlin, 1971.
7. M. Granger and M. Schulze, On the formal structure of logarithmic vector fields, Compos. Math. 142 (2006), no.
3, 765-778.
8. M. Granger and M. Schulze, Dual logarithmic residues and free complete intersections, 2012. HAL: hal-00656220.
9. H. Hauser and G. Miiller, Harmonic and dissonant singularities, Proceedings of the Conference on Algebraic
Geometry (Berlin, 1985), Teubner-Texte Math., vol. 92, Teubner, Leipzig, 1986, pp. 123-134.
10. H. Hauser and G. Miiller, Algebraic singularities have maximal reductive automorphism groups, Nagoya Math.
J. 113 (1989), 181-186.
11. H. Hauser and J. Schicho, Forty questions on singularities of algebraic varieties, Asian J. Math. 15 (2011), no. 3,
417-435.
12. T.de Jong and G. Pfister, Local analytic geometry, Advanced Lectures in Mathematics. Basic theory and appli-
cations, Friedr. Vieweg & Sohn, Braunschweig, 2000.
13. J.N.Mather and S. S. T. Yau, Classification of isolated hypersurface singularities by their moduli algebras, Invent.
Math. 69 (1982), no. 2, 243-251.
14. J. Oxley, Matroid theory, 2nd ed., Oxford Grad. Texts Math., vol. 21, Oxford University Press, Oxford, 2011.
15. D. Pol, Characterizations of freeness for equidimensional subspaces, J. Singul. 20 (2020), 1-30.
16. K. Saito, Quasihomogene isolierte Singularititen von Hyperflichen, Invent. Math. 14 (1971), 123-142.
17. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 27 (1980), no. 2, 265-291.
18. M. Schulze, On Saito’s normal crossing condition, J. Singul. 14 (2016), 124-147.
19. G.Scheja and H. Wiebe, Uber Derivationen von lokalen analytischen Algebren, Symposia Mathematica, vol. X1,
(Convegno di Algebra Commutativa, INDAM, Rome, 1971), 1973, pp. 161-192.
20. Y.-J. Xu and S. S.-T. Yau, Micro-local characterization of quasi-homogeneous singularities, Amer. J. Math. 118
(1996), no. 2, 389-399.

d '€ ‘2202 ‘02T269vT

wouy

0 PUE SUL L U1 395 * 7202 70/GT] U0 ARIGITSUINO AB1IM TEPUET-UBIEIS B 2] IBYSPAIIN SUISIULD L YISIZRAc-PUEIUBYY AQ TGZT SWIQ/ZTTT OT/I0PALIOD AB|IAK

£

oI

5US017 SUOLUILIOD BAIEBID DG Idde B A POUBAOB 312 SIPILE YO 88N J0'SINI 10} AIGIT3UIIUO 31 UO



	Hypersurface singularities with monomial Jacobian ideal
	Abstract
	1 | INTRODUCTION
	2 | JACOBIAN SEMIGROUP IDEALS
	3 | MATHER-YAU UNDER STRONG EULER HOMOGENEITY
	4 | QUASIHOMOGENEOUS JACOBIAN ALGEBRAS
	5 | MONOMIAL JACOBIAN IDEALS
	6 | LOGARITHMIC DERIVATIONS AND HOLONOMICITY
	ACKNOWLEDGEMENTS
	JOURNAL INFORMATION
	REFERENCES


