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Introduction

Let A = C[[z1,...,2,]]/(f) be the complete local ring of a hypersurface singularity.
A is called semiquasihomogeneous with weights wy, ..., w, if f = fo+ f1, foa qua-
sithomogeneous polynomial defining an isolated singularity and deg fo < deg f;. We
assume that wy, ..., w, are positive integers and let deg always denote the weighted
degree, i.e. deg X* = wyay + -+ - + w,a, for a monomial X* = X -...- X For an
arbitrary power series f, deg f denotes the smallest weighted degree of a monomial
occurring in f. By definition, all monomials of a quasihomogeneous polynomial have
the same degree. The singularity with local ring Ag = C[[z1,...,z,]]/(fo) is called
the principal part of A. If the moduli stratum of Ay has dimension 0, i.e. the 7—
constant stratum in the semiuniversal deformation of Ag is a reduced point, then Ag
is uniquely determined by the weights. Let H' = H'(C[[zy,...,z,]]) be the ideal gen-
erated by all quasihomogeneous polynomials of degree > 1w, w := min{wy,...w,}.
This (weighted) degree-filtration defines a Hilbert-function 7 on the Tjurina algebra
of A by

0 0
7(4) = dimg Cler, .., ea)l/(/, f -

FISEEREED Y.

We call f or A a semi Brieskorn singularity if the principal part is of Brieskorn—
Pham type, i.e. fo = 27" + ... + 2", ged(mi,m;) = 1 for « # j. Then fy is
quasihomogeneous with weight w = (wy,...,w,), where w; = mq - ... ;- ... my,
and degree d = my - ... m,, the moduli stratum is zero-dimensional and hence fy is
uniquely determined by its weights (cf. [LP]). We are mainly interested in the classi-
fication of such singularities with respect to contact equivalence, i.e. in isomorphism
classes of the local algebra A. With respect to this equivalence relation we shall prove:

Theorem There exists a coarse moduli space M., for all semiquasihomogeneous
singularities with fived principal part Ay, weight w and Hilbert function 7. M, . is
an algebraic variety, locally closed in a weighted projective space.

We follow the general method to construct such moduli spaces (cf. [LP], [GP 1]):

1. We prove that the versal y—constant deformation )N(M — H,, of Ag contains al-
ready all isomorphism classes of semiquasihomogeneous singularities with prin-
cipal part Ag. (If we take the quotient of H, by a natural action of the group
of d-th roots of unity we obtain already a coarse moduli space with respect to
right equivalence.)

2. This family contains analytically trivial subfamilies. They are the integral man-
ifolds of a Lie-algebra V,, the kernel of the Kodaira—Spencer map of the family.
We prove that two singularities are isomorphic iff they are in one integral man-

ifold of V,.

3. The integral manifolds of the (infinite dimensional) Lie-algebra V}, can be iden-
tified with the orbits of a solvable algebraic group G. Now the results of [GP 2]



can be applied. We prove that the stratification {H, .} of H, by fixing the
Hilbert function has the properties required in [GP 2], ie. H,  — H, [G is
a geometric quotient and a coarse moduli space of all semiquasihomogeneous
singularities with weight w, Hilbert function 7 and principal part Aj.



1 Versal y—constant deformations and kernel of
the Kodaira—Spencer map

In this part we recall some known facts about the versal y—constant deformation and
the kernel of the Kodaira—Spencer map.

Let fo=a!" +...4 2", n>2 m; >2and ged(m;,m;) =1if 1 £ 5.

Let w; = my - ... -m;-...-my, + = 1,...,nand d = my-... - m, then fy
is a quasihomogeneous polynomial with weight w = (wy,...,w,) of degree d. Let
Ao = Cl[z]]/(fo), © = (x1,...,2,) and consider the deformation functor Def4, ¢
which consists of isomorphism classes of deformations of the residue morphism Ay —
C. Geometrically, an element of Defs,_,c is represented by a “deformation with
section” of the singularity defined by fo (cf. [Bu]). It is not difficult to see (cf.
[LP]) that Defs,c(Cle]) = (2)/(fo+ (2)(2L, ..., 21o)) where () denotes the ideal

dry? ) Oxy,

generated by zy,...,z,. This vector space has a unique monomial base {z%|a €
B}, a = (a1,...,ap), 2 = 2* - ... - 2" where B = {a € N"\{0}|a; < m; — 2} U
{0,...,m; —1,0,.. )t =1,...,n}:

ma
mo — 1
* * *
* * *
* * *
* * *

mi; —1 mp
Figure 1: B (n =2)

Defs,—c has a hull, the semiuniversal deformation, given on the ring level by

H — Hl[[z]]/F with

F = F(T) = fo + Z Td_|a|$a
a€B

H o= CIT),
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T = (Td_|a|)aeg and | a |= Y%, w;a; which is by definition the degree of .

Notice that F'is quasihomogeneous if we define deg T; = i. We put H := Spec H =
CN, N =#B = [[ (mi—1)+n—1, the base space of the semiuniversal deformation.
=1

The moduli stratum, i.e. the 7—constant stratum, is the zero point in H.

Let Defs,c,c+ denote the functor of C*-equivariant deformations of Ag — C (cf.

[Pi]) and let Defﬁoﬁc = Im(Defs,ccr = Defa,c) Defﬁoﬁc gives the pu—
constant deformations over a reduced base space. The functor Def, ,c,c+ has a
hull, the semiuniversal y—constant deformation, given by

H, — HM[[x]]/(FM) with

F,=F/(T) = fo+ Z Tyjo)z”

aEB_

H, = C[{Tija}toen]
where B_ ={a € B, d — |a] < 0}:

m2—1

mi; —1 M1

Figure 2: B_ (n = 2)

Remark 1.1 (1) The assumption ged(m;,m;) = 1 implies that except on the axes
there are no extra integral points on the hyperplane |a| —d = 0, i.e. fo has no moduli.
Moreover, it follows that on each hyperplane |a| = d', a € B, there is at most one
monomial %, hence the elements of B can be numbered by degree which turns out



to be very convenient.

(2) For any t € H, := Spec H, we have that F,(t) = fo + fi € C[[z]] is semiquasi-
homogeneous, with principal part fy. The natural C*—actions, cox = (..., "z, .. )
and cot = (...,cl;,...), ¢ = C*, have the property F,(cot)(coz)= c'F,(t)(z), in
particular, Fj,(cot) and F,(t) are right equivalent if ¢? = 1.

(3) The action of pg on H, — {0} is faithful since py acts with degree 0 and the
T; have different degrees. This implies: if X — S is any p—constant deformation
of A = CJ[[z]]/(fo+ f1), then there is an open covering {U;} of S such that X, is
obtained via some base change p; : i; — H . By the following proposition ¢; o Lp]-_l is
equal to the C*—action given by some d-th root of unity ¢;;. Since pq acts faithfully
{e;;} defines a 1-Cech cocycle of iz on S. Hence, if H'(S,Z/dZ) = 0, the ¢; can be
glued such that & — S is globally obtained by some base change S — H ,.

Proposition 1.2 1. For any semiquasthomogeneous polynomial [ = fo + f1 with
principal part fy there is an automorphism ¢ € Aut C[[z]] and t € H, such that

@(f) = Fu(ﬂ-

2. If Fu(t) and F,(1') are right equivalent for t,t" € H, then there is a d—th root
of unily ¢, such that cot =1t'.

Corollary 1.3 Let y1q denole the group of d—th roots of unity acling on H, as above,
then H,[/pq is a coarse moduli space for semiquasihomogeneous polynomials f with
principal part fo and with respect to right equivalence.

For the notion of (coarse) moduli spaces see [MF] and [Ne|. The fact that 1.3 is a
corollary of 1.2 follows from general principals (cf. [Ne|; the assumption made there
that all spaces are reduced is not necessary). See also remark 3.5.

Proof of 1.2: (1) is proved in [AGV], 12.6, theorem (p. 209).
(2) First notice that roots of unity cannot be avoided: take f = z° + y'' + 2¢?, ¢} =

' = 1 and ¢ = c¢jc;. The automorphism z + c'!

IS +y11 +056$y9.

T,y + cy maps [ to

The statement of (2) will follow from the following two lemmas:

Lemma 1.4 Let [, g be semiquasihomogeneous with principal part fo as above and
@ € Aut C[[z]] such that o(f) = g. Then there is a d-th rool of unily ¢ such that

o(x;) = z; + hi, deg h; > w;.
Proof: Let w; < ... < w,. By proposition 3.2 we have deg ¢ > 0, hence

@(z;) =Y ¢ijz; + higher order terms.
iz



Since @ is an automorphism, [Te¢; # 0, and o(z;) = cyx; + hi,deg hy > w;. From

et e = et 4 ey we deduce ¢ = 1 and putting ¢ = [Jey
k3

we obtain the result.

Lemma 1.5 Let ¢ € Aut Cl[z]], deg ¢ > 0, and t,t' € H, such that o(F,(t)) =
F(t"). Thent =1

Proof: By lemma 1.4, p(z;) = 2; + h;. Hence p,(z;) := x; + sh; is a family of auto-
morphisms of positive degree which connects ¢ with the identity. Then ¢ (F, (1)) is a
C*—equivariant family of isolated singularities, joining F,(¢) and F},(t'). This family
may not be contained in H, but it can be induced from H , by a suitable base change
(remark 1.1). But since H, is everywhere miniversal and does, therefore, not contain
trivial subfamilies with respect to right equivalence, ¢t = t" as desired.

The Kodaira-Spencer map (cf. [LP]) of the functor Def,,c,c+ and of the family
H, — Hy[[«]]/ F,

Jr, 8FM))

p: DercH, — (x)H,[[z]]/ (FM + (z)( 9. O

is defined by p(8) = class(0F,) = class(Y,ep_ 0(Ti—ja)z®).

Let V, be the kernel of p. V, is a Lie-algebra and along the integral manifolds
of V, the family is analytically trivial (cf. [LP]).

In our situation it is possible to give generators of V,, as H,—module:

Let I, = (x)HM[[J:]]/(x)(aF” 8F“), then I, is a free H,~module and {z°},cB

Az, 7" " Bz,

is a free basis.
Multiplication by F, defines an endomorphism of I, and F,I, C ©,cp_x*H,.
Especially, for o € B, define h; ; by

2 Fy = 3 Bagacip” in I,
BeEB_

Then h;; 1s homogeneous of degree + + 3. This implies h;; = 0if ¢ + 7 > 0, in
particular h;; = 0if1 > (n —1)d —2) w;. For a € B and |a| < (n —1)d — 23 w; let
8ol = Lpen_ hiol.a-jp 5715

Proposition 1.6 (c¢f. [LP], proposition 4.5):
1. 8ja is homogeneous of degree |al.

2.V, =%, Hudju.



Now there is a non—degenerate pairing on [, (the residue pairing) which is defined
in our situation by (h,k) = hess(h - k). Here for h = Y cghoax® € I,, hess(h) =
h(my=2,....mn—2) Which is the coefficient belonging to the Hessian of f.

Let the numbering of the elements of B = {ay,...,ax}, be such that |oq| <
... < |ag| and denote by 3; = o) ;. ;, © = 1,...,k, the dual exponents induced by
the pairing, i.e. if v = (y1,...,79,) then v¥ = (my =2 —y,...,m,, — 2 — 7,).

Using the pairing one can prove the following

Proposition 1.7 There are homogeneous elements my,...,my € H,[[z]] with the
following properties:

2. [f mZF = Zk hianJ mn [ﬂ then }NLZ']' = }le—j+1,k—i+1

=1
3. 1If S|@i| = Z;—C:l Eijﬁl“ﬂ then S|@i| is homogeneous of degree |3;| and V, =
L N
Zi:l HM5|/81|

In [LP] (proposition 5.6) this proposition is proved for n = 2. The proof can easily
be extended to arbitrary n. The important fact is the symmetry, expressed in 2.

Let L be the Lie—algebra generated (as Lie-algebra) by {S|ﬁl|, PN S|ﬁk|}' Then L
is finite dimensional and solvable. Lo := [L, L] is nilpotent and /Ly = CS|51|, where

5|@1| =5 (Jai] — d>Td_|ai|#—l'l is the Euler vector field (cf. [LP]).

Corollary 1.8 The integral manifolds of V,, coincide with the orbils of the algebraic
group exp(L).

Now consider the matrix M(T') := (S|m|(Td—|aj|>)i,j:1,...,k = (iLZ’]’)Z”]’:Lm’k. FEvaluat-
ing this matrix at £ € H, we have

rankM () = dimension of a maximal integral manifold of
V, (resp. of the orbit of exp(L)) at ¢

= p—7(),

where 7(t) denotes the Tjurina number of the singularity defined by ¢ i.e. of
F(z,t).



2 Existence of a geometric quotient for fixed
Hilbert function of the Tjurina algebra

We want to apply theorem 4.7 from [GP 2] to the action of Ly on H ,.

Theorem 2.1 ([GP 2]) Let A be a noetherian C-algebra and Ly C DerE' A a finite
dimensional nilpotent Lie algebra. Suppose A has a filtration

F*:0=F"A)CF'(ACF(A)C...
by subvector spaces F*(A) such that
(F) SFi(A)C F'=Y(A) foralli€ Z, § € L.
Suppose moreover, Lo has a fillration
Zy: Lo = Zo(Lo) D Z1(Lo) D ... D Z(Lo) D Zuyr(Lo) = 0
by sub Lie algebras Z;(Lo) such that
(Z) [Lo, Zi(Lo)] € Zjs1(Lo) for allj € Z.

Let d : A — Homg(Lo, A) be the differential defined by d(a)(d) = §(a) and let
Spec A = UU, be the flatlening stratification of the modules

Homg(Lo, A)JAd(F'(A)) i=1,2,...
and
Home(Z(Lo), A)/mi(A(dA)) j=1,....c,
where m; denotes the projection Homg (Lo, A) = Homg(Z;(Lg), A).
Then U, is invariant under the action of Ly and U, — U,/ Lq is a geomelric quotient

which is a principal fibre bundle with fibre exp(Ly).

To apply the theorem we have to construct these filtrations and interpret the cor-
responding stratification in terms of the Hilbert function of the Tjurina algebra.

There are natural filtrations H*(C[[z]]) resp. F'*(H,) on C][z]] resp. H,, defined

as follows:

Let F'(H,) C H, be the C-vectorspace generated by all quasihomogeneous poly-
nomials of degree > —(i + 1)w and H*(C[[z]]) be the ideal generated by all quasiho-
mogeneous polynomials of degree > 1w, where

w = min{wy,...,w,}.
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For t € H, the Hilbert function of the Tjurina algebra

F.(1)  OF.)

C[[x]]/(Fu(t)a oz 7 on, )

corresponding to the singularity defined by ¢ with respect to H® is by definition the
function,

OF()  OF)
oxy 7 Oz,

n = 7,(t) := dimg C[[z]]/(FL(1), H™).

Notice that 7,,(t) = 7(t) if n is large and 7,(¢) does not depend on ¢ for small
n. On the other hand, pu, = p,(t) := dimgc C[[:c]]/(ag:?), e 8§;£’t),H”) does not
depend on ¢ € H, and

i = Tu(t) = rank (815, (Tija, ) (1)ja, [<nu-

This is an immediate consequence of the following fact:

Let
oF oF
T" = H#[[CC”/(F#, 6—117/:’ ey a—:EMa Hn))

then the following sequence is exact and splits:

0— @ a€B HMJJO‘ — T%‘H — DeTcHﬂ/ <VM + Z|ﬁ|2d+z’u} H 9 > —0

la|<d HoTqp
% class(:va)

class(z?) +— class <8Td8_|,3|)7

and  with  the identification 375 cqpiw Hy #lﬁl ~ Hi\fz we  get

DercH,/ <Vu + a1 diw H’”#—Iﬁl) ~ HiV’/Mz, where M; is the H,-submodule
generated by the rows of the matrix (5|5Z|(Td_|a]|))|a]|<d+m.

The filtration F*(H,) has the property (F) because every homogeneous vec-
tor field of Ly is of degree > w (since L/Ly is the Euler vector field, cf. §1) and

H,H, = H,dF*H,, s = [(n_l)dw;m] (since nd — 23" w; is the degree of the
Hessian of f and Td—(nd—QZw,') is the variable of smallest degree).

To define Z;(Ly) we use the duality defined in chapter 1:

ara’ =(m —2—ai,...,m, —2—ay,),

and set Z;(Lg) := the Lie algebra generated by
{S|a| € Lo | Td_|QV| € FS_Z}

10



Z4(Lo) has the property (Z) (for the definition of S|a|, see proposition 1.3). We have
F € H", hence p, = 7, if n < % and H" C (BF“ %) hence p, — 7,(1) is

Bz 7" Fmy,
independent of n if n > %—I— s+1, s=

[(n—l)i—QEwi ]

and equal to u — 7(1).

Therefore, we have s + 1 relevant values for 7;, and we denote

[

e
=~

S—

(T%+1(t>a cee 37—%+s+1(t>>’

(M%Ha K ’/’L%-I-s-l-])'

=
I

Moreover, let S = {r := (ry,...,7541) | It € H, st. p —7(t) = r} and H, =
U,esU, be the flattening stratification of the modules T%‘H, oo, T e {U, ) is the

stratification of H, defined by fixing the Hilbert function 7 = p — r with the scheme
structure defined by the flattening property. We obtain:

Lemma 2.2 1. (0,...,0,1) and (0,...,0) € 5. U,..0) = {0} is a smooth point
and Uqg,...1y is defined by Ty_j5 = 0 for [B| < nd — 2" w; and Ty5 wi—(u-1)d #0

((md hence is smooth).

2. Let S = S\{(0,...,0)} and forr € S put

U_{UE if r#(0,...,0,1)
- U(o,...o,l) U U(o,...,o) if r= (07"'70a1)

Then
{Uﬁ}zeg is the flattening stratificalion of the modules {Homgc(Lo, H,)/H,dF"H,}
and {Homc(Z;(Lo), H,)/mi(H,dFH,)}.

As a corollary we obtain the following theorem (recall that V,, denotes the kernel
of the Kodaira Spencer map, cf. §1):

Theorem 2.3 Forr € S, U, is invariant under the action of V, and U, — U,/V,
is a geomelric quotient. U, [V, is locally closed in a weighted projective space.

Proof: Using the lemma and theorem 2.1 we obtain that U, is invariant under the
action of Ly and UE — UL/LO is a geometric quotient. /Ly = Cdy acts on UL/LO.
By corollary 1.4, U, /V,, = U,/L. Ifr # (0,...,1), then U,/ Ly — U,/ L is a geometric
quotient embedded in the corresponding weighted projective space. If r = (0,...,1)
then UE/LO = UE and the geometric quotients U, .. 1) — U(O,_“,])/VM, Uo,..0p) —
U(O,...,O)/V,LL exist as smooth points.

It remains to prove the lemma.

Proof of lemma 2.2: Because of the exact sequence above the flatten-
. . . diiv - . . .
ing stratification of the modules {Tw*'} is also the flattening stratification

11



of {DercH,/ <VM+Z|,9|Zd+iw H“#A/ﬂ)} resp. the flattening stratification of
{Hivz/MZ}, M, the submodule generated by the rows of the matrix (Slﬁzl(Tj)>—iw<j'

Now we have
811(Tacjar) = Ojavi(Tuzjav))- (%)
By definition of Z;(Lg) we have
HZ(Lo)= Y H,dp
Td_lavler—i
and with the identification
0

S H,——=H),
BEB_ #aTd—lﬁl 8

and M’ the submodule generated by the rows of the matrix (5|a|(Tj))d+(s_i+1)w>|QV|
we obtain

DercH,/H,Zi(Lo) = HY /M".

(*) implies that the flattening stratification of the modules {T%’H,...,Ts},
which is H, = UﬁegUL, is the flattening stratification of the modules
{DeTCHM/HMZi(Lo)}izl,...,s-

On the other hand, the flattening stratification of the modules {H;{V/Mi}z-zli___,s is
the flattening stratification of the modules

{HomC(Zi([m)a Hu)/m(HudHu)}
because

H,7(Lo)= Y. Hbpa.

Ty_|av EFTE

Furthermore the modules {Homc(ﬁo,ﬂu)/ﬂﬂd}?iﬂu} and {DercH,/H,Ly +

22 18]> diw H‘”%—Iﬁl} have the same flattening stratification and they are flat on U,,

because

_9
T

0

0
T

0— H, = DercH,/H,Lo+ > H,
1Bl atin

is exact and splits on H,\{0}.

— DercH,/V ,+ Z H,
1Bl dti

This proves the lemma.

Remark 2.4 The main point of the lemma is that the flattening stratification of
the modules { Homc(Lo, H,)/H,dFH,} is contained in the flattening stratification
of the modules {Homc(Z;(Lo),H,)/mi(H,dH,)}, hence is defined by the Hilbert
function of the Tjurina algebra alone without any reference to the action of L. This
is a consequence of the symmetry, expressed in proposition 1.3.

12



3 The automorphism group of semi Brieskorn
singularities

In this chapter we prove that the automorphism group of a semi Brieskorn singu-
larity with principal part fo = 2" + ... + 2/, ged(m;,m;) = 1 for ¢ # 7, has no
automorphisms of negative degree. A consequence of this result is that two points in
H,, correspond to isomorphic singularities iff they are in one integral manifold of V.
Again, d = m; - ...+ m, denotes the degree of fy.

Let C[[z]]m denote the ideal of C[[z]] generated by power series of degree > m.
An automorphism ¢ of C[[z]] has degree m if

(¢ — id)Cl[z]}; C Cl[z]]i4m
for any 1. For ¢ € C* let ¢, : C[[z]] — C[[z]],
Yo(x)) ="z, i =1,...,n

denote the C*—action which is an automorphism of degree 0.

Proposition 3.1 Lel [ = fo+ X ja5d@at®, g = fo+ Xjasabar®, ¢ € Aut C[[z]] and
u € Cllz]] a unit such that uf = ¢(g). Then degp > 0.

Remark 3.2 Let ¢ € Aut C][z]] be of degree > 0, f,g as above and [ = up(g) for
some unit u. Then p(z;) = ¢;x;+h;, deg h; > w;, u(0)c]" = 1. Putting u; some m;~th

root of u(0) and ¢ = II™ | u;¢; we obtain ¢ = 1, ¢¥ = w;c;, hence u(0)p(g) = Gow.(g)
and f = g o p.(g) where deg @ > 0 and @ is a unit with @(0) = 1.

Proof: We prove the proposition by induction on n, the case n = 1 being trivial.
We may assume that m, < ... < m;. Then we can write p(z1) = ajz1 + hy, oy € C
and deg hy > w; = min{w;,...,w,}.

First of all we shall see that a; # 0. Assume a7 = 0 then there is an 7 > 1 such
that ¢(z;) = Bz + h; and degh; > wy, B # 0.

Using an automorphism of non-negative degree we may assume @(x;) = x;.
Now

uf |a:1=0: 9(99<$1> |a:1=07 ey L/Q(va'_l) |x1=07 Oa L/9<$2'+1> |a:1=07 .- )

and

@ |oy=0: Cllz1, -y Tiy ooy x0]] = Cl[xg, - . ., 4]

Tp = @(Ik> |931=0

13



is an isomorphism. Hence

@ |y =0 (g(;vl,...,:vi_1,0,:v¢_1,...,xn)) =uf |z=o -

But g(z1,...,2i-1,0,2i41,...,2,) and f(0,z3,...,2,) define isolated singulari-
ties with different Milnor numbers (they are semiquasihomogeneous with weights
Wiy .oy Wiy .., W, TESP. Wy, ..., w, and degree d). This is a contradiction and implies
a; # 0. Using ¢,-1 and an automorphism of positive degree we may assume now

o(x1) = 1.

Let us consider again the automorphism ¢|;,=0 of C[[zs,...,2,]]. Using the in-
duction hypothesis we may assume deg ¢|,,—o > 0. Since the inverse is also of non—
negative degree we may assume that |, —o is the identity, i.e.

p(x1) = x1 and @(x;) = x; + x1hi, 1 =2,...,n,

Using again an automorphism of non-negative degree we may assume now that
h; has only terms of degree < w; — w;. We have to prove that h; = 0.

If A; has only terms of degree < w; — w;y then h; does not depend on z;, ..., z,.
We prove now that h, = 0.

We may assume that ¢ = 2™ + 27" 2ay + ... + am,, a; € C[[x1,...,2,-1]]. Indeed
by the Weierstrass preparation theorem g-unit = 2™ 4+ a;27»~' 4 .. .. This equality
implies deg ayz""~' = (m,, — 1)w,, + dega; > d and consequently the automorphism

defined by z, — z, — mial has positive degree. We may assume a; = 0 but this
changes ¢(z,) to ¢(z,) = 7, + 21hy — —a;. Now [-u = (a7 + 2™ 2ay +...) =

Mn
2+ (mpxihy, —ap)eP~t 4 .. and deg mpzihp,a™~! < d. But this is only possible
if h, = 0 because this term cannot be cancelled (the other h; do not depend on z,).

This implies A, = 0.

Now f-u |s,_o= flz1,22+21he, ..., 2p_1+21hy_1,0) because the h; do not depend
on z,. Using again the induction hypothesis we obtain k; = 0,1 = 2,...,n — 1. This
proves the proposition.

Corollary 3.3 Ift,t' € H, define isomorphic singularities then t and t' are in the
same mazimal integral manifold of V,,.

Proof: Let F,(t) = up(F,(t')), u € C[[z]] a unit and ¢ € AutC][z]]. By the
proposition dege > 0. Using remark 3.2 there is a d’th root of unity ¢ such that
Fu(z,t) = up(Fu(c o, t") = up(F,(z,cot")) and such that deg p > 0 and u(0) = 1.
Then

1 1

2 xy), ..,

o(z""x,),cot’)

2Wn
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is an unfolding of G(0) = F,(z,cot’'). This unfolding can be induced by the univer-
sal unfolding by remark 1.1, i.e. there exists a family of coordinate transformations

Y(z,—) and a path v in H, such that

G(z) = Fu(vi(z,2), ..., ¢n(2,2), v(z))

and v(0) = cot',4;(0,2) = z. By [AGV] we may assume that 1)(z, —) has positive
degree.

Because Fj,(z,t) = F,(¢(1,2),v(1)) we obtain v(1) = ¢ by lemma 1.5. This im-
plies that ¢t and ¢ o ¢’ are in an analytically trivial family, i.e. in an integral manifold
of V,, which contains the C*~orbits (cf. §1). Hence the result.

This finishes the second step of the approach. Together with the theorem of
chapter 2 we obtain the theorem stated in the introduction:

Theorem 3.4 There exists a coarse moduli space My, = U,_,/V, of all semi-
quasihomogeneous hypersurface singularities A = C[[z]]/(f) with fived principal part
Ao = Cllz]]/(fo), weight w and Hilbert function . M, is an algebraic variety,
locally closed in a weighted projective space.

Remark 3.5 To be more precise, first of all M., ; is a coarse moduli space for the
functor which associates to any complex space germ S the set of isomorphism classes of
flat families over S of quasihomogeneous hypersurface singularities with fixed principal
part Ag, weight w and Hilbert function 7. The category of base spaces is that of germs
since we constructed M, ; from the versal family over H, which has the versality
property only for germs. But by remark 1.1(3) we can actually enlarge the category
of base spaces to all complex spaces S for which H'(S,Z/dZ) = 0. The same applies
to the coarse moduli space H, /14 for functions with respect to right equivalences (cf.

corollary 1.3).

15



4 Problems

We use the notations of chapter 1.

4.1 In the case n = 2 (plane curves) the following holds (cf. [LP]): let {S-} be the

stratification of H , by constant Tjurina number, then

(1) S; # 0 if 70, < 7 < p (i.e. all possible Tjurinia numbers occur).

(ii) dimS;/V, > dim S, /V, if 7 < 7’ (i.e. the number of moduli decreases
when 7 becomes more special).

(iii) S.,../V, is a quasismooth algebraic variety.

In [LP] is an example showing that (i) and (ii) are wrong in higher dimension.

Problem 1: Does (iii) hold in higher dimension?
Problem 2: Find the dimensions of H,/V ..
4.2 In chapter 3 we proved that for semi Brieskorn singularities with principal part
fo =" + ...+ 2, ged(m;,m;) = 1 for i # j the automorphisms have

non-negative degree.

Problem 3: Is this true for all quasithomogeneous singularities with zero-
dimensional moduli stratum?

A solution of this problem would solve the moduli problem for this class of semi-
quasihomogeneous singularities.
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