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Introduction

In this paper we prove that the moduli scheme MI(n) of mathematical instanton
bundles over IP3 with second Chern class n is smooth at bundles £ with A°E(1) # 0.
By a result in [6] this number is < 2. In case h°E(1) = 2 of special 't Hooft bundles
the smoothness is a result of A. Hirschowitz-M.S. Narasimhan in [8]. This case is
included in our proof. In the remaining general situation h°£(1) = 1, the reduced
zero scheme Z,.4 of the unique section is a disjoint union of lines, but the scheme Z
itself has nilpotent structure in general. Here we cannot deform the scheme Z as a
zero scheme. We study these nilpotent structures, which turn out to have resolutions

0 - nO(-2) - 2rO(-1) > nO - 0z — 0

given by nice regular matrices, and which are self-dual, see 1.1. We call such structures
of Koszul type or Koszul structures. They are exactly the primitive structures of type
O, in the notation of C. Banica- O. Forster, [5], see Corollary 1.9.

In proposition 2.3 we show that a multiple structure X on a line, which admits a
resolution of the above type with unspecified matrices, and which satisfies wy =
Ox(—2), is already a Koszul structure given by special matrices as in 1.2. It follows
from this that the zero scheme Z of the unique section of £(1) as above is a disjoint
union of Koszul structure. This enables us to prove H'NY(1) = 0 for the conormal
sheaf of Z, which in turn implies Fxt*(€,E(—1)) = 0 and Ext*(€,€) = 0, and hence
smoothness of M1(n) at &.

The Koszul structures had occured already implicitly in [10] in the description of
elementary transformations of instanton bundles along lines. It is remarkable, see
section 4, that extensions of Koszul structures are closely related to these elementary
transforms. The paper is closed by presenting a normal form for the right part of the
monad of an instanton bundle £ with A°£(1) = 1 and a single multiple line as its zero
scheme.

It turned out that the statements about Koszul structures generalize to higher di-
mensional linear projective subspaces. This will be treated in a separate note.

Acknowledgement: We thank the DFG-Schwerpunkt " Komplexe Mannigfaltigkeiten”
for support.



Notation

k denotes an algebraically closed ground field of characteristic 0.

IP; = IPV denotes the projective 3-space of a fixed 4-dimensional k-vector space

V.

O(d) denotes the invertible sheaf of degree d on IP3, QP the locally free sheaf
of differential p-forms, w = Q2 the dualizing sheaf.

The terms vector bundle and locally free sheaf are used synonymously.

If F is a coherent sheaf on IP3 we use the abbreviations F(d) = F ® O(d),
H'F = H(IP3,F), hF = dimH'F, and mF = k™ ® F, where for a
vector space E the symbol £ ® O denotes the sheaf of sections of the trivial
vector bundle with fibre £ and EQ F = (F ® O) Qo F.

We use the Euler sequence 0 — Q*(1) - V¥V ® O — O(1) — 0 and the derived
sequences in its Koszul complex 0 — QP(p) —» APVV Q@ O — QP71 (p) —» 0
without extra mentioning.

A mathematical instanton bundle £ on IP3 is a rank-2 locally free sheaf with
first Chern class ¢;€ = 0 and vanishing conditions A’ = 0 and A'E(—2) = 0.
Since ¢;€ = 0 and rank £ = 2 the condition h°€ = 0 is the stability condition,
see [3], [11].



1 Multiple extensions and Koszul structures on
lines

1.1 By a multiple structure on a line ¢ in IP3 we understand a subscheme X of IP;
whose underlying reduced subscheme is the line . An n-fold extension of the line
{ is defined by induction as follows. A 1-fold extension is the line ¢ and an n-fold
extension of £ is a subscheme X which has a subscheme X' C X with exact sequence

0—-0,—-0x - 0x:—0 (1)

and s.t. X' is an (n— 1)-fold extension of £. Then X has multiplicity n, i.e. its Hilbert
polynomial is XOx(d) = nd + n, and X is Cohen-Macaulay. By adding resolutions
of O, and Ox: in IP5 we obtain a resolution

0 - n0O(=2) & 200(-1) 3 0O - Ox — 0. (2)

It is easy to see by the induction process that the matrices A and A’ can be given the
following triangular block form

A Z
AL, 72 An 7
Al A:w—l VA A o o Apar 7

where the block matrices are as follows. For any two forms z,y € VV we define
their Koszul matrices by K(z,y) = (5) and K'(z,y) = (—y,z). We choose a decom-
position VV = H°Z,(1) ® H with H = H°O,(1). Then Z = K(z3,z23) for a basis
22,23 € HZ,(1) and A,, = K(a,,,b,,) for some a,,,b,, € H , and 7', A, are
the corresponding second Koszul matrices. In [10], §5, n-fold extension sheaves £ of
O¢(1) had been considered. If £ = Ox(1) then L ® O, = O/(1) is locally free and £
is generated by two sections, using Nakayama’s Lemma. From [10], Proposition 5.7.
we obtain

Propositition 1.2 Let X be an n-fold extension of {. Then Ox has a resolution

0 — nO(=2) L 200(-1) 3 0O - Ox > 0 (3)
where A and A’ are given as
A 7z
w' Z w Z
AL w7/ As W Z
A= . . . A= . .
Al AL W A, oo i Ay W Z

in which Z = K(zq,23) as before, W = K(z9,21) for a basis zg, 21 € H = H°O,(1)
and A, = K(a,,b,) for some a,,b, € H.



Definition 1.3  a) If X is an n-fold eztension of a line { we also call X or Ox a
Koszul structure of multiplicity n or an n-Koszul structure on /.

b) As in [5] a Cohen—Macaulay multiple structure X on ( is called primitive if it
18 locally contained in a smooth surface.

Propositition 1.4 An n-Koszul structure X on { is primitive and has dualizing sheaf
wx = Ox(=2). In particular X is a locally complete intersection (l.c.i.).

Proof: By the resolution type X must be Cohen-Macaulay. Its ideal contains the
Fitting ideal of n-minors of the matrix A in 1.2. It contains n-forms of the form

zh 27 (2023 — z122) + fuvs p+v=n-—2,
where f,, € I}, where I, is the ideal of £ in the coordinate ring.
If z9 # 0 then the local ideal of X contains
z3 — 2122+ fr_20
and if z; # 0 the local ideal of X contains
z9 — 2023 + fon-2.

Since both functions define locally a smooth surface, X is primitive. Applying the
functor Home(—,w) to the resolution of Ox, where w is the dualizing sheaf Q° of
IP3, we obtain by wx = Ext%(Ox,w) and Exty(Ox,w) = 0 for i # 2 and by the
self-duality, up to a symplectic form, of the resolution that wx = Ox(—2).

Remark 1.5 The matrices A, > 2, in the resolution of a Koszul structure yield
moduli for fized n. It is easy to see that X is contained in the quadric

2023 — 2122 =0 ifand onlyiof A, =0 for pu>2
This is the case if the corresponding n-instanton bundle £ satisfies h°E(1) = 2, see
(6], §3.
Remark 1.6 For an n-Koszul structure X there are extension sequences

0-0x, —>0x—>0x,, —0

for any 1 < m < n where X,, and X, _,, are again Koszul structures of multiplicity

m and n —m. This follows directly from the shape of the resolution matrices.

1.7 The infinitesimal filtration of an n-Koszul structure

Let £U™) denote the m-th infinitesimal neighborhood of ¢ with ideal sheaf Z;"**, m > 0.
We consider the filtration £ = Yo C Y] C ... C Y,_1 = X of an n-Koszul structure X,
where Y, = X n ¢(m),

Since Zx contains I}, as follows directly by computing the Fitting ideal of A, we have
X C (=Y, By [5], §2, the Y, are again primitive structures on £ of multiplicity u + 1,
and the embeddings Y,,_; — Y, are described by exact sequences

0— L% - Oy, > Oy,_, >0 (4)

where £ is an invertible sheaf on the reduced line /.



Lemma 1.8 Let X be an n-Koszul structure on (. Then the intersections Y, are
again Koszul structures on { and L = Oy.

Proof: Since X is an n-fold extension there is an exact sequence
0_>O£_>OX_>OX’—>O

where X' is an (n — 1)-Koszul structure, X’ C X. Therefore Z}~' C Zy: and hence
Iy, ,=Ix + If_l C ZIx:. From this we have an exact sequence

0 -C—-0y ., —-0x —0

n—2

in which the kernel C must be a 0-dimensional sheaf since both Y,,_; and X' have
multiplicity n — 1. But since Y,,_5 is Cohen-Macaulay, C = 0, i.e. Y,,_; = X'. Now
we can finish the proof by induction on n.

Corollary 1.9 1) An n-Koszul structure X has a unique filtration { = X1 C ... C
X, = X by p-Koszul structures X, = X N L) with ezact sequences

0—0O,— Ox,,, = Ox, — 0.

2) The n-Koszul structures on { are ezactly the primitive structures of type O, in

the sense of [5],2.1

1.10 Conormal sequence

Let X be an n-Koszul structure. By Lemma 1.7 and [5], proposition 2.3, the canonical
homomorphism Ny ® O, — N} of the conormal sheaves has kernel and cokernel equal
to Oy, i.e. we have an exact sequence

00, - N{RO0, - N, - O, — 0. (5)

Since N} = 20,(—1) the sheaf NY ® O, is an extension of Oy(—2) by O, on the
reduced line. Since the group Ext};(O,(—2),0,) = H'O,(2) = 0, this extension is
trivial. Therefore

./V-)\: RO, = Og@@g(—Q). (6)

Propositition 1.11 Let X be an n-Koszul structure on {. Then H*NY (1) = 0.

Proof: By induction on n; the statement being trivial for n = 1. For n > 1 we are
given exact sequences

050, -0x -0y =0 (7)
and

0—>Ix—>Iy—>Og—>0 (8)

with Y an (n — 1)-Koszul structure. Dualizing (7) and using
wx = 0x(=2), wy = Oy(—2) and w, = O)(—2) we also obtain the exact sequence
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0—-0y -0x - 0O, — 0. (9)

If we tensor (7) and (9) by the locally free Ox- module Ny we get the exact sequences

05 NY QO - NY - N & Oy 0 (10)

0> N{ R0y - N{ 5> N{®O,— 0. (11)

Tensoring (8) by Oy gives us the exact sequence

Tor{(0s, Oy) = NY ® Oy = Ny = O, — 0. (12)

Using the resolution of Oy as a Koszul structure we easily find

Tor? (O, Oy) = 20,(—1). Now we proceed calculating the group H'AY(1). From
(10) for the Koszul structure Y with substructure Z and the induction hypothesis we
get

0=H'NY(1) = H'NY @ Oz(1) (13)
because Ny ® O, = O, & O,(—2). Hence from (11) for Y we get the surjection
HNY (1) = H°NY @ Oy(1) — 0. (14)

Now split (12) into two exact sequences

20i(-1) > N{®0Ox - A— O (15)

0o Ao AY 50— 0 (16)
The surjection 7 factors through
N @O0, =0,00,(-2) > O,
whose first component o must be nonzero, hence an isomorphism. From (15) we get
H'NY @ Oy (1) = H' A(1)
and from (16) and (14) the exact diagram

RONY (1) —  H°0O,1) —» H'A(l) — H'NY(1)
l ~,/ «
HY(Ny ® O,(1))
!
0

By induction hypothesis and the induced isomorphism a we conclude that H*A(1) =
0. By (10) again for X we finally have H'NY (1) = H'NY ® Oy (1) = H'A(1) = 0.



2 The Beilinson resolution

For any coherent sheat F on IP3 there is a Beilinson complex
0C3(F)=»C3HF)—>...oC%F)—> ... > C3(F)—0
which is exact except at C°(F) and has F as cohomology at C°(F), see [1]. The
sheaves of the complex are given by
Cr(F)= D H(Fo(j)® O(-))
i—j=p

If X is a 1-dimensional subscheme the only nonzero terms for Ox(—1) are

C™3 = H°E%)® O(=3)

C=? = HYE3)®0O(-2) & HYEY)® O(=3)
C' = HYEX)®O(-1) & H'(EX)®O0(-2)
C° = HY(EY) QO o HY(EY)®0(-1)
cl o= HYE})® O

where Eﬁ = 0/(j — 1) ® Ox. The following Lemma is a direct consequence.

Lemma 2.1 Let X be a multiple structure on a line (. Then the following conditions
are equivalent:

(1) Ox has a resolution 0 — nO(—2) 5 2nO(—1) A0 - Ox — 0
) =0 an =n, = 2n, =n, =0.
1) ROEY =0 and h'EY R*E% =2 R'EY R'ES =0

The conditions in 2.1 do not yet imply that Ox is a Koszul structure. The additional
condition needed for that is selfduality.

Lemma 2.2 Let a multiple structure X on a line { satisfy the condition of Lemma
2.1. Then the following conditions are equivalent:
(1)  The resolution (B, A), is self-dual, 1.e. (B, A) is isomorphic to (A*, BY)

Proof: Since X is Cohen-Macaulay of dimension 1 the dual of the above resolution
of Ox with respect to Home(—,w) gives us the resolution

0 — nO(—1) L 200(=3) & nO(-2) - wy — 0.

Therefore (i) implies (ii). If conversely wy = Ox(—2) then the two Beilinson resolu-
tions (which are determined by the cohomology of the sheaves) must be isomorphic.

Now we can prove



Propositition 2.3 Any multiple structure X on a line { with a resolution
0 — nO(-2) - 2nO(—1) > nO - Ox — 0

and satisfying wx = Ox(—2) is an n-Koszul structure.

Proof: By Lemma 2.1 the given resolution is the Beilinson resolution. It shows that
Ox is Cohen-Macaulay. Since ¢ C X we have an exact sequence

0-J—->0x—>0,—-0 (17)

whose dual becomes
0 - w — wxy — gxt?g(j,w) — 0.

Twisting by 2 and using wx(2) = Ox, we get the exact sequence
050, -0x -0y =0 (18)

in which Oy is the quotient structure. We proceed now by induction on the multi-
plicity. For this it is enough to show that Y again has a Beilinson resolution

0> (n—10(-2)>2rn—-2)0(-1) > (n—1)0 - 0Oy — 0 (19)

and satisfies wy = Oy (—2).

To show that we first remark that Y is again Cohen-Macaulay: The dual of (18)
becomes
0— wy(2) = Ox 5 O — Exty(Oy,w) — 0,

and since 7 is the original surjection, the sheaf £x1® is zero, which implies that Oy
has no 0-dimensional torsion. We also have the exact sequence

0> wy(2) > Ox - O, — 0. (20)

Sequence (18) yields the exact sequences
O—>EZ—>E§(—>E{/—>O
where as above E? = Q](J —1). Since Q'(1) ® O, = Q}(1) ® 20, we obtain

Oz(_l) =0
O0)(=2) ®20,(-1) j=1
20,(—2) ® Oy(—=1) j=2

Ou(~2) j=3

5
I

Since h'EY = 0 we get h°EY. = h°Oy(—1) = 0. If z is a linear form, which is not a
zero divisor for O, we get injections Oy (—d — 1) — Oy (—d) for d > 0, because Oy is
Cohen-Macaulay. Therefore h°Oy(—d) = 0 for d > 0. This implies h°Ej. = 0, using
the standard Koszul resolutions of /. Now we get the exact sequences

0— H'E] - H'E%\ — H'E} — 0.

Since h'ES = 0, also h'EY. = 0. On the other hand R*E} = 1, hR*E} = 2, h'E} = 1.
Hence W'Ey = n — 1, i'Ef = 2n — 2, i'E} = n — 1. By Lemma 2.1 Oy has a
resolution (19). Dualizing this we get a resolution

0—-(n—1)0(-2) > (2n —2)0(—1) - (n — 1)O - wy(2) — 0.
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In order to show that wy = Oy (—2) we let £ denote the torsionfree part of wy (2)Q0O,,
such that
wy(:Z) ® Og = T @ ,C

L is a vector bundle on ¢ which is generated by global sections coming from wy(2),
hence £ = &0O(a;) with a; > 0. On the other hand sequence (20) gives us a surjection
Tor1(0p, Op) = wy(2) ® Oy, hence a surjection 20,(—1) — L. It follows that £ =
Oy(a) is of rank 1. Now let p € {\Supp(T). Since Oy(a) is globally generated by
induced sections of wy (2), there is one section O — wy (2) which generates O,(a) at
p under

O - wy(2) 5 wy(2) @ Oy — Oyfa).

By Nakayama’s Lemma this section generates wy(2) at p. Therefore O — wy(2) is
generically surjective. It induces a sequence

0-C -0y 5wy(2) >C"—0

where C" is 0-dimensional. Since both Oy and wy (2) have the same Hilbert polyno-
mial, also C' is 0-dimensional, hence C' = 0. We thus have shown that Oy = wy(2),
which completes the proot of proposition 2.3.



3 Instanton bundles with one linear section

A mathematical instanton bundle on IP5 is a stable rank 2 vector bundle £ with first
Chern class ¢;€ = 0 and vanishing condition h'€(—2) = 0, see [4]. The stability
condition implies n = € > 0. It is well-known that & is the cohomology of a
Beilinson complex

0—n2?3) B (1) S 2n-2)0 50 (21)
in which M and B are induced by linear maps
A L S A SNy N R 74
The conditions for M, B to define an instanton bundle are:

(i) M is symmetric

(ii) the induced sequence
oV k@ APV B k@ AV - 0

1s exact

(i) k*"—2 B k™ ® V satisfies Im(B*) N (k™ ® v) = 0 for any nonzero v € V

see [6], section 1. We let M I(n) denote the open subscheme of the Maruyama scheme
M (2;0,n,0) of all semi—stable coherent sheaves on IP5 of rank 2 and Chern classes
(c1,¢2,¢3) = (0,n,0) whose closed points are the isomorphism classes of mathemat-
ical instanton bundles. Up to now it is not known whether MI(n) is smooth and
irreducible for all n. MI(n) is smooth at & if Ext*(€,€) = 0. There are reasons to
believe that the stronger condition Ezt*(€,E(—1)) = 0 holds for any £ € MI(n).
Indeed this is true for the so—called special 't Hooft instanton bundles characterized
by h°E(1) = 2, see [6]. This was shown in [8], or can easily be derived from the normal
form of B in [6]. We are going to show that Fzt*(€,E(—1)) = 0 also holds for any
€ € MI(n) satisfying h°E(1) = 1. Note that by [6] h°E(1) < 2 for any £ € MI(n).

In the following we assume n > 3, since for n = 2 always h°£(1) = 2.

3.1 By the general Serre construction, see [7] , rank 2 bundles can be constructed
on IP3 from l.c.i. intersection curves X s.t. the dualizing sheaf wy is the restriction
of a line bundle on IP3. In particular, if X is an n—Koszul structure on a line £ with
wx = Ox(—2), we have

Howx(Q):HomoX(Ox(—Q),wx) = EIté(Ox(—Q),w]PS)
= EItl(Ix(—Q),W]pS)
= Eat'(Ix(1),0(-1))

10



using Grothendieck duality. A section s of wx(2) thus defines an extension F,
0> 0(-1) > F->Ix(l)—>0

which is locally free if s defines an isomorphism Oy = wx(2). If not, F will be
singular along the zero scheme Z(s) C X, see 4. for an example. In our case one
easily verifies, using the resolution of Oy, that

aF =0, cF=n cF=0 hF=0 hF(-2)=0

and A°F (1) = 1. Hence, if F is a bundle it belongs to MI(n). We can now prove the

converse:

Propositition 3.2 Let £ be an instanton bundle with second Chern class n — 1 > 3
such that h°E(1) =1, and let X be the zero scheme of the non—zero section s of £(1).
then

(1) X,eq is a disjoint union of lines (1,... ,{y;

(11) X is a disjoint union of Koszul structures X1,..., X,, on lq,...,{,, respectively.
Proof: 1) Since h°€ = 0, X is a l-dimensional l.c.i., and we are given the exact
sequence

0— O(-2) i>5(—1) -0 —->0x —0. (22)

Its dual sequence becomes
00 3E(1)— O2) - wx — 0,
where we use £ = £V, which follows from A?€ = O. Hence wx = Ox(—2).

2) Statement (i) was proved in [6], 1.3, using the monad description of £ as above.
Therefore, X is a disjoint union of possibly multiple structures X, on ¢,. In order to
prove (ii) we can calculate the dimensions of the cohomology groups of Ox from (22)

using (21). By (21) (for n — 1)

R°E(d) = 0 ford<0
R'E(d) = 0 ford< -2
R*E(d) = 0 ford> -2
RPE(d) = 0 ford> —4
RE(-3) = R'E(-1)=n-1
R'E = 2n—4.
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From (22) we get H'Ox(—1) = H*Zx(—1) = 0 because H*£(—2) = 0, and similarly
H°Ox(—1) = 0. From this it is easy to see that H'E% = H°Ox @ /(5 — 1) = 0 for
0 <7 < 3. It remains to calculate hlEg(. We have the exact sequence from the Euler
sequence

H°E(—1) - H'E€Q QY (—1) > 4H'E(-2) — H'E(-1) > H*€QQY(—1) > 4H*E(-2)
| | |
0 0 0
and from (22)
H'Ix @O - HOQO' - H'OxO — H*Zxy @ O - H*O!

| | I
H'E® QY (-1) H*E @ QY-1) 0

; el
hence h'Ex =1 + (n — 1) = n. Similarly, we obtain
H'EY = H*Ix ® 0*(1) = H*(£ ® Q%)
with A2 (E®Q*) =2(n—1)+2=2n, and
H'E%
0 — H*¢(-3) » H*Iyx (|§|§> 03(2) — H3Q3 — 0.
These data imply by Lemma 2.1 that Ox has a Beilinson resolution

0 - nO(-2) - 2nO(—1) - nO — Ox — 0.

In order to show that each of the X, has a resolution of the same type we proceed as
in the proof of Proposition 2.3. Assume that mult(X;) > 2, say. There is a sequence

0-0, 520x 50y -0

with Y C X satisfying (i), (ii) of Proposition 2.1, and ¥ = Y; UX,U...UX,.

By induction over n we may assume that Y7, X5, ..., X, are Koszul structures. Then
also X; is a Koszul structure. In particular, the above resolution of Ox can be
replaced by the direct sum of the Beilinson resolutions of Ox,.

Theorem 3.3 Let & be an instanton bundle on IP3. Ifh°E(1) > 0 then Ext*(E,E(—1))
= FEzt*(€,€) = 0.

12



Proof: By [6] R°E(1) < 2. Tf R°E(1) = 2 this follows from [8]. If A°E(1) = 1 we
obtain an exact sequence (22) where X = X U...U X,, is a disjoint union of Koszul
structures X, on lines {,. By Proposition 1.8 H'NY(1) = @Hl./\/}u(l) = 0, where
NY denotes the conormal sheaf of X.

The sequence (22) induces the exact sequence

Ext*(Ix(1),E(-1)) —» Ext*(€,E(—1)) —» H*E
|

0
On the other hand, we obtain
BTy (1), E(~1))
= Fzt*(Ox,E(-2)) since H*E(—-2) = H*E(—2) =0
= H'(Ext*(Ox,E(-2)) by Leray’s spectral sequence
= H'Y(Ext*(Ox,0(-2))®E)  since & is locally free
= HY(Ext*(Ox(-2),wp,) ®E)
= H'(wx(2)®¢&) by Grothendieck duality
= HY(£® Ox) since wx (2) = Ox.

If we tensor sequence (22) by Ox we get the exact sequence
Ox(—-1) > E®O0x - NY(1) >0
and this implies
HY(E® Ox) = H'N¥(1) =0.

This proves the vanishing of Fzt?*(€,E(—1)). To show that also Ezt*(£,€) = 0 we

consider a plane P C IP; and the restriction sequence
0-&8(-1)>E—-ER0p —0.
In the induced exact sequence
Ext*(E,E(—1)) — Ext*(E,€) — Ext*(€,€ ® Op)
also the last group vanishes, because it is Serre-dual to H*(£€ ® € ® Op(—3)) = 0.

Since Ext*(€, €) is the group of obstructions to smoothness of the Maruyama scheme
at stable points, see [9] and [12], MI(n) is smooth at &.
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4 Extensions of Koszul structures and elemen-
tary transformations

In [10] m—fold extensions £ of O,(1) were used to construct sheaves in the boundary
of M1(n), called elementary transformations, as kernels in sequences 0 - F — & —
L — 0 where £ € MI(n — m). As remarked in 1.1 these m—fold extensions are
nothing but £ = Ox (1) where X is an m—Koszul structure. We remark here that the
elementary transformation sequences arise naturally via Serre construction, 3.1, from
extension sequences

0—>OXI—>O)(—>OXH—>O (23)

given by the special form of the resolution of a Koszul structure X, where mult(X')+
mult(X") = mult(X). Given (23) we get the exact sequence

OHIX_)IX”_)OX’HO

and from this the diagram

0= Bet\(Txn(l), O(=1)) — Eat'(Ix(1), O(-1)) — Eet*(Ox(1), O(—1))
| | |
0— H°wxn(2) — Hwx (2) — H'wx:(2) -0
| | |
HOOXH —f> HOOX - > HIOXJ.

In this diagram the vertical isomorphisms are as in 3.1. Let £ = ¢(1), where ¢ is the
induced homomorphism, and let £” and F be the corresponding extensions to 1 and
¢ respectively.

Since @ corresponds to the pullback construction of extensions we get the exact dia-
gram

0 0
! !
0-0(-1) - F - Ix(l) -0
I ! l
0—>O(—1) — S' — IXH(l) — 0
!
Ox(l) = Oxi(l)
! !
0 0

<

The sheaf £” is an instanton bundle with ¢2E" = mult(X") — 1 by Serre construction,
since the section 1 generates wxn(2) everywhere. However, F is not locally free along
X', since ¢ vanishes along X'. Of course, this follows from the vertical sequence in
the middle of the diagram, too.

The diagram shows that the section of F(1) given by it vanishes along X as a section
of F(1), but vanishes only along X" as a section of £"(1).
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5 Normal forms of monad arrows

We close with a remark on normal forms of the right arrow & B, -2 RV of a

monad (21) for an instanton bundle & € MI(n) with h°E(1) = 1. This matrix is
nothing but a representation of the canonical homomorphism

HE(-1) g VY - H'E.

Since £ is obtained by the Serre construction from a disjoint union X = X;U...UX,,
of Koszul structures on lines, we have H'€(—1) = H'Ix and H'€ = H'Ix(1).
Therefore, a normal form of B can be derived from the normal form of the
resolutions (2) of the structures Ox,. For example, if X is concentrated on one line
{, spanned by eg,e; € V, and ey, e3 € V are complementary vectors, B can be given
the form

I
F
Bs;
B, Bs F E
C, - Cy F

where E, F,B,,C, are 1 x 2—matrices of vectors in V given as £ = (eg,€1), F =
(e2,€3), B, = (b,,b)) with b,,b, € Span(es,es) and C, = (¢,,¢),) with arbitrary
vectors ¢,, ¢/, in V. Note that the case B, = 0, C, = 0 gives us the normal form of B

if R°E(1) = 2, see [6]. This is the case in which X is contained in a quadric.
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