
Implementability of
Asynchronous Communication

Protocols
The Power of Choice

Thesis approved by
the Department of Computer Science
University of Kaiserslautern-Landau
for the award of the Doctoral Degree

Doctor of Natural Sciences (Dr. rer. nat.)

to

Felix Stutz

Date of Defence: 15 December 2023
Dean: Prof. Dr. Christoph Garth
Reviewer: Prof. Dr. Rupak Majumdar
Reviewer: Prof. Dr. Annette Middelkoop-Bieniusa
Reviewer: Prof. Dr. Thomas Wies
Reviewer: Dr. Damien Zufferey

DE-386

https://www.cs.rptu.de/
https://rptu.de/

Copyright © 2024 by Felix Stutz.

Typeset using LATEX. The main text uses the Linux Libertine font.
Most of the illustrations are produced using the Tikz package.

iii

Summary

Distributedmessage-passing systems have become ubiquitous and essential for our daily
lives. Hence, designing and implementing them correctly is of utmost importance.
This is, however, very challenging at the same time. In fact, it is well-known that
verifying such systems is algorithmically undecidable in general due to the interplay
of asynchronous communication (messages are buffered) and concurrency. When
designing communication in a system, it is natural to start with a global protocol
specification of the desired communication behaviour. In such a top-down approach, the
implementability problem asks, given such a global protocol, if the specified behaviour
can be implemented in a distributed setting without additional synchronisation. This
problem has been studied from two perspectives in the literature. On the one hand,
there are Multiparty Session Types (MSTs) from process algebra, with global types to
specify protocols. Key to the MST approach is a so-called projection operator, which
takes a global type and tries to project it onto every participant: if successful, the local
specifications are safe to use. This approach is efficient but brittle. On the other hand,
High-level Message Sequence Charts (HMSCs) study the implementability problem from
an automata-theoretic perspective. They employ very few restrictions on protocol
specifications, making the implementability problem for HMSCs undecidable in general.
The work in this thesis is the first to formally build a bridge between the world of MSTs
and HMSCs. To start, we present a generalised projection operator for sender-driven
choice. This allows a sender to send to different receivers when branching, which is
crucial to handle common communication patterns from distributed computing. Despite
this first step, we also show that the classical MST projection approach is inherently
incomplete. We present the first formal encoding from global types to HMSCs. With
this, we prove decidability of the implementability problem for global types with sender-
driven choice. Furthermore, we develop the first direct and complete projection operator
for global types with sender-driven choice, using automata-theoretic techniques, and
show its effectiveness with a prototype implementation. We are the first to provide an
upper bound for the implementability problem for global types with sender-driven (or
directed) choice and show it to be in PSPACE.We also provide a session type system that
uses the results from our projection operator. Last, we introduce protocol state machines
(PSMs) – an automata-based protocol specification formalism – that subsume both global
types from MSTs and HMSCs with regard to expressivity. We use transformations on
PSMs to show that many of the syntactic restrictions of global types are not restrictive
in terms of protocol expressivity. We prove that the implementability problem for
PSMs with mixed choice, which requires no dedicated sender for a branch but solely
all labels to be distinct, is undecidable in general. With our results on expressivity, this
answers an open question: the implementability problem for mixed-choice global types
is undecidable in general.

v

Acknowledgements
For me, this thesis marks a milestone in an incredible journey of scientific and

personal development. Many people have accompanied me on this journey and I would
like to take the opportunity to thank them.

I thank Damien Zufferey and Rupak Majumdar: for being a great team of advisors,
for giving me the freedom to pursue what interested me most, for teaching me to search
for the essence of research problems, and for giving me new insightful perspectives in
virtually every discussion we had.

The work in this thesis would not have been possible without them – as well as an
amazing group of collaborators: thanks to Madhavan Mukund for his patience with a
1st year doctoral student, thanks to Elaine Li for being a great fellow combatant on the
proof front and all the fruitful low-level technical discussions, and thanks to Thomas
Wies for his great eye to detail, for his joy in both exposition and technical discussions,
and for being an examiner for my thesis.

A big thank you goes to Emanuele D’Osualdo who has become a friend and mentor
to me. He has always been pushing for the best results possible whilst being the kindest
and most understanding.

I thank Annette Bieniusa, who helped me find the path through a jungle of
bureaucracy and agreed to be an examiner for my thesis, as well as Klaus Schneider,
who chaired my thesis defence.

During my time at Max Planck Institute for Software Systems (MPI-SWS), I was
fortunate to be a part of a big and supportive research group with various interests and
expertise, including Rupak Majumdar, Damien Zufferey, Anne Kathrin Schmuck, Daniel
Neider, Burcu Kulahcioglu Ozkan, Ivan Gavran, Kaushik Mallik, Mahmoud Salamati,
Ivan Fedotov, Rajarshi Roy, Xuan Xie, Stanly Samuel, Aman Mathur, Marcus Pirron,
Mehrdad Zareian, Ramanathan Thinniyam, Jie An, Jiarui Gan, Jaroslav Bendik, Julian
Haas, Ashwani Anand, Satya Prakash Nayak, Ana Mainhardt, Germano Schafaschek,
Munko Tsyrempilon, Sathiyanarayana Venkatesan Ramesh, and Alexandra Bugariu.

Numerous interactions with amazing researchers during conferences as well as
summer and winter schools have influenced my scientific understanding and thinking.
Contributing to this thesis, Anca Muscholl helped me understand the undecidability
proof by Markus Lohrey, allowing me to adapt it to our setting for this thesis. Less
related but still an invaluable experience was an internship at Massachusetts Institute
of Technology, hosted by Martin Rinard, during which I worked with Nikos Vasilakis,
Konstantinos Kallas, and Michael Greenberg.

One could argue that I had the steepest learning curve outside of academia, thanks
to Manuel Gomez Rodriguez. During our first ski trip, we pushed beyond my perceived
limits, sparking the joy of skiing again.

vi

Formany of us, MPI-SWS ismore than a research institute. There is a big social group
and I would not want to miss our dinners, playing pool and board games but also chats
over coffee or tea. Besides many of the people above, there have been Stratis Tsirtsis,
Marco Maida, Marco Perronet, Pascal Baumann, Arpan Gujarati, Manohar Vanga,
Tobias Blass, James Robb, Kata Einarsdottir, Rosa Abbasi, Amir Mashaddi, Michalis
Kokologiannakis, Azalea Raad, Clothilde Jeangodoux, Hasan Eniser, Numair Mansour,
Nina Corvelo Benz, Nastaran Okati, Iason Marmanis, Eleni Straitouri, Kimaya Bedarkar,
Lia Schütze, Eiren Vlassi Pandi, Irmak Saglam, Cédric Courtaud, Léo Stefanesco, Filip
Markovic, Pavel Golovin, Aristotelis Koutsouridis, Suhas Muniyappa, and Ivy Chatzi.

I also want to thank the office, IT and HR staff at MPI-SWS for their help and support,
in particular Vera Schreiber, Susanne Girard, Geraldine Anderson, Tobias Kaufmann,
Andreas Ries, Claudia Hesse, Michael Bentz, and Sarah Naujoks.

It is fair to say that my fascination for computer science was sparked in high
school. My first computer science teacher, Laura Schmidt (now Stilgenbauer), who
had just graduated from University of Kaiserslautern, did an amazing job in facilitating
both creative chaos and structured learning. In my last two years of high school,
Michael Bergau was a great and enthusiastic facilitator for all our projects and prepared
us incredibly well for university. At that time, I participated in a computer science
competition. Its final round was co-sponsored by MPI-SWS so Mary-Lou Albrecht gave
us a tour. Roughly two years later, she introduced me to Björn Brandenburg who hired
me as undergraduate research assistant. This marked my first foray into the world of
research, during which I learned a lot and I am thankful for the mentorship and guidance
I received. Eventually, after some detours, I ended up at MPI-SWS again.

All along my journey, I had the unwavering support from my family and friends for
which I am deeply grateful. I thankmy sister Anja Stutz, mymother Sabine Stutz and her
partner Ralf-Dieter Irsch, my grandparents Ulla and Willi Harz, my father Frank Stutz
and his wife Birte Stutz, my late grandparents Trudel and Dieter Stutz, as well as my
brother-in-law Philipp Neuheisel and my parents-in-law Marina and Hans Neuheisel.
My biggest thank you, though, goes to my wife Laura Stutz: for your love, support and
patience. Your gift to cheer me up in any situation is incredible and the certainty that
you never loose faith in me has carried me throughout this journey. We both share a
great dedication to what we do, and I dedicate this thesis to you.

vii

To my wife Laura.

ix

Contents

Contents ix

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 An Introduction to Communication Protocols 2
1.2 The Implementability Problem . 5
1.3 Problem Setting . 7
1.4 State of the Art . 8
1.5 Research Questions and Contributions 10
1.6 Publications . 12
1.7 Outline . 13

2 Protocol Specifications and the Implementability Problem 15
2.1 Preliminaries . 15
2.2 Alphabets for Protocols . 16
2.3 The Implementation Model: Communicating State Machines 17
2.4 Indistinguishability Relation . 20
2.5 High-level Message Sequence Charts . 24
2.6 Global Types from Multiparty Session Types 29
2.7 The Implementability Problem . 32

3 Generalising Projection for Multiparty Session Types 35
3.1 Classical Multiparty Session Type Projection 35

3.1.1 Introductory Example . 35
3.1.2 Local Types . 36
3.1.3 Classical Projection Operator with Parametric Merge 38
3.1.4 Visual Explanation of the Parametric Projection Operator 39
3.1.5 Visual Explanation of Merge Operators 40
3.1.6 Features of Different Merge Operators by Example 41

3.2 Generalising Classical Projection for Sender-driven Choice 45
3.2.1 Motivating Example: Load Balancing 45
3.2.2 Available Messages . 47
3.2.3 Availability Merge Operator . 49

x

3.2.4 Generalised Projection . 50
3.2.5 Revisiting the Load Balancing Protocols 51
3.2.6 Evaluation . 52

3.3 Soundness of Generalised Projection:
Projectability implies Implementability 53
3.3.1 Implementability = Protocol Fidelity + Deadlock Freedom 54
3.3.2 Generalised Projection Does Not Remove Behaviours 54
3.3.3 Generalised Projection Does Not Introduce New Behaviours . . . 55
3.3.4 Family of Run Mappings Exists for Projectable Global Types . . . 56
3.3.5 From Run Mappings via Control Flow Agreement

to Implementability . 70
3.3.6 Wrapping Up: Projectable Global Types are Implementable . . . 74

3.4 Incompleteness of Classical Projection Approaches 75

4 Building a Bridge from MSTs to HMSCs 79
4.1 Encoding Global Types from MSTs as HMSCs 79
4.2 MST Implementability is Decidable . 86
4.3 MSC Techniques for MST Verification . 95

4.3.1 I-closed Global Types . 95
4.3.2 Payload Implementability . 97

4.4 Implementability with Intra-participant Reordering 99
4.4.1 A Case for More Reordering . 99
4.4.2 Undecidability . 101

5 Direct and Complete Projection for Multiparty Session Types 107
5.1 Constructing Implementations . 107
5.2 Checking Implementability . 110

5.2.1 Send Validity . 110
5.2.2 Receive Validity . 111
5.2.3 Subset Projection . 114

5.3 Soundness . 114
5.4 Completeness . 117
5.5 CSMs vs. Local Types . 119

5.5.1 On Mixed-choice States . 120
5.5.2 Sink States and Deadlocks . 120

5.6 Complexity . 124
5.7 Evaluation . 125
5.8 Properties Entailed by Implementability 127

6 A Type System Using Communicating State Machines 129
6.1 Payload Types and Delegation . 129
6.2 Process Calculus . 132
6.3 Type System for Processes and Runtime Configurations 136
6.4 Soundness of Type System . 143
6.5 On Subtyping . 164

xi

7 Channel Restrictions of Protocols and CSMs 167
7.1 Channel Restrictions . 167

7.1.1 Half-duplex Communication . 168
7.1.2 Existential B-boundedness . 169
7.1.3 k-synchronisability . 170
7.1.4 Channel Restrictions and Indistinguishability Relation ∼ 172

7.2 Channel Restrictions of Protocols . 173
7.2.1 Channel Restrictions of High-level Message Sequence Charts . . 174
7.2.2 Channel Restrictions of Global Types 176

7.3 Channel Restrictions of CSMs . 177

8 A Unifying Protocol Specification Formalism 179
8.1 Protocol State Machines . 179
8.2 Expressivity Results . 183

8.2.1 Global Types as Special Class of PSMs 183
8.2.2 From Σ1-PSM to Global Types . 184
8.2.3 From HMSCs to PSMs . 195

9 Checking Implementability with Mixed Choice is Undecidable 197

10 Related Work 209
10.1 High-level Message Sequence Charts . 209

10.1.1 Choice Restrictions . 209
10.1.2 Structural Restrictions . 211

10.2 Session Types . 211
10.2.1 Generalising Restrictions on Choice 212
10.2.2 MST-based Works . 213
10.2.3 Subtyping . 214
10.2.4 Extensions . 215

10.3 Communicating State Machines and Channels 215
10.4 Choreographic Programming . 216

11 Conclusion 219

Bibliography 221

A Appendix for Chapter 5 237
A.1 Additional Material for Section 5.1 . 237
A.2 Additional Material for Section 5.3 . 238
A.3 Additional Material for Section 5.4 . 249

Curriculum Vitae 257

xiii

List of Figures

1.1 Configuring the washing machine as a flow chart. 1
1.2 Laundry protocol. 2
1.3 Local behaviour for tumble dryer. 5

2.1 A communicating state machine. 18
2.2 Highlighting the elements of an MSC. 25
2.3 Constructing a prefix MSC from a FIFO-compliant word. 26
2.4 Concatenating MSCs. 27
2.5 Sending a list, specified as HMSC. 27
2.6 List-sending Protocol: FSM for the semantics of GLiSe. 31

3.1 Two Buyer Protocol. 36
3.2 A positive and a negative example for plain merge. 42
3.3 A positive example for semi-full merge. 43
3.4 An example: negative for semi-full merge and positive for full merge. . . 44
3.5 Negative example for full merge. 44
3.6 Load Balancing Protocol, as HMSC. 45
3.7 Load Balancing Protocol, as FSM for GLoBa. 45
3.8 Variant of load balancing with confusion (G′

LoBa): as HMSC and an
execution with confusion as MSC. 47

3.9 Variant of load balancing with confusion (G′
LoBa): as FSM and after

collapsing erasure. 48
3.10 An HMSC and its unfolding where all participants are blocked at the end. 60
3.11 Odd-even Protocol: implementable but not (yet) projectable. 77
3.12 Local implementations for the odd-even protocol. 77

4.1 Two Buyer Protocol: as HMSC and FSM as well as its determinised
projection by erasure onto s. 87

4.2 An implementable HMSC which is not globally-cooperative with its
implementation. 93

4.3 HMSC encoding H(GMPCP) of the MPCP encoding. 102

5.1 Odd-even revisited: as HMSC with labels for r and the subset
construction for r. 108

5.2 HMSCs for Gs and G′
s and subset constructions onto participant r. . . . 110

5.3 HMSC for Gr and its subset construction onto participant r. 112
5.4 HMSC for G′

r and its subset construction onto participant r. 112
5.5 Evolution of RG- (-) sets when p sends a message m and q receives it. . . . 116
5.6 Subset projection of global type that is not sink-final. 120

xiv

5.7 Projecting Gk for 0 < n < 14 with our prototype tool. 127

6.1 Projection of the one buyer protocol onto seller s. 131
6.2 Projections of two global types onto its participants. 138
6.3 Subset projection and a wrong subtype. 165

7.1 List-sending Protocol revisited: specifications and implementation. . . . 168
7.2 Comparing half-duplex, existential B-bounded, and k-synchronisable

protocols and systems. 173
7.3 BMSCs that satisfy different channels restrictions. 175
7.4 CSM with FSMs for participants p and q. 178

8.1 Kindergarten Leader Election Protocol. 181
8.2 A PSM whose semantics cannot be represented as HMSC. 182

9.1 MSC representation msc(w(C1, D1, C2, D2, C3, D3)). 206

10.1 Reconstructible HMSC that is not implementable. 210
10.2 Conditions for choreography automata are unsound in the asynchronous

setting. 214

xv

List of Tables

3.1 Projecting global types with generalised projection. 52

5.1 Projecting global types with subset and generalised projection. 126

xvii

List of Abbreviations

BMSC BasicMessage Sequence Chart
CSM Communicating State Machine
EXPSPACE the class of problems that can be computed by

a Turing Machine with exponential (tape) space
EXPTIME the class of problems that can be computed by

a Turing Machine in exponential time
FIFO First In First Out
FSM Finite State Machine
HMSC High-level Message Sequence Chart
MSC Message Sequence Chart
MST Multiparty Session Type
NFA Non-deterministic Finite Automaton
PCP Post Correspondence Problem
PSM Protocol State Machine
PSPACE the class of problems that can be computed by

a Turing Machine with polynomial (tape) space
RE Regular Expression

1

Chapter 1

Introduction

Do you remember the first time you used a washing machine? For my sister and me,
it was during our teenage years when our parents had decided it was time for us to
gain independence and take our share of chores. Long before, we had learned not to
leave tissues or pennies in our pockets. But, of course, this is only one of the numerous
mistakes when using a washing machine. Both our parents do laundry so I can only
speculate, but it could be our mum’s professional background as teacher that made her
the better fit to teach us doing laundry. Our mum decided to take things step by step and
let us start with three types of laundry: whites, colours, and towels. On the one hand,
there was a more general part, which was easy to remember, like pressing the start
button and taking the clothes out of the washing machine. On the other hand, there
were the laundry-type-specific instructions: temperature, washing detergent (both type
and quantity) and number of rotations per minute. Admittedly, it was not particularly
hard to remember but misremembering came with some risk as everyone knows who
happened to wash colours at a temperature as high as for towels. So our mum put a
sticky note with these instructions on our washing machine. It was similar to the flow
chart diagram in Figure 1.1. At the top, one would first decide which type of laundry to
do and could then easily recall the right instructions.

Which type
of laundry?

30◦C
⟲900

50ml liquid

40◦C
⟲900

90ml powder

60◦C
⟲1600

90ml powder

whites towels
colours

Figure 1.1: Configuring the washing machine as a flow chart.

2 Chapter 1. Introduction

1.1 An Introduction to Communication Protocols

One could say that this flow chart was part of our recipe to do laundry. As their more
prominent counterparts for baking, recipes are basically algorithms, which specify a
sequence of actions towards a goal – like a home-made currant-chocolate cake (my
favourite one). Baking recipes, as our laundry recipe, describe all actions from one
person’s perspective. For instance, a user ought to press a button on the washing
machine to start it but it would not specify the washing machine’s behaviour once the
button was pressed. So let us change perspective and consider the whole process of
doing laundry as interaction between a (human) user, a washing machine and a tumble
dryer. Such a hypothetical laundry protocol is visualised in Figure 1.2.

u

deciding

w d

on

u w

washing

d
40◦C

⟲900
powder

load

start

time

finished

unload

off

u w

washing

d
30◦C

⟲900
liquid

load

start

time

finished

unload

off

u w

washing

d
60◦C

⟲1600
powder

load

start

time

finished

unload

off

u w d

drying

on

heat-low
dry

load

start

finished

unload

off

u

hanging
out

collecting

w d u w d

drying

on
heat-high
extra-dry

load

start

finished

unload

off

Figure 1.2: Laundry protocol
with a user u, a washing machine w, and a tumble dryer d.

1.1. An Introduction to Communication Protocols 3

Laundry Protocol. The protocol is structurally similar to the flow chart in Fig. 1.1:
there is the initial block at the top, indicated by an incoming arrow, and there are three
branches for the three types of laundry. In each block, every participant – the user u,
the washing machine w, and the tumble dryer d – is represented with a vertical line.
Time flows from top to bottom so in the initial block, the user first decides the type of
laundry and then switches the washing machine on. The first action is purely internal
to the user and their decision is not shared with any of the other participants (yet).
The second action is, in fact, an interaction between the user and the washing machine.
It is represented with an arrow from the user’s vertical line to the one for the washing
machine, labelled with on. Practically, one would press a button on the washing machine
but our protocol is not as specific. There are no more actions in the initial block, leading
us to the point where one of the three branches ought to be taken. Here, they can be
distinguished by the first interaction where the user communicates the temperature
to the washing machine, which are distinct for each type of laundry. If one thinks
of an interaction as notifying another participant through a message, the user is the
sender and the washing machine is the receiver of this message. In our protocol, the
sender drives the decision which branch to choose, which is why we say the protocol
has sender-driven choice. The washing machine learns about this choice by receiving
a notification about the temperature. It knows which branch has been taken because
the temperature in each branch is distinct. The structure of the first part of all three
branches is similar. The user first notifies the washing machine about the number of
rotations per minute, adds the right type (and quantity) of detergent, and loads the
laundry into to washing machine. Afterwards, the user starts the washing machine.
In turn, the washing machine actually washes the laundry, which is an internal action.
While washing, it displays the remaining time to the user – indicated by the different
style of message. Once completed, it notifies the user who unloads the laundry and
switches the machine off. For colours, the user then hangs out the laundry, waits for
some time and collects it once dried. For whites and towels, the user makes use of
the tumble dryer. Their interaction resembles the one with the washing machine. The
user switches the tumble dryer on, communicates the configuration details (heat and
humidity level), loads the laundry into the tumble dryer, and starts it. The tumble dryer
notifies the user once the laundry reached the configured dryness level who then unloads
it and switches the tumble dryer off. The double lines around the last blocks indicate that
we completed the protocol.

Abstraction. Our laundry protocol does not specify every single detail – for example
how communication happens between the participants. This gives freedom when
following the protocol and how the participants can communicate. For example, one
could also use a smartphone app to configure settings of the washing machine instead of
physical buttons. This follows the idea of abstraction, an important concept in computer
science. In our example, it also allows to simply have blocks for internal actions which

4 Chapter 1. Introduction

do not specify how the washing machine exactly washes the laundry. With the buttons
and means to configure, the washing machine exposes a user interface that allows to
influence part of its internal actions but little do users know what happens inside. In
fact, there are several internal components that themselves interact during the washing
process. One could say that they follow their own subprotocol. In our setting, abstraction
allows us to focus on the interactions between a particular group of participants and
not to consider all internals of the washing machine. More broadly, abstraction also
paved the way that we do not program processors, the very basic computation unit
in a computer, directly but can use sophisticated high-level programming languages.
To stay in our picture, these basically offer a user interface to the computers’ internal
components and have been proven essential for what can be accomplished with modern
computer systems today.

Communication Protocols. Here, we take the idea of abstraction one step further
and also abstract the internal actions for protocols. Intuitively, their results are not
exposed to the outside world but, if desirable, they can be made explicit through
interactions, e.g. our laundry protocol could also involve our mum and I could tell
her which type of laundry I would do in the beginning. We call a protocol that
only specifies interactions between participants a communication protocol. We only
consider communication protocols in this work and may abbreviate them with the
term protocol for readability. They are usually used to let a number of participants
coordinate towards achieving a goal. Algorithms basically do the same but for a
single participant and, hence, necessarily focus on the internal actions. With this idea
in mind, communication protocols can be identified in virtually all scenarios where
humans as well as machines interact. One can think of assembly lines as introduced
by Henry Ford more than 100 years ago but also how hunters coordinated to hunt
bigger animals long before. Today, every online purchase does not only involve the
buyer and seller but requires communication with a payment service, a bank/credit card
issuer, and a delivery company. For such scenarios, like a geo-distributed service, where
multiple participants need to interact to achieve a goal, communication protocols are
essential. Standardisation is inherent to communication protocols as a specification
language for interactions and it is often useful to optimise processes. In our setting,
it comes with another advantage. For different executions of the same communication
protocol, different people, computer systems, or companies can play the role of the same
participant: in our laundry protocol, it does not matter whether my sister or I were the
user while, in an online purchase, different delivery companies can be used to ship a
parcel. This also allows an online shopping platform to provide their services more
easily at bigger scale. In our context, scalability translates to the ability to execute the
same protocol more often and, thus, possibly in parallel.

1.2. The Implementability Problem 5

1.2 The Implementability Problem

A communication protocol is a joint description of all participants’ interactions from a
global perspective – one could say a global protocol. When executing such a protocol,
each participant can only observe the interactions it is involved in. For instance, the
tumble dryer does not know the temperature the user communicates to the washing
machine, which is key for the latter to know which branch was taken. In the presence
of choices or branches in the protocol, this partial information may be insufficient for
a participant to know what it can do to stay compliant with previous choices. In our
laundry protocol, there is enough information. In particular, the user chooses the only
branch and tells the tumble dryer later in each branch about the desired configuration.
We can infer the local communication behaviour of the tumble dryer. Intuitively, we
consider all interactions and ignore the ones the tumble dryer is not involved in. The
result is illustrated in Figure 1.3.

dryer◁user?on

dryer◁user?heat-low

dryer◁user?dry

dryer◁user? load

dryer◁user?start

dryer▷user!finished

dryer◁user?unload

dryer◁user?off

dryer◁user?heat-high

dryer◁user?extra-dry

dryer◁user? load

dryer◁user?start

dryer▷user!finished

dryer◁user?unload

dryer◁user?off

Figure 1.3: Local behaviour for tumble dryer.

6 Chapter 1. Introduction

It is represented as a finite state machine which consists of a finite set of states, here
denoted with a circular shape, of which one is initial, some can be final, and they are
connected with labelled transitions. The state at the top is the initial state and it is
the one where the tumble dryer starts in the beginning. Transitions connect states in
a directed way and can be taken to move from one state to another. They have labels,
which describe part of an interaction in our setting: sending or receiving a message. For
instance, there is only one transition from the initial state, which leads to second state
and is labelledwith dryer◁user?on, indicating that the tumble dryer (active participant
and hence in front) receives (denoted by ? and the orientation of ◁) message on from the
user. Conversely, dryer▷user!finished denotes that the tumble dryer sends (denoted
by ! and the orientation of ▷) message finished to the user. From the second state, there
is a branch but the tumble dryer cannot decide which of both branches to take but the
message to receive from the user determines the branch. The initial state and the two
states at the bottom are final states, indicated by double lines as for the laundry protocol.
Thismeans it is fine for the tumble dryer to finish in one of these states. The initial state is
also final because our laundry protocol does not involve the tumble dryer in one branch.
We could simplify the local behaviour as presented: we observe that the last four actions
are the same for both branches so we could merge both branches for the last four actions,
not changing the possible local behaviour of the tumble dryer.

It is straightforward to construct the local behaviours of the user and washing
machine for our laundry protocol in a similar way. Assume we let all three participants
follow their local specification and we do not allow any additional interaction between
them. Also, there is no external coordinator, e.g. our mum who might fix some
configuration on the washing machine. In this scenario, when all three participants
locally follow their local behaviour in a distributed setting (in contrast to a centralised
setting with an external coordinator), they follow precisely the described global laundry
protocol. This is only the case because all information about branches is propagated
properly: the tumble dryer is informed about desired temperature level for drying, which
is distinct for both branches. If not, it would need to guess and, overall, the global
protocol, would be violated.

This is the first occurrence of the main research problem of this thesis.

Implementability Problem: Given a global communication protocol,
can it be implemented locally in a distributed setting?

To be precise, implementing comprises two properties: deadlock freedom and protocol
fidelity. Deadlock freedom is satisfied if every possible locally generated execution can
always finish to completion: we would not want the tumble dryer to get stuck at some
point and it will never be switched off. For protocol fidelity, two conditions ought
to be met. First, every execution that is generated locally is also specified as global
execution in the protocol. Second, all specified global executions can be generated locally
in a distributed setting. Intuitively, we want to be able to wash and dry all described
types of laundry with the prescribed configurations but also no more. Considering the

1.3. Problem Setting 7

implementability problem as stated, an algorithm to solve it could simply return yes or
no as result. We call this a decision problem. However, its solution does only tell us if
there are local behaviours and will not provide them. But, of course, we would usually
also like to obtain the local behaviours in order to use them subsequently. This would
be the corresponding synthesis problem. It turns out, though, that generating the local
behaviours is usually rather simple. For each global protocol and participant, one can
apply the above idea of omitting irrelevant actions to obtain the local behaviour for every
participant. If there is one that works, this will also work. Hence, it is not critical to
distinguish between the decision and the synthesis problem. For most problem settings,
an algorithm should be sound: if it outputs yes for a global protocol, then it is indeed
implementable. The counterpart to soundness is completeness. An algorithm is complete
if output no implies that the global protocol is not implementable. There are problems for
which there are no terminating algorithms, i.e. that stop computing for every possible
input, that are sound and complete.

1.3 Problem Setting

Let us elaborate on the setting for which we consider the implementability problem.
Regarding communication protocols, we mostly focus on protocols with sender-

driven choice which means that, for every branch, there is a dedicated participant who
sends the first message in all branches and the message-receiver-pairs are distinct. In
contrast, if there is no such dedicated sender, but all labels are distinct, we say the
protocol has mixed choice.

There are two main paradigms for communication: synchronous and asynchronous
communication. For a synchronous interaction to happen, both participants need
to be available at the same time to conduct their part of the interaction, as for a
phone call. Asynchronous communication, in contrast, allows a participant to send its
message without waiting for the receiver to receive it, as for a telephone answering
machine or e-mails.We consider asynchronous communication in this thesis. This yields
performance benefits when executing protocols but also makes the implementability
problem more challenging.

Messages that were sent but have not been received yet are buffered in channels in
our computationalmodel. We consider a point-to-point settingwith FIFO-ordered, reliable
and unbounded channels. Point-to-point means that there are two channels between
every two participants, one for each direction. For a single participant’s perspective
on its incoming channels, think of an e-mail inbox with a dedicated folder for every
sender – a rather unlikely design choice for an e-mail inbox but still possible and good
for illustrative purposes. FIFO-ordered means that, for the receiver, the messages in
each directory occur in the order they were sent by the sender. Reliability amounts
to not losing or duplicating e-mails. A channel is unbounded if it does not have a
maximum capacity and, thus, never lets the sender of a message block, which would

8 Chapter 1. Introduction

be the case for a full channel. In terms of design choices, these assumptions are quite
strong but they can be satisfied by implementing communication protocols on top of a
fault-tolerant network layer that handles faulty communication like the Transmission
Control Protocol (TCP). For many applications, this is a reasonable level of abstraction
since handling communication faults comes with its own set of challenges.

In theoretical computer science, the described model is known as communicating
state machines (CSMs) [23] and is commonly used tomodel computations in a distributed
setting. In fact, it is a very powerful computational model as it was shown to be
Turing-complete [23]. For instance, bounding the channels significantly restricts the
computational power of the model. In fact, one can then simulate all behaviours in
a finite amount of time. If channels can lose messages, one obtains lossy channel
systems [3] while not imposing an order on messages yields Petri Nets [104]. Both these
models of computation do not allow to explicitly simulate all behaviours in finite time
but are not as powerful as communicating state machines.

1.4 State of the Art

For our setting, the implementability problem has been studied from two perspectives:
with High-level Message Sequence Charts (HMSCs) [95] using automata-theoretic means,
and Multiparty Session Types (MSTs) [67] which originate in process algebra.

High-level message sequence charts have been specified as industry standard in
1996 [127]. In the 2000s, HMSCs enjoyed popularity as part of the UML standard for
the design of software. Research on implementability focused on the complexity of
checking if a protocol can be implemented. The problem was shown to be undecidable
in general [91] but several structural restrictions have been proposed that work around
the undecidability [7, 100, 98, 91, 55], e.g. boundedness, which entails that channels
never exceed a certain bound. In addition to the implementability problem, research on
automated verification has been concerned with model-checking HMSC specifications,
e.g. against temporal logic specifications. Again, this problem is undecidable in general
but becomes decidable for bounded HMSCs [6].

Multiparty session types have been proposed as typing mechanism for communi-
cation channels. Their history starts back in 1993 when Honda [65] proposed binary
session types for two party communication. They identified duality as a condition
that ensures that communication channels are used in safe fashion. Roughly speaking,
duality requires the following: if one participant sends a message of a specific type to
a channel, the other endpoint should expect to receive a message of this type. This
work was inspired by linear logic [58]. Intuitively, session type systems are often linear
as they require that every channel type in the typing context needs to be taken care
of and they cannot be dropped from the context. Moving from binary to the multiparty
session types in 2008, Honda et al. [67] identified consistency as generalisation of duality.
They provide a type system to type processes from a process calculus and well-typed

1.4. State of the Art 9

processes are guaranteed not to go wrong – a classical property of type systems. Also
for multiparty communication, one concern is that there are no mismatches in the use
of channels, e.g. messages of the given type are not expected. Different behavioural
properties have also been considered, e.g. the absence of orphan messages [45]: once
all participants terminated, there should be no messages left in the channel. In our
work, we will focus on the implementability problem and show that many of the
properties of interest follow from its guarantees. Session types have been implemented
in various programming languages [8] and ideas from MSTs have been applied to
various other domains, including web services [131], cyber-physical systems [94], and
smart contracts [44].

The HMSC and MST approach differ both in terms of expressivity of their protocol
specification mechanism and their approach to the implementability problem.

Let us first consider the protocols one can specify. If one omits the internal actions,
the visual in Figure 1.2 depicts an HMSC. Each block is a basic message sequence
chart (BMSC) in which communication is specified as explained before. It is also
possible to have non-horizontal or crossing message arrows but only within a single
BMSC. HMSCs do not impose any restrictions on branching like sender-driven choice.
In MST frameworks, communication protocols are specified syntactically as global
types. Here, we omit a formal description but explain their restrictions visually using
HMSCs. Message arrows can only occur horizontally. Virtually every MST framework
employs directed choice, which means that there is a dedicated sender-receiver-pair for
each branching and only messages can be distinct. In contrast, sender-driven choice
allows the receiver-message-pairs to be distinct, permitting patterns like load balancing.
Structurally, all protocols have a tree-like structure. In addition, no protocol can finish
somewhere in the middle but needs to explicitly specify termination. In other words, no
completed execution can be part of another completed execution.

When it comes to the implementability problem, literature on HMSCs split the
problem into two steps: (a) constructing a candidate implementation comprising local
specifications for each participant and (b) checking implementability of the protocol.
As hinted at before, (a) is rather straightforward so most efforts focus on (b). The
implementability problem for HMSCs is undecidable in general [91] so there cannot
be an algorithm that always finishes its computation and returns the correct result for
all instances. Different classes of HMSCs were identified for which implementability is
decidable, so sound and complete algorithms exist for these subclasses.

Classical MST approaches consider each participant in isolation and join both the
construction of its local behaviour and checking whether it is safe to use. Central is the
so-called projection operator which, given a global type and participant, traverses the
global type in a linear fashion and projects each interaction onto the local behaviour
for the participant. For some interactions, a participant might not be involved, leading
to potential confusion about previous choices. An in-built merge operator checks
whether such confusions can be resolved. This yields an efficient approach to the

10 Chapter 1. Introduction

implementability problem for global types. However, it is also rather brittle because
these checks are overly restrictive and the linear traversal prohibits unfoldings, yielding
an inherently incomplete approach. For example, sender-driven choice is virtually not
supported by any classical MST framework. Interestingly, despite the rather heavy
restrictions on global types, neither a lower nor upper complexity bound for the
implementability problem (even with directed choice) is known. This means, regarding
the lower bound, it is unclear how difficult the problem is so, roughly speaking, one does
not know what run times can be deemed acceptable. For the upper bound, it is not even
clear if there can be a sound and complete algorithm, which is known not to be the case
for HMSCs.

1.5 Research Questions and Contributions

These observations give rise to a two-dimensional spectrum for interesting research
questions. First, there is the spectrum of protocol expressivity, ranging from basically
no restrictions for HMSCs to quite a number of restrictions for MSTs. Second, there is
the difficulty of the implementability problem, ranging from undecidability for HMSCs
in general to only incomplete linear approaches for MSTs.

We approached the expressivity spectrum rather from the MST perspective and
considered ways to make the MST methodology applicable to more protocols, hoping
to find ways not to sacrifice too much performance.

First, we observed that directed choice prevents the use of MST verification for
patterns from distributed computing like load balancing, which comprise features that
are supported by sender-driven choice.

How can one support sender-driven choice in the MST methodology?

We extended the classical projection approach to support sender-driven choice.
It was interesting to realise that the main difficulty originates from the fact that a
participant can learn about branches by receiving from different senders. Messages from
different senders are not FIFO-ordered, however. This is why one needs to ensure that
such important messages cannot overtake each other. We employed a novel message
availability analysis, inspired by HMSCs, to achieve this and proved it to be sound.

This projection operator has been based on the classical projection approach which
we showed to be inherently incomplete.

Is there (any hope for) a complete algorithm for the MST implementability problem with
directed or even sender-driven choice?

1.5. Research Questions and Contributions 11

We gave the first EXPSPACE decision procedure for a subclass of sender-driven
global types – to be precise, the ones that always can but do not need to terminate.
This result is obtained via a reduction to the HMSC implementability problem and
proving that any implementable global type falls into a class of HMSCs for which
implementability is decidable. Subsequently, we also provided the first direct and
complete projection operator through automata-theoretic constructions, yielding a
PSPACE upper bound and lifting the restriction on termination for protocols. We
also present a family of examples that requires exponential time to generate an
implementation. Despite, we demonstrated its effectiveness and efficiency with a
prototype tool on examples from the literature.

Our projection operator uses CSMs as implementation model. Usually, MST
frameworks use local types instead, which are subsequently used in a session type
system to type-check processes from a process calculus. In our setting, it was reasonable
to consider the use of CSMs in a type system.

Can CSMs be used in a session type system?

We answered this question positively and constructed a type system where CSMs
take the place of local types. We proved that our type system ensures subject reduction,
i.e. if a well-typed process can take a step, its typing context can also take a step and
can be used to type-check the new process. Because errors can never be well-typed,
our type system enjoys type safety, i.e. no well-typed process can ever reduce to an
error. In a nutshell, our sound and complete projection operator generates CSMs and
our type system uses CSMs. Together, it shows that the use of CSMs is beneficial and
advantageous for both projection as well as type-checking, proving it to be reasonable
intermediate interface. Overall, this improves generality without loosing efficiency.

While we were developing algorithms for the implementability problem, we
wondered how implementations for protocols are different from arbitrary CSMs. Since
channels are key to the computational power of CSMs, it was natural to consider
this aspect.

How do protocols use channels in comparison to
arbitrary communicating state machines?

We considered three common channel restrictions and, interestingly, found that their
relations differ in the context of protocols and arbitrary communicating state machines.
We found that protocols, as specified with global types and HMSCs, provide a number
of sanity guarantees by default. For instance, it should be possible to receive every sent
message in a bounded (logical) period of time – a property called existential boundedness.
We noticed, though, that HMSCs cannot express all such protocols.

Is there a formalism to specify (more) existentially bounded protocols
for which sanity guarantees are checkable?

12 Chapter 1. Introduction

We introduced protocol state machines (PSMs) as such formalism, which are basically
finite state machines with transitions labelled by send and receive events. In contrast
to global types and HMSCs, a condition in their definition ensures that channels are
used in FIFO manner for every word. PSMs are more expressive than global types. First,
they allow to specify arbitrary state machines while we show global types to always
specify state machines with a tree-like structure in which recursion only happens at the
leaves and to ancestors, and final states cannot have outgoing transitions. Second, we
showed that global types only specify existentially Σ1-bounded protocols, i.e. where
every execution can be reordered in a way that there is at most one message in all
channels. Similarly, we defined the subclass of Σ1-PSMs. Our sound and complete
projection algorithm actually applies to sender-driven Σ1-PSMs where final states have
no outgoing transitions – a property abbreviated as sink-final since states without
outgoing transitions are called sink states. Still, we showed that every sink-finalΣ1-PSM
can be transformed into a global type, specifying the same protocol and preserving
sender-driven and mixed choice if given. This entails that most of the structural
restrictions on global types are actually non-restrictive in terms of expressivity.

We proved sender-driven choice to be instrumental in the design of a complete
projection operator. Naturally, the question arises if similar techniques can be applied
for mixed-choice protocols.

Is the implementability problem decidable for protocols with mixed choice?

Lohrey [91] showed that the implementability problem for HMSCs is undecidable in
general. Consequently, the same holds for PSMs. However, the notion of choice was
not studied much for HMSCs and it was unclear how choice comes into play for this
result. Hence, we decided to transcribe the original proof to understand the role of
choice in detail. Further changes allowed us to show that checking implementability is
undecidable for sink-finalΣ1-PSMs in general. With our earlier expressivity results, this
settles an open question: the implementability problem for mixed-choice global types is
undecidable in general. Both the implementability problem for sender-driven HMSCs
and PSMs are open and we consider both to be interesting avenues for future work.

1.6 Publications

The material in this thesis is based on four publications in peer-reviewed conferences
and one unpublished draft:

(1) Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey.
“Generalising Projection in Asynchronous Multiparty Session Types”. In: 32nd
International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,
Virtual Conference. Ed. by Serge Haddad and Daniele Varacca. Vol. 203. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 35:1–35:24. doi: 10.
4230/LIPIcs.CONCUR.2021.35

https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35

1.7. Outline 13

(2) Felix Stutz and Damien Zufferey. “Comparing Channel Restrictions of Commu-
nicating State Machines, High-level Message Sequence Charts, and Multiparty
Session Types”. In: Proceedings of the 13th International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2022, Madrid, Spain, September
21-23, 2022. Ed. by Pierre Ganty and Dario Della Monica. Vol. 370. EPTCS. 2022,
pp. 194–212. doi: 10.4204/EPTCS.370.13

(3) Felix Stutz. “Asynchronous Multiparty Session Type Implementability is
Decidable - Lessons Learned from Message Sequence Charts”. In: 37th European
Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023, Seattle,
Washington, United States. Ed. by Karim Ali and Guido Salvaneschi. Vol. 263.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 32:1–32:31. doi:
10.4230/LIPIcs.ECOOP.2023.32

(4) Elaine Li, Felix Stutz, Thomas Wies, and Damien Zufferey. “Complete Multiparty
Session Type Projection with Automata”. In: Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings, Part
III. ed. by Constantin Enea and Akash Lal. Vol. 13966. Lecture Notes in Computer
Science. Springer, 2023, pp. 350–373. doi: 10.1007/978-3-031-37709-9_17

(5) Felix Stutz and Emanuele D’Osualdo. “An Automata-theoretic Basis for
Specification and Type Checking of Multiparty Protocols”

Many of these publications are the result of fruitful collaborations with great
researchers, including my advisors, external collaborators and people who became
mentors to me over time. I will use the first-person plural we throughout the thesis,
also to indicate that most of these results were not obtained solely by myself.

I can be considered the primary contributor to all these publications – except for
Publication (4) for which Elaine Li and I share equal contribution. It uses the novel idea
of available message analysis from Publication (1) but improves on it in many aspects.
Elaine and I both independently observed that this idea could be applicable more broadly
when applying automata-theoretic techniques. We then closely co-developed the ideas
and definitions for this publication. We also discussed proof ideas as well as low-level
proofs in detail but she was the one to put them down on paper (and also the one to find
unexpected subtleties whilst doing this). I can take credit for the implementation of the
prototype tool. Consequently, I decided to provide definitions, give proof sketches and
intuition in the main text of this thesis and keep the detailed proofs in an appendix.

1.7 Outline

Chapter 2 formally introduces high-level message sequence charts (HMSCs) and global
types from multiparty session types (MSTs) as protocol specification mechanisms,
communicating state machines as implementation model, and the implementability
problem. In Chapter 3, we generalise classical projection to support sender-driven

https://doi.org/10.4204/EPTCS.370.13
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.1007/978-3-031-37709-9_17

14 Chapter 1. Introduction

choice. We first explain the classical projection approach visually using finite state
machines. Then, we elaborate on our generalisation in the main part of the chapter. Last,
we exemplify the sources of incompleteness of the classical MST projection approach.
Chapter 4 first establishes a formal connection between global types and high-level
message sequence charts. We then thoroughly explain how this connection can help
to solve the MST implementability problem, including our decision procedure for MST
implementability. This is restricted to sender-driven choice and protocols such that
every partial execution can be completed to a finite completed execution. In Chapter 5,
we present a direct and complete MST projection operator, which uses automata-
theoretic constructions and applies to the full class of sender-driven global types. We
make use of these results in our session type system in Chapter 6, proving subject
reduction and type safety. Chapter 7 investigates the relationship of common channel
restrictions for protocols as well as general communicating state machines. In Chapter 8,
we introduce protocol state machines and elaborate on their relation to global types
and HMSCs, while we prove undecidability of the implementability problem for mixed-
choice protocol state machines as well as mixed-choice global types in Chapter 9. We
discuss related work in Chapter 10 and give a conclusion in Chapter 11.

15

Chapter 2

Protocol Specifications and
the Implementability Problem

In this chapter, we lay the formal foundations for the developments in this thesis,
by providing definitions for protocols and their implementations. We define
communicating state machines as computational model for implementations of
protocols, which can be specified as high-level message sequence charts and global
types from multiparty session types. Last, we define the implementability problem
for protocols.

2.1 Preliminaries

Let us give a brief exposition of notation and standard definitions.

Finite and Infinite Words. Let ∆ be an alphabet. We denote the set of finite words
over∆ by∆∗ and the set of infinite words by∆ω. Their union is denoted by∆∞. For two
words u ∈ ∆∗ and v ∈ ∆∞, we say that u is a prefix of v, denoted with u ≤ v, if there
is some w ∈ ∆∞ such that u · w = v, where · is the concatenation operator and might
be omitted for conciseness. All prefixes of v are denoted by pref(v), which is lifted to
languages as expected. For a language L ⊆ ∆∞, we distinguish between the language
of finite words Lfin := L ∩∆∗ and the language of infinite words Linf := L ∩∆ω.

Partial Orders and Linearisations. Let S be a set and ≤ be a partial order over S,
i.e. ≤ is reflexive, antisymmetric, and transitive. We say that w1 . . . w|S| ∈ S∗ is a
linearisation of S with regard to ≤ if for every i ≤ j it holds that wi ≤ wj and for
every x ∈ S, there is i with wi = x. We omit the set S when it is clear from context.

16 Chapter 2. Protocol Specifications and the Implementability Problem

State Machines. A state machine A = (Q,∆, δ, q0, F) is a 5-tuple with a finite set of
states Q, an alphabet ∆, a transition relation δ ⊆ Q × (∆ ∪ {ε}) × Q, an initial state
q0 ∈ Q from the set of states, and a set of final states F with F ⊆ Q. We say q ∈ Q

is a sink if it has no outgoing transitions, i.e. ∀a ∈ ∆ ∪ {ε}, q′ ∈ Q. (q, a, q′) /∈ δ. The
state machine A is called sink-final if every state is final if and only if it is a sink. A
is deterministic if for every transition (q, a, q′) ∈ δ, it holds that a ̸= ε and for every
transition (q, a, q′′) ∈ δ, we have q′ = q′′. For (q, a, q′) ∈ δ, we also write q a−→ q′. For the
transitive and reflexive closure, we write δ∗ or →∗. If the letter does not matter, q → q′

denotes that there is some a with q
a−→ q′. A sequence ρ = q0

w0−→ q1
w1−→ . . ., with

qi ∈ Q and wi ∈ ∆ ∪ {ε} for i ≥ 0, such that q0 is the initial state, and for each i ≥ 0,
it holds that (qi, wi, qi+1) ∈ δ, is called a run in A with its trace w0w1 . . . ∈ ∆∞, denoted
by trace(ρ). A run is maximal if it ends in a final state or is infinite. The language L(A)
of A is the set of traces of all maximal runs. If Q is finite, we say A is a finite state
machine (FSM).

State machines can generate languages of finite and infinite words and will serve
as basic component for communicating state machines. Figure 1.3 depicts an FSM. Its
transition labels are from a special alphabet that we use to formalise the execution of
protocols in a distributed setting and define next.

2.2 Alphabets for Protocols

We formalise the execution of protocols as formal languages over an alphabet of
(asynchronous) events. To start with, let P be a finite set of (protocol) participants and
V be a finite set of messages. Let us first consider the events for a single participant. For
p ∈ P , we define the alphabet of send events Γp,! = {p▷q!m | q ∈ P \{p}, m ∈ V}
and the alphabet of receive events Γp,? = {p◁q?m | q ∈ P \ {p}, m ∈ V}. The
event p▷q!m denotes that participant p sends a message m to q, and p◁q?m denotes
that participant p receives a message m from q. Note that a participant cannot send to
or receive from itself. Thus, we assume p ̸= q when dealing with such events. The
union of send and receive events yields all events for p: Γp = Γp,! ∪ Γp,?. We say that
participant p is active in the event x if x ∈ Γp. We also define the alphabets of send
and receive events by all participants: Γ! =

⋃
p∈P Γp,!, and Γ? =

⋃
p∈P Γp,?. Together,

they consist of all asynchronous events ΓP = Γ! ∪ Γ?. When dealing with words or
languages over ΓP , we might want to refer to all events of a subalphabet ∆ of ΓP . For
an alphabet ∆ ⊆ Γ, we define a homomorphism ⇓∆ : Γ → ∆ ⊎ {ε}, where x⇓∆ is x if
x ∈ ∆ and ε otherwise. We lift ⇓_ to words and languages as expected. We may use
_ to abbreviate notation for alphabet descriptions, e.g. p▷q!_ for {p▷q!m | m ∈ V},
and write w⇓p ▷q !_ to select the subsequence of all send events in w where p sends a
message to q. We write V(w) to project the send and receive events in w onto their
messages. A paired event is the sequence of a send event and its corresponding receive
event: p→q :m := p▷q!m · q◁p?m. Consequently, we define the set of paired events

2.3. The Implementation Model: Communicating State Machines 17

ΣP := {p→q :m | p, q ∈ P and m ∈ V}. For readability, we might exploit notation and
treat p→q :m as one instead of two letters, e.g. we might define finite state machines
with transition labels from ΣP .

In a word w = w1 . . . ∈ Γ∞
P , a send event wi = p▷q!m is matched by a receive

event wj = q◁p?m if i < j and V((w1 . . . wi)⇓p ▷q !_) = V((w1 . . . wj)⇓q◁ p?_), which is
denoted by wi ⊢⊣ wj . A send event wi is unmatched if there is no such receive event wj .

A language L ⊆ Γ∞ satisfies feasible eventual reception if for every finite word
w := w1 . . . wn ∈ L such that wi is an unmatched send event, there is an extension
w ≤ w′ ∈ L of w such that wi is matched in w′.

We fixP and V for the remainder of this thesis and may write Γ for ΓP andΣ forΣP .

2.3 The Implementation Model:
Communicating State Machines

We model the behaviour of multiple participants that communicate through asyn-
chronous messages over FIFO channels in a distributed setting. Asynchronous
communication entails two properties. First, sending is non-blocking: a sender does
not need to wait for the respective receiver to be available. Second, there can be an
arbitrary delay between sending a message and its reception. We assume messages are
not lost and, for each pair of participants, messages are delivered in FIFO order.

Definition 2.1 (Communicating state machines [23]). We say that A = {{Ap}}p∈P is
a communicating state machine (CSM) over P and V if Ap is a finite state machine
over Γp for every p ∈ P , denoted by (Qp,Γp, δp, q0,p, Fp). Let

∏
p∈P Qp denote the

set of global states and Chan = {(p, q) | p, q ∈ P , p ̸= q} denote the set of channels.
A configuration ofA is a pair (q⃗, ξ), where q⃗ is a vector of states, one for each participant,
and ξ : Chan → V∗ is a mapping from each channel to a sequence of messages. We may
write ξ(p, q) for ξ((p, q)). We use q⃗p to denote the state of p in q⃗. The CSM transition
relation, denoted→, is defined as follows.

• (q⃗, ξ)
p ▷q !m−−−−→ (q⃗ ′, ξ′) if (q⃗p, p▷q!m, q⃗ ′

p) ∈ δp, q⃗r = q⃗ ′
r for every participant r ̸= p,

ξ′((p, q)) = ξ((p, q)) ·m and ξ′(c) = ξ(c) for every other channel c ∈ Chan.
• (q⃗, ξ)

q◁ p?m−−−−→ (q⃗ ′, ξ′) if (q⃗q, q◁p?m, q⃗ ′
q) ∈ δq, q⃗r = q⃗ ′

r for every participant r ̸= q,
ξ((p, q)) = m · ξ′((p, q)) and ξ′(c) = ξ(c) for every other channel c ∈ Chan.

• (q⃗, ξ)
ε−→ (q⃗ ′, ξ) if (q⃗p, ε, q⃗ ′

p) ∈ δp for some participant p, and q⃗q = q⃗ ′
q for every

participant q ̸= p.

18 Chapter 2. Protocol Specifications and the Implementability Problem

q0,p q1,p q2,p

p▷q!cons

p▷q!nil p◁q?ack

(a) State machine for p.

q0,q q1,q q2,q

q◁p?cons

q◁p?nil q▷p!ack

(b) State machine for q.

Figure 2.1: A communicating state machine.

In the initial configuration (q⃗0, ξ0), each participant’s state in q⃗0 is the initial state q0,p
of Ap, and ξ0 maps each channel to ε. Let (q⃗, ξ) be a configuration. It is said to be
final iff q⃗p is final for every p and ξ maps each channel to ε. We call (q⃗, ξ) a sink-state
configuration iff q⃗p is a sink state for every p. A run of A always starts with its initial
configuration (q⃗0, ξ0), and is a finite or infinite sequence (q⃗0, ξ0)

w0−→ (q⃗1, ξ1)
w1−→ . . . for

which (q⃗i, ξi)
wi−→ (q⃗i+1, ξi+1). Thewordw0·w1·. . . ∈ Γ∞ is said to be the trace of the run.

A run ismaximal if either it is finite and ends in a final configuration, or it is infinite. The
language L(A) of the CSM A is defined as the set of maximal traces. A configuration
(q⃗, ξ) is a deadlock if it is not final and has no outgoing transitions while it is reachable
if it occurs on some run of A. A CSM is deadlock-free if no reachable configuration is
a deadlock. We say a CSM is sink-final if all its state machines are. A CSM satisfies
feasible eventual reception if its language does.

We use the prefix feasible for feasible eventual reception to indicate that the reception
does not need to happen but is feasible. Thus, this does not impose a fairness condition
on the runs of the CSM.

Example 2.2. Figure 2.1 depicts a CSMwhere participant p sends a list of elements to q.
Let us exemplify the execution of a CSM. At the start, each is in its initial state, q0,p and
q0,q. Participant p is the only one that can take a step initially since q attempts to receive
amessage but all channels are initially empty. Thus, we let p send a sequence of elements
using the self-loop to q0,p, e.g. two elements, yielding the trace p▷q!cons · p▷q!cons. We
then let q receive the first message and p send another element of the list, appending
q◁p?cons· p▷q!cons to our trace. All these actions lead them always back to their initial
state. Once p sends nil, it proceeds to state q1,p, appending p▷q!nil. There, p waits to
receive a message that has not been sent yet, yielding the first time where p cannot take
any action. We let q receive all the messages in its channel and send ack to acknowledge
the reception of the list. Together this yields the following trace:

p▷q!cons · p▷q!cons · q◁p?cons · p▷q!cons · p▷q!nil
· q◁p?cons · q◁p?cons · q◁p?nil · q▷p!ack · p◁q?ack

where q receives all cons-messages before the nil-message as we consider FIFO-
ordered communication. After this trace, both p and q are in their final states and all
channels are empty so the trace is in the language of the CSM. ◀

Given a word of send and receive events, we can tell if it is compliant with FIFO order
and if all channels were empty if it was a trace of a CSM.

2.3. The Implementation Model: Communicating State Machines 19

Definition 2.3 (FIFO-compliant and complete). A word w ∈ Γ∞ is FIFO-compliant if
messages are received after they are sent and, between two participants, the reception
order is the same as the send order. Formally, for each prefix w′ of w, we require
V(w′⇓q◁ p?_) to be a prefix of V(w′⇓p ▷q !_), for every p, q ∈ P . A FIFO-compliant word
w ∈ Γ∞ is complete if it is infinite or the send and receive events match: if w ∈ Γ∗, then
V(w⇓p ▷q !_) = V(w⇓q◁ p?_) for every p, q ∈ P .
Example 2.4. The trace in Example 2.2 is FIFO-compliant and complete. The following
trace is not FIFO-compliant:

p▷q!cons · p▷q!cons · q◁p?cons · p▷q!nil · q◁p?nil .

Here, q does not receive the second cons-message. Let us consider another trace:

p▷q!cons · p▷q!cons · q◁p?cons · p▷q!nil · q◁p?cons .

It is FIFO-compliant but not (yet) complete. Appending q◁p?nil yields a complete trace
that is also in the language of the CSM in Fig. 2.1. ◀

The following lemma summarises that traces of CSMs satisfy these conditions. While
all traces are FIFO-compliant, only maximal traces are complete. Note that an infinite
FIFO-compliant trace is always complete. This makes sense because we cannot check if
the channels are empty at the end of an infinite trace.
Lemma 2.5. Let {{Ap}}p∈P be a CSM. For any run (q⃗0, ξ0)

x0−→ · · · xn−→ (q⃗, ξ) with trace
w = x0 . . . xn, it holds that
(1) ξ((p, q)) = u where V(w⇓p ▷q !_) = V(w⇓q◁ p?_) · u for every pair of participants

p, q ∈ P with p ̸= q,
(2) w is FIFO-compliant, and
(3) maximal traces of {{Ap}}p∈P are complete.

Proof. We prove (1) by induction on the trace w of a run.
The base case where w = ε is trivial. For the induction step, we consider wx with

the following run in {{Ap}}p∈P : (q⃗0, ξ0)
w−→∗ (q⃗, ξ)

x−→ (q⃗ ′, ξ′). The induction hypothesis
holds for w and (q⃗, ξ) and we prove the claims for (q⃗ ′, ξ′) and wx. We do a case analysis
on x. If x = ε, the claim trivially follows.

Let x = q◁p?m. From the induction hypothesis, we know that ξ((p, q)) = u where
V(w⇓p ▷q !_) = V(w⇓q◁ p?_) · u. Since x = q◁p?m is a possible transition, we know that
u = m · u′ for some u′ and ξ′((p, q)) = u′. Thus, we have

V((wx)⇓p ▷q !_) = V(w⇓p ▷q !_)

= V(w⇓q◁ p?_) · u
= V(w⇓q◁ p?_) ·m · u′

= V((wx)⇓q◁ p?_) · u′ .

20 Chapter 2. Protocol Specifications and the Implementability Problem

For all other pairs of participants, the induction hypothesis applies since the above
projections do not change:

V(w⇓r ▷s !_) = V((wx)⇓r ▷s !_) and V(w⇓s◁ r?_) = V((wx)⇓s◁ r?_)

for r, s ∈ P .
Let x = p▷q!m. From the induction hypothesis, we know that ξ((p, q)) = u where

V(w⇓p ▷q !_) = V(w⇓q◁ p?_) · u. Since x is a send event, we know that ξ′((p, q)) = u ·m.
By definition and induction hypothesis, we have: V((wx)⇓p ▷q !_) = V(w⇓p ▷q !_) · m =

V(w⇓q◁ p?_) · u ·m. As for the previous case, for all other combinations of participants,
the induction hypothesis applies since the above projections do not change. Together,
this proves (1).

For (2), we observe from the reasoning for (1) immediately that, for every prefix w′

of w, it holds that
V(w′⇓p ▷q !_) ≤ V(w′⇓q◁ p?_) .

For (3), it is straightforward that any maximal trace is FIFO-compliant from (2). For
a finite maximal word w, we know that all channels are empty and, thus, with (1), it
holds that V(w⇓p ▷q !_) = V(w⇓q◁ p?_) for every pair of participants p and q, making w

complete. An infinite maximal word w is trivially complete.

2.4 Indistinguishability Relation

Example 2.6 (Motivation for indistinguishability relation ∼). In Example 2.2, we
considered a trace for the CSM in Figure 2.1. Let us consider the trace where p only
sends a single element and q receives the message as soon as it is available:

p▷q!cons · q◁p?cons · p▷q!nil · q◁p?nil · q▷p!ack · p◁q?ack .

Every CSM that admits the previous trace also admits the following one:

p▷q!cons · p▷q!nil · q◁p?cons · q◁p?nil · q▷p!ack · p◁q?ack

where the 2nd and 3rd event were swapped. Both belong to different participants and
they can act independently, allowing p to send its second message before q receives the
first one. However, one could not swap the 5th and 6th event: they are corresponding
send and receive events. ◀

Intuitively, one can swap the events of different participants as long as they are not
corresponding send and receive events and the trace will still be admitted by the same
CSM. Similarly, two events can be swapped if they are not related by the happened-before
relation [82]. Two traces that are obtained by swapping such independent events can
be considered indistinguishable in terms of language membership for a CSM: either both
are in the language or both are not.

2.4. Indistinguishability Relation 21

Let us formalise this phenomenon.

Definition 2.7. The indistinguishability relation∼⊆ Γ∗×Γ∗ is the smallest equivalence
relation such that

(1) If p ̸= r, then w · p▷q!m · r▷s!m′ · u ∼ w · r▷s!m′ · p▷q!m · u.
(2) If q ̸= s, then w · q◁p?m · s◁r?m′ · u ∼ w · s◁r?m′ · q◁p?m · u.
(3) If p ̸= s∧(p ̸= r∨q ̸= s), thenw ·p▷q!m ·s◁r?m′ ·u ∼ w ·s◁r?m′ ·p▷q!m ·u.
(4) If |w⇓p ▷q !_| > |w⇓q◁ p?_|, then w ·p▷q!m ·q◁p?m′ ·u ∼ w ·q◁p?m′ ·p▷q!m ·u.

We define u ⪯∼ v if there is w ∈ Γ∗ such that u · w ∼ v. Observe that u ∼ v iff u ⪯∼ v

and v ⪯∼ u. To extend ∼ to infinite words, we follow the approach of Gastin [50]. For
infinite words u, v ∈ Γω, we define u ⪯ω

∼ v if for each finite prefix u′of u, there is a finite
prefix v′ of v such that u′ ⪯∼ v′. Define u ∼ v iff u ⪯ω

∼ v and v ⪯ω
∼ u.

We lift the equivalence relation ∼ on words to languages. For a language L, we define

C∼(L) =

{
w′
∣∣∣∣ ∨ w′ ∈ Γ∗ ∧ ∃w ∈ Γ∗. w ∈ L and w′ ∼ w

w′ ∈ Γω ∧ ∃w ∈ Γω. w ∈ L and w′ ⪯ω
∼ w

}
.

The definition is split into two cases. For a finite word w′, we require that there is a
wordw inL such that they are indistinguishable. For the infinite case, we use⪯ω

∼. Unlike
the closure operator by Gastin [50, Def. 2.1], ⪯ω

∼ is asymmetric. Let us briefly explain
why. Consider the protocol (p▷q!m . q◁p?m)ω. Since we do not make any fairness
assumption on scheduling, we need to include in the closure the execution where only
the sender is scheduled, i.e. (p▷q!m)ω ⪯ω

∼ (p▷q!m. q◁p?m)ω.

Example 2.8 (Indistinguishability relation ∼ by example). The four rules of ∼ present
conditions under which two adjacent events in a trace can be reordered. These
conditions are designed in a way that they characterise possible changes in a trace
that cannot be distinguished by any CSM. To be precise, if w is recognised by some
CSM {{Ap}}p∈P and w′ ∼ w holds, then w′ is also recognised by {{Ap}}p∈P . The order
of local state changes of participants differs though. In this example, we illustrate the
intuition behind these rules and assume that variables do not alias, i.e. two participants
or messages with different names are different.

Two send events (or two receive events) can be swapped if the active participants
are distinct because there cannot be any dependency between two such events which do
occur next to each other in an execution. For send events, the 1st rule, thus, admits
p▷r!m1 · q▷r!m2 ∼ q▷r!m2 · p▷r!m1 even though the receiver is the same. In
contrast, the corresponding receive events cannot be swapped: r◁p?m1 · r◁q?m2 ̸∼
r◁q?m2 · r◁p?m1. Note that the 1st rule is the only one with which two send events
can be swapped while the 2nd rule is the only one for receive events so indeed no rule
applies for the two receive events from before.

22 Chapter 2. Protocol Specifications and the Implementability Problem

The 3rd rule allows one send and one receive event to be swapped if either both
senders or both receivers are different – in addition to the requirement that both active
participants are different. For instance, it admits p▷r!m · q◁r?m ∼ q◁r?m · p▷r!m.
However, it does not admit to swap: p▷q!m · q◁p?m ̸∼ q◁p?m · p▷q!m. This is
reasonable since the send event could be the one which emits m in the corresponding
channel. In this trace, this is, in fact, the case because there are no earlier events, but
in general one needs to incorporate the context to understand whether this is the case.
The 4th rule does this and, hence, admits swapping the same events when appended to
some prefix: p▷q!m · p▷q!m · q◁p?m ̸∼ p▷q!m · q◁p?m · p▷q!m. With the prefix,
the FIFO order of channels ensures that the first message will be received first and the
second send event can happen after the reception of the first message. ◀

If two words of events are both FIFO-compliant, they are related by ∼ if and only if
the projected word for each participant is the same.

Lemma 2.9. Letw ∈ Γ∞ be FIFO-compliant. Then, w ∼ w′ iffw′ is FIFO-compliant and
w⇓Γp = w′⇓Γp for every participant p ∈ P .

Proof. We use the characterisation of ∼ using dependence graphs [50]. For a word
w and a letter a ∈ Γ that appears in w, let (a, i) denote the ith occurrence of a in
w. Define the dependence graph (V,E, λ), where V = {(a, i) | a ∈ Γ, i ≥ 1},
E = {((a, i), (b, j)) | a and b cannot be swapped and (a, i) occurs before (b, j) in w},
and λ(a, i) = a for all a ∈ Γ, i ≥ 1. A fundamental result of trace theory states that
w ∼ w′ iff they have isomorphic dependence graphs. We observe that for two FIFO-
compliant words, the ordering of the letters on each Γp for p ∈ P ensures isomorphic
dependence graphs, since the ordering of receives is thus fixed.

We motivated the term indistinguishability with the fact that CSMs cannot
distinguish two words that are related by ∼ in terms of language membership. Now,
we prove this claim and show their languages are closed under∼. In fact, we strengthen
this point and show that a CSM will reach the same configuration after processing two
∼-related traces.

Lemma 2.10. Let {{Ap}}p∈P be a CSM. Then, for every finite w with a run in {{Ap}}p∈P
and every w′ ∼ w, w′ has a run that ends with the same configuration. The language
L({{Ap}}p∈P) is closed under ∼, i.e. L({{Ap}}p∈P) = C∼(L({{Ap}}p∈P)).

2.4. Indistinguishability Relation 23

Proof. Let w be a finite word with a run in {{Ap}}p∈P and w′ ∼ w. For simplicity, we
index ∼ to indicate the number of times events were swapped. Then, ∼ can be applied
n times to w to obtain w′ for some n. We prove that w′ has a run that ends in the
same configuration by induction on n. The base case for n = 0 is trivial. For the
induction step, we assume that the claim holds for n and prove it for n+1. Suppose that
w ∼n+1 w′. Then, there is w′′ such that w′ ∼1 w′′ and w′′ ∼n w. By assumption, we
know that w′ = u′xyu′′ and w′′ = u′yxu′′ for some u′, u′′ ∈ Γ∗, x, y ∈ Γ. By induction
hypothesis, we know that w′′ ∈ L({{Ap}}p∈P) so there is run for w′′ in {{Ap}}p∈P . Let us
investigate the run at x and y: · · · (q⃗1, ξ1)

x−→ (q⃗2, ξ2)
y−→ (q⃗3, ξ3) · · · . It suffices to show

that · · · (q⃗1, ξ1)
y−→ (q⃗ ′

2, ξ
′
2)

x−→ (q⃗3, ξ3) · · · is possible in {{Ap}}p∈P for some configuration
(q⃗ ′

2, ξ
′
2). We do a case analysis on the rule that was applied for w′ ∼1 w

′′:

(1) x = p▷q!m, y = r▷s!m′, and p ̸= r:
We define q⃗ ′

2 such that q⃗ ′
2,p = q⃗1,p, q⃗ ′

2,r = q⃗3,r, and q⃗ ′
2,t = q⃗3,t for all t ∈ P

with t ̸= p and t ̸= r. Both transitions are feasible in {{Ap}}p∈P because both
p and r are different and send a message to different channels. They can do this
independently from each other.

(2) x = q◁p?m, y = s◁r?m′, and q ̸= s:
We define q⃗ ′

2 such that q⃗ ′
2,q = q⃗1,q, q⃗ ′

2,s = q⃗3,s, and q⃗ ′
2,t = q⃗3,t for all t ∈ P with

t ̸= p and t ̸= r. Both transitions are feasible in {{Ap}}p∈P because both q and
s are different and receive a message from a different channel. They can do this
independently from each other.

(3) x = p▷q!m, y = s◁r?m′, and and p ̸= s ∧ (p ̸= r ∨ q ̸= s).
We define q⃗ ′

2 such that q⃗ ′
2,p = q⃗1,p, q⃗ ′

2,s = q⃗3,s, and q⃗ ′
2,t = q⃗3,t for all t ∈ P with

t ̸= p and t ̸= r. Let us do a case split according to the side conditions.
First, let p ̸= s and p ̸= r. The channels of x and y are different and p and s are
different, so both transitions are feasible in {{Ap}}p∈P .
Second, let p ̸= s and q ̸= s. The channels of x and y are different and q and s are
different, so both transitions are feasible in {{Ap}}p∈P .

(4) x = p▷q!m, y = q◁p?m′, and |u′⇓p ▷q !_| > |u′⇓q◁ p?_|:
We define q⃗ ′

2 such that q⃗ ′
2,p = q⃗1,p, q⃗ ′

2,q = q⃗3,q, and q⃗ ′
2,t = q⃗3,t for all t ̸= p and

t ̸= q. In this case, the channel of x and y is the same but the side condition ensures
that y actually has a different message to receive since the channel ξ1((p, q)) is not
empty by Lemma 2.5 and, hence, both transitions can act independently and lead
to the same configuration.

This proves that w′ has a run in {{Ap}}p∈P that ends in the same configuration which
concludes the proof of the first claim.

For the second claim, we know that L({{Ap}}p∈P) ⊆ C∼(L({{Ap}}p∈P)) by definition.
Hence, it suffices to show that C∼(L({{Ap}}p∈P)) ⊆ L({{Ap}}p∈P).

24 Chapter 2. Protocol Specifications and the Implementability Problem

We show the claim for finite traces first:

C∼(L({{Ap}}p∈P)) ∩ Γ∗ ⊆ L({{Ap}}p∈P) ∩ Γ∗.

Let w′ ∈ C∼(L({{Ap}}p∈P)) ∩ Γ∗. There is w ∈ L({{Ap}}p∈P) ∩ Γ∗ such that w ∼ w′.
By definition, w has a run in {{Ap}}p∈P which ends in a final configuration. From the
first claim, we know that w′ also has a run that ends in the same configuration, which is
final. Therefore, w ∈ L({{Ap}}p∈P) ∩ Γ∗. Hence, the claim holds for finite traces.

It remains to show the claim for infinite traces. To this end, we first establish
the following fact (∗): for every trace w of {{Ap}}p∈P such that w ∼ u for u ∈
pref(L({{Ap}}p∈P)) and any continuation x of w, i.e. wx is a trace of {{Ap}}p∈P , it holds
that wx ∼ ux and ux ∈ pref(L({{Ap}}p∈P)) (∗). We know w ∼ u, so wx ∼ ux because
the same swaps can be mimicked when extending both w and u by x. From the first
claim, we know that {{Ap}}p∈P is in the same configuration (q, ξ) after processing w

and u. Therefore, ux is a trace of {{Ap}}p∈P because wx is, proving (∗).
We now show that

C∼(L({{Ap}}p∈P) ∩ Γω ⊆ L({{Ap}}p∈P) ∩ Γω.

Let w ∈ C∼(L({{Ap}}p∈P) ∩ Γω. We show that w has an infinite run in {{Ap}}p∈P .
Consider a tree T where each node corresponds to a run ρ on some finite prefix

w′ ≤ w in {{Ap}}p∈P . The root is labelled by the empty run. The children of a node ρ are
runs that extend ρ by a single transition – these exist by (∗). Since our CSM is built from
a finite number of finite state machines, T is finitely branching. By König’s Lemma [80,
79], there is an infinite path in T that corresponds to an infinite run for w in {{Ap}}p∈P ,
so w ∈ L({{Ap}}p∈P) ∩ Γω.

2.5 High-level Message Sequence Charts

In this section, we define the syntax and semantics of HMSCs, following work by Genest
et al. [52]. We also show that HMSCs are closed under ∼.

To start with, let us define message sequence charts as building blocks for HMSCs.

Definition 2.11 ((Prefix) Message Sequence Charts). A prefix message sequence chart is
a 5-tupleM = (N, p, f , l, (≤p)p∈P) where

• N is a set of send (S) and receive (R) event nodes such that N = S ⊎R

(where ⊎ denotes disjoint union),
• p : N → P maps each event node to the participant acting on it,
• f : S ⇀ R is a partial function that is injective and surjective,
linking send and receive event nodes,

• l : N → Γ labels every event node with an event, and

2.5. High-level Message Sequence Charts 25

p▷q!m
q◁p?m

p q

Figure 2.2: Highlighting the elements of an MSC (N, p, f, l, (≤p)p∈P).

• (≤p)p∈P is a family of total orders for the event nodes of each participant:
≤p ⊆ p−1(p)× p−1(p).

We visually highlight the elements of an MSC in Figure 2.2. For readability, we will
omit the event labels but label the arrow with the respective message instead.
A prefix MSCM induces a partial order ≤M on N that is defined co-inductively:

e ≤p e′

e ≤M e′
part s ∈ S

s ≤M f(s)
snd-rcv

e ≤M e
refl e ≤M e′ e′ ≤M e′′

e ≤M e′′
trans

The labelling function l respects the functions p and f : for every send event node e,
we have that l(e) = p(e)▷p(f(e))!m and l(f(e)) = p(f(e))◁p(e)?m for some m ∈ V if
f(e) is defined and l(e) = p(e)▷q!m for some m ∈ V and q ∈ P \ {p(e)} if not.

We say an MSC respects FIFO order if, for every two participants p and q, for all
e1, e2 ∈ p(p) with f(e1) ∈ p(q), f(e2) ∈ p(q) and e1 ≤p e2, one of the following holds:
f(e1) ≤q f(e2) or if f(e1) is undefined then f(e2) is undefined. In this thesis, we do only
consider MSCs that respect FIFO order. If f is total, we omit the term prefix and call M
a message sequence chart (MSC). A basic MSC (BMSC) has a finite number of nodes N
andM denotes the set of all BMSCs. When unambiguous, we omit the indexM for≤M

and write ≤. We define ⪇ as expected. The language L(M) of an MSC M collects all
words l(w) for which w is a linearisation of N with regard to ≤M .

Remark 2.12. Let us explain how our conditions for MSCs ensure FIFO order. Since
f is a surjective function, there is no receive event node for which f−1 is undefined.
This ensures that every receive event node is matched. This is important, because, in
a prefix MSC, there can be send event nodes for which no corresponding receive event
node exists but not vice versa. The condition for each channel has two parts. The first
part ensures that messages do not cross while the second one ensures that the receive
event nodes are matched against the earliest send event nodes.

In the definition of MSCs, event nodes are labelled. For conciseness, we will label the
arrow representing f in visualisations with themessage because sender and receiver will
always be clear from context.

For every FIFO-compliant word w, one can construct a unique prefix MSC M such
that w is a linearisation ofM .

Lemma 2.13 (msc(-) ([52], Sec. 3.1)). Let w ∈ Γ∞ be a FIFO-compliant word. Then,
there is unique prefix MSC, denoted bymsc(w), such thatw is a linearisation ofmsc(w).
In case the above conditions are not satisfied, msc(w) is undefined.

26 Chapter 2. Protocol Specifications and the Implementability Problem

p q r

m1

m2

m3

m4

m5

Figure 2.3: Constructing a prefix MSC from a FIFO-compliant word.

The operator msc(-) allows us to easily represent a trace of a run as MSC.

Example 2.14. Let us consider the FIFO-compliant word

w := q▷p!m1 ·q▷r!m2 ·q▷r!m3 ·q▷r!m4 ·r◁q?m2 ·r◁q?m3 ·r▷p!m5 ·p◁r?m5 ·p◁q?m1 .

In Fig. 2.3, we illustrate msc(w). We use horizontal arrows for messages if possible,
in contrast to Fig. 2.2. This is standard and beneficial for readability and conciseness.
Still, we consider asynchronous communication: In w, message m3 is sent before m2

in the same channel has been received. In the MSC, this dependency is not present so
it admits a linearisation where m2 is received first. One can see that all receive event
nodes have a corresponding send event node. However, the send event node for m4 has
no receive event node. Still, our conditions ensure that the messages m2 and m3 are
matched first, leaving the last messagem4 unmatched. In w, the messagem1 is sent first
and received last. This shows that we consider a point-to-point setting where FIFO order
is only enforced between pairs of participants. Note, though, that there is no dependency
between sending m4 and receiving m1 so these events could be reordered in w. We will
show that these missing dependencies precisely characterise the reorderings that are
possible with ∼. ◀

One can also concatenate prefix MSCs M1 and M2. We restrict to the case where
M1 is a basic MSC andM2 is an MSC so we do not consider unmatched send events and
the number of event nodes is finite for M1. One can define more general concatenation
operators, with additional conditions but this suffices for our purposes. Let us define
concatenation formally prior to giving an example.

Definition 2.15 (MSC Concatenation). Let Mi = (Ni, pi, fi, li, (≤i
p)p∈P) for i ∈ {1, 2}

such thatM1 is a BMSC andM2 is anMSCwith disjoint sets of event nodes: N1∩N2 = ∅.
We define their concatenation M1 ·M2 as the MSC M = (N, p, f, l, (≤p)p∈P) where

• N := N1 ∪ N2,

• for ζ ∈ {p, f, l} : ζ(e) :=

{
ζ(e) if e ∈ N1

ζ(e) if e ∈ N2

, and

• for each p ∈ P :

≤p := ≤1
p ∪ ≤2

p ∪ {(e1, e2) | e1 ∈ N1 ∧ e2 ∈ N2 ∧ p(e1) = p(e2) = p} .

2.5. High-level Message Sequence Charts 27

p q r

m1

(a) M1

p q r

m2

(b)M2

p q r

m1

m2

(c) M1 ·M2

(Variant A)

p q r

m2m1

(d)M1 ·M2

(Variant B)

Figure 2.4: Concatenating MSCs.

Example 2.16. Let us consider the BMSCs M1 and M2 in Fig. 2.4a and Fig. 2.4b. We
give two visual representations of their concatenation: Variant A in Fig. 2.4c and Variant
B in Fig. 2.4d. Both represent isomorphic MSCs. Still, Variant A is closer to what one
expects. In both, the sequence of events for q exemplifies that events for each participant
are ordered sequentially. However, this applies to individual participants only. The send
event of r from M2 does not depend on any other event in M1 · M2. This is why it is
possible to move it to the top, as depicted in Variant B. ◀

If one thinks of a BMSC as straight-line code, a high-level message sequence chart
adds control flow. It embeds BMSCs into a graph structure, which permits to specify
branching and recursion.

Definition 2.17 (High-level Message Sequence Charts). A high-level message sequence
chart (HMSC) is a 5-tuple (V,E, vI, V T, µ)where V is a finite set of vertices, E ⊆ V ×V

is a set of directed edges, vI ∈ V is an initial vertex, V T ⊆ V is a set of final vertices,
and µ : V → M is a function mapping every vertex to a BMSC. A path in an HMSC is
a sequence of vertices v1, . . . from V that is connected by edges, i.e. (vi, vi+1) ∈ E for
every i. A path is maximal if it is infinite or ends in a vertex from V T.

Example 2.18. In Example 2.2, we considered a CSM where p sends a list of elements
to q. The same protocol can be specified as HMSC and is illustrated in Figure 2.5. The
protocol starts at the initial vertex at the top. There, p decides the branch by sending
cons or nil to q. In the former case, the protocol recurses. In the latter case, q replies
with ack and the protocol terminates. ◀

Intuitively, the language of an HMSC is the union of all languages of the finite and
infinite MSCs generated from maximal paths in the HMSC.

p q
cons

p q
nil

ack

Figure 2.5: Sending a list, specified as HMSC.

28 Chapter 2. Protocol Specifications and the Implementability Problem

Definition 2.19 (Language of an HMSC). Let H = (V,E, vI, V T, µ) be an HMSC. The
language of H is defined as

L(H) := {w | w ∈ L(µ(v1) · µ(v2) · . . . · µ(vn)) with
v1 = vI ∧ ∀ 0 < i < n : (vi, vi+1) ∈ E ∧ vn ∈ V T }

∪ {w | w ∈ L(µ(v1)µ(v2) . . .) with v1 = vI ∧ ∀ i > 0 : (vi, vi+1) ∈ E} .

We say that an MSC from a maximal path in H is an MSC of H .
It is easy to check that HMSCs specify FIFO-compliant complete words.

Proposition 2.20. The language L(H), respectively L(M), for any HMSC H ,
respectively MSCM , is a set of FIFO-compliant complete words.

Furthermore, ∼ captures exactly the events that are independent in any HMSC.
Phrased differently, HMSC include these reorderings by design.
Lemma 2.21. Let H be any HMSC. Then, L(H) = C∼(L(H)).
Proof. We prove the claim by two inclusions. The first inclusion L(H) ⊆ C∼(L(H))

trivially holds. We show that C∼(L(H)) ⊆ L(H).
As for the proof of Lemma 2.10, we index the indistinguishability relation ∼ to

indicate the number of reorderings. We show that word membership is preserved for
one reordering.

Claim I: Let M be some MSC of H . Let w be a sequence of events such that there is
w′ ∈ L(M) with w ∼1 w

′. Then, w ∈ L(M).
Proof of Claim I. We do a case analysis on the rule of ∼ which has been applied to

obtain w ∼1 w
′. In all cases, it is crucial to observe that two consecutive events are

swapped and hence transitive dependencies in ≤M cannot kick in and the events either
have to be ordered by the total participant orders or constitute send-reception pairs.

(1) Here, two send events for different participants are swapped. These two events
cannot be ordered by ≤M (without some intermediate receive event which is not
present) and therefore w ∈ L(M).

(2) In this case, two receive events for different participants are swapped. Again,
they cannot be ordered by ≤M without some intermediate send event and the
claim follows.

(3) This case deals with swapping a send event p▷q!m and a receive event s◁r?m′.
The first condition p ̸= s ensures that both events do not belong to the same
participant. However, this does not suffice. We do a case analysis according to the
disjunction of the conditions.
First, p ̸= r entails that the sender of the send event is neither the sender nor
the receiver of the receive event. Then, both events cannot be related by the
participant order but they do also not constitute a send-reception pair (ordered
through the function f that matches send with receive events) and hence the
claim follows.

2.6. Global Types from Multiparty Session Types 29

Second, q ̸= s entails that the receiver of the send event and the receiver of the
receive event are not the same. This ensures that we do not swap a receive event
in front of its corresponding send event. Again, they cannot be ordered by ≤M .

(4) This case also deals with swapping a send event p▷q!m and a receive event
q◁p?m′. Note thatmmight be the same asm′ here and the side condition is needed
to ensure that both do not constitute a pair of send and receive event so that they
were ordered through the function f that matches send with receive events.

End Proof of Claim I.

We first consider the case of finite words. Let u ∈ C∼(L(H)) ∩ Γ∗. We show that
u ∈ L(H). By definition, there is an MSC M of H such that u ∈ C∼(L(M)) ∩ Γ∗.
Therefore, there is u′ ∈ L(M) such that u′ ∼n u for some n. By applying Claim I
n-times, the claim follows.

Second, let u ∈ C∼(L(H)) ∩ Γω. By definition, there is an MSC M of H such that
u ∈ C∼(L(M))∩ Γω. Therefore, there is v ∈ L(M) such that u ⪯ω

∼ v which means that
for every prefix u′ of u, there is some prefix v′ of v such that u′ ⪯ v′, i.e. there is some w
such that u′w ∼ v′. From the case for finite sequences, it follows that u′ ∈ pref(L(M))

for every finite prefix u′ of u. Note that there is a single (infinite) MSC M for which this
applies. Therefore, the path of every prefix u′ in H is the same and can be extended for
longer prefixes. Since every prefix u′ of u is in pref(L(M)), the infinite sequence u is in
L(M) and hence in L(H).

2.6 Global Types from Multiparty Session Types

In this section, we define the syntax and semantics of global types for our Multiparty
Session Type (MST) framework.

We give the syntax of global types following work by Honda et al. [67], Hu and
Yoshida [70], as well as Scalas and Yoshida [109]. We focus on the core message-
passing aspects of asynchronous MSTs and do not include features such as delegation
or subsessions.

Definition 2.22 (Syntax of global types). Global types for MSTs are defined by the
grammar:

G ::= 0 |
∑
i∈I

pi→qi :mi . Gi | µt .G | t

The term 0 explicitly represents termination. A term pi→qi :mi indicates an interaction
where the sender pi sends message mi to the receiver qi. We assume both the sender
and receiver of an interaction are different. The sum operator denotes choice between
a set of branches, given by a finite index set I . We assume |I| > 0 and, if |I| = 1, we
omit the sum operator. The operators µt and t allow to encode loops. We require them
to be guarded, i.e. there must be at least one interaction between the binding µt and the

30 Chapter 2. Protocol Specifications and the Implementability Problem

use of the recursion variable t. Without loss of generality, all occurrences of recursion
variables t are bound and distinct. For the size of a global type, we disregard multiple
occurrences of the same subterm. We introduce restrictions on choice, i.e. who decides
which branch to take. It is common to require a dedicated sender to choose a branch:
∀i, j ∈ I. pi = pj for every syntactic subterm

∑
i∈I pi→qi :mi . Gi. Then, sender-driven

choice allows a sender to send to different receivers upon branching1 while directed choice
[68] also requires the receiver to be the same: ∀i, j ∈ I. qi = qj (and ∀i, j ∈ I. pi = pj).
If there is no dedicated sender but all transitions are still distinct, we say the global type
satisfies mixed-choice: for every syntactic subterm

∑
i∈I pi→qi :mi . Gi, it holds that

∀i, j ∈ I. i ̸= j =⇒ pi ̸= pj ∨ qi ̸= qj ∨ mi ̸= mj . Without restrictions, we call them
non-deterministic global types. Subsequently, global types always satisfy sender-driven
choice, unless explicitly mentioned.

Example 2.23 (Global type). Let us specify our list-sending example as global type:

GLiSe := µt . +

{
p→q :cons . t

p→q :nil . q→p :ack . 0
.

It first binds a recursion operator t, which is used in the top branch. The bottom branch
does not use t but allows to terminate the protocol. ◀

A global type always jointly specifies send and receive events. In a CSM
execution, there may be independent events that can occur between a send and its
respective receive event. Hence, we define the semantics of global types using the
indistinguishability relation ∼.

Definition 2.24 (Semantics of global types). We construct a state machine GAut(G)

to obtain the semantics of a global type G. We index every syntactic subterm of G
with a unique index to distinguish common syntactic subterms, denoted with [G′, k] for
syntactic subtermG′ and index k. Without loss of generality, the index forG is 1: [G, 1].
For readability, we do not quantify indices. We define

GAut(G) = (QGAut(G),Σ, δGAut(G), q0,GAut(G), FGAut(G)) where

• QGAut(G) is the set of all indexed syntactic subterms [G′, k] of G
• δGAut(G) is the smallest set containing
([
∑

i∈I pi→qi :mi . [Gi, ki], k], pi→qi :mi, [Gi, ki]) for each i ∈ I ,
and ([µt . [G′, k′

2], k
′
1], ε, [G

′, k′
2]) and ([t, k′

3], ε, [µt . [G
′, k′

2], k
′
1]),

• q0,GAut(G) = [G, 1], and FGAut(G) = {[0, k] | k is an index for subterm 0}.
1Hu and Yoshida introduce a similar choice restriction, which they call located choice. However, they

require that “[t]his decision [...] must be appropriately coordinated by explicit messages” [71, p. 4], which
we do not require in our developments.

2.6. Global Types from Multiparty Session Types 31

q0

q1

q2 q3

q4

ε

p→q :cons p→q :nil

q→p :ack

Figure 2.6: List-sending Protocol: FSM for the semantics of GLiSe; styles
of states indicate their kind, e.g. recursion states (dashed lines) while final

states have double lines.

Each interaction is implicitly split into its send and receive event from Γ. In addition,
we consider CSMs as implementation model for global types and, from Lemma 2.10, we
know that CSM languages are always closed under the indistinguishability relation ∼.
Thus, we also apply its closure to obtain the semantics of G:

L(G) := C∼(L(GAut(G))) .

The closure C∼(-) corresponds to similar reordering rules in standard MST
developments, e.g. [68, Def. 3.2 and 5.3]. It is straightforward that any word in
L(GAut(G)) for someG is FIFO-compliant and complete. The application of C∼(-) does
not change this.

Proposition 2.25. For any global type G, every word in L(G) is FIFO-compliant and
complete.

No global type different from 0 can specify ε as part of its semantics. By assumption
on guarded recursion, any other global type contains a topmost subterm of shape∑

i∈I pi→qi :mi . Gi, which adds two letters to any word in its semantics.

Proposition 2.26. For any non-deterministic global type G, if ε ∈ L(G) then G = 0.

Example 2.27. Recall the global typeGLiSe (Example 2.23) where p sends a list to q. The
FSM for its semantics is visualised in Fig. 2.6. The different styles of its states represent
the different kind of subterms they correspond to: binder states with their dashed line
correspond to recursion variable binders, while recursion states with their dash-dotted
lines indicate the use of a recursion variable. We omit ε for transitions from recursion
to binder states. ◀

32 Chapter 2. Protocol Specifications and the Implementability Problem

The syntax of global types yield interesting structural properties for the FSMs of
their semantics. Intuitively, every such FSM has a tree-like structure where backward
transitions only happen at leaves of the tree, are always labelled with ε, and only lead
to ancestors.

Definition 2.28 (Ancestor-recursive, intermediate recursion, non-merging, dense, and
cone). Let A = (Q,∆, δ, q0, F) be a finite state machine. We say that A is ancestor-
recursive if there is a function lvl : Q → N such that, for every transition q

x−→ q′ ∈ δ,
one of the following two properties holds:

(a) lvl(q) > lvl(q′), or
(b) x = ε and there is a run from the initial state q0 (without going through q) to q′

which can be completed to reach q: q0 → . . . → qn is a run with qn = q′ and q ̸= qi
for every 0 ≤ i ≤ n, and the run can be extended to q0 → . . . → qn → . . . → qn+m

with qn+m = q. Then, the state q′ is called ancestor of q.

We call the first kind (a) of transition forward transition while the second kind (b) is a
backward transition. We say A is free from intermediate recursion if every state q with
more than one outgoing transition, i.e. |{q′ | q → q′ ∈ δ}| > 1, has only forward
transitions. We say that A is non-merging if every state only has one incoming edge
with greater level, i.e. ∀q′. {q | q → q′ ∈ δ ∧ lvl(q) > lvl(q′)} ≤ 1. The state machine
A is dense if, for every q

x−→ q′ ∈ δ, the transition label x is ε implies that q has only one
outgoing transition. Last, the cone of q are all states q′ which are reachable from q and
have a smaller level than q, i.e. lvl(q) > lvl(q′).

The FSM in Fig. 2.6 illustrates this shape where the root of the tree is at the top.

Proposition 2.29 (Shape of GAut(G)). Let G be some global type. Then, GAut(G)

is ancestor-recursive, free from intermediate recursion, non-merging, dense, and sink-
final. For each word w, there are at most three runs ρ, ρ1, and ρ2 in GAut(G); moreover,
when they exist, the runs can be chosen such that ρ1 := ρ

ε−→ q and ρ2 := ρ1
ε−→ q′ for

some states q and q′.

2.7 The Implementability Problem

Equipped with formal definitions of our implementation model and protocol specifica-
tion mechanisms, we define the implementability problem.

Definition 2.30 (Implementability Problem). A language L ⊆ Γω is said to be
implementable if there exists a CSM {{Ap}}p∈P such that

• deadlock freedom: {{Ap}}p∈P is deadlock-free, and
• protocol fidelity: L is the language of {{Ap}}p∈P .

2.7. The Implementability Problem 33

We say that {{Ap}}p∈P implements L. If L is given as global type G (or HMSC H), we
also say that G (or H) is implemented.

Example 2.31. The CSM in Figure 2.1 implements the HMSC in Figure 2.5 and the global
type from Example 2.23. ◀

For HMSCs, the implementability question was studied as safe realisability [6]. If the
CSM is not required to be deadlock-free, it is called weak realisability. Here, we focus
on deadlock-free implementations. Our notion of deadlock is the natural one for CSMs:
non-final configurations for which there is no further transition. In session types, the
notion of deadlock often slightly differs.

Definition 2.32 (Soft deadlocks). Let {{Ap}}p∈P be a CSM. A configuration (q⃗, ξ) is a
soft deadlock if there is no (q⃗′ , ξ′) with (q⃗, ξ) → (q⃗′ , ξ′) and (q⃗, ξ) is no final sink-
state configuration. We say {{Ap}}p∈P is free from soft deadlocks if every reachable
configuration is no soft deadlock.

Intuitively, a configuration can only be considered actually final if no state machine
has an outgoing transition. It is straightforward that every deadlock is a soft deadlock.
Let us define the soft implementability problem.

Definition 2.33 (Soft Implementability Problem). A languageL ⊆ Γω is said to be softly
implementable if there exists a CSM {{Ap}}p∈P such that

• soft deadlock freedom: {{Ap}}p∈P is free from soft deadlocks, and
• protocol fidelity: L is the language of {{Ap}}p∈P .

We say that {{Ap}}p∈P softly implements L.

Different applications call for different notions of deadlock freedom. In distributed
computing, it is fine if a server keeps listening to incoming requests while, in embedded
computing, however, it can be essential that all participants eventually stop. We believe
this is a design choice and provide solutions to both problems. In Chapter 5, we
will develop a sound and complete algorithm to solve the implementability problem
for global types. We will explain that a simple postprocessing step makes the
presented approach also sound and complete for the soft implementability problem
(cf. Section 5.5.2). Further properties of protocol implementations have been considered
in the literature. We refer to Section 5.8 for details on which of these are guaranteed by
our complete MST projection operator.

35

Chapter 3

Generalising Projection for
Multiparty Session Types

Given a global type, a partial projection operator attempts to generate local specifications
for participants, called local types. If they are defined, they are safe to use and provide a
solution for the implementability problem of the given global type. In this chapter, we
first define and visually explain the classical projection approach forMSTs. We exemplify
the features different merge operator, which is used during projection, support. In
particular, we showcase the lack of support for sender-driven choice. We present a
generalised (classical) projection operator that supports sender-driven choice thanks to
a novel message availability analysis. Notably, proving correctness requires new proof
ideas. Lastly, we explain how classical projection approaches are brittle and easily reject
implementable protocols, guiding us to the next chapter where we show decidability of
the MST implementability problem using MSC techniques.

3.1 Classical Multiparty Session Type Projection

In this section, we present the first automata-based explanation of the classical projection
approach for MSTs, considering different merge operators.

3.1.1 Introductory Example

Let us explain the idea behind the classical projection with an example first.
Consider a variant of the well-known two buyer protocol from the MST literature,
e.g. [109, Fig. 4(2)], which can be specified as global type:

G2BP := µt . +

{
a→s :query . s→a :price . +

{
a→b :split . (b→a :yes . a→s :buy . t+ b→a :no . a→s :no . t)

a→b :cancel . a→s :no . t

a→s :done . a→b :done . 0

.

36 Chapter 3. Generalising Projection for Multiparty Session Types

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

ε

a→s :q

s→a :p

a→b :c

a→s :n

a→b :s

b→a :y

a→s :b

b→a :n

a→s :n

a→s :d

a→b :d

(a) State machine for semantics
of G2BP.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q′11

ε

s◁a?q

s▷a!p

ε

s◁a?n

ε

ε

s◁a?b

ε

s◁a?n

s◁a?d

(b) Projection of G2BP onto s
without merge.

q0

q1

q2

q′

q6

q8|10

q′11

ε

s◁a?q

s▷a!p

s◁a?n

s◁a?b

s◁a?d

(c) FSM for local type of s
for G2BP.

Figure 3.1: Two Buyer Protocol.

Two buyers a and b purchase a sequence of items from seller s. We informally
describe the protocol and emphasise the interactions. At the start and after every
purchase (attempt), buyer a can decide whether to buy the next item or whether they
are done. For each item, buyer a queries its price and the seller s replies with the price.
Subsequently, buyer a decides whether to cancel the purchase process for the current
item or proposes to split to buyer b that can accept or reject. In both cases, buyer a
notifies the seller s if they want to buy the item or not.

ClassicalMST frameworks employ a partial projection operator with an in-builtmerge
operator to solve the implementability problem. For each participant, the projection
operator takes the global type and removes all interactions the participant is not involved
in. Fig. 3.1a illustrates the semantics of G2BP while Fig. 3.1b gives the projection onto
seller s before the merge operator is applied – in both, messages are abbreviated with
their first letter. It is easy to see that this procedure introduces non-determinism, e.g. in
q3 and q4, which shall be resolved by the merge operator. Most merge operators can
resolve the non-determinism in Fig. 3.1b. A merge operator checks whether it is safe to
merge the states and it might fail so it is a partial operation. For instance, every kind of
state, indicated by a state’s style in Fig. 3.1b, can only be merged with states of the same
kind or states of circular shape. For a participant, the result of the projection, if defined,
is a local type. They act as local specifications and their syntax is similar to the one of
global types.

3.1.2 Local Types

Here, local types can be considered as syntactic intermediate representation for local
specifications. Intuitively, every collection of local types constitutes a CSM through
their semantics, justifying our treatment.

3.1. Classical Multiparty Session Type Projection 37

Definition 3.1 (Syntax of local types). For a participant p, the local types are defined as
follows:

L ::= 0 | ⊕
i∈I

qi !mi . Li | &
i∈I

qi?mi . Li | µt . L | t

We call ⊕i∈I qi !mi an internal choice and &i∈I qi?mi an external choice. For both, we
require the choice to be unique, i.e. ∀i, j ∈ I. i ̸= j ⇒ qi ̸= qj ∨ mi ̸= mj . Similarly to
global types, we assume |I| > 0, omit ⊕ or & if there is no actual choice, and require
recursion to be guarded as well as recursion variables to be bound and distinct.

For the semantics of local types, we analogously construct a state machine LAut(-).
In contrast to global types, we omit the closure C∼(-) because events of participants are
not reordered by ∼.

Example 3.2 (Local type). Classical projection yields the following local type when
G2BP is projected onto s:

G2BP := µt . &

s◁a?query . s▷a!price . &

{
s◁a?buy . t

s◁a?no . t

s◁a?done .

.

◀

Definition 3.3 (Semantics for local types). Given a local type L for participant p, we
index syntactic subterms as for the semantics of global types. We construct a state
machine LAut(L) = (Q,Γp, δ, q0, F) where

• Q is the set of all indexed syntactic subterms in L,
• δ is the smallest set containing
([⊕i∈I qi !mi . [Li, ki], k], p▷qi !mi, [Li, ki]) and
([&i∈I qi?mi . [Li, ki], k], p◁qi?mi, [Li, ki]) for each i ∈ I , as well as
([µt . [L′, k′

2], k
′
1], ε, [L

′, k′
2]) and ([t, k′

3], ε, [µt . [L
′, k′

2], k
′
1]),

• q0 = [L, 1] and F = {[0, k] | k is an index for subterm 0}.

We define the semantics of L as language of this automaton: L(L) = L(LAut(L)).

Example 3.4. The FSM for the semantics of the local type in Example 3.2 is visualised
in Fig. 3.1c. Compared to global types, we distinguish two more kinds of states for local
types: a send state (internal choice) has a diamond shape while a receive state (external
choice) has a rectangular shape. For states with ε as next action, we keep the circular
shape and call them neutral states. ◀

It is easy to see that FSMs for local types have similar structural properties like the
ones for global types.

Proposition 3.5 (Shape of LAut(L)). Let L be some local type. Then, LAut(L) is
ancestor-recursive, free from intermediate recursion, non-merging, dense, and sink-
final. In addition, there are no mixed-choice states, i.e. there is no state with both
outgoing send and receive transitions.

38 Chapter 3. Generalising Projection for Multiparty Session Types

For both global and local types, the only forward ε-transitions occur precisely from
binder states, associated with µt, while backward transitions happen from recursion
states, associated with t, to binder states. The illustrations for our examples always have
the initial state, which is the state with the greatest level, at the top. This is why we use
greater and higher as well as smaller and lower interchangeably for levels.

In Section 8.2.2, we present a workflow to transform FSMs in a way that they satisfy
the restrictions above. This shows that local types and FSMs over Γp are equi-expressive
if every final state has no outgoing transitions and they do not have mixed-choice states,
i.e. there is no state with both send and receive transition.

3.1.3 Classical Projection Operator with Parametric Merge

The classical projection operator checks on-the-fly if the resulting local types would be
safe to use. Behind the scenes, these checks are conducted by a partial merge operator.
We consider different variants of merge operators from the literature and exemplify the
features they support. We provide visual explanations of the classical projection operator
with these merge operators on the state machines of global types.

Definition 3.6 (Projection operator). For a merge operator ⊓, the projection of a global
type G onto a participant r ∈ P is a local type that is defined as follows:1

• 0↾⊓r := 0

• t↾⊓r := t

• (µt .G)↾⊓r :=

{
µt . (G↾⊓r) if G↾⊓r ̸= t

0 otherwise

•
(∑

i∈I p→qi :mi . Gi

)
↾⊓r :=


⊕i∈I qi !mi . (Gi↾

⊓
r) if r = p

&i∈I p?mi . (Gi↾
⊓
r) if r = q

⊓i∈I Gi↾
⊓
r otherwise

Both rules for 0 and t act as base case and simply yield their input. The rule for
recursion variable binders simply keeps the binder and recurses. For choice, the situation
is slightly more involved. One checks if the participant to project onto is either the
sender or receiver and keeps its part in this case. If not, the participant is not involved
in the choice and the subsequent branches ought to be merged. Merging ensures that a
participant either does not have different for these different branches or learns about the
branch prior to committing to one of the branches by a distinct action. Several merge
operators have been proposed in the literature.

Definition 3.7 (Merge operators). Let L1 and L2 be local types for a participant r, and
⊓ be a merge operator. We define different cases for the result of L1 ⊓ L2:

1The case split for the recursion binder changes slightly across different definitions. We choose a simple
but also the least restrictive condition. We simply check whether the recursion is vacuous, i.e. µt . t, and
omit it in this case. We also require to omit µt if t is never used in the result.

3.1. Classical Multiparty Session Type Projection 39

(1) L1 if L1 = L2

(2)

 &i∈I\J q?mi .L
′
1,i &

&i∈I∩J q?mi . (L
′
1,i ⊓ L′

2,i) &

&i∈J\I q?mi .L
′
2,i

 if
{
L1 = &i∈I q?mi .L

′
1,i,

L2 = &i∈J q?mi .L
′
2,i

(3) µt1 . (L
′
1 ⊓ L′

2[t2/t1]) if L1 = µt1 .L
′
1 and L2 = µt2 .L

′
2

Each merge operator is defined by a collection of cases it can apply. If none of the
respective cases applies, the result of the merge is undefined. The plain merge ⊓p [67]
can only apply Case (1). The semi-full merge ⊓s [130] can apply Cases (1) and (2). The
full merge ⊓f [109] can apply all Cases (1), (2), and (3).

Note that Case (2) does not allow to receive from different senders – a shortcoming
we address with our generalised projection operator later.

Remark 3.8 (Correctness of projection). This would be the correctness criterion for
projection: let G be some global type and let plain merge ⊓p , semi full merge ⊓s , full
merge ⊓f , or availability merge ⊓a be the merge operator ⊓. If G↾⊓p is defined for each
participant p, then the CSM {{LAut(G↾⊓p)}}p∈P implements G.
We do not actually prove this so we do not state it as lemma. But why does this hold?
The implementability condition is the combination of deadlock freedom and protocol
fidelity. Honda et al. [67] show progress, which entails deadlock freedom and session
fidelity, proving that the global type is followed, which amounts to protocol fidelity.
Subject reduction intuitively requires that the considered types can take a step when
the system takes a step. With [130, Thm. 1], protocol fidelity holds for the semi-full
merge. Scalas and Yoshida pointed out that several versions of classical projection with
the full merge are flawed [109, Sec. 8.1]. They list two MST frameworks with full merge
operator that were not shown to be flawed. However, the merge operator by Toninho
and Yoshida [122] does not allow to apply Case (3). Scalas et al. [108] actually use the
projection operator by Deniélou et al. [47] for global types. Still, we have chosen a full
merge operator whose correctness follows from the correctness of our more general
availability merge operator that we present later in this chapter.

3.1.4 Visual Explanation of the Parametric Projection Operator

Example 3.9 (Projection without merge / Collapsing erasure). In Section 3.1.1, we
considered the two buyer protocol G2BP and the FSM for its semantics in Fig. 3.1a. We
projected (without merge) onto seller s to obtain the FSM in Fig. 3.1b. In general, we also
collapse neutral states with a single ε-transition and their only successor. We call this
collapsing erasure. We only need to actually collapse states for the protocol in Fig. 3.4a.
In all other illustrations, we indicate the interactions the participant is not involved with
the following notation: [p→q :m]⇝ ε. ◀

40 Chapter 3. Generalising Projection for Multiparty Session Types

Let us describe collapsing erasure more formally. LetG be some global type and r be
the participant onto which we project. We apply the parametric projection operator to
the state machine GAut(G). It projects each transition label onto the respective event
for participant r: every forward transition label p→q :m turns to p▷q!m if r = p, the
event q◁p?m if r = q, and ε otherwise. Then, it collapses neutral states with a single
successor: q1|2 replaces two states q1 and q2 if q1

ε−→ q2 is the only forward transition for
q1. In case there is only a backward transition from q1 to q2, the state q1|2 is also final.
This accounts for loops a participant is not part of. We call this procedure collapsing
erasure as it erases interactions that do not belong to a participant and collapses some
states. It is common to all the presented merge operators. This procedure yields a state
machine over Γr. It is straightforward that it is still ancestor-recursive, intermediate-
recursion-free and non-merging. However, it might not be dense. In fact, it is not dense
if r is not involved in some choice with more than one branch. This is precisely where
the merge operator is needed.

3.1.5 Visual Explanation of Merge Operators

Here, we first give general explanations how the merge operators are applied after
collapsing erasure. Subsequently, we walk through a sequence of examples showcasing
the different features of merge operators.

Parametric Merge in the Visual Explanation. The parametric projection operator
applies the merge operator on states with non-determinism. Visually, these correspond
precisely to the remaining neutral states (since all neutral states with a single successor
have been collapsed) – for instance, a neutral state q1 with q1

ε−→ q2 and q1
ε−→ q3 for

q2 ̸= q3. As for the syntactic version, we do only explain the 2-ary case but the reasoning
easily lifts to the n-ary case. No information is propagated when the merge operator
recurses and recursion variables are never unfolded. Thus, we can ignore backward
transitions and consider the cones of q2 and q3, which are defined as all states with
lower levels (and transitions) that are reachable from q2 respectively q3. Intuitively, we
iteratively apply the merge operator from lower to higher levels. However, we might
need to descend again when the merge operator is applied recursively.

Plain Merge. The plain merge is not applied recursively. Thus, we consider q1 with
q1

ε−→ q2 and q1
ε−→ q3 for q2 ̸= q3 such that q1 has the lowest level for which this holds.

Hence, we can assume that each cone of q2 and q3 does not contain neutral states. Then,
the plain merge is only defined if there is an isomorphism between the states of both
cones that satisfy the following conditions:

• it preserves the transition labels and hence the kind of states, and
• if a state has a backward transition to a state outside of the cone, its isomorphic
state has a transition to the same state.

3.1. Classical Multiparty Session Type Projection 41

If defined, the result is q2 with its cone (and q3 with its cone is removed).

Semi-full Merge. The semi-full merge applies itself recursively. Thus, we consider
two states q2 ̸= q3 that shall be merged. As before, we can assume that each cone of q2
and q3 does not contain neutral states (because they would have been taken care of prior
in the recursion). In addition to plain merge, the semi-full merge allows to merge receive
states. For these, we introduce a new receive state q2|3 from which all new transitions
start. For all possible transitions from q2 and q3, we check if there is a transition with
the same label from the other state. For the ones not in common, we simply add the
respective transition with the state it leads to and its respective cone. For the ones in
common, we recursively check if the two states, which both transitions lead to, can be
merged. If not, the semi-full merge is undefined. If so, we add the original transition to
the state of the respective merge and keep its cone.

FullMerge. The full merge basically applies the idea of recursively applying themerge
operator to another case: it allows to descend for recursion variable binders.

3.1.6 Features of Different Merge Operators by Example

In this section, we exemplify which features each of the merge operators supports. We
present a sequence of implementable global types. Nevertheless, some cannot be handled
by some merge operators. If a global type is not projectable using some merge operator,
we say it is rejected and it constitutes a negative example for this merge operator. We
focus on participant r when projecting. Thus, rejected mostly means that there is (at
least) no projection onto r. If a global type is projectable by some merge operator, we
call it a positive example. All examples strive for minimality and follow the idea that
participants decide whether to take a left (l) or right (r) branch of a choice.

Example 3.10 (Positive example for plain merge). Consider this global type:

µt . +

{
p→q : l . (q→r : l . 0 + q→r : r . t)

p→q : r . (q→r : l . 0 + q→r : r . t)
.

It is implementable and the state machine for its semantics is given in Fig. 3.2a. After
collapsing erasure, there is a non-deterministic choice from q′0 leading to q1 and q4 since
r is not involved in the initial choice. The plain merge operator can resolve this non-
determinism since both cones of q1 and q4 represent the same subterm, yielding the
existence of an isomorphism satisfying the above conditions. The result is illustrated
in Fig. 3.2b. It is also the FSM of a local type for r which is the result of the (syntactic)
plain merge: µt . (q? l . 0 & q?r . t) . ◀

42 Chapter 3. Generalising Projection for Multiparty Session Types

q0

q′0

q1

q2 q3

q4

q5 q6

ε

[p→q : l]⇝ ε

q→r : l q→r : r

[p→q : r]⇝ ε

q→r : l q→r : r

(a) Positive example
for plain merge.

q0

q1

q2 q3

ε

r◁q? l r◁q?r

(b) After plain
merge.

q0

q1

q2

q4

q6

[p→q : l]⇝ ε

q→r : l

[p→q : r]⇝ ε

q→r : r

(c) Negative example
for plain merge.

Figure 3.2: The FSM on the left represents an implementable global
type that is accepted by plain merge. It implicitly shows the FSM after
collapsing erasure: every interaction r is not involved in is given as
[p→q : l]⇝ ε. The FSM in the middle is the result of the plain merge. The
FSM on the right represents an implementable global type that is rejected
by plain merge. It is obtained from the left one by removing one choice

option in each branch of the initial choice.

Our explanation on FSMs allows to check congruence of cones to merge while the
definition requires syntactic equality. If we swap the order of branches q→r : l and
q→r : r in Fig. 3.2a on the right, the syntactic merge rejects. Both are semantically the
same protocol specification so we expect tools to check for such easy fixes.

Example 3.11 (Negative example for plain merge). We consider the following simple
implementable global type where the choice by p is propagated by q to r:

+

{
p→q : l . q→r : l . 0

p→q : r . q→r : r . 0
.

The corresponding state machine is illustrated in Fig. 3.2c. Here, q0 exhibits non-
determinism but the plain merge fails because q1 and q4 have different outgoing
transition labels. ◀

Intuitively, the plain merge operator forbids that any, but the two participants
involved in a choice, can have different behaviour after the choice. It basically forbids
propagating a choice. The semi-full merge overcomes this shortcoming and can handle
the previous example. We present a slightly more complex one to showcase its features.

Example 3.12 (Positive example for semi-full merge). Let us consider this imple-
mentable global type:

µt . +

{
p→q : l . (q→r : l . 0 + q→r :m . 0)

p→q : r . (q→r :m . 0 + q→r : r . t)
.

3.1. Classical Multiparty Session Type Projection 43

q0

q′0

q1

q2 q3

q4

q5 q6

ε

[p→q : l]⇝ ε

q→r : l q→r :m

[p→q : r]⇝ ε

q→r :m q→r : r

(a) Positive example
for semi-full merge.

q0

q1|4

q2

q3|5

q6

ε

r◁q? l r
◁
q
?
m

r◁q?r

(b) After semi-full
merge.

Figure 3.3: The FSM on the left represents an implementable global type
that is accepted by semi-full merge. The FSM on the right is the result of

the semi-full merge.

The state machine for its semantics is illustrated in Fig. 3.3a. After applying collapsing
erasure, there is a non-deterministic choice from q0 leading to q1 and q4 since r is not
involved in the initial choice, We apply the semi-full merge for both states. Both are
receive states so Case (2) applies. First, we observe that r◁q? l and r◁q?r are unique to
one of the two states so both transitions, with the cones of the states they lead to, can
be kept. Second, there is r◁q?m which is common to both states. We recursively apply
the semi-full merge and, with Case (1), observe that the result q3|5 is simply a final state.
Overall, we obtain the state machine in Fig. 3.3b, which is equivalent to the result of the
syntactic projection with semi-full merge: µt . (q? l . 0 & q?m . 0 & q?r . t) . ◀

Example 3.13 (Negative example for semi-full merge and positive example for full
merge). The semi-full merge operator rejects the following implementable global type:

+

{
p→q : l . µt1 . (q→r : l . q→p : l . t1 + q→r :m . q→p :m . 0)

p→q : r . µt2 . (q→r :m . q→p :m . 0 + q→r : r . q→p : r . t2)
.

Its FSM and the FSM after collapsing erasure is given in Figs. 3.4a and 3.4b. Intuitively,
it would need to recursively merge the parts after both recursion binders in order to
merge the branches with receive event r◁q?m but it cannot do so. The full merge
can handle this global type. It can descend beyond q1 and q4 and is able to merge
q′1 and q′4. To obtain q′′3|5, it applies Case (1) while q′1|4 is only feasible with Case (2).
The result is embedded into the recursive structure to obtain the FSM in Fig. 3.4c. It is
equivalent to the (syntactic) result, which renames the recursion variable for one branch:
µt1 . (q? l . t1 & q?m . 0 & q?r . t1). ◀

Example 3.14 (Negative example for full merge). We consider a simple implementable
global type where p propagates its decision to r in the top branch while q propagates it
in the bottom branch:

+

{
p→q : l . p→r : l . 0

p→q : r . q→r : r . 0
.

44 Chapter 3. Generalising Projection for Multiparty Session Types

q0

q1

q′1

q2

q′2

q3

q′3

q4

q′4

q5

q′5

q6

q′6

p→q : l

ε

q→r : l q→r :m

p→q : r

ε

q→r :m q→r : r

q→p : l q→p :m q→p :m q→p : r

(a) Negative example for semi-full merge
and positive example for full merge.

q0

q1

q′1

q′′2 q′′3

q4

q′4

q′′5 q′′6

ε

ε

r◁q? l r◁q?m

ε

ε

r◁q?m r◁q?r

(b) After collapsing erasure.

q1|4

q′
1|4

q′′2

q′′
3|5

q′′6

ε

r◁q? l r
◁
q
?
m

r◁q?r

(c) After full merge.

Figure 3.4: The FSM on the left represents an implementable global type
that is rejected by the semi-full merge and accepted by the full merge.

It is illustrated in Fig. 3.5. This cannot be projected onto r by the full merge operator
for which all receive events need to have the same sender. This global type does not
require sender-driven choice but, in fact, sender-driven choice is closely related to this
phenomenon: if a sender can send to different receivers upon branching, we assume
they can also receive from different senders. ◀

In this section, we presented the first automata-based explanation of the classical
projection and merge operators for MSTs. The presented sequence of merge operators
was intentionally incremental – with regard to the subset of cases from Definition 3.7
they can apply. Of course, one could consider the different cases in all combinations.
However, it does not give any additional insights regarding the concept of the classical
projection operator and its possible merge operators. After we show how to generalise
the classical projection approach to sender-driven choice, we showcase why it does not
lend itself to a complete approach.

q0

q1

q2

q4

q6

[p→q : l]⇝ ε

p→r : l

[p→q : r]⇝ ε

q→r : r

Figure 3.5: Negative example for full merge.

3.2. Generalising Classical Projection for Sender-driven Choice 45

3.2 Generalising Classical Projection
for Sender-driven Choice

In the previous section, we showed that the full merge operator cannot handle protocols
where participants receive from different senders. In this section, we showhow to extend
the classical projection approach for global types with sender-driven choice. This allows
senders to send to different receivers but, analogously, it also allows receivers to receive
from different senders. In the next section, we prove our generalised projection correct.

3.2.1 Motivating Example: Load Balancing

To motivate our generalised projection operator, let us consider a load balancing
protocol, a common pattern in distributed computing.

c s w1 w2
task

c s w1 w2
task

result

c s w1 w2
task

result

Figure 3.6: Load Balancing Protocol, as HMSC.

q0

q′0

q1

q2

q3

q4

q5

ε

c→s : t

s→w1 : t

w1→c : r

s→w2 : t

w2→c : r

(a) As FSM.

q0

q′0

q1

q2

q3

q4

q5

{} {}

ε

c▷s!t

ε

c◁w1?r

ε

c◁w2?r

(b) After collapsing erasure onto c with
available messages.

Figure 3.7: Load Balancing Protocol, as FSM for GLoBa.

46 Chapter 3. Generalising Projection for Multiparty Session Types

A simple load balancing scenario can be modelled with the global type

GLoBa := µt . c→s : task . +

{
s→w1 : task . w1→c : result . t

s→w2 : task . w2→c : result . t
.

Figures 3.6 and 3.7a show the corresponding HMSC and the state machine for the global
type. The client sends a request to a server in a loop. The server chooses one of
two workers to forward the request to. The chosen worker handles the request and
replies to the client. In this protocol, the server communicates with a different worker
in each branch.

We can give the following local types for GLoBa:
s : µt . c?task . (w1 !task . t ⊕ w2 !task . t)

c : µt . s!task . (w1?result . t & w2?result . t)

wi : µt. s?task . c!result . t for i ∈ {1, 2}
However, none of the previous projection operators can yield these local types. They

all cannot handle global types that allow to send to different receivers or to receive from
different senders upon branching. Our MST framework overcomes this shortcoming.
This generalisation is non-trivial. When limiting the reception to messages from a single
participant, one can rely on the FIFO order provided by the corresponding channel.
However, messages coming from different sources are only partially ordered. Thus,
unlike previous approaches, our merge operator looks at the result of a causality analysis
on the global type tomake sure that this partial ordering cannot introduce any confusion.

We demonstrate that a straightforward generalisation of existing projection
operators can lead to unsoundness. Consider a naive merge operator that merges
branches with internal choice if they are equal, and for receives, simply always merges
external choices – also from different senders. In addition, it removes empty loops. For
GLoBa, this naive projection yields the expected local types presented before.

We show that naive projection can be unsound. Figures 3.8a and 3.9a illustrate a
variant of load balancing, which can also be specified as global type:

G′
LoBa := µt . c→s : task . +

{
s→w1 : task . w1→c : result . w1→w2 : task . w2→c : result . t

s→w2 : task . w2→c : result . t
.

Naive projection yields the following local types:

s : µt . c?task . (w1 !task . t ⊕ w2 !task . t)

c : µt . s!task . (w1?result . w2?result . t & w2?result . t)

w1 : µt . s?task . c!result . w2 !task . t

w2 : µt. (w1?task . c!result . t & s?task . c!result . t)

Unfortunately, the global type is not implementable. The problem is that, for the
client c, the two messages in its left branch are not causally related.

3.2. Generalising Classical Projection for Sender-driven Choice 47

c s w1 w2
task

c s w1 w2
task

result

task

result

c s w1 w2
task

result

(a) As HMSC.

c s w1 w2

(b) Execution with
confusion.

Figure 3.8: Variant of load balancing with confusion (G′
LoBa):

as HMSC and an execution with confusion as MSC.

Consider the run depicted as MSC in Fig. 3.8b, which is not specified in the global
type. The server s decided to first take the left (L) and then the right (R) branch. For s,
the orderLR is obvious from its events and the same applies for w2. For worker w1, every
possible order R∗LR∗ is plausible as it does not have events in the right branch. Since
LR belongs to the set of plausible orders, there is no confusion. The messages from the
two workers w1 and w2 to the client c are independent and, therefore, can be received in
any order. If the client c receives w2?result first, then its local view is consistent with
the choice RL as the order of branches. This can lead to confusion and, thus, runs that
are not specified in the global type.

3.2.2 Available Messages

To identify such potential confusionwhen projecting, we keep track of causality between
messages. We determine what messages a participant could receive at a given point in
the global type (other than the one intended for this branch), which we call available
messages. In Figures 3.7b and 3.9b, we depict the set of available messages where states
ought to be merged. Tracking causality needs to be done at the level of the global type:
we look for chains of dependent messages and also need to unfold loops. Fortunately,
since we only check for the presence or absence of some messages at the head of each
channel, it is sufficient to unfold each recursion at most once.

Technically, we annotate local types with the messages that could be received at
that point in the protocol. We call these availability annotated local types and write
them as AL = ⟨L,Msg⟩ where L is a local type and Msg is a set of messages –
technically receive events, giving information about the sender, receiver and message.
This signifies that when a participant has reached AL, the messages in Msg can be

48 Chapter 3. Generalising Projection for Multiparty Session Types

q0

q′0

q1

q2

q3

q′2

q′3

q4

q5

ε

c→s : t

s→w1 : t

w1→c : r

w1→w2 : t

w2→c : r

s→w2 : t

w2→c : r

(a) As FSM.

q0

q′0

q1

q2

q3

q′2

q′3

q4

q5

{c◁w2?r} {}

ε

c▷s!t

ε

c◁w1?r

ε

c◁w2?r

ε

c◁w2?r

(b) After collapsing erasure onto c with
available messages.

Figure 3.9: Variant of load balancing with confusion (G′
LoBa):

as FSM and after collapsing erasure.

present in the communication channels. We annotate types using the grammar for local
types (Definition 3.1), where each subterm is annotated. To recover a local type, we
erase the annotation, i.e. recursively replace each AL = ⟨L,Msg⟩ by L. The projection
internally uses annotated types.

To compute the available messages, we unfold the recursion in global types. We
could get the unfolding through a congruence relation. However, this requires dealing
with infinite structures, making some definitions not effective. Instead, we precompute
the map from each recursion variable t to its unfolding. For a given global type G, let
getµ be a function that returns a map from t to G′ for each subterm µt .G′. Recall, each
t in a type is different. getµ is defined as follows:

getµ(0) := [] getµ(t) := [] getµ(µt .G′) := [t 7→ G′] ∪ getµ(G′)

getµ(
∑

i∈I p→qi :mi . Gi) :=
⋃

i∈I getµ(Gi)

We write getµG as shorthand for the map returned by getµ(G).
The projection of G onto r, written G↾r, traverses G to erase the operations that do

not involve r. During this phase, we also compute the messages that rmay receive. The
function avail(B, T,G) computes the set of messages that other participants can send
while r has not yet learned the outcome of the choice. This set depends on B, the set
of blocked participants, i.e. the participants which are waiting to receive a message and
hence cannot move; T , the set of recursion variables we have already visited; andG, the
subterm in G at which we compute the available messages.

3.2. Generalising Classical Projection for Sender-driven Choice 49

Definition 3.15. Let G be the global type under consideration. We define the function
avail(-, -, -) recursively:

avail(B, T, 0) := ∅
avail(B, T, µt .G′) := avail(B, T ∪ {t}, G′)

avail(B, T, t) :=

{
∅ if t ∈ T

avail(B, T ∪ {t}, getµG(t)) if t ̸∈ T

avail(B, T,
∑

i∈I p→qi :mi . Gi) :=

{⋃
i∈I,m∈V(avail(B, T,Gi) \ {qi◁p?m}) ∪ {qi◁p?mi} if p ̸∈ B⋃
i∈I avail(B ∪ {qi}, T,Gi) if p ∈ B

All channels are FIFO-ordered so we only keep the first possible message in each
channel. The fourth case discards messages not at the head of the channel.

3.2.3 Availability Merge Operator

Notations and Assumptions. To simplify the notation, we assume that the index i

of a choice uniquely determines the sender, receiver and message. Using this notation,
we write I ∩ J to select the set of choices with identical sender and message value and
I \ J to select the alternatives present in I but not in J .

Definition 3.16 (Availability merge operator ⊓). Let ⟨L1,Msg1⟩ and ⟨L2,Msg2⟩ be
availability annotated local types for a participant r. ⟨L1,Msg1⟩ ⊓ ⟨L2,Msg2⟩ is defined
by cases, as follows:

• ⟨L1,Msg1 ∪Msg2⟩ if L1 = L2

• ⟨µt1 . (AL1 ⊓AL2[t2/t1]),Msg1 ∪Msg2⟩ if L1 = µt1 .AL1, L2 = µt2 .AL2

• ⟨⊕i∈I qi !mi . (AL1,i ⊓AL2,i),Msg1 ∪Msg2⟩ if
{
L1 = ⊕i∈I qi !mi .AL1,i,
L2 = ⊕i∈I qi !mi .AL2,i

•

⟨ &i∈I\J qi?mi .AL1,i &

&i∈I∩J qi?mi . (AL1,i ⊓AL2,i) &

&i∈J\I qi?mi .AL2,i ,

Msg1 ∪Msg2 ⟩

if


L1 = &i∈I qi?mi .AL1,i,
L2 = &i∈J qi?mi .AL2,i,
∀i ∈ I \ J. r◁qi?mi /∈ Msg2,
∀i ∈ J \ I. r◁qi?mi /∈ Msg1

When no condition applies, the result of the merge is undefined.2 Note that we use ⊓
for our availability merge operator, which we used as parametric merge operator before.
For the sake of clarity, we define only the binary merge. As the operator is commutative
and associative, it generalises to a set of branches I . When I is a singleton, the merge
just returns that one branch.

2When we use the n-ary notation ⊓i∈I and |I| = 0, we implicitly omit this part. Note that this can
only happen if r is the receiver among all branches for some choice so there is either another local type
to merge with, or the projection is undefined anyway.

50 Chapter 3. Generalising Projection for Multiparty Session Types

Our availability merge operator builds on the full merge operator presented before.
In contrast, it also recurses for sends and, more importantly, it carries the information on
available messages along, used when merging receives. When faced with choice, it only
merges receptions that cannot interfere with each other. For a participant that ought
to receive a message determining a previous branch choice, it checks that the message
cannot be available in another branch so actually being able to receive this message
uniquely determines which branch was taken by the participant to choose earlier. For
the other cases, a participant can postpone learning the branch as long as the events on
both branches are the same.

3.2.4 Generalised Projection

We also generalise the projection operator so our availability merge operator can take
full effect. First, we account for the annotated local types. This is rather straightforward.
One just needs to be a bit careful which participants are initially blocked and which
recursion variables have been visited when computing the available messages. Second,
we allow to eliminate empty loops, i.e. where a participant does not have any action.
This cannot be done on the level of the merge operator but only when projecting. We
introduce an additional parameter E for the generalised projection: E contains those
variables t for which r has not observed any message send or receive event since µt.

Definition 3.17 (Generalised projection). The projection G↾Er of a global type G onto a
participant r ∈ P is an availability annotated local type, which is inductively defined:

t↾Er := ⟨t, avail({r}, {t}, getµG(t))⟩ 0↾Er := ⟨0, ∅⟩

(µt .G)↾Er :=

{
⟨µt . (G↾E∪{t}

r), avail({r}, {t}, G)⟩ if G↾E∪{t}
r ̸= ⟨t, _⟩

⟨0, ∅⟩ otherwise

(∑
i∈I p→qi :mi . Gi

)
↾Er :=


⟨⊕i∈I qi !mi . (Gi↾

∅
r),
⋃

i∈I avail({qi, r}, ∅, Gi)⟩ if r = p

⊓

(
⟨&i∈I[=r]

p?mi . (Gi↾
∅
r),
⋃

i∈I[=r]
avail({r}, ∅, Gi)⟩

⊓ i∈I[̸=r] ∧∀t∈E.Gi↾Er ̸=⟨t,_⟩ Gi↾
E
r

)
otherwise

where I[=r] := {i ∈ I | qi = r} and I[̸=r] := {i ∈ I | qi ̸= r}

Since the merge operator ⊓ is partial, the projection may be undefined. We use G↾r
as shorthand for G↾∅r and only consider the generalised projection with empty paths
elimination from now on. A global typeG is called projectable ifG↾r is defined for every
participant r ∈ P .

We highlight the differences for the empty paths elimination. Recall that E contains
all recursion variables from which the participant r has not encountered any events.
To guarantee this, for the case of recursion µt .G, the (unique) variable t is added to
the current set E, while the parameter turns to the empty set ∅ as soon as participant r
encounters an event. The previous steps basically constitute the necessary bookkeeping.
The actual elimination is achieved with the condition ∀t ∈ E.Gi↾

E
r ̸= ⟨t, _⟩which filters

all branches without events of participant r.

3.2. Generalising Classical Projection for Sender-driven Choice 51

Most classical projection operators require all branches of a loop to contain the same
set of active participants. Other works [70, 31] achieve this with connecting actions,
marking non-empty paths. Like classical MSTs, we do not include such explicit actions.
Still, we can automatically eliminate such paths in contrast to previous work.

Scalas and Yoshida [109] give an example of local types that are not projectable.
We inferred the global type and our the results of our projection operator would be
equivalent to the local types given in their example [109, Fig. 4(2)].

Example 3.18 (Two Buyer Protocol with inner recursion). This variant allows to
recursively negotiate how to split the price (and omits the outer recursion):

G2BPIR := a→s :query . s→a :price . µt .+

{
a→b : split . (b→a :yes . a→s :buy . 0 + b→a :no . t)

a→b :cancel . a→s :no . 0
.

Here, seller s is not involved in the recursion. ◀

Our projection represents a shift in paradigm. In all previous MST frameworks,
the merge operator works only on local types. No additional knowledge is required.
This is possible because their type system limits the flexibility of communication. Since
we allow more flexible communication, we need to keep some information, in form of
available messages, about the possible global executions for the merge operator.

3.2.5 Revisiting the Load Balancing Protocols

For the standard load balancing protocol, we need to merge q2 and q4 in Fig. 3.7b.
From there, the messages form chains, i.e. except for the participant making the choice,
a participant only sends in reaction to another message. Thus, the sets of available
messages, i.e. the ones that are not intended to be received in each branch, are both
empty. The syntactic computations with avail(-, -, -) yield the same results and allow to
merge using ⊓. Hence, the projection of GLoBa onto c is defined.

Let us consider the variant of the load balancing protocolG′
LoBa↾c. Here, both replies

are available in the left branch, as depicted in Fig. 3.9b. Therefore, our merge operator
rejects and the protocol is not projectable.

Let us explain in more detail how the syntactic projection catches this issue. Recall
that c receives result from w2 in the left branch, which is also present in the right branch.
Let us denote the two branches as follows:

G1 := s→w1 : task . w1→c : result . w1→w2 : task . w2→c : result . t, and
G2 := s→w2 : task . w2→c : result . t

The first message in G1 does not involve c, so the projection descends and we compute:
G′

LoBa↾c = ⟨µt . (⟨w1?result . (G′
1↾c), avail({c}, ∅, G′

1)⟩
⊓⟨w2?result . (G′

2↾c), avail({c}, ∅, G′
2)⟩), _⟩

where G′
1 = w1→w2 : task . w2→c : result . t and G′

2 = t.

52 Chapter 3. Generalising Projection for Multiparty Session Types

Source Name Impl. Size |P| Result Time Gen. Proj. Needed

[111]
Instrument Contr. Prot. A ✓ 16 3 ✓ 0.1ms ×
Instrument Contr. Prot. B ✓ 13 3 ✓ <0.1ms ×
OAuth2 ✓ 7 3 ✓ <0.1ms ×

[108] Multi Party Game ✓ 16 3 ✓ 0.1ms ×
[67] Streaming ✓ 7 4 ✓ <0.1ms ×
[29] Non-Compatible Merge ✓ 8 3 ✓ <0.1ms ✓

[113] Spring-Hibernate ✓ 44 6 ✓ 0.6ms ✓

New

Group Present ✓ 43 4 ✓ 0.5ms ✓
Late Learning ✓ 12 4 ✓ 0.1ms ✓
Load Balancer (n = 10) ✓ 32 12 ✓ 1.9ms ✓
Logging (n = 10) ✓ 56 13 ✓ 7.7ms ✓

Section 3.1.1 2 Buyer Protocol ✓ 16 3 ✓ 0.1ms ×

Section 3.4

2B-Prot. Omit No ✓ 14 3 (×) <0.1ms -
2B-Prot. Subscription ✓ 35 3 (×) 0.3ms -
2B-Prot. Inner Recursion ✓ 12 3 ✓ <0.1ms ×

Table 3.1: Projecting Global Types with Generalised Projection. For every
protocol, we report whether it is implementable✓ or not×, as well as the
outcome as ✓ for “implementable” and (×) for “not known”. We also give
the size of the protocol (number of states and transitions) and the number

of participants.

For this, we compute both availability annotations: avail({c}, ∅, G′
2) = ∅ which is

empty because all message exchanges in the recursion initiate from c which is blocked;
and avail({c}, ∅, G′

1) = {w2◁w1?task, c◁w2?result}, which contains both receptions
from G′

1 only since no receptions from the recursion are added for the same reason.
The message for c in the second branch is available in the first one: c◁w2?result ∈
avail({c}, ∅, G′

1), not satisfying the condition. Thus, the projection is undefined.

3.2.6 Evaluation

We implemented our generalised projection approach in a prototype tool, which is
publicly available [106, 114]. The core functionality is implemented in about 800 lines
of Python3 code. Our tool takes as input a global type and outputs its projections (if
defined). We consider global types (and communication protocols) from five different
sources as well as examples from this work (cf. 1st column of Table 3.1). Our experiments
were run on a computer with an Intel Core i5-1335U CPU and used at most 100MB of
memory. The results are summarised in Table 3.1. The reported size is the number of
states and transitions of the respective state machine. Note that our tool does not check
for multiple occurences of the same subterm and, thus, the reported size might be bigger
than the actual size.

3.3. Soundness of Generalised Projection: Projectability implies Implementability 53

Our prototype successfully projects global types from the literature, in particular
Multi-Party Game, OAuth2, Streaming, and two corrected versions of the Instrument
Control Protocol. These existing examples can be projected, but do not require
generalised projection.

TheNeed forGeneralised Projection. The remaining examples exemplifywhen our
generalised projection is needed. This can have two causes: a sender can send to different
receivers or a receiver can receive from different senders along two paths (immediately
or after a sequence of same actions). In both cases, its projection is only defined for
the generalised projection operator. The Spring-Hibernate example was obtained by
translating a UML sequence diagram [113] to a global type. There, Hibernate Session
can receive from two different senders along two runs. The Group Present example
is a variation of the traditional book auction example [68] and describes a protocol
where friends organise a birthday present for someone; in the course of the protocol,
some people can be contacted by different people. The Late Learning example models a
protocol where a participant submits a request and the server replies either with reject
or wait, however, the last case applies to two branches where the result is served
by different participants. The Load Balancing (Section 3.2.1) and Logging examples
are simple versions of typical communication patterns in distributed computing. The
examples are parameterised by the number of workers, respectively, back-ends that call
the logging service, to evaluate the efficiency of projection. For both, we present one
instance (n = 10) in the table. All new examples are rejected by previous approaches
but shown projectable by our generalised projection approach.

Overhead. The generalised projection should not incur any overhead for global types
that do not need it. Our implementation computes the sets of available messages
lazily, i.e. it is only computed if our message causality analysis is needed. These sets
are only needed when merging receptions from different senders. Thus, while the
message causality analysis is crucial for our generalised projection operator and hence
applicability of MST verification, it should not affect its efficiency.

3.3 Soundness of Generalised Projection:
Projectability implies Implementability

In this section, we prove soundness of our generalised projection; roughly, a projectable
global type can be implemented by communicating state machines in a distributed way.

Theorem 3.19. If a global type G is projectable, then {{LAut(G↾p)}}p∈P implements G.

Proving this is far from trivial and we cannot use previous proof ideas from the
MST literature.

54 Chapter 3. Generalising Projection for Multiparty Session Types

3.3.1 Implementability = Protocol Fidelity + Deadlock Freedom

The CSM of local types should be deadlock-free and generate the same language as
the global type. Intuitively, we prove both by showing two properties: first, it does
not remove behaviours from the global type; and second, it does not introduce new
behaviours, including deadlocks. We start with the first observation.

3.3.2 Generalised Projection Does Not Remove Behaviours

To start with, recall that our projection operator preserves the local order of events for
every participant and does not remove or add any event. Therefore, we conclude that, for
each participant, the projected language of the global type is subsumed by the language
of the projection.

Proposition 3.20. Let G be a projectable global type and r ∈ P be a participant. Then,
every trace w of GAut(G)⇓Γr is a trace of LAut(G↾r) and vice versa. Hence, it holds that
L(G)⇓Γr = L(G↾r).

We use this observation to prove that the CSM {{LAut(G↾p}}p∈P does not remove
behaviours of a global type G. Intuitively, we show that L({{LAut(G↾p}}p∈P) ⊆ L(G).
For the proof, we strengthen this statement.

Lemma 3.21. Let G be a projectable global type. Then, the following holds:

(1) for every prefix w ∈ pref(L(G)), there is a run ρ in {{LAut(G↾p)}}p∈P with
w ⪯ trace(ρ) and for every extension wx of w in pref(L(G)), ρ can be extended
to ρ′ so that wx ⪯ trace(ρ′), and

(2) L(G) ⊆ L({{LAut(G↾p)}}p∈P).

Proof. For (1), let w ∈ pref(L(G)). We prove the claim by induction on the length of w.
The base case, w = ε, is trivial. For the induction step, we assume that the claim

holds for w with run ρ and we extend ρ for wx ∈ pref(L(G)). We do a case analysis
on x.

First, suppose that x = p▷q!m for some p, q, and m. By Proposition 3.20, we know
that (wx)⇓Γp has a run in LAut(G↾p). Therefore, we can simply extend the run ρ in
{{LAut(G↾p)}}p∈P to obtain ρ′.

Second, suppose that x = q◁p?m for some p, q, and m. Again, by Proposition 3.20,
we know that (wx)⇓Γq has a run in LAut(G↾q). Any prefix of L(G) is FIFO-compliant by
Proposition 2.25. From Lemma 2.5, we know that (p, q) is of the form m · u. Therefore
q can receive m from p and we can extend ρ to obtain ρ′ for wx in {{LAut(G↾p)}}p∈P .

In both cases, we have extended ρ on w ∈ pref(L(G)) to wx ∈ pref(L(G)),
completing the argument for (1).

For (2), let w ∈ L(G). We do a case analysis whether w is finite or infinite.

3.3. Soundness of Generalised Projection: Projectability implies Implementability 55

For finite words w ∈ L(G) ∩ Γ∗, we know that w is FIFO-compliant and complete
(Proposition 2.25). (1) tells us that there is a run for w in {{LAut(G↾p)}}p∈P that reaches
(q⃗, ξ) for some states q⃗ and channel evaluation ξ. We need to show that (q⃗, ξ) is a final
configuration, i.e. (a) q⃗p is a final state in LAut(G↾p) and (b) all channels in ξ are empty.

To establish (b), we observe that all channels are empty after a run of a finite complete
word w, by Lemma 2.5. We know from Proposition 2.25 that w is complete.

For (a), recall that w ∈ GAut(G) and w is finite, so the run with trace w in GAut(G)

ends in a final state. By Definition 2.24, every final state corresponds to 0 and has no
outgoing transitions. The projection of 0↾p is defined as 0 for every p and 0 is never
merged with local types different from 0. The definition of local types prescribes that
all different send, resp. receive, options are distinct for every branching. This implies
that LAut(G↾p) is deterministic. Therefore, each state q⃗p corresponds to the local type 0,
which are final in LAut(G↾p). Thus, (q⃗, ξ) is a final configuration of {{LAut(G↾p)}}p∈P ,
so w ∈ L({{LAut(G↾p)}}p∈P).

Suppose that w is infinite, i.e. w ∈ L(G) ∩ Γω. We show that w has an infinite
run in {{LAut(G↾p)}}p∈P , analogous to the proof of Lemma 2.10. Consider a tree T
where each node corresponds to a run ρ on some finite prefix w′ ≤ w. The root is
labelled by the empty run. The children of a node ρ are runs that extend ρ by a single
transition – these exist by (1). Since our CSM, derived from a global type, comprises a
finite number of finite state machines, T is finitely branching. By König’s Lemma, there
is an infinite path in T that corresponds to an infinite run for w in {{LAut(G↾p)}}p∈P so
w ∈ L({{LAut(G↾p)}}p∈P).

This shows that the projection does not remove behaviours.

3.3.3 Generalised ProjectionDoes Not Introduce NewBehaviours

We proceed with the second observation: no new behaviours are introduced.

Key Ideas. We first give a brief summary of the main ideas. So far, we showed that
the projections combine to admit at least the behaviour specified by the global protocol.
For the converse direction, we establish a property of the executions of the local types
with respect to the global type: during any run of the projections, all the participants
agree on some (not necessarily maximal) run of the global type. For this, we introduce
the idea of run mappings, which maps every participant’s observation to a prefix of a run
of the global type. While this ensures that no participant has yet diverged from some
common run in the global type, it does not guarantee that this run can be extended to be
maximal and all participants can catch up. Intuitively, run mappings do only ensure that
nothing bad has happened but not that something good will eventually happen, basically
distinguishing between safety and liveness. Adding this liveness aspect yields control
flow agreement. Runs that satisfy control flow agreement also satisfy protocol fidelity
and are deadlock-free. The formalisation and proofs of these properties is complicated by

56 Chapter 3. Generalising Projection for Multiparty Session Types

the fact that not all participants learn about a choice at the same time. Some participants
can perform actions after the choice has been made and before they learn which branch
has been taken. In the extreme case, a participant may not learn at all that a choice
happened. The key to control flow agreement is in the definition of the merge operator.
We can simplify the reasoning to the following two points.

• Participants learn choices before performing distinguishing actions
When faced with two branches with different actions, a participant that is not
making the choice needs to learn the branch by receiving a message. This follows
from the definition of the merge operator. This message is also called choice
message. Merging branches is only allowed as long as the actions are similar for
this participant. When there is a difference between two (or more) branches, an
external choice is the only case that allows a participant to continue on distinct
branches.

• Checking available messages ensures no confusion
From the possible receives (qi?mi) in an external choice, any pair of sender and
message is unique among this list for the choice. This follows from two facts.
First, the projection computes the available messages along the different branches
of the choice. Second, merging uses that information to make sure that the choice
message of one branch does not occur in another branch as a message independent
of that branch’s choice messages.

Example 3.22. This example illustrates why this is non-trivial. Consider

G :=
(
p→q : l . µt . r→p :m . t

)
+
(
p→q : r . µs . r→p :m . s

)
with its projections

G↾p =
(
q! l. µt . r?m . t

)
⊕
(
q!r. µs. r?m . s

)
G↾q = p? l . 0 & p?r . 0

G↾r = µt . p!m . t

and a trace w of {{LAut(G↾p)}}p∈P : r▷p!m · r▷p!m · p▷q! l · p◁r?m · r▷p!m.
For this trace, we check which runs in GAut(G) each participant could have pursued. In
this case, r is not directly affected by the choice so it can proceed before the p has even
made the choice. As the part of the protocol after the choice is a loop, we cannot bound
how far r can proceed before p commits a choice. ◀

3.3.4 Family of Run Mappings Exists for
Projectable Global Types

Let us define run mappings and families thereof first.

3.3. Soundness of Generalised Projection: Projectability implies Implementability 57

Definition 3.23 (Run mappings). Let G be a global type and {{Ap}}p∈P be a CSM. For
a trace w of {{Ap}}p∈P and a run ρ in GAut(G) such that w ⪯∼ traceGAut(G)(ρ), a run
mapping ρP : P → pref(ρ) is a mapping such that w⇓Γp = traceGAut(G)(ρP(p))⇓Γp .

We say that {{Ap}}p∈P has a family of run mappings for GAut(G) iff for every trace w
of {{Ap}}p∈P , there is a witness run ρ in GAut(G) with a run mapping ρP .

When clear from context, we omit the subscript of run mappings ρP(-).
Given a global typeG and a trace of {{Ap}}p∈P , a runmapping guarantees that there is

some common run in GAut(G) that all participants could have pursued when observing
this trace. They might not have processed all their events along this run but they have
not diverged. A family of run mappings lifts this to all traces. However, this does not
yet ensure that every participant will be able to follow this run to the end. This will be
part of Control Flow Agreement.

Lemma 3.24 ({LAut(G↾p)}p∈P has a family of run mappings). Let G be a projectable
global type. Then, {{LAut(G↾p)}}p∈P has a family of run mappings for GAut(G).

The proof is not trivial because the merge can collapse different branches for a
participant so it follows sets of runs. The intersection of all these sets contains (a prefix
of) the witness run. In some case, e.g. r in the Example 3.22, a participant can “overtake”
a choice and perform actions that belong to the branches of a choice before the choosing
participant has made the choice.

Outline and Motivation of Concepts

The overall proof works by induction on the trace. While the skeleton is quite basic, let
us give an intuition which properties are needed for the cases where some participant
receives or sends a message in the extension of a trace. Based on these properties, we can
explain the different concepts which need to be formalised for these properties. In both
cases, we need to argue that the previous run mapping can be kept for all participants
but the one that takes a step.

For the receive case, suppose that p receives from q. On the one hand, we need to
argue that the run for p can actually be extended to match the one of q. On the other
hand, we also need to ensure that there is no other message that p could receive so
that it follows a run different from the one for q. While the first is easy to obtain by the
definition of projection, we need to argue that themessage availability check does indeed
compute the available messages when p has not proceeded with any other event yet.

58 Chapter 3. Generalising Projection for Multiparty Session Types

For the send case, suppose that p sends to q and chooses between different branches,
i.e. there actually is a choice between different continuations. Though, there might be
participants with (some) actions that do not depend on this choice and we have to ensure
that p’s run can be extended to some prefix of theirs. For this, we exploit the idea of
prophecy variables and assume that all of those participants took the branch that p will
choose but we need to ensure that this does not restrain them in any way. So intuitively
for each of these participants, we need to compare the executions along the different
branches p can choose from and need to prove that they are the same if p has not yet
committed this choice yet. (Note the subtlety that only the part of the execution which
does not depend on this choice needs to be the same.)

To formalise these ideas, we introduce three concepts.

• Blocked languages: We inductively define the (global) language LB
(G′...) that

captures all executions that are possible from subterm G′ in some global type G,
under the assumption that no participant in B ⊆ P can take any further step.
We call these participants blocked. This definition serves for the formalisation of
semantic arguments about the availability of messages and the languages along
different choice branches.

• Blocked projection operator: We introduce a variation of the projection operator
that also allows to account for a set of blocked participants B, prove its connection
to the above languages, and use the relation to the standard projection operator to
show the equality of the blocked languages along different choices.

• Extended local types: In contrast to the standard projection operator, the blocked
one can declare intermediate syntactic subterms as final states. Standard local
types do not allow this so we introduce extended local types.

Blocked Languages – the Language-theoretic Perspective

We will use blocked languages to show that no participant can proceed with an action
that is specific to some choice which has not been committed yet.

Definition 3.25 (Blocked language). Let G be a projectable global type and let B ⊆ P
be a set of participants. Then, LB

(G...) is inductively defined:
LB
(0...)

:= {ε} LB
(t...)

:= LB
(µt .G...) LB

(µt .G...)
:= LB

(G...)

LB
(Σi∈Ip→ qi :mi . Gi...)

:=
⋃

i∈I{f(B, p→qi :mi) · w | w ∈ L
g(B,p→ qi :mi)

(Gi...)
} where

f(B, p→qi :mi) :=


p▷qi !mi . qi◁p?mi if p /∈ B ∧ qi /∈ B
p▷qi !mi if p /∈ B ∧ qi ∈ B
ε otherwise

g(B, p→qi :mi) :=

{
B if p /∈ B
B ∪ {qi} otherwise

3.3. Soundness of Generalised Projection: Projectability implies Implementability 59

Based on this definition, we compute the set of messages that can occur when some
participants, i.e. the ones in B are blocked:

msgsB(G...) :=
⋃

x=x1...∈LB
(G...)

{xi | xi ∈ Γ?} .

If B is a singleton set, we omit the set notation and write msgsp(G...) for msgs
{p}
(G...).

Extended Local Types and Blocked Projection Operator –
the Type-theoretic Perspective

Standard global and local types have a dedicated syntactic term to indicate termina-
tion: 0. For the FSMs of their semantics, this means that a state is final if and only if it
has not outgoing transitions. For our proofs, we need to extend local types in a way that
they can have intermediate termination.

Definition 3.26 (Extended local types). We extend local types with marks ∗ or ◦ for
syntactic subterms and obtain extended local types with the following inductive rules
where ⊛ ∈ {◦, ∗}:

EL ::= L 0,⊛ M | L ⊕
i∈I

qi !mi .ELi,⊛ M | L &
i∈I

qi?mi .ELi,⊛ M | Lµt .EL,⊛ M | L t,⊛ M

Extended local types can be annotated with availability information about messages
as local types. Whenworkingwithmessage set annotations, we assume to have extended
availability annotated local types of shape L ⟨-, -⟩, - M. Thus, we can re-use the merge
operator ⊓.

The mark ∗ indicates that this syntactic subterm shall be considered final in the
semantics of the extended local types. Any syntactic subterm LEL′,⊛′ M of LEL,⊛ M has a
syntax tree. Intuitively,⊛′ marks the root of the syntax tree of EL′ and tells whether one
needs to continue, i.e. LEL′, ◦ M, to obtain an accepting word or may stop, i.e. LEL′, ∗ M,
at this point. Without such an extension, there is no way to specify such behaviour in
local types (and global type) since 0 explicitly marks the end of the type. We consider
two subterms equal if they agree on all (nested) markings.

Definition 3.27 (Semantics of extended local types). We define the semantics of an
extended local type EL analogously to the one for local types, except that there can be
multiple final states as explained before. Let EL be an extended local type for p. We
construct a state machine EAut(EL) = (Q,Γp, δ, q0, F) and define the language of EL
as language of this state machine: L(EL) = L(EAut(EL)).

It is straightforward to turn an extended (availability annotated) local type into a
(availability annotated) local type by recursively projecting onto the first component of
the extended local type and hence ignoring the markers ∗ and ◦. Therefore, we apply
this implicit coercion for operations that are only defined on (availability annotated)
local types.

60 Chapter 3. Generalising Projection for Multiparty Session Types

p q r s t u

m

m

m

m

m

(a) To be unfolded.

p q r s t u
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m

(b) Unfolded until
all participants are blocked.

Figure 3.10: An HMSC and its unfolding where all participants are blocked
at the end: if the first (single-dashed) messagem is blocked, the ones with
solid arrow can still be sent while the dashed ones cannot as their sender
is blocked. (Note that, here, line style indicates if a message is blocked, not

the message sent.)

Example 3.28. Consider the HMSC in Fig. 3.10a and its unfolding in Fig. 3.10b. The
unfolding exemplifies that one needs to unfold the recursion three times until all
participants get blocked. Still, if there were two more participants that would send
messages to each other independently, one needs to account for these messages with
a recursion. ◀

The set of blocked participants does only increase. If some message is blocked, two
participants are blocked from the beginning and one iteration of the recursion is always
present in any type. In general, a fixed point is reached after |P| − 2 unfoldings.

Definition 3.29 (Blocked projection operator). Let G be some global projectable global
type, E a set of recursion variables, B ⊆ P a set of participants and n some natural
number. Let T be a set of recursion variables and η : T → 2P × N. We define the
blocked projection ↾E,B of G parametrised by n onto a participant r inductively:

0↾E,B
r,n := L 0↾r, ∗ M (µt .G′)↾E,B

r,n :=


L ⟨µt . (G↾E∪{t}

r), avail({R}, {t}, G)⟩, ◦ M and η(t) := (B, 0)
if G↾E∪{t}

r ̸= L ⟨t, _⟩, _ M and t occurs in G↾E∪{t}
r

⟨(G↾E∪{t}
r), avail({R}, {t}, G)⟩ if t does not occur in G↾E∪{t}

r

L ⟨0, ∅⟩, ∗ M otherwise

t↾E,B
r,n :=


L ⟨µt′ . ((getµG(t))[t′/t])↾E,B

r,n , avail({r}, {t}, getµG(t))⟩, ◦ M and η(t′) := (B, η2(t) + 1)

if η1(t) ̸= B ∧ η2(t) < n

L ⟨t, avail({r}, {t}, getµG(t))⟩, ◦ M if η1(t) = B ∧ η2(t) ≤ n

undefined otherwise

3.3. Soundness of Generalised Projection: Projectability implies Implementability 61

∑
i∈I

p→qi :mi . Gi

↾E,B
r,n :=



L ⟨⊕i∈I qi !mi . (Gi↾
E,B
r,n),

⋃
i∈I avail({R}, ∅, Gi)⟩, ◦ M

if p /∈ B ∧ r = p

⊓⊓


L ⟨&i∈I∧qi=r∧r/∈B p?mi . (Gi↾

E,B
r,n),

⋃
i∈I avail({r}, ∅, Gi)⟩, ◦ M

⊓⊓i∈I∧qi=r∧r∈B L ⟨0, ∅⟩, ∗ M
⊓⊓
i∈I∧qi ̸=r∧∀t∈E.Gi↾

E,B
r,n ̸=L ⟨t,_⟩,_ M Gi↾

E,B
r,n

if p /∈ B ∧ r ̸= p

L ⟨0, ∅⟩, ∗ M if p ∈ B ∧ r = p

⊓⊓i∈I Gi↾
E,B∪{qi}
r,n if p ∈ B ∧ r ̸= p

where ⊓⊓ is defined using ⊓:

• for any extended availability annotated local type L ⟨EL,Msg⟩,⊛ M,
it holds that L ⟨EL,Msg⟩,⊛ M ⊓⊓ L ⟨0, ∅⟩, ∗ M := L ⟨EL,Msg⟩, ∗ M for⊛ ∈ {∗, ◦}, and

• for any two extended availability annotated local types L ⟨EL1,Msg1⟩,⊛1 M and
L ⟨EL2,Msg2⟩,⊛2 M, it holds that
L ⟨EL1,Msg1⟩,⊛1 M ⊓⊓ L ⟨EL2,Msg2⟩,⊛2 M := L ⟨(EL1 ⊓ EL2),Msg⟩,⊛′ M
where ⊛1,⊛2,⊛′ ∈ {∗, ◦}, ⊛′ = ∗ iff ⊛i = ∗ for any i ∈ {1, 2} and
⟨_,Msg⟩ := ⟨EL1,Msg1⟩ ⊓ ⟨EL,Msg2⟩.

By assumption, every variable t ∈ T is only bound once and is bound before use in
any global type. Therefore η(t) is always defined. The blocked projection returns an
extended availability annotated local type. Erasing the annotations yields an extended
local type.

The special rule for recursion ensures that we unfold the definition (equi-recursively)
if the set B changed since the recursion variable has been bound. As for the standard
projection, we define G↾Br,n := G↾∅,Br,n .

When we want to emphasise the difference, we call projection ↾_ the standard
projection, in contrast to the blocked projection. The blocked projection ignores all
actions that depend on actions by any participant in B. In the course of computation, B
grows and represents the set of participants that are not able to proceed any further since
their actions depend on some previous action from a blocked participant. With each
unfolding, the set either grows or there is no unfolding necessary anymore. Therefore,
it holds that ∀n ≥ |P| − |B|. G↾Br,n = G↾Br,n+1. In case n is greater than this threshold,
we omit it for readability.

By definition, the blocked projection operator mimcs the standard projection
operator for B = ∅ and n = 0.

Proposition 3.30. For any global type G and r, it holds that G↾∅r,0 = G↾r.

62 Chapter 3. Generalising Projection for Multiparty Session Types

Remark 3.31 (Different use of blocked participants). The blocked projection operator
and the message causality analysis both share the concept of a growing set of blocked
participants. Despite, it does not seem beneficial to unify both approaches. First, we
would establish a cyclic dependency between the projection operator and the message
causality analysis used when merging. Second, the message availability analysis fixes
a participant r that gets blocked. However, the blocked merge operator would return 0

as soon as it encounters r again which will not yield the desired information about the
channel contents.

Correspondence of Blocked Projection Operator and Blocked Languages

Lemma 3.32 (Correspondence of blocked projection operator and blocked languages).
Let G be a projectable global type, G′ a syntactic subterm of G, and r ∈ P be a
participant. Then, for every subset of participants B ⊆ P , it holds that

LB
(G′...)⇓Γr = L(G′↾Br) .

Proof. Let T ′ be all recursion variables in G′ that are not bound in G′. We define Ĝ′ to
be the type that is obtained by substituting every t ∈ T ′ by getµG(t). By construction,
Ĝ′ is a global type (and not only a syntactic subterm of one). Then, it suffices to show
that, for every subset of participants B ⊆ P , LB

(Ĝ′...)
⇓Γr = L(Ĝ′↾Br) where Ĝ′ can be

considered to be the overall global type for GAut(Ĝ′) as well. We prove this claim by
induction on Ĝ′.

There are two base cases. For 0, the claim trivially holds and t is no global type which
Ĝ′ is by assumption.

For the first induction step, let Ĝ′ = µt . Ĝ′′ and the induction hypothesis holds for
Ĝ′′. Both definitions agree on the fact that µt itself does not carry any event. The blocked
projection ensures to only bind a recursion variable if r does use it later on. There is
no such need in the blocked language along paths. We do the same case analysis as
the blocked projection operator. First, if t is used after some actual event, t is bound
and the induction hypotheses concludes the claim. Second, if t is never used, t is not
bound and the blocked language along the path yields the same language by induction
hypothesis. Third, otherwise, i.e. if the projection of the continuation yields ⟨0, _⟩, the
blocked language along path enters an empty loop and the claim follows.

For the second induction step, let Ĝ′ = Σi∈Ip→qi :mi . Ĝ′
i and the induction

hypothesis holds for Ĝ′
i for every i ∈ I . As for the previous case, we apply the same case

analysis as for the blocked projection operator: to be more precise, a combined analysis
if p ∈ B and if r = p.

(i) Suppose that p /∈ B and p = r. On both sides, B does not change in the
recursive calls. Thanks to the projection ⇓Γr , the same event p▷qi !mi is added

3.3. Soundness of Generalised Projection: Projectability implies Implementability 63

before recursing. (Due to the projection for the blocked language along a path,
there is no need for a case analysis for qi ∈ B).

(ii) Suppose that p /∈ B and p ̸= r.
For this case, we consider each branch i ∈ I individually and do another case
analysis whether r = qi.
For r ̸= qi, no events are added for the blocked projection operator (and branches
of empty loops, yielding empty languages along the path, ignored for further
projection) and the ones added for the blocked language along a path are projected
away.
For r = qi, we need another case split and check whether r ∈ B.
If so, the blocked language along a path recurses and produces a language {ε}with
this, the blocked projection operator stops immediately and returns ⟨L 0, ∅ M, ∗⟩
which produces the same language.
If not, both sides add the same receive event for r (and the send event is projected
away).

(iii) Suppose that p ∈ B and p = r. On both sides, the result is {ε}.
(iv) Suppose that p ∈ B and p ̸= r. On both sides, no event is added but the recursions

add qi to the set B. These recursions are also covered by the induction hypotheses
because we quantified over B.

Properties of Projectable Global Types

In this section, we establish properties that we will use in the induction step of the proof
for Lemma 3.24 – one for the send and one for the receive case.

Lemma 3.33 (Property of Projectable Global Types I – Send). Let G be a projectable
global type andG = Σi∈I p→qi :mi . Gi be some syntactic subterm. Then, for all i, j ∈ I

and r ∈ P , it holds that L{p,qi}
(Gi...)

⇓Γr = L
{p,qj}
(Gj ...)

⇓Γr .

Proof. With Lemma 3.32, it suffices to show that Gi↾
{p,qi}
r = Gj↾

{p,qj}
r for all i, j and r.

First, we take care of the two special cases where r is either p or qi for some i ∈ I .
On the one hand, if r = p, it is straightforward that L ⟨0, ∅⟩, ∗ M is the result of both

projections. On the other hand, assume without loss of generality r = qi for some
i ∈ I . Then, it holds that Gi↾

{p,qi}
r = L ⟨0, ∅⟩, ∗ M. Towards a contradiction, assume there

is a j ∈ I such that Gi↾
{p,qi}
r ̸= Gj↾

{p,qj}
r . Since G is projectable, we know that the

Gi↾r ⊓ Gj↾r is defined and therefore, r cannot send as first action in the projection for
Gj . Therefore, it needs to receive. However, then this message must be unique for this
branch and by definition, the choice which branch to take is blocked in Gj↾

{p,qj}
r and

such a message cannot exist in the blocked projection. Therefore, both projections are
L ⟨0, ∅⟩, ∗ M.

64 Chapter 3. Generalising Projection for Multiparty Session Types

For the case where r ̸= p and r ̸= qi for all i ∈ I , we introduce a slight variation
⊓⊓⊓ of ⊓⊓ to state a sufficient claim. The merge operator ⊓⊓⊓ is defined as ⊓⊓ but does only
merge⊛1 and⊛2 if⊛1 = ⊛2 and does require that I = J when merging receives. Then,
⊓⊓⊓ does only merge extended local types that are exactly the same by definition.

Hence, it suffices to show that Gi↾
{p,qi}
r

⊓⊓⊓ Gj↾
{p,qj}
r is defined for all i, j, and r.

For this, we first show that the set of blocked participants B in two branches will be
the same if some recursion variable is merged with ⊓⊓⊓. Intuitively, this is true because the
⊓-operator does not unfold recursions and a participant is either agnostic to some choice
(merging two recursion variables) or has learnt about the choice before encountering the
recursion variable.

Claim I: For all i, j, and r, if t↾Bi
r

⊓⊓⊓ t↾Bj
r occurs in the computation of the above merge

with ⊓⊓⊓, then Bi = Bj .
Proof of Claim I.

(Note that in the presence of empty loops, the definition prevents such kinds of merge
by definition.) Recall that Gi and Gj are two branches of the same choice in which r

is not involved. Towards a contradiction, suppose that there are i, j and r such that
Bi ̸= Bj . Without loss of generality, there must be some participant s such that s ∈ Bi

and s /∈ Bj . It is obvious that s /∈ {p, qj}. We do a case analysis whether s = qi.
If so, s receives in branch i and since ⊓ is defined, it must also receive in every

continuation specified by Gj – otherwise t would be merged with a receive which is
undefined. (There could be subsequent branches inGj and therefore s could potentially
receive different messages but at least one in every continuation.) By definition, these
possible receives must be unique and therefore distinct from mi by p and all possible
messages for s in the continuation ofGj , ensured by the available messages. Because of
this uniqueness, the send event for any receive event in Gj must not be possible in Gi.
But for this, the send event must depend on the decision by p and therefore s ∈ Bj

which yields a contradiction.
Suppose that s ̸= qi. By assumption, s ∈ Bi so there must be some receive for s for

which the corresponding send event depends on p▷qi !mi. From here, the reasoning is
analogous to the previous case.

End Proof of Claim I.

In Claim I, Bi and Bj capture all participants that depend on the choice by p (without
unfolding the recursion). The standard projection and merge operator ⊓ do not unfold
any recursions and t ⊓ t is the only rule to merge recursion variables. Therefore, a
participant either has to learn about a choice by receiving some unique message before
recursing or will never learn about it (since t maps back to the same continuation).
Combined with Claim I, it suffices to show that Gi↾

{p,qi}
r

⊓⊓⊓ Gj↾
{p,qj}
r does not return

undefined until the first recursion variable is encountered, for all i, j, and r. Towards a
contradiction, suppose it does return undefined for some i, j, and r.

We check all possibilities why ⊓⊓⊓ can be undefined.

3.3. Soundness of Generalised Projection: Projectability implies Implementability 65

To start with, either of both projections ↾ can return undefined when the parameter
n is too small but we choose a sufficiently big enough n, making this impossible.

Let us define some notation: for l ∈ {i, j}, let L ⟨ELl,Msgl⟩,⊛l M = Gl↾
{p,qi}
r .

Then, L ⟨ELi,Msgi⟩,⊛i M ⊓⊓⊓ L ⟨ELj,Msgj ⟩,⊛j M is undefined if ⊛i ̸= ⊛j (first case) or
ELi

⊓⊓⊓ ELj (second case) is undefined.
The first case can only occur if L ⟨0, ∅⟩, ∗ M is merged on top level in the projection

of one branch and not the other. Without loss of generality, let Gi↾
{p,qi}
r be the branch

where this happens. On the one hand, this occurs when r receives from a participant in
Bi and since Gi↾r ⊓Gj↾r is defined by assumption, r also receives in the branch of j by
definition of ⊓. For the standard merge ⊓, both messages are checked to be unique for
both branches. However, if r can still receive the message in Gj↾

Bj
r , this cannot depend

on the choice by p and hence must also be possible in Gi which yields a contradiction.
On the other hand, ⟨0, ∅⟩ can also be the result of projecting empty loops (after some
choice operation). Then, however, since Gi↾r is defined, all other branches also return
⟨0, ∅⟩ for the standard projection to be defined. In turn, since Gi↾r ⊓ Gj↾r is defined,
Gj↾r is ⟨0, ∅⟩ and hence the above projection cannot be undefined.

For the second case, we first observe that both ⊓ and ⊓⊓⊓ agree on the type of events
that can be merged, e.g. only send events can merge with send events. This is why we do
not consider all the different combinations, e.g. of merging send events with recursion
binders, but only the ones that are defined in both cases. Note that ELi

⊓⊓⊓ ELj is defined
for cases where the rules of ⊓⊓⊓ mimic the ones of ⊓ literally. (Recall that we do only
need to check until the first recursion variable thanks to Claim I.) In this sense, both
definitions ⊓⊓⊓ and ⊓ agree for merging 0, recursion variables t, recursion binders µt and
send events (internal choice ⊕). For receive events (external choice &), they do not
agree. The variant ⊓⊓⊓ requires that both sets I and J are the same. Since ⊛i = ⊛j , there
needs to be some message exchange in one branch that cannot happen in the other
branch. However, analogous to the previous case, the send event of such a receive event
must not depend on the choice of p which branch to take. However, this is not possible
with the blocked projection operator so ⊓ would also be undefined in this case, yielding
a contradiction.

Lemma 3.34 (Property of Projectable Global Types II – Receive). Let G be some global
type and G′ be some syntactic subterm of G. For every subset of participants B ⊆ P , it
holds that msgsB(G′...) = avail(B, ∅, G′)

Proof. As for the proof of Lemma 3.33, we construct a global type Ĝ′ that specifies the
same protocol asG′ in the context ofG. Let T ′ be all recursion variables inG′ that are not
bound inG′. We define Ĝ′ to be the type that is obtained by substituting every t ∈ T ′ by
getµG(t). By construction, Ĝ′ is a global type (and not only a syntactic subterm of one).

66 Chapter 3. Generalising Projection for Multiparty Session Types

Let T be the set of all recursion variables in Ĝ′. Since we unfolded the unbound
recursion variables up-front in Ĝ′, it is straightforward, from the definition of
avail(-, -, -), that the following holds:

avail(B, ∅, G′) = avail(B, T, Ĝ′) .

By construction of Ĝ′, the computation of avail(B, T, Ĝ′) will never apply the second
case which is the only one where we do not simply descend in the structure of the
third parameter so induction hypotheses will apply. By the equi-recursive view on
global types, it holds that msgsB(G′...) = msgsB

(Ĝ′...)
and therefore it suffices to show that

msgsB
(Ĝ′...)

= avail(B, T, Ĝ′).

We do induction on the structure of Ĝ′ to prove the claim.
For the base case where Ĝ′ = 0, the claim follows trivially.
For Ĝ′ = t, we know that either t ∈ T ′ has been substituted by its definition using

getµG(-) or it was bound in G′. Normally, one would need to substitute t again and
consider the messages. However, in both cases, we know that we traversed all branches
from the binder to the variable at least once and unfolding further does not change the set
of available messages, which only consist the first possible message for every channel.

For the induction step, suppose that Ĝ′ = µt . Ĝ′′ first. By induction hypothesis, we
know that the claim holds for Ĝ′′ and the binder for recursion variable t does not add any
message to the set of messages: msgsB

(µt . Ĝ′′...)
= msgsB

(Ĝ′′...)
. By definition, we have that

avail(B, T, µt . Ĝ′′) = avail(B, T ∪{t}, Ĝ′′) = avail(B, T, Ĝ′′). By induction hypothesis,
it holds that msgsB

(Ĝ′′...)
= avail(B, T, Ĝ′′), which proves this case.

Last, let Ĝ′ = Σi∈I p→qi :mi . Ĝ′
i. We do a case analysis if p /∈ B.

Suppose that p /∈ B. Then, all receives are added by definition of msgsB_ :

msgsB
(Ĝ′...)

= {q◁p?mi | i ∈ I} ∪
⋃
i∈I

msgsB
(Ĝ′

i....)
.

For avail(B, T, Ĝ′), the fourth case in the definition applies:

avail(B, T, Ĝ′) = {q◁p?mi | i ∈ I} ∪
⋃
i∈I

avail(B, T, Ĝ′
i) .

The first part of the equations are identical and combining the induction hypotheses for
each Ĝ′

i proves the claim.

3.3. Soundness of Generalised Projection: Projectability implies Implementability 67

Suppose that p ∈ B. Then, by definition, it holds that msgsB
(Ĝ′...)

does not contain
any of the receipts qi◁p?_. Additionally, qi is added to B by definition: msgsB

(Ĝ′...)
=⋃

i∈I msgs
B∪{qi}
(Ĝ′

i....)
. For avail(B, T, Ĝ′), the fifth case applies:

avail(B, T, Ĝ′) =
⋃
i∈I

avail(B ∪ {qi}, T, Ĝ′
i) .

Combining the induction hypotheses for each Ĝ′
i proves the claim.

Existence of Family of Run Mappings for Projectable Global Types

Equipped with these properties, we can prove the existence of run mappings.

Lemma 3.24 ({LAut(G↾p)}p∈P has a family of run mappings). Let G be a projectable
global type. Then, {{LAut(G↾p)}}p∈P has a family of run mappings for GAut(G).

Proof. Let w be a prefix of an execution of {{LAut(G↾p)}}p∈P . We prove the claim by
induction on the length of w. The base case where w = ε is trivial: ρ = ε and ρ(p) = ε

for all p.
For the induction step, we append x to obtain wx for which x = ε, x = p◁q?m

or x = p▷q!m for some p, q and m. As induction hypothesis, we assume that there is
some run ρ in GAut(G) such that w′ ⪯∼ trace(ρ) and a run mapping ρ(-) such that
w⇓Γp = trace(ρ(p))⇓Γp for every p.

For all cases, we re-use the witness run ρ by extending it to ρ′ when necessary and
re-use the run mapping ρ(p) except for at most one participant.

First, Suppose that x = ε. Then, the claim follows with the same run ρ and
mapping ρ(-). It is straightforward that w⇓Γp = (wε)⇓Γp for every p holds. Let p be
the participant which takes an ε-transition and hence leads to the extension by ε. By
the definition of semantics for local types (Definition 3.3), we know that a state can
only have a single ε-transition and hence the trace wε can be extended in the same
way as w is extended to w′ to obtain w′′ for wε. Since w′ and w′′ only differ by one ε,
w′′ ∼ w′ ∼ trace(ρ) and the claim follows by transitivity of ∼.

Second, suppose that x = p◁q?m.
Claim I: It holds that ρ(p) ≤ ρ(q).

Proof of Claim I. We know trace(ρ(p))⇓Γp = w⇓Γp and trace(ρ(q))⇓Γq = w⇓Γq . By
definition of GAut(G), we know that p’s and q’s common actions always happen in pairs
of sending and receiving a message. Since there is no out-of-order execution, we know
that p cannot have received m from q yet. Hence, ρ(p) ≤ ρ(q).

End Proof of Claim I.
For every r ̸= p, we define ρ′(r) = ρ(r). We know that (wx)⇓Γr = w⇓Γr for every r ̸= p

so the conditions on the run mapping is satisfied for all r ̸= p.

68 Chapter 3. Generalising Projection for Multiparty Session Types

For p, we extend ρ(p) to be longest, i.e. extending the run further would render one
of the conditions for run mappings unsatisfied, to obtain a set of possible extended runs.
For every run, either the last or second-last state of these runs corresponds to some
syntactic subterm of G. One of them is a prefix of the sender’s run ρ(q). In case of
empty loop branches, the set of runs might be infinite, however, only one is a prefix of
the sender’s run ρ(q). We denote its syntactic subterm byG′ and we will show that only
the option taken by q can be pursued.

Since p can receive m from q, we know that the current local type L of p is the
result of (merging) the projection of some type(s) of shape Σ_ _→_ :_ . _ and all these
syntactic subterms are of this form. Thus, the local type L must be the result of some
merge applying the receiving rule last to compute

⟨L, _⟩ = ⟨L1,Msg1⟩ ⊓ . . . ⊓ ⟨Ln,Msgn⟩

for some n and Ll = &i∈Il ql?mi.ALl,i for every l ∈ {1, . . . , n} and for some
l ∈ {1, . . . , n}, it holds that ⟨Ll,Msg l⟩ = G′↾p. The other local types correspond
to the branches p explores concurrently while processing w⇓Γp . We unrolled the
binary definition of merge but since ⊓ is associative and commutative, we know that
⟨Ll,Msg l⟩ ⊓ ⟨Ll′ ,Msg l′⟩ is defined for all l, l′ ∈ {1, . . . , n}. Therefore it holds, for any
l, l′ ∈ {1, . . . , n}, that

∀i ∈ Il \ Il′ . p◁ql?mi /∈ Msg l′ , and
∀i ∈ Il′ \ Il. p◁ql′ ?mi /∈ Msg l.

Without loss of generality, let k ∈
⋃

1≤l≤n Il be the index for which q = qk and
m = mk. Therefore, for any l with k /∈ Il, it holds that p◁qk ?mk /∈ Msg l.

Let l be some index. To obtain every individual availability annotated local type
⟨Ll,Msg l⟩, the following case of the projection has been applied:

⟨Ll,Msg l⟩ = ⟨ &
j∈Jl

ql?mj.(Gj↾p),
⋃
j∈J

avail({p}, ∅, Gj)⟩

for some index sets Jl and syntactic subterms Gj .
From Lemma 3.34, we have that, for every l ∈ {1, . . . , n}, j ∈ Il and B ⊆ P , it holds
that msgsB(Gj ...)

= avail(B, ∅, Gj) (*). Recall that msgsB(Gj ...)
is defined as all messages

that can be sent in any run starting with branch Gj when no participant in B can take
any further step.

By definition of ⊓, all the first actions qk ?mk will be merged together to one branch
in the local type L so p will continue with this branch of L. Let us denote this branch
by Bk for now. By instantiating (*) with B = {p} whose next action is to receive from
q, we know that the message mk by participant qk cannot occur in the channel (q, p) in
any branch of L different from Bk so p cannot diverge from the run ρ(q) by receiving

3.3. Soundness of Generalised Projection: Projectability implies Implementability 69

mk out of order. Hence, p follows the run of q. By assumption p can receive from q, so q
must have taken one of the runs that corresponds to this branch of L so we can choose
ρ′(p) such that ρ′(p) ≤ ρ(q) which proves the claim.

Third, suppose that x = p▷q!m.
We collect the participants with longer runs than p:

S := {r | ρ(p) ≤ ρ(r) ∧ ρ(p) ̸= ρ(r)} .

It is obvious that p /∈ S . We assume S is not empty as the claim follows trivially if it is:
we could simply extend ρ, keep the mapping for all other participants and extend it for
p accordingly.

As before, for p, we extend ρ(p) to be longest, i.e. extending the run further would
render one of the conditions unsatisfied, to obtain a set of possible runs. In the presence
of empty loop branches, this set could be infinite. Here, it suffices to obtain some valid
run mapping though. For every run in this set, either the last or second-last state of
these runs corresponds to some syntactic subterm of G. Since p can send m to q, we
know that the current local type L of p is the result of (merging) the projection of some
type(s) of shape Σ__→_ :_._ and all these syntactic subterms are of this form. The local
type is also the result of merging of this shape since p sends at this step:

L = ⊓
i∈I

(⊕
j∈J

qj !mj.(G(i,j)↾p)) = ⊕
j∈J

qj !mj. ⊓
i∈I

(G(i,j)↾p)

for some index sets I and J , qj as well as mj and G(i,j) for every j ∈ J and i ∈ I .
So the merge ⊓ ensures that p has the same options to send after processing w⇓Γp ,

no matter which run in GAut(G) was pursued. This ensures that we are able to adapt
the mapping from the induction hypothesis such that trace(ρ′(p)) = (wx)⇓Γp .

Inspired by prophecy variables [1], we assume that each participant r in S followed
the run that p will choose to take, i.e. ρ′(p) ≤ ρ(r). Assuming this, we can re-use the
same mapping for them: ρ′(r) = ρ(r) and the overall claim follows.

It remains to show that the mappings ρ(r) for r ∈ S can be chosen in such a way
without prohibiting any of the participants to proceed with some events. We will do so
by applying Lemma 3.33.

Participant p might be pursuing more than one run in GAut(G). Since all first
send options for p could be merged, we know that they are the same over all possible
continuations. Therefore, we show that nomatterwhich option p chooses, no participant
r ∈ S can have processed an action that is incompatible with this branch yet,
provided that neither the sender p nor each receiver qi has processed some event in
the continuations of the branch of option i.

For this, we show for all r ∈ S, i ∈ I and j1, j2 ∈ J that

L
{p,qi}
(G(i,j1)

...)⇓Γr = L
{p,qj}
(G(i,j2)

...)⇓Γr .

70 Chapter 3. Generalising Projection for Multiparty Session Types

Since we do only compare runs that start at the same state, i.e. the syntactic subterm
⊕j∈J qj !mj.G(i,j), this claim follows from Lemma 3.33. It suffices to compare those
since p can not and does not dictate which of the branches of I were taken, but the
ones in J . It might happen that some choice with regard to the options in I has already
been committed but p does not know about this at this stage yet. Still, all participants
in S have the same options along all the options in J and therefore the use of prophecy
variables does not prohibit them from proceeding with any action that is possible in
the execution.

This concludes the induction and, thus, the proof.

3.3.5 From Run Mappings via Control Flow Agreement
to Implementability

To show protocol fidelity and deadlock freedom, we use a strengthening of the run
mappings by a progress condition. Any trace can be extended to match all actions in
the run given by the run mapping.

Definition 3.35 (Control Flow Agreement). Let G be a global type. A CSM {{Ap}}p∈P
satisfies Control Flow Agreement (CFA) for GAut(G) iff for every finite trace w of
{{Ap}}p∈P , there is a run ρ in GAut(G) such that the following holds:

• w⇓Γp is a prefix of trace(ρ)⇓Γp for every participant p, and
• w can be extended (in {{Ap}}p∈P) to w′ such that w′ ∼ trace(ρ).

Run mappings do only show that nothing did go wrong yet because there is a global
run all participants could have followed up to some point. With the following lemma, we
show that all participants can catch up to the end of this global run, a first step towards
control flow agreement.

Lemma 3.36 (Runs following a common path are extendable). Let G be a projectable
global type, w a trace of {{LAut(G↾p)}}p∈P , and ρ a finite run in GAut(G) such that
w⇓Γp ≤ trace(ρ)⇓Γp for every p ∈ P . Then, there is a trace w′ of {{LAut(G↾p)}}p∈P such
that w ≤ w′ and w′ ∼ trace(ρ).

Proof. By definition, it holds that trace(ρ) ∈ pref(L(G)). (The run ρ might not be
maximal and we, thus, use pref(-).) From Lemma 3.21, we know that every prefix of
L(G) is also the trace of some run in {{LAut(G↾p)}}p∈P . Thus, there is a run for trace(ρ)
in {{LAut(G↾p)}}p∈P . With Lemma 2.10, which shows that languages of CSMs are closed
under ∼, it follows that every trace in C∼({trace(ρ)}) has a run in {{LAut(G↾p)}}p∈P .

We prove the claim by finding w′ such that w ≤ w′ and w′ ∼ trace(ρ).
By Lemma 2.9, it suffices to find a FIFO-compliant trace w′ such that w′⇓Γp =

trace(ρ)⇓Γp for every participant p.

3.3. Soundness of Generalised Projection: Projectability implies Implementability 71

We know that, for every p, there is yp such that (w⇓Γp) · yp = trace(ρ)⇓Γp . We show
that there is a FIFO-compliantw′ = wy such that y⇓Γp = yp for every p. Sincew is a trace
of a CSM,w is FIFO-compliant (Lemma 2.5). We need to construct y and start with y = ε.
We extend y by consuming prefixes of yp and do so as long as some yp is not empty. At
all times, we preserve the following invariant for every p: (wy)⇓Γp · yp = trace(ρ)⇓Γp .

If there is any yp = (p▷q!m) · y′p, we extend y = y · (p▷q!m) and set yp = y′p.
This preserves the invariant and appending events of shape _▷_!_ to y does preserve
FIFO-compliancy of wy. If there is no such yp (and not all yp are empty), there is a set of
participants S such that yp = (p◁_?_) · y′p for every p ∈ S . Intuitively, we define the
shortest prefix ρ′ of ρ such that there is some participant whose trace is included in the
projection of trace(ρ′):

ρ′ := min
≤

{max
≤

{ρ′ | ∃p ∈ S. (wy)⇓Γp = trace(ρ′)⇓Γp for ρ
′ ≤ ρ}}.

We are interested in the next non-ε transition label of the run ρ′ and, thus, use max≤
to have such a label, making it technically not the shortest run prefix. Let p ∈ S such
that (wy)⇓Γp = trace(ρ′)⇓Γp . Let ρ′ = ρ′′

q−→ x−→ q′. By construction, it holds that x ∈ Γp.
Therefore, the choice of p is unique and for all other participants q ̸= p, it holds that
(wy)⇓Γq ̸= trace(ρ′)⇓Γq . By assumption, it holds that (wy)⇓Γq ≤ trace(ρ)⇓Γq and hence
trace(ρ′)⇓Γq ≤ (wy)⇓Γq because ρ′ ≤ ρ for all q with q ̸= p (*).

Let yp = (p◁q?m)·y′p for some q andm. We append the first event p◁q?m from yp to
y, i.e. y := y · (p◁q?m) and yp = y′p. It is straightforward that the invariant is preserved.
For FIFO-compliancy of wy, we need to show that

V((wy)⇓q ▷p !_) ≤ V((wy)⇓p◁ q?_) .

From the invariant, we know that (wy)⇓Γp · yp = trace(ρ)⇓Γp and (wy)⇓Γq · yq =

trace(ρ)⇓Γq , so it holds that (w · y · yp)⇓p◁ q?_ = trace(ρ)⇓p◁ q?_ and (w · y · yq)⇓q ▷p !_ =

trace(ρ)⇓q ▷p !_. Global types specify FIFO-compliant words (Proposition 2.25), which
is a property that is preserved by pref(-). Thus, trace(ρ) is FIFO-compliant, yielding
V(trace(ρ)⇓p◁ q?_) = V(trace(ρ)⇓q ▷p !_). This ensures that the next message in (q, p) is
m if it exists. By definition of Γ and GAut(G), the send and receive event of r→s :m

always occur in pairs on the run ρ. From (*), we know that q▷p!m must be the next
action of shape q▷p!_ with unmatched receive in wy. Channels preserve FIFO order so
the next message in channel (q, p) is m.

Overall, this procedure ensures that we can always extend wy by appending prefixes
of yp in a way that preserves FIFO-compliancy of wy and (wy)⇓Γp · yp = trace(ρ)⇓Γp

for every p. Note that ρ is finite and hence each yp is finite so the procedure terminates.
For w′, we can choose the result of the procedure wy and it holds, for every p, that
(wy)⇓Γp = trace(ρ)⇓Γp which proves the claim.

72 Chapter 3. Generalising Projection for Multiparty Session Types

We use the previous result to show that the existence of a family of run mappings
entails control flow agreement for the CSM of local types.

Lemma 3.37 (Run mappings entail CFA). Let G be a projectable global type, If
{{LAut(G↾p)}}p∈P has a family of run mappings for GAut(G), then {{LAut(G↾p)}}p∈P
satisfies CFA for GAut(G).

Proof. Letw be a trace of {{LAut(G↾p)}}p∈P with witness run ρ and its run mapping ρ(-).
We can assume that ρ is finite since w is a finite trace. We know that trace(ρ(p))⇓Γp =

w⇓Γp and ρ(p) ≤ ρ for every p. Hence, for every p, it holds that w⇓Γp ≤ trace(ρ)⇓Γp ,
which is exactly the first condition of CFA.

The second condition requires that we can extend w to w′ in {{LAut(G↾p)}}p∈P such
that w′ ∼ trace(ρ). Since ρ is finite, we can apply Lemma 3.36 and obtain an extension
w′ of w in {{LAut(G↾p)}}p∈P such that w′ ∼ trace(ρ).

We want to use control flow agreement to show that the CSM of local projections
does not introduce new behaviour. In addition, we use a previous result and show both
ingredients for implementability: first, protocol fidelity and second, deadlock freedom.

Lemma 3.38 (CFA for {{LAut(G↾p)}}p∈P entails protocol fidelity). LetG be a projectable
global type. If the CSM {{LAut(G↾p)}}p∈P satisfies CFA for GAut(G), then C∼(L(G)) =

L({{LAut(G↾p)}}p∈P).

Proof. We prove the claim by two inclusions.
First, Lemma 3.21 yields that L(G) ⊆ L({{LAut(G↾p)}}p∈P). The language of a CSM

is closed under ∼ (Lemma 2.10), hence the first inclusion holds.
It remains to prove the second inclusion: L({{LAut(G↾p)}}p∈P) ⊆ C∼(L(G)).

Let w ∈ L({{LAut(G↾p)}}p∈P). For both the finite and infinite case, we will use
Definition 3.35 to obtain a maximal run ρ in GAut(G) for which w⇓Γp ≤ trace(ρ)⇓Γp for
every p.

We do a case split whether w is finite or infinite.
First, suppose thatw is finite. We use Definition 3.35 to find the corresponding run ρ

in GAut(G), show that it is maximal in GAut(G) and that we do not need to extend w

for any participant to reach the end of ρ.
We show that ρ ends in a final state q and is hence maximal in GAut(G). Let (q⃗, ξ)

be the final configuration of {{LAut(G↾p)}}p∈P that has been reached with trace w. Since
(q⃗, ξ) is final, every q⃗p is final in LAut(G↾p). Then, we know that q⃗p corresponds to 0

by definition of LAut(G↾p). By construction of the FSM for the semantics of local types
(Definition 3.3), q⃗p does not have any outgoing transitions. Proposition 3.20 states that
every run in GAut(G)⇓Γp is also possible in LAut(G↾p). Therefore, by contradiction, it
follows that a run in GAut(G)⇓Γp with trace w⇓Γp cannot be extended to a run with a
longer trace for all p. Hence, the run of trace(ρ) in GAut(G) cannot be extended to a
run with a longer trace, i.e. there can only be ε-transitions. By definition of GAut(G),
ε-transitions occur from states corresponding to t and µt .G′. We claim that q does

3.3. Soundness of Generalised Projection: Projectability implies Implementability 73

not correspond to any t or syntactic subterm of shape µt .G′. Towards a contradiction,
assume that q corresponds to some t or subterm of shape µt .G′. Global types have
guarded recursion, i.e.G′ cannot be 0 for any µt .G′. Then there is some non-ε-transition
from q, which is a contradiction.

Hence, there is also no ε-transition from q and q does not have any outgoing
transitions. By construction of the semantics of global types (Definition 2.24),
q corresponds to 0, is final in GAut(G), and ρ is maximal in GAut(G).

It remains to show that we do not need to extend w to w′ for any participant – in
other words, that every participant followed the run ρ all the way to the end. We define
S := {p | w⇓Γp ̸= trace(ρ)⇓Γp}. We claim that S = ∅. Towards a contradiction, let
us assume that w⇓Γp ̸= trace(ρ)⇓Γp for p ∈ S . Since we reached the final state q with
ρ in GAut(G) which corresponds to 0, there is no successor in {{LAut(G↾p)}}p∈P for q⃗p
either and there is no possibility to extend w for any p but this contradicts the second
condition of CFA and we do not need to extend w′ for any participant.

So it holds that w ∼ trace(ρ). Because ρ is maximal, we have that trace(ρ) ∈ L(G)

and the claim (for finite w) follows since L(G) is closed under ∼ by definition.
Second, suppose that w is infinite. We show that there is an infinite run in GAut(G)

that matches with w when closing under ∼.
From Definition 3.35, we can obtain a finite run ρ for every prefix u of w such that

the conditions for CFA hold, i.e. there is an extension u′ of u with u′ ∼ trace(ρ). To
simplify the argument, we use an idea similar to prophecy variables [1] as in the proof
of Lemma 3.24. Here, we can use a similar oracle that tells which witness run as well as
run mapping to use for every prefix of w. This does not restrict the participants in any
way: all conditions of CFA hold for the prefix and this witness run since they hold for
longer prefixes ofw. By this, we ensure that the run ρ can always be extended for longer
prefixes of w (∗).

We prove the existence of an infinite run similarly to Lemma 3.21. Consider a tree T
where each node corresponds to a run ρ on some finite prefixw′ ≤ w. The root is labelled
by the empty run. The children of a node ρ are runs that extend ρ by a single transition
– these exist by (∗). Since our CSM, derived from a global type, is a finite number of
finite state machines, T is finitely branching. By König’s Lemma, there is an infinite
path in T that corresponds to an infinite run ρ in GAut(G) for which w ⪯ω

∼ trace(ρ).
By definition of C∼(-) for infinite traces, this yields w ∈ C∼(L(G)).

We prove the same property for deadlock freedom, the second ingredient to
implementability.

Lemma 3.39 (CFA for {{LAut(G↾p)}}p∈P entails deadlock freedom). Let G be a
projectable global type. If the CSM {{LAut(G↾p)}}p∈P satisfies CFA for GAut(G), then
{{LAut(G↾p)}}p∈P is deadlock-free.

74 Chapter 3. Generalising Projection for Multiparty Session Types

Proof. Towards a contradiction, assume that {{LAut(G↾p)}}p∈P has a deadlock. Then,
there is a trace w for which {{LAut(G↾p)}}p∈P reaches a non-final configuration (q⃗, ξ)

and no transition is possible. Let ρ be the maximal run fromDefinition 3.35 for which the
conditions of CFA hold. Since {{LAut(G↾p)}}p∈P cannot make another step, the second
condition can only apply for w′ = w, so all events along ρ have been processed by all
participants, i.e. w⇓Γp = trace(ρ)⇓Γp for every p, by Lemma 2.9.

Claim I: We claim the last state q of ρ corresponds to 0.
Proof of Claim I. Towards a contradiction, assume that ρ can be extended, i.e. q has

a successor. Since ρ is maximal, there cannot be any ε-transitions from q but only some
transition labelled different from ε. Since all participants have processed all events along
ρ and send and receive events are always jointly specified, such a transition can only be
labelled by p▷q!m for some p, q, and m. Hence, there is a run for (w⇓Γp) · p▷q!m
in GAut(G)⇓Γp . By Proposition 3.20, there is a run for (w⇓Γp) · p▷q!m in LAut(G↾p).
Participant p can hence take another transition which contradicts the assumption that
(q⃗, ξ) is a deadlock.

End Proof of Claim I.
So we know that the last state q of ρ corresponds to 0. Again, by Proposition 3.20, there
is no transition for any p from q⃗p in LAut(G↾p) becauseGAut(G)⇓Γp has no transition for
any p. All channels in ξ are empty and w⇓Γp = trace(ρ)⇓Γp for every p. By construction
of the FSM for the semantics of global types (Definition 2.24), a state without outgoing
transitions corresponds to 0 and is thus final. But then, all states in q⃗p are final (and
all channels in ξ are empty) so (q⃗, ξ) is a final configuration, which yields the desired
contradiction.

3.3.6 Wrapping Up: Projectable Global Types are Implementable

Now, we can prove our main result.

Theorem 3.19. If a global type G is projectable, then {{LAut(G↾p)}}p∈P implements G.

Proof of Theorem 3.19. Let {{LAut(G↾p)}}p∈P be the CSM of local types. Then, we know
that {{LAut(G↾p)}}p∈P has a family of run mappings for GAut(G) by Lemma 3.24. This,
in turn, entails that {{LAut(G↾p)}}p∈P satisfies control-flow agreement for GAut(G) by
Lemma 3.37. This satisfies the condition for Lemmas 3.38 and 3.39, giving protocol
fidelity and deadlock freedom.

In addition, we know that feasible eventual reception can be achieved. With control
flow agreement, there is a run in the global type’s state machine that all participants’
views agree with. We argued before that all participants can catch up to the participant
that progressed furthest in this run and then, by definition of global types, all channels
are empty.

Corollary 3.40 (Feasible eventual reception). The CSM {{LAut(G↾p)}}p∈P for a global
type G satisfies feasible eventual reception if it is defined.

3.4. Incompleteness of Classical Projection Approaches 75

3.4 Incompleteness of
Classical Projection Approaches

In the previous section, we presented our generalised projection operator, which is
based on the classical MST projection approach. It can handle more communication
patterns than previous projection operators. It is still not complete, though: it rejects
implementable protocols. In this section, we exemplify such shortcomings of the
classical projection approach. For this, we present two implementable variations of the
two buyer protocol (cf. Sec. 3.1.1) and an example where a participant learns about a
choice through the parity of number of messages received.

Example 3.41. We obtain an implementable variant by omitting both message
interactions a→s :nowithwhich buyer a notifies seller s that theywill not buy the item:

µt . +

{
a→s :query . s→a :price .

(
a→b :split . (b→a :yes . a→s :buy . t+ b→a :no . t) + a→b :cancel . t

)
a→s :done . a→b :done . 0

.

This global type cannot be projected onto seller s. The merge operator would need to
merge a recursion variable with an external choice. Visually, the classical merge operator
does not allow to unfold the variable t and try to merge again. However, there is a local
type for seller s:

µt1 . &

{
a?query . µt2 . a!price . (a?buy . t1 & a?query . t2 & a?done . 0)

a?done . 0
.

The local type has two recursion variable binders while the global type only has one.
Classical projection operators can never yield such a structural change: the merge
operator can only merge states but not introduce new ones or introduce new
backward transitions. ◀

Example 3.42 (Two Buyer Protocol with Subscription). In this variant, buyer a first
decides whether to subscribe to a yearly discount offer or not — before purchasing the
sequence of items — and notifies buyer b if it does so:

G2BPWS := +

{
a→s : login . G2BP

a→s : subscribe . a→b : subscribed . G2BP

.

The merge operator needs to merge a recursion variable binder µt with the external
choice b◁a?subscribed. Still, there is a local type Lb for b such that L(Lb) =

L(G2BPWS)⇓Γb :

Lb := &


a?split . (a!yes . L(t1)⊕ a!no . L(t2))

a?cancel . L(t3)

a?done . 0

a?subscribed . L(t4)

where L(t) := µt . &


a?split . (a!yes . t⊕ a!no . t)

a?cancel . t

a?done . 0

.

76 Chapter 3. Generalising Projection for Multiparty Session Types

In fact, one can also rely on the fact that buyer awill comply with the intended protocol.
Then, it suffices to introduce one recursion variable t in the beginning and substitute
every L(-) with t, yielding a local type L′

b with L(Lb) ⊆ L(L′
b). ◀

Both examples show how brittle the classical projection approach is. In fact, one
could unfold recursion variables, obtaining an equivalent global type that is then
projectable. However, this is quite cumbersome and it will still be the case that the
projected local types are structurally similar to the (then new) global type. Such tricks
can only mitigate syntactic issues and can easily yield non-effective procedures that
might not terminate. For instance, this treatment will most likely not terminate for
global types where choices can be disambiguated with semantic properties, e.g. counting
modulo a constant, like the following example.

Example 3.43 (Odd-even). Consider the following global type Goe:

+

{
p→q :o . q→r :o . µt1 . (p→q :o . q→r :o . q→r :o . t1 + p→q :b . q→r :b . r→p :o . 0)

p→q :m . µt2 . (p→q :o . q→r :o . q→r :o . t2 + p→q :b . q→r :b . r→p :m . 0)
.

Figure 3.11 visualises Goe as an HMSC. The left and right subprotocols respectively
correspond to the top and bottom branches of the protocol. Participant p chooses a
branch by sending either o or m to q. On the left, q echoes this message to r. Both
branches continue in the same way: p sends an arbitrary number of o messages to q,
each of which is forwarded twice from q to r. Participant p signals the end of the loop
by sending b to q, which q forwards to r. Finally, depending on the branch, rmust send
o or m to p.

Figs. 3.12a and 3.12b depict the structural similarity between the global type Goe

and the implementations for p and q. For the “choicemaker” participant p, the reason
is evident. Participant q’s implementation collapses the continuations of both branches
in the protocol into a single subcomponent. For r (Fig. 3.12c), the situation is more
complicated. Participant r does not decide on or learn directly which branch is taken,
but can deduce it from the parity of the number of o messages received from q: odd
means left and evenmeans right. The resulting local implementation features transitions
going back and forth between the two branches that do not exist in the global type.
Classical projection operators fail to create such transitions and unfolding recursion will
not help. ◀

3.4. Incompleteness of Classical Projection Approaches 77

p q r
o

o

p q r
m

p q r
o

o

o

p q r
b

b

o

p q r
o

o

o

p q r
b

b

m

Figure 3.11: Odd-even Protocol:
implementable but not (yet) projectable.

p▷q!o

p▷q!o

p▷q!b

p◁r?o

p▷q!m

p▷q!o

p▷q!b

p◁r?m

(a) Local impl.
for participant p

q◁p
?o

q▷r!o
q◁p?m

q◁
p?
o

q▷r!o

q
▷
r
!o

q◁p?b

q▷r!b

(b) Local impl.
for participant q

r◁q?o

r◁q?o

r◁q?o

r◁q?b

r▷p!o

r
◁
q
?b

r◁q?b

r▷p!m

(c) Local impl.
for participant r

Figure 3.12: Local implementations for the odd-even protocol.

79

Chapter 4

Building a Bridge from
Multiparty Session Types to
High-level Message Sequence Charts

In the previous chapter, we presented a generalised classical MST projection operator
that was designed to support sender-driven choice. Despite, the classical projection
approach is inherently incomplete, rejecting implementable protocols. In this chapter,
we first establish a formal connection between global types and high-level message
sequence charts. We use this to prove decidability of the implementability problem
for sender-driven global types, under the mild assumption that every partial execution
of the protocol can be extended to a finite completed execution. In addition, we
investigate how results from the HMSC domain can be used for MSTs. Last, we propose
a performance-oriented relaxation of the indistinguishability relation ∼ and show that
the corresponding implementability problem is undecidable.

4.1 Encoding Global Types from MSTs as HMSCs

Non-deterministic global types can be turned into HMSCs while preserving the protocol
they specify. The main difference between the automata-based semantics of global types
from MSTs and the semantics of HMSCs is that an automaton carries the events on the
edges and an HMSC carries events as labels of the event nodes in its BMSCs.

Definition 4.1 (HMSC encoding of global types). In the translation, we use the
following notation: M∅ is the empty BMSC (N = ∅) andM(p→q :m) is the BMSC with
two event nodes e1 and e2 with f(e1) = e2, l(e1) = p▷q!m, and l(e2) = q◁p?m . From
a non-deterministic global type G, we construct an HMSC H(G) = (V,E, vI, V T, µ)

as follows:

V := {G′ | G′ is a subterm of G} ∪

{(
∑
i∈I

pi→qi :mi . Gi, j) |
∑
i∈I

pi→qi :mi . Gi occurs in G and j ∈ I}

80 Chapter 4. Building a Bridge from MSTs to HMSCs

E := {(µt .G′, G′) | µt .G′ occurs in G} ∪ {(t, µt .G′) | t and µt .G′ occur in G}

∪ {(
∑
i∈I

pi→qi :mi . Gi, (
∑
i∈I

pi→qi :mi . Gi, j)) | (
∑
i∈I

pi→qi :mi . Gi, j) ∈ V }

∪ {((
∑
i∈I

pi→qi :mi . Gi, j), Gj) | (
∑
i∈I

pi→qi :mi . Gi, j) ∈ V }

vI := G V T := {0}

µ(v) :=

{
M(pj→qj :mj) if v = (

∑
i∈I pi→qi :mi . Gi, j)

M∅ otherwise

This translation does not yield the HMSC with the least number of vertices since
vertices with a single successor could be merged to form larger BMSCs. Here, every
BMSC contains at most one message exchange.

Correctness of the Encoding

The correctness of the encoding of non-deterministic global types to HMSCs can be
stated as follows.

Theorem 4.2. Let G be a non-deterministic global type. Then, the following holds:

(1) L(GAut(G)) ⊆ L(H(G)) and
(2) L(G) = L(H(G)).

We prove this correspondence between a non-deterministic global type and its HMSC
encoding as follows. First, we observe that all HMSC encodings have at most one
message exchange in every BMSC, which we call 1-HMSCs. We can, thus, translate such
an HMSC into an FSM. We relate this FSM with the one for the non-deterministic global
type with a weak bisimulation. Throughout this subsection, we only consider words
where send p▷q!m and receive events q◁p?m happen right after each other. Thus, we
treat words over Γ as words overΣ for conciseness, which we defined as syntactic sugar.

Let us first define 1-HMSCs.

Definition 4.3. We say that anHMSCH = (V,E, vI , V T, µ) is a 1-HMSC iff every BMSC
in µ(V) consists of at most one send and one receive event.

1-HMSCs can be translated to FSMs as follows.

Definition 4.4 (Quasi-optimal translation ofH). LetH = (V,E, vI, V T, µ) be an HMSC
such that for every v ∈ V , µ(v) = M∅ or µ(v) = M(p→q :m) for some p, q and m. We
define the function qOPT(M) if M is eitherM∅ or M(p→q :m):
qOPT(M∅) = ε and qOPT(M(p→q :m)) = p→q :m.
The state machine qOPT(H(G)) = (Q,Σ, δ, q0, F) is defined as follows:

Q = {v1, v2 | v ∈ V } q0 = {v1 | v = vI} F = {v2 | v ∈ V T }
δ = {(v1, qOPT(µ(v)), v2) | v ∈ V ∧ qOPT(µ(v)) ∈ Σ ∪ {ε}} ∪ {(v2, ε, u1) | (v, u) ∈ E}

4.1. Encoding Global Types from MSTs as HMSCs 81

Note that the HMSC H(G) for any non-deterministic global type G qualifies for
a quasi-optimal translation: each BMSC contains either no events or two events of
corresponding send and receive.

Lemma 4.5 (Correctness of Definition 4.4). Let H be a 1-HMSC. Then,

(1) L(qOPT(H)) ⊆ L(H) and
(2) C∼(L(qOPT(H))) = L(H).

Proof. For (1), we prove the following:
Claim I: Let v11, v21, v12, v22, . . . , v1n, v2n be some run in qOPT(H)with tracew. We claim

that w ∈ L(µ(v1)µ(v2) · · ·µ(vn)) with the same vertices.
Proof of Claim I. We prove this by induction on the number of vertices n. Note that,

as µ(vi) can be M∅ for some i, this is not necessarily an induction on |w|. For the base
case, let n = 0. Then, the run is empty and the claim trivially holds. For the induction
step, let us assume that the claim holds for n and w. We prove it for n + 1 and w′. By
construction w′ = wx where x is either ε or p→q :m (technically p▷q!m · q◁p?m but
the previous is more concise). The run in qOPT(H) is v11, v21, . . . , v1n, v2n, v1n+1, v

2
n+1. By

construction, x ∈ L(µ(vn+1)). Hence, wx ∈ L(µ(v1) · · ·µ(vn+1)), proving the claim.
End Proof of Claim I.

By construction, qOPT(-) translates final vertices to final states. Thus, Claim I shows
the inclusion for the finite case when vn is final:

L(qOPT(H)) ∩ Σ∗ ⊆ L(H) ∩ Σ∗.

It remains to show the infinite case: L(qOPT(H)) ∩ Σω ⊆ L(H) ∩ Σω.
Let w ∈ L(qOPT(H))∩Σω be an infinite word. We show that there is some infinite

path v1, v2, . . . inH for which one linearisation isw. Consider a tree T where each node
corresponds to some path π in H whose linearisations are prefixes w′ of w. The root is
labelled by the empty path. The children of a node π are paths that extend π by a single
node – these exist from the reasoning in the induction step for Claim I . HMSC H is
finitely branching and so is T . By König’s Lemma, there is an infinite path in T whose
linearisation is w, which concludes the proof of the first claim.

We prove (2) by proving two inclusions. The first inclusion C∼(L(qOPT(H))) ⊆
L(H) follows from the first claim and the fact that HMSCs are closed under ∼
(Lemma 2.21). For the second inclusion L(H) ⊆ C∼(L(qOPT(H))), we first establish
the following fact:

Claim II: Let π = v1, . . . , vn be some path in H . For all words

w ∈ L(µ(v1) · · ·µ(vn)),

there is some w′ ∈ L(qOPT(H)) with some path v11, v
2
1, . . . , v

1
n, v

2
n such that w ∼ w′.

82 Chapter 4. Building a Bridge from MSTs to HMSCs

Proof of Claim II.We prove this by induction on the number of vertices n. For the base
case, let n = 0. Then, the word is actually empty and the claim trivially holds. For the
induction step, let us assume that the claim holds for n with wn and w′

n and we prove it
for n+1withwn+1 andw′

n+1. We know thatwn+1 ∈ L(µ(v1) · · ·µ(vn+1)). By definition
of the semantics for HMSCs, wn+1 ∼ wn · x (∗) such that wn ∈ L(µ(v1) · · ·µ(vn)) and
x ∈ L(µ(vn+1)). For wn, there is w′

n with the run v11, v
2
1, . . . , v

1
n, v

2
n in qOPT(H). By

construction, we can extend this run for w′
n · x as follows: v11, v21, . . . , v1n, v2n, v1n+1, v

2
n+1.

By the induction hypothesis and (∗), wn+1 ∼ w′
n · x, proving the claim.

End Proof of Claim II.
We prove that L(H) ⊆ C∼(L(qOPT(H))). Let w ∈ L(H).

In case w is finite, there is a finite path π = v1, . . . , vn with w ∈ L(µ(v1), . . . , µ(vn))
where vn is final. We apply Claim II and know that v2n is also final. We also know that
w ∼ w′ for some w′ with a run through the corresponding states in the automaton
qOPT(H), proving the claim.

In case w is infinite, there is an infinite path π = v1, . . . with w ∈ L(µ(v1) . . .). For
every prefix u of w, there is n such that u ∈ pref(L(µ(v1) · · ·µ(vn))). By Claim II, there
is u′ ∈ L(qOPT(H)) with run v11, v

2
1, . . . , v

1
n, v

2
n such that u ∼ u′, entailing u ⪯∼ u′.

Consider a tree T where each node corresponds to a prefix of the run v11, v
2
1, . . . in

qOPT(H). The root is labelled by the empty run. The children of a node ρ are the
runs that extends ρ by a single transition – which exist by the above reasoning. Since T
is finitely branching, there is an infinite path in T that corresponds to an infinite run ρ

in qOPT(H) for which w ⪯ω
∼ trace(ρ), which concludes the proof.

With weak bisimulations, we show thatL(GAut(G)) andL(qOPT(H(G))) yield the
same language for any non-deterministic global type G.

Definition 4.6 (Weak bisimulation). Let

A = (QA,∆, δA, q0,A, FA) and B = (QB,∆, δB, q0,B, FB)

be two state machines over some alphabet ∆. We say that R ⊆ QA × QB is a weak
simulation relation for A and B if it is a relation with the following properties:

• for all a ∈ ∆, sA, tA ∈ SA, sB ∈ SB , if R(sA, sB) and (sA, a, tA) ∈ δA, then there
is tB ∈ QB such that (sB, a, tB) ∈ δ∗B and R(tA, tB),

• for all sA, tA ∈ SA, sB ∈ SB , if R(sA, sB) and (sA, ε, tA) ∈ δA, then there is
tB ∈ QB such that (sB, ε, tB) ∈ δ∗B and R(tA, tB),

• R(q0,A, q0,B), and
• for every qA ∈ FA, there is qB ∈ FB such that R(qA, qB).

This definition is given as characterisation for the original definition of weak
simulation by Milner [96, Def. 6.2 and Prop. 6.3]. In our context, it is easier to keep the
two different sets of states separate rather than merging them.

4.1. Encoding Global Types from MSTs as HMSCs 83

Proposition 4.7. LetA = (QA,∆, δA, q0,A, FA), B = (QB,∆, δB, q0,B, FB) be two state
machines. Let R1 ⊆ QA × QB and R2 ⊆ QB × QA be two weak bisimulations for A
and B (respectively B and A). Then, L(A) = L(B).

We defined the semantics of global and local types using state machines where
subterms were indexed and became states. It is straightforward that without indexing,
we obtain the same language. Though, the resulting finite state machine might not be
non-merging. This is why we decided to define the standard semantics with indexing.
Here, we deviate from this for simplicity aswe only care about the languages, simplifying
the following proofs.

Lemma 4.8. LetG be a non-deterministic global type, GAut(G) the state machine with
state space

Q = {qG′ | G′ is syntactic subterm of G}

where we omit indexing identical subterms and qOPT(H(G)) the state machine built
from the HMSC H(G) with states

V = {viG′ | i ∈ {1, 2} and G′ is a syntactic subterm of G}

as defined before. There is one state and two vertices for every syntactic subterm of G.
Hence, we index states q and vertices v by these subterms. For the auxiliary vertices in
qOPT(H(G)), we use Gj. There are two weak bisimulation relations R1 ⊆ Q× V and
R2 ⊆ V ×Q such that

(1) R1(qG, v
1
G) and R2(v

1
G, qG) as well as

(2) R1(q0, v
2
0) and R2(v

2
0, q0).

Proof. We prove the claim by structural induction on G.

• Base G = 0 :
There is one state in GAut(G) and two vertices in qOPT(H(G)). It is
straightforward to define R1 and R2 such that the conditions are satisfied. Both
relations are weak bisimulation relations as there is a solely one ε-transition.

• Base G = t :
This is no proper non-deterministic global type but the construction ensures that
such states are properly related.

• Step G = Σi∈Ipi→qi :mi ·Gi :
The induction hypothesis holds for every i ∈ I with Ri

1 and Ri
2. We define:

R1 := ∪i∈I R
i
1 ∪ {(qG, v1G), (qG, v2G)}, and

R2 := ∪i∈I R
i
2 ∪ {(v1G, qG), (v2G, qG)} ∪ ∪i∈I{(v1Gi , qGi

), (v2Gi , qGi
)}

84 Chapter 4. Building a Bridge from MSTs to HMSCs

By this, (1) and (2) are satisfied. For the remaining conditions of a weak
bisimulation relation, it suffices to check the added states (and states with new
transitions) since the induction hypotheses are sufficient for the rest.
Added states: qG as well as v1G, v2G, v1Gi , v2Gi for every i ∈ I .
Added transitions: (qG, pi→qi :mi, qGi

) for every i ∈ I as well as (v1G, ε, v
2
G),

(v2G, ε, v
1
Gi), (v1Gi , pi→qi :mi, v

2
Gi), and (v2Gi , ε, v1Gi

).
We check R1 and hence qG:

– x ∈ Σ is the only possible transition from qG to qGi
for every i ∈ I ; for v1G,

we have that R1(qG, v
1
G) and v1G

ε→ v2G
ε→ v1Gi

x→ v2Gi

ε→ v1Gi
. This is fine by

the induction hypotheses: Ri
1(qGi

, v1Gi
). It happens that v2G, with which qG is

also related by R1, occurs on the previous path, so it is also fine. There are
no ε-transitions from qG.

We check R2 and hence v1G, v2G, v1Gi , v2Gi for every i ∈ I :

– v1G:
One can only take an ε-transition from v1G, i.e. v1G

ε→ v2G; by definition we
have that R2(v

2
G, qG) and R2(v

1
G, qG) and the transitive closure allows not to

move.
– v2G:

One can only take an ε-transition from v2G, i.e. v2G
ε→ v1Gi for every i ∈ I ;

by definition we have that R2(vGi , qG);R2(vG, qG) and the transitive closure
allows not to move.

– v1Gi :
One can only take one non-ε-transition from v1Gi , i.e. v1Gi

x→ v2Gi ; by definition
we have that R2(v

1
Gi , qG) and R2(v

2
Gi , qGi

); we also have that qG
x→ qGi

and,
hence, the conditions are met.

– v2Gi :
One can only take an ε-transition from v2Gi to v1Gi

; by definition we have that
R2(v

2
Gi , qGi

), by the induction hypotheses we have that R2(v
1
Gi
, qGi

) and the
transitive closure allows not to move.

• Step G = µt .G′ :
The induction hypothesis holds for G′ with R′

1 and R′
2. Recall that Q = {qG′ |

G′ is a syntactic subterm of G}. We define:

R1 := R′
1 ∪ {(qG, v1G), (qG, v2G)}, and

R2 := R′
2 ∪ {(v1G, qG), (v2G, qG)}.

By this, (1) and (2) are already satisfied. For the conditions for a weak bisimulation
relation, it suffices to check the added states and states with new transitions.
Added states: qG as well as v1G and v2G.

4.1. Encoding Global Types from MSTs as HMSCs 85

Added transitions: (v1G, ε, v
2
G), (v

2
G, ε, v

1
G′), (v2t , ε, v

1
G) as well as (qG, ε, qG′) and

(qt, ε, qG).

The induction hypotheses apply for all other states and transitions.
We check R1 and hence qG:

– One cannot take a non-ε-transition from qG. The only ε-transition that can
be taken is to qG′ ; we only need to check v1G as v2G is on its path and also
related; from v1G

ε→ v2G
ε→ v1G′ with an ε and by induction hypothesis they

are related.
We check R2 and hence v1G, v2G, and v2t .

– v1G:
Only one ε-transition is possible to v2G and both are related with the same
state.

– v2G:
Only one ε-transition is possible: v2G

ε→ v1G′ and qG
ε→ qG′ and by definition

the last two are related.
– v2t :

Only one ε-transition is possible: v2t
ε→ v1G and R2(v

2
t , qt); we have that

qt
ε→ qG and R2(v

1
G, qG)

Lemma 4.9. For any non-deterministic global type G, L(G) = L(qOPT(H(G))).

Proof. Recall that L(G) = L(GAut(G)). In Lemma 4.8, we show there are two weak
simulation relations for GAut(G) and qOPT(H(G)) while Proposition 4.7 states the
well-known fact that, then, both languages are equal.

Equipped with this, we can now prove the correctness of the encoding of non-
deterministic global types from MSTs into HMSCs.

Theorem 4.2. Let G be a non-deterministic global type. Then, the following holds:

(1) L(GAut(G)) ⊆ L(H(G)) and
(2) L(G) = L(H(G)).

Proof. With the first fact of Lemma 4.5, it suffices to show

L(GAut(G)) ⊆ L(qOPT(H(G)))

for (1), which follows with Lemma 4.9. For (2), it suffices to show that

C∼(L(GAut(G)))
(A)
= C∼(L(qOPT(H(G))))

(B)
= L(H(G)).

Then, (A) follows from Lemma 4.9 while (B) follows from the second fact of Lemma 4.5.

86 Chapter 4. Building a Bridge from MSTs to HMSCs

4.2 MST Implementability is Decidable

In this section, we show decidability of the implementability problem for sender-driven
global types, using results from the domain of message sequence charts. In general,
implementability for HMSCs is undecidable but we show that global types, when
encoded as HMSCs, belong to a class of HMSCs for which implementability is decidable.

The standard approach for the HMSC implementability problem is different from the
classical projection approach to implementability. Given an HMSC, there is a canonical
candidate implementation which always implements the HMSC if an implementation
exists [5, Thm. 13]. Therefore, approaches centre on checking implementability of HMSC
languages and establishing conditions on HMSCs that entail implementability.

Definition 4.10 (Canonical candidate implementation [5]). Given an HMSC H and a
participant p, let A′

p = (Q′,Γp, δ
′, q′0, F

′) be a state machine with Q′ := {qw | w ∈
pref(L(H)⇓Γp)}, F ′ := {qw | w ∈ Lfin(H)⇓Γp}, and δ′(qw, x, qwx) for x ∈ Γ. We
determiniseA′

p to obtain the state machineAp. We call {{Ap}}p∈P the canonical candidate
implementation of H .

Intuitively, the intermediate statemachineA′
p constitutes a treewhosemaximal finite

paths giveL(H)⇓Γp ∩ Γ∗
p . This set can be infinite and, thus, the constructionmight not be

effective. We give an effective construction of a deterministic FSM for the same language
which was very briefly hinted at by Alur et al. [6, Proof of Thm. 3].

Definition 4.11 (Projection by erasure). Let M = (N, p, f, l, (≤p)p∈P) be an MSC and
p be a participant. We denote the set of nodes of p with Np := {n | p(n) = p} and
define a two-ary next-relation on Np: next(n1, n2) iff n1 ⪇ n2 and there is no n′ with
n1 ⪇ n′ ⪇ n2. We define the projection by erasure ofM onto p:

M⇓p := (QM ,Γp, δM , qM,0, {qM,f}) with
QM := {qn | n ∈ Np} ⊎ {qM,0} ⊎ {qM,f} and

δM := {qM,0
ε−→ qn1 | ∀n2. n1 ≤ n2} ⊎ {qn1

l(n1)−−→ qn2 | next(n1, n2)}

⊎ {qn2

l(n2)−−→ qM,f | ∀n1. n1 ≤ n2}

where⊎ denotes disjoint union. LetH = (V,E, vI , V T, µ) be anHMSC.We construct the
projection by erasure for every vertex and identify them with the vertex, e.g.Qv instead
of Qµ(v). We construct an auxiliary FSM (Q′

H ,Γp, δ
′
H , q

′
H,0, F

′
H) with Q′

H =
⊎

v∈V Qv,
δ′H =

⊎
v∈V δv ⊎ {qv1,f

ε−→ qv2,0 | (v1, v2) ∈ E}, q′H,0 = qvI,0, and F ′
H =

⊎
v∈V F qv,f . We

determinise (Q′
H ,Γp, δ

′
H , q

′
H,0, F

′
H) to obtainH⇓p := (QH ,Γp, δH , qH,0, FH), which is the

determinised projection by erasure ofH onto p. The CSM formed from the projections by
erasure {{H⇓p}}p∈P is called erasure candidate implementation.

4.2. MST Implementability is Decidable 87

s a b
query

price

s a b
done

done

s a b
split

s a b
cancel

no

s a b
yes

buy

s a b
no

no

(a) HMSC H2BP.

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

ε

a→s :q

s→a :p

a→b :c

a→s :n

a→b :s

b→a :y

a→s :b

b→a :n

a→s :n

a→s :d

a→b :d

(b) FSM for G2BP.

{q0, q1}

{q2}

{q3, q4, q5, q7, q9}

{q6, q0, q1} {q8, q10, q0, q1}

{q11, q12}

s◁a?q

s▷a!p

s◁a?ns◁a?b

s◁a?d

s◁a?q s◁a?d

(c) Determinised Projection by
Erasure onto s.

Figure 4.1: Two buyer protocol: as HMSC and FSM as well as
its determinised projection by erasure onto s.

Example 4.12. Figure 4.1a represents the two buyer protocol from Section 3.1.1 as
HMSC. In Fig. 4.1b, we also give the representation as state machine again. Figure 4.1c
is the determinised projection by erasure onto seller s. Each state is labelled with
a set of states which correspond to states in Fig. 4.1b. Intuitively, these states have
a correspondence in the HMSC but it is easier to see the connection with the FSM
representation. ◀

Lemma 4.13 (Correctness of determinised projection by erasure). Let H be an HMSC,
p be a participant, and H⇓p be its determinised projection by erasure. Then, the
following language equality holds: L(H⇓p) = L(H)⇓Γp .

Proof. LetH = (V,E, vI, V T, µ) be an HMSC. For every v ∈ V , it is straightforward that
the construction of µ(v)⇓p yields L(µ(v))⇓Γp = L(µ(v)⇓p) (1). Recall that ∼ does not
reorder events by the same participant (2).

The following reasoning proves the claim where the first equivalence follows from
the construction of the transition relation of H⇓p:

w ∈ L(H⇓p)

⇔ w = w1 . . . , there is a path v1, . . . in H and wi ∈ L(µ(vi)⇓p) for every i

(1)⇔ w = w1 . . . , there is a path v1, . . . in H and wi ∈ L(µ(vi))⇓Γp for every i

(2)⇔ w ∈ L(H)⇓Γp

This proves the fact for infinite words. It is straightforward to adapt the proof for
finite words.

From this result and the construction of the canonical candidate implementation, it
follows that the determinised projection by erasure admits the same finite language.

88 Chapter 4. Building a Bridge from MSTs to HMSCs

Corollary 4.14. Let H be an HMSC, p be a participant, H⇓p be its determinised
projection by erasure, andAp be the canonical candidate implementation. Then, it holds
that Lfin(H⇓p) = Lfin(Ap).

The determinised projection by erasure can be computed effectively and is
deterministic. Thus, we use it in place of the canonical candidate implementation. Given
a global type, the erasure candidate implementation for its HMSC encoding implements
it if it is implementable.

Theorem 4.15. Let G be a global type and {{H(G)⇓p}}p∈P be its erasure candidate
implementation. If Lfin(G) is implementable, then {{H(G)⇓p}}p∈P is deadlock-free and
Lfin({{H(G)⇓p}}p∈P) = Lfin(G).

Proof. We first use the correctness of the global type encoding (Theorem 4.2) to observe
that Lfin(G) = Lfin(H(G)). Theorem 13 by Alur et al. [5] states that the canonical
candidate implementation implements Lfin(H(G)) if it is implementable. Corollary 4.14
and the fact that the FSM for each participant is deterministic by construction allows us
to replace everyAp from the canonical candidate implementation with the determinised
projection by erasure H(G)⇓p for every participant p, proving the claim.

This result does only apply to finite languages so we need to extend it for infinite
words. For this, we require a mild assumption on global types. Intuitively, every run of
the protocol should always be able to terminate but does not need to, leaving a possibility
for every run to terminate but it can be infinite.

Definition 4.16 (0-Reachable). We say a global typeG is 0-reachable if every prefix of a
word in its language can be completed to a finite word in its language. Equivalently, it is
satisfied if the vertex for the syntactic subterm 0 is reachable from any vertex in H(G).

This assumption constitutes a structural property of a protocol and no fairness
condition on runs of the protocol. Basically, this solely rules out global types that have
loops without exit. In practice, it is reasonable to assume a mechanism to terminate a
protocol for maintenance for instance. In theory, one can think of protocols that are
not 0-reachable. They would simply recurse indefinitely and can never terminate. This
allows interesting behaviour like two sets of participants that do not interact with each
other, as the following example shows.

Example 4.17. Consider the following global type: µt . p→q :m1 . r→s :m2 . t.
It describes an infinite execution with two pairs of participants that independently
send and receive messages. This can be implemented in an infinite setting but the
loop can never be exited due to the lack of synchronisation, breaking protocol fidelity
upon termination. ◀

Under the 0-reachability assumption, we can show that implementations for finite
languages generalise for infinite ones.

4.2. MST Implementability is Decidable 89

Lemma 4.18 (Implementation for finite language generalises to infinite language for
0-reachable global types). Let G be a 0-reachable global type that does not necessarily
satisfy sender-driven choice and {{Ap}}p∈P be an implementation for Lfin(G). Then, it
holds that Linf({{Ap}}p∈P) = Linf(G). Consequently, {{Ap}}p∈P implements L(G).

Proof. By assumption, we know that {{Ap}}p∈P is deadlock-free and Lfin({{Ap}}p∈P) =

Lfin(G). We prove Linf({{Ap}}p∈P) = Linf(G) by showing both inclusions.
First, we show that Linf({{Ap}}p∈P) ⊆ Linf(G). For this direction, let w be a

word in Linf({{Ap}}p∈P). We need to show that there is a run ρ in GAut(G) such that
w ⪯ω

∼ trace(ρ). SinceG is 0-reachable, we know that for every u ∈ pref(w), it holds that
u ∈ pref(Lfin(G)). Thus, there exists a finite run ρ (that does not necessarily end in a
final state) and u′ such that u·u′ ∼ trace(ρ). We call ρ a witness run. Intuitively, we need
to argue that every such witness run for u can be extended when appending the next
event x from w to obtain ux. In general, this does not hold for every choice of witness
run. However, because of monotonicity, any run (or rather a prefix of it) for an extension
ux can also be used as witness run for u. Thus, we make use of the idea of prophecy
variables [1] and assume an oracle which picks the correct witness run for every prefix
u. This oracle does not restrict the next possible events in any way. We apply the same
idea as in the end of the proof for Lemma 2.10 but for GAut(G). Consider a tree T
where each node represents a run in GAut(G) such that their traces are finite prefixes
w′ of w. The root’s label is the empty run. For every node labelled with ρ, the children’s
labels extend ρ by a single transition. The tree T is finitely branching by construction
of GAut(G). With König’s Lemma, we obtain an infinite path in T and thus an infinite
run ρ in GAut(G) with w ⪯ω

∼ trace(ρ). From this, it follows that w ∈ Linf(G).
Second, we show that Linf(G) ⊆ Linf({{Ap}}p∈P). Let w be a word in Linf(G).

Eventually, we will apply the same reasoning with König’s Lemma to obtain an infinite
run in {{Ap}}p∈P for w. Inspired by the first statement of Lemma 3.21, we show:

(i) for every prefix w′ ∈ pref(w), there is a run ρ′ in {{Ap}}p∈P with w′ ⪯ trace(ρ′),
and

(ii) for every extension w′x with w′x ∈ pref(w), the run ρ′ can be extended.

We prove Claim (i) first. We first observe that, since G is 0-reachable, there is an
extension w′′ of w′ with w′′ ∈ L(G). By construction, we know that there is a run
ρ′′ in {{Ap}}p∈P for w′′. For ρ′, we can simply take the prefix of ρ′′ that matches w′. This
proves Claim (i).

Now, let us prove Claim (ii). Similar to the first case, we will use prophecy
variables [1] and an oracle to pick the correct witness run that we can extend. Again,
because of monotonicity, any run (or rather a prefix of it) for an extension w′x can also
be used as witness run for w′ and this oracle does not restrict the participants in any
way. From this, Claim (ii) follows.

From here, we can reason similarly to the previous case and, in fact, analogously to
the end of the proof for Lemma 2.10. From this, it follows that w ∈ L({{Ap}}p∈P).

90 Chapter 4. Building a Bridge from MSTs to HMSCs

Corollary 4.19. Let G be a 0-reachable implementable global type. Then, the erasure
candidate implementation {{H(G)⇓p}}p∈P implements G.

Even if a global type is not implementable, the erasure candidate implementation
does not remove any behaviour for any participant. Thus, it generates at least the
behaviours of the global types.

Proposition 4.20. LetG be some 0-reachable global type. Then, the following inclusion
holds: L(G) ⊆ L({{H(G)⇓p}}p∈P).

This proposition is rather obvious and can be proven analogously to Lemma 3.21 and
Lemma 5.5. We therefore omit the proof.

So far, we have shown that, if G is implementable, the erasure candidate imple-
mentation for its HMSC encoding H(G) implements G. For HMSCs, implementability
is undecidable in general [91]. We show that, because of their syntactic restrictions
on choice, global types belong to the class of globally-cooperative HMSCs for which
implementability is decidable.

Definition 4.21 (Communication graph [55]). LetM = (N, p, f, l, (≤p)p∈P) be anMSC.
The communication graph of M is a directed graph with node p for every participant p
that sends or receives a message inM and edges p → q ifM contains a message from p

to q, i.e. there is e ∈ N such that p(e) = p and p(f(e)) = q.

It is important to note that the nodes in the communication graph of M do only
represent active participants, i.e. the ones that send or receive inM .

Definition 4.22 (Globally-cooperative HMSCs [55]). An HMSC H = (V,E, vI , V T, µ)

is called globally-cooperative if for every loop, i.e. v1, . . . , vn with (vi, vi+1) ∈ E for every
1 ≤ i < n and (vn, v1) ∈ E, the communication graph of µ(v1) . . . µ(vn) is weakly
connected, i.e. all nodes are connected if every edge is considered undirected.

We can check this directly for a global type G. It is straightforward to define a
communication graph for words from Σ∗. We check it on GAut(G): for each binder
state, we check the communication graph for the shortest trace to every corresponding
recursion state.

Theorem 4.23 (Thm. 3.7 [91]). LetH be a globally-cooperative HMSC. Restricted to its
finite language Lfin(H), implementability is EXPSPACE-complete.

Now, we prove that every implementable global type is globally-cooperative. Recall
that we implicitly assume that global types satisfy sender-driven choice, unless explicitly
mentioned otherwise.

Lemma 4.24. Let G be an implementable 0-reachable global type. Then, its HMSC
encoding H(G) is globally-cooperative.

4.2. MST Implementability is Decidable 91

Proof. We prove our claim by contraposition: assume there is a loop v1, . . . , vn such that
the communication graph of µ(v1) . . . µ(vn) is not weakly connected. By construction
of H(G), we know that every vertex is reachable so there is a path u1 . . . umv1 . . . vn in
H(G) for some m and vertices u1 to um such that u1 = vI . Because G is 0-reachable,
this path can be completed to end in a final vertex to obtain

u1 . . . umv1 . . . vnum+1 . . . um+k

for some k and vertices um+1 to um+k such that uk+m ∈ V T . By the syntax of global
types and the construction of H(G), there is a participant p that is the (only) sender in
v1 and um+1.

Without loss of generality, let S1 and S2 be the two sets of (active) participants whose
communication graphs of v1 . . . vn are weakly connected and their union consists of all
active participants. Similar reasoning applies if there are more than two sets.

We want to consider specific linearisations from the language of the BMSC for each
subpath. Intuitively, these simply follow the order prescribed by the global type and do
not exploit the partial order of BMSCs or the closure of the semantics for global types.
For this, we say that w1 is the canonical word for path u1, . . . um if w1 ∈ {w′

1 . . . w
′
m |

w′
i ∈ L(µ(ui)) for 1 ≤ i ≤ m}. Analogously, let w2 be the canonical word for v1 . . . vn

and w3 be the canonical word for um+1 . . . um+k. Without loss of generality, S1 contains
the sender of the first element inw2 andw3 — basically the participant that decides when
to exit the loop for the considered loop branch. By its definition and the correctness of
H(G), it holds that: L(G) = L(H(G)). Let {{H(G)⇓p}}p∈P be the erasure candidate
implementation. From Proposition 4.20, we know that

L(H(G)) ⊆ L({{H(G)⇓p}}p∈P).

Therefore, we know that w1 · w2 · w3 ∈ L({{H(G)⇓p}}p∈P).
From the construction of H(G) and the construction of wi for i ∈ {1, 2, 3}, it also

holds that w1 · (w2)
h · w3 ∈ L(H(G)) ⊆ L({{H(G)⇓p}}p∈P) for any h > 0.

By construction of S1 and S2, no two participants from both sets communicate with
each other in w2: there are no r ∈ S1 and s ∈ S2 such that r▷s!m is in w2 or s▷r!m is
in w2 (and consequently r◁s?m is in w2 or s◁r?m is in w2) for any m.

From the previous two observations, it follows that
w1 · w2 · (w2⇓ΓS1

)h · w3 ∈ L({{H(G)⇓p}}p∈P)

for any hwhere ΓS1 =
⋃

r∈S1
Γr. Intuitively, this means that the set of participants with

the participant to decide when to exit the loop can continue longer in the loop than the
participants in S2.

With L(G) = L(H(G)), it suffices to show the following to find a contradiction:
w1 · w2 · (w2⇓ΓS1

) · w3 /∈ L(H(G)).

92 Chapter 4. Building a Bridge from MSTs to HMSCs

Towards a contradiction, we assume the membership holds. By determinacy of
H(G), we need to find a path v′1 . . . v

′
m′ , that starts at the beginning of the loop,

i.e. v′1 = v1, with canonical word w4 such that w2⇓ΓS1
· w3 ∼ w4.

We show such a path for w4 does not exist.
We denote w2 · w3 with x := x1 . . . xl and w2⇓ΓS1

· w3 with x′ := x′
1 . . . x

′
l′ . We

know that x′ is a subsequence of x. Let x1 . . . xj = x′
1 . . . x

′
j denote the maximal prefix

on which both agree. Since S2 is not empty, we know that j can be at most |w2⇓ΓS1
|.

(Intuitively, j cannot be so big that it reaches w3 because there will be mismatches due
to w2⇓ΓS2

before.) We also claim that the next event xj+1 cannot be a receive event.
If it was, there was a matching send event in x1 . . . xj (which is equal to x′

1 . . . x
′
j by

construction). Such a matching send event exists by construction of x from a path
in H(G). By definition of ⇓-, the matching receive event must be x′

j+1 which would
contradict the maximality of j. Thus, xj+1 must be a send event.

By determinacy of H(G) and j ≤ |w2⇓ΓS1
|, we know that x1 . . . xj = x′

1 . . . x
′
j share

a path v1 . . . vn′ which is a part of the loop, i.e. x1 . . . xj ∈ L(µ(v1) · · ·µ(vn′)) with
n′ < n. For M(p→q :m), the BMSC with solely this interaction, we say that p is its
sender. The syntax of global types prescribes that choice is deterministic and the sender
in a choice is unique. This is preserved forH(G): for every vertex, all its successors have
the same sender. Therefore, the path for x′ can only diverge — but also needs to diverge
— from the loop v1 . . . vn after the common prefix v1 . . . vn′ with a different send event
but with the same sender. Let vl be the next vertex after v1 . . . vn′ on the loop v1, . . . , vn
for which µ(vl) is not Mε, the BMSC with an empty set of event nodes. Note that xj+1

belongs to vl: xj+1 ∈ pref(L(µ(vl))).
We do another case analysis whether xj+1 belongs to S1 or not, i.e. if xj+1 ∈ ΓS1 .
If xj+1 /∈ ΓS1 , there cannot be a path that continues for x′

j+1 ∈ ΓS1 as the sender
for µ(vl) is not in S1. If xj+1 ∈ ΓS1 , the choice of j was not maximal, which yields
a contradiction.

Every implementable (sender-driven) global type is globally-cooperative. Let us
show that this is not true for mixed-choice global types and, thus, HMSCs in general.

Example 4.25 (Implementable mixed-choice global type but not globally-cooperative).
Let us consider the following mixed-choice global type:

Ging := µt1 . +


r→s :m2 . p→q :m1 . t1

p→q :m1 . µt2 . +


p→q :m1 . t2

r→s :m2 . µt3 . +

{
r→s :m2 . t3

p→q :done . r→s :done . 0

.

Its FSM is visualised in Fig. 4.2a, where we merged binder states with their only
successor for conciseness. Intuitively, this protocol allows two pairs of participants to
interact any number of times independently. The global type does not satisfy sender-
driven choice and the protocol cannot be represented by a global type that does. One
could swap the two interactions in the first loop but the first action of the initial

4.2. MST Implementability is Decidable 93

q0

q1

q3

q5

q6

q4

q2

q7

q8

p→q :m1

r→s :m2

p→q :d

r→s :d

r→s :m2

p→q :m1

r→s :m2

p→q :m1

(a) State machine for
semantics of Ging.

q0,p

q1,p

q2,p

p▷q!m1

p▷q!m1

p▷q!d

q0,q

q1,q

q2,q

q◁p?m1

q◁p?m1

q◁p?d

q0,r

q1,r

q1,r

r▷s!m2

r▷s!m2

r▷s!d

q0,s

q1,s

q1,s

s◁r?m2

s◁r?m2

s◁r?d

(b) An implementation for Hing.

Figure 4.2: An implementable HMSC which is not globally-cooperative
with its implementation.

choice would be the same, making it non-deterministic. The protocol is not globally-
cooperative but still implementable. Let us explain this in more detail. It comprises three
loops. In the first one, r sends a message m2 to s while p sends a message m1 to q so
the communication graph is not weakly connected, violating a criterion to be globally-
cooperative. Intuitively, the first loop requires that the same number of messages are
exchanged between the two pairs of participants but this is impossible due to lack of
communication between both. In the second loop, only the interaction between p and q
is specified, while, in the third one, it is only the one between r and s. Thus, the second
and third loop make up for the missing synchronisation in the first loop, allowing each
pair to have a number of message exchanges that is independent from the other pair.
Thus, the protocol is implementable and the CSM in Fig. 4.2b implements it. ◀

We now have all ingredients for our EXPSPACE decision procedure for MST imple-
mentability (with sender-driven choice).

Theorem 4.26. Checking implementability of 0-reachable global types with sender-
driven choice is in EXPSPACE.

Proof. Let G be a 0-reachable global type with sender-driven choice. We construct
H(G) from G and check if it is globally-cooperative. For this, we apply the coNP-
algorithm by Genest et al. [55] which is based on guessing a subgraph and checking its
communication graph. If H(G) is not globally-cooperative, we know from Lemma 4.24
thatG is not implementable. IfH(G) is globally-cooperative, we check implementability
of Lfin(H(G)). By Theorem 4.23, this is in EXPSPACE. If Lfin(H(G)) is not
implementable, it trivially follows that G is not implementable. If Lfin(H(G)) is
implementable, G can be implemented with the erasure candidate implementation with
Theorem 4.15 and Lemma 4.18.

94 Chapter 4. Building a Bridge from MSTs to HMSCs

Consequently, the implementability problem for global types with sender-driven choice
is decidable.

Corollary 4.27. Let G be a 0-reachable global type with sender-driven choice. It
is decidable whether G is implementable and there is an algorithm to obtain its
implementation for G.

Lower Bounds for Implementability. For general globally-cooperative HMSCs,
i.e. that are not necessarily the encoding of a sender-driven global type, implementability
is EXPSPACE-hard [91]. This hardness result does not carry over for the HMSC
encodingH(G) of a sender-driven global typeG. The construction exploits that HMSCs
do not impose any restrictions on choice. Sender-driven global types, however, require
every branch to be chosen by a single sender. In Section 5.6, we present a family of
global types for which generating an implementation requires exponential time in the
size of the input. In the next section, we investigate different MSC techniques that could
be used in the MST setting.

On the Synchronous Implementability Problem. We could not find a reference
that shows decidability of the implementability problem in a synchronous setting,
i.e. without channels. Before giving a proof sketch, let us remark that there
are global types that can be implemented synchronously but not asynchronously,
e.g. p→q : l . r→q : l . 0 + p→q : r . r→q : r . 0 because q can force the right choice by r.
We sketch how one could prove decidability of the synchronous implementability
problem for global types (with sender-driven choice). One defines the synchronous
semantics of CSMs and HMSCs as expected. For global types, one uses the independence
relation I (cf. Definition 4.28), which defines reasonable reorderings for synchronous
events in a distributed setting, similar to the indistinguishability relation ∼. It is
straightforward that our HMSC encoding H(-) for global types also works for the
synchronous setting (cf. Theorem 4.2). Thus, every implementation for H(G) is also
an implementation for G. For the asynchronous setting, we used [5, Thm. 13], which
shows that the canonical candidate implementation implements an HMSC if it is
implementable. Alur et al. [5, Sec. 8] also considered the synchronous setting. They
observe that both Theorem 5 and 8, basis for Theorem 13, stay valid under these
modified conditions. Together with our results, the erasure candidate implementation
implements a global type if it is implementable. We expect that, also for the synchronous
setting, sender-driven choice entails that any implementable global type is globally-
cooperative (cf. Lemma 4.24), yielding a decision procedure similar to Theorem 4.26.
Closest are works by Jongmans and Yoshida [76] and Glabbeek et al. [60]. Jongmans
and Yoshida consider quite restrictive synchronous semantics for global types [76, Ex. 3]
that does not allow the natural reorderings in a distributed setting, as enabled by I ,
e.g. p→q :m . r→s :m . 0 is considered unimplementable. Glabbeek et al. [60] present

4.3. MSC Techniques for MST Verification 95

a projection operator that is complete for various notions of lock-freedom, a typical
liveness property, and investigate how much fairness is required for those.

4.3 MSC Techniques for MST Verification

In the previous section, we generalised results from the MSC literature to show
decidability of the implementability problem for global types from MSTs, yielding an
EXPSPACE-algorithm. However, the resulting algorithm suffers from high complexity.
This is also true for the original problem of safe realisability of HMSCs. In fact, the
problem is undecidable for HMSCs in general. Besides globally-cooperative HMSCs,
further restrictions of HMSCs have been studied to obtain algorithms with better
complexity. In this section, we elaborate on their applicability to global types. One solely
needs to check that the global type (or its HMSC encoding) belongs to the respective
class. First, we transfer the algorithms for I-closed HMSCs, which requires an HMSC
not to exhibit certain anti-patterns of communication. Second, we present a variant of
the implementability problem. It canmake unimplementable global types implementable
without changing a protocol’s structure. Here, we restrict ourselves to MSC results that
can directly be applied to the MST setting. For HMSC approaches that introduced the
idea of choice to HMSCs, we refer to Chapter 10.

4.3.1 I-closed Global Types

The implementability problem is EXPSPACE-complete for the class of globally-coope-
rative HMSCs. Membership in EXPSPACE was shown by reducing the problem to
implementability of I-closed HMSCs [91, Thm. 3.7]. These require the language of
an HMSC to be closed with regard to an independence relation I , where, intuitively,
two interactions are independent if there is no participant that is involved in both.
Implementability for I-closed HMSCs is PSPACE-complete [91, Thm. 3.6]. As for the
EXPSPACE-hardness for globally-cooperative HMSCs, thePSPACE-hardness exploits
features that cannot be modelled with global types.

We adapt the definitions from [91] to our setting. These consider atomic BMSCs,
which are BMSCs that cannot be split further. With the HMSC encoding for global
types, it is straightforward that atomic BMSCs correspond to individual interactions for
global types. Thus, we define the independence relation I on the alphabet Σ.

Definition 4.28 (Independence relation I). Wedefine the independence relation I onΣ:

I := {(p→q :_, r→s :_) | {p, q} ∩ {r, s} = ∅)}.

We lift this to words, i.e. {(u · x1 · x2 · w, u · x2 · x1 · w) | u,w ∈ Σ∗ and (x1, x2) ∈ I},
and obtain an equivalence relation ≡I as its transitive and reflexive closure. We define
its closure for language L ⊆ Σ∗: C≡I

(L) := {u ∈ Σ∗ | ∃w ∈ L with u ≡I w}.

96 Chapter 4. Building a Bridge from MSTs to HMSCs

Definition 4.29 (I-closed global types). LetG be a global typeG. We sayG is I-closed
if Lfin(GAut(G)) = C≡I

(Lfin(GAut(G))).

Note that I-closedness is defined on the statemachineGAut(G) ofGwith alphabetΣ
and not on its semantics L(G) with alphabet Γ.

Example 4.30. The global type G2BP is I-closed. Buyer a is involved in every
interaction. Thus, for every two consecutive interactions, there is a participant that
is involved in both. ◀

We can check on the FSM of a global type if it is I-closed.

Algorithm 4.31 (Checking if G is I-closed). Let G be a global type. We construct
the state machine GAut(G). We need to check every consecutive occurrence of letters
fromΣ for words fromL(GAut(G)). For binder states, incoming and outgoing transition
labels are always ε. This is why we slightly modify the state machine but preserve its
language. We remove all variable states and rebend their only incoming transition to the
state their only outgoing transition leads to. In addition, we merge binder states with
their only successor. For every state q of this modified state machine, we consider the
labels x, y ∈ Σ of every combination of incoming and outgoing transition of q. We check
if x ≡I y. If this is false for all x and y, we return true. If not, we return false.

Let us prove that this algorithm is correct.

Lemma 4.32. A global type G is I-closed iff Algorithm 4.31 returns true.

Proof. It is obvious that the language is preserved by the changes to the state machine.
(We basically turned an unambiguous state machine into a deterministic one.)

For soundness, we assume that Algorithm 4.31 returns true and let w be a word in
C≡I

(L(GAut(G))). By definition, there is a run with trace w′ in GAut(G) such that
w′ ≡I w. The conditions in Algorithm 4.31 ensure that w = w′ because no two adjacent
elements in w′ can be reordered with≡I . Therefore, w ∈ L(GAut(G))which proves the
claim.

For completeness, we assume that Algorithm 4.31 returns false and show that there
is w ∈ C≡I

(Lfin(G)) such that w /∈ Lfin(GAut(G)). Without loss of generality, let
q2 be the state for which an incoming label x and outgoing label y can be reordered,
i.e. x ≡I y, and let q1 be the state from which the transition with label x originates:
q1

x−→ q2 ∈ δGAut(G). We consider a word w′ which is the trace of a maximal run that
passes q1 and q2 and the transitions labelled with x and y. By construction, it holds that
w′ ∈ Lfin(GAut(G)). We swap x and y inw′ to obtainw. We denote xwith p→q :m and
y with r→s :m′ such that {p, q} ∩ {r, s} ≠ ∅. From the syntactic restrictions of global
types, we know that any transition label from q1 has sender pwhile every transition label
from q2 has sender r. Because of this and determinacy of the state machine, there is no
run in GAut(G)with trace w. Thus, w /∈ Lfin(GAut(G))which concludes the proof.

4.3. MSC Techniques for MST Verification 97

This shows that the presented algorithm can be used to check I-closedness. The
algorithm considers every state and all combinations of transitions leading to and from it.
Proposition 4.33. For global type G, checking if G is I-closed is in O(|G|2).

The tree-like shape of GAut(G) might suggest that this check can be done in linear
time. However, this example shows that recursion can lead to a quadratic number
of checks.
Example 4.34. Let us consider the following global type for some n ∈ N:

µt . +


p→q0 :m0 . q0→r0 :m0 . r0→s0 :m0 . 0

p→q1 :m1 . q1→r1 :m1 . r1→s1 :m1 . t
...

p→qn :mn . qn→rn :mn . rn→sn :mn . t

.

It is obvious that (p→qi :mi, qi→ri :mi) /∈ I and (qi→ri :mi, ri→si :mi) /∈ I for
every i. Because of the recursion, we need to check if (ri→si :mi, p→qj :mj) is in I
for every 0 ̸= i ̸= j. This might lead to a quadratic number of checks. ◀

If a global type G is I-closed, we can apply the results for its I-closed HMSC encod-
ing H(G), for which checking implementability is in PSPACE. With Corollary 4.19, the
determinised projection by erasure implements G.
Corollary 4.35. Checking implementability of 0-reachable, I-closed global types with
sender-driven choice is in PSPACE.
Example 4.36. Not every implementable global type is I-closed – for instance, the
following one: p→q :m . r→s :m . 0. ◀

4.3.2 Payload Implementability

A deadlock-free CSM implements a global type if their languages are precisely the
same. In the HMSC literature, a variant of the implementability problem has been
studied. Intuitively, it allows to add fresh data to the payload of an existing message
and protocol fidelity allows to omit the additional payload data [55]. This allows to
add synchronisation messages to existing interactions and can make unimplementable
global types implementable while preserving the structure of the protocol. It can also be
used if a global type is rejected by a projection operator or the run time of the previous
algorithms is not acceptable.
Definition 4.37 (Payload implementability). Let L be a language with message
alphabet V1. We say that L is payload-implementable if there is a message alphabet V2

for a deadlock-free CSM {{Ap}}p∈P such that, for every p ∈ P , Ap is an FSM over
{p▷q!m, p◁q?m | q ∈ P \ {p}, m ∈ V1 × V2} such that its language is the same
when projecting onto the message alphabet V1, i.e. C∼(L) = L({{Ap}}p∈P)⇓V1

, where
(p▷q!(m1,m2))⇓V1

:= p▷q!m1 and (q◁p?(m1,m2))⇓V1
:= q◁p?m1 and is lifted to

words and languages as expected.

98 Chapter 4. Building a Bridge from MSTs to HMSCs

First, payload implementability can be used if a global type is not implementable
in the standard way. Second, it can be used if the algorithmic complexity for standard
implementability is not tolerable.

Genest et al. [55] showed that the finite language Lfin(H) of a local HMSC H is
always payload-implementable with a deadlock-free CSM of linear size.

Definition 4.38 (Local HMSCs [55]). Let H = (V,E, vI, V T, µ) be an HMSC. We call H
local if µ(vI) has a unique minimal event and there is a function root : V → P such that
for every (v, u) ∈ E, it holds that µ(u) has a unique minimal event e and e belongs to
root(v), i.e. for µ(u) = (N, p, f, l, (≤p)p∈P), we have that p(e) = root(v) and e ≤ e′ for
every e′ ∈ N .

Proposition 4.39 (Prop. 21 [55]). For any local HMSC H, the language Lfin(H) is
payload-implementable.

With Lemma 4.18, we can use the implementation of a local H(G) for a 0-reachable
global type G.

Corollary 4.40. Let G be a 0-reachable global type for which H(G) is local. Then, G
can be implemented with a CSM of linear size.

The algorithm to construct a deadlock-free CSM [55, Sec. 5.2] suggests that the
BMSCs for such HMSCs need to be maximal – in the sense that any vertex with a single
successor is collapsed with its successor. If this was not the case, the result would claim
that the language of the following global type is payload-implementable:

µt . +

{
p→q :m1 . r→s :m2 . t

p→q :m3 . 0
.

However, it is easy to see that it is not payload-implementable since there is no
interaction between p, which decides whether to stay in the loop or not, and r. Thus,
we cannot simply check whether H(G) is local. In fact, it would always be. Instead, we
first need to minimise it and then check if it is local. If we collapse the two consecutive
vertices with independent pairs of participants in this example, the HMSC is not local.
The representation of the HMSC matters which shows that local as property is rather a
syntactic than a semantic notion.

Algorithm 4.41 (Checking if H(G) is local – directly on GAut(G)). Let G be a
global type. We consider the finite trace w of every longest branch-free, loop-free
and non-initial run in the state machine GAut(G). We implicitly split the synchronous
interactions into asynchronous events: w = w1 . . . wn ∈ Γ∗. We need to check if there
is u ∼ w with u = u1 . . . un such that u1 ̸= w1. For this, we can construct an MSC for w
[52, Sec. 3.1] and check if there is a single minimal event. This works because MSCs are
closed under ∼ (Lemma 2.21). If the MSC of every trace w′ has a single minimal event,
we return true. If not, we return false.

4.4. Implementability with Intra-participant Reordering 99

It is straightforward that this mimics the corresponding check for the HMSC H(G)

and, with similar modifications as for Algorithm 4.31, the check can be done in O(|G|).

Proposition 4.42. For a global type G, Algorithm 4.41 returns true iff H(G) is local.

Ben-Abdallah and Leue [15] introduced local-choice HMSCs, which are as expressive
as local HMSCs. Their condition also uses a root-function and minimal events but
quantifies over paths. Every local HMSC is a local-choice HMSC and every local-choice
HMSC can be translated to a local HMSC that accepts the same languagewith a quadratic
blow-up [55]. It is straightforward to adapt the Algorithm 4.41 to check if a global type
is local-choice. If this is the case, we translate the protocol and use the implementation
for the translated protocol.

4.4 Implementability with
Intra-participant Reordering

In this section, we introduce a generalisation of the implementability problem that
relaxes the total event order for each participant and prove that this generalisation is
undecidable in general.

4.4.1 A Case for More Reordering

From the perspective of a single participant, each word in its language consists of a
sequence of send and receive events. Choice in global types happens by sending (and not
by receiving). Hence, we argue that a participant should be able to receivemessages from
different senders in any order between sending two messages. In practice, receiving a
message can induce a task with non-trivial computation that our model does not account
for. Therefore, such a reordering for a sequence of receive events can have outsized
performance benefits. In addition, there are global types that can be implemented with
regard to this generalised relation even if no (standard) implementation exists.

Example 4.43 (Example for intra-participant reordering). Let us consider a global type
where a central coordinator p distributes independent tasks to different participants in
rounds:

GTC := µt . +

{
p→q1 : task p→qn : task . q1→p : result qn→p : result . t

p→q1 :done p→qn :done . 0
.

Since all tasks in each round are independent, p can benefit from receiving the results in
the order they arrive instead of busy-waiting. ◀

We generalise the indistinguishability relation ∼ accordingly.

100 Chapter 4. Building a Bridge from MSTs to HMSCs

Definition 4.44 (Intra-participant indistinguishability relation≈). We define the intra-
participant indistinguishability relation ≈ ⊆ Σ∗ × Σ∗ as smallest equivalence relation
such that

(a) If w ∼ u, then w ≈ u.
(b) If q ̸= r, then w · p◁q?m · p◁r?m′ · u ≈ w · p◁r?m′ · p◁q?m · u.

Define u ⪯≈ v if there is w ∈ Σ∗ such that u · w ≈ v. We observe that u ≈ v iff u ⪯≈ v

and v ⪯≈ u. Using this, we extend ≈ to infinite words and languages as for ∼.

Definition 4.45 (Implementability w.r.t. ≈). A language L ⊆ Γ∞ is implementable
with regard to ≈ if there exists a deadlock-free CSM {{Ap}}p∈P such that C≈(L) =

C≈(L({{Ap}}p∈P)).1 We say that {{Ap}}p∈P ≈-implements L. As for ∼, we say that
{{Ap}}p∈P implements G if L = L(G).

In this section, we emphasise the indistinguishability relation which we consider,
e.g.≈-implementable. We deliberately choose not to require C≈(L(G)) = L({{Ap}}p∈P),
like ∼-implementability does, because this, in turn, requires the CSM to be closed
under ≈. In general, this is not possible with finitely many states. In particular, if there
is a loop without any send events for a participant, the labels in the loop can yield an
infinite closure if we require that C≈(L(G))⇓Γp = L(Ap).

Example 4.46. We consider a variant of GTC from Example 4.43 with n = 2 where q1
and q2 send a log-message to r after receiving the task and before sending the result back:

GTCLog := µt. +

{
p→q1 : task. p→q2 : task. q1→r : log. q2→r : log. q1→p : result. q2→p : result. t

p→q1 :done. p→q2 :done. 0
.

There is no FSM for r that precisely accepts C≈(L(GTCLog))⇓Γr . If we rely on the
fact that q1 and q2 send the same number of log-messages to r, we can use an FSM
Ar with a single state (both initial and final) with two transitions: one for the log-
message from q1 and q2 each, that lead back to the only state. For this, it holds that
C≈(L(GTCLog))⇓Γr ⊆ L(Ar). If we cannot rely on this, the FSM would need to keep
track of the difference, which can be unbounded, making the language not recognisable
by an FSM. ◀

This is why we chose a more permissive definition by requiring that the ≈-closure
of both are the same. It is trivial that any ∼-implementation for a global type does also
≈-implement it.

Proposition 4.47. Let G be a global type and {{Ap}}p∈P be a CSM. If {{Ap}}p∈P
∼-implements G, then {{Ap}}p∈P also ≈-implements G.

1The original definition also included the additional condition L ⊆ C≈(L({{Ap}}p∈P)), which,
however, is entailed by the present condition because L ⊆ C≈(L).

4.4. Implementability with Intra-participant Reordering 101

For instance, the erasure candidate implementation is a ∼-implementation as well
as a ≈-implementation for the task coordination protocol GTC from Example 4.43. Still,
≈-implementability givesmore freedom and allows to consider all possible combinations
of arrivals of results for the coordinator p. In addition, ≈-implementability renders
some global types implementable that would not be otherwise. For instance, those with
a participant that would need to receive different sequences, related by ≈ though, in
different branches it cannot distinguish (yet).

Example 4.48 (≈-implementable but not ∼-implementable). Let us consider the
following global type:

+

{
p→q : t . p→r :m . q→r :m . 0

p→q :b . q→r :m . p→r :m . 0
.

This cannot be ∼-implemented because r would need to know about the choice to
receive the messages from p and q in the correct order. However, it is≈-implementable.
The FSMs for p and q can be obtained by determinising the projection by erasure. For r,
we can have an FSM that only accepts r◁p?m · r◁q?m but also an FSM which accepts
r◁q?m · r◁p?m in addition. Note that r does not learn the choice in the second FSM
even if it branches. Hence, it would not be implementable if it sent different messages in
both branches later on. However, it could still learn by receiving and, afterwards, send
different messages. ◀

4.4.2 Undecidability

Unfortunately, checking implementability with regard to ≈ for global types (even with
directed choice) is undecidable. Intuitively, the reordering allows participants to drift
arbitrarily far apart as the execution progresses which makes it hard to learn which
choices were made.

We reduce the Post Correspondence Problem (PCP) [105] to the problem of checking
implementability with regard to≈. An instance of PCP over an alphabet∆with |∆| > 1

is given by two finite lists (u1, u2, . . . , un) and (v1, v2, . . . , vn) of finite words over ∆,
also called tile sets. A solution to the instance is a sequence of indices (ij)1≤j≤k with
k ≥ 1 and 1 ≤ ij ≤ n for all 1 ≤ j ≤ k, such that ui1 . . . uik = vi1 . . . vik . To be
precise, we present a reduction from the modified PCP (MPCP) [112, Sec. 5.2], which
is also undecidable. It simply requires that a match starts with a specific pair – in our
case we choose the pair with index 1. It is possible to directly reduce from PCP but the
reduction from MPCP is more concise. Intuitively, we require the solution to start with
the first pair so there exists no trivial solution and, using MPCP, we can choose a single
pair, which is more concise than all possible ones.

Theorem 4.49. Checking implementability with regard to ≈ for 0-reachable global
types with directed choice is undecidable.

102 Chapter 4. Building a Bridge from MSTs to HMSCs

p q r
c-u
1

1
[u1]

p q r
c-v
1

1
[v1]

p q r
d

d

d

ack-u

p q r
1

1
[u1]

p q r
n

n
[un]

. . .

p q r
d

d

d

ack-u

p q r
n

n
[vn]

p q r
1

1
[v1]

. . .

Figure 4.3: HMSC encoding H(GMPCP) of the MPCP encoding.

Proof. Let {(u1, u2, . . . , un), (v1, v2, . . . , vn)} be an instance of MPCP over alphabet ∆
where 1 is the special index which each solution needs to start with. We use u and v

as identifiers for both sets. For a word w = a1a2 · · · am ∈ ∆∗, a message labelled [w]

denotes a sequence of individual message interactions with message a1, a2, . . . , am, each
of size 1. We define a parametric global type for which x ∈ {u, v}:

G(x,X) := p→q : c-x. p→q : 1. p→r : 1. q→r : [x1]. µt. +


p→q : 1. p→r : 1. q→r : [x1]. t

· · ·
p→q :n. p→r :n. q→r : [xn]. t

p→q :d. p→r :d. q→r :d. X

where c-x indicates choosing tile set x. Using this, we obtain our encoding:

GMPCP := +

{
G(u, r→p :ack-u. 0)

G(v, r→p :ack-v. 0)
.

Figure 4.3 illustrates its HMSC encoding H(GMPCP).

4.4. Implementability with Intra-participant Reordering 103

It suffices to show the following equivalences:

GMPCP is ≈ -implementable
⇔1 C≈(L(G(u, 0)))⇓Γr ∩ C≈(L(G(v, 0)))⇓Γr = ∅
⇔2 MPCP instance has no solution

We prove ⇒1 by contraposition. Let w ∈ C≈(L(G(u, 0)))⇓Γr ∩ C≈(L(G(v, 0)))⇓Γr .
For x ∈ {u, v}, let wx ∈ C≈(L(G(x, 0))) such that wx⇓Γr = w. By construction of
GMPCP, we know that wx · r▷p!ack-x · p◁r?ack-x ∈ C≈(L(GMPCP)).

Suppose that a CSM {{Ap}}p∈P ≈-implements GMPCP. Then, it holds that

wx · r▷p!ack-x · p◁r?ack-x ∈ C≈(L({{Ap}}p∈P))

by Definition 4.45. We also know that wx ·r▷p!ack-y ·p◁r?ack-y /∈ C≈(L(GMPCP)) for
x ̸= ywhere x, y ∈ {u, v}. By the choice ofwu andwv, it holds thatwu⇓Γr = w = wv⇓Γr .
Therefore, r needs to be in the same state of Ar after processing wu⇓Γr or wv⇓Γr . Thus,
there are three possibilities what to send to p: r can either send both ack-u and ack-v,
only one of them, or none of them. Thus, either one of the following is true:

a) (sending both) wx · r▷p!ack-y ∈ pref(C≈(L({{Ap}}p∈P)))
for x ̸= y with x, y ∈ {u, v}, or

b) (sending u without loss of generality) wv · r▷p!ack-u /∈ pref(C≈(L({{Ap}}p∈P))),
or

c) (sending none) wx · r▷p!ack-x /∈ pref(C≈(L({{Ap}}p∈P))) for x ∈ {u, v}.

All cases lead to deadlocks in {{Ap}}p∈P . For a) and b): if c-v was chosen in the
beginning, p cannot receive the sent message as it disagrees with its choice from the
beginning c-x. In all other cases, p waits for a message while no message will ever be
sent. The possibility of deadlocks in {{Ap}}p∈P contradicts our assumption that it ≈-
implements GMPCP (and there cannot be any CSM that ≈-implements GMPCP).

We prove⇐1 next. The language C≈(L(GMPCP)) is obviously non-empty. Therefore,
let w′ ∈ C≈(L(GMPCP)). We split w′ to obtain:

w′ = w · r▷p!ack-x · p◁r?ack-x for some w and x ∈ {u, v} .

By construction of GMPCP, we know that

w ∈ C≈(L(G(u, 0))) ∪ C≈(L(G(v, 0))).

By assumption, the intersection of both sets is empty. Thus, exactly one of the following
holds:

w⇓Γr ∈ C≈(L(G(u, 0)))⇓Γr or w⇓Γr ∈ C≈(L(G(v, 0)))⇓Γr .

104 Chapter 4. Building a Bridge from MSTs to HMSCs

We give a ≈-implementation for GMPCP. It is straightforward to construct FSMs
for both p and q. They are involved in the initial decision and ≈ does not affect
their projected languages. Thus, determinising the projection by erasure yields the
FSMs Ap and Aq. We construct an FSM Ar for r with control state i ∈ {1, . . . , n},
j ∈ {1, . . . ,max(|ui| | i ∈ {1, . . . , n})}, d ∈ {0, 1, 2}, and x ∈ {u, v}, where |w|
denotes the length of a word. The FSM is constructed in a way such that

w⇓Γr ∈ C≈(L(G(u, 0)))⇓Γr if and only if d is 2 and x is u as well as
w⇓Γr ∈ C≈(L(G(v, 0)))⇓Γr if and only if d is 2 and x is v.

Let us first explain that this characterisation suffices to show that {{Ap}}p∈P
≈-implements GMPCP. The control state d counts the number of received d-messages.
Thus, there will be no more messages to r in any channel once d is 2 by construction
of GMPCP. Once in a state for which d is 2, r sends message ack-u to p if x is u and
message ack-v if x is v. With the earlier characterisation, this message ack-x matches
the message c-x sent from p to q in the beginning and, thus, p will be able to receive it
and conclude the execution.

Now, we will explain how to construct the FSM Ar. Intuitively, r keeps track of a
tile number, which it tries to match against, and stores this in i. It is initially set to 0

to indicate no tile has been chosen yet. The index j denotes the position of the letter
it needs to match in tile ui next and, thus, is initialised to 1. The variable d indicates
the number of d-messages received so far, so initially d is 0. With this, r knows when
it needs to send ack-x. The FSM for r tries to match the received messages against the
tiles of u, so x is initialised to u. If this matching fails at some point, x is set to v as it
learned that v was chosen initially by p.

In any of the following cases, if a received message is a d-message, d is solely
increased by 1:

• If x is u and i is 0, r receives a message z from p and sets i to z (technically the
integer represented by z).

• If x is u and i is not 0, r receives a message z from q.
– If z is the same as ui[j], we increment j by 1 and

check if j > |ui| and, if so, set i to 0 and j to 1.
– If not, we set x to v.

• Once x is v, r can simply receive all remaining messages in any order.

The described FSM can be used for r because it reliably checks whether a presented
sequence of indices and words belongs to tile set u or v. It can do so because
C≈(L(G(u, 0)))⇓Γr ∩ C≈(L(G(v, 0)))⇓Γr = ∅ by assumption.

4.4. Implementability with Intra-participant Reordering 105

Note that this construction of Ar accepts words that are not in C∼(GMPCP)⇓Γr . This
is fine because we can rely on p and q sending genuine messages. There is no need
to but we could enforce not to accept such words by checking against both tile sets
simultaneously and only stop checking once there is a mismatch. By our assumption,
there will always be one valid tile set at the end.

Next, we prove ⇒2 by contraposition. Suppose the MPCP instance has a solution.
Let i1, . . ., ik be a non-empty sequence of indices such that ui1ui2 · · ·uik = vi1vi2 · · · vik
and i1 = 1. It is easy to see that

wx := r◁p?i1·r◁q?[xi1] · · · r◁p?ik·r◁q?[xik]·r◁p?d·r◁q?d ∈ L(G(x, 0))⇓Γr for x ∈ {u, v}.

By definition of ≈, we can re-arrange the previous sequences such that

r◁p?i1 · · · r◁p?ik·r◁q?[xi1] · · · r◁q?[xik]·r◁p?d·r◁q?d ∈ C≈(L(G(x, 0)))⇓Γr for x ∈ {u, v}.

Because i1, . . . , ik is a solution to the instance of MPCP, it holds that

r◁q?[ui1] · · · r◁q?[uik] = r◁q?[vi1] · · · r◁q?[vik] and, thus,

r◁p?i1 · · · r◁p?ik · r◁q?[ui1] · · · r◁q?[uik] · r◁p?d · r◁q?d is in C≈(L(G(v, 0)))⇓Γr .

This shows that C≈(L(G(u, 0)))⇓Γr ∩ C≈(L(G(v, 0)))⇓Γr ̸= ∅.
Lastly, we prove ⇐2. We know that the MPCP instance has no solution. Thus,

there cannot be a non-empty sequence of indices i1, i2, . . . , ik such that ui1ui2 · · ·uik =

vi1vi2 · · · vik and i1 = 1. We consider any possible words wu ∈ C≈(L(G(u, 0)))⇓Γr and
wv ∈ C≈(L(G(v, 0)))⇓Γr and try to match them to find an element in the intersection
of both sets. To be precise, we consider the sequence of receive events wx⇓r◁ p?_ with
sender p and the sequence of receive events wx⇓r◁ q?_ with sender q for x ∈ {u, v}.
The intra-participant indistinguishability relation ≈ allows to reorder events of both
senders. Thus, the intersection is non-empty if and only if we can find words wu and
wv such that wu⇓r◁ p?_ = wv⇓r◁ p?_ and wu⇓r◁ q?_ = wv⇓r◁ q?_. However, G(x, 0) for
x ∈ {u, v} is constructed in a way that this is only possible if the MPCP instance has a
solution. Therefore, the intersection is empty which proves our claim.

This result carries over to HMSCs.

Definition 4.50. An HMSC H is said to be implementable with regard to ≈ if there
exists a deadlock-free CSM {{Ap}}p∈P such that the following holds: (i) L(H) ⊆
C≈(L({{Ap}}p∈P)) and (ii) C≈(L(H)) = C≈(L({{Ap}}p∈P)).

Corollary 4.51. Checking implementability w.r.t. ≈ for HMSCs is undecidable.

It is obvious that a final vertex is reachable from every vertex inH(GMPCP), making
GMPCP 0-reachable. Also, because of the done-messages, ifGMPCP is implementable, its
implementation is sink-final for every participant. The protocol also satisfies a number
of channel restrictions. Our results in Chapter 7 show that it is existentially 1-bounded,
1-synchronisable and half-duplex.

106 Chapter 4. Building a Bridge from MSTs to HMSCs

The MPCP encoding only works since receive events can be reordered unboundedly
in an execution. If we amended the definition of ≈ to give each receive event a
budget that depletes with every reordering, this encoding would not be possible.
Alternatively, one could require every active participant in a loop to send at least
once. This also prevents such unbounded reorderings. For such restrictions on the
considered indistinguishability relation, the corresponding implementability problem
likely becomes decidable. We leave a detailed analysis for future work.

107

Chapter 5

Direct and Complete Projection for
Multiparty Session Types

In the previous chapter, we developed a decision procedure for the implementability
problem of sender-driven global types. This is of theoretical interest but does not lend
itself to an efficient implementation, e.g. in a prototype tool. In this chapter, we develop
the first direct, sound and complete MST projection operator. We do so for a slightly
more general class of protocols: we still assume sender-driven choice but do not require
that every partial execution of a protocol can always be extended to a finite completed
execution. Our projection operator separates constructing a candidate implementation
from checking implementability. It uses textbook automata-theoretic constructions and
generates annotations for the resulting automata, which are subsequently used to check
implementability of the global type. We prove soundness and completeness of our
PSPACE approach. We also present a family of global types for which generating an
implementation requires exponential time in the size of the input. Our approach can also
be used to solve the soft implementability problem, which employs a slightly different
notion of deadlocks. With a prototype implementation, we demonstrate the practicality
of our approach. Last, we survey properties of global types and their implementations
from the literature and show that our notion of implementability entails most of them
or can easily be checked.

5.1 Constructing Implementations

The synthesis step in our projection operator uses textbook automata-theoretic
constructions. From a given global type, we derive a finite state machine, and use
it to define a homomorphism automaton for each participant. We then determinise
this homomorphism automaton via subset construction to obtain a local candidate
implementation for each participant. If the global type is implementable, this
construction always yields an implementation.

Let us first explain the idea of our construction with an example.

108 Chapter 5. Direct and Complete Projection for Multiparty Session Types

p q r
o

o L1

p q r
m

R1

p q r
o

o

o

L2

L3

p q r
b

b

o

L4

L5

L6

p q r
o

o

o

R2

R3

p q r
b

b

m

R4

R5

R6

(a) Odd-even Protocol
with labels for r.

{L1, R1, R2, R4}

{L2, L4, R3} {L3, R2, R4}

{L5}

{L6}

{R5}

{R6}

r◁q?o
r◁q?o

r◁q?o
r◁q?b

r▷p!o

r
◁
q
?b

r◁q?b

r▷p!m

(b) Local implementation
for participant r.

Figure 5.1: Odd-even revisited: as HMSC with labels for r and
the subset construction for r.

Example 5.1 (Odd-even revisited). Let us revisit the odd-even example from
Example 3.43. Figure 5.1a illustrates its HMSC encoding, with labels for r. Recall that
no classical projection operator can generate the local implementation for participant r.
Our approach applies a projection by erasure and determinises the result, obtaining the
FSM in Fig. 5.1b for r. Intuitively, such a deterministic local candidate implementation
can follow multiple runs in the global type simultaneously. We use the labels
L1, . . . , L6, R1, . . . , R6 in Figs. 3.11 and 3.12c to indicate where r might be in the global
type. For readability, we only use the labels for r’s trajectory but our construction keeps
track of all possible (global) points in the protocol. ◀

Formally, the construction is carried out in two steps. First, analogous to the
projection by erasure for HMSCs, for each participant p, we define an intermediate
state machine GAut(G)↓p that is a homomorphism of GAut(G). We call GAut(G)↓p
the projection by erasure for p. Note that the projection by erasure for HMSCs already
applies the subset construction while the one for global types does not.

Definition 5.2 (Projection by erasure). LetG be some global type with its state machine
GAut(G) = (QG,Σ, δG, q0,G, FG). For each participant p ∈ P , we define the state

machineGAut(G)↓p= (QG,Γp⊎{ε}, δ↓, q0,G, FG)with δ↓ := {q
a⇓Γp−−→ q′ | q a−→ q′ ∈ δG}.

It holds that a⇓Γp ∈ Γp ⊎ {ε}.

Then, we determinise GAut(G) ↓p via a standard subset construction to obtain a
deterministic local state machine for p.

5.1. Constructing Implementations 109

Definition 5.3 (Subset construction). Let G be a global type and p be a participant.
Then, the subset construction for p is defined as

C (G, p) =
(
Qp,Γp, δp, s0,p, Fp

)
where

• δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓} for every s ⊆ QG and a ∈ Γp,

• s0,p := {q ∈ QG | q0,G
ε−→∗ q ∈ δ↓},

• Qp := lfp⊆
{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Γp} \ {∅},

• δp := δ|Qp×Γp , and
• Fp := {s ∈ Qp | s ∩ FG ̸= ∅}.

In the above definition, the least fixed point operator lfp is solely used to restrict the
state space to the reachable ones. This ensures that our construction does only contain
reachable states and, thus, our validity conditions are only checked for these.

Note that the construction ensures thatQp only contains subsets ofQG whose states
are reachable via the same traces, i.e. we typically have |Qp| ≪ 2|QG|.

The following characterisation is immediate from the subset construction; the proof
can be found in Appendix A.1.

Lemma 5.4. Let G be a global type, r be a participant, and C (G, r) be its subset
construction. If w is a trace of GAut(G), w⇓Γr is a trace of C (G, r). If u is a trace
of C (G, r), there is a trace w of GAut(G) such that w⇓Γr = u. Then, it holds that
L(G)⇓Γr = L(C (G, r)).

With this lemma, we show the CSM {{C (G, p)}}p∈P preserves all behaviours of G.
This result is similar to Lemma 3.21 for our generalised classical projection operator.

Lemma 5.5. For all global types G, it holds that L(G) ⊆ L({{C (G, p)}}p∈P).

Again, we defer the proof to Appendix A.1. We briefly sketch the proof here though.
Given that {{C (G, p)}}p∈P is deterministic, to prove language inclusion it suffices to
prove the inclusion of the respective prefix sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

Let w be a word in L(G). If w is finite, membership in L({{C (G, p)}}p∈P) is immediate
from the claim above. Ifw is infinite, we show thatw has an infinite run in {{C (G, p)}}p∈P
using König’s Lemma. We construct an infinite graph Gw(V,E) with V := {vρ |
trace(ρ) ≤ w} and E := {(vρ1 , vρ2) | ∃ x ∈ Γ. trace(ρ2) = trace(ρ1) · x}. Because
{{C (G, p)}}p∈P is deterministic, Gw is a tree rooted at vε, the vertex corresponding to the
empty run. By König’s Lemma, every infinite tree contains either a vertex of infinite
degree or an infinite path. Because {{C (G, p)}}p∈P consists of a finite number of FSM,
the last configuration of any run has a finite number of next configurations, and Gw is
finitely branching. Therefore, there must exist an infinite path in Gw representing an
infinite run for w, and thus w ∈ L({{C (G, p)}}p∈P).

110 Chapter 5. Direct and Complete Projection for Multiparty Session Types

The proof of the inclusion of prefix sets proceeds by structural induction and
primarily relies on Lemma 5.4 and the fact that all prefixes in L(G) respect the order
of send before receive events.

5.2 Checking Implementability

We now turn our attention to checking implementability of a CSM produced by the
subset construction. We present two conditions: send and receive validity. For both,
we present a pair of examples that showcases key differences between implementable
and unimplementable global types. From these, we distil our conditions that precisely
characterise the implementability of global types.

In general, a global typeG is not implementable when the agreement on a global run
of GAut(G) among all participants cannot be conveyed via sending and receiving the
specified messages alone. When this happens, participants can take locally permitted
transitions that commit to incompatible global runs, resulting in a trace that is not
specified by G. Consequently, our conditions need to ensure that when a participant p
takes a transition in C (G, p), it only commits to global runs that are consistent with the
local views of all other participants. We discuss the relevant conditions imposed on send
and receive transitions separately.

5.2.1 Send Validity

Example 5.6. Consider the following global types, also depicted in Figs. 5.2a and 5.2c:

Gs := +

{
p→q :o . r→q :o . 0

p→q :m . r→q :m . 0
G′

s := +

{
p→q :o . r→q :b . 0

p→q :m . r→q :b . 0

In both examples, p chooses a branch by sending either o or m to q, which also
determines the expected behaviour of participant r. For both Gs and G′

s, participant r
cannot learn the branch chosen by p. Thus, forGs, participant r cannot knowwhether to
send o orm to q, leading inevitably to deadlocking runs. In contrast,G′

s is implementable
because the expected behaviour of r is independent of the choice by p.

p q r
o

o

p q r
m

m

(a) Gs

s0,r

s1,r

s2,r

r▷q
!o

r▷q!m

(b) C (Gs, r)

p q r
o

b

p q r
o

b

(c) G′
s

s′0,r s′1,r
r▷q!b

(d) C (G′
s, r)

Figure 5.2: HMSCs for Gs and G′
s and subset constructions onto r for

Example 5.6.

5.2. Checking Implementability 111

Let us see how we can distinguish both scenarios in the subset construction.
We first consider {{C (Gs, p)}}p∈P for which we depict the FSM for r in Figure 5.2b.

It has an execution with the trace p▷q!o ·q◁p?o ·r▷q!m. This trace is possible because
the initial state of C (Gs, r), s0,r, contains two states of GAut(Gs)↓r, each of which has
a single outgoing send transition labelled with r▷q!o and r▷q!m respectively. Both of
these transitions are always enabled in s0,r, meaning that r can send r▷q!m even when
p has chosen the top branch and q expects to receive o instead of m from r. However,
the run will deadlock because, after receiving o from p, the machine C (Gs, q) is in a
state that can only receive o from r. Intuitively, the violation arises because for the two
traces where p chooses to send o or m to q, participant r’s local view does not contain
enough information to tell the two scenarios apart.

In contrast, while the state s′0,r in C (G′
s, r) (Fig. 5.2d) also contains two states of

GAut(G′
s)↓r, each with a single outgoing send transition, both these transitions are

labelled with r▷q!b. These two transitions collapse to a single one in C (G′
s, r). This

transition is consistent with both possible local views that p and q might hold on the
global run. ◀

Intuitively, to prevent the emergence of inconsistent local views from send
transitions of C (G, p), we must enforce that for every state s ∈ Qp with an outgoing
send transition labelled x, a transition labelled x must be enabled in all states of
GAut(G)↓p represented by s. We use the following auxiliary definition to formalise
this intuition subsequently.

Definition 5.7 (Transition origin). Let s x−→ s′ ∈ δp be a transition in C (G, p) and
δ↓ be the transition relation of GAut(G)↓p. We define the set of transition origins
tr-orig(s

x−→ s′) as follows:

tr-orig(s
x−→ s′) := {G ∈ s | ∃G′ ∈ s′. G

x−→∗ G′ ∈ δ↓} .

Our condition on send transitions is then stated below.

Definition 5.8 (Send Validity). C (G, p) satisfies Send Validity iff every send transition
s

x−→ s′ ∈ δp is enabled in all states contained in s:

∀s x−→ s′ ∈ δp. x ∈ Γp,! =⇒ tr-orig(s
x−→ s′) = s .

5.2.2 Receive Validity
Example 5.9. Consider the following global types, also depicted in Figs. 5.3a and 5.4a:

Gr := +

{
p→q :o . q→r :o . p→r :o . 0

p→q :m . p→r :o . q→r :o . 0
G′

r := +

{
p→q :o . q→r :o . r→p :o . p→r :o . 0

p→q :m . p→r :o . r→q :o . q→r :o . 0

112 Chapter 5. Direct and Complete Projection for Multiparty Session Types

p q r
o

o
o

p q r
m

o
o

(a) Gr

s0,r

s1,r s2,r

s3,r s4,r

r◁q
?o

r◁p?o

r◁p?o

r◁q?o

(b) C (Gr, r)

Figure 5.3: HMSC for Gr and its subset construction onto r.

p q r
o

o
o
o

p q r
m

o
o
o

(a) G′
r

s′0,r

s′1,r s′2,r s′3,r

s′4,r s′5,r s′6,r

r◁q
?o

r▷p!o r◁p?o

r◁p?o

r▷q!o r◁q?o

(b) C (G′
r, r)

Figure 5.4: HMSC for G′
r and its subset construction onto r.

As before, p chooses a branch by sending either o orm to q, determining the expected
behaviour of participant r. The global type Gr is not implementable because r cannot
learn which branch was chosen by p. For any local implementation of r to be able
to execute both branches, it must be able to receive o from p and q in any order.
Because the two send events p▷r!o and q▷r!o are independent of each other, they
may be reordered. Consequently, any implementation of Gr would have to permit
executions that are consistent with global behaviours not described by Gr, such as
p→q :m · q→r :o · p→r :o. Contrast this with G′

r, which is implementable. In the
top branch of G′

r, participant p can only send to r after it has received from r, which
prevents the reordering of the send events p▷r!o and q▷r!o. The bottom branch is
symmetric. Hence, r learns the choice of p based on which message it receives first.

Let us again see how we can detect this with the subset construction. We first
consider {{C (Gr, p)}}p∈P , for which Figure 5.3b depicts the FSM for r. It recognises
the following trace, which is not in the global type language L(Gr):

p▷q!o · q◁p?o · q▷r!o · p▷r!o · r◁p?o · r◁q?o .

The issue lies with r which cannot distinguish between the two branches in Gr. The
initial state s0,r of C (Gr, r) has two states of GAut(Gr) corresponding to the subterms
Gt := q→r :o . p→r :o . 0 andGb := p→r :o . q→r :o . 0 . Here,Gt andGb are the top
and bottom branch of Gr respectively. This means that there are outgoing transitions

5.2. Checking Implementability 113

in s0,r labelled with r◁p?o and r◁q?o. If r takes the transition labelled with r◁p?o,
it commits to the bottom branch Gb. However, observe that the message o from p can
also be available at this time point if the other participants follow the top branch Gt.
This is because p can send o to r without waiting for r to first receive from q. In this
scenario, the participants disagree on which global run of GAut(Gr) to follow, resulting
in the violating trace above.

Contrast this withG′
r and its subset construction {{C (G′

r, p)}}p∈P for which the FSM
of r is depicted in Fig. 5.4b. Here, s′0,r again has outgoing transitions labelled with r◁p?o
and r◁q?o. However, if r takes the transition labelled r◁p?o, committing to the bottom
branch, no disagreement occurs. This is because if the other participants are following
the top branch, then p is blocked from sending to r until after it has received confirmation
that r has received its first message from q.

◀

For a receive transition s x−→ s1 inC (G, p) to be safe, wemust enforce that the receive
event x cannot also be available due to reordered sent messages in the continuation
G2 ∈ s2 of another outgoing receive transition s

y−→ s2. We define the set of transition
destinations to capture all subterms that ought to be checked.

Definition 5.10 (Transition destination). Let s x−→ s′ ∈ δp be a transition in C (G, p) and
δ↓ be the transition relation of GAut(G)↓p. We define the set of transition destinations
tr-dest(s

x−→ s′) as follows:

tr-dest(s
x−→ s′) := {G′ ∈ s′ | ∃G ∈ s .G

x−→∗ G′ ∈ δ↓} .

Available Messages. Given a receive transition s
x−→ s′, tr-dest(-) tells us which

subsequent subterms can be reached. These are precisely the subterms for which we
need to check if later messages can appear in the message channels prior to receiving the
message of x. In Section 3.2.2, we defined the notion of available messages for this. There,
we considered a syntactic version avail(B, T,G) with a set of blocked participants B, a
set of recursion variables T and a subtermG. We also definedmsgsB(G...) from a language-
theoretic perspective. We proved both notions to be equivalent (Lemma 3.34). In our
theoretical development, we usemsgsB(G...). In our prototype tool, we simply compute the
available messages directly on the state machine forG. Recall that, intuitively,msgsB(G...)

consists of all receive events r◁q?m that can occur on the traces of G such that m will
be the first message added to channel (q, r) before any of the participants in B takes
a step. If B is a singleton set, we omit set notation and write msgsp(G...) for msgs

{p}
(G...).

The set of available messages captures the possible states of all channels before a given
receive transition is taken.

114 Chapter 5. Direct and Complete Projection for Multiparty Session Types

Definition 5.11 (Receive Validity). C (G, p) satisfies Receive Validity iff no receive
transition is enabled in an alternative continuation that originates from the same
source state:

∀s p◁ q1 ?m1−−−−−→ s1, s
p◁ q2 ?m2−−−−−→ s2 ∈ δp.

q1 ̸= q2 =⇒ ∀ G2 ∈ tr-dest(s
p◁ q2 ?m2−−−−−→ s2). p◁q1?m1 /∈ msgsp(G2...)

.

5.2.3 Subset Projection

We are now ready to define our projection operator.
Definition 5.12 (Subset projection of G). The subset projection P(G, p) of G onto p

is C (G, p) if it satisfies Send Validity and Receive Validity. We lift this operation to a
partial function from global types to CSMs in the expected way.

We conclude our discussion with an observation about the syntactic structure of
the subset projection: Send Validity implies that no state has both outgoing send and
receive transitions — also known as a mixed-choice state. Note that, here, mixed-choice
is a condition on an FSM over Γp for some participant p and refers to the mixed choice
of sending or receiving.
Corollary 5.13 (No mixed-choice states). If P(G, p) satisfies Send Validity, then for all
s

x1−→ s1, s
x2−→ s2 ∈ δp, x1 ∈ Γ! iff x2 ∈ Γ!.

Together with our completeness result discussed later, this implies that every
implementable global type admits an implementation without mixed-choice states.

5.3 Soundness

In this section, we prove the soundness of our subset projection, stated as follows.
Theorem 5.14. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Then, {{P(G, p)}}p∈P implements G.

Recall that implementability is defined as protocol fidelity and deadlock freedom.
Protocol fidelity consists of two language inclusions.

The first inclusion, L(G) ⊆ L({{P(G, p)}}p∈P), enforces that the subset projection
generates at least all behaviours of the global type. We showed in Lemma 5.5 that this
holds for the subset construction alone (without Send and Receive Validity).

The second inclusion, L({{P(G, p)}}p∈P) ⊆ L(G), enforces that no new behaviours
are introduced. The proof of this direction relies on a stronger inductive invariant that
we show for all traces of the subset projection. As discussed in Section 5.2, violations of
implementability occur when participants commit to global runs that are inconsistent
with the local views of other participants. Our inductive invariant states the exact
opposite: that all local views are consistent with one another. First, we formalise the
local view of a participant.

5.3. Soundness 115

Definition 5.15 (Possible run sets). Let G be a global type and GAut(G) be the
corresponding state machine. Let p be a participant and w ∈ Γ∗ be a word. We define
the set of possible runs RG

p (w) as all maximal runs of GAut(G) that are consistent with
p’s local view of w:

RG
p (w) := {ρ is a maximal run of GAut(G) | w⇓ΓprocA

≤ trace(ρ)⇓ΓprocA
} .

While Definition 5.15 captures the set of maximal runs that are consistent with
the local view of a single participant, we would like to refer to the set of runs that is
consistent with the local view of all participants. We formalise this as the intersection
of the possible run sets for all participants, which we denote as

I(w) :=
⋂
p∈P

RG
p (w) .

With these definitions in hand, we can now formulate our inductive invariant:

Lemma 5.16. Let G be a global type and {{P(G, p)}}p∈P be the subset projection. Let
w be a trace of {{P(G, p)}}p∈P . It holds that I(w) is non-empty.

Prior to discussing details of how to prove this, let us briefly explain that in
{{P(G, p)}}p∈P every sent message could eventually be received. Namely, it satisfies
feasible eventual reception (cf. Definition 2.1).

With the previous lemma, there is a run in the global type’s state machine that all
local views are compliant with. It is straightforward that all participants can catch up
to the participant that progressed furthest in this run and then, by definition of global
types, all channels are empty.

Corollary 5.17 (Feasible eventual reception). The subset projection {{P(G, p)}}p∈P for
a global type G satisfies feasible eventual reception if it is defined.

The reasoning for the sufficiency of Lemma 5.16 is included in the proof of
Theorem 5.14, found in Appendix A.2. In the rest of this section, we focus our efforts
on how to show this inductive invariant, namely that the intersection of all participants’
possible run sets is non-empty.

We begin with the observation that the empty trace ε is consistent with all runs.
As a result, I(ε) =

⋂
p∈P RG

p (ε) contains all maximal runs in GAut(G). By definition,
state machines for global types include at least one run, and the base case is trivially
discharged. Intuitively, I(w) shrinks as more events are appended to w, but we show
that at no point does it shrink to ∅. We consider the cases where a send or receive
event is appended to the trace separately, and show that the intersection set shrinks in
a principled way that preserves non-emptiness. In fact, when a trace is extended with a
receive event, Receive Validity guarantees that the intersection set does not shrink at all.

Lemma 5.18. Let G be a global type and {{P(G, p)}}p∈P be the subset projection. Let
wx be a trace of {{P(G, p)}}p∈P such that x ∈ Γ?. Then, I(w) = I(wx).

116 Chapter 5. Direct and Complete Projection for Multiparty Session Types

x = p▷q!m, w ∈ Γ∗

RG
p (wx)

⋂
r∈P RG

r (w)RG
p (w)

y = q◁p?m, w′ = wxu with u ∈ Γ∗

RG
p (w

′) RG
q (w

′y)

RG
q (w

′)
⋂

r∈P RG
r (w

′)

Figure 5.5: Evolution of RG- (-) sets
when p sends a message m and q receives it.

To prove this equality, we further refine our characterisation of intersection sets. In
particular, we show that in the receive case, the intersection between the sender and
receiver’s possible run sets stays the same, i.e.

RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (wx) .

Note that it is not the case that the receiver only follows a subset of the sender’s possible
runs. In other words,RG

q (w) ⊆ RG
p (w) is not inductive. The equality above simply states

that a receive action can only eliminate runs that have already been eliminated by its
sender. Fig. 5.5 depicts this relation.

Given that the intersection set strictly shrinks, the burden of eliminating runs must
then fall upon send events. We show that send transitions shrink the possible run set of
the sender in a way that is prefix-preserving. To make this more precise, we introduce
the following definition on runs.

Definition 5.19 (Unique splitting of a possible run). Let G be a global type, p a
participant, and w ∈ Γ∗ a word. Let ρ be a possible run in RG

p (w). We define the longest
prefix of ρ matching w:

α′ := max{ρ′ | ρ′ ≤ ρ ∧ trace(ρ′)⇓ΓprocA
≤ w⇓ΓprocA

} .

If α′ ̸= ρ, we can split ρ into ρ = α ·G′ l−→ G′′ ·β where α′ = α ·G′,G′′ denotes the state
following G′, and β denotes the suffix of ρ following α ·G′ ·G′′. We call α ·G′ l−→ G′′ · β
the unique splitting of ρ for pmatchingw. We omit the participant pwhen obvious from
context. This splitting is always unique because the maximal prefix of any ρ ∈ RG

p (w)

matching w is unique.

When participant p fires a send transition p▷q!m, any run ρ = α · G′ l−→ G′′ · β in
p’s possible run with l⇓ΓprocA

̸= p▷q!m is eliminated. While the resulting possible run
set could no longer contain runs that end with G′′ · β, Send Validity guarantees that it
must contain runs that begin with α ·G′. This is formalised by the following lemma.

5.4. Completeness 117

Lemma 5.20. Let G be a global type and {{P(G, p)}}p∈P be the subset projection. Let
wx be a trace of {{P(G, p)}}p∈P such that x ∈ Γ! ∩ ΓprocA for some p ∈ P . Let ρ be a
run in I(w), and α · G′ l−→ G′′ · β be the unique splitting of ρ for p with respect to w.
Then, there exists a run ρ′ in I(wx) such that α ·G′ ≤ ρ′.

This concludes our discussion of the send and receive cases in the inductive step to
show the non-emptiness of the intersection of all participants’ possible run sets. The full
proofs and additional definitions can be found in Appendix A.2.

5.4 Completeness

In this section, we prove completeness of our approach. While soundness states that
if a global type’s subset projection is defined, it then implements the global type,
completeness considers the reverse direction. For this, we prove the necessity of our
Send and Receive Validity conditions, stated on our subset construction.

Theorem 5.21 (Completeness). If G is implementable, then the subset projection
{{P(G, p)}}p∈P is defined.

We sketch the proof and refer to Appendix A.3 for the full proof.
From the assumption that G is implementable, we know there exists a witness

CSM that implements G. While the soundness proof picks our subset projection as the
existential witness for showing implementability – thereby allowing us to reason directly
about a particular implementation – completeness only guarantees the existence of some
witness CSM. We cannot assume without loss of generality that this witness CSM is our
subset construction; instead, we use the fact that it implementsG to show that Send and
Receive Validity hold on our subset construction.

We proceed via proof by contradiction: we assume the negation of Send and Receive
Validity for the subset construction, and show a contradiction to the fact that this
witness CSM implementsG. In particular, we contradict protocol fidelity, stating that the
witness CSM generates precisely the language L(G). To do so, we exploit a simulation
argument: we first show that the negation of Send and Receive Validity forces the subset
construction to recognise a trace that is not a prefix of any word inL(G). Then, we show
that this trace must also be recognised by the witness CSM, under the assumption that
the witness CSM implements G.

To highlight the constructive nature of our proof, we convert our proof obligation to
a witness construction obligation. To contradict protocol fidelity, it suffices to construct
a witness trace v0 satisfying two properties, where {{Bp}}p∈P is our witness CSM:

(a) v0 is a trace of {{Bp}}p∈P , and
(b) the run intersection set of v0 is empty: I(v0) =

⋂
p∈P RG

p (v0) = ∅.

118 Chapter 5. Direct and Complete Projection for Multiparty Session Types

We first establish the sufficiency of conditions (a) and (b). Because {{Bp}}p∈P is
deadlock-free by assumption, every prefix extends to a maximal trace. Thus, to prove
the inequality of the two languages L({{Bp}}p∈P) and L(G), it suffices to prove the
inequality of their respective prefix sets. In turn, it suffices to show the existence of
a prefix of a word in one language that is not a prefix of any word in the other. We
choose to construct a prefix in the CSM language that is not a prefix in L(G). We
again leverage the definition of intersection sets (Definition 5.15) to weaken the property
of language non-membership to the property of having an empty intersection set as
follows. By the semantics of L(G), for any w ∈ L(G), there exists w′ ∈ L(GAut(G))

with w ∼ w′. For any w′ ∈ L(GAut(G)), it trivially holds that w′ has a non-empty
intersection set. Because intersection sets are invariant under the indistinguishability
relation ∼, w must also have a non-empty intersection set. Since intersection sets are
monotonically decreasing, if the intersection set of w is non-empty, then for any v ≤ w,
the intersection set of v is also non-empty. Modus tollens of the chain of reasoning above
tells us that in order to show a word is not a prefix in L(G), it suffices to show that its
intersection set is empty.

Having established the sufficiency of properties (a) and (b) for our witness
construction, we present the steps to construct v0 from the negation of Send and Receive
Validity respectively. We start by constructing a trace in {{C (G, p)}}p∈P that satisfies (b),
and then show that {{Bp}}p∈P also recognises the trace, thereby satisfying (a). In both
cases, let p be the participant and s be the state forwhich the respective validity condition
is violated.
Send Validity (Definition 5.8). Let s p ▷q !m−−−−→ s′ ∈ δp be a transition such that

tr-orig(s
p ▷q !m−−−−→ s′) ̸= s .

First, we find a trace u of {{C (G, p)}}p∈P that satisfies: (1) participant p is in state s in
the CSM configuration reached via u, and (2) the run of GAut(G) on u visits a state in
s \ tr-orig(s

p ▷q !m−−−−→ s′). We obtain such a witness u from the trace of a run prefix of
GAut(G) that ends in some state in s \ tr-orig(s p ▷q !m−−−−→ s′). Any prefix thus obtained
satisfies (1) by definition of C (G, p), and satisfies (2) by construction. Due to the fact
that send transitions are always enabled in a CSM, u · p▷q!m must also be a trace of
{{C (G, p)}}p∈P , thus satisfying property (a) by a simulation argument. We then argue
that u · p▷q!m satisfies property (b), stating that I(u · p▷q!m) is empty: the negation
of Send Validity gives that there exist no run extensions from our candidate state in
s \ tr-orig(s p ▷q !m−−−−→ s′) with the immediate next event p −→ q : m, and therefore there
exists no maximal run in GAut(G) consistent with u · p▷q!m.
Receive Validity (Definition 5.11). Let s p◁ q1 ?m1−−−−−→ s1 and s

p◁ q2 ?m2−−−−−→ s2 ∈ δp be two
transitions, and let G2 ∈ tr-dest(s

p◁ q2 ?m2−−−−−→ s2) such that

q1 ̸= q2 and p◁q1?m1 ∈ msgsp(G2...)
.

5.5. CSMs vs. Local Types 119

Constructing the witness v0 pivots on finding a trace u of {{C (G, p)}}p∈P such that both
u · p◁q1?m1 and u · p◁q2?m2 are traces of {{C (G, p)}}p∈P . Equivalently, we show
there exists a reachable configuration of {{C (G, p)}}p∈P in which p can receive either
message from distinct senders q1 and q2. Formally, the local state of p has two outgoing
states labelled with p◁q1?m1 and p◁q2?m2, and the channels (q1, p) and (q2, p) have
m1 andm2 at their respective heads. We construct such a trace u by considering a run in
GAut(G) that contains two transitions labelled with q1→p :m1 and q2→p :m2. Such a
runmust exist due to the negation of Receive Validity. We start with the split trace of this
run, and argue that, from the definition of msgs-- and the indistinguishability relation
∼, we can perform iterative reorderings using ∼ to move the send event q1 ▷p!m1 to
the position before the receive event p◁q2?m2. Then, (a) for u · p◁q1?m1 holds by a
simulation argument. We then separately show that (b) holds for p◁q1?m1 using similar
reasoning as the send case to complete the proof that u · p◁q1?m1 suffices as a witness
for v0.

It is worth noting that the construction of the witness prefix v0 in the proof imme-
diately yields an algorithm for computing counterexample traces to implementability.

5.5 CSMs vs. Local Types

We consider CSMs as implementation model for global types. In contrast, most MST
frameworks use local types as introduced in Section 3.1.

Local types are an expression-based formalism but we also showed how to interpret
them as state machines. They are not equi-expressive though. The syntactic restrictions
of local types have interesting consequences on the expressive power of possible
implementations (cf. Proposition 3.5). We divide these observations about statemachines
built from local types in three parts:

(1) There are no mixed-choice states, i.e. there is no state with both outgoing send
and receive transitions.

(2) They are sink-final. (Every final state has no outgoing transitions and every state
without outgoing transitions is final.)

(3) Every such state machine has a tree-like structure and recursion happens at leaves
to ancestors.

For (1), we will show that this is not restrictive when it comes to implementability. In
fact, every (sender-driven) global type can be implemented without mixed-choice states.
(2) has influences on the semantics of deadlocks. In the implementability problem under
consideration, a deadlock is a non-final CSM configuration that got stuck, i.e. there
are no further CSM transitions. We introduced the soft implementability problem in
Section 2.7, which employs a different notion of deadlock. There, a stuck configuration
is a soft deadlock if any local state machine has an outgoing transition even if the

120 Chapter 5. Direct and Complete Projection for Multiparty Session Types

r◁p?m1

Figure 5.6: Subset projection of global type that is not sink-final.

configuration is final. We proved our subset projection operator complete for the
implementability problem. The soft implementability problem can also be solved with
our subset projection operator, using a simple postprocessing step. In Section 8.2.2, we
will show that the restrictions in (3) do not change the expressivity of sink-final state
machines without mixed-choice states.

5.5.1 On Mixed-choice States

Our completeness result (Theorem 5.21) basically shows the necessity of Send Validity
for implementability. Corollary 5.13 shows that Send Validity precludes states with both
send and receive outgoing transitions. Together, this implies that an implementable
(sender-driven) global type can always be implemented without mixed-choice states.
Note that the syntactic restrictions on (sender-driven) global types do not inherently
prevent mixed-choice states from arising in a participant’s subset construction, as
evidenced by r in the following type:

p→q : l . q→r :m . 0 + p→q : r . r→q :m . 0 .

Its subset construction onto r exposes a mixed-choice state and exemplifies that the
syntactic restrictions on global types do not prevent this. Our completeness result thus
implies that this global type is not implementable. Most MST frameworks [39, 67]
implicitly force no mixed-choice (states) through syntactic restrictions on local types. We
are the first to prove that mixed-choice states are indeed not necessary for completeness.
This is interesting because mixed choice is known to be crucial for the expressive power
of the synchronous π-calculus compared to its asynchronous variant [102].

5.5.2 Sink States and Deadlocks

When using local types, final configurations are always sink-state configurations,
i.e. where each participant is in a sink state. For our setting, this is not the case and has
repercussions on the semantics and meaning of deadlocks: our state machines can have
final states with outgoing transitions and such states can be part of final configurations.
If there is no next transition for such a configuration, it is a soft deadlock. The soft
implementability problem (Definition 2.33) employs this notion for deadlocks: a soft
implementation needs to be free from soft deadlocks and generate the same protocol.
The state machines for global types are all sink-final, i.e. every state is final if and
only if it is a sink state. Despite, there are global types that are implementable but not
softly implementable.

5.5. CSMs vs. Local Types 121

Example 5.22. Consider the following directed global type:

G :=

{
p→q :m1 . p→r :m1 . 0

p→q :m2 . 0
.

It is implementable by its subset projection. We give the subset projection for r in
Fig. 5.6. It has a final state with an outgoing receive transition. Note that the global
type is directed, i.e. sender and receiver are the same for both branches. However,
the conditions on choice do only impose restrictions for the branches and not what
happens subsequently. Here, r is not involved in the bottom branch, making its initial
state final. ◀

With our completeness result, we showed that Send Validity is a necessary condition
for implementability. It requires that every send transition is possible from every
subterm in the respective state. A state is only final if 0 is in this state. No send
transition is possible from 0, which is why there cannot be final states with outgoing
send transitions in a subset projection.

Intuitively, if one aims for soft deadlock freedom, no state with outgoing transitions
needs to be final. For soft deadlocks, only final sink-state configurationsmatter. Oneway
to achieve this is to require that the implementation is sink-final. However, while this is
a sufficient condition, its necessity is not obvious. A soft deadlock requires a reachable
final non-sink-state configuration that is stuck. At first, it seems possible that such a final
configuration never gets stuck in a CSM that is not sink-final: intuitively, it might never
make use of the fact that this final configuration is final but it always continues from
this configuration anyway. We show that this is not the case if one of two conditions
hold: every local state machine of the CSM is deterministic or it ensures that every sent
message will be received eventually, which we called feasible eventual reception.

In addition, we show that the subset projection is sink-final if and only if a global type
is implementable by any sink-final CSM satisfying one of both conditions. Together, this
shows that, given a global type, we can construct its subset projection and check if it is
sink-final if we aim for a deterministic soft implementation. Note that CSM from local
types always satisfy the condition on determinacy. It is also reasonable to only consider
deterministic CSMs for type-checking, as we do in Chapter 6. In the presence of non-
determinism, the type-checking would need to check along all possibilities anyway.

For our result, it is fine to assume implementability of G as it is a prerequisite for
soft implementability.

Theorem 5.23. LetG be an implementable global type. Then, the following statements
are equivalent:

(a) G can be implemented by a sink-final CSM that satisfies feasible eventual reception
or every of its state machines is deterministic.

(b) The subset construction C (G, p) is sink-final for every participant p.

122 Chapter 5. Direct and Complete Projection for Multiparty Session Types

(c) All reachable final configurations of {{C (G, p)}}p∈P are sink-state configurations.
(d) G can be softly implemented by a CSM that satisfies feasible eventual reception

or every of its state machines is deterministic.

Proof. We can assume Send and Receive Validity hold for the subset construction,
entailing that the subset projection is defined. This is justified by the fact that G
is implementable and the completeness theorem (Theorem 5.21). As argued before,
because of Send Validity, any final state in the subset projection cannot have outgoing
send transitions.

We prove four implications, yielding a cycle and equivalence of all statements.
Proof that (a) implies (b):

Let {{Ap}}p∈P be a sink-final CSM that satisfies feasible eventual reception or every of
its state machines is deterministic, and implements G. Towards a contradiction, assume
that the subset construction is not sink-final. Without loss of generality, let C (G, p) be
the subset construction with at least one final non-sink state and let s be one of the states
that is final and has outgoing transitions.

By the fact that s is final, there is 0 ∈ s. By the fact that s has outgoing transitions,
there is G′ ∈ s with G′ x−→ G′′ for x⇓Γp ∈ Γp and some G′′. Because of Send Validity, we
have x = q→p :m for some participant q and message m.

In the subset construction, two subterms G1 and G2 do only occur in the same state
s⃗p of C (G, p) if there are two runs G w−→∗ G1 and G

w′
−→∗ G2 with w ∈ Γ∗, w′ ∈ Γ∗, and

w⇓Γp = w′⇓Γp . Here, we use choose G1 = 0 and G2 = G′. Thus, we have w ∈ L(G).
Let (s⃗, ξ) be the configuration of the subset construction {{C (G, p)}}p∈P that is

reached after processing w. Because of protocol fidelity, determinacy of the subset
construction andw ∈ L(G), it holds that (s⃗, ξ) is final. Recall there is a transition fromG′

toG′′ labelled with q→p :m, so we can extend w′ to obtain w′′ := w′ · p▷q!m for which
w⇓Γp = w′′⇓Γp . Let (s⃗ ′′, ξ′′) be the configuration of {{C (G, p)}}p∈P after processing w′′.
By construction of the traces, the channels are empty after processing w′′. Hence, we
have ξ′′(q, p) = m with the additional send event in w′′. Because of w⇓Γp = w′′⇓Γp , it
holds that s⃗p = s⃗ ′′

p . Let us consider the two configurations of {{Ap}}p∈P that are reached
with w and w′′. By Lemma 2.5, they will have the same channel contents as the subset
construction respectively. Let (⃗t, ξ) and (⃗t ′′, ξ′′) be the configurations of {{Ap}}p∈P after
processing w and w′′ respectively. By w⇓Γp = w′′⇓Γp , it is possible and we assume that
t⃗p = t⃗ ′′p . Note that we do not assume determinacy of {{Ap}}p∈P but we can assume
that both runs end in the same state for p since all ways of non-determinism need
to be accounted for. We show that t⃗p is not sink-final: it is final but has at least one
outgoing transition.

To start, we show that t⃗p is final. It suffices to show that (⃗t, ξ) is a final configuration.
By the fact that (s⃗, ξ) is final, ξ has only empty channels. Towards a contradiction,
assume that t⃗r is not final for some participant r. Then, w is not in L({{A′

p}}p∈P) if there
is no other run for w but, if there were, {{A′

p}}p∈P still deadlocks in the configuration
(⃗t, ξ), contradicting deadlock freedom. Hence, (⃗t, ξ) is final.

5.5. CSMs vs. Local Types 123

It remains to show that t⃗p has an outgoing transition. We do a case analysis on the
side condition for {{Ap}}p∈P .

First, we assume that {{Ap}}p∈P satisfies feasible eventual reception. We use the
second configuration (⃗t ′′, ξ′′) where p is in the same state. We know that m is the
first message in ξ′′(q, p). It was sent and must be received. Thus, t⃗ ′′p has at least one
outgoing transition.

Second, assume that Ar is deterministic for every participant r. Again, we use the
second configuration (⃗t ′′, ξ′′) where p is in the same state. By the semantics of global
types, there is an extension w′′′ of w′′ with w′′′ ∈ L(G) that contains the receive event
p◁q?m for the enqueued messagem. If w′′′ is finite, it is straightforward that p needs to
be able to receive the messagem from q to satisfy protocol fidelity, ensuring an outgoing
transition. If w′′ is infinite, towards a contradiction, assume that t⃗p has no outgoing
transition. The semantics require that every prefix u ∈ pref(w′′′) is in pref({{Ap}}p∈P).
However, if t⃗p could not receivem, because of determinacy of Ap, there is a prefix of w′′′

that is not. This contradicts the assumption that {{Ap}}p∈P implements G.
Proof that (b) implies (c):

By assumption, all final configurations are sink-state configurations. Hence, all
reachable final configurations are sink-state configurations.

Proof that (c) implies (d):
We claim that {{P(G, p)}}p∈P is such a CSM. By soundness (Theorem 5.14), we know
that {{P(G, p)}}p∈P satisfies protocol fidelity and is deadlock-free. Hence, it suffices
to show {{P(G, p)}}p∈P is free from soft deadlocks. Since {{P(G, p)}}p∈P is deadlock-
free, the only way there could be soft deadlocks is that there is a reachable stuck final
configuration that is no sink-state configuration. This is impossible because every
reachable final configuration is a sink-state configuration by assumption. It remains
to show that {{P(G, p)}}p∈P satisfies one of both side conditions. In fact, it satisfies
both as argued earlier.

Proof that (d) implies (a):
By definition, every soft implementation is also an implementation for G because
soft deadlock freedom implies deadlock freedom. We prove the following: a softly
implementable global type can be implemented by a sink-final CSM, i.e. for which all
state machines are sink-final. This is sufficient for our claim. Let {{Ap}}p∈P be a soft
implementation for G that is not sink-final for some participant p. This means that
Ap has final states that have outgoing transitions. We show that these states do not
need to be final for any such p. Hence, we can turn {{Ap}}p∈P to a sink-final CSM
{{A′

p}}p∈P by inductively applying this to all participants whose state machines are not
sink-final. Observe that whether a state is final or not does only matter for soft deadlock
freedom and not protocol fidelity. From soft deadlock freedom, we know that there
is no stuck reachable final non-sink-state configuration. In other words, all the stuck
configurations are final sink-state configurations. Thus, any non-sink final state does
not need to be final. This proves the claim that the existence of {{Ap}}p∈P always implies

124 Chapter 5. Direct and Complete Projection for Multiparty Session Types

the existence of a sink-final CSM {{A′
p}}p∈P which is our witness for implementability.

The side conditions for both statements are the same and not affected by our construction
so they simply carry over.

This result also shows that ourmethodwill always find a sink-final implementation if
it exists. Hence, if it provides one that is not, the global type cannot be implemented with
a sink-final implementation. If this is undesirable, the protocol ought to be redesigned.

5.6 Complexity

In this section, we establish a PSPACE upper bound for the MST implementability
problem and show there is a family of implementable directed global types that requires
projections of exponential size.

Theorem 5.24. Checking implementability for global types with sender-driven choice
is in PSPACE.

Proof. The decision procedure enumerates the subsets of GAut(G) ↓p for each
participant p. This can be done in polynomial space and exponential time. For each p and
s ⊆ QG, it then (i) checks membership of s in Qp of C (G, p), and (ii) if s ∈ Qp, checks
whether all outgoing transitions of s in C (G, p) satisfy Send and Receive Validity.
Check (i) can be reduced to the intersection non-emptiness problem for nondeterministic
finite state machines, which is in PSPACE [129]. It is easy to see that check (ii) can
be done in polynomial time. In particular, the computation of available messages for
Receive Validity only requires a single unfolding of every loop in G.

Note that the synthesis problem has the same complexity. The subset construction to
determinise GAut(G)↓p can be done using a PSPACE transducer. While the output can
be of exponential size, it is written on an extra tape that is not counted towards memory
usage. However, this means we need to perform the validity checks as described above
instead of using the computed deterministic state machines.

Lemma 5.25. Constructing an implementation for a global type with directed choice
may require exponential time.

Proof. We construct a family of directed global types Gk that is implementable and
requires a projection of exponential size for q. Hence, constructing the projections
requires exponential time in the size of the input.

Gk := µt . +


p→r :s . +

{
p→q :a . t

p→q :b . t

p→r : l . +

{
p→q :a .Ga,k−1

p→q :b .Gb,k−1

where

5.7. Evaluation 125

Ga,i := +

{
p→q :a .Ga,i−1

p→q :b .Ga,i−1

for i > 0 Gb,i := +

{
p→q :a .Gb,i−1

p→q :b .Gb,i−1

for i > 0

Ga,0 := p→q :d . q→p :a . 0 Gb,0 := p→q :d . q→p :b . 0

Intuitively, p sends a sequence of letters from {a, b} to q, followed by d to indicate that
the sequence is over. Then, q needs to send the kth last letter back to p. Hence, q needs
to remember the last k letters at all times, yielding at least 2k different states for its
projection. This is a variation of a language that is well-known to be recognisable only
by a DFA with exponentially many states, compared to a minimal NFA: all words over
{a, b} where a is the kth last letter. Note that this result hinges on the fact that multiple
occurences of the same subterm do not contribute to the size of the global type.

In the above example, we require q to remember the last k messages it received
at all times. Since words of any size greater than k are accepted, any local
implementation for q will accept precisely the words from the projection. We call this
local language preserving.

Definition 5.26. Let G be an implementable global type and {{Ap}}p∈P be a CSM that
implements G. We say {{Ap}}p∈P is a local language preserving implementation for G if
L(P(G, p)) = L(G)⇓Γp for every p ∈ P .

Our subset projection yields an implementation where local languages for
praticipants are preserved (Lemma 5.4). Together with our completeness result, this
leads to the following observation.

Corollary 5.27. Let G be an implementable global type. Then, the subset projection
{{P(G, p)}}p∈P is a local language preserving implementation for G and can be
computed in PSPACE.

5.7 Evaluation

We consider the following three aspects in the evaluation of our approach: (E1) difficulty
of implementation (E2) completeness, (E3) comparison to state of the art for protocols
with sender-driven choice, and (E4) confirming the exponential lower bound for
the output.

For this, we implemented our subset projection in a prototype tool, which is publicly
available [106, 114]. It takes a global type as input and computes the subset projection
for each participant. It was straightforward to implement the core functionality in
approximately 700 lines of Python3 code closely following the formalisation (E1).

126 Chapter 5. Direct and Complete Projection for Multiparty Session Types

Source Name Impl. Subset Proj. Size |P| Size Gen. Proj.
(complete) Proj’s (incomplete)

[111]
Instrument Contr. Prot. A ✓ ✓ 0.3ms 22 3 48 ✓ 0.1ms
Instrument Contr. Prot. B ✓ ✓ 0.3ms 18 3 37 ✓ <0.1ms
OAuth2 ✓ ✓ 0.1ms 10 3 22 ✓ <0.1ms

[108] Multi Party Game ✓ ✓ 0.4ms 20 3 43 ✓ 0.1ms
[67] Streaming ✓ ✓ 0.2ms 13 4 28 ✓ <0.1ms
[29] Non-Compatible Merge ✓ ✓ 0.1ms 10 3 22 ✓ <0.1ms
[113] Spring-Hibernate ✓ ✓ 0.7ms 48 6 100 ✓ 0.6ms

Section 3.2.6

Group Present ✓ ✓ 0.5ms 37 4 77 ✓ 0.5ms
Late Learning ✓ ✓ 0.3ms 18 4 34 ✓ 0.1ms
Load Balancer (n = 10) ✓ ✓ 3.0ms 37 12 88 ✓ 1.9ms
Logging (n = 10) ✓ ✓ 56.4ms 82 13 304 ✓ 7.7ms

Section 3.1.1 2 Buyer Protocol ✓ ✓ 0.4ms 22 3 48 ✓ 0.1ms

Section 3.4

2B-Prot. Omit No ✓ ✓ 0.3ms 20 3 48 (×) <0.1ms
2B-Prot. Subscription ✓ ✓ 0.6ms 27 3 68 (×) 0.3ms
2B-Prot. Inner Recursion ✓ ✓ 0.3ms 18 3 39 ✓ <0.1ms
Odd-even ✓ ✓ 0.4ms 34 3 65 (×) 0.1ms

Section 5.2

Gr – Receive Val. Violated × × 0.1ms 12 3 - (×) <0.1ms
G′

r – Receive Val. Satisfied ✓ ✓ 0.2ms 16 3 34 ✓ <0.1ms
Gs – Send Val. Violated × × <0.1ms 8 3 - (×) <0.1ms
G′

s – Send Val. Satisfied ✓ ✓ <0.1ms 6 3 13 ✓ <0.1ms
Section 5.6 State Space Expl. (n = 5) ✓ ✓ 13.5ms 52 3 508 × 2.0ms

Table 5.1: Projecting Global Types. For every protocol, we report
whether it is implementable ✓ or not ×, the time to compute our subset
projection and our generalised projection as well as the outcome as ✓
for “implementable”, × for “not implementable” and (×) for “not known”.
We also give the size of the protocol (number of states and transitions),
the number of participants, the combined size of all subset projections

(number of states and transitions).

We consider the communication protocols from earlier (cf. Table 3.1) as well as new
examples from this thesis (cf. 1st column of Table 5.1). Our experiments were run on a
computer with an Intel Core i5-1335U CPU and used at most 100MB of memory. The
results are summarised in Table 5.1. The reported size is the number of states and
transitions of the respective state machine, which allows not to account for multiple
occurrences of the same subterm. As expected, our tool can project every implementable
protocol we have considered (E2).

Regarding the comparison against the state of the art for protocols with sender-
driven choice (E3), we directly compared our subset projection to our incomplete
generalised projection (Section 3.2), and found that the run times are in the same order
of magnitude in general (typically a few milliseconds). However, as expected, the
generalised projection operator fails to project four implementable protocols (including
Example 3.43). We further note that most of the run times reported by Scalas and

5.8. Properties Entailed by Implementability 127

0 20 40 60 80 100
Size of Global Type

100

101

102

103

104

105 Combined Size of All Projections

Figure 5.7: Projecting Gk (cf. Section 5.6) for 0 < n < 14 with our
prototype tool; x-axis: size of Gk; y-axis: combined size of all subset

projections in log-scale.

Yoshida [109] on their model checking based tool are around 1 second and are thus two
to three orders of magnitude slower and they do not check protocol fidelity.

To confirm the exponential lower bound for implementations of global types (E4),
we project the family of protocols in Section 5.6. We found that the subset projection
for one participant grows exponentially in the size of the global type (cf. Fig. 5.7). This
experiment used at most 500MB of memory.

5.8 Properties Entailed by Implementability

We defined implementability for a protocol as the question whether there exists a
deadlock-free CSM that generates the same language as the protocol specifies. Various
other properties of implementations and protocols have been proposed in the literature.
For systems with two participants, an unspecified reception [34, Def. 12] occurs if a
receiver cannot receive the first message in its (only) channel. Intuitively, this yields
a deadlock for a binary system or an execution in which the other participant will
send messages indefinitely. For multi-party systems with sender-driven choice, this is
not necessarily the case and our receive validity condition ensures that a message in
a participant’s channel can appear but will not confuse the receiver regarding which
choices have been made. Thus, we could lift the property to multiparty systems with a
universal quantification over channels. Our subset projection would prevent this lifted
version of unspecified receptions because of deadlock freedom and the fact that any
non-deadlock configuration can be extended in a way that the unspecified reception
can eventually be received. Similarly, our subset projection ensures the absence of
orphan messages [45, Sec. 2][16, Sec. 3]. Orphan messages have been defined using
final-state configurations, i.e. where all states are final: there is a reachable final-state
configuration whose channels are not empty. This is reasonable if every final state is

128 Chapter 5. Direct and Complete Projection for Multiparty Session Types

also a sink state. This is not the case for our implementation model though. We refer
to Section 5.5.2 for details and how our approach can be used as solution for the soft
implementatability problem. In short, if our subset projection provides a solution to the
soft implementability problem, sink-state configurations and final-state configurations
coincide and our approach guarantees absence of orphan messages for these kind of
configurations. For the implementability problem, our soundness proof ensures the
absence of orphan messages in sink-state configurations and ensures that messages in
final-state configurations can be received eventually.

Deadlock freedom is sometimes also studied as progress – in the sense that a system
should never get stuck. The standard notion of progress [39, Sec. 1] asks that every sent
message is eventually received and every participant waiting for a message eventually
receives one. We call the property that a sent message is eventually received feasible
eventual reception. We proved our subset projection sound for finite as well as infinite
CSM runs. For finite runs, both properties trivially hold. For infinite runs, our subset
projection ensures that both is possible but one would require fairness assumptions to
ensure that it will actually happen as is common for liveness properties. First, we can
impose a (strong) fairness assumption – as Castagna et al. [29]. Second, we can require
that every loop branch contains at least all participants that occur in interactions of any
path with which the protocol can finish.

In our subset projection, it is also guaranteed that each transition of a local
implementation can be fired in some execution of the subset projection. This is called
executable by Cécé and Finkel [34, Def. 12] while it is the property live in work by Scalas
and Yoshida [109, Fig. 5(3)] and called liveness by Barbanera et al. [11, Def. 2.9].

A CSM has the stable property if any reachable configuration has a transition
sequence to a configuration with empty channels. With our proof technique, we
showed every run of a CSM has a common path in the protocol that complies with all
participants’ local observations of the run. There is a furthest point in this path and it is
possible that all participants catch up to this point, having empty channels.

Scalas and Yoshida [109] also consider two properties that are rather protocol-specific
than implementation-specific, i.e. protocol fidelity and deadlock freedom trivially ensure
that every implementation satisfies these properties if the protocol does. First, a global
type is terminating [109, Fig. 5(2)] if every CSM run is finite. It is trivial that this is only
true if there are no (used) recursion variable binders (µt). Second, a global type is never-
terminating [109, Fig. 5(3)] if every CSM run is infinite. Consequently, this is only the
case if the global type has no term 0.

129

Chapter 6

A Type System Using
Communicating State Machines

In the previous chapter, we presented how to go from global types to communicating
state machines as implementation model. Usually, MST frameworks use local types
instead. However, with our sound and complete approach, we showed that CSMs
are well-suited for projection. After projection, local types are usually used as local
specifications in a type system. This raises the question if CSMs are also a good fit for
type-checking. In this chapter, we answer this question positively and show that CSMs
can be seamlessly integrated into a type system. To show this, we present a session type
system that uses CSMs instead of local types.

The presented type system nicely complements the use of CSMs as implementation
model for our sound and complete subset projection. One can take global types as
global protocol specifications and type-check processes against them, with CSMs as
intermediate interface for local specifications. This clean separation of concerns makes
our type system applicable to any type of protocol specification that can be projected
to CSMs. Our results show that CSMs are useful and advantageous for both projection
and type-checking. CSMs are strictly more expressive than local types. Thus, the use of
CSMs as intermediate interface improves generality without loosing efficiency.

For the design of our type system, we follow [109] as a particularly streamlined
instance of a session type system. There are two main differences. Scalas et al. [109] do
not consider global types, so they do not check against a global protocol specification,
but they still use local types. In our type system, we use CSMs which are extracted from
global types.

6.1 Payload Types and Delegation

So far, we treated message payloads as uninterpreted names from a fixed finite set. In
practice, each message would be a label and a payload type. The label can indicate
the branch that was taken while the payload type is interpreted as type of the data
transmitted. For instance, consider the following global type:

G := p→q : l(str) + p→q :r(int)

130 Chapter 6. A Type System Using Communicating State Machines

Here, l and r are labels so q knows which branch was taken. For the right branch, int is
interpreted as type of the payload. Thus, the payload should be of type integer, e.g. the
number 2. If there is no payload, we simply omit it and only write the label.

A global type specifies the intended behaviour for one session. With a type system,
it is interesting to consider systems with multiple sessions that possibly follow protocols
given by different global types. For session s, the endpoint of participant p is denoted
by s[p].

Let us give a rather informal example of a process that followsG. More precisely, let s
be the session that followsG. Then, the processPp ∥ Pq, where ∥ is parallel composition,
would comply with the above global type:

Pp := s[p][q]!l⟨“foo”⟩ . 0 ⊕ s[p][q]!r⟨2⟩ . 0
Pq := s[q][p]?l(x) . 0 & s[q][p]?r(y) . 0

We use internal choice ⊕ for Pp because it sends first: s[p][q]!r⟨2⟩ indicates that
endpoint s[p] sends message r⟨2⟩ to s[q]. For Pq, we use external choice & as it cannot
actually choose but receives the sent message. It stores the payload in a variable which
could be used subsequently, e.g. s[q][p]?l(x) stores the message in x. Both processes
terminate after their only action.

If all payload types are base types like str, int, Bool, etc., type-checking is rather
simple. It gets more complicated and interesting if one allows to send channel endpoints.
This amounts to sending an endpoint of a session, e.g. s[p]. Upon receiving, the receiver
shall subsequently comply with what is specified. This is why sending a channel
endpoint is called delegation. Usually, local types are used to specify channel endpoint
types. However, we do not use local types so how do we specify such behaviour? We use
the states from the subset projections of a global type because this specifies the behaviour
of a participant in our setting. We assume that they are distinct across all considered
state machines. Our implementation model uses finite state machines, giving us a finite
set of labels. Note that one cannot only send the initial state. Each state corresponds
to a position in the local behaviour. Sending non-initial states corresponds to sending
subexpressions of local types.

Example 6.1 (Global Types with Delegation). We consider a protocol where (one) buyer
a buys a book from a seller s who delegates the payment to a payment service p. The
one buyer protocol is specified as follows:

G1 := a→s :query(str) . s→a :price(int) . +

{
a→s :buy . a→s :card(str) . G′

a→s :no . 0
where

G′ := +

{
s→a :valid . s→a :confirm . 0

s→a : invalid . s→a :cancel . 0

6.1. Payload Types and Delegation 131

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

a?query(str)

a!price(int)

a?buy a?no

a?card(str)

a!valid

a!confirm

a! invalid

a!cancel

Figure 6.1: Projection of the one buyer protocol onto seller s.

We project G1 onto s to obtain the state machine in Fig. 6.1 with its set of states
{q1, . . . , q9}. We define the second global type, which specifies the interaction between
the seller s and the payment service p, including delegation.

G2 := +

s→p :price(int) . s→p :deleg(q3) . +

{
p→s :valid(q5) . 0

p→s : invalid(q7) . 0

s→p :no . 0

First, the seller delegates checking the card details to the payment service by
sending q3. The payment service then takes care of the payment but we do not
specify this here. Afterwards, the payment service delegates control back to the seller:
depending on the outcome of the credit card check, they send q5 or q7. Starting from
there, the seller will either confirm or cancel. This choice is not up to the seller but
determined by the label, valid or invalid, sent by the payment service earlier.

We use the states of the projection onto seller s as syntactic marker for the behaviour
that is expected from the receiver of that channel endpoint. Usually, this is achieved
using local types. In general, local types are less expressive than state machines.
However, with Lemma 8.37, we will show that their expressivity coincides for sink-final
state machines, i.e. the ones where final states have no outgoing transitions. Hence, any
sink-final state machine can be turned into a local type. This, however, corresponds to
the initial state and, with delegation, we can also send non-initial states, e.g. q3. Despite,
it appears feasible to first construct a state machine that represents the same behaviour
as starting from a non-initial state and, then, the same techniques for constructing a
local type apply. For instance, the following local type specifies the behaviour of q3:

s◁a?card(str) . ⊕

{
s▷a!valid . s▷a!confirm . 0

s▷a! invalid . s▷a!cancel . 0

◀

132 Chapter 6. A Type System Using Communicating State Machines

We have seen an example for delegation with global types. There, in order to talk
about states from the subset projections ofG1 inG2, we had projectedG1 already before
defining G2. We consider it reasonable that one obtains the local behaviours prior to
using them in other global types. Therefore, we assume a strict partial order <, i.e. it
is irreflexive, antisymmetric, and transitive, for the global types under consideration.
With its acyclicity, this relation provides means to decide the order in which the global
types can be projected: for every G1 and G2 in a system, if G1 < G2, then G2 can use
states from the projection of G1 so we project G1 first. We expect that this condition
could be worked around with more sophisticated techniques but leave this for future
work. Technically, we solely need the existence of < to prove that well-typed processes
do not leave messages in channels behind, so-called orphan messages. Interestingly,
Scalas et al. [109], allow delegation using local types and do not impose such restrictions.
However, they also do not prove the absence of orphan messages. It is unclear whether
their type system can be extended to prove the absence of orphan messages without
such restrictions.

6.2 Process Calculus

We first define processes and runtime configurations.

Definition 6.2. Processes, runtime configurations and process definitions are defined
by the following grammar:

c ::= x | s[p]

P ::= 0 | P1 ∥ P2 | (νs:G)P | ⊕
i∈I

c[qi]!li⟨ci⟩ . Pi | &
i∈I

c[qi]?li(yi) . Pi | Q[⃗c]

R ::= 0 | R1 ∥ R2 | (νs:G)R | ⊕
i∈I

c[qi]!li⟨ci⟩ . Pi | &
i∈I

c[qi]?li(yi) . Pi | Q[⃗c]

| s ▶ σ | err

∆ ::=
(
Q[x⃗] = ⊕

i∈I
c[qi]!li⟨ci⟩ . Pi

)
; ∆ |

(
Q[x⃗] = &

i∈I
c[qi]?li(yi) . Pi

)
; ∆ | ε

The term c can either be a variable x or a session endpoint of shape s[p] (which
will have type q for some state q). Let us explain the constructors for processes and
runtime configurations in more detail. The term 0 denotes termination while ∥ is the
parallel operator. With (νs:G), we restrict a new session s for which the global type G
specifies the intended session behaviour. (G is ignored by our reduction semantics and
solely used for type-checking.) As for local types, we have internal (⊕) and external (&)
choice and assume that |I| > 0. For runtime configurations, the use of processes Pi for
continuations ensures that we only specify queue contents for active session restrictions.
A session restriction is active if it is not guarded by internal or external actions. Q[⃗c]
specifies the use of a process definition with identifier Q ∈ Q and parameters c⃗ for
which ∆ provides the definitions. We only consider guarded process definitions (and c

6.2. Process Calculus 133

and ci can be in x⃗). This allows us to properly distinguish between processes and runtime
configurations later: in the reduction rules, we will only add queues for active session
restrictions. We assume that∆ has one single definition for every process identifier inQ.
Thus, we define ∆(Q, c⃗) as unfolding of the process definition when its variables x⃗ are
substituted by c⃗. For runtime configurations, s ▶ σ denotes that the queues of session s

are currently σ. The function σ : P ×P → Msg∗ whereMsg ∋ m ::= l⟨v⟩ specifies the
queue content where l is from a finite set of labels. If all queues are empty, we exploit
notation and use ε, i.e. ε(p, q) := ε. We will use the term err to specify if something
went wrong.

For global and local types, we defined recursion using µt, which binds a recursion
variable t that can be used subsequently. Note that, in our process calculus, recursion
can be achieved using process definitions Q[x⃗].

Example 6.3. We give a process P that uses the global types from Example 6.1
and assume base types Bool, str and int as well as a construct for if-then-else for
illustrative purposes:

P := (νs1 :G1)(νs2 :G2) Pa ∥ Ps ∥ Pp where
Pa := s1[a][s]!query⟨“Alice in Wonderland”⟩ . s1[a][s]?price(p) .

if p > 10

then s1[a][s]!no . 0

else s1[a][s]!buy . s1[a][s]!card⟨“1234..., 08/2024, 532”⟩ .

&

{
s1[a][s]?confirm . 0

s1[a][s]?cancel . 0

Ps := s1[s][a]?query(b) . s1[s][a]!price⟨prices[b]⟩ .

&

{
s1[s][a]?no . s2[s][p]!no . 0

s1[s][a]?buy . s2[s][p]!price⟨prices[b]⟩ . s2[s][p]!deleg⟨s1[s]⟩ . P ′
s

P ′
s := &

{
s2[s][p]?valid(y1) . y1[a]!confirm . 0

s2[s][p]?invalid(y2) . y2[a]!cancel . 0

Pp := &


s2[p][s]?no . 0

s2[p][s]!price(p) . s2[p][s]?deleg⟨y⟩ . y[a]?card(z) .
if is-valid(z) then s2[p][s]!valid⟨y⟩ . 0 else s2[p][s]!invalid⟨y⟩ . 0

in which prices[b] denotes a lookup for the price and is-valid : str → Bool is a
function that checks if credit card details are valid. Note the use of variable y inPp for the
delegation. In fact, it does not know the endpoint, or local type, it receives but needs to
trust that it can perform the respective actions on it. A type system can ensure this. ◀

134 Chapter 6. A Type System Using Communicating State Machines

Definition 6.4. We define a function ⌈-⌉ to convert a process into a runtime
configuration by adding channel types for active sessions:

⌈P1 ∥ P2⌉ := ⌈P1⌉ ∥ ⌈P2⌉
⌈(νs:G)P ⌉ := (νs:G) (P ∥ s ▶ ε)

⌈P ⌉ := P otherwise

We define structural (pre)congruence. Intuitively, this shows which kind of
transformations do not change the meaning of a process or runtime configuration. For
instance, parallel composition of P with 0 is basically the same as P itself.

Definition 6.5. For processes, the rules for structural congruence ≡ are the following:

• P1 ∥ P2 ≡ P2 ∥ P1

• (P1 ∥ P2) ∥ P3 ≡ P1 ∥ (P2 ∥ P3)

• P ∥ 0 ≡ P

• (νs:G) (νs′ :G′)P ≡ (νs′ :G′) (νs:G)P

• (νs:G) (P1 ∥ P2) ≡ P1 ∥ (νs:G)P2, if s is not free in P1

We define structural precongruence ⊑ for processes as the smallest precongruence
relation that includes ≡ and (νs:G) 0 ⊑ 0. For runtime configurations, the rules for
structural congruence ≡ are the ones above. We define structural precongruence ⊑
for runtime configurations as the smallest precongruence relation that includes ≡ and
(νs:G) s ▶ ε ⊑ 0.

We only define one direction for the rules (νs:G) 0 ⊑ 0 and (νs:G) s ▶ ε ⊑ 0.
This is solely required to prove that structural congruence preserves typability for both
processes and runtime configurations (cf. Lemmas 6.18 and 6.19). Intuitively, the other
direction would require to impose conditions on the global typeG. This treatment is not
restrictive in terms of reductions: applying these rules from right to left will not change
the possibility for reductions.

Last, we define the reduction rules for our process calculus.

Definition 6.6. For our reduction rules, we first define a reduction context:

C ::= C ∥ R | R ∥ C | (νs:G)C | []

Now, we can define the reduction rules:

6.2. Process Calculus 135

∆(Q, c⃗) ∥ R → R′

Q[⃗c] ∥ R → R′ RR-Q
R → R′

C[R] → C[R′]
RR-ctx

k ∈ I

⊕
i∈I

s[p][qi]!li⟨vi⟩ . Pi ∥ s ▶ σ[(p, qk) 7→ m⃗] → ⌈Pk⌉ ∥ s ▶ σ[(p, qk) 7→ m⃗ · lk⟨vk⟩]
RR-out

k ∈ I

&
i∈I

s[p][qi]?li(yi) . Pi ∥ s ▶ σ[(qk, p) 7→ lk⟨vk⟩ · m⃗] → ⌈Pk[vk/yk]⌉ ∥ s ▶ σ[(p, qk) 7→ m⃗]
RR-in

R1 ⊑ R′
1 R′

1 → R′
2 R′

2 ⊑ R2

R1 → R2

RR-⊑

∀i ∈ I. σ(qi, p) = l⟨_⟩ · m⃗ and li ̸= l

&
i∈I

s[p][qi]?li(yi) . Pi ∥ s ▶ σ → err
RR-err1 σ(p, q) ̸= ε for some p, q

(νs:G) s ▶ σ → err
RR-err2

The rule RR-Q allows to unfold a process definition while RR-ctx allows to descend
for reductions using contexts. Both rules RR-out and RR-in specify how a message is
output to a queue or received as input from a queue. RR-⊑ allows to consider structurally
precongruent runtime configurations for reductions. RR-err1 yields an error if the next
action is to receive but all possible incoming messages do not match any specified label.
Last, RR-err2 yields an error if a session is over but there are non-empty queues for
this session.

Example 6.7. We give a reduction for the process specified in Example 6.3. First, we
apply the function ⌈-⌉ to turn the process into a runtime configuration, yielding

R := (νs1 :G1)(νs2 :G2)Pa ∥ Ps ∥ Pp ∥ s1 ▶ ε ∥ s2 ▶ ε

There is only one possible reduction step: the message query⟨“Alice in Wonderland”⟩ is
send by s1[a] to s1[s]. Then, we obtain the following runtime configuration:

R′ := (νs1 :G1)(νs2 :G2) P
′
a ∥ Ps ∥ Pp

∥ s1 ▶ ε[(a, s) 7→ query⟨“Alice in Wonderland”⟩] ∥ s2 ▶ ε

where
P ′
a := s1[a][s]?price(p) .

if p > 10

then s1[a][s]!no . 0

else s1[a][s]!buy . s1[a][s]!card⟨“1234..., 08/2024, 111”⟩ . &
{
s1[a][s]?confirm . 0

s1[a][s]?cancel . 0

136 Chapter 6. A Type System Using Communicating State Machines

Despite dealing with runtime configurations, we can specify processes because the
queues are specified at top level. ◀

6.3 Type System for
Processes and Runtime Configurations

Typing for base types is well-understood. Thus, we focus on the more difficult case of
delegation, following work by Scalas et al. [109]. Integration of base types is mostly
orthogonal and would distract from the main concerns here so we briefly remark
differences in the treatment of base types after presenting our type system.

For processes, we have two typing contexts: Θ andΛ. We consider states as syntactic
markers for local specifications so we use L as type for such payloads. So far, we only
considered a fixed set of participantsP . In a system with multiple global types, we write
PG to denote the subset of participants of G and ChanG for the respective channels. We
might also use the session s instead of the respective global type.

Prior to giving definitions for our type system, let us remark that we make use of the
Barendregt Variable Convention [12], which assumes that the names of bound variables
is always distinct from the ones of free variables. This allows us not to explicitly rename
variables and simplifies the formalisation both for writing and reading.

Definition 6.8. The process definition typing context Θ is a function from process
identifiers to types for its parameters: Θ: Q → L⃗. A syntactic typing context is defined
by the following grammar:

Λ ::= Λ, s[p]:L | Λ, x:L | ∅

A syntactic typing context is a typing context if every element has at most one type. Here,
we do only consider typing contexts. We consider typing contexts to be equivalent up
to reordering and, thus, we may also treat them as mappings. We use notation {Λi}i∈I
to denote that we split Λ into |I| typing contexts.

Equipped with these typing contexts, we can give the typing rules for processes. The
first two rules solely deal with the process definition typing context, which provides the
types for process definitions. The other rules deal with the different constructs of our
process calculus and how to type them. Most importantly, our type system ensures that
all information in the typing context is used exactly once.

6.3. Type System for Processes and Runtime Configurations 137

Definition 6.9. We define end(q) to hold when q is final and does not have outgoing
receive transitions. The typing rules for processes are the following:

⊢ ε:Θ
PT-def-ε

Θ p x⃗:L⃗ ⊢ P Θ(Q) = L⃗

⊢ (Q[x⃗] = P);∆:Θ
PT-def

Θ(Q) = L⃗

Θ p c⃗:L⃗ ⊢ Q[⃗c]
PT-Q

Θ p ∅ ⊢ 0
PT-0

Θ p Λ ⊢ P end(q)

Θ p c:q,Λ ⊢ P
PT-end

Θ p Λ1 ⊢ P1 Θ p Λ2 ⊢ P2

Θ p Λ1,Λ2 ⊢ P1 ∥ P2

PT-∥

δ(q) ⊇ {(p▷qi !li(Li), qi) | i ∈ I} ∀i ∈ I.Θ p Λ, c:qi, {cj :Lj}j∈I\{i} ⊢ Pi

Θ p Λ, c:q, {ci :Li}i∈I ⊢ ⊕
i∈I

c[qi]!li⟨ci⟩ . Pi

PT-⊕

δ(q) = {(p◁qi?li(Li), qi) | i ∈ I} ∀i ∈ I.Θ p Λ, c:qi, yi :Li ⊢ Pi

Θ p Λ, c:q ⊢ &
i∈I

c[qi]?li(yi) . Pi

PT-&

Λs = {s[p]: init(P(G, p))}p∈PG Θ p Λ,Λs ⊢ P

Θ p Λ ⊢ (νs:G)P
PT-ν

where init(-) denotes the initial state of a state machine.
The rules PT-def-ε and PT-def ensure that the process definition typing context

provides the right types for parameters. This is then used to type process definitions
in a process, using PT-Q. PT-0 types 0 with an empty second typing context while
PT-end allows to remove type bindings c:q where q is a final state without outgoing
receive transitions. The rules PT-⊕ and PT-& can be used to type internal and external
choice. The rule PT-∥ allows to split the typing contexts and type the respective processes
independently. Last, PT-ν adds type bindings for a session s and requires that the
remaining process is typed using this.

Our type system is linear, i.e. it requires that every type binding is considered and
they can only be dropped if they correspond to final states without outgoing receive
transitions. This ensures that all the actions specified by the global type are actually
taken and the participants of a session cannot stop earlier.

It might seem that p in PT-⊕ and PT-& is unbound but since we assume q to be
distinct across all state machines under consideration, it is clear from context. Let us
explain PT-⊕ in more detail. To type Θ p Λ, c:q, {ci :Li}i∈I ⊢ ⊕i∈I c[qi]!li⟨ci⟩ . Pi, we
require all send actions to be possible from q, i.e. δ(q) ⊇ {(p▷qi !li(Li), qi) | i ∈ I}. We
do not require all of them to be possible though, in contrast to the receive actions in PT-
&. In addition, for every i ∈ I , we requireΘ p Λ, c:qi, {cj :Lj}j∈I\{i} ⊢ Pi, which gives c
the new binding qi and removes the type binding for the payload ci :Li. Intuitively, it is
transferred when sending a message. Thus, in its counterpart PT-&, the payload’s type
will be used to type the continuation after receiving it, i.e. yi :Li.

138 Chapter 6. A Type System Using Communicating State Machines

q0

q1

p▷q!l(end)

(a) G1↾p

q2

q3

q◁p?l(end)

(b) G1↾q

q4

q5 q6

p▷r!l1(q0) p▷r!l2(end)

(c) G2↾p

q7

q8 q9

r◁p?l1(q0) r◁p?l2(end)

(d) G2↾r

Figure 6.2: Projections of two global types onto its participants.

Note that the assumption that we only consider typing contexts, and not syntactic
typing contexts, ensures that Λ in the conclusion of PT-ν does not contain any s for
instance. The same will hold for the typing rules for runtime configurations.

Remark 6.10 (end(-) and final non-sink states). We use end(q) to check if q is a final
state without outgoing receive transitions. (Recall that send validity entails that there
cannot be final states with outgoing send transitions in a subset projection.) Following
standard MST frameworks, we would simply require q to be final. However, they
consider sink-final implementations only. We elaborated in Section 5.5.2 that our subset
projection is sink-final forG if there exists a sink-final implementation forG, and hence
provides a solution to the soft implementability problem. Thus, this does not impose a
limitation for our method. The condition end(q) amounts to checking if a state is final
if all local implementations are sink-final.

Example 6.11. Let us type delegation with an example. We consider

G1 := p→q : l(end) . 0

for which we could model the payload of l(end) with an arbitrary state end such that
end(end). For readability, we omit its treatment in the typing derivations. We project
G1 onto its participants and obtain the FSMs in Fig. 6.2a and Fig. 6.2b. Using the states
of these, we define delegation in the second global type:

G2 := +

{
p→r : l1(q0) . 0

p→r : l2(end) . 0

Its projections are given in Fig. 6.2c and Fig. 6.2d. Let us define a process that uses both
global types:

P := (νs1 :G1)(νs2 :G2) Pp ∥ Pq ∥ Pr where

Pp := ⊕

{
s1[p][r]!l1⟨s1[p]⟩ . 0
s1[p][r]!l2⟨end ⟩ . s1[p][q]!l⟨end ⟩ . 0

Pq := s1[q][p]?l(x) . 0

Pr := &

{
s2[r][p]?l1(x) . x[q]!l⟨end ⟩ . 0
s2[r][p]?l2(x) . 0

6.3. Type System for Processes and Runtime Configurations 139

In this example, the process definition typing context is always empty so we omit it.
Because of space constraints, we give the typing derivation in pieces. We use numbers
(0) to (5) to refer to the typing derivation for the respective branch. Still, it should be
read from bottom to top, starting from (0). We start with the initial part until typing we
arrive at typing the parallel composition.

(3)

s1[p]:q0, s2[p]:q4 ⊢ Pp

(4)

s1[q]:q2 ⊢ Pq

(5)

s2[r]:q7 ⊢ Pr

(2) : Λs1 ,Λs2 ⊢ Pp ∥ Pq ∥ Pr

PT-∥ (twice)

Λs2 = s2[p]:q4, s2[r]:q7

(2)

Λs1 ,Λs2 ⊢ Pp ∥ Pq ∥ Pr

(1) : Λs1 ⊢ (νs2 :G2) Pp ∥ Pq ∥ Pr

PT-ν

Λs1 = s1[p]:q0, s1[q]:q2

(1)

Λs1 ⊢ (νs2 :G2) Pp ∥ Pq ∥ Pr

(0) : ∅ ⊢ (νs1 :G1)(νs2 :G2) Pp ∥ Pq ∥ Pr

PT-ν

We apply the rule for restrictions PT-ν and then the one for parallel composition PT-∥.
Let us give the typing derivations for the individual branches.

PT-end
PT-⊕

δ(q0) = {(p▷q!l(end), q1)}
PT-end

PT-0
∅ ⊢ 0 end(q1)

s1[p]:q1 ⊢ 0

s1[p]:q0 ⊢ s1[p][q]!l⟨end ⟩ . 0
s1[p]:q0, s2[p]:q6 ⊢ s1[p][q]!l⟨end ⟩ . 0

∅ ⊢ 0
PT-0

end(q5)

s2[p]:q5 ⊢ 0
PT-end

δ(q4) = {(p▷r!l1(q0), q5), (p▷r!l2(end), q6), }
(3) : s1[p]:q0, s2[p]:q4 ⊢ Pp

PT-⊕

δ(q2) = {(q◁p?l(end), q3)}

PT-0
∅ ⊢ 0 end(q3)

s1[q]:q3 ⊢ 0
PT-end

(4) : s1[q]:q2 ⊢ Pq

PT-&

140 Chapter 6. A Type System Using Communicating State Machines

PT-end

PT-⊕
δ(q0) = {(p▷q!l(end), q1)}

PT-end
PT-0

∅ ⊢ 0 end(q1)

x:q1 ⊢ 0

x:q0 ⊢ x[q]!l⟨end ⟩ . 0
end(q8)

s2[r]:q8, x:q0 ⊢ x[q]!l⟨end ⟩ . 0

∅ ⊢ 0
PT-0

end(q9)

s2[r]:q9 ⊢ 0
PT-end

δ(q7) = {(r◁p?l1(q0), q8), (r◁p?l2(end), q9)}
(5) : s2[r]:q7 ⊢ Pr

PT-&

◀

During runtime, we have queues for each session. For these, we define queue types
and use them in queue typing contexts.

Definition 6.12. Queue types are defined by the following grammar:

γ ::= l(L) · γ | ε

A syntactic queue typing context is defined by the following grammar:

Ω ::= Ω, s[p][q] :: γ | ∅

A syntactic queue typing context is a queue typing context if every element has at most
one type. Here, we do only consider queue typing contexts. We consider queue typing
contexts to be equivalent up to reordering and, thus, wemay also treat them asmappings.

While the (second) typing context specifies states for each participant, the queue
typing context specifies the content of the queues. This is all we need to define reductions
following the respective communicating state machine.

Definition 6.13. We define the reductions for typing contexts as follows:

q
p ▷q ! l(L)−−−−−→ q′

s[p]:q,Λ p s[p][q] :: γ,Ω → s[p]:q′,Λ p s[p][q] :: γ · l(L),Ω
TR-⊕

q
p◁ q? l(L)−−−−−→ q′

s[p]:q,Λ p s[q][p] :: l(L) · γ,Ω → s[p]:q′,Λ p s[q][p] :: γ,Ω
TR-&

These rules mimic exactly the semantics of communicating state machines.

We show that reductions for typing contexts are preserved when adding type
bindings to the typing contexts.

6.3. Type System for Processes and Runtime Configurations 141

Lemma 6.14. Let Λ1,Λ
′
1, and Λ2 be typing contexts and Ω1,Ω

′
1, and Ω2 be queue typing

contexts. If Λ1 p Ω1 → Λ′
1 p Ω′

1, then Λ1,Λ2 p Ω1,Ω2 → Λ′
1,Λ2 p Ω′

1,Ω2.

Proof. We do inversion on Λ1 p Ω1 → Λ′
1 p Ω′

1, yielding two cases. First, we have

q
p ▷q ! l(L)−−−−−→ q′

s[p]:q, Λ̂1 p s[p][q] :: γ, Ω̂1 → s[p]:q′, Λ̂1 p s[p][q] :: γ · l(L), Ω̂1

TR-⊕

With this, it is obvious that the following holds:

q
p ▷q ! l(L)−−−−−→ q′

s[p]:q, Λ̂1,Λ2 p s[p][q] :: γ, Ω̂1,Ω2 → s[p]:q′, Λ̂1,Λ2 p s[p][q] :: γ · l(L), Ω̂1,Ω2

TR-⊕

which is precisely what we have to show. The case for TR-& is analogous and, therefore,
omitted.

After this small intermezzo on reductions for typing contexts, we now define the
typing rules for runtime configurations.

Definition 6.15. The typing rules for runtime configurations are the following:

⊢ ε:Θ
RT-def-ε

Θ p x⃗:L⃗ ⊢ P Θ(Q) = L⃗

⊢ (Q[x⃗] = P);∆:Θ
RT-def

Θ(Q) = L⃗

Θ p c⃗:L⃗ p ∅ ⊢ Q[⃗c]
RT-Q

Θ p ∅ p ∅ ⊢ 0
RT-0

Θ p Λ p Ω ⊢ R end(q)

Θ p Λ, c:q p Ω ⊢ R
RT-end

Θ p Λ1 p Ω1 ⊢ R1 Θ p Λ2 p Ω2 ⊢ R2

Θ p Λ1,Λ2 p Ω1,Ω2 ⊢ R1 ∥ R2

RT-∥

δ(q) ⊇ {(p▷qi !li(Li), qi) | i ∈ I} ∀i ∈ I.Θ p Λ, c:qi, {cj :Lj}j∈I\{i} p Ω ⊢ Pi

Θ p Λ, c:q, {ci :Li}i∈I p Ω ⊢ ⊕
i∈I

c[qi]!li⟨ci⟩ . Pi

RT-⊕

δ(q) = {(p◁qi?li(Li), qi) | i ∈ I} ∀i ∈ I.Θ p Λ, yi :Li, c:qi p Ω ⊢ Pi

Θ p Λ, c:q p Ω ⊢ &
i∈I

c[qi]?li(yi) . Pi

RT-&

(q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG)
Λs = {s[p]: q⃗p}p∈PG Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG Θ p Λ,Λs p Ω,Ωs ⊢ R

Θ p Λ p Ω ⊢ (νs:G)R
RT-ν

Θ p ∅ p {s[p][q] :: ε}(p,q)∈Chans ⊢ s ▶ ε
RT-EmptyQueue

142 Chapter 6. A Type System Using Communicating State Machines

Θ p Λ p Ω, s[p][q] :: γ ⊢ s ▶ σ[(p, q) 7→ m⃗]

Θ p Λ, v :L p Ω, s[p][q] :: l(L) · γ ⊢ s ▶ σ[(p, q) 7→ l⟨v⟩ · m⃗]
RT-Queue

where reach(-) denotes the set of reachable configurations of the given CSM. Most
rules are analogous to the rules for processes. For RT-ν, though, we do not require
the CSM configuration to be initial but just reachable, yielding typability of runtime
configurations during execution. The rules for queues are standard: RT-Queue allows
to type queues from the first to the last message in the queue while RT-EmptyQueue
types empty queues.

Example 6.16. In Example 6.11, we gave a typing derivation for a process P using
delegation. It is straightforward that this typing derivation can be mimicked for ⌈P ⌉.
Here, we want to give a typing derivation after one reduction step, for the case where
delegation happens. We have

R′ := (νs1 :G1)(νs2 :G2) 0 ∥ Pq ∥ Pr ∥ s1 ▶ ε ∥ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩] .

We give a typing derivation for ∅ p ∅ ⊢ R′, with label (0). Again, we omit the process
definition typing context since it is empty throughout.

RT-EmptyQueue
∅ p Ω1 ⊢ s1 ▶ ε

(6)

s1[p]:q0, p Ω2 ⊢ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]
(3)

s2[p]:q5 p ∅ ⊢ 0

(4)

s1[q]:q2 p ∅ ⊢ Pq

(5)

s2[r]:q7 p ∅ ⊢ Pr

(2) : Λs1 ,Λ
′
s2 p Ωs1 ,Ω

′
s2 ⊢ 0 ∥ Pq ∥ Pr ∥ s1 ▶ ε ∥ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]

PT-∥ (4 times)

(2)

Λs1 ,Λ
′
s2 p Ωs1 ,Ω

′
s2 ⊢ 0 ∥ Pq ∥ Pr ∥ s1 ▶ ε ∥ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]

Λ′
s2 = s2[p]:q5, s2[r]:q7 Ω′

s2 = s2[p][r] :: l1(q0), s2[r][p] :: ε

(1) : Λs1 p Ωs1 ⊢ (νs2 :G2) Pp ∥ Pq ∥ Pr ∥ s1 ▶ ε ∥ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]
RT-ν

(1)

Λs1 p Ωs1 ⊢ (νs2 :G2) 0 ∥ Pq ∥ Pr ∥ s1 ▶ ε ∥ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]
Λs1 = s1[p]:q0, s1[q]:q2 Ωs1 = s1[p][q] :: ε, s1[q][p] :: ε

(0) : ∅ p ∅ ⊢ (νs1 :G1)(νs2 :G2) 0 ∥ Pq ∥ Pr ∥ s1 ▶ ε ∥ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]
RT-ν

6.4. Soundness of Type System 143

The typing derivations for (4) and (5) are analogous to the ones in Example 6.11. The
typing derivation for (3) is straightforward with RT-end and RT-0, similar to what we
presented for (3) in Example 6.11. We give the typing derivation for (6):

∅ p s2[p][r] :: ε, s2[r][p] :: ε ⊢ s2 ▶ ε

(6) : s1[p]:q0, p s2[p][r] :: l1(q0), s2[r][p] :: ε ⊢ s2 ▶ ε[(p, r) 7→ l1⟨s1[p]⟩]
RT-Queue

◀

The presentation of our type system is inspired by work from Scalas et al. [109].
Thus, wewant to highlight key differences. First, we handle sender-driven choice, which
allows to send to different receivers and to receive from different senders, while they only
consider directed choice. In fact, our processes can choose between different options
when sending messages while their work restricts to a single choice. However, their
treatment could be combined with control flow like if-then-else to cover more scenarios.
Also, Scalas et al. [109] employ subtyping similar to what we do for send actions so
global types still can have multiple branches when sending. We refer to Section 6.5
for an explanation why we do not employ subtyping for receives in our type system.
Second, Scalas et al. [109] do not consider a global protocol specification but only local
types. Based on these local types, they prove properties using model checking. Third,
Scalas et al. [109] do only consider one error scenario: a participant would like to receive
something but the first message in the respective queue does not match. We generalise
this scenario to our setting and require that the first message in all respective queues
does not match. In addition, we consider the error case where a session ended with non-
empty queues. In the next section, we will prove that our type system prevents both
these scenarios.

Remark 6.17 (Adding base types). The treatment of base types and expressions in
type systems is well-understood. Hence, it should be straightforward to extend our
type system to add expressions. More specifically, we would allow to send the result
of expressions and, hence, variables can be bound to values. Provided with (Boolean)
expressions, it is also standard to add features of control-flow like if-then-else. For most
flexible use of our results, it would make most sense if a user provided a type system
for the expressions and base types they need. Then, the type system would use what
we defined for local types (and hence delegation) and the provided type system for
expressions. There is one important difference between both type systems. While ours
is linear, the one for expressions does not need to be. They usually allow to duplicate and
drop type bindings from the typing context, using rules called contraction andweakening.

6.4 Soundness of Type System

For conciseness, we assume a process definition typing context Θ, typing contexts Λ,
Λ1, Λ2, . . ., and queue typing contexts Ω, Ω1, Ω2, . . . in this section.

144 Chapter 6. A Type System Using Communicating State Machines

We presented a type system for processes and runtime configurations. While we
closed the reduction semantics under structural precongruence ⊑, we have not stated
the respective rules for our type system:

Θ p Λ ⊢ P P ⊑ P ′

Θ p Λ ⊢ P ′ PT-⊑
Θ p Λ p Ω ⊢ R R ⊑ R′

Θ p Λ p Ω ⊢ R′ RT-⊑

We show that these rules are admissible, i.e. they can be added without changing the
capabilities of the type system. This allows us not to consider these rules in the following
proofs but still use them if convenient.
Lemma 6.18 (Admissibility of structural precongruence for runtime configuration
typing). If Θ p Λ p Ω ⊢ R1 and R1 ⊑ R2, then Θ p Λ p Ω ⊢ R2.
Proof. We first consider the cases for structural congruence ≡ and then the additional
ones for structural precongruence. We do a case analysis on ≡ and reason for both
directions. Subsequently, we consider the two rules for ⊑.

• R1 ∥ R2 ≡ R2 ∥ R1:
By inversion, we know that RT-∥ is the first rule applied in the typing derivation.
This rule is symmetric so basically the typing derivation works.

• (R1 ∥ R2) ∥ R3 ≡ R1 ∥ (R2 ∥ R3):
By inversion, we know that RT-∥ is the first and second rule applied in the typing
derivation. It is easy to see that the typing derivation can be rearranged to match
the structure.

• R ∥ 0 ≡ R:
First, assume that there is a typing derivation

Θ p Λ1 p Ω1 ⊢ R Θ p Λ2 p Ω2 ⊢ 0

Θ p Λ1,Λ2 p Ω1,Ω2 ⊢ R ∥ 0
RT-∥

We show there is a typing derivation Θ p Λ1,Λ2 p Ω1,Ω2 ⊢ R. Inversion yields
that two rules can be applied for the given typing derivation Θ p Λ2 p Ω2 ⊢ 0:
RT-end and RT-0. Thus, it follows that Ω2 = ∅. Also, Λ2 = {s[p]: q⃗p}p∈S for
some set of participants S and end(q⃗p) for every p ∈ S. By inversion, there is a
typing derivation for Θ p Λ1 p Ω1 ⊢ R. With Ω2 = ∅, it remains to show that
there is a typing derivation Θ p Λ1,Λ2 p Ω1 ⊢ R. The only difference is the typing
contextΛ2. This, however, can be taken care of using RT-end as in the other typing
derivation, concluding this case.
Second, assume there is a typing derivation for R. We show there is a typing
derivation for Θ p Λ p Ω ⊢ R ∥ 0. We first apply RT-∥ to obtain

Θ p Λ p Ω ⊢ R Θ p ∅ p ∅ ⊢ 0
RT-0

Θ p Λ p Ω ⊢ R ∥ 0
RT-∥

6.4. Soundness of Type System 145

for which the right premise is met with RT-0 and the left premise is given
by assumption.

• (νs:G) (νs′ :G′)R ≡ (νs′ :G′) (νs:G)R:
By inversion, both typing derivations need to apply RT-ν twice in the beginning.
It is straightforward that both rule applications do not interfere with each other,
yielding the same premise to prove:

Θ p Λ,Λs,Λs′ p Ω,Ωs,Ωs′ ⊢ R

Thus, this is given by assumption.
• (νs:G) (R1 ∥ R2) ≡ R1 ∥ (νs:G)R2 and s is not free in R1:
First, we assume there is a typing derivation for (νs:G) (R1 ∥ R2) and show there
is a typing derivation for R1 ∥ (νs:G)R2. Applying inversion twice yields

RT-∥
Θ p Λ1 p Ω1 ⊢ R1 Θ p Λ2,Λs p Ω2,Ωs ⊢ R2

Θ p Λ1,Λ2,Λs p Ω1,Ω2,Ωs ⊢ R1 ∥ R2 (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG
)

Λs = {s[p]: q⃗p}p∈PG
Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG

Θ p Λ1,Λ2 p Ω1,Ω2 ⊢ (νs:G) (R1 ∥ R2)
RT-ν

where Λ = Λ1,Λ2 and Ω = Ω1,Ω2. We claim we can assume that Λs and Ωs are
used in the typing derivation for Θ p Λ2,Λs p Ω2,Ωs ⊢ R2. By definition, these
only contain type bindings related to s, which does not occur inR1 by assumption.
There might exist a typing derivation where parts of Λs orΩs appear in the typing
derivation for R1 but these can only removed with the rules RT-end (not even
with RT-EmptyQueue since this requires s ▶ ε). Hence, such derivations can be
mimicked in the typing derivation for R2, justifying our treatment of Λs and Ωs.
We construct a typing derivation:

(q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) Λs = {s[p]: q⃗p}p∈PG
Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG Θ p Λ2,Λs p Ω2,Ωs ⊢ R2

Θ p Λ2 p Ω2 ⊢ (νs:G)R2

RT-ν

Θ p Λ1 p Ω1 ⊢ R1

Θ p Λ1,Λ2 p Ω1,Ω2 ⊢ R1 ∥ (νs:G)R2

RT-∥

All premises coincide with the ones of the original typing derivation, concluding
this case.
Second, we assume there is a typing derivation forR1 ∥ (νs:G)R2 and show there
is a typing derivation for (νs:G) (R1 ∥ R2). The proof is analogous to the previous
case but we do not need to reason about the treatment of Λs and Ωs but it suffices
to show there is one typing and we can choose the respective treatment.

• (νs:G) s ▶ ε ⊑ 0:
We assume there is a typing derivation for Θ p Λ p Ω ⊢ (νs:G) s ▶ ε. We show

146 Chapter 6. A Type System Using Communicating State Machines

there is a typing derivation for Θ p Λ p Ω ⊢ 0. By inversion, we know that RT-ν is
the last rule to be applied and we get one of the premises:

Θ p Λ,Λs p Ω,Ωs ⊢ s ▶ ε

with Λs = {s[p]: q⃗p}p∈PG and Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG . By inversion,
RT-EmptyQueue and RT-end are the only rules that can be applied in the typing
derivation for Θ p Λ,Λs p Ω,Ωs ⊢ 0. Thus, we have Ω = ∅, changing our proof
obligation to Θ p Λ p Ωs ⊢ 0. Since RT-EmptyQueue does only change the queue
typing context, we have that Λ =

⋃
s′∈S{s′[p]: q⃗p}p∈Ps′

for a set of sessions S that
does not contain s and end(q⃗p) for every p ∈ Ps′ and s′ ∈ S . Therefore, we
can also first apply RT-end |Λ| times and last RT-EmptyQueue to obtain a typing
derivation for Θ p Λ p Ωs ⊢ 0.

We proved the admissibility lemma for the type system for runtime configurations.
The proof for the type system for processes is analogous for most cases.

Lemma 6.19 (Admissibility of Structural Precongruence for Process Typing). If it holds
that Θ p Λ ⊢ P1 and P1 ⊑ P2, then Θ p Λ ⊢ P2.

Proof. The respective cases are analogous to the ones in the proof of Lemma 6.18. We
only need to consider the case where (νs:G) 0 ⊑ 0:
We assume there is a typing derivation for Θ p Λ ⊢ (νs:G) 0. We show there is a typing
derivation for Θ p Λ ⊢ 0. By inversion, we know that PT-ν is the last rule to be applied
and we get one of the premises: Θ p Λ,Λs ⊢ 0 with Λs = {s[p]: init(P(G, p))}p∈PG .
By inversion, PT-0 and PT-end are the only rules that can be applied in the typing
derivation for Θ p Λ,Λs ⊢ 0. Since PT-0 needs the second typing context to be
empty, it is applied last and all other derivations are applications of PT-end. Therefore,
Λ =

⋃
s′∈S{s′[p]: q⃗p}p∈Ps′

for some set of sessions S that does not contain s and end(q⃗p)
for every p ∈ Ps′ and s′ ∈ S . Therefore, we can also first apply RT-end |Λ| times and
last RT-0 to obtain a typing derivation for Θ p Λ p ∅ ⊢ 0.

We proceed with a few observations about our type system that we will use later in
the proof for our main result.

To start, we show that a term x cannot appear in a runtime configuration if there is
no type binding for it in the typing context.

Lemma 6.20. If Θ p Λ p Ω ⊢ R and x is not in Λ, then x cannot occur in R.

Proof. Towards a contradiction, assume that x occurs in R. Then, at some point in the
typing derivation

Θ p Λ p Ω ⊢ R

6.4. Soundness of Type System 147

one of the following rules applies to handle x: RT-Q, RT-⊕, or RT-&. Each of
them requires all variables to occur in their respective typing contexts, yielding
a contradiction.

We defined a type system for processes and one for runtime configurations. Both
are very similar and we defined runtime configurations to only have queues for active
sessions. Once a process becomes active, we turn it into a runtime configuration
using ⌈-⌉. We show that this preserves typability with an empty queue typing context.

Lemma 6.21. If Θ p Λ ⊢ P , then Θ p Λ p ∅ ⊢ ⌈P ⌉.

Proof. We prove this by induction on the structure of P .
For all except P = P1 ∥ P2 and P = (νs:G)P ′, it holds that ⌈P ⌉ = P . For all typing

rules that processes and runtime configurations share, the queue typing context is not
changed in the respective runtime configuration typing rule. Thus, Θ p Λ p ∅ ⊢ ⌈P ⌉.

For P = P1 ∥ P2, the claim follows directly by induction hypothesis.
Last, we consider P = (νs:G)P ′. We have the following typing derivation

Λ′ = {s[p]: init(P(G, p))}p∈PG Θ p Λ,Λ′ ⊢ P ′

Θ p Λ ⊢ (νs:G)P ′ PT-ν

We show there is a typing derivationwhere the last rule is RT-ν. This requires a reachable
configuration in the respective CSM: (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG). In this case, we
choose the initial states and empty channels, which allows us to use RT-EmptyQueue
for the queues.

Θ p Λ,Λs p ∅ ⊢ P ′ Θ p ∅ p Ωs ⊢ s ▶ ε
RT-EmptyQueue

Θ p Λ,Λs p Ωs ⊢ (P ′ ∥ s ▶ ε)
RT-∥

(q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG)
Λs = {s[p]: q⃗p}p∈PG Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG

Θ p Λ p ∅ ⊢ (νs:G) (P ′ ∥ s ▶ ε)
RT-ν

where q⃗p = init(P(G, p)) for every p and ξ(p, q) = ε for every p, q. Thus, (q⃗, ξ) is
clearly reachable. Also, both second typing contexts then coincide: Λ′ = Λs. Thus,
Θ p Λ,Λs p ∅ ⊢ P ′, the last premise to satisfy, follows from induction hypothesis.

With the following lemma, we show that, if there is a typing derivation for a process,
then the queue typing context is empty.

Lemma 6.22. If P is a process such that Θ p Λ p Ω ⊢ P , then Ω = ∅.

Proof. We do induction on the depth of the typing derivation.
For the base case, we consider RT-0, for which the claim trivially holds, and RT-

EmptyQueue, for which we reach a contradiction because s ▶ σ is no process.
Let us turn to the induction step:

148 Chapter 6. A Type System Using Communicating State Machines

• RT-Q: trivially holds
• RT-end: by inversion and induction hypothesis
• RT-⊕: by inversion and induction hypothesis for every i ∈ I

• RT-&: by inversion and induction hypothesis for every i ∈ I

• RT-∥: by inversion and induction hypothesis twice
• RT-ν: by inversion and induction hypothesis
• RT-Queue: contradiction because s ▶ σ[(p, q) 7→ l⟨v⟩ · m⃗] is no process

In our type system, we type a queue from the first to the last element, when using
RT-Queue. Thus, when applying inversion for this rule, we only get the type for the first
element of a non-empty queue. The following lemma allows us to also obtain the type
for its last element.

Lemma 6.23 (Message List Reversal). Let γ be a queue type. If

Θ p Λ p Ω, s[p][q] :: γ ⊢ s ▶ σ[(p, q) 7→ m⃗], then

Θ p Λ, v :L p Ω, s[p][q] :: γ · l(L) ⊢ s ▶ σ[(p, q) 7→ m⃗ · l⟨v⟩] .

Proof. We prove this claim by induction on the length n of m⃗ = l1⟨v1⟩ · . . . · ln⟨vn⟩.
If n = 0, the claim is exactly the assumption.
For the induction step, we assume that m⃗ = l1⟨v1⟩ · l2⟨v2⟩ · . . . · ln⟨vn⟩ and the

induction hypothesis holds for l2⟨v2⟩ · . . . · ln⟨vn⟩.
We want to show that

Θ p Λ p Ω, s[p][q] :: γ ⊢ s ▶ σ[(p, q) 7→ l1⟨v1⟩ · l2⟨v2⟩ · . . . · ln⟨vn⟩] implies

Θ p Λ, v :L p Ω, s[p][q] :: γ · l(L) ⊢ s ▶ σ[(p, q) 7→ l1⟨v1⟩ · l2⟨v2⟩ · . . . · ln⟨vn⟩ · l⟨v⟩] .

By inversion of the premise, we know that Λ = Λ′, v1 :L1 and γ = L1 · γ′ in order to
type v1 with some type L1. Thus, we can apply RT-Queue to our goal and then apply
the induction hypothesis with Λ = Λ′ and γ = γ′ to conclude the proof.

We show that the queue types reflect what is in the queues of runtime configurations.

Lemma 6.24. Assume that

Θ p Λ p Ω, s[p][q] :: l1(L1) · . . . · lk(Lk) ⊢ s ▶ σ[(p, q) 7→ l′1⟨v′1⟩, . . . , l′n⟨v′n⟩] .

Then k = n and, for all 1 ≤ i ≤ k, l′i = li and v′i :Li.

Proof. We do an induction on the depth of the typing derivation.

6.4. Soundness of Type System 149

For the induction base, we have the following typing derivation:

Θ p ∅ p {s[p][q] :: ε}(p,q)∈Chans ⊢ s ▶ ε
RT-EmptyQueue

It is obvious that k = 0 = n and there are no messages to consider.
For the induction step, we have the following typing derivation:

Θ p Λ p Ω, s[p][q] :: l1(L1) · l2(L2) · . . . lk(Lk) ⊢ s ▶ σ[(p, q) 7→ l′2⟨v′2⟩ · . . . l′n⟨v′n⟩]
Θ p Λ, v′1 :L1 p Ω, s[p][q] :: l1(L1) · l2(L2) · . . . lk(Lk) ⊢ s ▶ σ[(p, q) 7→ l1⟨v′1⟩ · l′2⟨v′2⟩ · . . . l′n⟨v′n⟩]

RT-Queue

Let us first consider the length of the queue type and the queue: by induction
hypothesis, we know that n − 1 = k − 1 and, thus, k = n. Second, let us consider
the labels and payload types. For i = 1, the typing rule requires the labels to match and
v′1 :L1 is required in the typing context. For i > 1, the induction hypothesis applies.

We also provided typing context reductions. Here, we show that these actually
preserve reachability for the CSM associated with a session.

Lemma 6.25 (Typing reductions preserve reachability). Let Λ = Λ̂, {Λs}s∈S be a typing
context and Ω = Ω̂, {Ωs}s∈S be a queue typing context with a set of sessions S . Assume
that

• Λ̂, {Λs}s∈S p Ω̂, {Ωs}s∈S → Λ̂′, {Λ′
s}s∈S p Ω̂′, {Ω′

s}s∈S , and
• for all s ∈ S , it holds that there is (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) such that
Λs = {s[p]:q}p∈PG and Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG

Then, for all s ∈ S , it holds that there is (q⃗ ′, ξ′) ∈ reach({{P(G, p)}}p∈PG) such that
Λ′

s = {s[p]:q′}p∈PG and Ω′
s = {s[p][q] :: ξ′(p, q)}(p,q)∈ChanG .

Proof. We do inversion on Λ̂, {Λs}s∈S p Ω̂, {Ωs}s∈S → Λ̂′, {Λ′
s}s∈S p Ω̂′, {Ω′

s}s∈S ,
yielding two cases.

First, we have

q
p ▷q ! l(L)−−−−−→ q′

s[p]:q, Λ̄ p s[p][q] :: γ, Ω̄ → s[p]:q′, Λ̄ p s[p][q] :: γ · l(L), Ω̄
TR-⊕

for some s, p, and q. For every s′ ̸= s, the claim trivially holds. For s, the changes
to s[p] and s[p][q] mimic the semantics of the CSM (cf. Section 2.3) while the premise
q

p ▷q ! l(L)−−−−−→ q′ ensures that such a transition is possible.
For the second case where we have

q
p◁ q? l⟨L⟩−−−−−−→ q′

s[p]:q, Λ̄ p s[q][p] :: l(L) · γ, Ω̄ → s[p]:q′, Λ̄ p s[q][p] :: γ, Ω̄
TR-&

the reasoning is analogous but it mimics the receive case of the CSM semantics.

150 Chapter 6. A Type System Using Communicating State Machines

With the substitution lemma, we prove that substituting a variable by a value with
the same type preserves typability in our type system.

Lemma 6.26 (Substitution lemma). For all L, if it holds that Θ p Λ, x:L p Ω ⊢ R, then
Θ p Λ, v :L p Ω ⊢ R[v/x],

Proof. We do an induction on the depth of the typing derivation and do a case analysis
on the last applied rule of the derivation.

For the induction base, we consider both rules with depth 0 and show that there is
noR′ such thatR → R′. For both RT-0 and RT-EmptyQueue, the second typing context
is empty, which contradicts our assumption that x:L or v :L.

For the induction step, the induction hypothesis yields that the claim holds for typing
derivations of smaller depth.

• RT-Q:
We have that

Θ(Q) = L1, . . . , Ln

Θ p c1 :L1, . . . , ci−1 :Li−1, x:Li, ci+1 :Li+1, . . . cn :Ln p ∅ ⊢ Q[⃗c]
RT-Q

It is straightforward that we need to show precisely the same premise for the
desired typing derivation:

Θ p c1 :L1, . . . , ci−1 :Li−1, v :Li, ci+1 :Li+1, . . . , cn :Ln p ∅ ⊢ (Q[⃗c])[v/x] .

• RT-end: We have two cases.
First, we have

Θ p Λ p Ω ⊢ R end(q)

Θ p x:q,Λ p Ω ⊢ R
RT-end

We show that

Θ p Λ p Ω ⊢ R[v/x] end(q)

Θ p v :q,Λ p Ω ⊢ R[v/x]
RT-end

For the first typing derivation, we have x:q,Λ as typing context. By the fact
that Λ is a typing context (and no syntactic typing context), x does not occur
in Λ. By inversion, we have Θ p Λ p Ω ⊢ R. Thus, x cannot occur in R. If it
did, R could only be typed with a typing context with x, which does not occur
in Λ, given by contraposition of Lemma 6.20. Hence R = R[v/x] and, thus, both
premises coincide.

6.4. Soundness of Type System 151

Second, we have

Θ p Λ, x:L p Ω ⊢ R end(q)

Θ p c:q,Λ, x:L p Ω ⊢ R
RT-end

We show that

Θ p Λ, v :L p Ω ⊢ R[v/x] end(q)

Θ p c:q,Λ, v :L p Ω ⊢ R[v/x]
RT-end

By inversion of the first typing derivation, we know that both premises hold.
The second premise is the same for both derivations. For the first premise, the
induction hypothesis applies.

• RT-⊕:
Here, we do a case analysis if x = c, x = ck for some k ∈ I or neither of both.
For the last case, we can apply inversion and the induction hypothesis applies to
all cases of the right premise.
For x = c, the second premise follows from inversion and the induction
hypothesis, instantiated with L = qi.
We consider the case for x = ck in more detail.
We have

δ(q) ⊇ {(p▷qi !li(Li), qi) | i ∈ I}
∀i ∈ I \ {k}.Θ p Λ, c:qi, x:L, {cj :Lj}j∈I\{i,k} p Ω ⊢ Pi

Θ p Λ, c:qi, {cj :Lj}j∈I\{k} p Ω ⊢ Pk

Θ p Λ, c:q, x:L, {ci :Li}i∈I\{k} p Ω ⊢ ⊕
i∈I

c[qi]!li⟨ci⟩ . Pi

RT-⊕

By inversion, we obtain all premises. We show that

δ(q) ⊇ {(p▷qi !li(Li), qi) | i ∈ I}
∀i ∈ I \ {k}.Θ p Λ, c:qi, v :L, {cj :Lj}j∈I\{i,k} p Ω ⊢ Pi[v/x]

Θ p Λ, c:qi, {cj :Lj}j∈I\{k} p Ω ⊢ Pk[v/x]

Θ p Λ, c:q, v :L, {ci :Li}i∈I\{k} p Ω ⊢ (⊕
i∈I

c[qi]!li⟨ci⟩ . Pi)[v/x]
RT-⊕

The first premise is the same. The second premise, for every i ∈ I \ {k}, follows
by the induction hypothesis. For the third premise, we claim that x cannot occur
in Pk. In the conclusion of the first typing derivation, we have the typing context
Λ, c:q, x:L, {ci :Li}i∈I\{k}. Thus, by assumption that each element has at most
one type in a typing context, we know that x cannot occur inΛ, c:q, {ci :Li}i∈I\{k}.
With Lemma 6.20, x cannot occur in Pk. Thus, Pk[v/x] = Pk and the third premise
in both typing derivations coincide, concluding this case.

152 Chapter 6. A Type System Using Communicating State Machines

• RT-&:
We have

δ(q) = {(p◁qi?li(Li), qi) | i ∈ I} ∀i ∈ I.Θ p Λ, yi :Li, c:qi p Ω ⊢ Pi

Θ p Λ, c:q p Ω ⊢ &
i∈I

c[qi]?li(yi) . Pi

RT-&

We do a case analysis if x = c or not.
If not, the claim follows by inversion and induction hypothesis for the
second premise.
If x = c, there is x:qi in the second premise to type Pi[v/x]. The existence of
such a typing derivation follows from inversion and induction hypothesis when
instantiated with L = qi.

• RT-∥:
There are two symmetric cases. We only consider one of both. For this, we have

Θ p Λ1, x:L p Ω1 ⊢ R1 Θ p Λ2 p Ω2 ⊢ R2

Θ p Λ1, x:L,Λ2 p Ω1,Ω2 ⊢ R1 ∥ R2

RT-∥

We show that there is a typing derivation for

Θ p Λ1, v :L,Λ2 p Ω1,Ω2 ⊢ (R1 ∥ R2)[v/x]

By our assumption that typing contexts have at most one type per element, Λ1 and
Λ2 cannot share any names. By inversion, we have Θ p Λ2 p Ω2 ⊢ R2. Thus, by
Lemma 6.20, x cannot occur in R2. Hence, (R1 ∥ R2)[v/x] = R1[v/x] ∥ R2. We
claim the following typing derivation exists:

Θ p Λ1, v :L, p Ω1 ⊢ R1 Θ p Λ2 p Ω2 ⊢ R2

Θ p Λ1, v :L,Λ2 p Ω1,Ω2 ⊢ R1[v/x] ∥ R2

RT-∥

The second premise is the same as in the original typing derivation. The first
premise can be obtained by inversion on the original typing derivation and
applying the induction hypothesis.

• RT-ν:
We have a typing derivation for

Θ p Λ, x:L,Λs p Ω,Ωs ⊢ R .

This case follows easily from inversion and applying the induction hypothesis to
obtain a typing derivation for

Θ p Λ, v :L,Λs p Ω,Ωs ⊢ R[v/x] .

6.4. Soundness of Type System 153

• RT-Queue:
We have a typing derivation for

Θ p Λ p Ω, s[p][q] :: γ ⊢ s ▶ σ[(p, q) 7→ m⃗]

Θ p Λ, v′ :L p Ω, s[p][q] :: l(L) · γ ⊢ s ▶ σ[(p, q) 7→ l⟨v′⟩ · m⃗]
RT-Queue

We do a case analysis if x = v′ or not. If so, the same typing derivation can simply
be re-used as v′ :L also disappears in the original typing derivation. If not, the
claim follows by inversion and application of the induction hypothesis.

This concludes the proof of the substitution lemma.

Now, we turn to the main result about our type system: subject reduction. In short,
if there is a runtime configuration with a typing derivation that can take a step, then
the typing contexts can also take a step and can be used to type the new runtime
configuration.

Theorem 6.27 (Subject reduction). LetR be a runtime configuration with a set of active
sessions S . If

(1) ⊢ ∆:Θ,
(2) Θ p Λ p Ω ⊢ R with Λ = Λ̂, {Λs}s∈S and Ω = Ω̂, {Ωs}s∈S ,
(3) for all s ∈ S , it holds that there is (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) such that

Λs = {s[p]:q}p∈PG and Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG
(4) R → R′,

then there exist Λ′ and Ω′ with Λ p Ω → Λ′ p Ω′ such that Θ p Λ′ p Ω′ ⊢ R′.

Proof. We do an induction on the depth of the typing derivation Θ p Λ p Ω ⊢ R and do a
case analysis on the last applied rule of the derivation.

For the induction base, we consider both rules with depth 0 and show that there is
no R′ such that R → R′.

• RT-0:
It is trivial that 0 cannot reduce.

• RT-EmptyQueue:
In this case R = s ▶ ε for which none of the reduction rules apply.

For the induction step, the induction hypothesis yields that the claim holds for
typing derivations of smaller depth. We do a case analysis on the typing rule that was
applied last.

• RT-Q:
We have that

Θ(Q) = L1, . . . , Ln

Θ p c1 :L1, . . . , cn :Ln p ∅ ⊢ Q[⃗c]
RT-Q

154 Chapter 6. A Type System Using Communicating State Machines

Thus, we know that R = Q[⃗c]. However, none of the reduction rules apply,
contradicting (4).

• RT-end:
We have that

Θ p Λ p Ω ⊢ R end(q)

Θ p c:q,Λ p Ω ⊢ R
RT-end

We have to show that

Θ p Λ′ p Ω′ ⊢ R′ end(q)

Θ p c:q,Λ′ p Ω′ ⊢ R′ RT-end

The second premise end(q) is the same for both. The first premise follows by the
induction hypothesis. The induction hypothesis also yields that Λ p Ω → Λ′ p Ω′,
concluding this case.

• RT-⊕:
Inversion on the typing derivation yields that R = ⊕i∈I s[p][qi]!li⟨vi⟩ . Pi. None
of the reduction rules apply and, thus, there is no R′ such that R → R′,
contradicting (4).

• RT-&:
Inversion on the typing derivation yields that R = &i∈I s[p][qi]?li(Li) . Pi. None
of the reduction rules apply and, thus, there is no R′ such that R → R′,
contradicting (4).

• RT-∥:
We do inversion on the reduction (4). Because of Lemma 6.18, we do not need to
consider RR-⊑.

– RR-Q:
We have

RT-Q
Θ(Q) = L⃗

Θ p c⃗:L⃗ p ∅ ⊢ Q[⃗c] Θ p Λ2 p Ω2 ⊢ R2

Θ p c⃗:L⃗,Λ2 p Ω2 ⊢ Q[⃗c] ∥ R2

RT-∥

By inversion on (4), we have

∆(Q, c⃗) ∥ R2 → R′

Q[⃗c] ∥ R2 → R′ RR-Q

By assumption that Q is defined in ∆ and by definition of ∆, we have that

∆ = ∆1; (Q[x⃗] = P);∆2

6.4. Soundness of Type System 155

for some ∆1 and ∆2.
We claim there is a typing derivation for

Θ p c⃗:L⃗ ⊢ P [⃗c/x⃗]

(1) states that ⊢ ∆:Θ. Inversion on (1) for |∆1| times yields

Θ p x⃗:L⃗ ⊢ P .

We obtain a typing derivation after |x⃗| applications of the substitution lemma
(Lemma 6.26).
We do a case analysis on the structure of P and simultaneously if R′ = err for
second case.
∗ P = ⊕i∈I x[qi]!li⟨xi⟩ . Pi:
Let us rewrite the typing context: c⃗:L⃗ = (x:q, {xj :Lj}j∈I ,Λ1)[⃗c/x⃗]. Without
loss of generality, let x[⃗c/x⃗] = s[p]. Then R′ = ⌈Pk [⃗c/x⃗]⌉ ∥ s ▶ σ[(p, qk) 7→
m⃗ · lk⟨vk⟩] for some k ∈ I . We show there is a typing derivation for any k ∈ I :

Θ p (x:qk, {xj :Lj}j∈I\{k},Λ1)[⃗c/x⃗] p ∅ ⊢ ⌈Pk [⃗c/x⃗]⌉
Θ p (ck :Lk)[⃗c/x⃗],Λ2 p Ω̂2, s[p][qk] :: γ · lk(Lk [⃗c/x⃗]) ⊢ s ▶ σ[(p, qk) 7→ m⃗ · lk⟨vk⟩]

Θ p (x:qk, {xj :Lj}j∈I ,Λ1)[⃗c/x⃗],Λ2 p Ω̂2, s[p][qk] :: γ · lk(Lk) ⊢ R′ RT-∥

By inversion on

Θ p (x:q, {xj :Lj}j∈I ,Λ1)[⃗c/x⃗] ⊢ (⊕
i∈I

x[qi]!li⟨xi⟩ . Pi)[⃗c/x⃗] ,

we get Θ p (x:qi, {xj :Lj}j∈I\{i},Λ1)[⃗c/x⃗] ⊢ Pi [⃗c/x⃗] for every i ∈ I .
Instantiating i = k and applying Lemma 6.21 yields the desired premise:

Θ p (x:qi, {xj :Lj}j∈I\{i},Λ1)[⃗c/x⃗] p ∅ ⊢ ⌈Pi [⃗c/x⃗]⌉

We show there is a typing derivation

Θ p Λ2 p Ω̂2, s[p][qk] :: γ ⊢ s ▶ σ[(p, qk) 7→ m⃗]

Θ p (ck :Lk)[⃗c/x⃗],Λ2 p Ω̂2, s[p][qk] :: γ · lk(Lk [⃗c/x⃗]) ⊢ s ▶ σ[(p, qk) 7→ m⃗ · lk⟨vk⟩]
RT-Queue

By inversion on R → R′, we have that R2 = s ▶ σ[(p, qk) 7→ m⃗]. By inversion
on Θ p Λ2 p Ω2 ⊢ R2, we obtain

Θ p Λ2 p Ω̂2, s[p][qk] :: γ ⊢ s ▶ σ[(p, qk) 7→ m⃗]

which is the desired premise.
It is straightforward that there is a typing context reduction for the
corresponding typing contexts, using TR-⊕.

156 Chapter 6. A Type System Using Communicating State Machines

∗ P = &i∈I x[qi]?li(yi) . Pi and R′ ̸= err:
Let us rewrite the typing context: c⃗:L⃗ = (x:q,Λ1)[⃗c/x⃗]. Without loss of
generality, let x[⃗c/x⃗] = s[p]. Then R′ = ⌈Pk[vk/yk]⌉ ∥ s ▶ [(qk, p) 7→ m⃗]

and R2 = s ▶ [(qk, p) 7→ lk⟨vk⟩ · m⃗]. We show there is a typing derivation for
any k ∈ I :

Θ p vk :Lk, (x:qk,Λ1)[⃗c/x⃗] p ∅ ⊢ ⌈Pk [⃗c/x⃗][vk/yk]⌉
Θ p Λ2 p Ω̂2, s[p][qk] :: γ ⊢ s ▶ σ[(p, qk) 7→ m⃗]

Θ p (x:qk,Λ1)[⃗c/x⃗],Λ2 p Ω̂2, s[p][qk] :: γ ⊢ ⌈Pk [⃗c/x⃗][vk/yk]⌉ ∥ s ▶ σ[(p, qk) 7→ m⃗]
RT-∥

By inversion on Θ p (x:q,Λ1)[⃗c/x⃗] ⊢ (&i∈I x[qi]?li(yi) . Pi)[⃗c/x⃗], we get

Θ p (x:qi, yi :Li,Λ1)[⃗c/x⃗] ⊢ Pi [⃗c/x⃗]

for every i ∈ I . Instantiating i = k and applying Lemma 6.21 yields the desired
premise:

Θ p vk :Lk, (x:qk,Λ1)[⃗c/x⃗] p ∅ ⊢ ⌈Pk [⃗c/x⃗][vk/yk]⌉

The second premise is obtained by inversion on

Θ p vk :Lk,Λ2 p Ω̂2, s[p][pk] :: lk(Lk) · γ ⊢ s ▶ [(qk, p) 7→ lk⟨vk⟩ · m⃗] .

It is straightforward that there is a typing context reduction for the
corresponding typing contexts, using TR-&.

∗ P = &i∈I x[qi]?li(yi) . Pi and R′ = err:
Let us rewrite the typing context: c⃗:L⃗ = (x:q,Λ1)[⃗c/x⃗]. Without loss of
generality, let x[⃗c/x⃗] = s[p]. Then, by inversion on R → R′, we have
R2 = s ▶ σ and for every i ∈ I , σ(qi, p) = l⟨_⟩ · m⃗ and li ̸= l. We claim
that there is no typing derivation

Θ p (x:q,Λ1)[⃗c/x⃗],Λ2 p Ω2 ⊢ (&
i∈I

x[qi]?li(yi) . Pi)[⃗c/x⃗] ∥ s ▶ σ .

By inversion, such a typing derivation must have the following shape:

δ(q) = {(p◁qi?li(Li), qi) | i ∈ I}
∀i ∈ I.Θ p (x:qi,Λ1)[⃗c/x⃗], yi :Li, p ∅ ⊢ Pi

Θ p (x:q,Λ1)[⃗c/x⃗] p ∅ ⊢ (&
i∈I

x[qi]?li(yi) . Pi)[⃗c/x⃗]
RT-&

Θ p Λ2 p Ω2 ⊢ s ▶ σ

Θ p (x:q,Λ1)[⃗c/x⃗],Λ2 p Ω2 ⊢ (&
i∈I

x[qi]?li(yi) . Pi)[⃗c/x⃗] ∥ s ▶ σ
RT-∥

6.4. Soundness of Type System 157

Let us rewrite the typing and queue typing context:

(x:q,Θ)[⃗c/x⃗],Λ2 = Λ̂,Λs

Ω2 = Ω̂,Ωs

By assumption, we know that there is (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) such that
Λs = {s[p]:q}p∈PG and Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG . Recall the condition
on the reduction semantics: ∀i ∈ I. σ(qi, p) = l⟨_⟩ · m⃗ and li ̸= l. Thus, with
Lemma 6.24, it follows that, for all i ∈ I , ξ(qi, p) = l′i(_) · _ with l′i ̸= li. For the
CSM {{P(G, p)}}p∈PG , this entails that p expects to receive a message from a set
of other participants, ranged over by qi, but the first message in each channel
does not match. This yields a contradiction to Corollary 5.17, which states that
the subset projection satisfies feasible eventual reception.

– RR-ctx:
For the context rule, two cases apply: R ∥ C or C ∥ R. Both cases can be proven
analogous, which is why we only prove the first. We have that

Θ p Λ1 p Ω1 ⊢ R1 Θ p Λ2 p Ω2 ⊢ R2

Θ p Λ1,Λ2 p Ω1,Ω2 ⊢ R1 ∥ R2

RT-∥

and we want to show that

Θ p Λ′
1 p Ω′

1 ⊢ R′
1 Θ p Λ2 p Ω2 ⊢ R2

Θ p Λ′
1,Λ2 p Ω′

1,Ω2 ⊢ R′
1 ∥ R2

RT-∥

The second premise is trivially satisfied. The first premise follows from the
induction hypothesis, which also yields that Λ1 p Ω1 → Λ′

1 p Ω′
1. We can apply

Lemma 6.14 to obtain Λ1,Λ2 p Ω1,Ω2 → Λ′
1,Λ2 p Ω′

1,Ω2, concluding this case.
– RR-out:

With three inversions on the typing derivation, we have a typing derivation with
the following shape:

δ(q) ⊇ {(p▷qi !li(Li), qi) | i ∈ I} ∀i ∈ I.Θ p Λ̂1, s[p]:qi, {vj :Lj}j∈I\{i} p Ω1 ⊢ Pi

Θ p Λ̂1, s[p]:q, {vi :Li}i∈I p Ω1 ⊢ ⊕
i∈I

s[p][qi]!li⟨vi⟩ . Pi

RT-⊕

...
Θ p Λ2 p Ω̂2, s[p][qk] :: γ ⊢ s ▶ σ[(p, q) 7→ m⃗]

RT-Queue

Θ p Λ̂1, s[p]:q, {vi :Li}i∈I ,Λ2 p Ω1, Ω̂2, s[p][qk] :: γ ⊢ ⊕
i∈I

s[p][qi]!li⟨vi⟩ . Pi ∥ σ[(p, qk) 7→ m⃗]
RT-∥

By inversion, we obtain all premises. We show that

158 Chapter 6. A Type System Using Communicating State Machines

...
Θ p Λ̂1, s[p]:qk, {vi :Li}i∈I\{k} p Ω1 ⊢ ⌈Pk⌉

RT-⊕

...
Θ p Λ2, vk :Lk p Ω̂2, s[p][qk] :: γ · lk⟨Lk⟩ ⊢ s ▶ σ[(p, qk) 7→ m⃗ · lk⟨vk⟩]

RT-Queue

Θ p Λ̂1, s[p]:qk, {vi :Li}i∈I\{k}, vk :Lk,Λ2 p Ω1, Ω̂2, s[p][qk] :: γ · lk⟨Lk⟩ ⊢ R′ RT-∥

for R′ = ⌈Pk⌉ ∥ σ[(p, qk) 7→ m⃗ · lk⟨vk⟩].
First, we show there is a typing derivation for

Θ p Λ̂1, s[p]:qk, {vi :Li}i∈I\{k} p Ω1 ⊢ ⌈Pk⌉

first. We instantiate the premise

∀i ∈ I.Θ p Λ̂1, s[p]:qi, {vj :Lj}j∈I\{i} p Ω1 ⊢ Pi

for i = k and obtain

Θ p Λ̂1, s[p]:qk, {vj :Lj}j∈I\{k} p Ω1 ⊢ Pk

By Lemma 6.22, we know thatΩ1 = ∅ and, thus, Lemma 6.21 applies and concludes
this case.
Second, we show there is a typing derivation for

Θ p Λ2, vk :Lk p Ω̂2, s[p][qk] :: γ · lk⟨Lk⟩ ⊢ s ▶ σ[(p, qk) 7→ m⃗ · lk⟨vk⟩]

From inversion of the original typing derivation, we have

Θ p Λ2 p Ω̂2, s[p][qk] :: γ ⊢ s ▶ σ[(p, qk) 7→ m⃗]

With Lemma 6.23, the claim follows.
It remains to show that there is a transition for the respective typing contexts:

Λ := Λ̂1, s[p]:q, {vi :Li}i∈I ,Λ2

Λ′ := Λ̂1, s[p]:qk, {vi :Li}i∈I\{k}, vk :Lk,Λ2

Ω := Ω1, Ω̂2, s[p][qk] :: γ

Ω′ := Ω1, Ω̂2, s[p][qk] :: γ · lk⟨Lk⟩

Note that the change from Λ to Λ′ is solely the type of s[p] while s[p][qk] is the
only change from Λ to Λ′. Thus, we can simply apply TR-⊕ to obtain a typing
context reduction.

6.4. Soundness of Type System 159

– RR-in:
With three inversions on the typing derivation, we have a typing derivation with
the following shape:

δ(q) = {(p◁qi?li(Li), qi) | i ∈ I}
∀i ∈ I.Θ p Λ̂1, yi :Li, s[p]:qi p Ω1 ⊢ Pi

Θ p Λ̂1, s[p]:q p Ω1 ⊢ &
i∈I

s[p][qi]?li(yi) . Pi

RT-&

Θ p Λ̂2 p Ω̂2, s[qk][p] :: γ ⊢ s ▶ σ[(qk, p) 7→ m⃗]

Θ p Λ̂2, vk :Lk, p Ω̂2, s[qk][p] :: lk(Lk) · γ ⊢ s ▶ σ[(qk, p) 7→ lk⟨vk⟩ · m⃗]
RT-Queue

Θ p Λ̂1, s[p]:q, Λ̂2, vk :Lk p Ω1, Ω̂2, s[qk][p] :: lk(Lk) · γ ⊢ R′ RT-∥

for R′ &i∈I s[p][qi]?li(yi) . Pi ∥ σ[(qk, p) 7→ lk⟨vk⟩ · m⃗].
By inversion, we obtain all the premises. We show that there is a typing derivation
of shape

...
Θ p Λ̂1, s[p]:qk, vk :Lk p Ω1 ⊢ ⌈Pk[vk/yk]⌉

RT-&

...
Θ p Λ̂2 p Ω̂2, s[qk][p] :: γ ⊢ s ▶ σ[(qk, p) 7→ m⃗]

RT-Queue

Θ p Λ̂1, s[p]:q, vk :Lk, Λ̂2 p Ω1, Ω̂2, s[qk][p] :: γ ⊢ ⌈Pi[vk/yk]⌉ ∥ σ[(qk, p) 7→ m⃗]
RT-∥

First, we show there is a typing derivation for

Θ p Λ̂1, s[p]:qk, vk :Lk p Ω1 ⊢ ⌈Pk[vk/yk]⌉ .

From inversion, we get the following premise from the original typing derivation:

i ∈ I.Θ p Λ̂1, yi :Li, s[p]:qi p Ω1 ⊢ Pi

which we instantiate with i = k to obtain:

Θ p Λ̂1, yk :Lk, s[p]:qk p Ω1 ⊢ Pk .

With Lemma 6.26, we get

Θ p Λ̂1, vk :Lk, s[p]:qk p Ω1 ⊢ Pk[vk/yk] .

By Lemma 6.22, we know thatΩ1 = ∅ and, thus, Lemma 6.21 applies and concludes
this case.
Second, there is a typing derivation for

Θ p Λ̂2 p Ω̂2, s[qk][p] :: γ ⊢ s ▶ σ[(qk, p) 7→ m⃗]

160 Chapter 6. A Type System Using Communicating State Machines

by inversion on the original typing derivation.
It remains to show that there is a transition for the respective typing contexts:

Λ := Λ̂1, s[p]:q, Λ̂2, vk :Lk

Λ′ := Λ̂1, s[p]:qk, vk :Lk, Λ̂2

Ω := Ω1, Ω̂2, s[qk][p] :: lk(Lk) · γ
Ω′ := Ω1, Ω̂2, s[qk][p] :: γ

Note that the change from Λ to Λ′ is solely the type of s[p] while s[qk][p] is the
only change from Λ to Λ′. Thus, we can simply apply TR-& to obtain a typing
context reduction.

– RR-err1:
By assumption, we have a typing derivation for &i∈I s[p][qi]?li(yi) . Pi ∥ s ▶ σ

and it holds that ∀i ∈ I. σ(qi, p) = l⟨_⟩ · m⃗ and li ̸= l. By inversion and
Lemma 6.22, the typing derivation must have the following shape:

δ(q) = {(p◁qi?li(Li), qi) | i ∈ I}
∀i ∈ I.Θ p Λ̂1, yi :Li, s[p]:qi p ∅ ⊢ Pi

Θ p Λ̂1, s[p]:q p ∅ ⊢ &
i∈I

s[p][qi]?li(yi) . Pi

RT-&
...

Θ p Λ2 p Ω2 ⊢ s ▶ σ

Θ p Λ̂1, s[p]:q,Λ2 p Ω2 ⊢ &
i∈I

s[p][qi]?li(yi) . Pi ∥ s ▶ σ
RT-∥

Let us rewrite the typing and queue typing context:

Λ̂1, s[p]:q,Λ2 = Λ̂,Λs

Ω2 = Ω̂,Ωs

By assumption, we know that there is (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) such that
Λs = {s[p]:q}p∈PG and Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG . Recall the condition
on the reduction semantics: ∀i ∈ I. σ(qi, p) = l⟨_⟩ · m⃗ and li ̸= l. Thus, with
Lemma 6.24, it follows that, for all i ∈ I , ξ(qi, p) = l′i(_) · _ with l′i ̸= li.
For the CSM {{P(G, p)}}p∈PG , this entails that p expects to receive a message
from a set of other participants, ranged over by qi, but the first message in each
channel does not match. Thus, none of them will ever be received. This yields
a contradiction to Corollary 5.17, which states that the subset projection satisfies
feasible eventual reception.

• RT-ν:
By inversion on the typing derivation, there is a typing derivation

Θ p Λ p Ω ⊢ (νs:G)R .

6.4. Soundness of Type System 161

We do inversion on (4), yielding two reduction rules that apply.

– RR-ctx:
We have

(q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) Λs = {s[p]: q⃗p}p∈PG
Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG Θ p Λ,Λs p Ω,Ωs ⊢ R

Θ p Λ p Ω ⊢ (νs:G)R
RT-ν

By inversion, we obtain all premises. We show that

(q⃗ ′, ξ′) ∈ reach({{P(G, p)}}p∈PG) Λ′
s = {s[p]:q′p}p∈PG

Ω′
s = {s[p][q] :: ξ′(p, q)}(p,q)∈ChanG Θ p Λ,Λ′

s p Ω,Ω′
s ⊢ R′

Θ p Λ p Ω ⊢ (νs:G)R′ RT-ν

The first premise is the same as for the original typing derivation. We know that
Θ p Λ,Λs p Ω,Ωs ⊢ R. With the induction hypothesis, we get

Θ p Λ,Λ′
s p Ω,Ω′

s ⊢ R′ and Λ,Λs p Ω,Ωs → Λ,Λ′
s p Ω,Ω′

s .

The first fact proves the last premise for the new typing derivation. For the
remaining ones, we apply Lemma 6.25, which yields that there is (q⃗ ′, ξ′) ∈
reach({{P(G, p)}}p∈PG) such that Λ′

s = {s[p]:q′}p∈PG and Ω′
s = {s[p][q] ::

ξ′(p, q)}(p,q)∈ChanG . These are precisely the remaining premises for the new typing
derivation. It is obvious that there is a reduction for the typing contexts, which
concludes this case.

– RR-err2:
We have a typing derivation for

Θ p Λ p Ω ⊢ (νs:G) s ▶ σ

and know σ(p, q) ̸= ε for some p, q. We do inversion on the typing derivation:

...
Θ p Λ,Λs p Ω,Ωs ⊢ s ▶ σ

RT-Queue
(q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG)

Λs = {s[p]: q⃗p}p∈PG Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG
Θ p Λ p Ω ⊢ (νs:G) s ▶ σ

RT-ν

By definition of Λs, there is a type s[p]:q for every p ∈ PG. There is a typing
derivation for

Θ p Λ, {s[p]: q⃗p}p∈PG p Ω, {s[p][q] :: ξ(p, q)}(p,q)∈ChanG ⊢ s ▶ σ .

162 Chapter 6. A Type System Using Communicating State Machines

The only applicable typing rules (in the whole derivation) are RT-end, RT-
EmptyQueue, and RT-Queue. By our assumption that there is a strict partial order
for the global types in our system, s[-] does not appear in σ.
Thus, RT-end needs to be applied to reduce the typing context {s[p]: q⃗p}p∈PG
to only contain Λ, which can then be used to type the queue with RT-Queue.
The premise of RT-end requires that end(q), i.e. q is a final state and has not
outgoing receive transition. This, however, entails that (q⃗, ξ) is a non-final
configuration where all participants are in final states and the channels are not
empty, yielding a deadlock. This contradicts the fact that {{P(G, p)}}p∈PG is
deadlock-free (Theorem 5.14), concluding this case.

• RT-Queue:
We have the typing derivation

Θ p Λ p Ω, s[p][q] :: γ ⊢ s ▶ σ[(p, q) 7→ m⃗]

Θ p Λ, v :L p Ω, s[p][q] :: l(L) · γ ⊢ s ▶ σ[(p, q) 7→ l⟨v⟩ · m⃗]
RT-Queue

However, there is not R′ such that s ▶ σ[(p, q) 7→ l⟨v⟩ · m⃗] → R′, contradicting (4).

From subject reduction, type safety follows: if a process can be typed, any runtime
configuration that can be reached from this process cannot contain an error.

Corollary 6.28 (Type safety). Assume that ⊢ ∆:Θ and Θ p ∅ ⊢ P . If ⌈P ⌉ →∗ R, then,
R ̸= err.

Proof. From Lemma 6.21, we know that Θ p ∅ p ∅ ⊢ ⌈P ⌉. By definition →∗:= {→k| k ≥
0}. We prove a stronger claim: For all k ≥ 0, if ⌈P ⌉ →k R, then,

• Θ p Λ p Ω ⊢ R with Λ = Λ̂, {Λs}s∈S and Ω = Ω̂, {Ωs}s∈S , and
• for all s ∈ S , it holds that there is (q⃗, ξ) ∈ reach({{P(G, p)}}p∈PG) such that
Λs = {s[p]:q}p∈PG and Ωs = {s[p][q] :: ξ(p, q)}(p,q)∈ChanG

This claim entails that R ̸= err because err cannot be typed but R can be typed.
We prove the claim by induction on k.
For k = 0, the claim trivially follows because both the typing and queue typing

context is empty, trivially satisfying the conditions.
For the induction step, we have ⌈P ⌉ →k R, the claim holds forR, andR → R′. With

Subject Reduction (Theorem 6.27), we proved precisely what we need to show forR′.

6.4. Soundness of Type System 163

Subject reduction shows that any step of a runtime configuration can be mimicked
by the typing contexts and these can be used to type the new runtime configuration.
Since err cannot be typed, this shows that a typed runtime configuration can never
reduce to err, yielding type safety. While this is a safety property, session fidelity deals
with progress. Roughly speaking, if the typing contexts can take a step, then the runtime
configuration can also take a step. In most MST frameworks, this can only be proven
in the presence of a single session. Thus, we define the following restriction of our
type system.

Definition 6.29. We define ⊩SF to be ⊢ but without the rules PT-ν and RT-ν. Using
this, we define ⊢SF for processes as follows:

∀p ∈ PG. ∀c:q ∈ Λp. end(q)

∀p ∈ PG.Θ p Λp, s[p]: init({{G↾p}}p∈PG) ⊩SF Qp

Θ p {Λp}p∈PG ⊢SF (νs:G) (
∏

p∈PGQp)
PT-ν’

We also define ⊢SF for runtime configurations:

(q⃗, ξ) ∈ reach({{G↾p}}p∈PG)
∀p ∈ PG.∀c:q′ ∈ Λp. end(q

′) ∀p ∈ PG.Θ p Λp, s[p]: q⃗p ⊩SF Qp

Θ p Λ′ p {s[p][q] :: ξ(p, q)}(p,q)∈ChanG ⊩SF s ▶ σ

Θ p {Λp}p∈PG ,Λ′ p ∅ ⊢SF (νs:G) (
∏

p∈PGQp) ∥ s ▶ σ
RT-ν’

If Θ p {Λp}p∈PG ,Λ′ p ∅ ⊢SF (νs:G) (
∏

p∈PGQp) ∥ s ▶ σ holds, we know that we can
obtain the premises by inversion. For conciseness, we use the following notation to refer

to the CSM configuration (q⃗, ξ): Θ p {Λp}p∈PG ,Λ′ p ∅
(q⃗,ξ)

⊢SF (νs:G) (
∏

p∈PGQp) ∥ s ▶ σ.

Intuitively, ⊢SF allows to have one restriction with global typeG and requires that
all different participants of G are played by different processes in parallel.

Proposition 6.30. LetP be a process,R be a runtime configuration and assume ⊢ ∆:Θ.
If Θ p Λ ⊢SF (νs:G)P , then P is restriction-free. If Θ p Λ p ∅ ⊢SF (νs:G)R, then R is
restriction-free.

We state the statements of session fidelity and deadlock freedom. To simplify the
statement, and keep it closer to standard statements of MST frameworks, we assume
that all projections are sink-final, i.e. there are no intermediate final states, as is always
the case for FSMs constructed from local types.

Conjecture 6.31 (Session fidelity with sink-final projections). Let G be a global type
such that G↾p is sink-final for every p ∈ PG and let R be a runtime configuration. We
assume that

(1) ⊢ ∆:Θ,

164 Chapter 6. A Type System Using Communicating State Machines

(2) Θ p Λ p ∅
(q⃗,ξ)

⊢SF (νs:G)R, and
(3) (q⃗, ξ) → (q⃗ ′′, ξ′′) for some q⃗ ′′ and ξ′′.

Then, there is (q⃗ ′, ξ′) with (q⃗, ξ) → (q⃗ ′, ξ′) and R′ with R → R′ such that

Θ p Λ p ∅
(q⃗ ′, ξ′)

⊢SF (νs:G)R′ .

With session fidelity (and subject reduction), one could show deadlock freedom.

Conjecture 6.32 (Deadlock freedom with sink-final projections). LetG be a global type
such that G↾p is sink-final for every p ∈ PG and let P be a process. We assume that

• ⊢ ∆:Θ,
• Θ p Λ ⊢SF (νs:G)P ,
• G↾p is sink-final for every p ∈ PG, and
• ⌈(νs:G)P ⌉ →∗ R.

Then, it holds that R ⊑ 0 or there is R′ such that R → R′.

6.5 On Subtyping

Most MST frameworks employ subtyping in their type system. Intuitively, they allow to
remove send branches and to add receive branches [67]. While removing send branches
simply disables branches in the global type, adding receive branches is allowed only if
they can never be executed. With directed choice, receivers expect to receive, at any
time, from one dedicated sender. However, in a setting with sender-driven choice, this
is not true and, thus, needs more careful treatment. This is why we only allow not to
implement branches for internal choice in our type system.

Example 6.33 (Subtleties of Subtyping with Sender-driven Choice). Consider the
global type

G := +

{
p→q :m1 . p→r :m1 . q→r :m1 . 0

p→q :m2 . q→r :m2 . p→r :m2 . 0

The projection onto r is illustrated in Fig. 6.3a. Following the folklore on subtyping, we
can add a receive transition from the initial state to obtain the state machine in Fig. 6.3b.
However, this transition will actually be enabled, leading to a deadlock and breaking
deadlock-freedom. ◀

The previous example shows that subtyping will also need to account for the
availability of messages. We refer to [88] for details while Section 10.2.3 provides
background on related work.

6.5. On Subtyping 165

r◁p?m1

r◁q?m1

r◁q?m2

r◁p?m2

(a) Subset projection onto r.

· · ·

r◁p?m1

r◁q?m1

r◁q?m2

r◁p?m2

r
◁
q
?
m

1

(b) Wrong subtype for r.

Figure 6.3: Subset projection and a wrong subtype.

167

Chapter 7

Channel Restrictions of
Protocols and
Communicating State Machines

In the previous chapter we showed how to integrate CSMs into a session type system.
CSMs are a Turing-powerful computational model, making any non-trivial property
undecidable in general. Still, with our subset projection, we can obtain a CSM as
candidate implementation and use it to check if the global type is implementable. For
these checks, the idea of sender-driven choice was crucial as it allowed us to knowwhen
a participant committed to a branch. The Turing-completeness proof for CSMs hinges
on the fact that channels can be used as memory. It needs to, because each participant
has only finite control. We classify restrictions on channels which have been proposed
to work around the undecidability of verification questions. We compare half-duplex
communication, existential B-boundedness, and k-synchronisability. These restrictions
do not prevent the communication channels from growing arbitrarily large but still
restrict the power of the model. Each restriction gives rise to a set of languages so,
for every pair of restrictions, we check whether one subsumes the other or if they are
incomparable. We investigate their relationship in two different contexts: first, the one
of protocol specifications and second, the one of CSMs. Surprisingly, these two contexts
yield different conclusions.

7.1 Channel Restrictions

In this section, we present different channel restrictions and their implications on
decidability of interesting verification questions.

It is important to note that we use the term restriction as a property of a systemwhich
occurs naturally and not something that is imposed on its semantics. However, both have
a tight connection: a system naturally satisfies a restriction if imposing the restriction
does not change its possible behaviours. If this is the case, this can be exploited for
algorithmic verification and only check behaviours that satisfy the restriction without
harming correctness. Note that, in contrast to this thesis, most of the works we will

168 Chapter 7. Channel Restrictions of Protocols and CSMs

p q
cons

p q
nil

ack

(a) As HMSC.

µt . +

{
p→q :cons . t

p→q :nil . q→p :ack . 0

(b) As Global Type.

q0,p q1,p q2,p

p▷q!cons

p▷q!nil p◁q?ack

q0,q q1,q q2,q

q◁p?cons

q◁p?nil q▷p!ack

(c) Implementation as CSM.

Figure 7.1: List-sending Protocol revisited:
specifications and implementation.

consider here do solely consider finite runs or words. For some, adapting them to a
setting with infinite words should be straightforward while this is not necessarily the
case for others. We leave a thorough investigation for future work.

Our list-sending protocol from Chapter 2 satisfies all the channel restrictions we
consider. Thus, before giving the formal definition, we provide intuition using this
example. We recall the protocol specifications and implementation in Fig. 7.1.

7.1.1 Half-duplex Communication

Cécé and Finkel [34, Def. 8] introduced the restriction of half-duplex communication,
which intuitively requires that, for any two participants p and q, the channel from p to q
is empty before q sends a message to p.

Example 7.1. Communication in the list-sending protocol is half-duplex. At first, the
channel from p to q is used to send the list. Only after receiving nil, q sends back the
acknowledgement. ◀

Definition 7.2 (Half-duplex). A sequence of events w is called half-duplex if for every
prefixw′ ofw and pair of participants p and q, one of the following holds: V(w′⇓p ▷q !_) =

V(w′⇓q◁ p?_) or V(w′⇓q ▷p !_) = V(w′⇓p◁ q?_). A language L ⊆ Γ∞ is half-duplex if every
word w ∈ L is half-duplex.

We define the restriction of half-duplex on sequences of events. This definition is
equivalent to the original definition by Cécé and Finkel. To be precise, we consider the
natural generalisation [34, Sec. 4] of the half-duplex definition [34, Def. 8].

Definition 7.3 (Natural generalisation of half-duplex [34]). A CSM is called half-duplex
if for each reachable configuration and for every pair of participants p and q, at most
one of the channels (p, q) and (q, p) is non-empty.

Lemma 2.5 relates the channel contents of a CSM upon executing a sequence of
events. With this, the equivalence of both definitions follows directly.

Proposition 7.4. Both definitions of half-duplex communication, i.e. Definition 7.2 and
Definition 7.3, are equivalent.

7.1. Channel Restrictions 169

Algorithmic Verification. We first consider CSMs with two participants. Checking
if its communication is half-duplex is decidable [34, Thm. 31]. The set of reachable
configurations is computable in polynomial time [34, Thm. 26] which renders many
verification questions like the unspecified reception problem decidable (see [34, Def. 13]
for a detailed list of verification problems) while model checking PLTL (propositional
linear temporal logic) or CTL (computation tree logic) is still undecidable. Half-duplex
CSMs with more than two participants are Turing-powerful [34, Thm. 38] so verification
becomes undecidable. As alluded to before, most of the prior results have only be shown
for finite runs or words but it should be feasible to generalise some of them to the
infinite case.

7.1.2 Existential B-boundedness

While the previous property restricts the channel for at least one direction to be empty,
one can also bound the size of channels and consider linearisations that are possible
adhering to such bounds. On the one hand, one can consider a universal bound that
applies for every linearisation. However, this yields finite-state systems [52] and even
disallows the list-sending protocol. On the other hand, one can consider an existential
bound on the channels which solely asks that there is one linearisation of the distributed
run for which the channels are bounded. This allows infinite-state systems and admits
the list-sending protocol.

Example 7.5. The list-sending protocol is not universally B-bounded for any B. For
any given B, one can easily schedule p to send B + 1 elements of the list before q

starts receiving. Intuitively, existentialB-boundedness allows to reorder events using∼.
Thus, every receive event by q can be reordered right after the corresponding send event,
yielding existential 1-boundedness of the list-sending protocol. ◀

Definition 7.6 (B-bounded [52]). Let B ∈ N be a natural number. A word w is
B-bounded if for every prefix w′ of w and pair of participants p and q, it holds that
|w′⇓p ▷q !_| − |w′⇓q◁ p?_| ≤ B.

Definition 7.7 (Existentially B-bounded [52]). Let B ∈ N. A prefix MSC M is
existentially B-bounded if there is a B-bounded linearisation for M . A sequence of
events w is existentially B-bounded if msc(w) is defined and existentially B-bounded.
We may use not existentially bounded as abbreviation for not existentially B-bounded
for any B.

Remark 7.8 (∃B-boundedness and infinite words). Existential B-boundedness was
previously only defined for finite words. However, for infinite words, the semantics
of HMSCs do not employ any fairness assumptions on scheduling events from different
participants. Thus, the semantics of the list-sending protocol contains (p▷q!cons)ω but
also (p▷q!cons · q◁p?cons)ω.

170 Chapter 7. Channel Restrictions of Protocols and CSMs

With the indistinguishability relation ∼ and its extension to infinite words ⪯ω
∼, we

capture this phenomenon.

Definition 7.9 (∃B-boundedness for languages with infinite words). A language
L ⊆ Γ∞ is existentiallyB-bounded if every finite wordw ∈ L is existentiallyB-bounded
and if for every infinite word w ∈ L, there is w′ ∈ L such that w ⪯ω

∼ w′ and w′ is
existentially B-bounded.

Remark 7.10 (An MSC-based alternative). We could have also used MSCs for this
definition. Then, the condition for infinite words would have required that, for w with
msc(w) = (N, p, f, l, (≤p)p∈P), there is an existentially B-bounded word w′ ∈ L with
msc(w′) = (N ′, p′, f ′, l′, (≤′

p)p∈P) such that N ⊆ N ′ and p, l, f , and (≤p)p∈P as well as
their counterparts p′, l′, f ′, and (≤′

p)p∈P agree for nodes from N .

Algorithmic Verification. For CSMs, membership is undecidable, unless CSMs are
known to be deadlock-free and B is given [52, Prop. 5.5]. For protocols, we will see that
they are always existentially B-bounded for some B and thus a correct implementation
of a protocol also is. It is quite straightforward that control-state reachability is
decidable but not typically studied for these systems [21]. Intuitively, it can be
solved by exhaustively enumerating the reachability graph of the CSM while pruning
configurations exceeding the bound B. For HMSCs, model checking is undecidable for
LTL (linear temporal logic) [7, Thm. 3] and decidable for MSO [92, Thm. 1]. As alluded
to before, most of the prior results have only be shown for finite runs or words but it
should be feasible to generalise some of them to the infinite case.

7.1.3 k-synchronisability

The restriction of k-synchronisability was introduced for mailbox communication [22]
and later refined and adapted to the point-to-point setting [59] – the one we consider.

Intuitively, k-synchronisability requires that every run can be split into alternating
phases of at most k send and at most k receive events. Messages are received either
in the next receive phase or never. As for B-boundedness, one could distinguish
between universal and existential k-synchronisability, i.e. to distinguish the existence of
a k-synchronisable linearisation rather than all linearisations being k-synchronisable.
However, the universal version does not make much sense in practice. Thus, we omit
the term existential.

Example 7.11. Let us consider the list-sending protocol again. As for existential
boundedness, it is easy to see that every run can be reordered, using ∼, such that every
receive event happens right after its corresponding send event. Thus, the list-sending
protocol is 1-synchronisable. Note that a receive phase can be empty and, thus, also its
infinite runs are 1-synchronisable. ◀

7.1. Channel Restrictions 171

We define k-synchronisability following definitions by Giusto et al. [59, Defs. 6
and 7]. The definition of k-synchronisability builds upon the notion when a prefix
MSC is k-synchronous. Its first condition requires that there is some linearisation of
the prefix MSC while its second condition requires causal delivery to hold. In contrast
to the mailbox setting, the first condition always entails the second condition for the
point-to-point setting.

Point-to-point Communication Implies Causal Delivery. We first adapt the
definition of causal delivery [59, Def. 4] for point-to-point FIFO channels [59, Sec. 6].
Unfortunately, this discussion leaves room for interpretation what causal delivery
exactly is for point-to-point systems. Based on the description that a participant p can
receive messages from two distinct participants q and r in any order, regardless of the
dependency between the corresponding send events, we decided to literally adapt the
definition of causal delivery as follows.

Definition 7.12 (Causal delivery). Let M = (N, p, f, l, (≤p)p∈P) be an MSC. We say
that M satisfies causal delivery if there is a linearisation w = e1 . . . of N such that for
any two events ei ≤M ej with ei = p▷q!_ and ej = p▷q!_, either ej is unmatched in w

or there are ei′ ≤M ej′ such that ei ⊢⊣ ei′ and ej ⊢⊣ ej′ in w.

We show that msc(w) for every w (if defined) satisfies causal delivery.

Lemma 7.13. Let w ∈ Γ∞ be a word for which msc(w) is defined. Then, msc(w)

satisfies causal delivery.

Proof. Let w = e1 . . . be a sequence of events. We claim that w is the witness for causal
delivery of msc(w). Let ei ≤msc(w) ej be two distinct events such that ei = p▷q!_ and
ej = p▷q!_. Notice that i < j sincew is a linearisation ofmsc(w). We do a case analysis
whether ej is matched in w. Suppose that ej is unmatched in w, then causal delivery
holds. Suppose that ej is matched in w. Then, there is some ej′ with ej ≤msc(w) ej′ and
thus j < j′ such that ej ⊢⊣ ej′ . By definition, it holds that

V((e1 . . . ej)⇓p ▷q !_) = V((e1 . . . ej′)⇓q◁ p?_).

We know that V((e1 . . . ei)⇓p ▷q !_) ≤ V((e1 . . . ej)⇓p ▷q !_). Therefore, there is a
prefix V((e1 . . . ei′)⇓q◁ p?_) of the sequence V((e1 . . . ej′)⇓q◁ p?_) for some i′ such that
V((e1 . . . ei′)⇓q◁ p?_) = V((e1 . . . ei)⇓p ▷q !_). Hence, it holds that ei′ ≤msc(w) ej′ . For
causal delivery, it remains to show that i < i′. Towards a contradiction, suppose that
i′ ≤ i. Since every event either represents a send or receive event, it cannot hold that
i′ = i and therefore i′ < i. However, in combination with V((e1 . . . ei)⇓p ▷q !_) =

V((e1 . . . ei′)⇓q◁ p?_), e1 . . . ei and, thus, w is not FIFO-compliant. This contradicts
the condition for msc(-) to be defined. Thus, msc(w) would be undefined, yielding
a contradiction.

172 Chapter 7. Channel Restrictions of Protocols and CSMs

In combination with the fact that, given a linearisationw of a prefix MSCM ,msc(w)

is isomorphic toM , this yields that causal delivery is satisfied if there is a linearisation.

Corollary 7.14. Every prefix MSC with a linearisation satisfies causal delivery.

With this, we can simplify the definition by omitting this second condition without
changing its meaning. In addition, we extend it to apply for MSCs with infinite sets of
event nodes.

Definition 7.15 (k-synchronous and k-synchronisable). Let k ∈ N be a positive natural
number. We say a prefix MSCM = (N, p, f, l, (≤p)p∈P) is k-synchronous if

1. there is a linearisation of event nodes w compliant with ≤M which can be split
into a sequence of k-exchanges (also called message exchange if k not given or
clear from context), i.e. w = w1 . . . such that l(wi) ∈ S≤k ·R≤k for all i; and

2. for all e, e′ in w such that e ⊢⊣ e′, there is some i with e, e′ in wi.1

A linearisation w is k-synchronisable if msc(w) is k-synchronous. A language L is
k-synchronisable if every wordw ∈ L is. We may use not synchronisable as abbreviation
for not k-synchronisable for any k.

Algorithmic Verification. For CSMs, membership for a given k is decidable in
EXPTIME [21, Rem. 30], originally shown decidable by Di Giusto et al. [59], while it is
undecidable if k is not given [21, Thm. 22]. For HMSCs, both questions are decidable in
polynomial time, while we show that global types are always 1-synchronisable. Model
checking for k-synchronisable systems is decidable and in EXPTIME when formulas
are represented in LCPDL (propositional dynamic logic with loops and converse).
This follows from combining that such systems have bounded (special) tree-width [21,
Prop. 28] and results by Bollig and Finkel [20]. Control-state reachability is decidable for
k-synchronisable systems [59, Thm. 6]. As alluded to before, most of the prior results
have only be shown for finite runs or words but it should be feasible to generalise some
of them to the infinite case.

7.1.4 Channel Restrictions and Indistinguishability Relation∼∼∼
We show that closing a word or language under ∼ does not change the channel
restrictions it satisfies.

Theorem 7.16. For FIFO-compliant words, the indistinguishability relation∼ preserves
satisfaction of the three channel restrictions under consideration: half-duplex
communication, existential B-boundedness, and k-synchronisability.

1This is equivalent to the following: for all e and f(e) in w, there is some i with e, f(e) in wi.

7.2. Channel Restrictions of Protocols 173

∃B-bounded

HMSC-definable

H1

k-synchronisable
H2 H3

half-duplex

H4

1 sync.
H5

H6

H7
MST
-def.

H8

(a) HMSC-definable Languages

∃B-bounded

C3

half-duplex
C7

k-synch-
ronisable

C5

C2

C4

C6
C1

CSM-definable

C8

(b) CSM-definable Languages

Figure 7.2: Comparing half-duplex, existential B-bounded, and
k-synchronisable protocols and systems. The results are known results,
results are new, and the result disproves an existing result. Hypotheses
with rounded corners indicate inclusions while pointed corners indicate

incomparability results.

Proof. Let w be a FIFO-compliant word.
First, suppose that w is half-duplex. It is straightforward to check that ∼ does not

swap any two events q◁p?_ and q▷p!_ and therefore the condition for half-duplex
is preserved.

Second, suppose that w is existentially B-bounded for some B. Then, we know
thatmsc(w) is a prefix MSC which admits a B-bounded linearisation. Analogous to the
proof of Lemma 2.21, we can show that any (even infinite) prefix MSC is closed under∼.
Therefore, for any w′ for which w′ ∼ w, it holds that msc(w) = msc(w′) and the latter
still admits the same B-bounded linearisation.

Third, suppose that w is k-synchronisable. Recall that k-synchronisability is also
defined on msc(w) and hence the same reasoning as for the second case applies.

7.2 Channel Restrictions of Protocols

Figure 7.2a summarises our results. It was only known that every HMSC-definable
language is existentiallyB-bounded for someB [52]. For restrictionswhich differ (H2 to
H5 , and H7), we give distinguishing examples. When one restriction subsumes another
one (H1 , H6 , and H8), we prove it. For instance, H6 proves that 1-synchronisability
entails half-duplex communication while H5 is an example which is half-duplex,
existentially B-bounded, k-synchronisable but not 1-synchronisable.

174 Chapter 7. Channel Restrictions of Protocols and CSMs

7.2.1 ChannelRestrictions ofHigh-levelMessage SequenceCharts

We say that an HMSC is half-duplex, existentially B-bounded or k-synchronisable
respectively if its language is. It is straightforward that checking an HMSC for
k-synchronisability amounts to checking its BMSCs.

Proposition 7.17. An HMSC H is k-synchronisable if and only if all of its BMSCs are
k-synchronous.

For the presentation of our results, we follow the numbering laid out in Fig. 7.2a.
Note that any BMSC can always be turned into a HMSC with a single initial and final
vertex. Therefore, it is trivial that all BMSC examples also apply to HMSCs.

Lemma 7.18 ([52], Prop. 3.1). H1 : Any HMSC H is existentially B-bounded for
some B.

Proof. We prove this result in a slightly different way than Genest et al. [52]. Basically,
one computes the bound for the BMSC of every vertex in H and takes the maximum.
This works since every MSC ofH is a concatenation of individual BMSCs, which can be
scheduled in a way that the channels are empty after each BMSC.

Given a single BMSC M ′, half the number of events is a straightforward bound on
channels. One can also compute a tightest bound B for which M ′ is existentially B-
bounded. For more details, we refer to work by Genest et al. [52, Sec. 3.3] where they
define a linearisation function OPT(-) for MSCs similar to qOPT(-) in Section 4.1 but
optimised for least channel bound. For HMSCs, anyH = (V,E, vI, V T , µ) is constructed
using a finite number of BMSCs in µ(V). Consider the maximum bound B of all
individual bounds for BMSCs in µ(V). We claim thatH is existentiallyB-bounded so we
need to show that every MSC M of H is existentially B-bounded. By construction, M
is the concatenation of (a possibly infinite number of) BMSCsM ′

1 We can construct
a linearisation w = w1 . . . of M such that wi is a linearisation of M ′

i for every i. By
definition of BMSCs, there is a receive event for every send event and hence all channels
are empty after w1 . . . wi for every i. Combining these observations yields that w is
B-bounded and thereforeM is existentially B-bounded.

Example 7.19. H2 : ∃B-bounded, k-synchronisable, and not half-duplex. Consider
the BMSC in Fig. 7.3a. It is existentially 1-bounded as there is one message per channel,
2-synchronisable since the message exchange can be split into one phase of two sends
and two subsequent receives and not half-duplex because both messages can traverse
their channel at the same time. ◀

7.2. Channel Restrictions of Protocols 175

p q

(a) ∃1-bounded,
2-synchronisable,

and not
half-duplex.

p q r

(b) ∃1-bounded,
not half-duplex,

and not
synchronisable.

p q r

(c) half-duplex,
∃1-bounded, and

not
synchronisable.

p q r

(d) half-duplex,
∃1-bounded, not 1- or
2-synchronisable but
3-synchronisable.

Figure 7.3: BMSCs that satisfy different channels restrictions.

Example 7.20. H3 : ∃B-bounded, not half-duplex, and not synchronisable. It is
obvious that the BMSC M in Fig. 7.3b is not half-duplex. We show that M is not k-
synchronous for any k. Let us denote the event nodes for each participant pwith p1, . . .

as ordered by the total participant order. It is straightforward that one of p1 and q1 has to
be part of the first k-exchange. However, since the respective corresponding reception
happens after the other’s event node, both have to be a part of the first k-exchange. Since
these receive event nodes (transitively) depend on all other event nodes, all event nodes
have to be part of a single k-exchange for M . However, r first has to receive from q in
order to send back to it and therefore, there is no single k-exchange forM andM is not
k-synchronous for any k. ◀

Example 7.21. H4 : half-duplex, ∃B-bounded, and not synchronisable. Let us consider
the BMSC in Fig. 7.3c. It is straightforward that it is half-duplex and existentially 1-
bounded. However, it is not k-synchronisable for any k. In particular, the first and
last event node (of any total order induced by the BMSC) must belong to the same
message exchange but two more linearly dependent message exchanges need to happen
in between. ◀

Example 7.22. H5 : half-duplex, ∃B-bounded, k-synchronisable but not 1-synchroni-
sable. Consider the BMSC in Fig. 7.3d. It is easy to see that it is neither 1- nor 2-
synchronisable but 3-synchronisable, half-duplex and existentially 1-bounded. Note that
it is straightforward to amend the example in a way that it is still half-duplex but the
parameters B and k need to be increased. ◀

Lemma 7.23. H6 : Every 1-synchronisable HMSC is half-duplex.

Proof. Intuitively, in any BMSC of an HMSC, every send event node has a corresponding
receive event. Therefore, a message that has been sent needs to have been received
directly afterwards to be 1-synchronisable. The per-participant order is total so any
participant has to receive a message before it sends a message back.

176 Chapter 7. Channel Restrictions of Protocols and CSMs

Formally, let H be an 1-synchronisable HMSC. We show that L(H) is half-duplex.
To this end, it suffices to show that L(M) for every MSC M of H is half-duplex. Let
M = (N, p, f, l, (≤p)p∈P) be an MSC of H . By assumption, M is 1-synchronisable. Let
w̄ be the linearisation of M from Definition 7.15. Since M is an MSC and the way w̄ is
chosen as witness for 1-synchronisability, every send event is immediately followed by
its corresponding receive event in w̄.

Letw ∈ L(M) be anyword. We show thatw is half-duplex. Towards a contradiction,
suppose that the channel from q to p is not empty and p attempts to send a message
to q after the prefix w1 . . . wj of w: wj+1 = p▷q!_ and V(w1 . . . wj⇓p◁ q?_) ≤
V(w1 . . . wj⇓q ▷p !_). Thus, there is i ≤ j such that wi = q▷p!_ which is unmatched.
By definition, the per-participant order ≤M ∩ (p−1(p)× p−1(p)) is total for every
participant p. In the linearisation w̄, the corresponding receive event happens directly
after wi so the next event by p must be the corresponding reception, which contradicts
the assumption that wj+1 is a send event of p.

7.2.2 Channel Restrictions of Global Types

Example 7.24. H7 : half-duplex, ∃1-bounded, 1-synchronisable but not in MSTs.
Intuitively, 1-synchronisability ensures that every receive event can happen immediately
after its send event, precisely what message interactions in global types specify. With
Proposition 2.26, we showed that G = 0 is the only global type whose semantics
contains ε. Thus, any half-duplex, existentially 1-bounded and 1-synchronisable
language L that contains ε and |L| > 1 cannot be represented as non-deterministic
global type, which is most expressive class of global types. If ε is not in the semantics,
there actually is always is a non-deterministic global type. This is surprising, considering
the syntactic restrictions, but we prove this in Section 8.2.2. For global types with
directed or sender-driven choice, a language cannot contain any prefix of a maximal
trace. The reason is that p→q :m + 0 is syntactically invalid in a global type. For
mixed-choice, the situation is more complicated: it can be satisfied by using message
interactions that are related by ∼. For instance, consider

G := p→q :m . 0 + r→s :m . p→q :m . 0 .

Its semantics contains both

w1 :=p▷q!m · q◁p?m and
w2 :=r▷s!m · s◁r?m · p▷q!m · q◁p?m .

It holds that w1 ∈ pref(C∼(w2)) ⊆ L(G). Our workflow in Section 8.2.2 also applies to
sink-final state machines over Σ without mixed-choice states and preserves their given
choice restrictions (cf. Lemma 8.37). ◀

7.3. Channel Restrictions of CSMs 177

We show that protocols specified as global types satisfy all discussed channel
restrictions (with the minimal reasonable parameter).

Theorem 7.25. H8 : Let G be a non-deterministic global type. Its semantics L(G) is
half-duplex, existentially 1-bounded, and 1-synchronisable.

Proof. The semantics of G are defined using the state machine GAut(G). Its language
L(GAut(G)) solely consists of words where send events are immediately followed by
receive events. Thus, it is half-duplex, existentially 1-bounded, and 1-synchronisable by
construction. With Theorem 7.16, we showed that all channel restrictions are preserved
by ∼. Thus, it holds that C∼(GAut(G)) and, thus, L(G) is half-duplex, existentially 1-
bounded and 1-synchronisable.

Remark 7.26 (Choreography automata are half-duplex, ∃1-bounded, and 1-synchroni-
sable). In this section, we looked at global types fromMSTs, which are rooted in process
algebra. With choreography automata [11], a similar concept has been studied using
automata. Basically, a protocol specification is an automaton whose transitions are
labelled by p→q :m. In contrast to global types, they do not impose constraints on
choice, i.e. there does not need to be a unique participant chooses which branch to
take next and do not employ an indistinguishability relation but require to explicitly
spell out all possible reorderings. This feature can lead to complications with regard to
implementing such protocols but does not change the satisfaction of channel restrictions.
In fact, protocols specified by choreography automata are also half-duplex, existentially
1-bounded, and 1-synchronisable.

7.3 Channel Restrictions of CSMs

We say that an CSM is half-duplex, existentially B-bounded, or k-synchronisable
respectively if its language is. Again, we follow the outline presented in Fig. 7.2b.

Example 7.27. C1 : half-duplex, ∃B-bounded, and k-synchronisable. The implemen-
tation for every implementable global type is ∃1-bounded, 1-synchronisable, and half-
duplex, e.g. the CSM in Figure 7.1c. ◀

AnyBMSC can easily be implementedwith anCSMby simple letting each participant
follow its linear trajectory of event nodes. We call this projection. Therefore, we can use
three of the BMSCs presented in Fig. 7.3 to show the hypotheses for CSMs:

Example 7.28. For, C2 , the projection of Fig. 7.3c (used to show H4) is half-duplex,
∃B-bounded, and not synchronisable. For C3 , the projection of Fig. 7.3b (used to show
H3) is ∃B-bounded, not half-duplex, and not synchronisable. For C4 , the projection of
Fig. 7.3a (used to show H2) is ∃B-bounded, k-synchronisable, and not half-duplex. ◀

178 Chapter 7. Channel Restrictions of Protocols and CSMs

p▷q!m q▷p!m

Figure 7.4: CSM with FSMs for p (left) and for q (right).

Example 7.29. C5 : k-synchronisable, not half-duplex and not ∃-bounded; C6 :
k-synchronisable, half-duplex and not ∃-bounded. We consider two CSMs constructed
from the state machines in Fig. 7.4. For C5 , we consider the CSM consisting of both
state machines. It is 1-synchronisable but not existentially bounded and not half-
duplex. It is 1-synchronisable because every linearisation can be split into single send
events that constitute 1-exchanges. It is neither existentially B-bounded for any B

nor half-duplex since none of the messages will be received so both channels can
grow arbitrarily. For C6 , it can easily be turned into a half-duplex CSM by removing
one of the send events. Then, the CSM is 1-synchronisable and half-duplex but not
existentially bounded. ◀

This example disproves a result from the literature [87, Thm. 7.1], which states that
every k-synchronisable system is existentially B-bounded for some B. In the proof, it
is neglected that unreceived messages remain in the channels after a message exchange.
Our example satisfies their assumption that CSMs only have states that are either final,
have send options to choose from, or receive options to choose from. We do not impose
any assumptions on states of CSMs in this work. Still, all the presented examples do
satisfy this condition so the presented relationships also hold for this subset of CSMs.

Corollary 7.30. Existential B-boundedness and k-synchronisability for CSMs are
incomparable.

The previous result follows immediately from the CSMs constructed in Example 7.29.
Our result considers the point-to-point FIFO setting. For the mailbox setting, the
analogous question is an open problem [22].

Turing-powerful Encodings. On the one hand, it is well-known that CSMs
are Turing-complete [23] and Cécé and Finkel [34, Thm. 36] showed that half-
duplex communication does not impair expressiveness of CSMs with more than
two participants. On the other hand, each of existential B-boundedness and
k-synchronisability render some verification questions decidable. Therefore, the
encodings of Turing-completeness [23, 34] are examples for CSMs which are not
existentiallyB-bounded for anyB nor k-synchronisable for any k and either half-duplex
(C7) or not half-duplex (C8).

179

Chapter 8

A Unifying Protocol Specification
Formalism

So far, we considered HMSCs and global types from MSTs as protocol specifications.
In previous chapters, we showed that global types can be encoded as HMSCs and
that both satisfy a number of channel restrictions, including existential boundedness.
However, HMSCs cannot specify all such protocols. In this chapter, we define protocol
state machines as novel protocol specification formalism. Intuitively, it is a finite state
machine where transitions are labelled with send and receive events. On the one hand,
we will show that this formalism subsumes both global types and HMSCs. On the other
hand, wewill also show that some of the structural restrictions of global types do actually
not impede expressivity.

8.1 Protocol State Machines

In contrast to global types and HMSCs, we will allow to specify send and receive events
individually rather than jointly. Thus, we need to require that channels are used in a
FIFO manner.

Definition 8.1. We define the set of B-bounded FIFO words:
FIFOB := {w ∈ FIFO | w is B-bounded}.

We define protocol state machines as syntactic objects that characterise existentially
bounded finite-control protocols.

Definition 8.2 (Protocol State Machine (PSM)). A dense FSM P = (Q,Γ, δ, q0, F) is
a B-PSM if L(P) ⊆ FIFOB . The semantics of P is defined as S(P) := C∼(L(P)).
Moreover, P is a PSM if it is a B-PSM for some B.

We restrict PSMs to be dense, which means that there can be ε-transitions but they
are the only ones from this state. This simplifies the definition of choice restrictions for
PSMs. In fact, in terms of expressivity, we could have assumed there are no ε-transitions,
as it is standard to remove ε-transitions for FSMs. However, our definition allows us to
specify the semantics of global types as PSMs. Without loss of generality, we assume
there are no ε-transitions in a PSM P if L(P) = {ε}.

180 Chapter 8. A Unifying Protocol Specification Formalism

Note that we require L(P) ⊆ FIFOB in our definition. For most protocols, it
should be straightforward to check if this holds. If one only uses transitions of shape
→ :_, this trivially holds. Thus, one only needs to check for channels (p, q) for which
transitions of shape p▷q!_ and q◁p?_ occur. For these, it is then, for instance, necessary
that loops have no net effect on the channel.

Still, let us elaborate how to check L(P) ⊆ FIFOB algorithmically. Intuitively, one
projects P onto each channel to obtain an FSM A and checks if every word in A is in
FIFOB . For finite words, this is rather simple: one constructs a finite state machine
for FIFOB , complements it and checks if the intersection with A is empty. If so, A only
contains words in FIFOB . If not, there is at least oneword that is either notB-bounded or
not FIFO-compliant. To properly account for infinite words, the situation is slightlymore
difficult. Recall that we defined the semantics such that infinite words are contained if
they have an infinite run in the statemachine. Thus, we cannot apply the same technique
for infinite words. However, FIFOB is prefix-closed. This is why we can add a bad state
to the automaton for FIFOB that is reached if the conditions for FIFOB are not satisfied.
We construct the synchronous cross-product with A and check if the added bad state is
reachable. This also checks if finite words are FIFO-compliant.

For B, a finite state machine for FIFOB consists of one state for every possible
channel of size at most B, yielding

B∑
i=0

|V|i = |V|B+1 − 1

|V| − 1
∈ O(|V|B+1)

states, provided there is more than one message in V . We have to construct the
synchronous product of size O(|P | · |V|B+1) for every channel. Note that we would
not need to construct FIFOB upfront but could construct the necessary parts on-the-fly.
This should yield significant run time improvements in practice. If B is not given, it
should be sufficient to consider the number of transitions (of the projected automaton)
as upper bound forB. If one checks iteratively, one can stop as soon as one finds a word
which is not FIFO-compliant and one only needs to continue if the bound might have
been too small.

Let us give an example for a PSM.

Example 8.3 (Kindergarten Leader Election). We consider a protocol between two
participants e (evens) and o (odds). It can be used to quickly settle a dispute between
children (hence the name). Both children pick 0 or 1 and tell each other their pick at the
same time. Child e wins if the sum is even while o wins if the sum is odd. The protocol
is visualised as PSM in Fig. 8.1a. At the end, the looser concedes by sending the message
win to the winner. Note that this communication behaviour hinges on the possibility to
specify send and receive events independently. If one tries to model this protocol with a
global type, one child will always know the choice of the other before picking its number,

8.1. Protocol State Machines 181

e◁o?0o◁e?0
o▷e!

0

e◁o?1o◁e?0
o▷e!1e▷

o!0

e◁o?1o◁e?1
o▷e!

1

e◁o?0o◁e?1
o▷e!0

e▷o!1

e◁o?wino▷e!win

o◁e?wine▷o!win

(a) KLE as PSM.

e o

0 0

win

e o

1 1

win

e o

1 0

win

e o

0 1

win

(b) KLE as HMSC.

Figure 8.1: Kindergarten Leader Election (KLE).

undermining the purpose of the protocol. We also depict the protocol as an HMSC in
Fig. 8.1b. ◀

By definition, PSMs specify FIFO languages. Still, they might still be unruly: for
example, they might describe protocols where not all channels are empty at the end of
a finite word. MSTs and HMSCs have syntactic restrictions that ensure the described
protocol is sane. Let us recall and define some sanity properties.

We a word is complete if it is infinite or all send and receive events are matched
(Definition 2.3).

A sanity check that may be desirable in some applications is to check whether the
protocol is (always) terminating.

Definition 8.4 (Terminating). A language L is terminating if L ⊆ Lfin. A PSM P is
terminating if S(P) is terminating.

Another sanity check is whether the protocol can be terminated. We already defined
this notion for global types andHMSCs (Definition 4.16). For languages, it can be defined
as follows.

Definition 8.5 (0-reachability). A language L is 0-reachable if ∀w ∈ Linf .∀w′ ≤ w.

∃wfin ∈ Lfin. w
′ ≤ wfin. In other words, a 0-reachable language is one where all prefixes

of infinite words can be completed to finite accepted words. A PSM P is 0-reachable if
S(P) is 0-reachable.

Lemma 8.6 (Sanity checks for PSMs). The following properties are all decidable
for B-PSMs: 1. emptiness (S(P) = ∅); 2. checking membership for finite words;
3. completeness; 4. termination; 5. 0-reachability.

Proof. Let P be a B-PSM. Emptiness is trivial. Word membership is a consequence
of the finiteness of C∼({w}) for finite w. To check if all words are complete, it is
straightforward to adapt the procedure that checks inclusion in FIFOB as described
above. Both remaining properties are preserved and reflected by C∼(-) so it is sufficient
to check them on the core language L(P). Termination can be checked by checking for
loops. 0-reachability holds if from every reachable state there is a path to a final one.

182 Chapter 8. A Unifying Protocol Specification Formalism

p▷r! int p→q :go q→r :ok r◁p? int

q→r : int r→q : int

Figure 8.2: A PSM whose semantics cannot be represented as HMSC.
Transitions labelled with p→q :m should be interpreted as emitting the

sequence p▷q!m, q◁p?m.

Remark 8.7 (On infinite words). While we require finite words to end in a final state,
an infinite word is in the semantics of a PSM (but also global type) if it has an infinite
runs. This can be turned into a (very particular kind of) Büchi automaton: one where we
mark all states and add self-loops to previously final states, ignoring the transition label
in the semantics. It is also mostly the infinite words which make sanity checks harder.
We conjecture that sanity checks are decidable if they can be represented as Büchi
automaton that preserves and reflects ∼, a key assumption that allows to only check
the core language. We consider both the generalisation of semantics to Büchi conditions
and investigating a more general class of sanity checks as interesting directions for
future work.

PSMs are more expressive than HMSCs. Using loops, they allow protocols with
an arbitrarily long duration between a send event and its corresponding receive event.
Figure 8.2 is an example of a PSM that cannot be expressed as an HMSC. In that protocol,
p commits to some integer (abstracted as the label int) at the beginning by sending it to r
and sends a go signal to q. Note that here we use the paired send and receive notation
p→q :ok to emit the two events in sequence. Then q and r engage in some negotiation
of arbitrary length until q decides to exit the loop, at which point r is finally allowed to
receive the message sent by p. No HMSC can represent such a protocol: the matching
events p▷r! int and r◁p? int are separated by an arbitrary number of events (with no
opportunity for reordering up to C∼(-)); since in HMSCsmatching events need to belong
to the same basic block, such a block would need to contain the arbitrarily many events
in between as well, which is impossible.

As for global types and HMSCs, we define various restrictions on choice as structural
property of PSMs.

Definition 8.8 (Mixed, sender-driven and directed choice for PSMs). Let P =

(Q,Γ, δ, q0, F) be a PSM. We say P satisfies mixed choice if it is deterministic, P is a
sender-driven PSM if there is a function λ : Q → P such that for all states q, q′ with
q

x−→ q′ with x ∈ Γ!, it holds that λ(q) is the sender for x, i.e. x = λ(q)▷_!_. We call P
directed, if, for every state q, there is q such that all transition labels from q are of the
form λ(q)▷q!_,

It is straightforward to construct λ from a PSM. This attempt simply fails if it does
not exist.

8.2. Expressivity Results 183

8.2 Expressivity Results

In this section, we first show that the FSM for the semantics of every global type is a
special kind of PSM. Second, we show that the structural restrictions on global types
do not impede expressivity, compared to defining protocols as PSMs with languages
over Σ where every final state is a sink state. Third, we show that every HMSC can be
transformed into a PSM with the same semantics.

8.2.1 Global Types as Special Class of PSMs

We showed that the semantics of global types are ∃1-bounded, which requires a bound
of 1 per channel. In fact, global types are even more restrictive: all channels together are
bounded by 1. To capture this, we introduce the notion of existential

∑
-boundedness.

Definition 8.9 (ΣB-bounded). Let B ∈ N be a natural number. A word w is ΣB-
bounded if for every prefix w′ of w, the following holds:∑

p̸=q∈P

(
|w′⇓p ▷q !_| − |w′⇓q◁ p?_|

)
≤ B .

Definition 8.10 (Existentially ΣB-bounded). Let B ∈ N. A word w is existentially ΣB-
bounded, also denoted by ∃ΣB-bounded if there is a ΣB-bounded word w′ such that
w′ ∼ w. Let L ⊆ Γ∞ be a language. We say that L is ∃ΣB-bounded if every word in
Lfin is ∃ΣB-bounded and for every w ∈ Linf , there is w′ such that w ⪯ω

∼ w′ and w′ is
existentially ∃ΣB-bounded.

For any global type G, the language of GAut(G) is Σ1-bounded. Thus, its semantics
is ∃Σ1-bounded.

Proposition 8.11. The semantics L(G) for every global type is ∃Σ1-bounded.

We define restrictions on PSMs that describe the implicit restrictions of global types
when regarded as PSMs.

Definition 8.12. A PSM P is a Σ1-PSM if its core language L(P) is Σ1-bounded.

Recall that we call a PSM sink-final if each state is final if and only if it is a sink state.

Proposition 8.13. LetG be a global type. Then, GAut(G) is a sink-finalΣ1-PSM. IfG is
non-deterministic (mixed-choice, sender-driven, or directed respectively), thenGAut(G)

is non-deterministic (mixed-choice, sender-driven, or directed respectively).

184 Chapter 8. A Unifying Protocol Specification Formalism

8.2.2 From Σ1-PSM to Global Types

We explain a workflow to compute a global type from anyΣ1-PSMwhose language does
not contain ε. From Proposition 2.26, we know that 0 is the only global type to specify ε.
Thus, the only PSM P with ε in its semantics, for which we can find a global type, is the
one where S(P) = {ε}, which we call trivial PSM. For a sink-final PSM, it is easy to see
that it is either the trivial PSM or does not contain ε. Given a sink-final sender-driven
Σ1-PSM, this workflow yields a sender-driven global type.

Theorem 8.14. For every sink-final Σ1-PSM P , there is a global type G with the
same core language. If P is non-deterministic (mixed-choice, sender-driven, or
directed respectively), G is non-deterministic (mixed-choice, sender-driven, or directed
respectively). EveryΣ1-PSMP with ε /∈ S(P) can be represented as a non-deterministic
global type with the same core language.

For Σ1-PSMs that are not sink-final, our workflow yields non-deterministic global
types, a trait that cannot be avoided when preserving the protocol.

Most of the workflow applies to more general alphabets, which we also elaborate
on at the end of this section. Here, we choose Σ1-PSMs, which allows us to reason
how sender-driven choice is preserved. The reasoning for mixed and directed choice is
analogous and, thus, omitted for conciseness.

Overview of the Workflow for Sender-driven PSMs

(0) make the PSM sink-final for the price of introducing non-determinism
(1) compute a regular expression for the initial state of the sink-final PSM
(2) convert regular expression to an ancestor-recursive, non-merging, dense, and

intermediate-recursion-free PSM
(3) if the original PSM is a Σ1-PSM, transform the result from the previous step to a

global type

Without loss of generality, we assume that every sink state is final. Any state, for which
this is not the case, can simply be removed while preserving the core language and
semantics of a PSM.

For the last step, we only consider Σ1-PSMs because global types always jointly
specify send and receive events.

Step (0): Sink State iff Final State

This can be considered to be a preprocessing step for PSMs that are not sink-final, making
the workflowmore general. This transformation step simply introduces a new final sink
state to which transitions can lead non-deterministically.

We give a construction with a single fresh final state, which can be (non-determinis-
tically) reached instead of any previous final state.

8.2. Expressivity Results 185

Procedure 8.15 (PSM: Sink State iff Final State). Let P = (Q,Γ, δ, q0, F) be a PSM with
ε /∈ S(P). We define a function that turns P into a sink-final PSM:

psm2sink-final-psm(P) := (Q ⊎ {qf},Γ, δ′, q0, {qf})

where (q1, x, q2) ∈ δ′ if (q1, x, q2) ∈ δ as well as (q1, x, qf) ∈ δ′ if (q1, x, q2) ∈ δ and
q2 ∈ F .

The condition that ε /∈ S(P) ensures that there is a predecessor state for every final
state to which we can add the transition.

Proposition 8.16. For any Σ1-PSM P with ε /∈ S(P), the PSM psm2sink-final-psm(P)

is sink-final.

It is obvious that this construction introduces non-determinism and, thus, does not
preserve sender-driven choice.

Step (1): From Sink-final PSMs to Regular Expressions

This transformation step translates a sink-final PSM to a regular expression over Γ that
specifies the same core language. It is well-known that this can be done using Arden’s
Lemma [9]. We cannot apply the standard technique though, as it would produce as
many regular expressions as final states. Such treatment makes it very hard to argue
about the preservation of sender-driven choice. Instead, we exploit the fact that the PSM
is sink-final and produce a single regular expression for the initial state. This also enables
the treatment of infinite words, which solely require an infinite run that necessarily does
not end in a final state.

We define regular expressions and include infinite words in their semantics.

Definition 8.17 (Regular Expressions). Let∆ be an alphabet. Regular expressions (REs)
over ∆ are inductively defined by the following grammar where a ∈ ∆:

r ::= ε | a | r + r | r · r | r∗

The concatenation operator · has precedence over +. We define Lfin(a) = {a},
Lfin(r1+r2) = Lfin(r1)∪Lfin(r2), Lfin(r1 ·r2) = {w1 ·w2 | w1 ∈ Lfin(r1), w2 ∈ Lfin(r2)},
and Lfin(r

∗) = {w1 . . . wn | n ∈ N,∀i ≤ n.wi ∈ Lfin(r)}. The infinite language Linf(r)

is defined as {w ∈ ∆ω | ∀w′ ∈ pref(w). w′ ∈ pref(Lfin(r))}. The language L(r) is the
union of Lfin(r) and Linf(r). The function sym(r) is the set of all letters in r, i.e. the
smallest subset ∆′ ⊆ ∆ such that L(r) ⊆ (∆′)∞. We denote the set of all regular
expressions over ∆ withR∆.

For a state machine, an infinite word is part of its semantics if there is an infinite run.
Here, we mimic this idea: an infinite word is in the semantics of a regular expression if
every prefix of the word is a prefix of a word in the finite semantics.

186 Chapter 8. A Unifying Protocol Specification Formalism

Instead of constructing the regular expressions for final states, as is standard with
Arden’s Lemma, we construct one for the initial state. This is sound because a state is a
sink if and only if it is final. It also lets us handle infinite words.

Lemma 8.18 (Arden’s Lemma – Swapped). Let r1 and r2 be two regular expressions
over an alphabet ∆. If r1 does not contain the empty string, i.e. ε ̸∈ Lfin(r1), then
r3 = r2 + (r1 · r3) has a unique solution that is r3 = r∗1 · r2.

Proof. The proof is analogous to the original one:

r3 = r2 + r1 · r3
= r2 + r1 · (r2 + r1 · r3)
= r2 + r1 · r2 + r1 · r1 · r3
= . . .

= r2 + r1 · r2 + r21 · r3 + r31 · r3 + . . .

= (ε+ r1 + r21 + r31 + . . .) · r2
= r∗1 · r2

For sender-driven PSMs, we want to show that sender-driven choice is preserved.
Therefore, we need a notion of sender-driven choice for regular expressions. We define
this following work on deterministic regular expressions [26].

Definition 8.19 (Marking and unmarking regular expressions). Let ∆ be an alphabet
and r ∈ R∆ be a regular expression. We define a functionmark(r) that simply subscripts
every letter in r with a distinct index and the inverse function unmark(r), which is also
defined for words over ∆.

Definition 8.20 (Mixed-choice, sender-driven and directed regular expressions). Let
r ∈ RΓ. We say that r is a sender-driven regular expression if the following holds: for
every u ∈ Γ∗ and x, y ∈ Γ, if ux ∈ pref(L(mark(r))), uy ∈ pref(L(mark(r))) and
x ̸= y, then unmark(x) ̸= unmark(y) as well as unmark(x) ∈ {p▷q!_ | q ∈ P}
and unmark(y) ∈ {p▷q!_ | q ∈ P} for some p ∈ P . For directed choice, we also
require q to be the same for both x and y and, for mixed choice, we solely require
unmark(x) ̸= unmark(y).

Compared to deterministic regular expressions, our definition requires the special
alphabet Γ (and adds a condition for sender-driven and directed choice).

Proposition 8.21. Every mixed-choice, sender-driven or directed regular expression is
a deterministic regular expression.

8.2. Expressivity Results 187

Definition 8.22. Let ∆ be an alphabet and L ⊆ ∆∞. We define a function that
collects all first letters of L: first(L) := pref(L) ∩∆. The function follow(L, a) collects
all letters that can occur after a in L: follow(L, a) := {b | wab ∈ pref(L)} and
follow(L, ε) := first(L).

The following lemma follows from a straightforward adaption of Lemma 2.2 by
Brüggemann-Klein et al. [26].

Lemma 8.23. An RE r ∈ RΓ is a sender-driven RE if and only if, for every z ∈
sym(mark(r)) ⊎ {ε} and every x, y ∈ follow(mark(r), z), if x ̸= y, then unmark(x) ̸=
unmark(y), as well as unmark(x) ∈ L(Γp) and unmark(y) ∈ L(Γp) for some p ∈ P .

Intuitively, one can check if an RE over Γ is an sender-driven RE as follows. For every
subexpression of the form r1+ r2 and r∗1 · r2, the REs r1 and r2 should not share any first
letters and the union of their first letters belongs to the same participant. It suffices to
consider these operators as these are the only ones where lookahead to take a decision
about the path in the RE is needed.

Procedure 8.24 (PSM to RE). Let P = (Q,Γ, δ, q0, F) be a sink-final PSM. We generate
a system of equations. For every q1 ∈ Q, we introduce rq1 as follows:

rq1 =
∑

(q1,x,q2)∈δ

x · rq2

Given the initial state q0, we can solve the system of equations for rq0 with Lemma 8.18,
yielding a regular expression psm2regex(P).

The following lemma states the correctness of the previous procedure.

Lemma 8.25. For every sink-final PSM P , it holds that L(psm2regex(P)) = L(P). If
P is a sender-driven PSM, then psm2regex(P) is a sender-driven RE. If ε /∈ S(P), then
ε does not occur in psm2regex(P).

Proof. With the sink-final assumption, the first claim easily follows from Lemma 8.18.
For the second claim, let us investigate how the system of equations, from which
psm2regex(P) is obtained, is solved. We observe that every equation is guarded,
i.e. there is a letter fromΣ before an occurrence of rq for some state q. Solving the system
of equations for the initial state rq0 can only involve substitution and the application
of Lemma 8.18. For both, sender-driven choice of P is preserved for the RE across all
equations, yielding a sender-driven RE for rq0 . For the third claim, it suffices to observe
that no ε is introduced in the system of equations.

188 Chapter 8. A Unifying Protocol Specification Formalism

Step (2): From Regular Expressions to Ancestor-recursive Non-merging Dense
Intermediate-recursion-free PSMs

After the transformation, we want the PSM to be ancestor-recursive, non-merging,
dense and intermediate-recursion-free by construction. We need to carefully design this
transformation because the standard approach introduces non-determinism, for instance
for union. Resolving this non-determinism would easily break the desired structural
properties, making the whole workflow pointless. We apply the idea of derivatives
in order not to introduce non-determinism. To preserve sender-driven choice, we also
ensure that sender-driven regular expressions are closed under Brzozowski Derivatives.
Given a regular expression r and a letter a, these allow to construct a regular expression
that specifies the language of words in the semantics of r which start with a and omits
a. We apply a similar idea to PSMs in order not to introduce non-determinism when
constructing PSMs from regular expressions.

Definition 8.26 ([27]). Let ∆ be an alphabet. We define the Brzozowski derivative
brz-deriv : ∆×R∆ → R∆ as follows:

brz-deriv(a, r) :=



ε if r = a

brz-deriv(a, r1) + brz-deriv(a, r2) if r = r1 + r2

brz-deriv(a, r1) · r2 if r = r1 · r2 ∧ ε /∈ L(r1)
brz-deriv(a, r1) · r2 + brz-deriv(a, r2) if r = r1 · r2 ∧ ε ∈ L(r1)
brz-deriv(a, r1) · r∗1 if r = r∗1

undefined otherwise

Lemma 8.27 (Correctness of Brzozowski Derivative [27]). Let r be a regular expression
over an alphabet ∆ and a ∈ ∆ be a letter. If brz-deriv(a, r) is defined, it holds that

Lfin(brz-deriv(a, r)) = {w | aw ∈ Lfin(r)} .

If brz-deriv(a, r) is not defined, it holds that {w | aw ∈ Lfin(r)} = ∅.

We extend this result to infinite words.

Lemma 8.28 (Brzozowski Derivative for Infinite Words). Let r be a regular expression
over an alphabet ∆ and a ∈ ∆ be a letter. If brz-deriv(a, r) is defined, it holds that

Linf(brz-deriv(a, r)) = {w | aw ∈ Linf(r)} .

If brz-deriv(a, r) is not defined, it holds that {w | aw ∈ Linf(r)} = ∅.

8.2. Expressivity Results 189

Proof. For the first claim, we consider infinite words. By definition, an infinite word is
in a language if all its prefixes are a prefix of some word in the finite language. Thus,
it suffices to show that pref(Lfin(brz-deriv(a, r))) = pref({w | aw ∈ Linf(r)} ∩ ∆∗).
By definition, the prefixes of infinite words and finite words are the same for a regular
expression. Thus, it remains to show that

pref(Lfin(brz-deriv(a, r))) = pref({w | aw ∈ Lfin(r)} ∩∆∗) .

This follows from Lemma 8.27.
The second claim simply follows from Lemma 8.27 and the definition of Linf(-),

which requires Lfin(-) to be non-empty.

From the correctness of Brzozowski derivatives, this observation follows directly.

Corollary 8.29. Let r be a regular expression over an alphabet ∆ and D ⊆ ∆ be the
first letters in words in r, i.e. D := {a1 | a1 . . . an ∈ Lfin(r)}. Then, it holds that

Lfin(r) =
⊎
a∈D

{a · w | w ∈ Lfin(brz-deriv(a, r))} .

Intuitively, we pull out every first letter for union and concatenation to avoid the
introduction of ε-transitions. For this to work, we need to introduce a PSM derivative
(function). If we used the Brzozowski Derivative, we could not apply structural induction
to prove equivalence of the regular expression and the PSM. Still, we show that sender-
driven choice is preserved by the Brzozowski Derivative.

Lemma 8.30. Let r be an sender-driven RE and x ∈ first(L(r)). Then, it holds that
brz-deriv(x, r) is a sender-driven RE.

Proof. Brüggemann-Klein et al. [26] show that deterministic REs, which they call
1-unambiguous, are closed under the Brzozowski derivative. Their result generalises to
sender-driven REs. They define star normal form for regular expressions [26, Def. 3.3].
They recall that deterministic REs can always be specified by an RE in star normal
form [25]. With [26, Thm. B], they show that the Brzozowski derivative of a deterministic
RE in star normal form is again deterministic and in star normal form. The conditions
on sender-driven choice for REs do not restrict representability in star normal form and,
thus, the result generalises to sender-driven REs.

The last ingredient for our transformation is a procedure that applies the derivative
to PSMs, preserving the properties of interest.

190 Chapter 8. A Unifying Protocol Specification Formalism

Lemma 8.31 (PSM for Derivative). Let P = (Q,Γ, δ, q0, F) be a PSM that is
ancestor-recursive, non-merging, dense, intermediate-recursion-free, and sink-final.
and let a ∈ first(L(P)). Then, there is a PSM, denoted by psm-deriv(a, P), such
that L(psm-deriv(a, P ′)) = brz-deriv(a,L(P)), which is ancestor-recursive, non-
merging, dense, intermediate-recursion-free, and sink-final. If P is sender-driven,
psm-deriv(a, P) is sender-driven.

Proof. Let q0 be the initial state of P , Q1 be the states with incoming transitions from
q0, and Q2 be the states with outgoing transition to q0. (Without loss of generality,
we can assume that these are ε-transitions.) Formally Q1 := {q1 | (q0, _, q1) ∈ δ}
and Q2 := {q2 | (q2, ε, q0) ∈ δ}. By assumption that a ∈ first(L(P)), we know that
there is q1 ∈ Q1 such that (q0, a, q1) ∈ δ. We construct psm-deriv(a, P) as follows.
We take q1 as its initial state and do only keep the states for which q1 is an ancestor.
For every state q2 in Q2, which was not deleted, we copy the original PSM P , remove
the state q2 and replace it by the initial state from the copy. By assumption that the
original PSM P is ancestor-recursive, non-merging, dense, intermediate-recursion-free,
and sink-final, this construction yields a PSM psm-deriv(a, P)with the same properties
and L(psm-deriv(a, P)) = brz-deriv(a,L(P)). By construction, psm-deriv(a, P) is
sender-driven if P is.

With this, we can provide the procedure that translates REs to PSMs.

Procedure 8.32 (RE to PSM). Given a regular expression r without ε over Γ, we
inductively construct the PSM regex2psm(r):

1. a: one initial state with one transition labelled a to one final state;
2. r1+r2: We add one initial state. For r1, we compute psm-deriv(a, regex2psm(r1))

for every first letter a and add a transition labelled with the letter from the initial
state to the initial state of the PSM. We do the same for r2.

3. r1 · r2: We construct the automaton for r1. For r2, we apply the derivative idea
again: we compute psm-deriv(a, regex2psm(r2)) for every first letter a and copy
each automaton as often as there are final states in the automaton for r1 and add
transitions from each such final state.

4. r∗: For Kleene Star, we construct the automaton for the inner regex and connect
the final state(s) with the initial one by an ε-transition and make the initial one
final. (These are backward transitions and, thus, should to be labelled ε for the
PSM to be dense.)

We prove the previous procedure to be correct.

Lemma 8.33. Let r be a regular expression over Γ without ε and regex2psm(r) be
a PSM. Then, the core language of both are the same, i.e. L(r) = L(regex2psm(r)).
It holds that regex2psm(r) is ancestor-recursive, non-merging, dense, intermediate-
recursion-free, and sink-final. If r is a sender-driven RE, then regex2psm(r) is a sender-
driven PSM.

8.2. Expressivity Results 191

Proof. We prove the claims by induction on the structure of the regular expression r.
The case for a single letter r = a is obvious.
Let r = r1 · r2. We first show that L(r1 · r2) = L(regex2psm(r1 · r2)).

The PSM construction applies the PSM derivative psm-deriv(a, regex2psm(r2)) for
every a ∈ first(L(regex2psm(r2)) and copies the resulting PSM for every final state
of regex2psm(r1) and adds a transition with label a. Thus, for every word w in
regex2psm(r1 · r2), we have that

• w ∈ L(regex2psm(r1)) ∩ Γω or
• w = u · a · v with u ∈ L(regex2psm(r1)), a ∈ first(L(regex2psm(r2))), and
v ∈ L(psm-deriv(a, regex2psm(r2))).

By induction hypothesis, we have that L(r1) = L(regex2psm(r1)) and L(r2) =

L(regex2psm(r2)). By Lemma 8.31, L(psm-deriv(a, r2)) = L(brz-deriv(a, r2)). Hence,
we obtain:

• w ∈ L(r1) ∩ Γω or
• w = u · a · v with u ∈ L(r1), a ∈ first(L(r2)), and v ∈ L(brz-deriv(a, r2)).

By the semantics of regular expressions and Lemmas 8.27 and 8.28, it follows that
w ∈ L(r1 · r2), which shows language equality.

By induction hypothesis, we know that regex2psm(r1) and regex2psm(r2) are
ancestor-recursive, non-merging, dense, intermediate-recursion-free, and sink-final. By
Lemma 8.31, for every a ∈ first(L(regex2psm(r2))), psm-deriv(a, regex2psm(r2))

is ancestor-recursive, non-merging, dense, intermediate-recursion-free, sink-final and
sender-driven if regex2psm(r2) is. Thus, by construction, the PSM regex2psm(r1 · r2)
is ancestor-recursive, non-merging, dense, intermediate-recursion-free, and sink-final,
where the multiple copies ensure ancestor-recursiveness and non-merging property and
the derivatives preserve density; and sender-driven choice is also preserved.

For r1 + r2, the construction applies the PSM derivative to avoid introducing non-
determinism (as is common in standard constructions for FSMs from REs) if it was not
present before. If it was there before, it preserves it to avoid subsequent merging and,
thus, avoids introducing non-sink final states. For sender-driven choice, the assumption
for the regular expression yields that the first letters are pair-wise distinct and, thus, the
newly introduced branching satisfies the sender-driven choice condition for PSMs. The
remaining reasoning is very similar to the previous case for concatenation and, hence,
omitted. Here, both r1 and r2 are treated the same, like the second part of concatenation.

192 Chapter 8. A Unifying Protocol Specification Formalism

For r∗1 , we simply introduce a backward transition, which ought to be labelled by
ε and it is. In fact, these are the only ε-transition, ensuring that the PSM is dense.
Note that we construct a PSM without forward transitions that are labelled with ε.
This is different from state machines for global types where every subterm of shape
µt .G has only one incoming backward and one outgoing forward transition labelled
by ε. In this construction, we basically merge the states for µt .G and G. It is also
the place where recursion is introduced, ensuring ancestor-recursion and intermediate
recursion freedom. For sender-driven choice, analogously, the assumption for the
regular expression yields that the first letters are pair-wise distinct and, thus, the branch
that decides whether to start or repeat with r1 or continue with the next regular
expression satisfies the sender-driven choice condition for the PSMs.

Step (3): From Ancestor-recursive Non-merging Dense
Intermediate-recursion-free PSMs to Global Types

While the previous steps apply to arbitrary (sink-final) PSMs, this one only applies
for Σ1-PSMs since global types specify send and receive events together. This
transformation is rather straightforward. The global type can be constructed via a
traversal of the Σ1-PSM.

Procedure 8.34 (Σ1-PSM to Global Type). Let P be ancestor-recursive, non-merging,
dense, and intermediate-recursion-free Σ1-PSM. As a preprocessing step, we merge
asynchronous events and assume P works on the alphabet of synchronous events ΣP .
We start with an empty global type and start the traversal from initial state:

• If the state is final: add 0 and return;
• if the state has an incoming transition:
add µt. for fresh t and store t for this state;

• if the state has an outgoing transition to previously seen state:
add t for the destination of the outgoing transition and return;

• if the state has outgoing transitions to unseen states:
add Σi∈I with a fresh index set I (for |I| branches) with one branch for each next
state with according transition label and recurse for each of next states.

Note that a state can have an incoming transition and more than one outgoing
transitions, in contrast to the state machine of a global type where every subterm of
shape µt .G has only one incoming and one outgoing transition labelled by ε. In this
construction, the states for µt .G and G are merged. We denote the result of this
procedure with psm2gt(P).

The following lemma states the correctness of the previous procedure.

8.2. Expressivity Results 193

Lemma 8.35. Let P be ancestor-recursive non-merging dense intermediate-recursion-
free sink-final Σ1-PSM and psm2gt(P) be the global type constructed from P . Then,
their core languages are the same: L(P) = L(psm2gt(P)). If P is a sender-driven PSM,
then psm2gt(P) is a sender-driven global type.

Proof. The assumptions guarantee that the traversal does not revisit states and only
sink states are final. The preprocessing simplifies the translation to the corresponding
terms of a global type. The claim then follows easily by construction. We sketch how
to formalise it. One can define a formalism that jointly/recursively represents languages
starting from states in an FSM and (partial) global types. The construction iteratively
refines this representation, preserving the specified language and sender-driven choice
if given.

Wrapping Up: From PSMs to Global Types

Let us first observe that part of this workflow can be appliedwhen using themore general
alphabet Γ where send and receive events may not happen next to each other.

Lemma 8.36. For every PSM P with ε /∈ S(P), there is an ancestor-recursive, non-
merging, dense, and intermediate-recursion-free PSM P ′ with the same core language.
If P is sink-final and satisfies mixed choice (sender-driven choice, or directed choice
respectively), then P ′ is sink-final and satisfies mixed choice (sender-driven choice,
or directed choice respectively). If P is not sink-final, restrictions on choice are not
preserved.

Proof. Let P be a sink-final PSM with ε /∈ S(P). We do a case analysis if P is sink-final.
If P is sink-final,

regex2psm(psm2regex(P))

is such a PSM and any restriction on choice is preserved by Lemmas 8.25 and 8.33. If P
is not sink-final,

regex2psm(psm2regex(psm2sink-final-psm(P)))

is such a PSM by Proposition 8.16 and Lemmas 8.25 and 8.33.

For the special case of Σ1-PSMs, we can convert such PSMs to global types, proving
the main result in this section.

Theorem 8.14. For every sink-final Σ1-PSM P , there is a global type G with the
same core language. If P is non-deterministic (mixed-choice, sender-driven, or
directed respectively), G is non-deterministic (mixed-choice, sender-driven, or directed
respectively). EveryΣ1-PSMP with ε /∈ S(P) can be represented as a non-deterministic
global type with the same core language.

194 Chapter 8. A Unifying Protocol Specification Formalism

Proof. For the first claim, letP be a sink-finalΣ1-PSM. We do a case analysis if ε ∈ S(P).
If so, we know that S(P) = {ε} because P is sink-final and no transition is labelled

by ε. Then, G = 0 has the same core language.
If not, we can apply our workflow and construct the global type

psm2gt(regex2psm(psm2regex(P)))

which represents the same core language and any restriction on choice is preserved by
Lemmas 8.25, 8.33 and 8.35.

For the second claim, let P be a non-sink-final Σ1-PSM with ε /∈ S(P). Then,

psm2gt(regex2psm(psm2regex(psm2sink-final-psm(P))))

is a non-deterministic global type that represents the same core language by
Proposition 8.16 and Lemmas 8.25, 8.33 and 8.35.

More General Applicability of This Transformation. Our constructions are not
restricted to PSMs but can be applied to FSMs over other alphabets. For such FSMs,
the reasoning about preserving sender-driven choice often translates to preserving
determinism. Thus, it shows that the above structural conditions do not change
expressivity for sink-final deterministic FSMs. For instance, the previous workflow can
also be applied to a sink-final FSM over Γp for a participant p. If the FSM has no mixed-
choice states, it will produce a local type. If it does, the structure will still resemble the
one of local types but requires to specify receiving and sending at the same time.

Lemma 8.37. Let p be a participant and Ap be a sink-final state machine over Γp
without mixed-choice states. Then, one can construct a local type Lp for p such that
L(Lp) = L(Ap).

This can be used to turn any implementation where each state machine is sink-final
and has no mixed-choice states into a collection of local types that implements it.

Corollary 8.38. Let L ⊆ Γ∞ be a language. If L is implementable by a CSM {{Ap}}p∈P
where every Ap is sink-final and has no mixed-choice states for every p ∈ P , then there
is a local type Lp for every p ∈ P such that {{LAut(Lp)}}p∈P implements L.

With the completeness result for our subset projection operator for global types
(Theorem 5.21), we showed that mixed-choice states are not necessary to implement
(sender-driven) global types. With regard to the restriction to be sink-final, we showed
that (sender-driven) global types are softly implementable if and only if the subset
projection is sink-final for every participant (Theorem 5.23). Thus, for a solution to
the soft implementatability problem, we can always construct a collection of local types
with the same behaviours when interpreted as CSM.

8.2. Expressivity Results 195

8.2.3 From HMSCs to PSMs

We can compute a PSM from an HMSC. We will show how to preserve restrictions on
choice if given. For this, let us first define choice for HMSCs.

Definition 8.39 (Sender-driven choice for HMSCs). Let H = (V,E, vI, V T, µ) be an
HMSC. We sayH is sender-driven if there is a choice function λ : V → P such that λ(v)
has aminimal event eu in everyµ(u) for uwith (v, u) ∈ E and the labels of theseminimal
events are pair-wise distinct, i.e. ∀(v, u1), (v, u2) ∈ E, u1 ̸= u2 =⇒ l1(eu1) ̸= l2(eu2)

where µ(ui) = (_, _, _, li). We say that H is directed if the receiver for each ev is the
same across all branches.

Note that we gave an HMSC specification of the Kindergarten Leader Election
protocol Fig. 8.1 but it is not sender-driven and cannot be specified as such. In contrast,
the given PSM is even directed.

We now define our procedure to turn an HMSC into a PSM, preserving sender-driven
choice if given.

Procedure 8.40 (FromHMSCs to PSMs). LetH = (V,E, vI , V T, µ, λ) be a sender-driven
HMSC. We construct a PSM hmsc2psm(H) := (Q,Γ, δ, q0, F) as follows:

• For every u ∈ V , we compute the set of minimal event Eu
min of µ(u).

• For every u ∈ V and e ∈ Eu
min where p is the sender of the label of e, we compute

a linearisation of the event labels w of µ(v) such that the label of e is the first in
w. For w, we construct a PSM Pu,p which does not branch.

• For q0: we use the initial state of PvI,p for some p which has a minimal event in
µ(vI).

• For δ: for every (v, u) ∈ E, we (temporarily) add an ε-transition between the final
state of every (defined) Pv,q for every q (except for the initial vertex where we only
use PvI,p from before), and the initial state of Pu,λ(v) and can simply remove it by
removing the initial state of Pu,λ(v).

• For Q: we simply union all states and omit the initial states we removed for the
temporary ε-transitions (and the PSMs for the initial vertex vI that we did not use).

• For F : these are the final states of all PSMs Pv,_ for which v ∈ V T .

If there is no need to preserve sender-driven or directed choice, we do not need to copy
the PSMs for the different minimal events, which simplifies the above procedure.

Lemma 8.41. Let H be an HMSC. Then, its PSM encoding hmsc2psm(H) specifies the
same semantics, i.e. L(H) = S(hmsc2psm(H)). If H is a sender-driven (resp. directed)
HMSC, then hmsc2psm(H) is a sender-driven (resp. directed) PSM.

196 Chapter 8. A Unifying Protocol Specification Formalism

Proof. Let H = (V,E, vI, V T, µ) be the HMSC. By construction, it is easy to see that
the PSM Pv,_ for every individual BMSC µ(v) is constructed such that it specifies one
of its linearisations. The semantics of HMSCs is closed under the indistinguishability
relation ∼ (Lemma 2.21) and, hence, is the semantics of BMSCs. The same holds for the
semantics of PSMs by definition. It is also easy to see that the edges of H are mimicked
correctly. It remains to argue that sender-driven (resp. directed) choice is preserved ifH
is a sender-driven (resp. directed) HMSC, i.e. with choice function λ. This is the case as
we copy the individual BMSCs for every minimal event and use the choice function λ of
H to determine how to connect the (linear) PSMs. By removing the initial states when
joining two PSMs Pv,_ and Pu,λ(v) for (v, u) ∈ E, we do not introduce ε-transitions –
while introducing them would not yield a PSM.

197

Chapter 9

Checking Implementability with
Mixed Choice is Undecidable

In this section, we show that checking implementability for sink-final mixed-choice Σ1-
PSMs is undecidable in general. Together with our workflow to turn such PSMs into
global types, this result carries over to mixed-choice global types.

Lohrey proved that implementability of HMSCs is undecidable in general [91,
Thm. 3.4]. This proof entails undecidability of Σ1-PSMs. However, we showed
decidability of the implementability problem for global types. Thus, the proof for
undecidability for PSM implementability ought to break. There are two possible reasons:
first, the fact that PSMs employ fewer restrictions on protocol specifications, or, second,
mixed choice. With our expressivity results, the first reason does not apply for sink-final
PSMs and we will show that the undecidability result persists for sink-final PSMs. Thus,
mixed choice must be the reason. However, the original proof does not give any insights
where and how this happens. The underlying idea of the proof was apparently common
back then but, without this context, the proof is rather difficult to follow. In addition, it
is, in fact, a combination of two proofs: Lohrey initially proves EXPSPACE-hardness for
implementability of bounded HMSCs and, then, part of this proof is then used to prove
undecidability. We decided to transcribe the proof in our terminology, emphasising the
concept of choice and making the encoding sink-final.

Prior to giving the statement and the full proof, let us give a sketch of the main ideas.
We reduce the acceptance problem for Turing Machines to checking implementability
sink-final mixed-choice Σ1-PSMs. We have five participants interact with each other:
p1, . . . p5. The two pairs p1 and p2 as well as p4 and p5 send possibly ill-formed Turing
Machine configurations (u1, . . . , um) for any m ≥ 1 as messages to each other. We
define two languages Ll and Lr, which are the same if and only if the Turing Machine
has no accepting computation for the given word. Initially, p3 decides which branch to
choose by sending a message to p2 and, thus, whether to follow Ll or Lr in the rest of
the protocol. The remaining participants p1, p4 and p5 never learn about this choice.
However, we show that Ll is implementable. Overall, the PSM is implementable if and
only if there is no accepting computation for the given word.

198 Chapter 9. Checking Implementability with Mixed Choice is Undecidable

For Ll, we simply accept any two sequences of the same length (one for each
pair) where the sequences do not need to but can represent valid Turing Machine
computations. It is fairly straightforward to define such a PSM.

For Lr, we only accept two sequences of Turing Machine configurations of the same
length (one for each pair) where sequences do not represent accepting Turing Machine
computations. Constructing a PSM for Lr is more involved. We use a characterisation
of how Turing Machine computations can go wrong: these are five conditions and we
show how to specify PSMs for each of these languages. The language Lr is then the
union of all of these. Interestingly, each individual PSM does not expose mixed choice
but when combining them to obtain one PSM for Lr, the resulting PSM necessarily
exposes mixed choice. Recall that the pairs (p1, p2) and (p4, p5) communicate Turing
Machine configurations C1, . . . , Cm andD1, . . . , Dm for somem. For one condition, we
check that Ci ̸= Di for some 1 ≤ i ≤ m, making the Turing Machine computation
invalid. For another one, we check that Ci+1 is no successor of Di for some 1 ≤ i ≤ m,
again making the encoded Turing Machine computation invalid. For the first condition,
the communication for Ci and Di ought to be possible in parallel while, for the second
condition, the communication for Ci+1 andDi ought to be possible in parallel. Merging
the respective PSMs necessarily exposes mixed choice to allow for both and this is where
imposing a restriction on choice would break the undecidability proof.

Theorem 9.1. The implementability problem for sink-final mixed-choice Σ1-PSMs is
undecidable in general.

Proof. We consider the problem of checking if a word is accepted by a Turing Machine.
This, as a variant of the halting problem [126], is known to be undecidable. We reduce
it to checking implementability of a mixed-choice sink-final Σ1-PSM. We basically
construct a PSM with two branches in the very beginning. For each, we construct a
language and they coincide – which will be necessary for implementability – if and only
if the Turing Machine does not halt in a final configuration. We assume familiarity with
the concept of Turing Machines and refer to [69] for further details.

LetTM be a TuringMachine with tape alphabet∆ and statesQwith∆ ∩Q = ∅. We
have that q0 ∈ Q is the initial state and qf ∈ Q is, without loss of generality, the only final
state. A configuration of TM is given by a word a1, . . . , ai, q, b1, . . . , bj ∈ ∆∗Q∆∗. The
initial configuration for input word w is q0w while any configuration from∆∗{qf}∆∗ is
final. A computation is a sequence of configurations (u1, . . . , um) such that ui+1 is the
next configuration of TM , also denoted by ui ⊢TM ui+1. A computation (u1, . . . , um)

accepts w if u1 = q0w and um ∈ ∆∗{qf}∆∗.
For our encoding, we use five participants p1, . . . , p5 who send configurations to each

other. Therefore, messages are from the set ∆ ⊎ {◦, ⟨⟨, ⟩⟩,⊥} ⊎ Q where ◦ is sent by p3
to indicate the start of a new pair of configurations and ⟨⟨ and ⟩⟩ delimit a configuration.

Chapter 9. Checking Implementability with Mixed Choice is Undecidable 199

Let us introduce some notation: p ↔ q : m abbreviates p→q :m · q→p :m. We
only specify interactions using _ ↔ _ : _. Using these, we will also define regular
expressions and complements thereof and consider p ↔ q : m as their single letters. By
construction, every PSMwill be ∃Σ1-bounded and, in fact, everymessage is immediately
acknowledged.

For a word w = w1 . . . wi, we write p ↔ q : w for p ↔ q : w1 · · · p ↔ q : wi.
For words C1, D1, C2, D2 . . . , Cm, Dm ∈ (∆ ⊎Q)∗, we define the word

w(C1, D1, C2, D2, . . . , Cm, Dm) := p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · p2 ↔ p1 : C1 · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p4 ↔ p5 : D1 · p4 ↔ p5 : ⟩⟩ ·
p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · p2 ↔ p1 : C2 · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p4 ↔ p5 : D2 · p4 ↔ p5 : ⟩⟩·
· · ·
p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · p2 ↔ p1 : Cm · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p4 ↔ p5 : Dm · p4 ↔ p5 : ⟩⟩ .

Intuitively, p2 sends the sequenceCi to p1 while p4 sends the sequenceDi to p5. Each
sequence is started by a ⟨⟨-message and finished by a ⟩⟩-message between the respective
pair. The participant p3 starts each round by sending ◦. We give an illustration of the
MSC msc(w(C1, D1, C2, D2, . . . , Cm, Dm)) in Fig. 9.1 on p. 206. We will use the closure
of w(-, . . . , -) close under ∼, justifying the representation as BMSC.

We define two languages Ll and Lr, which we later use for two branches of a PSM.

Ll := {C∼(w(C1, D1, . . . , Cm, Dm)) | m ≥ 1, C1, D1, . . . , Cm, Dm ∈ (∆ ⊎Q)∗}
Lr := Ll \ {C∼(w(u1, u1, . . . , um, um)) | (u1, . . . , um) is an accepting computation}

Note that the communication of Ci between p1 and p2 can happen concurrently to both
Di−1 and Di between p4 and p5. (This will later allow us to both detect if Ci and Di do
not coincide or Ci is no successor configuration of Di.)

Tomake the resulting PSM sink-final, we define a sequence ofmessages that indicates
the end of an execution

wend := p3 ↔ p2 : ⊥ · p2 ↔ p1 : ⊥ · p3 ↔ p4 : ⊥ · p4 ↔ p5 : ⊥

and append it to obtain L′
l := {w · wend | w ∈ Ll} and L′

r := {w · wend | w ∈ Lr} .
We will show that both Ll and Lr, and thus, L′

l and L′
r, can be specified as Σ1-PSMs.

Provided with PSMs for Ll and Lr, it is straightforward to construct a PSM PTM with

S(PTM) = {p2→p3 : l · w | w ∈ L′
l} ⊎ {p2→p3 : r · w | w ∈ L′

r} .

200 Chapter 9. Checking Implementability with Mixed Choice is Undecidable

By definition of L′
l and L′

r, every word ends with wend so PTM is sink-final. (In fact, if
there are FSMs for all participants, they will also be sink-final.) We will show that PTM

is implementable if and only if TM does not accept the input w.
For this, it suffices to establish the following four facts:

• Claim 1: Ll and Lr can be specified as Σ1-PSMs.
• Claim 2: Ll is implementable.
• Claim 3: If TM has no accepting computation for w, then PTM is implementable.
• Claim 4: If TM has an accepting computation for w, then PTM is not
implementable.

Claim 1: Both Ll and Lr can be specified as Σ1-PSMs.
Proof of Claim 1. It is easy to construct a PSM from a regular expression. Thus,

for conciseness, we may give regular expressions for the languages we consider or for
their complements. For this, we introduce some more notation for concise specifications
when using sets of messages:

p2 ↔ p1 : {x1, . . . , xn} := (p2 ↔ p1 : x1 + . . .+ p2 ↔ p1 : xn) .

First, let us consider Ll. Inspired by the definition of w(C1, D1, . . . , Cm, Dm), we
construct this regular expression rl for Ll:

(p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · (p2 ↔ p1 : (∆ ⊎Q))∗ · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : (∆ ⊎Q))∗ · p4 ↔ p5 : ⟩⟩)∗ .

Second, let us consider Lr. Recall that Lr should admit the encoding of all sequences
of configurations except for accepting ones. We provide an exhaustive list of how such
a sequence can fail to be an accepting computation. We provide a language Lr,i for each
and Lr is their union.1

• Lr,1 contains all sequences of configurations for which some Ck or Dk is actually
not a configuration, i.e. not from ∆∗Q∆∗.

• Lr,2 contains all sequences for which C1 is not the correct initial configuration,
i.e. it does not have the shape q0, a1, a2, . . . an where w = a1 · · · an.

• Lr,3 contains all sequences for which qf does not occur in Cm.
• Lr,4 contains all sequences where Ck and Dk differ in some position.
• Lr,5 contains all sequences for which Ck+1 is no successor configuration for Dk.

For each Lr,i, we show that it can be specified as PSM (or regular expression). It is
straightforward to obtain a PSM forLr by adding one initial state and adding a transition
from this one to the initial state for the PSM of Lr,i for each i.

1Some of Lohrey’s construction for EXPSPACE-hardness does not apply to the undecidability proof so
we renumbered the languages because some of his construction.

Chapter 9. Checking Implementability with Mixed Choice is Undecidable 201

Language Lr,1:
We construct a regular expression for w(C1, D1, . . . , Cm, Dm) for any m such that

there is some Ci orDi with either no message fromQ or at least two messages fromQ:

r1 := (p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ ·
(p2 ↔ p1 : ∆)∗ · p2 ↔ p1 : Q · (p2 ↔ p1 : ∆)∗ · p2 ↔ p1 : ⟩⟩ ·

p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ ·
(p4 ↔ p5 : ∆)∗ · p4 ↔ p5 : Q · (p4 ↔ p5 : ∆)∗ · p4 ↔ p5 : ⟩⟩)∗·

(rl0 + rl2 + rr0 + rr2) · r∗l

where rl0 := p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · (p2 ↔ p1 : ∆)∗ · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : ∆ ⊎Q)∗ · p4 ↔ p5 : ⟩⟩

rl2 := p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨·
(p2 ↔ p1 : ∆)∗ · p2 ↔ p1 : Q · (p2 ↔ p1 : ∆)∗·
p2 ↔ p1 : Q · (p2 ↔ p1 : ∆ ⊎Q)∗ · p2 ↔ p1 : ⟩⟩ ·

p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : ∆ ⊎Q)∗ · p4 ↔ p5 : ⟩⟩
rr0 := p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · (p2 ↔ p1 : ∆ ⊎Q)∗ · p2 ↔ p1 : ⟩⟩ ·

p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : ∆)∗ · p4 ↔ p5 : ⟩⟩
rr2 := p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · (p2 ↔ p1 : ∆ ⊎Q)∗ · p2 ↔ p1 : ⟩⟩ ·

p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨·
(p4 ↔ p5 : ∆)∗ · p4 ↔ p5 : Q · (p4 ↔ p5 : ∆)∗·
p4 ↔ p5 : Q · (p4 ↔ p5 : ∆ ⊎Q)∗ · p4 ↔ p5 : ⟩⟩ .

Let us explain how r1 works. In the beginning, there are only Ci and Di with one
message from Q. At some point, one of the regular expressions rl0, rl2, rr0 or rr2 has to
match. These specify some way how the number of messages for Q can be wrong: rl0
has no messages from Q between p2 and p1 while rr0 has no messages from Q between
p4 and p5; rl2 has more than one message from Q between p2 and p1 while rr2 has more
than one message from Q between p4 and p5. For each, the other pair can communicate
any number of messages from Q to account for sequences where both Ci andDi do not
match. Subsequently, we use rl to simply allow any configurations.

Language Lr,2:
Let w = a1 . . . an be the input word for TM . Then, we can specify Lr,2 as follows:

{C∼(w(C1, D1, C2, D2 . . . , Cm, Dm)) | m ≥ 1 ∧ C1 ̸= q0a1 . . . an}

It is easy to see that we can change rl to obtain a regular expression for

{w(C2, D2, . . . , Cm, Dm) | m ≥ 1} .

Thus, it suffices to show that w(C1, D1) with C1 ̸= q0, a1, . . . , an can be specified as
PSM. Again, we give a regular expression for the complement. We observe that the

202 Chapter 9. Checking Implementability with Mixed Choice is Undecidable

communication between p2 and p1 about the configuration can easily be specified as
regular expression:

p2 ↔ p1 : q0 · p2 ↔ p1 : a1 . . . p2 ↔ p1 : an .

It is straightforward to construct a PSM for the complement of this regular expression.
(Before we did not use the complement for Lr,1 because we could not guarantee that
the same number of configurations would be communicated between both pairs.) When
combined, this gives us the following regular expression (with the complement operator
as syntactic sugar) for Lr,2:

p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ ·
p2 ↔ p1 : q0 · p2 ↔ p1 : a1 · . . . · p2 ↔ p1 : an · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : (∆ ⊎Q))∗ · p4 ↔ p5 : ⟩⟩ · rl

Language Lr,3:
The following regular expression specifies all sequences for which the last Cm does

not contain the final state qf ∈ Q:

rl ·
p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · (p2 ↔ p1 : (∆ ⊎Q \ {qf}))∗ · p2 ↔ p1 : ⟩⟩ ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : (∆ ⊎Q))∗ · p4 ↔ p5 : ⟩⟩

Language Lr,4:
Intuitively, we can merge the loops for bothCi andDi to check that some message at

the same position is different. This is possible because all languages are closed under ∼
by definition. We introduce this notation

{p2 ↔ p1 : x · p4 ↔ p5 : x | x ∈ {y1, . . . , yn}}

which is an abbreviation for

(p2 ↔ p1 : y1 · p4 ↔ p5 : y1) + . . .+ (p2 ↔ p1 : yn · p4 ↔ p5 : yn) .

With this, the following is a regular expression for Lr,4:

r4 := rl ·
p3 ↔ p2 : ◦ · p3 ↔ p4 : ◦ · p2 ↔ p1 : ⟨⟨ · p4 ↔ p5 : ⟨⟨ ·
({p2 ↔ p1 : x1 · p4 ↔ p5 : x1 | x1 ∈ (∆ ∪Q)})∗ ·
(ra + rb + rc) · rl

where ra := ({p2 ↔ p1 : x2 · p4 ↔ p5 : x3 | x2, x3 ∈ (∆ ∪Q) and x2 ̸= x3}) ·
({p2 ↔ p1 : x4 · p4 ↔ p5 : x5 | x4, x5 ∈ (∆ ∪Q)})∗ · rl

rb := {p2 ↔ p1 : x7 · p4 ↔ p5 : ⟩⟩ | x7 ∈ (∆ ∪Q)} · (p2 ↔ p1 : ∆ ∪Q)∗ · p2 ↔ p1 : ⟩⟩ · rl
rc := {p2 ↔ p1 : ⟩⟩ · p4 ↔ p5 : x6 | x6 ∈ (∆ ∪Q)} · (p4 ↔ p5 : ∆ ∪Q)∗ · p4 ↔ p5 : ⟩⟩ · rl .

Chapter 9. Checking Implementability with Mixed Choice is Undecidable 203

The regular expression checks that at some point two configurations Ci and Di do
not agree on some position (using ra), or Ci is longer thanDi (using rb), orDi is longer
than Ci (using rc).

Language Lr,5:
We use the same idea of merging the loops to compare as for the previous case and

also use the same notation. We can give a regular expression that consists of different
phases. First, we let p2 and p1 communicate about C1 in order to then compare Di with
Ci+1 for any i in a loop. We want that Ci+1 is no successor of Di for some i. Thus,
we check if the changes from Di to Ci+1 are a valid transition for TM . The regular
expression r5 is defined as follows:

r5 := p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ · (p2 ↔ p1 : (∆ ⊎Q))∗ · p2 ↔ p1 : ⟩⟩ ·
(rd + re)

∗ · (rf + rg) ·
p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · (p4 ↔ p5 : (∆ ⊎Q))∗ · p4 ↔ p5 : ⟩⟩ ·
rl

where rd := p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ ·
({p4 ↔ p5 : x1 · p2 ↔ p1 : x1 | x1 ∈ (∆ ∪Q)})∗ ·
({p4 ↔ p5 : a1 · p2 ↔ p1 : a2 · p4 ↔ p5 : b1 · p2 ↔ p1 : b2 · p4 ↔ p5 : c1 · p2 ↔ p1 : c2

| a1, a2, b1, b2, c1, c2 ∈ (∆ ∪Q)∗, a1 ̸= a2 and
∃w1, w2 ∈ ∆∗. w1a1b1c1w2 ⊢TM w1a2b2c2w2}) ·

({p4 ↔ p5 : x2 · p2 ↔ p1 : x2 | x2 ∈ (∆ ∪Q)})∗ ·
p4 ↔ p5 : ⟩⟩ · p2 ↔ p1 : ⟩⟩

re := p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ ·
({p4 ↔ p5 : x1 · p2 ↔ p1 : x1 | x1 ∈ (∆ ∪Q)})∗ ·
({p4 ↔ p5 : a1 · p2 ↔ p1 : a2 · p4 ↔ p5 : b1 · p2 ↔ p1 : b2 · p4 ↔ p5 : ⟩⟩ · p2 ↔ p1 : c2 ·
p2 ↔ p1 : ⟩⟩
| a1, a2, b1, b2, c2 ∈ (∆ ∪Q)∗, a1 ̸= a2 and ∃w1 ∈ ∆∗. w1a1b1 ⊢TM w1a2b2c2})

rf := p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ ·
({p4 ↔ p5 : x1 · p2 ↔ p1 : x1 | x1 ∈ (∆ ∪Q)})∗ ·
({p4 ↔ p5 : a1 · p2 ↔ p1 : a2 · p4 ↔ p5 : b1 · p2 ↔ p1 : b2 · p4 ↔ p5 : c1 · p2 ↔ p1 : c2

| a1, a2, b1, b2, c1, c2 ∈ (∆ ∪Q)∗, a1 ̸= a2 and
∄w1, w2 ∈ ∆∗. w1a1b1c1w2 ⊢TM w1a2b2c2w2}) ·

(p4 ↔ p5 : ∆ ∪Q)∗ · (p2 ↔ p1 : ∆ ∪Q)∗ ·
p4 ↔ p5 : ⟩⟩ · p2 ↔ p1 : ⟩⟩

rg := p3 ↔ p4 : ◦ · p4 ↔ p5 : ⟨⟨ · p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨ ·
({p4 ↔ p5 : x1 · p2 ↔ p1 : x1 | x1 ∈ (∆ ∪Q))∗ ·
({p4 ↔ p5 : c1 · p2 ↔ p1 : ⟩⟩ | c1 ∈ (∆ ∪Q)∗}) ·
(p4 ↔ p5 : ∆ ∪Q)∗ · p4 ↔ p5 : ⟩⟩

204 Chapter 9. Checking Implementability with Mixed Choice is Undecidable

We distinguish two types of transitions: the ones that simply change letters in
the middle of the configurations (achieved with rd) and the ones that extend the tape
(achieved with re). If one is matched against, we recurse using (rd + re)

∗. If not,
(rf + rg) is matched against and we, subsequently, allow any possible subsequent pair
configurations using rl. The regular expression rf checks that the transition is not
possible while rg checks if Ci+1 is shorter than Di. Without loss of generality, we can
assume that the tape never shrinks (as it could be encoded using an extra tape alphabet
letter). Note that the transition check is a local condition and it suffices to check at most
two more messages after the first different message. In fact, the words w1 and w2 in the
conditions do not matter: either it is a transition for all such pairs or none. After the
mismatch, we let Di catch up and continue with rl.

Mixed choice:
We explained how to construct a PSM for Lr,i for every i. These are Σ1-PSMs by

construction. In fact, each of these also satisfies sender-driven choice. However, when
we combine both PSMs for Lr,4 and Lr,5 in order to obtain a PSM for Lr, the resulting
PSM exposes mixed choice. Intuitively, this happens because Lr,4 checks Ci against Di

and Lr,5 checksDi againstCi+1. Technically, when merging both PSMs, we reach a state
after the sequence

p3 ↔ p2 : ◦ · p2 ↔ p1 : ⟨⟨

for which Lr,4 requires to have p3 ↔ p4 : ◦ next while Lr,5 requires to have a loop with

p2 ↔ p1 : ∆ ⊎Q .

It is not possible to let p2 send a message to distinguish both branches as the
indistinguishability of both branches is necessary so that Ci+1 can be compared to both
Di and Di+1.

End Proof of Claim 1.

Claim 2: Ll is implementable.
Proof of Claim 2. By Theorem 8.14, the PSM for Ll can be represented as a global type

with mixed choice. It is also 0-reachable, i.e. one can reach a final state from every state.
For a 0-reachable global typeG, we showed that implementations for Lfin(G) generalise
to Linf(G) (Lemma 4.18). Alur et al. [5] showed that a language L of finite words is
implementable iff two closure conditions CC2 and CC3 hold.
CC2: If w is FIFO-compliant, complete and for every participant p ∈ P , there is v ∈ L

with w⇓Γp = v⇓Γp , then v ∈ L.
CC3: If w is FIFO-compliant and for every participant p ∈ P , there is v ∈ pref(L) with
w⇓Γp = v⇓Γp , then v ∈ pref(L).

Chapter 9. Checking Implementability with Mixed Choice is Undecidable 205

We show that Ll satisfies CC2. The proof for CC3 is analogous. Let w be a FIFO-
compliant and complete word such that for every participant p ∈ P , there is v ∈ Ll with
w⇓Γp = v⇓Γp . Let us give the structure of w⇓Γpi

for i ∈ {1, 2, 3}.

w⇓Γp3
= (p3 ▷p2 ! ◦ ·p3◁p2? ◦ ·p3 ▷p4 ! ◦ ·p3◁p4?◦)k3 for some k3

w⇓Γp2
= p2◁p3? ◦ ·p2 ▷p1 !⟨⟨ · p2◁p1?⟨⟨ ·

(p2 ▷p1 !a1,1 · p2◁p1?a1,1 · . . . p2 ▷p1 !a1,i1 · p2◁p1?a1,i1) ·
. . .

(p2 ▷p1 !ak2,1 · p2◁p1?ak2,1 · . . . p2 ▷p1 !ak2,ik2 · p2◁p1?ak2,ik2)

for some k2, i1, . . . , ik2
w⇓Γp2

= p1◁p2?⟨⟨ · p1 ▷p2 !⟨⟨ ·

(p1◁p2?b1,1 · p1 ▷p2 !b1,1 · . . . p1◁p2?b1,j1 · p1 ▷p2 !b1,j1) ·
. . .

(p1◁p2?bk1,1 · p1 ▷p2 !bk1,1 · . . . p1◁p2?bk1,jk1 · p1 ▷p2 !bk1,jk1)

for some k1, j1, . . . , jk1

(The projections for p4 and p5 are analogous to p2 and p1 and analogous reasoning
applies.) By the fact that w is finite and complete, we know that k1 = k2 = k3 and
il = jl for every 1 ≤ l ≤ k. By the fact that w is FIFO-compliant, the letters coincide,
i.e. ai,l = bi,l for every i and l. Therefore, it is straightforward that w can be obtained by
reordering w(C1, D1, . . . , Ck, Dk) using ∼ and, thus, w ∈ Ll.

End Proof of Claim 2.

Claim 3: If TM has no accepting computation for w, then PTM is implementable.
Proof of Claim 3. Recall that L(PTM) = {p2→p3 : l · w | w ∈ L′

l} ⊎ {p2→p3 : r · w |
w ∈ L′

r}. If w is not accepted, then Ll and Lr and, hence, L′
l and L′

r coincide by
construction. Thus, it is irrelevant for p1, p4, and p5 which branchwas taken. By Claim 2,
Ll is implementable and so is PTM .

End Proof of Claim 3.

Claim 4: IfTM has an accepting computation forw, then PTM is not implementable.
Proof of Claim 4. Let (u1, . . . , um) be an accepting computation for w. Then, there is

wu = w(u1, u1, . . . , um, um) and, by construction, it holds that wu /∈ Lr. By definition
of L(PTM), it holds that p2→p3 : r ·wu ·wend /∈ S(PTM). However, for every participant
p ∈ P , there is v ∈ L(PTM) such that w⇓Γp = v⇓Γp . Together with the fact that the core
language is a subset of the semantics, this contradicts closure condition CC2, which is a
necessary condition for implementability. Thus, PTM is not implementable.

End Proof of Claim 4.

206 Chapter 9. Checking Implementability with Mixed Choice is Undecidable

p1 p2 p3 p4 p5
◦

⟨⟨
[C1]

⟩⟩
◦

⟨⟨
[C2]

⟩⟩
◦

⟨⟨
[C3]

⟩⟩

◦
⟨⟨

[D1]

⟩⟩
◦

⟨⟨
[D2]

⟩⟩
◦

⟨⟨
[D2]

⟩⟩

Figure 9.1: MSC representationmsc(w(C1, D1, C2, D2, C3, D3))
where the double-sided arrow abbreviates two message interactions of
which the direction with the filled tip goes first and [C1] denotes a

sequence of such message interactions.

For the proof of the previous theorem, we construct a sink-final mixed-choice
Σ1-PSM that is implementable if and only if a Turing Machine accepts a word. Using
the same encoding, we show that the soft implementability problem is also undecidable
in general.

Theorem 9.2. The soft implementability problem for sink-final mixed-choice Σ1-PSMs
is undecidable in general.

Proof. We use the same encoding PTM and only highlight the differences.
With wend , our encoding ensures that there is an implementation which is sink-final

for every participant – if there is an implementation. For sink-final implementations,
the notions of deadlocks and soft deadlocks coincide.

If TM has no accepting computation for w, PTM is implementable and, thus, also
softly implementable.

If TM has an accepting computation for w, PTM is not implementable. We revisit
Claim 4 from the previous proof. There, CC2 breaks. This means that any candidate
implementation accepts a word that is not in S(PTM). This yields a contradiction to
protocol fidelity, which is also required for soft implementability.

With our results from Section 8.2.2, we can transform this PSM into a mixed-choice
global type. This shows undecidability of the implementability and soft implementability
problem for mixed-choice global types – both open problems to date.

Corollary 9.3. Both the implementability problem and the soft implementability
problem for mixed-choice global types are undecidable in general.

Chapter 9. Checking Implementability with Mixed Choice is Undecidable 207

Proof. From Theorems 9.1 and 9.2, we know that the implementability and soft
implementability problem is undecidable for sink-final mixed-choice Σ1-PSMs in
general. From Theorem 8.14, we know that such PSMs can be transformed into a mixed-
choice global type, which proves the claim.

Remark 9.4 (Sender-driven non-determinism). Our notion of sender-driven choice
requires that, for every branching, there is a dedicated sender for every branch and
the receiver-message-pairs should be distinct. One could think about weakening this
restriction in a way that receiver-message-pairs are allowed not to be distinct but there
is a still a dedicated sender. However, if one determinises such a PSM, it can easily
yield mixed choice because this notion does not impose any restrictions on subsequent
branches. Thus, this notion is not strong enough to regain decidability. In fact, the
encoding for undecidability can easily be tweaked to satisfy this notion of sender-driven
non-determinism.

Restrictions on choice have not been considered much for HMSCs and the
implementability problem for sender-driven HMSCs is an open question, which is
also the case for sender-driven PSMs. It is unclear if and how our techniques from
Chapter 5 can be adapted to this setting. This more general setting comprises two main
challenges: first, PSMs allow to have final states with outgoing transitions and, second,
interactions are not specified jointly. While the first challenge seems more feasible but
also less interesting, the second one seems significantly more challenging but also more
interesting. We leave this investigation for future work.

209

Chapter 10

Related Work

10.1 High-level Message Sequence Charts

HMSCs were defined in an industry standard [127] as well as studied in academia [95,
54, 53, 51, 107]. Safe and weak realisability has been studied for HMSCs [55, 91, 6].
While safe realisability amounts to our notion of implementability, weak realisability
solely requires protocol fidelity and, thus, allows the CSM to deadlock. It is well-
known that, given an HMSC, there exists a canonical candidate implementation that
implements the HMSC if some implementation exists [5, Thm. 13]. Still, checking
HMSC implementability is undecidable in general [91]. Alur et al. [5] identified
closure conditions for protocol languages which imply implementability. However,
it is unclear how to check these for infinite languages as specified by HMSCs. In
addition, the HMSC literature does only consider finite words while the semantics for
session types comprise infinite words. We showed, though, with Lemma 4.18 that
implementations for languages of finite words generalise to languages of infinite words
for 0-reachable global types. This makes the results from HMSC literature applicable to
the MST setting but it should also be straightforward to show that the same holds for
languages specified as HMSCs. Several restrictions and conditions have been proposed
to tame the implementability problem for HMSCs. We group them in choice and
structural restrictions.

10.1.1 Choice Restrictions

The first definition of (non-)local choice for HMSCs by Ben-Abdallah et al. [15] suffers
from severely restrictive assumptions and only yields finite-state systems.

Given an HMSC specification, research on implied scenarios, e.g. Muccini [99],
investigates whether there are behaviours which, due to the asynchronous nature of
communication, every implementation must allow in addition to the specified ones.
In our setting, an implementable protocol specification must not have any implied
scenarios. Mooij et al. [97] point out several contradictions of the observations on
implied scenarios and non-local choice. Hence, they propose more variants of non-local
choices but allow implied scenarios, waiving protocol fidelity.

210 Chapter 10. Related Work

p q r s t
l

l

l

l

l

p q r s t
r

r

r

r

Figure 10.1: Reconstructible HMSC that is not implementable.

Similar to allowing implied scenarios of specifications, Hélouët [61] pointed out
that non-local choice has been frequently misunderstood: it actually does not ensure
implementability but less ambiguity. Hélouët and Jard proposed the notion of
reconstructibility [62] for a quite restrictive setting: first, messages need to be unique
in the protocol specification and, second, each node in an HMSC is implicitly final.
Unfortunately, we show their results are flawed. Consider the HMSC in Fig. 10.1.
(For simplicity, we use the same message identifier in each branch but one can easily
index them for uniqueness.) The same protocol can be represented by the following
global type:

µt . +

{
q→t : l . q→p : l . t→s : l . s→r : l . r→p : l . t

q→t : r . q→p : r . t→r : r . r→p : r . t

We refer to Fig. 10.1 for the corresponding HMSC. Because their notion of
reconstructibility [62, Def. 12] only considers loop-free paths, they report that the HMSC
is reconstructible. However, the HMSC is not implementable. Suppose that q first
chooses to take the top (resp. left) and then the bottom (resp. right) branch. The message
l from s to r can be delayed until after r received r from t. Therefore, r will first send r

to p and then lwhich contradicts with the order of branches taken. This counterexample
contradicts their result [62, Thm. 15] and shows that reconstructibility is not sufficient
for implementability.

Genest et al. [55] introduced local HMSCs, which require unique minimal events
for branches. For local HMSCs, only payload implementability was considered – where
additional information can be added to existing messages. For more details on local
HMSCs, we refer to Section 4.3.2.

The work by Dan et al. [43] centres around the idea of non-local choice. Intuitively,
non-local choice yields scenarios that make it impossible to implement the language.
In fact, if a language is not implementable, there is some non-local choice. Thus,
checking implementability amounts to checking non-local choice freedom. For this
definition, they showed insufficiency of Baker’s condition [10] and reformulated the
closure conditions for implementability by Alur et al. [5]. In particular, they provide a
definition that is based on projected words of a language in contrast to explicit choice.
While it is straightforward to check their definition for finite collections of k BMSCs

10.2. Session Types 211

with n events in O(k2 · |P| + n · |P|), it is unclear how to check their condition for
languages with infinitely many elements. The design of such a check is far from trivial
as their definition does not give any insight about local behaviour and their algorithm
heavily relies on the finite nature of finite collections of BMSCs.

10.1.2 Structural Restrictions

Globally-cooperative HMSCs were independently introduced by Morin [98], as c-
HMSCs, and Genest et al. [55]. Lohrey [91] considered I-closed HMSCs, for which
checking implementability is PSPACE-complete, and showed that globally-cooperative
HMSCs can be translated faithfully to an exponentially larger I-closed HMSC. The
reduction yields an EXPSPACE upper bound and Lohrey also proves an EXPSPACE lower
bound. This shows that the two classes are equi-expressive but globally-cooperative
HMSCs can be exponentially more succinct. In the context of weak realisability,
Genest et al. [55] introduced locally-cooperative HMSCs for which weak realisability
has linear time complexity. Every globally-cooperative HMSC is locally-cooperative.
Thus, checking implementability of locally-cooperative HMSCs is at least EXPSPACE-
hard if decidable at all. If one requires the communication graphs of loops to be strongly
connected, the class of bounded/regular HMSCs [7, 100] is obtained. Historically, it was
introduced before the class of globally-cooperative HMSCs and, after the latter has been
introduced, implementability for bounded HMSCs was also shown to be EXPSPACE-
complete [91]. This class was independently introduced as regular HMSCs by Muscholl
and Peled [100]. Both terms are justified: the language generated by a regular HMSC
is regular and every bounded HMSC can be implemented with universally bounded
channels. In fact, a HMSC is bounded if and only if it is a globally-cooperative and
has universally bounded channels [55, Prop. 4].

10.2 Session Types

MSTs stem from process algebra and they have been proposed for typing communication
channels. We refer to Section 1.4 for details on their evolution from binary [65] to
multiparty [67] session types. The latter uses a projection operator with plain merging
but multiple ones with full merging have been proposed. Unfortunately, numerous of
these turned out to be flawed. We refer to [109, Sec. 8.2] for details. The connection
between local types and CSMs has also been studied [46]. Here, we gave conditions for
CSMs which make both equi-expressive.

Session types have been incorporated to a number of programming languages [8, 75,
90, 84, 110, 101, 36]. They have also been applied to various other domains like operating
systems [48], web services [131], distributed algorithms [81], timed systems [17], cyber-
physical systems [94], and smart contracts [44]. Our results could potentially extend the
expressivity of the types involved in these applications.

212 Chapter 10. Related Work

There are first mechanisations of MST frameworks [118, 33, 74, 73, 120]. Tirore
et al. [120] also propose a projection operator which is complete with respect to a
coinductive projection operator. They define two kinds of global and types local types:
inductive and coinductive global types. Projection operators for inductive global types
are computable but restricted in presence of recursion and branching. Recent work on
projection operators for coinductive global types provide a more general approach but
are not computable [56]. Tirore et al. [120] specify a relation to relate inductive and
coinductive global types but also their local counterparts. They propose a projection
operator for inductive global types that is as powerful as its coinductive counterpart,
showing that one does not need to sacrifice computability for what the coinductive
projection operator can achieve [120, Thm. 14]. The work in this thesis is different in
three regards. First, our notion of completeness is different: any global type forwhich the
subset projection is undefined cannot be (softly) implemented by any CSM. Regarding
this, we also showed that, for soft implementations of sender-driven global types, CSMs
are not more expressive than local types and can be transformed into such. Second,
Tirore et al. [120] use what is equivalent to what we call plain merge (for both the
inductive and coinductive projection operator): only the two participants in a choice
can learn about it. This is a severe restriction of applicability. We refer to Definition 3.7
and Section 3.1.6 for details on different merge operators and their brittleness. Here, we
present an example that is inspired by Example 3.11. A buyer a decides whether to buy
an item or not and the seller s propagates this information to the payment service p:

+

{
a→s :buy . s→p :buy . 0

a→s :no . s→p :no . 0
.

It is easy to imagine that such behaviour can happen in a protocol. However, the plain
merge operator prohibits that p has different continuations after the choice. Third, they
consider a directed choice setting and we have shown that extending to the sender-
driven choice setting comes with its own challenges.

10.2.1 Generalising Restrictions on Choice

The work by Castagna et al. [29] is the only one to present a projection that aims
for completeness. Their semantic conditions, however, are not effectively computable
and their notion of completeness is “less demanding than the classical ones”[29]. They
consider multiple implementations, generating different sets of traces, to be sound and
complete with regard to a single global type [29, Sec. 5.3]. In addition, the algorithmic
version of their conditions does not use global information as our message availability
analysis does. For instance, our projection operators can project the following example
[29, p. 19] but their algorithmic version cannot:(

p→r :a . r→p :a . p→q :a . q→r :b . 0
)
+
(
p→q :a . q→r :b . 0

)
.

10.2. Session Types 213

Hu and Yoshida [70] syntactically allow a sender to send to different receivers in global
and local types as well as a receiver to receive from different senders in local types.
However, their projection is only defined if a receiver receives messages from a single
participant. From our evaluation, all the examples that need the generalised projection
are rejected by their projection. Recently, Castellani et al. [31] investigated ways to
allow local types to specify receptions frommultiple senders for reversible computations
but only in the synchronous setting. Similarly, for synchronous communication
only, Jongmans and Yoshida [76] discuss generalising choice in MSTs. Because their
calculus has an explicit parallel composition, they can emulate some asynchronous
communication but their channels have bag semantics instead of FIFO queues. The
correctness of the projection also computes causality among messages, as we do for
both presented projection operators, and shares the idea of annotating local types with
the generalised projection operator.

Scalas et al. [109] start from a given concrete implementation for each participant
and, through typing, they are shown to simulate local types. Then, the behaviour of the
parallel composition of the local types is model-checked against correctness properties,
but, not given a global type, do not consider protocol fidelity. For asynchronous systems,
model checking is undecidable and, thus, their approach is incomplete. Dagnino et al.
[42] and Castellani et al. [30] have a setup where the parallel composition of concrete
participant implementations is type-checked against a so-called deconfined global type,
which describes a finite-control language of send and receive events. These deconfined
global types need to be checked against correctness properties, which is shown to
be undecidable.

10.2.2 MST-based Works

Choreography Automata [11] are syntactically similar to Σ1-PSMs. However, their
semantics is considered literally as the core language of the automaton, i.e. not
employing the closure under ∼. Therefore, such reorderings need to be explicitly
represented, preventing finite state representations for common communication
patterns. For the asynchronous setting, their conditions for implementability do
not acknowledge the partial order for messages from different senders, leading to
unsoundness. Consider the choreography automaton in Fig. 10.2. It can also be
represented as a global type:

+

{
p→s :m1 . p→t :m . p→s :m . s→t :m . t→p :m1 . 0

p→s :m2 . s→t :m . s→p :m . p→s :m . p→t :m . t→p :m2 . 0

It is well-formed according to their conditions. However, t cannot determine which
branch was chosen since the messages m from p and s are not ordered when sent
asynchronously. As a result, it can send m2 in the top branch which is not specified
as well as m1 in the bottom branch.

214 Chapter 10. Related Work

p▷s
!m1

p▷s!m
2

p▷t!m p▷s!m s▷t!m t▷p!m1

s▷t!m s▷p!m p▷s!m p▷t!m t▷p!m2

Figure 10.2: Conditions for choreography automata are unsound in the
asynchronous setting.

Lange et al. [85] have shown how to obtain graphical choreographies from CSM
executions. Unfortunately, they cannot fully handle unbounded FIFO channels as their
method internally uses Petri nets. Still, their branching property [85, Def. 3.5] consists
of similar – even though more restrictive – conditions as our MST framework: a
single participant chooses at each branch but participants have to learn with the first
received message or do not commit any action until the branches merge back. In our
developments, we allow a participant to learn later.

10.2.3 Subtyping

For the generalised projection operator, we use local types directly as implementations
for participants, while, for the subset projection operator, we directly construct CSMs.
Our type system uses these CSMs for type-checking. Intuitively, subtyping investigates
ways to give implementation freedom while preserving the desired correctness
properties. There are two notions of subtyping: synchronous and asynchronous
subtyping. The terminology is a bit unfortunate as both notions of subtyping can apply
in an asynchronous setting, as we consider. It is, though, the case that asynchronous
subtyping can only be used in an asynchronous setting. Intuitively, synchronous
subtyping allows a participant to implement fewer sends and more receives while
asynchronous subtyping allows a participant to reorder its local actions.

Synchronous subtyping, as established for the directed choice setting, cannot simply
be applied to the sender-driven choice setting. Intuitively, adding receives can lead to
unspecified behaviour if the message is indeed available through to the partial order
of messages by different senders (cf. Section 6.5) – with directed choice, this cannot be
the case. Inspired by the conditions in Chapter 5, we developed sound and complete
conditions for the synchronous subtyping problem for CSMs, in the context of sender-
driven global types, which can be checked in polynomial time [88]. In addition, we gave
a variant of these conditions which allows to check if a CSM implements a sender-driven
global type.

Asynchronous subtyping generalises what we allow with the relaxed indistinguisha-
bility relation ≈. While ≈ only allows to reorder receives, asynchronous subtyping
investigates which events of a participant can be reordered. For ≈-implementability,
we can still relate language generated by the implementation and the one specified

10.3. Communicating State Machines and Channels 215

by the global protocol. For asynchronous subtyping however, this is not the case,
completely waiving protocol fidelity as property of interest. In contrast, in the context of
synchronous subtyping, the updated implementation should most likely still implement
a subset of the specified language.

For further details on subtyping, we refer to work by Lange and Yoshida [86], Bravetti
et al. [24], Chen et al. [38, 37], and Li et al. [88].

10.2.4 Extensions

A number of extensions for MSTs have been considered. These include but are not
limited to parametrised session types [35, 47], dependent session types [121, 47, 123],
gradual session types [72], and delegation [66, 67, 32]. We do consider a restricted form
of delegation with our type system, which requires a strict partial order between global
types, indicating which global type can delegate local behaviour from which session.
Bejleri et al. [14] survey and uniformly present a number of advanced features. Recently,
fault-tolerantMSTs [128, 13] allow to (partially) waive the strong assumptions on reliable
channels. Context-free session types [119, 77] allow to specify binary sessions that are
not representable with finite-control. Many of these extensions are interesting directions
for future work, extending the applicability of our novel techniques.

10.3 Communicating State Machines and Channels

While we consider finite state machines as model for processes, research has also been
conducted on communicating systems where processes are given more computational
power, e.g. pushdown automata [63, 125, 4]. However, as noted before, our setting
is already Turing-powerful. In Section 7.1, we surveyed how channel restrictions
can yield decidability. Incomplete approaches consider subclasses which enable the
effective computation of symbolic representations (of channel contents) for reachable
states [18, 78]. Other approaches change the semantics of channels, e.g. by making
them lossy [3, 2, 78], input-bounded [19], or by restricting the communication topology
[103, 124]. The concept of existential boundedness [52], which is the basis of our
definition of PSMs, was initially defined for CSMs and yields decidability of control
state reachability. The same holds for synchronisability [22, 59]. We consider the
most recent definitions of synchronisability [59] and we refer to the work by Finkel
and Lozes [49] and Bouajjani et al. [22] for earlier work on synchronisability. Bollig
et al. [21] studied the connection of different notions of synchronisability for MSCs and
MSO logic which yields interesting decidability results. We refer to their work for more
details but briefly point to the slightly different use of terminology: k-synchronisability
is called weak (k-)synchronisability by Bollig where the omission of k indicates a system
is synchronisable for some k; while strong (k-)synchronisability does solely apply to the
mailbox setting, i.e. where each participant has a single channel for incoming messages.

216 Chapter 10. Related Work

10.4 Choreographic Programming

In this thesis, we consider a top-down approach for the design of communication
in a system. In general, there are two main top-down uses of a Global Protocol
Specification (GPS).

The first takes the view that the GPS is a description of the entire evolution of the
closed system. Choreographic programming [40, 57, 64] takes this view and, as a logical
consequence, the endpoint projection (EPP) returns the full local implementation of
each thread. To do so, the GPS needs to include information about the manipulations
of local states of the parties. Sometimes MST work also adopts this view, with the
difference that local behaviour is only required to describe the communication skeleton
of the computations of the threads, while local computation is implemented separately
by processes that are shown to adhere to the communication skeleton by means of
type checking.

The second view is that the GPS is a description of the evolution of a system
when ignoring everything but a single instance of the protocol. This means that the
concrete system might include – additionally to what is modelled in the GPS – local
computation, and arbitrary initiation of new sessions of the same global type. In this
approach, the local types are again only the skeleton of communication for a single
instance of the protocol, and a type system can be used to link that description to the
actual global process implementation. In this context, the properties of the protocol
like deadlock-freedom might not be reflected as properties of the final implementation
“for free” (unless suitably weakened), and so some MST systems build on top of the
single-session deadlock-freedom guarantee some additional checks to guarantee global
deadlock-freedom.

Our work starts from the second view: that the GPS is an abstract view of
the communication structure of a single instance of a protocol. In this setting, it
is natural to consider (asynchronous) finite-control protocols, i.e. protocols where
the communication structure can be described using finitely many local states per
participant. Note that the behaviour of asynchronous finite-control protocols is infinite-
state and actually Turing-complete. For this class, it is not a priori clear whether
implementability can be made sound, complete and cheap. We show that it is for global
types with sender-driven choice.

In choreographies, since one typically works with non-finite-control-state GPSs,
we know theoretically that the hopes to have a complete and decidable EPP are
slim, justifying giving up on completeness. Our work is still potentially useful for
choreographies, however: if a choreography can be represented as sender-driven global
type, the EPP can be computed with our results. The big advantage of completeness is
that any failure of the EPP is entirely explainable as a flaw in the design of the GPS itself
(and not just a limitation of the tool). We can produce examples that cannot be projected
using EPPs from the literature but can be projected using our method.

10.4. Choreographic Programming 217

A simple example is the following (also using choreography syntax and omitting the
payloads as they are irrelevant):

if p.⋆ then (p→q :_ . q→s :_) else (p→s :_ . s→q :_) .

(Here we use p.⋆ to denote a non-deterministic choice of p but this could be replaced
by some non-trivial guard.) The example is syntactically valid in [41] and easily encoded
as a global type with sender-driven choice. However, their EPP would be undefined for
q and s. Consider these two branches that need to be merged when projecting onto q:

B1 := q◁p?_ . q▷s!_ . 0
B2 := q◁s?_ . 0

The EPP of [41] uses the merge from [28], which can only merge same sender
receives, and would fail to merge q◁p?_ and q◁s?_. Our results would instead produce
the desired projection.

The notion of unique point of choice [83] has also been considered for choreographies.
This restriction and sender-driven choice seem to be incomparable conditions. Sender-
driven choice does not insist on the participants coinciding for the branches; unique
point of choice does not seem to insist on same sender-receiver branches differing in the
message label. In addition, it is unclear how unique point of choice would interact with
the presence of loops, which are not considered in [83].

For future work, one could aim at designing an EPP for choreographies which uses
our subset projection operator on GPSs that are essentially fitting our class and soundly
but incompletely covers the rest.

219

Chapter 11

Conclusion

In this thesis, we investigated the implementability problem for asynchronous
communication protocols. We did this from the joint perspective of Multiparty Session
Types (MSTs) and High-level Message Sequence Charts (HMSCs). Most notably, we
showed that restrictions on choice have tremendous impact on the decidability of the
implementability problem for global types from MSTs. In the beginning, we presented a
generalised projection operator that uses novel message causality analysis to make the
efficient MST verification techniques applicable to sender-driven global types, necessary
for many common communication patterns from distributed computing. Still, we
showed that the classical projection approach does not tolerate minor implementability-
preserving changes, exemplifying the incompleteness of this approach. Subsequently,
we proved decidability of the implementability problem for global types with sender-
driven choice, using the first formal encoding of global types as HMSCs. We also
elaborated how earlier work from the HMSC literature becomes applicable with this
encoding. While our earlier results answered an open question and are thus of
theoretical interest, they do not lend themselves to an efficient implementation. This is
why we developed the first direct and complete projection operator for global types with
sender-driven choice. With this, we provided the first upper bound for the respective
implementability problem and proved it to be in PSPACE. Despite, we showed, using a
prototype implementation, that local specifications for sender-driven global types can be
obtained fairly quickly. If they cannot be constructed, we know, from our completeness
result, that the protocol is not implementable. This was not the case for any previous
approach. Our approach allows to pinpoint the flaw in the design of the protocol. More
broadly, session types have been applied to various different domains. Now that we
overcame their brittleness with an efficient and complete approach for a more general
setting, namely sender-driven choice, we believe session types can even have wider
impact and applicability. With our subset projection operator, we proved communicating
state machines advantageous for projection. With our type system, we showed that
they are also useful for type-checking, allowing delegation between sessions. In a
nutshell, the use of communicating state machines as interface between projection and
type-checking improves generality without loosing efficiency. Notably, our setting with

220 Chapter 11. Conclusion

sender-driven choicemakes subtypingmore challenging andwe hope that our automata-
based techniques can provide insights to obtain meaningful results. The computational
power of communicating state machines, the standard model for distributed settings,
hinges on the capabilities of its channels. Hence, we considered various channel
restrictions from the literature and compared them for protocol specifications as well
as general communicating state machines. Inspired by existential boundedness, one
of these channel restrictions, we proposed protocol state machines (PSMs), which are
basically automata where transitions are labelled with send and receive events, that
is more expressive than both global types from MSTs and HMSCs. This is why one
might want to apply certain sanity checks to PSMs, which are always satisfied by global
types and HMSCs by construction. Here, we gave a number of such sanity checks but
expect that this can be generalised to a class of sanity checks, using Büchi automata.
We hope that PSMs can be a building block for a unifying theory of communication
protocol design. As a first step, we investigated global types, in relation to PSMs, and
found that many of their syntactic restrictions are not restrictive in terms of which
protocols can be specified. This helps to distinguish between restrictions that change
the class of protocols one can define and the ones that do not and, therefore, shall
help to identify interesting directions for future work. We proved the implementability
problem for PSMs with mixed choice to be undecidable in general and, with our results
on expressivity, this settled an open problem: the implementability problem for global
types with mixed choice is undecidable in general. Thus, if one hopes for complete
algorithmics to check implementability, one will need to design and assume further
restrictions in addition to mixed choice. The implementability problem for HMSCs with
directed and sender-driven choice, and hence the one for PSMs, is still open and it will be
interesting to see if and how our techniques can be generalised to solve these problems.
The result of such investigations could be enhanced by generalising the semantics of
infinite protocol executions using Büchi automata.

221

Bibliography

[1] Martín Abadi and Leslie Lamport. “The Existence of Refinement Mappings”. In:
Proceedings of the Third Annual Symposium on Logic in Computer Science (LICS
’88), Edinburgh, Scotland, UK, July 5-8, 1988.

[2] Parosh Aziz Abdulla, C. Aiswarya, and Mohamed Faouzi Atig. “Data Commu-
nicating Processes with Unreliable Channels”. In: Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA,
July 5-8, 2016. Ed. byMartin Grohe, Eric Koskinen, and Natarajan Shankar. ACM,
2016, pp. 166–175. doi: 10.1145/2933575.2934535.

[3] Parosh Aziz Abdulla, Ahmed Bouajjani, and Bengt Jonsson. “On-the-Fly Analysis
of Systems with Unbounded, Lossy FIFO Channels”. In: Computer Aided
Verification, 10th International Conference, CAV’98, Vancouver, BC, Canada, June
28 - July 2, 1998, Proceedings. Ed. by Alan J. Hu and Moshe Y. Vardi. Vol. 1427.
Lecture Notes in Computer Science. Springer, 1998, pp. 305–318. doi: 10.1007/
BFb0028754.

[4] C. Aiswarya, Paul Gastin, and K. Narayan Kumar. “Verifying Communicating
Multi-pushdown Systems via Split-Width”. In: Automated Technology for
Verification and Analysis - 12th International Symposium, ATVA 2014, Sydney,
NSW, Australia, November 3-7, 2014, Proceedings. Ed. by Franck Cassez and Jean-
François Raskin. Vol. 8837. Lecture Notes in Computer Science. Springer, 2014,
pp. 1–17. doi: 10.1007/978-3-319-11936-6_1.

[5] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. “Inference of Message
Sequence Charts”. In: IEEE Trans. Software Eng. 29.7 (2003), pp. 623–633. doi:
10.1109/TSE.2003.1214326.

[6] Rajeev Alur, Kousha Etessami, and Mihalis Yannakakis. “Realizability and
verification of MSC graphs”. In: Theor. Comput. Sci. 331.1 (2005), pp. 97–114. doi:
10.1016/j.tcs.2004.09.034.

[7] Rajeev Alur and Mihalis Yannakakis. “Model Checking of Message Sequence
Charts”. In: CONCUR ’99: Concurrency Theory, 10th International Conference,
Eindhoven, The Netherlands, August 24-27, 1999, Proceedings. Ed. by Jos
C. M. Baeten and Sjouke Mauw. Vol. 1664. Lecture Notes in Computer Science.
Springer, 1999, pp. 114–129. doi: 10.1007/3-540-48320-9_10.

https://doi.org/10.1145/2933575.2934535
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/BFb0028754
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1109/TSE.2003.1214326
https://doi.org/10.1016/j.tcs.2004.09.034
https://doi.org/10.1007/3-540-48320-9_10

222 Bibliography

[8] Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe
Castagna, Pierre-Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino,
Raymond Hu, Einar Broch Johnsen, Francisco Martins, Viviana Mascardi,
Fabrizio Montesi, Rumyana Neykova, Nicholas Ng, Luca Padovani, Vasco T. Vas-
concelos, and Nobuko Yoshida. “Behavioral Types in Programming Languages”.
In: Found. Trends Program. Lang. 3.2-3 (2016), pp. 95–230. doi: 10 . 1561 /
2500000031.

[9] Dean N. Arden. “Delayed-logic and finite-state machines”. In: 2nd Annual
Symposium on Switching Circuit Theory and Logical Design, Detroit, Michigan,
USA, October 17-20, 1961. IEEE Computer Society, 1961, pp. 133–151. doi: 10.
1109/FOCS.1961.13.

[10] Paul Baker, Paul Bristow, Clive Jervis, David J. King, Robert Thomson,
Bill Mitchell, and Simon Burton. “Detecting and resolving semantic pathologies
in UML sequence diagrams”. In: Proceedings of the 10th European Software
Engineering Conference held jointly with 13th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2005, Lisbon, Portugal,
September 5-9, 2005. Ed. by Michel Wermelinger and Harald C. Gall. ACM, 2005,
pp. 50–59. doi: 10.1145/1081706.1081716.

[11] Franco Barbanera, Ivan Lanese, and Emilio Tuosto. “Choreography Automata”.
In: Coordination Models and Languages - 22nd IFIP WG 6.1 International
Conference, COORDINATION 2020, Held as Part of the 15th International Federated
Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings. Ed. by Simon Bliudze and Laura Bocchi. Vol. 12134.
Lecture Notes in Computer Science. Springer, 2020, pp. 86–106. doi: 10.1007/
978-3-030-50029-0_6.

[12] Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics.
Vol. 103. Studies in logic and the foundations of mathematics. North-Holland,
1985. isbn: 978-0-444-86748-3.

[13] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. “Gener-
alised Multiparty Session Types with Crash-Stop Failures”. In: 33rd International
Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw,
Poland. Ed. by Bartek Klin, Slawomir Lasota, and Anca Muscholl. Vol. 243. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 35:1–35:25. doi: 10.
4230/LIPIcs.CONCUR.2022.35.

[14] Andi Bejleri, Elton Domnori, Malte Viering, Patrick Eugster, and Mira Mezini.
“Comprehensive Multiparty Session Types”. In: Art Sci. Eng. Program. 3.3 (2019),
p. 6. doi: 10.22152/programming-journal.org/2019/3/6.

https://doi.org/10.1561/2500000031
https://doi.org/10.1561/2500000031
https://doi.org/10.1109/FOCS.1961.13
https://doi.org/10.1109/FOCS.1961.13
https://doi.org/10.1145/1081706.1081716
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.4230/LIPIcs.CONCUR.2022.35
https://doi.org/10.22152/programming-journal.org/2019/3/6

Bibliography 223

[15] Hanêne Ben-Abdallah and Stefan Leue. “Syntactic Detection of Process
Divergence and Non-local Choice inMessage Sequence Charts”. In: Tools
and Algorithms for Construction and Analysis of Systems, Third International
Workshop, TACAS ’97, Enschede, The Netherlands, April 2-4, 1997, Proceedings.
Ed. by Ed Brinksma. Vol. 1217. Lecture Notes in Computer Science. Springer,
1997, pp. 259–274. doi: 10.1007/BFb0035393.

[16] Laura Bocchi, Julien Lange, and Nobuko Yoshida. “Meeting Deadlines Together”.
In: 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid,
Spain, September 1.4, 2015. Ed. by Luca Aceto and David de Frutos-Escrig. Vol. 42.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015, pp. 283–296.
doi: 10.4230/LIPIcs.CONCUR.2015.283.

[17] Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko
Yoshida. “Asynchronous Timed Session Types - From Duality to Time-Sensitive
Processes”. In: Programming Languages and Systems - 28th European Symposium
on Programming, ESOP 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings. Ed. by Luís Caires. Vol. 11423. Lecture Notes in Computer
Science. Springer, 2019, pp. 583–610. doi: 10.1007/978-3-030-17184-1_21.

[18] Bernard Boigelot, Patrice Godefroid, Bernard Willems, and Pierre Wolper. “The
Power of QDDs (Extended Abstract)”. In: Static Analysis, 4th International
Symposium, SAS ’97, Paris, France, September 8-10, 1997, Proceedings. Ed. by
Pascal Van Hentenryck. Vol. 1302. Lecture Notes in Computer Science. Springer,
1997, pp. 172–186. doi: 10.1007/BFb0032741.

[19] Benedikt Bollig, Alain Finkel, and Amrita Suresh. “Bounded Reachability
Problems Are Decidable in FIFO Machines”. In: 31st International Conference on
Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual
Conference). Ed. by Igor Konnov and Laura Kovács. Vol. 171. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 49:1–49:17. doi: 10.4230/
LIPIcs.CONCUR.2020.49.

[20] Benedikt Bollig and Paul Gastin. “Non-Sequential Theory of Distributed
Systems”. In: CoRR abs/1904.06942 (2019). doi: 10.48550/arXiv.1904.06942.
arXiv: 1904.06942.

[21] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Étienne Lozes,
and Amrita Suresh. “A Unifying Framework for Deciding Synchronizability”. In:
32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-
27, 2021, Virtual Conference. Ed. by Serge Haddad and Daniele Varacca. Vol. 203.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 14:1–14:18. doi:
10.4230/LIPIcs.CONCUR.2021.14.

https://doi.org/10.1007/BFb0035393
https://doi.org/10.4230/LIPIcs.CONCUR.2015.283
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/BFb0032741
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.4230/LIPIcs.CONCUR.2020.49
https://doi.org/10.48550/arXiv.1904.06942
https://arxiv.org/abs/1904.06942
https://doi.org/10.4230/LIPIcs.CONCUR.2021.14

224 Bibliography

[22] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. “On
the Completeness of Verifying Message Passing Programs Under Bounded
Asynchrony”. In: Computer Aided Verification - 30th International Conference,
CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford,
UK, July 14-17, 2018, Proceedings, Part II. Ed. by Hana Chockler and Georg
Weissenbacher. Vol. 10982. Lecture Notes in Computer Science. Springer, 2018,
pp. 372–391. doi: 10.1007/978-3-319-96142-2_23.

[23] Daniel Brand and Pitro Zafiropulo. “On Communicating Finite-State Machines”.
In: J. ACM 30.2 (1983), pp. 323–342. doi: 10.1145/322374.322380.

[24] Mario Bravetti, Marco Carbone, and Gianluigi Zavattaro. “On the boundary
between decidability and undecidability of asynchronous session subtyping”. In:
Theor. Comput. Sci. 722 (2018), pp. 19–51. doi: 10.1016/j.tcs.2018.02.010.

[25] Anne Brüggemann-Klein. “Regular Expressions into Finite Automata”. In: LATIN
’92, 1st Latin American Symposium on Theoretical Informatics, São Paulo, Brazil,
April 6-10, 1992, Proceedings. Ed. by Imre Simon. Vol. 583. Lecture Notes in
Computer Science. Springer, 1992, pp. 87–98. doi: 10.1007/BFb0023820.

[26] Anne Brüggemann-Klein and Derick Wood. “One-Unambiguous Regular Lan-
guages”. In: Inf. Comput. 142.2 (1998), pp. 182–206. doi: 10.1006/inco.1997.
2695.

[27] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: J. ACM 11.4
(1964), pp. 481–494. doi: 10.1145/321239.321249.

[28] Marco Carbone, Kohei Honda, and Nobuko Yoshida. “Structured Communica-
tion-Centered Programming for Web Services”. In: ACM Trans. Program. Lang.
Syst. 34.2 (2012), 8:1–8:78. doi: 10.1145/2220365.2220367.

[29] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. “On
Global Types and Multi-Party Session”. In: Log. Methods Comput. Sci. 8.1 (2012).
doi: 10.2168/LMCS-8(1:24)2012.

[30] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. “Asyn-
chronous Sessions with Input Races”. In: Proceedings of the 13th Interna-
tional Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software, PLACES@ETAPS 2022, Munich, Germany, 3rd
April 2022. Ed. by Marco Carbone and Rumyana Neykova. Vol. 356. EPTCS. 2022,
pp. 12–23. doi: 10.4204/EPTCS.356.2.

[31] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, and Paola Giannini. “Re-
versible sessions with flexible choices”. In: Acta Informatica 56.7-8 (2019),
pp. 553–583. doi: 10.1007/s00236-019-00332-y.

[32] Ilaria Castellani, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Ross
Horne. “Global types with internal delegation”. In: Theor. Comput. Sci. 807 (2020),
pp. 128–153. doi: 10.1016/j.tcs.2019.09.027.

https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380
https://doi.org/10.1016/j.tcs.2018.02.010
https://doi.org/10.1007/BFb0023820
https://doi.org/10.1006/inco.1997.2695
https://doi.org/10.1006/inco.1997.2695
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.2168/LMCS-8(1:24)2012
https://doi.org/10.4204/EPTCS.356.2
https://doi.org/10.1007/s00236-019-00332-y
https://doi.org/10.1016/j.tcs.2019.09.027

Bibliography 225

[33] David Castro-Perez, Francisco Ferreira, Lorenzo Gheri, and Nobuko Yoshida.
“Zooid: a DSL for certified multiparty computation: from mechanised metathe-
ory to certified multiparty processes”. In: PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation,
Virtual Event, Canada, June 20-25, 2021. Ed. by StephenN. Freund and Eran Yahav.
ACM, 2021, pp. 237–251. doi: 10.1145/3453483.3454041.

[34] Gérard Cécé and Alain Finkel. “Verification of programs with half-duplex
communication”. In: Inf. Comput. 202.2 (2005), pp. 166–190. doi: 10.1016/j.
ic.2005.05.006.

[35] Minas Charalambides, Peter Dinges, and Gul A. Agha. “Parameterized, concur-
rent session types for asynchronous multi-actor interactions”. In: Sci. Comput.
Program. 115-116 (2016), pp. 100–126. doi: 10.1016/j.scico.2015.10.006.

[36] Ruofei Chen, Stephanie Balzer, and Bernardo Toninho. “Ferrite: A Judgmental
Embedding of Session Types in Rust”. In: 36th European Conference on Object-
Oriented Programming, ECOOP 2022, June 6-10, 2022, Berlin, Germany. Ed. by
Karim Ali and Jan Vitek. Vol. 222. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022, 22:1–22:28. doi: 10.4230/LIPIcs.ECOOP.2022.22.

[37] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas, and Nobuko
Yoshida. “On the Preciseness of Subtyping in Session Types”. In: Log. Methods
Comput. Sci. 13.2 (2017). doi: 10.23638/LMCS-13(2:12)2017.

[38] Tzu-Chun Chen, Mariangiola Dezani-Ciancaglini, and Nobuko Yoshida. “On
the Preciseness of Subtyping in Session Types”. In: Proceedings of the 16th
International Symposium on Principles and Practice of Declarative Programming,
Kent, Canterbury, United Kingdom, September 8-10, 2014. Ed. by Olaf Chitil,
Andy King, and Olivier Danvy. ACM, 2014, pp. 135–146. doi: 10 . 1145 /
2643135.2643138.

[39] Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani, and Nobuko
Yoshida. “A Gentle Introduction to Multiparty Asynchronous Session Types”. In:
Formal Methods for Multicore Programming - 15th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM
2015, Bertinoro, Italy, June 15-19, 2015, Advanced Lectures. Ed. by Marco Bernardo
and Einar Broch Johnsen. Vol. 9104. LectureNotes in Computer Science. Springer,
2015, pp. 146–178. doi: 10.1007/978-3-319-18941-3_4.

[40] Luís Cruz-Filipe and Fabrizio Montesi. “A core model for choreographic
programming”. In: Theor. Comput. Sci. 802 (2020), pp. 38–66. doi: 10.1016/j.
tcs.2019.07.005.

https://doi.org/10.1145/3453483.3454041
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.ic.2005.05.006
https://doi.org/10.1016/j.scico.2015.10.006
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1145/2643135.2643138
https://doi.org/10.1007/978-3-319-18941-3_4
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1016/j.tcs.2019.07.005

226 Bibliography

[41] Luís Cruz-Filipe, Fabrizio Montesi, and Marco Peressotti. “Communications in
choreographies, revisited”. In: Proceedings of the 33rd Annual ACM Symposium
on Applied Computing, SAC 2018, Pau, France, April 09-13, 2018. Ed. by HishamM.
Haddad, Roger L. Wainwright, and Richard Chbeir. ACM, 2018, pp. 1248–1255.
doi: 10.1145/3167132.3167267.

[42] Francesco Dagnino, Paola Giannini, and Mariangiola Dezani-Ciancaglini.
“Deconfined Global Types for Asynchronous Sessions”. In: Coordination Models
and Languages - 23rd IFIPWG 6.1 International Conference, COORDINATION 2021,
Held as Part of the 16th International Federated Conference on Distributed Comput-
ing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings. Ed. by
Ferruccio Damiani and Ornela Dardha. Vol. 12717. Lecture Notes in Computer
Science. Springer, 2021, pp. 41–60. doi: 10.1007/978-3-030-78142-2_3.

[43] Haitao Dan, Robert M. Hierons, and Steve Counsell. “Non-local Choice and
Implied Scenarios”. In: 8th IEEE International Conference on Software Engineering
and Formal Methods, SEFM 2010, Pisa, Italy, 13-18 September 2010. Ed. by José
Luiz Fiadeiro, Stefania Gnesi, and Andrea Maggiolo-Schettini. IEEE Computer
Society, 2010, pp. 53–62. doi: 10.1109/SEFM.2010.14.

[44] Ankush Das, Stephanie Balzer, Jan Hoffmann, Frank Pfenning, and Ishani
Santurkar. “Resource-Aware Session Types for Digital Contracts”. In: 34th IEEE
Computer Security Foundations Symposium, CSF 2021, Dubrovnik, Croatia, June
21-25, 2021. IEEE, 2021, pp. 1–16. doi: 10.1109/CSF51468.2021.00004.

[45] Pierre-Malo Deniélou and Nobuko Yoshida. “Multiparty Compatibility in
Communicating Automata: Characterisation and Synthesis of Global Session
Types”. In: Automata, Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II. Ed. by
Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg.
Vol. 7966. Lecture Notes in Computer Science. Springer, 2013, pp. 174–186. doi:
10.1007/978-3-642-39212-2_18.

[46] Pierre-Malo Deniélou and Nobuko Yoshida. “Multiparty Session Types Meet
Communicating Automata”. In: Programming Languages and Systems - 21st
European Symposium on Programming, ESOP 2012, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia,
March 24 - April 1, 2012. Proceedings. Ed. by Helmut Seidl. Vol. 7211. Lecture Notes
in Computer Science. Springer, 2012, pp. 194–213. doi: 10.1007/978-3-642-
28869-2_10.

[47] Pierre-Malo Deniélou, Nobuko Yoshida, Andi Bejleri, and Raymond Hu.
“Parameterised Multiparty Session Types”. In: Log. Methods Comput. Sci. 8.4
(2012). doi: 10.2168/LMCS-8(4:6)2012.

https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1007/978-3-030-78142-2_3
https://doi.org/10.1109/SEFM.2010.14
https://doi.org/10.1109/CSF51468.2021.00004
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.2168/LMCS-8(4:6)2012

Bibliography 227

[48] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen C. Hunt,
James R. Larus, and Steven Levi. “Language support for fast and reliable message-
based communication in singularity OS”. In: Proceedings of the 2006 EuroSys
Conference, Leuven, Belgium, April 18-21, 2006. Ed. by Yolande Berbers and
Willy Zwaenepoel. ACM, 2006, pp. 177–190. doi: 10.1145/1217935.1217953.

[49] Alain Finkel and Étienne Lozes. “Synchronizability of Communicating Finite
State Machines is not Decidable”. In: 44th International Colloquium on Automata,
Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland.
Ed. by Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl.
Vol. 80. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 122:1–
122:14. doi: 10.4230/LIPIcs.ICALP.2017.122.

[50] Paul Gastin. “Infinite Traces”. In: Semantics of Systems of Concurrent Processes,
LITP Spring School on Theoretical Computer Science, La Roche Posay, France, April
23-27, 1990, Proceedings. Ed. by Irène Guessarian. Vol. 469. Lecture Notes in
Computer Science. Springer, 1990, pp. 277–308. doi: 10.1007/3-540-53479-
2_12.

[51] Thomas Gazagnaire, Blaise Genest, Loïc Hélouët, P. S. Thiagarajan, and Shaofa
Yang. “Causal Message Sequence Charts”. In: CONCUR 2007 - Concurrency
Theory, 18th International Conference, CONCUR 2007, Lisbon, Portugal, September
3-8, 2007, Proceedings. Ed. by Luís Caires and Vasco Thudichum Vasconcelos.
Vol. 4703. Lecture Notes in Computer Science. Springer, 2007, pp. 166–180. doi:
10.1007/978-3-540-74407-8_12.

[52] Blaise Genest, Dietrich Kuske, and Anca Muscholl. “On Communicating Au-
tomata with Bounded Channels”. In: Fundam. Inform. 80.1-3 (2007), pp. 147–167.
url: http : / / content . iospress . com / articles / fundamenta -
informaticae/fi80-1-3-09.

[53] Blaise Genest andAncaMuscholl. “Message Sequence Charts: A Survey”. In: Fifth
International Conference on Application of Concurrency to System Design (ACSD
2005), 6-9 June 2005, St. Malo, France. IEEE Computer Society, 2005, pp. 2–4. doi:
10.1109/ACSD.2005.25.

[54] Blaise Genest, Anca Muscholl, and Doron A. Peled. “Message Sequence Charts”.
In: Lectures on Concurrency and Petri Nets, Advances in Petri Nets [This tutorial
volume originates from the 4th Advanced Course on Petri Nets, ACPN 2003, held in
Eichstätt, Germany in September 2003. In addition to lectures given at ACPN 2003,
additional chapters have been commissioned]. Ed. by Jörg Desel, Wolfgang Reisig,
andGrzegorz Rozenberg. Vol. 3098. Lecture Notes in Computer Science. Springer,
2003, pp. 537–558. doi: 10.1007/978-3-540-27755-2_15.

https://doi.org/10.1145/1217935.1217953
https://doi.org/10.4230/LIPIcs.ICALP.2017.122
https://doi.org/10.1007/3-540-53479-2_12
https://doi.org/10.1007/3-540-53479-2_12
https://doi.org/10.1007/978-3-540-74407-8_12
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
http://content.iospress.com/articles/fundamenta-informaticae/fi80-1-3-09
https://doi.org/10.1109/ACSD.2005.25
https://doi.org/10.1007/978-3-540-27755-2_15

228 Bibliography

[55] Blaise Genest, Anca Muscholl, Helmut Seidl, and Marc Zeitoun. “Infinite-state
high-level MSCs: Model-checking and realizability”. In: J. Comput. Syst. Sci. 72.4
(2006), pp. 617–647. doi: 10.1016/j.jcss.2005.09.007.

[56] Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas, and Nobuko
Yoshida. “Precise subtyping for synchronous multiparty sessions”. In: J. Log.
Algebraic Methods Program. 104 (2019), pp. 127–173. doi: 10.1016/j.jlamp.
2018.12.002.

[57] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido
Salvaneschi, and Pascal Weisenburger. “Multiparty Languages: The Choreo-
graphic and Multitier Cases (Pearl)”. In: 35th European Conference on Object-
Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual
Conference). Ed. by Anders Møller and Manu Sridharan. Vol. 194. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 22:1–22:27. doi: 10.4230/
LIPIcs.ECOOP.2021.22.

[58] Jean-Yves Girard. “Linear Logic”. In: Theor. Comput. Sci. 50 (1987), pp. 1–102. doi:
10.1016/0304-3975(87)90045-4.

[59] Cinzia Di Giusto, Laetitia Laversa, and Étienne Lozes. “On the k-synchronizabi-
lity of Systems”. In: Foundations of Software Science and Computation Structures
- 23rd International Conference, FOSSACS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,
April 25-30, 2020, Proceedings. Ed. by Jean Goubault-Larrecq and Barbara König.
Vol. 12077. Lecture Notes in Computer Science. Springer, 2020, pp. 157–176. doi:
10.1007/978-3-030-45231-5_9.

[60] Rob van Glabbeek, Peter Höfner, and Ross Horne. “Assuming Just Enough
Fairness to make Session Types Complete for Lock-freedom”. In: 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 - July 2, 2021. IEEE, 2021, pp. 1–13. doi: 10.1109/LICS52264.2021.9470531.

[61] Loïc Hélouët. “Some Pathological Message Sequence Charts, and How to Detect
Them”. In: SDL 2001: Meeting UML, 10th International SDL Forum Copenhagen,
Denmark, June 27-29, 2001, Proceedings. Ed. by Rick Reed and Jeanne Reed.
Vol. 2078. Lecture Notes in Computer Science. Springer, 2001, pp. 348–364. doi:
10.1007/3-540-48213-X_22.

[62] Loïc Hélouët and Claude Jard. “Conditions for synthesis of communicating
automata from HMSCs”. In: In 5th International Workshop on Formal Methods
for Industrial Critical Systems (FMICS). 2000.

[63] Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre.
“Reachability Analysis of Communicating Pushdown Systems”. In: Log. Methods
Comput. Sci. 8.3 (2012). doi: 10.2168/LMCS-8(3:23)2012.

https://doi.org/10.1016/j.jcss.2005.09.007
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-030-45231-5_9
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1007/3-540-48213-X_22
https://doi.org/10.2168/LMCS-8(3:23)2012

Bibliography 229

[64] Andrew K. Hirsch and Deepak Garg. “Pirouette: higher-order typed functional
choreographies”. In: Proc. ACM Program. Lang. 6.POPL (2022), pp. 1–27. doi: 10.
1145/3498684.

[65] Kohei Honda. “Types for Dyadic Interaction”. In: CONCUR ’93, 4th International
Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings. Ed. by Eike Best. Vol. 715. Lecture Notes in Computer Science.
Springer, 1993, pp. 509–523. doi: 10.1007/3-540-57208-2_35.

[66] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. “Language
Primitives and Type Discipline for Structured Communication-Based Pro-
gramming”. In: Programming Languages and Systems - ESOP’98, 7th European
Symposium on Programming, Held as Part of the European Joint Conferences on
the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April
4, 1998, Proceedings. Ed. by Chris Hankin. Vol. 1381. Lecture Notes in Computer
Science. Springer, 1998, pp. 122–138. doi: 10.1007/BFb0053567.

[67] Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty asynchronous
session types”. In: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2008, San Francisco, California,
USA, January 7-12, 2008. Ed. by George C. Necula and Philip Wadler. ACM, 2008,
pp. 273–284. doi: 10.1145/1328438.1328472.

[68] Kohei Honda, Nobuko Yoshida, and Marco Carbone. “Multiparty Asynchronous
Session Types”. In: J. ACM 63.1 (2016), 9:1–9:67. doi: 10.1145/2827695.

[69] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979. isbn: 0-201-02988-X.

[70] Raymond Hu and Nobuko Yoshida. “Explicit Connection Actions in Multiparty
Session Types”. In: Fundamental Approaches to Software Engineering - 20th
International Conference, FASE 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings. Ed. by Marieke Huisman and Julia Rubin. Vol. 10202. Lecture Notes
in Computer Science. Springer, 2017, pp. 116–133. doi: 10.1007/978-3-662-
54494-5_7.

[71] Raymond Hu and Nobuko Yoshida. “Hybrid Session Verification Through
Endpoint API Generation”. In: Fundamental Approaches to Software Engineering
- 19th International Conference, FASE 2016, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings. Ed. by Perdita Stevens and
AndrzejWasowski. Vol. 9633. Lecture Notes in Computer Science. Springer, 2016,
pp. 401–418. doi: 10.1007/978-3-662-49665-7_24.

https://doi.org/10.1145/3498684
https://doi.org/10.1145/3498684
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-49665-7_24

230 Bibliography

[72] Atsushi Igarashi, Peter Thiemann, Yuya Tsuda, Vasco T. Vasconcelos, and Philip
Wadler. “Gradual session types”. In: J. Funct. Program. 29 (2019), e17. doi: 10.
1017/S0956796819000169.

[73] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. “Connectivity graphs: a
method for proving deadlock freedom based on separation logic”. In: Proc. ACM
Program. Lang. 6.POPL (2022), pp. 1–33. doi: 10.1145/3498662.

[74] Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. “Multiparty GV: functional
multiparty session types with certified deadlock freedom”. In: Proc. ACM
Program. Lang. 6.ICFP (2022), pp. 466–495. doi: 10.1145/3547638.

[75] Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen.
“Session types for Rust”. In: Proceedings of the 11th ACM SIGPLAN Workshop on
Generic Programming, WGP@ICFP 2015, Vancouver, BC, Canada, August 30, 2015.
Ed. by Patrick Bahr and Sebastian Erdweg. ACM, 2015, pp. 13–22. doi: 10.1145/
2808098.2808100.

[76] Sung-Shik Jongmans and Nobuko Yoshida. “Exploring Type-Level Bisimilarity
towardsMore ExpressiveMultiparty Session Types”. In: Programming Languages
and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings. Ed. by Peter Müller. Vol. 12075.
Lecture Notes in Computer Science. Springer, 2020, pp. 251–279. doi: 10.1007/
978-3-030-44914-8_10.

[77] Alex C. Keizer, Henning Basold, and Jorge A. Pérez. “Session Coalgebras: A
Coalgebraic View on Regular and Context-free Session Types”. In: ACM Trans.
Program. Lang. Syst. 44.3 (2022), 18:1–18:45. doi: 10.1145/3527633.

[78] Chris Köcher. “Reachability Problems on Reliable and Lossy Queue Automata”.
In: Theory Comput. Syst. 65.8 (2021), pp. 1211–1242. doi: 10.1007/s00224-021-
10031-2.

[79] Denes König. Theory of finite and infinite graphs. Birkhäuser, 1990. isbn: 978-3-
7643-3389-8.

[80] Denes König. Über eine Schlussweise aus dem Endlichen ins Unendliche. Acta Sci.
Math. (Szeged), 1927. url: https://acta.bibl.u-szeged.hu/13338/1/
math_003_121-130.pdf.

[81] Dimitrios Kouzapas, Ramunas Gutkovas, A. Laura Voinea, and Simon J. Gay. “A
Session Type System for Asynchronous Unreliable Broadcast Communication”.
In: CoRR abs/1902.01353 (2019). arXiv: 1902.01353. url: http://arxiv.org/
abs/1902.01353.

[82] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed
System”. In: Commun. ACM 21.7 (1978), pp. 558–565. doi: 10.1145/359545.
359563.

https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1017/S0956796819000169
https://doi.org/10.1145/3498662
https://doi.org/10.1145/3547638
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1007/978-3-030-44914-8_10
https://doi.org/10.1145/3527633
https://doi.org/10.1007/s00224-021-10031-2
https://doi.org/10.1007/s00224-021-10031-2
https://acta.bibl.u-szeged.hu/13338/1/math_003_121-130.pdf
https://acta.bibl.u-szeged.hu/13338/1/math_003_121-130.pdf
https://arxiv.org/abs/1902.01353
http://arxiv.org/abs/1902.01353
http://arxiv.org/abs/1902.01353
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

Bibliography 231

[83] Ivan Lanese, Claudio Guidi, Fabrizio Montesi, and Gianluigi Zavattaro. “Bridging
the Gap between Interaction- and Process-Oriented Choreographies”. In: Sixth
IEEE International Conference on Software Engineering and Formal Methods, SEFM
2008, Cape Town, South Africa, 10-14 November 2008. Ed. by Antonio Cerone and
Stefan Gruner. IEEE Computer Society, 2008, pp. 323–332. doi: 10.1109/SEFM.
2008.11.

[84] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. “A static
verification framework for message passing in Go using behavioural types”. In:
Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. Ed. by Michel Chaudron,
Ivica Crnkovic, Marsha Chechik, and Mark Harman. ACM, 2018, pp. 1137–1148.
doi: 10.1145/3180155.3180157.

[85] Julien Lange, Emilio Tuosto, and Nobuko Yoshida. “From Communicating
Machines to Graphical Choreographies”. In: Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programm. Languages, POPL 2015,
Mumbai, India, January 15-17, 2015. Ed. by SriramK. Rajamani and DavidWalker.
ACM, 2015, pp. 221–232. doi: 10.1145/2676726.2676964.

[86] Julien Lange and Nobuko Yoshida. “On the Undecidability of Asynchronous
Session Subtyping”. In: Foundations of Software Science and Computation
Structures - 20th International Conference, FOSSACS 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by Javier Esparza and
Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer Science. 2017,
pp. 441–457. doi: 10.1007/978-3-662-54458-7_26.

[87] Julien Lange and Nobuko Yoshida. “Verifying Asynchronous Interactions via
Communicating Session Automata”. In: Computer Aided Verification - 31st
International Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part I. Ed. by Isil Dillig and Serdar Tasiran. Vol. 11561. Lecture Notes
in Computer Science. Springer, 2019, pp. 97–117. doi: 10.1007/978-3-030-
25540-4_6.

[88] Elaine Li, Felix Stutz, and Thomas Wies. “Deciding Subtyping for Asynchronous
Multiparty Sessions”. In: Programming Languages and Systems - 33rd European
Symposium on Programming, ESOP 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City,
Luxembourg, April 9 - April 11, 2024. Proceedings. Ed. by Stephanie Weirich.
Vol. 14576. Lecture Notes in Computer Science. Springer, 2024, pp. 176–205. doi:
10.1007/978-3-031-57262-3_8.

[89] Elaine Li, Felix Stutz, ThomasWies, and Damien Zufferey. “Complete Multiparty
Session Type Projection with Automata”. In: Computer Aided Verification - 35th
International Conference, CAV 2023, Paris, France, July 17-22, 2023, Proceedings,

https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1109/SEFM.2008.11
https://doi.org/10.1145/3180155.3180157
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-662-54458-7_26
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-031-57262-3_8

232 Bibliography

Part III. Ed. by Constantin Enea and Akash Lal. Vol. 13966. Lecture Notes in
Computer Science. Springer, 2023, pp. 350–373. doi: 10.1007/978- 3- 031-
37709-9_17.

[90] Sam Lindley and J. Garrett Morris. “Embedding session types in Haskell”. In:
Proceedings of the 9th International Symposium on Haskell, Haskell 2016, Nara,
Japan, September 22-23, 2016. Ed. by Geoffrey Mainland. ACM, 2016, pp. 133–145.
doi: 10.1145/2976002.2976018.

[91] Markus Lohrey. “Realizability of high-level message sequence charts: closing the
gaps”. In: Theor. Comput. Sci. 309.1-3 (2003), pp. 529–554. doi: 10.1016/j.tcs.
2003.08.002.

[92] P. Madhusudan. “Reasoning about Sequential and Branching Behaviours of
Message Sequence Graphs”. In: Automata, Languages and Programming, 28th
International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings.
Ed. by FernandoOrejas, Paul G. Spirakis, and Jan van Leeuwen. Vol. 2076. Lecture
Notes in Computer Science. Springer, 2001, pp. 809–820. doi: 10.1007/3-540-
48224-5_66.

[93] Rupak Majumdar, Madhavan Mukund, Felix Stutz, and Damien Zufferey.
“Generalising Projection in Asynchronous Multiparty Session Types”. In: 32nd
International Conference on Concurrency Theory, CONCUR 2021, August 24-27,
2021, Virtual Conference. Ed. by Serge Haddad and Daniele Varacca. Vol. 203.
LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 35:1–35:24. doi:
10.4230/LIPIcs.CONCUR.2021.35.

[94] Rupak Majumdar, Marcus Pirron, Nobuko Yoshida, and Damien Zufferey.
“Motion Session Types for Robotic Interactions (Brave New Idea Paper)”. In: 33rd
European Conference on Object-Oriented Programming, ECOOP 2019, July 15-19,
2019, London, United Kingdom. Ed. by Alastair F. Donaldson. Vol. 134. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 28:1–28:27. doi: 10.
4230/LIPIcs.ECOOP.2019.28.

[95] Sjouke Mauw and Michel A. Reniers. “High-level message sequence charts”.
In: SDL ’97 Time for Testing, SDL, MSC and Trends - 8th International SDL
Forum, Evry, France, 23-29 September 1997, Proceedings. Ed. by Ana R. Cavalli and
Amardeo Sarma. Elsevier, 1997, pp. 291–306.

[96] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999. isbn: 978-0-521-65869-0.

[97] Arjan J. Mooij, Nicolae Goga, and Judi Romijn. “Non-local Choice and Beyond:
Intricacies of MSC Choice Nodes”. In: Fundamental Approaches to Software
Engineering, 8th International Conference, FASE 2005, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings. Ed. by Maura Cerioli. Vol. 3442. Lecture Notes

https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.1007/978-3-031-37709-9_17
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.1016/j.tcs.2003.08.002
https://doi.org/10.1007/3-540-48224-5_66
https://doi.org/10.1007/3-540-48224-5_66
https://doi.org/10.4230/LIPIcs.CONCUR.2021.35
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28
https://doi.org/10.4230/LIPIcs.ECOOP.2019.28

Bibliography 233

in Computer Science. Springer, 2005, pp. 273–288. doi: 10.1007/978-3-540-
31984-9_21.

[98] Rémi Morin. “Recognizable Sets of Message Sequence Charts”. In: STACS 2002,
19th Annual Symposium on Theoretical Aspects of Computer Science, Antibes -
Juan les Pins, France, March 14-16, 2002, Proceedings. Ed. by Helmut Alt and
Afonso Ferreira. Vol. 2285. Lecture Notes in Computer Science. Springer, 2002,
pp. 523–534. doi: 10.1007/3-540-45841-7_43.

[99] Henry Muccini. “Detecting Implied Scenarios Analyzing Non-local Branching
Choices”. In: Fundamental Approaches to Software Engineering, 6th International
Conference, FASE 2003, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11, 2003,
Proceedings. Ed. by Mauro Pezzè. Vol. 2621. Lecture Notes in Computer Science.
Springer, 2003, pp. 372–386. doi: 10.1007/3-540-36578-8_26.

[100] Anca Muscholl and Doron A. Peled. “Message Sequence Graphs and Decision
Problems on Mazurkiewicz Traces”. In: Mathematical Foundations of Computer
Science 1999, 24th International Symposium, MFCS’99, Szklarska Poreba, Poland,
September 6-10, 1999, Proceedings. Ed. by Miroslaw Kutylowski, Leszek Pacholski,
and Tomasz Wierzbicki. Vol. 1672. Lecture Notes in Computer Science. Springer,
1999, pp. 81–91. doi: 10.1007/3-540-48340-3_8.

[101] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. “A
session type provider: compile-time API generation of distributed protocols
with refinements in F#”. In: Proceedings of the 27th International Conference on
Compiler Construction, CC 2018, February 24-25, 2018, Vienna, Austria. Ed. by
Christophe Dubach and Jingling Xue. ACM, 2018, pp. 128–138. doi: 10.1145/
3178372.3179495.

[102] Catuscia Palamidessi. “Comparing The Expressive Power Of The Synchronous
And Asynchronous Pi-Calculi”. In:Math. Struct. Comput. Sci. 13.5 (2003), pp. 685–
719. doi: 10.1017/S0960129503004043.

[103] Wuxu Peng and S. Purushothaman. “Analysis of a Class of Communicating Finite
State Machines”. In: Acta Informatica 29.6/7 (1992), pp. 499–522. doi: 10.1007/
BF01185558.

[104] C. A. Petri. “Fundamentals of a Theory of Asynchronous Information Flow”.
In: Information Processing, Proceedings of the 2nd IFIP Congress 1962, Munich,
Germany, August 27 - September 1, 1962. North-Holland, 1962, pp. 386–390.

[105] Emil L. Post. “A variant of a recursively unsolvable problem”. In: Bulletin of the
American Mathematical Society 52 (1946), pp. 264–268.

[106] Prototype Implementation of Subset Projection for Multiparty Session Types.
https : / / gitlab . mpi - sws . org / fstutz / async - mpst - gen - choice/.
(Visited on 04/15/2024).

https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/978-3-540-31984-9_21
https://doi.org/10.1007/3-540-45841-7_43
https://doi.org/10.1007/3-540-36578-8_26
https://doi.org/10.1007/3-540-48340-3_8
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1017/S0960129503004043
https://doi.org/10.1007/BF01185558
https://doi.org/10.1007/BF01185558
https://gitlab.mpi-sws.org/fstutz/async-mpst-gen-choice/

234 Bibliography

[107] Abhik Roychoudhury, Ankit Goel, and Bikram Sengupta. “Symbolic Message
Sequence Charts”. In: ACM Trans. Softw. Eng. Methodol. 21.2 (2012), 12:1–12:44.
doi: 10.1145/2089116.2089122.

[108] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. “A Linear
Decomposition of Multiparty Sessions for Safe Distributed Programming”. In:
31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-
23, 2017, Barcelona, Spain. Ed. by Peter Müller. Vol. 74. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017, 24:1–24:31. doi: 10 . 4230 / LIPIcs .
ECOOP.2017.24.

[109] Alceste Scalas and Nobuko Yoshida. “Less is more: multiparty session types
revisited”. In: Proc. ACM Program. Lang. 3.POPL (2019), 30:1–30:29. doi: 10 .
1145/3290343.

[110] Alceste Scalas and Nobuko Yoshida. “Lightweight Session Programming in
Scala”. In: 30th European Conference on Object-Oriented Programming, ECOOP
2016, July 18-22, 2016, Rome, Italy. Ed. by Shriram Krishnamurthi and Benjamin S.
Lerner. Vol. 56. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016,
21:1–21:28. doi: 10.4230/LIPIcs.ECOOP.2016.21.

[111] Alceste Scalas and Nobuko Yoshida. Mpstk: The Multiparty Session Types Toolkit.
2018. url: https://doi.org/10.1145/3291638.

[112] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, 1997. isbn: 978-0-534-94728-6.

[113] “Spring and Hibernate Transaction in Java”. In: https://www.uml-diagrams.
org/examples/spring- hibernate- transaction- sequence- diagram-
example.html. (Visited on 01/23/2021).

[114] Felix Stutz. Artifact for "Complete Multiparty Session Type Projection with
Automata". Apr. 2024. doi: 10.5281/zenodo.10972978.

[115] Felix Stutz. “Asynchronous Multiparty Session Type Implementability is
Decidable - Lessons Learned from Message Sequence Charts”. In: 37th European
Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, Washington, United States. Ed. by Karim Ali and Guido Salvaneschi.
Vol. 263. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023,
32:1–32:31. doi: 10.4230/LIPIcs.ECOOP.2023.32.

[117] Felix Stutz and Damien Zufferey. “Comparing Channel Restrictions of Commu-
nicating State Machines, High-level Message Sequence Charts, and Multiparty
Session Types”. In: Proceedings of the 13th International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2022, Madrid, Spain,
September 21-23, 2022. Ed. by Pierre Ganty and Dario Della Monica. Vol. 370.
EPTCS. 2022, pp. 194–212. doi: 10.4204/EPTCS.370.13.

https://doi.org/10.1145/2089116.2089122
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3290343
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3291638
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
https://www.uml-diagrams.org/examples/spring-hibernate-transaction-sequence-diagram-example.html
https://doi.org/10.5281/zenodo.10972978
https://doi.org/10.4230/LIPIcs.ECOOP.2023.32
https://doi.org/10.4204/EPTCS.370.13

Bibliography 235

[118] Peter Thiemann. “Intrinsically-Typed Mechanized Semantics for Session Types”.
In: Proceedings of the 21st International Symposium on Principles and Practice of
Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019. Ed. by
Ekaterina Komendantskaya. ACM, 2019, 19:1–19:15. doi: 10.1145/3354166.
3354184.

[119] Peter Thiemann and Vasco T. Vasconcelos. “Context-free session types”. In:
Proceedings of the 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Nara, Japan, September 18-22, 2016. Ed. by Jacques
Garrigue, Gabriele Keller, and Eijiro Sumii. ACM, 2016, pp. 462–475. doi: 10.
1145/2951913.2951926.

[120] Dawit Legesse Tirore, Jesper Bengtson, and Marco Carbone. “A Sound and
Complete Projection for Global Types”. In: 14th International Conference on
Interactive Theorem Proving, ITP 2023, July 31 to August 4, 2023, Białystok, Poland.
Ed. by Adam Naumowicz and René Thiemann. Vol. 268. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2023, 28:1–28:19. doi: 10.4230/LIPIcs.ITP.
2023.28.

[121] Bernardo Toninho, Luís Caires, and Frank Pfenning. “Dependent session types
via intuitionistic linear type theory”. In: Proceedings of the 13th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming, July
20-22, 2011, Odense, Denmark. Ed. by Peter Schneider-Kamp and Michael Hanus.
ACM, 2011, pp. 161–172. doi: 10.1145/2003476.2003499.

[122] Bernardo Toninho and Nobuko Yoshida. “Certifying data in multiparty session
types”. In: J. Log. Algebraic Methods Program. 90 (2017), pp. 61–83. doi: 10.1016/
j.jlamp.2016.11.005.

[123] Bernardo Toninho and Nobuko Yoshida. “Depending on Session-Typed Pro-
cesses”. In: Foundations of Software Science and Computation Structures - 21st
International Conference, FOSSACS 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings. Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803.
Lecture Notes in Computer Science. Springer, 2018, pp. 128–145. doi: 10.1007/
978-3-319-89366-2_7.

[124] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. “Context-Bounded
Analysis of Concurrent Queue Systems”. In: Tools and Algorithms for the
Construction and Analysis of Systems, 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings. Ed. by
C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in Computer
Science. Springer, 2008, pp. 299–314. doi: 10.1007/978-3-540-78800-3_21.

https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/3354166.3354184
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.4230/LIPIcs.ITP.2023.28
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-319-89366-2_7
https://doi.org/10.1007/978-3-540-78800-3_21

236 Bibliography

[125] Tayssir Touili and Mohamed Faouzi Atig. “Verifying parallel programs with
dynamic communication structures”. In: Theor. Comput. Sci. 411.38-39 (2010),
pp. 3460–3468. doi: 10.1016/j.tcs.2010.05.028.

[126] Alan M. Turing. “On computable numbers, with an application to the
Entscheidungsproblem”. In: Proc. London Math. Soc. s2-42.1 (1937), pp. 230–265.
doi: 10.1112/plms/s2-42.1.230.

[127] International Telecommunication Union. Z.120: Message Sequence Chart. Tech.
rep. International Telecommunication Union, 1996. url: https://www.itu.
int/rec/T-REC-Z.120.

[128] Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. “A multiparty
session typing discipline for fault-tolerant event-driven distributed program-
ming”. In: Proc. ACM Program. Lang. 5.OOPSLA (2021), pp. 1–30. doi: 10.1145/
3485501.

[129] Michael Wehar. “On the complexity of intersection non-emptiness problems”.
PhD thesis. University of Buffalo, 2016.

[130] Nobuko Yoshida and Lorenzo Gheri. “A Very Gentle Introduction to Multiparty
Session Types”. In: Distributed Computing and Internet Technology - 16th
International Conference, ICDCIT 2020, Bhubaneswar, India, January 9-12, 2020,
Proceedings. Ed. by Dang Van Hung and Meenakshi D’Souza. Vol. 11969. Lecture
Notes in Computer Science. Springer, 2020, pp. 73–93. doi: 10.1007/978-3-
030-36987-3_5.

[131] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. “The
Scribble Protocol Language”. In: Trustworthy Global Computing - 8th Interna-
tional Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised
Selected Papers. Ed. by Martín Abadi and Alberto Lluch-Lafuente. Vol. 8358.
Lecture Notes in Computer Science. Springer, 2013, pp. 22–41. doi: 10.1007/
978-3-319-05119-2_3.

https://doi.org/10.1016/j.tcs.2010.05.028
https://doi.org/10.1112/plms/s2-42.1.230
https://www.itu.int/rec/T-REC-Z.120
https://www.itu.int/rec/T-REC-Z.120
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-030-36987-3_5
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3

237

Appendix A

Appendix for Chapter 5

A.1 Additional Material for Section 5.1

Lemma 5.4. Let G be a global type, r be a participant, and C (G, r) be its subset
construction. If w is a trace of GAut(G), w⇓Γr is a trace of C (G, r). If u is a trace
of C (G, r), there is a trace w of GAut(G) such that w⇓Γr = u. Then, it holds that
L(G)⇓Γr = L(C (G, r)).

Proof. All claims are rather straightforward from the definitions and constructions and
the proofs exploit the connection to the projection by erasure. We still spell them out to
familiarise the reader with these.

We prove the first claim first. By construction, for every run ρ in GAut(G), there
exists a run ρ′ in the projection by erasure GAut(G)↓r. Let ρ be the run for trace w

in GAut(G). Then, ρ is also a run in GAut(G)↓r with trace w⇓Γp . Since GAut(G)↓r
might be non-deterministic, we apply the subset construction from Definition 5.3. For
the reachable states, this is equivalent to the definition by Sipser [112, Thm. 1.39]. Thus,
the constructed deterministic finite state machine can mimic any run (which is initial by
definition) in GAut(G)↓r: for every run ρ′ in GAut(G)↓r with trace w′, there is a run ρ′′

in C (G, r) with trace w′.
For the second claim, we consider a trace u of C (G, r). Because of the subset

construction, it holds that for every run ρ′ in C (G, r) with trace w′, there is a run ρ′′ in
the projection by erasure GAut(G)↓r with trace w′. By definition of the projection by
erasure, a run ρ′′′ in GAut(G) exists with the same sequence of syntactic subterms as ρ′′
and trace(ρ′′′)⇓Γp = w′.

From this, it easily follows that L(C (G, r)) = L(GAut(G) ↓r) and, therefore,
L(C (G, r)) = L(G)⇓Γr .

Lemma 5.5. For all global types G, it holds that L(G) ⊆ L({{C (G, p)}}p∈P).

Proof. Given that {{C (G, p)}}p∈P is deterministic, to prove language inclusion it suffices
to prove the inclusion of the respective prefix sets:

pref(L(G)) ⊆ pref(L{{C (G, p)}}p∈P)

238 Appendix A. Appendix for Chapter 5

We prove this via structural induction on w. The base case, w = ε, is trivial. For
the inductive step, let wx ∈ pref(L(G)). From the induction hypothesis, w ∈
pref(L{{C (G, p)}}p∈P). It suffices to show that the transition labeled with x is enabled
for the active participant in x. Let (s⃗, ξ) denote the {{C (G, p)}}p∈P configuration reached
on w. In the case that x ∈ Γ!, let x = p▷q!m. The existence of an outgoing transition
p ▷q !m−−−−→ from s⃗p follows from the fact that L(C (G, p)) = L(G)⇓Γp (Lemma 5.4). The
fact that wx ∈ pref(L{{C (G, p)}}p∈P) follows immediately from this and the fact that
send transitions in a CSM are always enabled. In the case that x ∈ Γ?, let x = q◁p?m.
We obtain an outgoing transition q◁ p?m−−−−→ from s⃗p analogously. We additionally need to
show that ξ(q, p) containsm at the head. This follows from Lemma 2.5 and the induction
hypothesis. This concludes our proof of prefix set inclusion.

Let w be a word in L(G). Let (s⃗, ξ) denote the {{C (G, p)}}p∈P configuration reached
onw. In the case thatw is finite, all states in s⃗ are final fromLemma 5.4 and all channels in
ξ are empty from the fact that all send events inw containmatching receive events. In the
case thatw is infinite, we show thatw has an infinite run in {{C (G, p)}}p∈P using König’s
Lemma. We construct an infinite graph Gw(V,E) with V := {vρ | trace(ρ) ≤ w} and

E := {(vρ1 , vρ2) | ∃ x ∈ Γ. trace(ρ2) = trace(ρ1) · x} .

Because {{C (G, p)}}p∈P is deterministic, Gw is a tree rooted at vε, the vertex
corresponding to the empty run. By König’s Lemma, every infinite tree contains either
a vertex of infinite degree or an infinite path. Because {{C (G, p)}}p∈P consists of
a finite number of communicating state machines, the last configuration of any run
has a finite number of next configurations, and Gw is finitely branching. Therefore,
there must exist an infinite path in Gw representing an infinite run for w, and thus
w ∈ L({{C (G, p)}}p∈P).

A.2 Additional Material for Section 5.3

Corollary A.1 (Intersection sets are invariant under ∼). Let G be a global type. Let
w,w′ ∈ Γ∗ and w ∼ w′. Then, I(w) = I(w′).

Proof. It follows immediately from w ∼ w′ that

∀p ∈ P . w⇓Γp = w′⇓Γp

By the definition of I ,

∀ρ. ρ ∈ I(w) ⇔ ∀p ∈ P . w⇓Γp ≤ trace(ρ)⇓Γp

A.2. Additional Material for Section 5.3 239

Let ρ be a run in GAut(G). Then,

ρ ∈ I(w) ⇔ ∀p ∈ P . w⇓Γp ≤ trace(ρ)⇓Γp

⇔ ∀p ∈ P . w′⇓Γp ≤ trace(ρ)⇓Γp

⇔ ρ ∈ I(w′)

The definition of available messages immeditately yields the following properties.

Proposition A.2 (Structural properties ofmsgsB(G...)). Let G be a global type, B ⊆ P be
a set of participants, G′ be a syntactic subterm of G, and p◁q?m ∈ msgsB(G...). Then, it
holds that:

(1) msgsB(G′...) does not contain any events whose sender is blocked:
∀ p ∈ B, q◁r?_ ∈ msgsB(G′...) . r ̸= p

(2) There exists a run suffix β such that:

i. G′ · β is the suffix of a maximal run in GAut(G),
ii. q−→p:m−−−−→ occurs in β, and
iii. B monotonically increases during the computation of msgsB(G...)

Lemma A.3 (Correspondence between unique splittings and local states). Let G be a
global type, and {{C (G, p)}}p∈P be the subset construction for each participant. Let w
be a trace of {{C (G, p)}}p∈P , and (s⃗, ξ) be the CSM configuration reached on w. Let p be
a participant. Then, it holds that:⋃

ρ∈RG
p (w)

{G′ | α ·G′ l−→ G′′ · β is the unique splitting of ρ matching w} ⊆ s⃗p

Proof. Let ρ be a run in RG
p (w), and let α · G′ l−→ G′′ · β be its unique splitting for p

matching w. It follows from the definition of unique splitting that trace(α · G′′)⇓Γp =

w⇓Γp . From the subset construction, there exists a run s1, . . . , sn in C (G, p) such that

s1 = s0,p and s1
w⇓Γp−−−→∗ sn. By the definition of Qp, we know that sn contains all global

syntactic subterms inG that are reachable via q0,G
w⇓Γp−−−→ ε−→∗ in GAut(G)↓, of whichG′ is

one. Hence, G′ ∈ sn. By assumption, C (G, p) reached state s⃗p on w⇓Γp . Because subset
constructions are deterministic, it follows that sn = s⃗p. We conclude that G′ ∈ s⃗p.

LemmaA.4 (No send transitions fromfinal states in subset projection). LetG be a global
type, and P(G, p) be the subset projection for p. Let s ∈ Fp, and s

x−→ s′ ∈ δp. Then,
x ∈ Γp,?.

240 Appendix A. Appendix for Chapter 5

Proof. Assume by contradiction that x ∈ Γp,!. We instantiate Send Validity with s
x−→ s′

to obtain:
x ∈ Γp,! =⇒ tr-orig(s

x−→ s′) = s

By the definition of tr-orig(-), for every syntactic subterm G′ ∈ tr-orig(s
x−→ s′):

∃G′′ ∈ s′. G′ x−→∗ G′′ ∈ δ↾Γp

Because s is a final state in P(G, p), by definition it must contain a syntactic subterm
that is a final state in GAut(G)↾p. Because GAut(G)↾p and GAut(G) share the same set
of final states (Definition 5.2), s must contain a syntactic subterm that is a final state in
GAut(G). Let G0 denote this final state. By the structure of GAut(G), there exists no
outgoing transition fromG0. Therefore,G′′ does not exist. We reach a contradiction.

Definition A.5 (G-complete words of {{Ap}}p∈P). LetG be a global type, {{Ap}}p∈P be a
CSM, and w be a trace of {{Ap}}p∈P . We say w is G-complete if for all participants p and
for all runs ρ ∈

⋂
p∈P RG

p (w), it holds that w⇓Γp =
(
trace(ρ)

)
⇓Γp .

Lemma 5.18. Let G be a global type and {{P(G, p)}}p∈P be the subset projection. Let
wx be a trace of {{P(G, p)}}p∈P such that x ∈ Γ?. Then, I(w) = I(wx).

Proof. Let x = p◁q?m. Because wx is a trace of {{P(G, p)}}p∈P , there exists a run
(s⃗0, ξ0)

w−→∗ (s⃗, ξ)
x−→ (s⃗ ′, ξ′) such thatm is at the head of channel ξ(p, q).

We assume that I(w) is non-empty; if I(w) is empty then I(wx) is trivially empty.
To show I(w) = I(wx), it suffices to show the following claim.

Claim I: It holds that RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (wx).
We first show Claim I’s sufficiency for I(w) = I(wx): By definition, I(w) =⋂

r∈P RG
r (w) ⊆ RG

q (w)∩RG
p (w). With Claim I, it holds that I(w) ⊆ RG

q (wx)∩RG
p (wx).

From this, it follows that I(w) ⊆ RG
p (wx) (H1). Since p is the active participant for

the receive event x, i.e. x ∈ Γp, it holds for any r ̸= p, that (wx)⇓Γr = w⇓Γr and
RG

r (w) = RG
r (wx) (H2). Again, by definition of RG- (-), we have RG

p (wx) ⊆ RG
p (w) (H3).

We apply the observations to I(wx):

I(wx) =
⋂
r∈P

RG
r (wx)

(H2)
= RG

p (wx) ∩
⋂

r∈P∧r̸=p

RG
r (w)

(H3)
= RG

p (wx) ∩ RG
p (w) ∩

⋂
r∈P∧r̸=p

RG
r (w)

= RG
p (wx) ∩ I(w)

(H1)
= I(w) .

This concludes our reasoning that Claim I is sufficient.

A.2. Additional Material for Section 5.3 241

Proof of Claim I. We instantiate (H2) for participant q, which yields RG
q (wx) =

RG
q (w). The proof of Claim I therefore amounts to showing:

RG
p (w) ∩ RG

q (w) = RG
p (wx) ∩ RG

q (w) .

The right direction, i.e. RG
p (wx) ⊆ RG

p (w), follows from (H3). For the left direction,
i.e. RG

p (w)∩RG
q (w) ⊆ RG

p (wx), assume by contradiction that there exists a run ρ0 such
that

ρ0 ∈ RG
p (w) ∧ ρ0 ∈ RG

q (w) ∧ ρ0 /∈ RG
p (wx) .

Let ρ′ be a run in RG
p (w) \RG

p (wx). Let α′ ·G′
pre

l′−→ G′
post · β′ be the unique splitting

of ρ′ for p matching w.
Let ρ′p denote the largest consistent prefix of ρ′ for p; it is clear that ρ′p = α′ · G′

pre.
Formally,

ρ′p = max{ρ | ρ ≤ ρ′ ∧
(
trace(ρ)

)
⇓Γp ≤ w⇓Γp} .

Let ρ′q be defined analogously.
We claim that q is ahead of p in ρ′, i.e. ρ′p < ρ′q. Intuitively, this claim follows from

the half-duplex property of CSMs and the fact that q is the sender. Formally, Lemma 2.5
implies ξ(q, p) = u where V(w⇓q ▷p !_) = V(w⇓p◁ q?_) · u. Because ξ(q, p) contains
at least m by assumption, |V(w⇓q ▷p !_)| > |V(w⇓p◁ q?_)|. Because V(w⇓p◁ q?_) <

V(w⇓q ▷p !_) and traces of CSMs are FIFO-compliant (Lemma 2.5), it holds that ρ′q contains
all |V(w⇓p◁ q?_)| transition labels of the form q→p :_ that are contained in ρ′q, plus at
least one more of the form q −→ p : m. Because both ρ′p and ρ′q are prefixes of ρ′, it must
be the case that ρ′p < ρ′q.

End Proof of Claim I.

By assumption, ρ′ /∈ RG
p (wx) and therefore l′ ̸= q −→ p : m. By the definition of

unique splittings, p must be the active participant in l′; by Corollary 5.13, p must be the
receiving participant in l′. In other words, l′ must be of the form r −→ p : m′, where
either r ̸= q or m′ ̸= m.
Case: r = q and m′ ̸= m.

We discharge this case by showing a contradiction to the assumption thatm is at the
head of the channel between q and p.

Because α′ · G′
pre ≤ ρ′p and ρ′p < ρ′q from the claim above, it must be the case

that α′ · G′
pre

l′−→ G′
post ≤ ρ′q and q▷p!m′ is in w⇓Γq . From Lemma 2.5, it follows that

V(w⇓q ▷p !_) = V(w⇓p◁ q?_).m
′.u′ and ξ(q, p) = m′.u′, i.e.m′ is at the head of the channel

between q and p. This contradicts the assumption thatm is at the head of ξ(p, q).

242 Appendix A. Appendix for Chapter 5

Case: r ̸= q.
We discharge this case by showing a contradiction to Receive Validity. We instantiate

Receive Validity with s⃗p
x−→ s⃗ ′

p to obtain

∀ s⃗p
p◁ q2 ?m2−−−−−−→ s2 ∈ δp. q ̸= q2 =⇒ ∀G2 ∈ tr-dest(s⃗p

p◁ q2 ?m2−−−−−−→ s2). p◁q?m /∈ msgs
p

(G2...)
.

We prove the negation, stated as follows:

q ̸= r ∧ ∃ s2 ∈ Qp, G2 ∈ tr-dest(s⃗p
p◁ r?m′

−−−−→ s2). p◁q?m ∈ msgsp(G2...)
.

The left conjunct follows immediately. From the existence of ρ′ and Lemma 5.4, there
exists an s2 such that s⃗p

p◁ r?m′

−−−−→ s2 ∈ δp. The fact that G′
post ∈ tr-dest(s⃗p

p◁ r?m′

−−−−→ s2) is
trivial from the unique splitting of ρ′ for p matching w:

ρ′ = α′ ·G′
pre

r−→p:m′

−−−−−→ G′
post · β′ .

Therefore, all that remains is to show that p◁q?m ∈ msgsp(G′
post ...)

. Because ρ′ ∈

RG
q (w) and α′ · G′

pre
l′−→ G′

post ≤ ρ′q, where q is not the active participant in l′, there
must exist a transition labelled q −→ p : m that occurs in the suffix G′

post · β′ of ρ′. Let
G0

q−→p:m−−−−→ G′
0 be the earliest occurrence of such a transition in the suffix, then:

ρ′q = α′ ·G′
pre

l′−→ G′
post . . . G0

q−→p:m−−−−→ G′
0

Note that G0 must be a syntactic subterm of G′
post . In order for p◁q?m ∈ msgsp(G′

post ...)
.

to hold, it suffices to show that q /∈ B in the recursive call to msgsB(G0...)
.

We argue this from the definition of msgs-- and the fact that ρ′p = α′ ·G′
pre. Suppose

for the sake of contradiction that q ∈ B. Because msgs-- only adds receivers of already
blocked senders to B and msgsp(G′

post ...)
starts with B = {p}, there must exist a chain of

message exchanges si+1 −→ si : mi in G′
post with 1 ≤ i < n, p = sn, and q = s1. That is,

G′
post · β′ must be of the form

G′
post . . . Gn−1

p−→sn−1:mn−1−−−−−−−−−→ G′
n−1 . . . G1

s2−→q:m1−−−−−→ G′
1 . . . G0

q−→p:m−−−−→ G′
0

Let m0 = m and s0 = p. We show by induction over i that for all i ∈ [1, n]:

α′ ·G′
pre

l′−→ G′
post . . . Gi

si−→si−1:mi−1−−−−−−−−→ G′
i ≤ ρ′si .

We then obtain the desired contradiction with the fact that ρ′sn = ρ′p = α′ ·G′
pre .

The base case of the induction follows immediately from the construction. For the
induction step, assume that

α′ ·G′
pre

l′−→ G′
post . . . Gi

si−→si−1:mi−1−−−−−−−−→ G′
i ≤ ρ′si .

A.2. Additional Material for Section 5.3 243

From the definition of ρ′si and the fact that si is the active participant in si◁si+1?mi, it
follows that si◁si+1?mi ∈ w. Hence, we must also have si+1 ▷si !mi ∈ w. Since si+1 is
the active participant in si+1 ▷si !mi, we can conclude

α′ ·G′
pre

l′−→ G′
post . . . Gi

si+1−→si:mi−−−−−−−→ G′
i+1 ≤ ρ′si+1

.

Lemma 5.20. Let G be a global type and {{P(G, p)}}p∈P be the subset projection. Let
wx be a trace of {{P(G, p)}}p∈P such that x ∈ Γ! ∩ ΓprocA for some p ∈ P . Let ρ be a
run in I(w), and α · G′ l−→ G′′ · β be the unique splitting of ρ for p with respect to w.
Then, there exists a run ρ′ in I(wx) such that α ·G′ ≤ ρ′.

Proof. Let x = p▷q!m. We prove the claim by induction on the length of w.
Base Case: w = ε. By definition, I(ε) contains all maximal runs in GAut(G), and the
unique splitting prefix of any run ρ ∈ I(ε) for p with respect to ε is ε. Because ε is
a prefix of any run, we need only show the non-emptiness of I(x). By Lemma 5.4,
L(G)⇓Γp = L(P(G, p)). Because x is the prefix of a word in L(P(G, p)), there
exists w′ ∈ L(G) such that x ≤ w′⇓Γp . By the semantics of L(G), there exists a run
ρ′ ∈ GAut(G) such that x is the first symbol in trace(ρ′)⇓Γp , and therefore ρ′ ∈ I(x).
Induction Step: let wx be an extension of w by x ∈ Γ!.

Let ρ be a run in I(w), and let α · G′ l−→ G′′ · β be the unique splitting of ρ for
participant p with respect to w. To re-establish the induction hypothesis, we need to
show the existence of a run ρ̄ in I(wx) such that α · G′ ≤ ρ̄. Since p is the active
participant in x, it holds for any r ̸= p that RG

r (w) = RG
r (wx). Therefore, to prove the

existential claim, it suffices to construct a run ρ̄ that satisfies:

(1) ρ̄ ∈ RG
p (wx),

(2) ρ̄ ∈ I(w), and
(3) α ·G′ ≤ ρ̄.

In the case that l⇓Γp = x, we are done: (2) and (3) hold by construction, and (1) holds
by the definition of possible run sets. In the case that l⇓Γp ̸= x, we show the existence

of a transition label and state l̄−→ Ḡ′′, and a maximal suffix β̄ such that α · G′ l̄−→ Ḡ′′ · β̄
satisfies all three conditions.

Let (s⃗w, ξw) denote the CSM configuration reached on w: (s⃗0, ξ0)
w−→∗ (s⃗w, ξw). Send

Validity states that every transition in s⃗w,p originates in all global states in s⃗w,p. By
assumption, p▷q!m is a transition in s⃗w,p. By Proposition A.3, ρ ∈ I ⊆ RG

p (w), and
therefore G′ ∈ s⃗w,p. Therefore, Send Validity gives the existence of some Ḡ′′ ∈ QGAut(G)

such thatG′ p−→q:m−−−−→ Ḡ′′ ∈ δGAut(G). Becauseα·G′ is a run inGAut(G) andG′ p−→q:m−−−−→ Ḡ′′

is a transition in GAut(G), α ·G′ p−→q:m−−−−→ Ḡ′′ is a run in GAut(G).

244 Appendix A. Appendix for Chapter 5

The construction thus far satisfies (1) and (3) regardless of our choice of maximal
suffix: for all choices of β̄ such that α · G′ p−→q:m−−−−→ Ḡ′′ · β̄ is a maximal run, wx⇓Γp ≤
trace(α ·G′ p−→q:m−−−−→ Ḡ′′ · β̄)⇓Γp and α ·G′ ≤ α ·G′ p−→q:m−−−−→ Ḡ′′ · β̄.

Property (2), however, requires that the projection of w onto each participant is
consistent with ρ̄, and this cannot be ensured by the prefix alone.

We construct the remainder of ρ̄ by picking an arbitrary maximal suffix to form a
candidate run, and iteratively performing suffix replacements on the candidate run until
it lands in I . Let β̄ be a run suffix such that α · G′ p−→q:m−−−−→ Ḡ′′ · β̄ is a maximal run in
GAut(G). Let ρc denote our candidate run α ·G′ p−→q:m−−−−→ Ḡ′′ · β̄. If ρc ∈ I , we are done.
Otherwise, ρc /∈ I and there exists a non-empty set of processes S ⊆ P such that for
each r ∈ S ,

w⇓Γr ≰ trace(ρc)⇓Γr . (A.1)

By the fact that ρ ∈ I ,

w⇓Γr ≤ trace(ρ)⇓Γr . (A.2)

We can rewrite (A.1) and (A.2) above as:

w⇓Γr ≰ trace(α ·G′ p−→q:m−−−−→ Ḡ′′ · β̄)⇓Γr (A.3)

w⇓Γr ≤ trace(α ·G′ l−→ G′′ · β)⇓Γr . (A.4)

By the definition of unique splitting, p is the active participant in l. By Lemma 5.4,
L(G)⇓Γp = L(P(G, p)), and because trace(ρ) ∈ L(G), it holds that trace(ρ)⇓Γp ∈
L(G)⇓Γp , and trace(ρ)⇓Γp ∈ L(P(G, p)). By assumption, P(G, p) is in state s⃗w,p

upon consuming w⇓Γp . Then, there must exist an outgoing transition from s⃗w,p labelled
with l⇓Γp . By Corollary 5.13, all outgoing transitions from s⃗w,p must be send actions.
Therefore, l must be of the form p→q′ :m′. By assumption, q′ ̸= q or m′ ̸= m.

We can further rewrite (A.3) and (A.4) to make explicit their shared prefix:

w⇓Γr ≰ (trace(α ·G′). p▷q!m. q◁p?m. trace(β̄))⇓Γr (A.5)
w⇓Γr ≤ (trace(α ·G′). p▷q′ !m′. q′◁p?m′. trace(β))⇓Γr (A.6)

It is clear that in order for both (A.5) and (A.6) to hold, it must be the case that
trace(α ·G′)⇓Γr ≤ w⇓Γr .

We formalise the point of disagreement between w⇓Γr and ρc using an index ir
representing the position of the first disagreeing transition label in trace(ρc):

ir := max{i | trace(ρc[0..i− 1])⇓Γr ≤ w⇓Γr} .

A.2. Additional Material for Section 5.3 245

Then, trace(ρc[ir])⇓Γr ̸= ε and from (A.5) and (A.6) we know that

ir > 2 · |trace(α ·G′)| .

We identify the participant in S with the earliest disagreement in ρc: let r̄ be the
participant with the smallest ir̄ in S . Let yr̄ denote trace(ρc[ir̄])⇓Γ̄r .

Claim I: yr̄ must be a send event.
Proof of Claim I. Assume by contradiction that yr̄ is a receive event. We identify

the symbol in w that disagrees with yr̄: let w′ be the largest prefix of w such that
w′⇓Γ̄r ≤ trace(ρc). By definition, w′⇓Γ̄r = trace(ρc[0..ir̄ − 1])⇓Γ̄r . Let z be the next
symbol following w′ in w; then z ∈ Γ̄r and z ̸= yr̄. Furthermore, by Corollary 5.13, we
have that z ∈ Γ?.

By assumption, w′z ≰ trace(ρc[0..ir̄]). Therefore, any run that begins with ρc[0..ir̄]

cannot be contained in RG
r̄ (w

′z), or consequently in I(w′z). We show however, that
I(w′z) must contain some runs that begin with ρc[0..ir̄]. With Lemma 5.18 for traces
w′ and w′z, we obtain that I(w′) = I(w′z). Therefore, it suffices to show that I(w′)

contains runs that begin with ρc[0..ir̄].
Claim II: For all w′′ ≤ w′, I(w′′) contains runs that begin with ρc[0..ir̄].
Proof of Claim II.We prove the claim via induction on w′.
The base case is trivial from the fact that I(ε) contains all maximal runs.
For the inductive step, let w′′y ≤ w′.
In case that y ∈ Γ?, we have I(w′′y) = I(w′′) from Lemma 5.18 and the witness from

I(w′′) can be reused.
In case that y ∈ Γ!, let s be the active participant of y and let ρ′ be a run in I(w′′)

beginning with ρc[0..ir̄] given by the inner induction hypothesis. Let α′ ·G′′ l′−→ G′′′ · β′

be the unique splitting of ρ′ for s with respect to w′′. If l′⇓Γs = y, then ρ′ can be used as
the witness. Otherwise, l′⇓Γs ̸= y, and ρ′ /∈ RG

s (w
′′y).

The outer induction hypothesis holds for all prefixes of w: we instantiate it with w′′

and y to obtain:
∃ ρ′′ ∈ I(w′′y). α′ ·G′′ ≤ ρ′′ .

Let is be defined as before; it follows that ρ′[is] = G′′. It must be the case that is > ir̄: if
is ≤ ir̄, because ρc and ρ′ share a prefix ρc[0..ir̄] and w′′y ≤ w, s would be the earliest
disagreeing participant instead of r̄.

Because is > ir̄, ρc[0..ir̄] = ρ′[0..ir̄] ≤ ρ′[0..is]. Because ρ′[0..is] = α′ · G′′ ≤ ρ′′,
it follows from prefix transitivity that ρc[0..ir̄] ≤ ρ′′, thus re-establishing the induction
hypothesis for w′′y with ρ′′ as a witness run that begins with ρc[0..ir̄].

This concludes our proof that I(w′) contains runs that begin with ρc[0..ir̄], and in
turn our proof by contradiction that yr̄ must be a receive event.

End Proof of Claim I & II.

246 Appendix A. Appendix for Chapter 5

We can rewrite candidate run ρc as follows:

ρc = G0
l0−→ G1 . . . Gir̄

lir̄−→ Gir̄+1

We have established that lir̄ must be a send event for r̄. We can reason from Send
Validity similarly to our construction of ρ̄’s prefix above, and conclude that there exists
a transition label and maximal suffix from Gir̄ such that the resulting run no longer
disagrees with w⇓Γ̄r . We update our candidate run ρc with the correct transition label
and maximal suffix, update the set of states S ∈ P to the new set of participants that
disagree with the new candidate run, and repeat the construction above on the new
candidate run until S is empty.

Termination is guaranteed in at most |w| steps by the fact that the number of symbols
in w that agree with the candidate run up to ir̄ must increase.

Upon termination, the resulting ρ̄ satisfies the final remaining (3): ρ̄ ∈ I . This
concludes the proof of the inductive step, and consequently the proof of the prefix-
preservation of send transitions.

Lemma 5.16. Let G be a global type and {{P(G, p)}}p∈P be the subset projection. Let
w be a trace of {{P(G, p)}}p∈P . It holds that I(w) is non-empty.

Proof. We prove the claim by induction on the length of w.
Base Case: w = ε. The tracew = ε is trivially consistent with all maximal runs, and I(w)
therefore contains all maximal runs. By definition of G, language L(G) is non-empty
and at least one maximal run exists. Thus, I(w) is non-empty.
Induction Step: Let wx be an extension of w by x ∈ Γ.

The induction hypothesis states that I(w) ̸= ∅. To re-establish the induction
hypothesis, we need to show I(wx) ̸= ∅. We proceed by case analysis on whether x
is a receive or send event.

Receive Case: let x = p◁q?m. By Lemma 5.18, I(wx) = I(w). I(wx) ̸= ∅ follows
trivially from the induction hypothesis and this equality.

Send Case: let x = p▷q!m. By Lemma 5.20, there exists a run in I(wx) that shares a
prefix with a run in I(w). I(wx) ̸= ∅ again follows trivially.

Lemma A.6. Let G be a global type and {{C (G, p)}}p∈P be the subset construction. Let
w be a trace of {{C (G, p)}}p∈P . If w is terminated, then w is G-complete.

Proof. Weprove the claim by contraposition and assume thatw is notG-complete. Then,
there exists a run ρ ∈ I(w) and a non-empty set of participants S such that for every
r ∈ S , it holds that w⇓Γr ̸=

(
trace(ρ)

)
⇓Γr (*). Since w is a trace, we know there exists a

run (s⃗0, ξ0)
w0−→ . . .

wn−1−−−→ (s⃗n, ξn) of {{C (G, p)}}p∈P such thatw = w0 . . . wn−1. We need
to show that there exists (s⃗n+1, ξn+1) with (s⃗n, ξn)

wn−→ (s⃗n+1, ξn+1) for some wn. Given
some participant p, let ρp denote the largest prefix of ρ that contains p’s local view of w.
Formally,

ρp = max{ρ′ | ρ′ ≤ ρ ∧ trace(ρ′)⇓Γp = w⇓Γp} .

A.2. Additional Material for Section 5.3 247

Note that due to maximality, the next transition in ρ after ρp must have p as its active
participant. Let q be the participant in S for whom ρq is the smallest. From Lemma 5.4
and (*), it follows that s⃗n,q has outgoing transitions. If s⃗n,q has outgoing send transitions,
then (s⃗n+1, ξn+1) exists trivially. If s⃗n,q has outgoing receive transitions, it must be the
case that the next transition in ρ after ρq is of the form p→q :m for some p and m.
From the fact that q is the participant with the smallest ρq, we know that ρq < ρp,
and from the FIFO property of CSM channels it follows that m is in ξn(p, q). Then, the
receive transition is enabled for q, and there exists (s⃗n+1, ξn+1) with (s⃗n, ξn)

p◁ p?m−−−−→
(s⃗n+1, ξn+1). This shows that w = w1 . . . wn−1 is not terminated and concludes the
proof.

Lemma A.7. LetG be a global type and {{P(G, p)}}p∈P be the subset projection. Let w
be a trace of {{P(G, p)}}p∈P . If w is G-complete, then w ∈ L(G).

Proof. By definition of w being G-complete,

∀p ∈ P , ρ ∈ I(w). w⇓Γp =
(
trace(ρ)

)
⇓Γp .

From Lemma 5.16, I(w) is non-empty. Let ρ be a run in I(w), and let w′ = trace(ρ) ∈
L(G). By the semantics ofL(G), L(G) is closed under the∼ relation, and thus it suffices
to show that w ∼ w′. Lemma 2.9 states that if w is FIFO-compliant, then w ∼ w′ iff w′

is FIFO-compliant and forall p ∈ P , w⇓Γp = w′⇓Γp . The fact that w is FIFO-compliant
follows from Lemma 2.5 andw being a CSM trace; w′ is FIFO-compliant by construction,
and the last condition is satisfied by assumption that w is G-complete and by definition
of w′. Thus, we conclude that w ∼ w′.

Theorem 5.14. Let G be a global type and {{P(G, p)}}p∈P be the subset projection.
Then, {{P(G, p)}}p∈P implements G.

Proof. First, we show that {{P(G, p)}}p∈P is deadlock-free, namely, that every finite
trace extends to a maximal trace. Let w be a trace of {{P(G, p)}}p∈P . Let w′ denote
the extension of w. If w′ ∈ Γω, then w′ is maximal and we are done. Otherwise, we
have w′ ∈ Γ∗. Let (s⃗ ′, ξ′) denote the {{P(G, p)}}p∈P configuration reached on w′. By
definition of w′ being the largest extension, w′ is a terminated trace, and there exists no
configuration reachable from (s⃗ ′, ξ′). By Lemma A.6, w′ is G-complete. By Lemma A.7,
w′ ∈ L(G). Therefore, all states in s⃗ ′ are final and all channels in ξ are empty, and w′ is
a maximal trace in {{P(G, p)}}p∈P .

This concludes our proof that {{P(G, p)}}p∈P is deadlock-free.
Next, we show that L({{P(G, p)}}p∈P) = L(G). The backward direction, L(G) ⊆

L({{P(G, p)}}p∈P), is given by Lemma 5.5. For the forward direction, let w ∈
L({{P(G, p)}}p∈P), and let (s⃗, ξ) denote the configuration reached on w. We proceed
by case analysis on whether w is a finite or infinite maximal trace.

248 Appendix A. Appendix for Chapter 5

Case: w ∈ Γ∗. We show a stronger property: w is a terminated trace. Then, we use
Lemma A.6 and Lemma A.7 as above to obtain w ∈ L(G). By definition of (s⃗, ξ) being
final, all states in s⃗ are final and all channels in ξ are empty. We argue there does not exist
a configuration reachable from (s⃗, ξ). From Lemma A.4, all outgoing states from states
in s⃗ must be receive transitions. However, no receive transitions are enabled because
all channels in ξ are empty. Therefore, (s⃗, ξ) is a terminated configuration and w is a
terminated trace.
Case: w ∈ Γω. By the semantics of L(G), to show w ∈ L(G) it suffices to show:

∃w′ ∈ Γω. w′ ∈ L(GAut(G)) ∧ w ⪯ω
∼ w′ .

Claim I:
⋂

u≤w I(u) contains an infinite run.
Proof of Claim I. First, we show that there exists an infinite run inGAut(G). We apply

König’s Lemma to an infinite tree where each vertex corresponds to a finite run. We
obtain the vertex set from the intersection sets of w’s prefixes; each prefix “contributes”
a set of finite runs. Formally, for each prefix u ≤ w, let Vu be defined as:

Vu :=
⋃

ρu∈I(u)

min{ρ′ | ρ′ ≤ ρu ∧ ∀p ∈ P . u⇓Γp ≤ trace(ρ′)⇓Γp} .

By Lemma 5.16, Vu is guaranteed to be non-empty. We construct a tree Tw(V,E) with
V :=

⋃
u≤w Vu and E := {(ρ1, ρ2) | ρ1 ≤ ρ2}. The tree is rooted in the empty run,

which is included V by Vε. V is infinite because there are infinitely many prefixes of
w. Tw is finitely branching due to the finiteness of δG and the fact that each vertex
represents a finite run. Therefore, there must exist a ray in Tw representing an infinite
run in GAut(G).

Let ρ′ be such an infinite run. We now show that ρ′ ∈
⋂

u≤w I(u). Let v be a prefix
of w. To show that ρ′ ∈ I(v), it suffices to show that one of the vertices in Vv lies on ρ′.
In other words,

Vv ∩ {v | v ∈ ρ′} ≠ ∅ .

Assume by contradiction that ρ′ passes through none of the vertices in Vv. Then, for
any u′ ≥ u, because intersection sets are monotonically decreasing, it must be the case
that ρ′ passes through none of the vertices in V ′

u. Therefore, ρ′ can only pass through
vertices in V ′′

u , where u′′ ≤ u. However, the set
⋃

u′′≤u V
′′
u has finite cardinality. We

reach a contradiction, concluding our proof of the above claim.
End Proof of Claim I.

Let ρ′ ∈
⋂

u≤w I(u), and let w′ = trace(ρ′). It is clear that w′ ∈ Γω and
w′ ∈ L(GAut(G)). It remains to show that w ⪯ω

∼ w′. By the definition of ⪯ω
∼, it further

suffices to show that:

∀u ≤ w, ∃u′ ≤ w′, v ∈ Γ∗. uv ∼ u′ .

A.3. Additional Material for Section 5.4 249

Let u be an arbitrary prefix of w. Because by definition ρ′ ∈ I(u), it holds that
u⇓Γp ≤ trace(ρ′)⇓Γp .

For each participant p ∈ P , let ρ′p be defined as the largest prefix of ρ′ such that
trace(ρ′p)⇓Γp = u⇓Γp . Such a run is well-defined by the fact that u is a prefix of an infinite
word w, and there exists a longer prefix v such that u ≤ v and v⇓Γp ≤ trace(ρ′)⇓Γp .

Let s be the participant with the maximum |ρ′s| in P . Let u′ = trace(ρ′s). Clearly,
u′ ≤ w′. Because u′ is trace(ρ′s) for the participant with the longest ρ′s, it holds for all
participants p ∈ P that u⇓Γp ≤ u′⇓Γp . Then, there must exist yp ∈ Γ∗

p such that

u⇓Γp · yp = u′⇓Γp .

Let yp be defined in this way for each participant. We construct v ∈ Γ∗ such that uv ∼ u′.
Let v be initialised with ε. If there exists some participant in P such that yp[0] ∈ Γp,!,
append yp to v and update yp. If not, for all participants p ∈ P , yp[0] ∈ Γp,?. Each symbol
yp[0] for all participants appears in u′. Let ip denote for each participant the index in
u′ such that u′[i] = yp[0]. Let r be the participant with the minimum index ir. Append
yr to v and update yr. Termination is guaranteed by the strictly decreasing measure of∑

p∈P |yp|.
We argue that uv satisfies the inductive invariant of channel compliancy. In the case

where v is extended with a send action, channel compliancy is trivially re-established.
In the receive case, channel compliancy is re-established by the fact that the append
order for receive actions follows that in u′, which is FIFO-compliant by construction.
We conclude that uv ∼ u′ by applying Lemma 2.10

A.3 Additional Material for Section 5.4

Lemma A.8. Let p be a participant, G be a global type, G′ be a syntactic subterm of G,
and {{C (G, p)}}p∈P be its subset construction. Let s be some state in Qp with G′ ∈ s.
Then, there is a run ρG in GAut(G) ending in state q′G, i.e.

ρG = q0,G
trace(ρG)−−−−−→∗ q′G,

such that C (G, p) will reach s on the projected trace, i.e.

ρp = s0,p
trace(ρG)⇓Γp−−−−−−−→∗ s.

Proof. Recall that the set of states for C (G, p) is defined as a least fixed point:

Qp := lfp⊆
{s0,p}λQ.Q ∪ {δ(s, a) | s ∈ Q ∧ a ∈ Γp} \ {∅}

250 Appendix A. Appendix for Chapter 5

where δ(s, a) is an intermediate transition relation that is defined for all subsets s ⊆ QG

and every event a ∈ Γp as follows:

δ(s, a) := {q′ ∈ QG | ∃q ∈ s, q
a−→ ε−→∗ q′ ∈ δ↓}

From the definition of Qp, there exists a sequence of states s1, . . . , sn with s1 = s0,p,
sn = s and for every i ∈ {1, . . . , n− 1}, it holds that

∃a ∈ Γp. δ(si, a) = si+1

Let ai denote the existential witness for each i. From the definition of δ(s, a), for every
i ∈ {1, . . . , n− 1}, it follows that

∀q′ ∈ si+1.∃q ∈ si. q
ai−→ ε−→∗ q′ ∈ δ↓ .

By assumption, G′ ∈ s. There then exists a sequence of global syntactic subterms
G1, . . . , Gn such that G1 = G, Gn = G′ and for every i ∈ {1, . . . , n − 1}, it holds
that

Gi ∈ si ∧Gi+1 ∈ si+1 ∧Gi
ai−→ ε−→∗ Gi+1 ∈ δ↓

We can expand ε∗: for every i ∈ {1, . . . , n − 1}, there exists ki ≥ 0 and a sequence of
syntactic subterms Gi,0, . . . , Gi,ki such that Gi,0 = Gi and Gi,ki = Gi+1 and

Gi,0
a−→ Gi,1 ∈ δ↓ and Gi,j

ε−→ Gi,j+1 ∈ δ↓ for every j ∈ {1, ki − 1}.

This expansion yields a run ρ↓ in the projection by erasure GAut(G)↓p. Because of
recursion terms, the expansion might not be unique, but we can pick the smallest ki
possible for every i. With the definition of δ↓, it is trivial to translate this run in
GAut(G)↓p to a run ρG inGAut(G): the events a ∈ Γp become a′ ∈ Σ such that a′⇓Γp = a

and ε becomes b ∈ Σ such that b⇓Γp = ε.
It is clear by construction that s1, . . . , sn (with its corresponding transitions) serves

as a witness for ρp, while G1,0, . . . , G1,k1 , . . . , Gn (with its respective transitions) serves
as a witness for ρG.

Lemma A.9. Let G be a global type and let {{Bp}}p∈P implement G with Bp =

(QB,p, δB,p, sB,0,p, FB,0,p) for participant p. Let s ∈ Qp, x ∈ Γp and s
x−→ t ∈ δp from

the subset construction C (G, p). Let u ∈ Γ∗
p such that s0,p

u−→∗ s. Then, there exists
s′, t′ ∈ QB,p such that sB,0,p

u−→∗ s′ and s′
x−→ t′ ∈ δB,p.

Proof. Because {{Bp}}p∈P implements G, it must hold that L(G)⇓Γp ⊆ L(Bp) since Bp

must produce at least the behaviors as specified by G for its participant. It follows that
pref(L(G)⇓Γp) ⊆ pref(L(Bp)). From Lemma 5.4, we know that L(G)⇓Γp = C (G, p).
By construction of C (G, p), if ux is reachable from the initial state in C (G, p) then ux

is the prefix of some word in L(G)⇓Γp . Therefore, it holds that ux ∈ pref(L(G)⇓Γp)

A.3. Additional Material for Section 5.4 251

and consequently ux ∈ pref(L(Bp)). Thus, there exists t′′ such that Bp reaches t′′ from
the initial state on ux. It might be that Bp can also reach some other state s′′ with u,
from which it reaches t′ with x then. This is fine. However, there also needs to be a
transition with label x from s′. If there was not, we can reach a deadlock, contradicting
that {{Bp}}p∈P implements G. Thus, there is t′ which can be reached with x from s′,
concluding our proof.

Theorem 5.21 (Completeness). If G is implementable, then the subset projection
{{P(G, p)}}p∈P is defined.

Proof. From the fact thatG is implementable, we know there exists a CSM {{Bp}}p∈P that
implements G. Showing that the subset projection is defined amounts to showing that
Send and Receive Validity (Definitions 5.8 and 5.11) hold for the subset construction.
Without loss of generality, we assume that Bp is deterministic for every p. If it was
not, we can determinise every FSM. (One could also argue that any non-determinism
should not change possible subsequent behaviours, all of which would either yield
contradictions to protocol fidelity or deadlock freedom.)

We proceed by contradiction and assume the negation of Send and Receive Validity
in turn, and in each case derive a contradiction to the fact that {{Bp}}p∈P implements G.
Specifically, we contradict protocol fidelity and show that L(G) ̸= L({{Bp}}p∈P).

To prove the inequality of the two languages, it suffices to prove the inequality of
their respective prefix sets, i.e.

{u | u ≤ w ∧ w ∈ L(G)} ≠ {u | u ≤ w ∧ w ∈ L({{Bp}}p∈P)}

Specifically, we show there is v ∈ Γ∗ such that

v ∈ {u | u ≤ w ∧ w ∈ L({{Bp}}p∈P)} ∧
v /∈ {u | u ≤ w ∧ w ∈ L(G)} .

Because {{Bp}}p∈P is deadlock-free by assumption, every trace either can be extended to
end in a final configuration or to be infinite. Therefore, any word v ∈ Γ∗ that is a trace
of {{Bp}}p∈P is a member of the prefix set, i.e.

∃ (s⃗, ξ). (s⃗0, ξ0)
v−→∗ (s⃗, ξ) =⇒ v ∈ {u | u ≤ w ∧ w ∈ L({{Bp}}p∈P)} .

By the semantics of L(G), for any w ∈ L(G), there exists w′ ∈ L(GAut(G)) with
w ∼ w′. For any w′ ∈ L(GAut(G)), it is straightforward that I(w′) ̸= ∅. Because
intersection sets are closed under the indistinguishability relation (Corollary A.1), it
holds that I(w) ̸= ∅. Because I(-) is monotonically decreasing, if I(w) is non-empty
then for any v ≤ w, I(v) is non-empty. By the following, to show that a word v is not a
member of the prefix set of L(G) it suffices to show that I(v) is empty:

∀v ∈ Γ∗. I(v) = ∅ =⇒ ∀w. v ≤ w =⇒ w /∈ L(G) .

252 Appendix A. Appendix for Chapter 5

Therefore, under the assumption of the negation of Send or Receive Validity respectively,
we explicitly construct a witness v0 satisfying:
(a) v0 is a trace of {{Bp}}p∈P , and
(b) I(v0) = ∅.
Send Validity (Definition 5.8). Assume that Send Validity does not hold for some

participant p ∈ P . Let s ∈ Qp be a state and s
p ▷q !m−−−−→ s′ ∈ δp a transition in the subset

construction C (G, p) such that

tr-orig(s
p ▷q !m−−−−→ s′) ̸= s .

Let D denote s \ tr-orig(s
p ▷q !m−−−−→ s′). By the negation of Send Validity, D is non-

empty. Let G′ be a syntactic subterm in D.
Because G′ ∈ s, it follows from Lemma A.8 that there exists α such that α · G′ is a

run in GAut(G). Let w̄ be trace(α · G′). Because {{Bp}}p∈P implements G, there exists
a configuration (⃗t, ξ) of {{Bp}}p∈P such that (⃗t0, ξ0)

w̄−→∗ (⃗t, ξ). Instantiating Lemma A.9
with s, s p ▷q !m−−−−→ s′ and trace(α · G′)⇓Γp , it follows that t⃗p has an outgoing transition
labelled p▷q!m. Let t⃗p

p ▷q !m−−−−→ t′′ be this transition.
The send transitions of any local machine in a CSM are always enabled. Formally,

for all w ∈ Γ∗, x ∈ Γ!, and r ∈ P , if w is a trace of {{Bp}}p∈P and t⃗w,r
x−→ t⃗ ′w,r ∈ δr, then

wx is a trace of {{Bp}}p∈P . Instantiating this fact with w̄ and t⃗p
p ▷q !m−−−−→ t′′, we obtain that

w̄ · p▷q!m is a trace of {{Bp}}p∈P .
Let w̄ · p▷q!m be our witness v0; it then follows that v0 satisfies (a). It remains to

show that v0 satisfies (b), namely I(w̄ · p▷q!m) = ∅.
Claim I: All runs in I(w̄) begin with α ·G′.
Proof of Claim I. Recall that w̄ is defined as trace(α · G′). Assume by contradiction

that ρ′ ∈ I(w̄) and ρ′ does not begin with α ·G′. Due to the syntactic structure of global
runs, the first divergence between two runs must correspond to a syntactic subterm of
the form

∑
i∈I p

′→q′i :m
′
i.G

′
i. Let p′ be the sender in the first divergence between ρ′ and

α ·G′, and let the two runs respectively contain the subtermsG′
i andG′

j . Because ρ′ is in
RG

p′(w̄), it holds that w̄⇓Γp′
≤ trace(ρ′)⇓Γp′

. Because w̄ = trace(α · G′), we can rewrite
the inequality as trace(α ·G′)⇓Γp′

≤ trace(ρ′)⇓Γp′
. We know that trace(α ·G′)⇓Γp′

and
trace(ρ′)⇓Γp′

share a common prefix, followed by different send actions from p′, i.e. they
are respectively of the form x′ · p′ ▷qj !m′

j · y′ and x′ · p′ ▷qi !m′
i · z′. We arrive at a

contradiction.
End Proof of Claim I.

Recall that G′ ∈ D and D = s \ tr-orig(s
p ▷q !m−−−−→ s′). By the definition of

tr-orig(-) (Definition 5.3), there does not exist a global syntactic subterm G′′ with
G′ l′−→∗ G′′ ∈ δG such that l′⇓Γp = p▷q!m. Therefore, there does not exist a maximal
run in RG

p (w̄ · p▷q!m), and I(w̄ · p▷q!m) = ∅ follows.

A.3. Additional Material for Section 5.4 253

Our witness v0 = w̄ · p▷q!m thus satisfies both conditions (a) and (b) required for a
contradiction. This concludes our proof that Send Validity is required to hold.

Receive Validity (Definition 5.11). Assume that Receive Validity does not hold for
some participant p ∈ P . In other words, there exists s ∈ Qp with two transitions
s

p◁ q1 ?m1−−−−−→ s1, s
p◁ q2 ?m2−−−−−→ s2 ∈ δp and G2 ∈ tr-dest(s

p◁ q2 ?m2−−−−−→ s2) such that

q1 ̸= q2 ∧ p◁q1?m1 ∈ msgsp(G2...)
.

Claim II: There exists u ∈ Γ∗ such that both u · p◁q1?m1 and u · p◁q2?m2 are traces
of {{Bp}}p∈P .

Proof of Claim II. By the negation of Receive Validity, we have

G2 ∈ tr-dest(s
p◁ q2 ?m2−−−−−→ s2) ⊆ s2 .

From Lemma A.8 for s2 andG2 ∈ s2, there exists ρ′ such that ρ′ ends inG2 and is a run in
GAut(G). Because trace(ρ′) is a prefix inL(G) and by assumption {{Bp}}p∈P implements
G, there exists a {{Bp}}p∈P configuration (⃗t, ξ) such that (⃗t0, ξ0)

trace(ρ′)−−−−−→∗ (⃗t, ξ). By
the subset construction, it holds that C (G, p) reaches s on trace(ρ′). Instantiating
Lemma A.9 twice with s

p◁ q1 ?m1−−−−−→ s1, s
p◁ q2 ?m2−−−−−→ s2 and trace(ρ′)⇓Γp , we obtain

t1
p◁ q1 ?m1−−−−−→ t′1 and t2

p◁ q2 ?m2−−−−−→ t′2. From the determinacy of Bp, it holds that t1 = t2.
Therefore, it holds that t⃗p = t1 and there exist two outgoing transitions from t⃗p labelled
with p◁q1?m1 and p◁q2?m2.

From the fact that s p◁ q2 ?m2−−−−−→ s2 ∈ δp, there exist

G1 ∈ s and G′
2 ∈ tr-dest(s

p◁ q2 ?m2−−−−−→ s2) ⊆ s2

such that G1
q2−→p:m2−−−−−→ G′

2 ∈ δG. Either G2 = G′
2, or G2 is reachable from G′

2 via ε-
transitions for p. Without loss of generality, assume that G2 = G′

2; if G′
2 ̸= G2 then G′

2

can also be picked as the witness from the definition ofmsgs--. We rewrite ρ′ as follows:

ρ′ := α ·G1
q2−→p:m2−−−−−→ G2

From the negation of Receive Validity, we know that

p◁q1?m1 ∈ msgsp(G2...)

Then, there exists some suffix β such that the transition q1−→p:m1−−−−−→ occurs in β

and α · G1
q2−→p:m2−−−−−→ G2 · β is a maximal run. Let ρ denote this maximal run. Let

254 Appendix A. Appendix for Chapter 5

G3
q1−→p:m1−−−−−→ G4 be the earliest occurrence of

q1−→p:m1−−−−−→ in β. We rewrite the suffix β in
ρ to reflect the existence of G3 and G4:

ρ := α ·G1
q2−→p:m2−−−−−→ G2 · β1 ·G3

q1−→p:m1−−−−−→ G4 · β2

Note that β1 does not contain any transitions of the form q1−→p:m1−−−−−→.
Let w̄ denote trace(α), and v̄ denote trace(β1). To produce a witness for u, we show

that w̄·q2 ▷p!m2 ·q1 ▷p!m1 is a trace of {{Bp}}p∈P , and in the resulting CSM configuration
(s⃗ ′, ξ′), s⃗ ′

p has two outgoing transitions labelled p◁q1?m1 and p◁q2?m2. Moreover, we
show that the channels ξ′(q1, p) and ξ′(q2, p) respectively contain the messages m1 and
m2 at the head.

First, we show that w̄ · q2 ▷p!m2 · q1 ▷p!m1 is a trace of {{Bp}}p∈P .
By assumption that {{Bp}}p∈P implements G, both w̄ · q2 ▷p!m2 and w̄ · q2 ▷p!m2 ·

p◁q2?m2 are traces of {{Bp}}p∈P . Let (s⃗ ′′, ξ′′) and (s⃗ ′′′, ξ′′′) respectively denote
configurations of {{Bp}}p∈P such that

(s⃗0, ξ0)
w̄·q2 ▷p !m2−−−−−−→ (s⃗ ′′, ξ′′)

p◁ q2 ?m2·v̄−−−−−−→ (s⃗ ′′′, ξ′′′) .

Because send actions are always enabled in a CSM, it suffices to show that s⃗ ′′
q1

has
an outgoing transition label q1 ▷p!m1. We do so by showing that s⃗ ′′

q1
= s⃗ ′′′

q1
: it is clear

from the fact that w̄ · q2 ▷p!m2 · p◁q2?m2 · v̄ · q1 ▷p!m1 is a trace of {{Bp}}p∈P that s⃗ ′′′
q1

has an outgoing transition label q1 ▷p!m1.
Due to the determinacy of subset construction, it suffices to show that

(w̄ · q2 ▷p!m2)⇓Γq1
= (w̄ · q2 ▷p!m2 · p◁q2?m2 · v̄)⇓Γq1

.

This equality follows from the definition of msgs-- and the fact that p◁q1?m1 ∈
msgsp(G2...)

: because the blocked set of participants in msgs-- monotonically increases,
and for any G′,B, no actions in a run suffix starting with G′ involving participants in
B′ are included inmsgsB

′

G′ , we know that q1 ▷p!m1 must be the lexicographically earliest
action involving q1 in v̄ · q1 ▷p!m1 · p◁q1?m1. In other words, v̄⇓Γq1

= ε.
This concludes the reasoning that w̄ · q2 ▷p!m2 · q1 ▷p!m1 is a trace of {{Bp}}p∈P .
Recall that (s⃗ ′, ξ′) is the {{Bp}}p∈P configuration reached on w̄ · q2 ▷p!m2 · q1 ▷p!m1.

We showed above that s⃗p has two outgoing transitions labelled p◁q1?m1 and p◁q2?m2.
It follows from the equality below that s⃗ ′

p likewise has two outgoing transitions labelled
p◁q1?m1 and p◁q2?m2:

(w̄ · q2 ▷p!m2)⇓Γp
= (w̄ · q2 ▷p!m2 · q1 ▷p!m1)⇓Γp

.

We now show that the channels ξ′(q1, p) and ξ′(q2, p) respectively contain the
messages m1 and m2 at the head. Recall that w̄ is defined as trace(α); this from the
fact that ξw̄ is uniquely determined by w̄ and all channels in ξw̄ are empty.

A.3. Additional Material for Section 5.4 255

Let u := w̄ · q2 ▷p!m2 · q1 ▷p!m1. This concludes our proof that both u · p◁q1?m1

and u · p◁q2?m2 are traces of {{Bp}}p∈P .
End Proof of Claim II.

The next claim establishes that our witness u · p◁q1?m1 satisfies (b).
Claim III: It holds that I(u · p◁q1?m1) = ∅.
Proof of Claim III. This claim follows trivially from the observation that every run

in I(w̄ · q2 ▷p!m2) must begin with α · G1
q2−→p:m2−−−−−→ G2. Because I(u · p◁q1?m1) ⊆

I(w̄ ·q2 ▷p!m2), and the trace(-) of every run in I(w̄ ·q2 ▷p!m2) starts with w̄ ·q2 ▷p!m2 ·
p◁q2?m2, therefore I(u · p◁q1?m1) is empty.

End Proof of Claim III.

From here, the reasoning that every run in I(w̄ · q2 ▷p!m2) must begin with
α ·G1

q2−→p:m2−−−−−→ G2 is identical to the reasoning for the analogous claim in the Send
Validity case, and thus omitted.

By choosing v0 := ū · p◁q1?m1, we thus establish both conditions (a) and (b)
required for a contradiction. This concludes our proof that Receive Validity is required
to hold.

257

Curriculum Vitae

Research Interests

Concurrent and Message-passing Systems, Software Verification,
Formal Methods, and Security Protocols

Education and Employment

2024 – present Research (and Development) Specialist, University of Luxembourg.
2019 – 2024 Doctoral Researcher, Max Planck Institute for Software Systems,

Kaiserslautern, Germany.
2017 – 2019 M.Sc., Computer Science, University of Saarland, Germany.
2014 – 2017 B.Sc., Computer Science, University of Kaiserslautern, Germany.

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	An Introduction to Communication Protocols
	The Implementability Problem
	Problem Setting
	State of the Art
	Research Questions and Contributions
	Publications
	Outline

	Protocol Specifications and the Implementability Problem
	Preliminaries
	Alphabets for Protocols
	The Implementation Model: Communicating State Machines
	Indistinguishability Relation
	High-level Message Sequence Charts
	Global Types from Multiparty Session Types
	The Implementability Problem

	Generalising Projection for Multiparty Session Types
	Classical Multiparty Session Type Projection
	Introductory Example
	Local Types
	Classical Projection Operator with Parametric Merge
	Visual Explanation of the Parametric Projection Operator
	Visual Explanation of Merge Operators
	Features of Different Merge Operators by Example

	Generalising Classical Projection for Sender-driven Choice
	Motivating Example: Load Balancing
	Available Messages
	Availability Merge Operator
	Generalised Projection
	Revisiting the Load Balancing Protocols
	Evaluation

	Soundness of Generalised Projection: Projectability implies Implementability
	Implementability = Protocol Fidelity + Deadlock Freedom
	Generalised Projection Does Not Remove Behaviours
	Generalised Projection Does Not Introduce New Behaviours
	Family of Run Mappings Exists for Projectable Global Types
	From Run Mappings via Control Flow Agreement to Implementability
	Wrapping Up: Projectable Global Types are Implementable

	Incompleteness of Classical Projection Approaches

	Building a Bridge from MSTs to HMSCs
	Encoding Global Types from MSTs as HMSCs
	MST Implementability is Decidable
	MSC Techniques for MST Verification
	I-closed Global Types
	Payload Implementability

	Implementability with Intra-participant Reordering
	A Case for More Reordering
	Undecidability

	Direct and Complete Projection for Multiparty Session Types
	Constructing Implementations
	Checking Implementability
	Send Validity
	Receive Validity
	Subset Projection

	Soundness
	Completeness
	CSMs vs. Local Types
	On Mixed-choice States
	Sink States and Deadlocks

	Complexity
	Evaluation
	Properties Entailed by Implementability

	A Type System Using Communicating State Machines
	Payload Types and Delegation
	Process Calculus
	Type System for Processes and Runtime Configurations
	Soundness of Type System
	On Subtyping

	Channel Restrictions of Protocols and CSMs
	Channel Restrictions
	Half-duplex Communication
	Existential B-boundedness
	k-synchronisability
	Channel Restrictions and Indistinguishability Relation

	Channel Restrictions of Protocols
	Channel Restrictions of High-level Message Sequence Charts
	Channel Restrictions of Global Types

	Channel Restrictions of CSMs

	A Unifying Protocol Specification Formalism
	Protocol State Machines
	Expressivity Results
	Global Types as Special Class of PSMs
	From 1-PSM to Global Types
	From HMSCs to PSMs

	Checking Implementability with Mixed Choice is Undecidable
	Related Work
	High-level Message Sequence Charts
	Choice Restrictions
	Structural Restrictions

	Session Types
	Generalising Restrictions on Choice
	MST-based Works
	Subtyping
	Extensions

	Communicating State Machines and Channels
	Choreographic Programming

	Conclusion
	Bibliography
	Appendix for chap:complete-projection
	Additional Material for sec:constructing-implementations
	Additional Material for sec:soundness
	Additional Material for sec:completeness

	Curriculum Vitae

