
S P E C I A L I S S U E AR T I C L E

Image analysis for design and operation of gravity
separators with coalescing aids

Jan Schäfer1 | Mark W. Hlawitschka2 | Hans-Jörg Bart1

1Fluidverfahrenstechnik, Technische
Universität Kaiserslautern, Kaiserslautern,
Germany
2Institut für Verfahrenstechnik, Johannes-
Kepler Universität Linz, Linz, Austria

Correspondence
Hans-Jörg Bart, Fluidverfahrenstechnik,
Technische Universität Kaiserslautern,
Gottlieb-Daimler-Straße
44, Kaiserslautern, 67663, Germany.
Email: bart@mv.uni-kl.de

Funding information
Bundesministerium für Wirtschaft und
Klimaschutz (BMWK)

Abstract

In gravity separators, also known as settlers, two immiscible liquid phases sep-

arate due to differences in density. In extraction mixer-settler units, a disper-

sion needs to be separated within the separator unit. In order to overcome the

hitherto purely experimental design, a knitted mesh adapted model as well as

an automated test facility were developed in this work, which easily enable a

scale-up to industrial units. An automation allows for a controlled investiga-

tion of knitted meshes as coalescing aids in settlers, and this was achieved via

photo-optical probes with an optimized image analysis technique. It overcomes

the limitations of neuronal network training based on manually annotating

images using computer-generated image data. Therefore, the new methodology

and setup are explained in detail, and the derivation and application of a new

model to design separators with knitted meshes as coalescing aid is presented

and compared to experimental results using meshes of different structures and

materials. Finally, case studies and scale-up are discussed.
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1 | INTRODUCTION

The phase separation of liquid–liquid mixtures in hori-
zontal gravity settlers is found in many chemical engi-
neering fields such as the chemical, pharmaceutical,
biochemical, and petrochemical industries as well as
hydrometallurgy. In the latter, gravity settlers are domi-
nant when metal ions are recovered from low-grade ores
after leaching and extraction with the help of liquid ion
exchangers.[1] A typical apparatus has a diameter of 0.5–
5 m and a length of 3–30 m, with costs involved (depend-
ing on pressure and material used) from 20 000 € to
1.000 000 €.[2] Despite the investment costs in the case of
overdesign, a lot of liquid inventory is stored, which is

not useful for further processing. Coalescence aids will
help in a size reduction of a gravity settler, but design
and scale-up are very empirical.

In order to better understand the droplet settling pro-
cess, driven by drag, buoyancy, and coalescence in a set-
tler with coalescing aids, detailed investigations are
necessary. It is markedly influenced by physical proper-
ties (viscosity, density difference, interfacial tension, and
contact angle) and the resulting transient droplet size dis-
tribution (DSD), which influences the sedimentation
speed of the droplets and thus their wetting and coales-
cence behaviour.[3–5]

There exist sampling methods and more or less inva-
sive techniques in order to evaluate a DSD. In comparison
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to other methods, as is the capillary suction probe,[6] needle
probe,[7] wire mesh sensor,[8] laser-based,[9] and tomo-
graphic methods,[10] the image-based method is the most
direct and accurate one, often used to calibrate other sys-
tems.[11,12] A newly developed optical multimode online
probe (OMOP) device is used for optical analysis as
described elsewhere.[13] The telecentric lens array, giving
parallel light, allows distance-independent size detection via
a shadowgraphic technique, and the transmitted light gives
a high contrast. This is in contrast to an incident light
method where the distance dependency is not negligible, as
droplets farther away appear smaller. However, a problem
arises at technically relevant high droplet phase fractions
with plenty of overlapping, making an assignment of a cer-
tain droplet diameter difficult. Here, sophisticated image
analysis tools come into play to retrieve detailed informa-
tion at high accuracy and speed.

This paper presents a mixer-settler setup with a con-
trol loop for the mixer speed using the OMOP imaging
probe and convolutional neural networks (CNN) for fast
mean diameter evaluation. The training is carried out in
a two-stage approach using generated images. In the first
step, a CNN is trained to segment the distance transform
of generated images of overlapping circles.[14] In the sec-
ond step, this trained CNN is used to evaluate real experi-
mental images to create a ground truth database for the
final neural network segmenting live images. In that
respect, an overview of the used image processing steps is
given prior to their application in a settler. Finally, a
design approach for horizontal settlers when using knit-
ted meshes as coalescing aids is given.

2 | IMAGE SEGMENTATION
VIA CNN

A standard CNN is inspired by the biological visual cor-
tex and has many different ranges of applications, for
example, image classification, speech, or handwriting rec-
ognition.[15] Such networks have two important pro-
cesses, namely, feature extraction and down-sampling,
which are used to extract and compress information from
the images. Convolution and max pooling are the two
operations used for this. After this down-sampling part of
the CNN, a feed-forward neural network starts.[16] This
allows the CNN to predict classes, vectors, etc., but not
the segmentation of objects.

A CNN, which is capable of segmenting images locally,
is U-net introduced by Ronneberger et al.[17] The network
structure in this case is also a two-stage approach, but the
second stage is different. Whereas a common CNN has a
fully connected network in the second stage, a U-net-styled
network has an up-sampling path. These layers consist of
up-convolution and normal convolution operations in

which the network scales the feature maps, from the smal-
lest size close to the original size of the input image. With
this, it is possible to segment objects in the image locally.
The trained U-net learned in the down-sampling path to
extract the important features for the segmentation and in
the up-sampling path to get these features to a segmenta-
tion mask. For each pixel in the image, U-net predicts the
probability that the pixel belongs to the previously specified
classes. In an image of droplets, the background can be one
class and the droplets another. These classes are set in the
ground truth images used for training.

U-net then predicts the probability if a pixel belongs
to the background or a droplet. An example of a U-net
style CNN with four layers and four filters is shown in
Figure 1. The filters in this case are the kernels, and their
number is adapted in the layers of the network by the fol-
lowing process. In each of the i layers there are 2(i+4) ker-
nels that will be learned, which is true for the down- and
up-sampling paths. The numbering of the layers starts
with 0, this means that in the fourth layer of the network,
there are 2(3+4) = 128 feature maps.

To train a U-net style CNN, a database is needed that
consists of the images that should be segmented and their
already known segmentation. This requires usually man-
ual evaluation of the images in question and is time and
labor intensive. This can be overcome by using generated
images. The main idea for creating generated images
with a good representation of the real experiment is simi-
lar to the feature extraction of CNNs. Both, the generated
images and the ones acquired in the experiment are pre-
processed in a way that only the feature of interest for the
segmentation task is used as an input for the CNN. Since
the droplets are spherical, the most important information
about them can be represented using the Euclidean dis-
tance transform of the images. This calculates the minimal
distance of each pixel to the next boundary pixel, in a
binary image. An example of this distance transform can be
seen in Figure 2 in the left image.

Figure 1 depicts that an overall network was used for
the segmentation of distance transforming images, using
artificially created images as a training database. Table 1
lists all the hyperparameters used in the training. The
detailed training process is described in Schäfer et al.[14]

2.1 | Post processing the output of
the CNN

The final output of the CNN is a segmentation mask (see
Figure 2 right image), which has to be post processed for
evaluating the DSD. The segmentation between the dif-
ferent particles is visible as darker lines in the image, and
the particles are marked as brighter areas. Still challeng-
ing are areas with many overlaying particles, where no
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clear segmentation can be found. The approach uses an
Otsu threshold operation to segment the particles into
single contours.[14]

Overlapping droplets are segmented in this case into
more than two contours in many cases. To find the corre-
sponding parts forming one droplet a circle is fitted to all
the neighbouring contours and compared to the area of
the single surfaces. If the fitted circle and the sum of the
areas match, this is considered to be on droplet. A flow
chart of this evaluation process is shown in Figure 3. This

describes the first step of the training process used in this
paper, and in the next section, this is adapted for the
evaluation of live camera images.

2.2 | Adaption of the training for the
direct segmentation

The approach using the distance transform for the segmen-
tation requires a preprocessing of the images acquired by

FIGURE 1 U-net graph

representation used for the segmentation

of distance transform. ReLU, rectified

linear unit

FIGURE 2 Sample images

used for training the

convolutional neural networks

(CNN) and prediction of the

network (input, ground truth,

and predicted segmentation

map). CNN, convolutional

neural networks

TABLE 1 Hyperparameters for training the U-net style

convolutional neural networks (CNN)

Parameter Value

Learning rate (Lr) 10�4

Momentum (mm) 0:99

Weight decay (w) 5 �10�4

Abbreviation: CNN, convolutional neural networks.

TABLE 2 Settings used to control the image acquisition, in the

Basler camera in python

Setting Value

Resolution 1024 � 1024 pixel2

Exposure time 20 μs

Frame rate 50 FPS

SCHÄFER ET AL. 2333
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the OMOP system, which could potentially falsify the
results of the CNN evaluation in varying lighting conditions
or recording quality. As a solution to this, the second step
was to use the trained CNN to create an annotated database
with the real OMOP images as input and the threshold of
the segmentation mask, the predicted segmentation of the
trained U-net as ground truth. With this database, a second
U-net was trained, which is able to directly evaluate the
OMOP images. It is important to note that this is not
entirely possible without any pre-processing. The network
needs to be trained on consistent data in order to improve
the training process. Since it cannot be assured that all the
images acquired in the experiment have the same expo-
sure, and, due to the shadow graphic imaging, the light-
ing conditions change with the phase fraction of the
particles, and this needs to be addressed. As an example,
during training, the background would have different
pixel intensities and the network is hindered from find-
ing consistent parameters to extract these. A solution to
this problem is to use the histogram equalization over
the whole OMOP image database. Compared to the pre-
processing using the distance transform, which extracts
information from the image and might only change
pixel intensities, it is less intrusive. Without the pre-

processing using the distance transform, the network
needs to find a way to extract the important features for
the segmentation from the original image, which
increases the complexity of the task. To cope with this,
the number of layers and kernels, the U-net style CNN
available for this procedure was changed. Here, the
values of the paper of Ronneberger et al. were used with
five layers and six kernels. The patch size was increased
to 512 � 512 pixel2 images as the input for the CNN.
The other hyperparameters used for training were the
same as before (see Table 1). The training was per-
formed on a Nvidia Tesla V100, which allowed for a fas-
ter completion and a batch size of six images. Figure 4
shows the evaluation of the trained U-net.

The predicted segmentation mask shows a clear dis-
tinction between the background, the particles, and the
boundaries of the particles. As a post-processing algo-
rithm (to fit a droplet size to the different contours in the
segmentation mask), the same process is used as depicted
in Figure 3. This results in a simplified image evaluation
process with less computational costs.

Figure 5 shows the activation of some learned kernels
in the network. The first convolution layer shows again
rough image translations with varying intensities of the

FIGURE 3 Flow chart of the post-

processing algorithm used to assign a

diameter to the particles segmented by

the trained U-net. ci, circle; CNN,

convolutional neural networks; i, index
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particles and the background. The first few kernels show
different intensities between particles and background,
directional highlighted edges (image 3 and 4 of layer 2)
and different sizes of the particle surfaces. In the up-
sampling path of the U-net trained to segment OMOP
images, already in the lowest up-sampling layer, clear
structures of the particle segments are visible. In the up-
sampling path, the network learned to combine the dif-
ferent extracted features, which propagate through the
down sampling path with different intensities and grow
them to areas that represent the final segmentation of
the network. This results in the segmentation mask,
where each pixel has been assigned a probability of
belonging to the predefined classes. In this case, the two

classes are background/particle borders and particles
(the borders between the particles and the background
belong to the same class).

2.3 | Implementation of a trained CNN
in a control loop

The U-net trained to segment images acquired by the
OMOP can be used to create a process control loop able
to regulate the rotation speed of a mixer dependent on
a set mean droplet target diameter. This control loop is
integrated into the mixer-settler setup (see Figure 6)
and is used to guarantee a specific constant mean

FIGURE 4 Example images of the evaluation using the trained U-net to segment optical multimode online probe (OMOP) images.

OMOP, optical multimode online probe

FIGURE 5 Graphical representation of the activation on a subset of kernels in different layers of the U-net trained to segment optical

multimode online probe (OMOP) images. OMOP, optical multimode online probe; ReLU, rectified linear unit

SCHÄFER ET AL. 2335
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diameter during the experiments. The control setup
consists of the OMOP, acquiring live images of the
droplets at the inlet of the settler, and U-net in combi-
nation with an evaluation algorithm calculating the
mean diameter. This is used in combination with a
LabView proportional integral controller (PI) to adjust
the mixer speed on the basis of the evaluated images to
control a given mean droplet diameter (d10).

The main problem with the image capturing is that
the captured DSD in one image cannot be considered
representative for the whole process. To have a statisti-
cally significant representation of the DSD, the moving
average of the last 2000 measured droplets is calculated,
which results in a new mean diameter for each image.
An example of the working control loop is shown in
Figure 7. Here, a continuous water phase is mixed with
paraffin oil at a constant phase ratio of 15% and a con-
stant total flow rate of 0.2 m3/h, while the mean diameter
is changed. The diameter variation is done every 5 min
with the following steps: d10 = 0.35, 0.4, 0.35,
0.375 mm.[18]

The diagram shows that the mean diameter is fluctu-
ating around the target value. The set time for a new tar-
get diameter is dependent on the difference between the
two set diameters. In the case of this example, setting
d10 = 350 to d10 = 400 μm takes about 120 s to set the
new target diameter. This is also dependent on the direc-
tion of the change, if the diameter is in- or decreased, due
to the inertia of the mixed fluid system.

3 | DROPLET BEHAVIOUR IN A
GRAVITY SETTLER

Settlers are classified by their height to length ratio into
vertical and horizontal settlers. A vertical settler, with a
height to length (HL <2), is usually operated in counter
current flow, for example, at the head of an extraction
column. The separation in horizontal settlers (HL >2), as
shown in Figure 8, is performed in co-current flow.[19]

The dispersion enters the settler at the inlet in the middle
of the apparatus. In the transition zone, the cross-section
of the settler increases to its maximum diameter, and for
a DN100 settler, this is 100mm. This reduces the flow
speed of the dispersion and eases the flow conditions.
After a turbulent region at the inlet, further into the set-
tler, there should not be any turbulence disturbing the
separation of the two phases.

Depending on which phase is dispersed, the lighter
dispersed phase rises or the heavier dispersed phase
descends to the surface in the settler due to density differ-
ences. The droplets form a film at the surface, which is
called the densely packed dispersion layer. In this lami-
nar flowing layer, the droplet size increases due to
droplet–droplet coalescence until the droplet coalesces
with the now continuous phase at the surface. The set-
tling process is governed by two main factors, sedimenta-
tion of the dispersed phase at the surface and coalescence
of the droplets, either with each other or with the contin-
uous surface of the main liquid and are influenced by dif-
ferent properties of the fluids involved.[19] The first
process is dependent on the buoyancy, inertia, and drag
force. These are again influenced by, for example, the
density difference between the fluids, the viscosity of the
continuous phase, the initial DSD of the dispersed phase,
the flow speed, the interfacial tension, and the phase
ratio between the two fluids and determine the sedimen-
tation of the droplets to the surface. The huge number of
influences led to a variety of correlations, each valid for
specific conditions.[20–22] The second process, the coales-
cence, is affected by the interfacial tension, the continu-
ous phase viscosity, the phase fraction, density,
surfactants, and the DSD, as it is given in correlations
describing coalescence of droplets.[23,24]

Dependent on which of the two processes is the domi-
nant factor, the settling process can be distinguished into
a sedimentation- or coalescence-driven operation. A
sedimentation-driven process can be improved through a
larger (shallower) settler, where the droplets travel only a
small way to the surface between the two phases. Other
improvements are the usage of horizontal plates, which
reduce the total height a droplet required to travel to
reach the surface by creating multiple surfaces. This also

FIGURE 6 Control loop used to set the mean diameter in the

mixer-settler setup. The evaluation program is written in Python

(version 3.2) and manages the image acquisition via a Basler

camera, using the settings shown in Table 2. After acquisition the

image is split into patches of the size 512 � 512 pixel2, used to train

U-net, and evaluated by the trained network. The camera

resolution of 1024 � 1024 pixel2 was chosen so that there is no

excess, while splitting the image. After the segmentation through

the trained U-net, the resulting segmentation mask is rearranged to

the original resolution. This image is then evaluated using the

algorithm shown in Figure 3. OMOP, optical multimode online

probe; PI, proportional integral controller; QR, quality recording;

RPM, rotation per minute; SIC, frequence indication control
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increases the coalescence probability.[25] A coalescence-
driven settling process can be improved by increasing the
time droplets are in contact with each other or the sur-
face between the two phases. This can be achieved by
using internals, a simple example is vertical plate, close
to the inlet of the settler. The droplets collide with the
plate, which raises the contact probability between drop-
lets and calms the flow conditions behind the plate.
Other coalescing aids in this context are the aforemen-
tioned horizontal plates, fibre beds, and knitted
meshes.[19] The latter are part of this investigation.
Figure 8 shows a dispersion wedge in a settler without
internals and the accumulation of the dispersion in a set-
tler with a knitted mesh as a coalescing aid.

In a settler without internals, the dispersion wedge
can form freely, the droplets are densely packed at the
surface. If the wedge reaches the end of the settler, a dis-
persion band forms.[19] With a knitted mesh as an inter-
nal in the settler, this wedge is accumulated in front of
the mesh. The goal of the usage of a mesh is to reduce
the wedge length and to increase the maximum through-
put or the needed length of the settler by promoting the
coalescence of the dispersion. The main assumption is
that droplets larger than the pores of the mesh are
retained and the smaller droplets have a chance to wet
the surface of the mesh fibres, which increases the coales-
cence probability by increasing the contact time with
other droplets when being trapped on the fibre.

Knitted meshes consist of a variety of materials and
different structures. The composition of such a mesh con-
sists of a fibre, which is woven into a layer and these
layers can be arrange in different ways to form the final

mesh. One option is to roll them along their length. This
results in a layer alignment in flow direction in the set-
tler, this is called a wrapped mesh. The second option is
referred to as ‘layered’ and aligns the mesh in a sinuous
line and wraps them in a last layer mesh. In the settler,
the layers are perpendicular to the flow direction. The
different alignments are shown in Figure 9.

The layers of these knitted meshes can be produced
using different materials, ranging from glass over poly-
mers to metal fibres. A special case is composite meshes,
where in the layer of the knitted mesh other materials
are woven between the fibres. Part of this investigations
are five different meshes, with different materials and dif-
ferent structures. The meshes can be categorized using
the package density and the effective surface. The pack-
age density of a knitted mesh is calculated using the total
volume of the bounding box in reference total weight of
the mesh. The denser a knitted mesh is packed, the closer
the package density is to the material density.

ρpa ¼
mmesh

Vmesh
ð1Þ

The meshes investigated as coalescing aids are used for
the separation of large droplets, which means the pack-
age density is significantly smaller than the material den-
sity, and with that, the porosity of the knitted mesh is
higher. Table 3 shows the properties of all the investi-
gated knitted meshes. To distinguish between the differ-
ent mesh configurations, each mesh gets assigned a label.
Here, perfluoroalkoxy alkane (PFA) 0.27 represents the
PFA mesh with a 0.27 mm wire thickness, both variants

FIGURE 7 Variation of the target

mean diameter and the mixer rotation

per minute (RPM) adjustment of the

control loop. RPM, rotations per minute

FIGURE 8 Illustration of a

dispersion in a gravity settler without

(left) and with knitted mesh (right)
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with the same mesh length (100 mm). The label for the
stainless-steel mesh VA50 distinguishes them by their
mesh length, of 50 or 100 mm, and both have the same

wire thickness (stainless steel, notation derived from steel
grades V1A, V2A, etc.).

3.1 | Experimental results of laboratory-
scale investigations in a DN100 settler

In the laboratory-scale settler experiments, the efficiency
of the different meshes to reduce the densely packed dis-
persion layer is investigated. The experiments are carried
out in two steps. First, a set of reference experiments in a
settler without internals was done. The target value of
these investigations was the volume of the dispersion
layer and the length and height of the densely packed dis-
persion wedge. In the second step, the same experiments
are repeated with the knitted meshes as different inter-
nals, comparing the height of the layer in front of the
mesh to the height of the surface behind the mesh. The
above presented control loop (see Figure 6) is used in
combination with an automated flow rate control for oil
and water to generate a defined mean droplet diameter
using the online CNN evaluation of the OMOP images.
This setup enables experiments where only one parame-
ter in the settler system is changed, as depicted in
Table 4.

The dispersion wedge length without internals and
the reduction of the dispersion wedge with the knitted
meshes are evaluated using a DSLR camera (Nikon
D5600) in front of the settler. This camera captures the
whole settler length in a single image. An automatic
acquisition is triggered every minute during the experi-
ment. The data collected from the measuring equipment
connected to the settler and the images acquired by the
camera are sorted using the corresponding time stamps.
The glass settler is illuminated using a light-emitting
diode (LED) panel behind the settler. The densely packed
layer refracts the transmitted light in such a way that
there is a sharp contrast between the layer and the sur-
rounding fluid. This allows a segmentation of the dense
dispersion layer in the images to measure the height and
length of the dispersion wedge in the experiments with-
out internals. The algorithm used for evaluation with
knitted meshes is described in the following passage. The

FIGURE 9 Different knitted mesh layer alignments (top one

layer, middle wrapped, and bottom layered)

TABLE 3 Properties of the investigated knitted meshes

Label Material Structure Packing density (kg/m)3 Fibre width (mm) Length (mm)

Combination VA + glass Wrap 300 0.27 (0.28) 100

PFA 0.27 PFA Layered 145 0.27 100

VA100 VA Wrap 300 0.27 100

VA50 VA Wrap 300 0.27 50

Abbreviations: PFA, perfluoroalkoxy alkane; VA, stainless steel.
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main goal of the evaluation with a knitted mesh as a coa-
lescing aid was to measure the accumulation height of
the dispersion in front of the mesh, as well as the length
reduction of the dispersion wedge compared to the empty
settler. The height of the densely packed layer in front of
the mesh, the level of the surface behind the mesh, or if
the dispersion wedge permeated the mesh, and the height
of the dispersion behind the mesh are part of the mea-
surements. The images are sorted similar to the experi-
ments without a mesh. After that, two slices from every
recorded image are extracted. One right in front of the

mesh, and the other behind the mesh. The size of these
slices is the whole height of the settler and 10 pixels in
length for both positions. To cope with droplets wetting
the glass surface of the settler and blocking the visibility
of the dispersion wedge in certain areas, the slices are cal-
culated as the average of the seven neighbouring slices in
the image. The resulting two slices are then used to calcu-
late the difference between the two. This difference in
images then allows the height difference between the dis-
persion wedge in front of the mesh and the surface
behind the mesh to be determined. These images are
then concatenated in such a way that, over the length of
the newly created image, the time variation of the experi-
ment is depicted. Figure 10 illustrates a resulting image
of this operation. The y-axis shows the height of the set-
tler in the image, whereas the x-axis depicts the change
of the phase ration over time during the experiment.
Each slice in the image (10 pixel) marks a point in time
in the experiment where the dispersion in front of the
mesh is compared to the dispersion behind the mesh,
using the difference in greyscale values. This is depicted
by the colour scale on the right side of the image. The
lower level of the dispersion in front of the mesh is start-
ing from a phase fraction of 0.167, clearly visible. This
marks the point where the dispersion reaches the knitted
mesh. Starting with a phase fraction of 0.234, there is a
clear difference visible between the level of the dispersion
in front of and behind the mesh marked by the red
arrow.

The images are then evaluated manually using the
measurement tool for length in ImageJ. The arrows in
the image show the height of the dispersion layer in front
of the mesh, at the bottom and the height of the surface
behind the mesh at the top. Over time and with increas-
ing phase fraction, under constant droplet diameter and

TABLE 4 Experimental series of the settler investigations

Label Variation Fixed

E1 Total flow rate d10, phase fraction

E2 Phase fraction d10, total flow rate

E3 d10 Total flow rate, phase fraction

FIGURE 10 Evaluated image of the algorithm to determine

the height difference of the dispersion wedge (arrows marking

height difference in front and behind mesh)

FIGURE 11 Comparison between

the height difference of the dispersion in

front and behind the different knitted

meshes. COMB, combination; PFA,

perfluoroalkoxy alkane
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flow rate, the height difference between dispersion in
front and behind the mesh increases.

Figure 11 shows the comparison of the height differ-
ence for the investigated meshes in the experimental
series E2. Here, the mean diameter at the inlet
(d10 = 350 μm) and the total flow rate ( _V ¼ 0:2m3

h ) are
constant, and the phase fraction increases periodically.
The graph shows that with an increasing phase fraction
of the oil, the accumulation height in front of the mesh
increases. The slope of the curve decreases with higher
phase fractions. This could be due to not only the proper-
ties of the meshes but also the chosen surface level in the
settler, which was above the centre line. The further the
level of the dispersion comes to this centre line, the
greater the volume the dispersion can occupy in the
cylindrical settler. Between the different materials, there
was no great height deviation. At a phase fraction of 20%,
the stainless-steel knitted mesh with a length of 50mm
(VA50) was percolated by the dispersion. Compared to
the longer version of the same mesh, the accumulation of
the dispersion in front of the mesh was the same. This
results in a shorter length over which this height differ-
ence of dispersion in front of the mesh and the surface
behind the mesh can be reduced, leading to a higher dis-
persion flow speed inside the mesh. An example of this is
shown in Figure 12.

For the mesh with double the length, the break-
through point was at twice the accumulation height of
the shorter mesh. This shows that the dispersion speed
inside the mesh plays a major role in dispersion break-
through under otherwise constant conditions. The
resulting angle between the mesh front and the surface

behind the mesh was determined to be 72� at the
breakthrough point. The optimal operating point of the
knitted mesh should be where the lower end of the
densely packed layer in front of the mesh is in the cen-
tre line of the settler. Here, the height difference
between the accumulation in front and the surface
behind the mesh is minimal, and with that, the flow
speed of the dispersion in the mesh is minimal, assum-
ing a cylindrical settler. The dispersion, which perco-
lated the knitted mesh and forms a wedge behind the
mesh, consists mainly of small droplets. This means
the mesh classifies the dispersion; the larger droplets
coalesce with the oil or wet the mesh. The smallest
droplets, which represent the lowest layer in the dis-
persion wedge, are too small to wet the large wires and
flow through the mesh if their speed is too high. This
depends on surface nature, mesh length, and porosity
as mentioned before.[18]

However, one can find different characteristics in the
way the dispersion accumulates in front of the mesh.
Depending on which phase better wets the material, the
knitted mesh either supports the water or the oil phase.
An example of this can be seen in Figure 13, where the
black line marks the surface between the continuous oil
and the dispersion. The PFA prefers wetting the oil
phase. This leads to a capillary effect supporting the sur-
face of the oil, and the dispersion accumulates in front of
this oil surface. The wetting leads to a force directed
downwards, pushing onto the dispersion and accumulat-
ing it in front of the oil phase. The stainless-steel prefers
to wet with the water, and with that, the surface of the
water is stabilized. This leads to a force directing the

FIGURE 12 Breakthrough point at

which the dispersion percolates the

knitted mesh (left: length 50 mm, 20%

phase fraction; right: length 100 mm,

40% phase fraction)

FIGURE 13 Accumulation of the

dispersion wedge in front of

perfluoroalkoxy alkane (PFA) (left) and

stainless-steel mesh (right). PFA,

perfluoroalkoxy alkane
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dispersion upwards and accumulating the dispersion
wedge in front of the water phase.

The breakthrough point in the experiment E3, where
the inlet diameter d10 was varied, showed that this point
is dependent on the diameter of the droplets. The smaller
the droplets, the earlier the dispersion percolates the
knitted mesh. An example of this is shown in Figure 14.
The surface between water and oil in the images is at a
height of 30 mm. The breakthrough point is marked by
the red dot in the image. For the short mesh with a
length of 50 mm, the dispersion starts to percolate the
mesh at a mean diameter of d10 = 0.375 mm. The longer
mesh can retain the dispersion until a mean diameter of
d10 = 0.325 mm is reached. This can be explained by the
aforementioned speed of the dispersion in the mesh. The
smaller the droplets, the longer they have to be inside the
mesh to be separated. Another explanation for this is that
with smaller droplets, the height difference between the

dispersion in front and the surface behind the mesh
increases, which increases the flow speed of the disper-
sion in the mesh. The accumulation height at the break-
through point for the shorter mesh was 13.94 mm, and
for the longer mesh, it was 18.94 mm. This leads to the
insight that the smaller the mean diameter of the parti-
cles at the inlet, the longer the mesh should be.

4 | MODELLING OF A SETTLER
WITH KNITTED MESHES

In this section, a standard modelling approach of a phase
separation in an empty horizontal gravity settler after
Henschke[19] is further developed for knitted meshes as
coalescing aids. The settler (see Figure 15) is divided into
dl length and dh height elements. The iterative process
calculates for each length and height element the change
in droplet size due to droplet–droplet coalescence for the
layers below the surface. At the surface, the loss of dis-
persion is calculated due to droplet–surface coalescence,
and the new dispersion height in the next length element
is determined. This process is repeated for each length
element, either until there is no dispersion volume left or
the end of the settler is reached.

The model provides the length of the dispersion
wedge and allows for an approximation of the needed set-
tler length. The calculations in each iteration are as fol-
lows. In a first step, the sedimentation length Lin is
calculated. This describes the region at the inlet of the
settler, where the droplets of the dispersion settle to the
surface, and after the region, a dispersion wedge is
formed.

Lin ¼ 43:7
d32,0

d32,0þHp,0

� �0:4 ReinRes
Ar

� �0:5 Δρ
ρ

� �0:2 d32,0
Ds

� �0:1

ð2Þ

FIGURE 16 Modelling the separation of a dispersion with a

knitted mesh as a coalescence aid. ac, accumulation of the

dispersion; coal, coalescence; p, packed dispersion

FIGURE 14 Comparison of the experiment varying the inlet

mean droplet diameter between a mesh with 50 and 100 mm length

at 20% phase fraction and 0.2 m3/h total flow rate

FIGURE 15 Modelling the separation in a gravity settler. dis,

dispersion; i, index; l, length, p, packed dispersion
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In the case of the executed experiments, there was no clear
sedimentation zone seen as described by Henschke,[19]

and for this reason, the calculation of the inlet zone was
disregarded. A reason for this could be the minimally inva-
sive OMOP probe at the inlet of the settler. After this inlet
zone, the dispersion wedge starts with the initial height
Hp,0. The dispersion flow rate is determined by:

_Vdis ¼
_Vα0
αp

: ð3Þ

The holdup inside the densely packed dispersion αp is
assumed in this case to be αp = 0.9, and α0 is the phase
fraction at the inlet. The retention time of the droplets in
a length element of the settler is needed to calculate the
change in the droplet size and is acquired by the follow-
ing equation:

dt¼ hpDsdl
_Vdis

ð4Þ

The starting point for the droplet size change calculation
is the initial Sauter mean diameter at the inlet. In each
height element, the coalescence time τdi of the droplets is
modelled using the following set of equations:

τdi ¼ 7:65μ
Ra

7
3

H
1
6
cdσ

5
5Rfr�s

Ra ¼ 0:5d32 1� 1� 4:7
4:7þLamod

� �� �0:5

Rf ¼ d32 1� 4:7
4:7þLamod

� �0:5

Lamod ¼ g
!Δρ
σ

 !

Hcd ¼ 10�20 ð5Þ

The parameter r�s can be estimated from the resulting
coalescence curve of the sedimentation cell experiments
presented in the work of Henschke,[19] using iterative
modelling for stationary settling processes. The modelling
approach is extended to include knitted meshes in the
iterative calculation. This necessitates creating different
zones (see Figure 16) in the modelled settler, where the
calculation of the coalescence time, τdi, is adapted.

The first zone (zone 1) starts with the inlet of the set-
tler and ends at the starting position of the knitted mesh
(Lac). The second zone (zone 2) starts and ends with the
mesh (Lmesh) and the third zone (zone 3) accounts for the
rest of the modelled settler (Lfree). The changes in the
modelling approach in the different zones are based on
the observations made in the settler experiments. The dif-
ferent experiments showed that the dispersion wedge
accumulates in front of the knitted mesh, resulting in a
greater dispersion height. This height is measured in the
laboratory-scale experiments and used in the modelling
to scale-up settlers with knitted mesh as internals. This
means in zone 1 of the model, the measured height dif-
ference between the dispersion in front and after the
mesh is added to the calculated dispersion height of the
standard model.

hp,i ¼ hp,iþhac for l� 0,Lac½ � ð6Þ

This results in a changed coalescence time because of the
higher hydrostatic pressure and, with that, a greater loss
of dispersion due to coalescence in front of the mesh, as
seen in the experiments. In zone 2, it is assumed that,
similar to the observations in Figure 12, the dispersion is
reduced linearly over the mesh.

hp,i ¼ hp,iþhac 1� l
Lmesh

� �
for l� Lac,LacþLmesh� � ð7Þ

TABLE 5 Comparison of the adapted modelling and experimental results for a DN100 settler

Phase
fraction

Wedge length

Experiment
empty (cm)

Henschke
model (cm)

VA50 after
mesh (cm)

Henschke model
after mesh (cm)

20% 25.3 24 0 0

25% 30 28 0.5 0

30% 33.8 34 3.1 3

35% 42 38 7.2 8
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The effect of the mesh fibres on the coalescence in the
dispersion wedge is modelled by introducing a modifier
(tcoal) for the calculated coalescence time (τdi) of the stan-
dard model in this zone. This modifier can be gathered
using the laboratory-scale settler experiments, which are
needed for the accumulation height of the dispersion any-
way. The modification factor can be fitted by using the
modelling approach for the laboratory-scale settler and the
known dispersion wedge lengths measured in the experi-
ments with the knitted mesh. The factor is adapted until
the experimental and the modelling results match.

In the last zone, zone 3, the model is not changed, and
it is assumed that the coalescence after the mesh is compa-
rable to an empty settler. The following passage shows the
comparison between the laboratory-scale settler experi-
ments and the modified modelling approach, as well as a
modelling test for scale-up of the settler. Table 5 shows a
comparison between the experiments and the modelling of
a DN 100 settler using the following boundary conditions:

_V in ¼ 0:2
m3

h
,α0 ¼ 0:2;0:3,Lac ¼ 0:18m,Lmesh ¼ 0:05,hac

¼ 0:01�0:023m,r�S ¼ 0:033,Ds ¼ 0:1m,Din

¼ 0:015m,Ls¼ 1m,D32,0 ¼ 500μm, tcoal ¼ 0:76

Figure 17 shows the length of the dispersion wedge in
the experiment with the phase fraction variation over
time using a 50 mm stainless-steel knitted mesh. The
images show that at a phase fraction of 30%, the knitted
mesh is not able to fully reduce the dispersion anymore
and, behind the mesh, a dispersion wedge forms. The
adapted model is able to reproduce the measured wedge
lengths in the experiments after the knitted mesh. This
allows for a calculation of the reduction of the wedge
length compared to the settler without a mesh and is
used in the following cases to investigate the scale-up of a
settler using different assumptions.

The first case assumes that the accumulation height of
the dispersion in front of the mesh is not affected by the
change in diameter of the settler from DN100 to DN200 (0.1–
0.2 m). Only the flow rate is adapted to the larger diameter of
the settler. For this, it is assumed that the superficial liquid
velocity in the settler is the same as in the smaller settler. This
results in a higher flow rate of _V in ¼ 0:8m3

h . All the other
boundary conditions remain constant. Table 6 shows the
results of the modelling approach for a DN200 settler.

The model shows that the higher throughput in the
larger settler leads to an earlier breaching point of the dis-
persion wedge when using the same 50 mm stainless-steel
knitted mesh as in the smaller settler. The second case
assumes that the accumulation of the dispersion in front of
the mesh is linearly dependent on the wedge length. This
factor is calculated in Table 7 and then used to calculate the
accumulation height from the predicted wedge length in
the larger settler using the standard model (see Table 8).

Table 9 shows the modelling results in this case.
Because of the higher accumulation in front of the mesh,
the wedge length behind the mesh is reduced compared
to the previous results. The longer mesh reduces the
wedge at a higher rate than the 50 mm mesh. This can be
explained through the assumption of a linear decreasing

FIGURE 17 Dispersion wedge (inflow from the right in a VA50 mesh) at different phase fractions (20%, 25%, 30%, 35% at 0.2 m3/h)

TABLE 6 Scale-up modelling with constant accumulation of

the dispersion in front of the mesh

Phase
fraction

Wedge length

Henschke
model (cm)

Henschke
modified
VA50 (after
mesh) (cm)

Henschke
modified
VA200 (after
mesh) (cm)

20% 47 41 (18) 32 (0)

30% 66 61 (38) 50 (12)

TABLE 7 Scaling factor calculation assuming a linearly

accumulating wedge

Phase
fraction

Experiment
(DN100) (mm)

Accumulation
height (mm) Factor

20% 253 10 10
253¼ 0:0039

30% 338 20 20
338¼ 0:0059
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dispersion height in the mesh and is in accordance with
the observations in the experiments.

The third case assumes that the accumulation of the dis-
persion is smaller in the larger settler. The reasoning behind
this is that for a settler without internals, the dispersion
wedge in a larger settler is usually shallower and longer
compared to smaller vessels.[19] The dispersion has a higher
area to spread out, compared to the smaller settler. For this
modelling, the accumulation height of the experiments is
halved in the larger settler. This results in an overall longer
dispersion wedge and a smaller reduction of the dispersion
via the knitted mesh. The modelling experiments can give
an insight over the best- and worst-case scenarios during
scale-up of the settler and allow an estimate of the maximal
needed settler length (see Table 10).

5 | CONCLUSIONS

Gravity settlers play an important role in many chemical
engineering applications. The settling characteristics of a
dispersion is strongly dominated by the DSD involved. Its
measurement using optical imaging approaches has
many challenges. One of them is the segmentation of the

particles at higher phase fractions. This work develops a
state-of-the-art machine learning approach using a CNN
and a solution to the database generation using a fully
algorithmic approach, based on a previous work.[14]

From there, a representative system of computationally
generated spherical droplets can be used for training in a
first step. Based on this trained CNN, a second network
can be trained to directly segment the droplet images.
This allowed the final segmentation of the particulate
system without the need to own already evaluated
images, which were being used in the training process.

For an investigation of knitted meshes as coalescing
aids, the CNN segmentation approach was implemented
into the automated control loop of the mixer-settler. The
automated image analyses allowed to control a set, for
example, mean diameter when variating specific conditions
(phase ratio, throughput). The experiments exemplified a
different behaviour depending on the wetting characteris-
tics of the fibre materials used. In a basic study in a DN100
mixer-settler, different meshes (porosity, fibre thickness,
and length) of different structures (wrapped and layered)
and materials (perfluoroalkoxy alkane, stainless steel, and
mixed with glass) in the system of water/paraffin were
investigated.

The experiments revealed a linear accumulation of the
dispersion height within the mesh. The results of the experi-
ments were used to develop an extension of an established
iterative design approach for the implementation of knitted
meshes as coalescing aids in horizontal gravity settlers.

NOMENCLATURE
Symbols
A area (m2)
D diameter (m)
d10 mean diameter from first and zero moment (m)
d32 mean Sauter diameter (m)
g
!

gravitational constant (ms�2)
H initial height (m)
Hcd Hamaker coefficient (�)
h height (m)
L length (m)
Lr learning rate (�)
M mass (kg)
mm momentum (�)

TABLE 8 Calculation of the scale-up factor with constant accumulation rate of the dispersion in front of the mesh, based on dispersion

wedge length

Phase
fraction

Henschke
(DN200) (mm) Factor Factor

20% 470 0.039 470 mm � 0.0039 = 18.33 mm

30% 660 0.059 660 mm � 0.059 = 38.94 mm

TABLE 9 Scale-up modelling with a constant accumulation

rate of the dispersion in front of the mesh, based on dispersion

wedge length

Phase
fraction Henschke (cm)

Henschke
modified
VA50 (after
mesh) (cm)

Henschke
modified
VA200 (after
mesh) (cm)

20% 47 39 (16) 30 (0)

30% 66 58 (35) 44 (6)

TABLE 10 Scale-up with halved accumulation height of the

dispersion in front of the mesh

Phase
fraction

Henschke
(cm)

Henschke
modified VA50
(after
mesh) (cm)

Henschke
modified
VA200 (cm)

20% 47 43 (20) 35 (0)

30% 66 66 (25) 54 (16)
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n number (�)
Δp pressure difference (Pa)
p mean pressure (Pa)
Ra,
Rf

droplet radius in the asymmetric coalescence
model (m)

r�s dimensionless coalescence parameter (�)
t time (s)
V volume (m3)
_V volumetric flow rate (m3/h)
w weight decay (�)

Greek letters
Α phase fraction
μ dynamic viscosity (kg m�1 s�1)
ρpa packing density (kg/m3)
σ interfacial tension (kg s�2)
τdi coalescence time

Subscripts
ac accumulation of the dispersion
ci circle
co contour
coal coalescence
dis dispersion
free free
i index
in in
l length
mesh mesh
p packed dispersion
s settler
0 start

Dimensionless numbers
Ar Archimedes number
Lamod modified Laplace number
Re Reynolds number

Abbreviations
CNN convolutional neuronal network
COMB combination
DN diameter nominal
DSD drop size distribution
LED light emitting diode
OMOP optical multimode online probe
PFA perfluoro alkyloxy alkane
RPM rotation per minute
VA stainless steel
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