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Abstract

Methods for predicting Henry's law constants Hij are important as experimental data

are scarce. We introduce a new machine learning approach for such predictions:

matrix completion methods (MCMs) and demonstrate its applicability using a data

base that contains experimental Hij values for 101 solutes i and 247 solvents j at

298 K. Data on Hij are only available for 2661 systems i+ j. These Hij are stored in a

101� 247 matrix; the task of the MCM is to predict the missing entries. First, an

entirely data-driven MCM is presented. Its predictive performance, evaluated using

leave-one-out analysis, is similar to that of the Predictive Soave-Redlich-Kwong

equation-of-state (PSRK-EoS), which, however, cannot be applied to all studied sys-

tems. Furthermore, a hybrid of MCM and PSRK-EoS is developed in a Bayesian

framework, which yields an unprecedented performance for the prediction of Hij of

the studied data set.
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1 | INTRODUCTION

Knowledge on the solubility of gases in solvents is essential for the

design of many technical processes, such as gas absorption; and it is

also needed for understanding many processes in nature. Gas solubil-

ity is usually described by Henry's law (cf., Equation S1), in which the

key property is the Henry's law constant Hij. The number of Hij

depends only on the temperature and the nature of the solute i and

the solvent j. The solute is typically supercritical at the studied tem-

perature, which is why it is called “gas.” A large Henry's law constant

Hij corresponds to a low solubility and vice versa.

Experimental data on Hij are scarce compared to the variety of

possible combinations of relevant solutes and solvents. In the present

work, we introduce new prediction methods for Hij from the field of

machine learning (ML): matrix completion methods (MCMs). Various

types of MCMs have been proposed in the literature,1–3 in particular

for recommender systems,4,5 and received a lot of attention through

the Netflix Prize,6 an open competition of Netflix aiming at improving

their system for the prediction of user rating for movies and TV

shows. In this work, we introduce MCMs for the prediction of Hij at

constant temperature in binary systems and thereby follow a Bayesian

approach,7–9 which is known to be robust to overfitting without

requiring much parameter tuning.10

MCMs are highly interesting for predicting thermodynamic

properties of binary systems. The idea behind this is that data for a

given property of a binary system, such as the Henry's law con-

stant Hij of a solute i in a pure solvent j at a given temperature,

can be stored conveniently in a matrix. The respective matrices

containing the experimental data are typically very sparse, since the

measurement of fluid properties is in general tedious and expensive

and, in addition, the number of components and systems of interest

is large. The prediction of the missing entries in such a matrix con-

stitutes a matrix completion problem. We have recently introduced

MCMs for the prediction of activity coefficients at infinite dilution

in binary systems at constant temperature,7,8 in which we give an

in-depth discussion of the basic idea of applying MCMs for the
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prediction of thermodynamic mixture data. Here, we extend this

approach to the prediction of Hij.

In the present work, only pure solvents are considered and the

temperature is fixed to 298.15 ± 1 K (labeled as 298 K here, for sim-

plicity), such that Hij is fully specified by specifying the components

i and j. The temperature dependence of the Henry's law constant is

highly interesting, but was excluded from the present study, which is

focused on introducing new methods for predicting Hij. However,

these methods can be extended to include the temperature depen-

dence of properties once they are established for the isothermal case.

We have shown a possible approach to implement such an extension

in a recent work11 for the prediction of activity coefficients at infinite

dilution γ∞ij , where we have modeled the dependence of γ∞ij on the

temperature T by exploiting the fact that it can be well described by

ln γ∞ij Tð Þ¼AijþBij=T with system-specific, but temperature-indepen-

dent, parameters Aij and Bij in many cases.

The accurate measurement of Hij requires an extrapolation to the

limiting case xi !0, for which a series of experiments is necessary that

makes these studies tedious. Therefore, experimental data on Hij are

missing for many practically relevant systems. This is why methods for

predicting the Henry's law constant are so interesting.

Nevertheless, there are only comparatively few methods for

predicting Henry's law constants so far. Most of these methods relate

the Henry's law constant to physical component descriptors, mostly

phenomenological descriptors like critical properties,12 molecular

descriptors like molecular masses and polarizability,13,14 or SMILES

representations.15 These Quantitative Structure Property Relationships

(QSPR)16 are often based on nonlinear approaches like artificial neural

networks or support vector machines. In some cases, techniques from

ML have been used for descriptor selection, such as the Replacement

Method17,18 and Genetic Algorithm techniques.17,19 All of these

methods are restricted to a special class of systems: they either only

consider aqueous solutions13–15,17,18,20 or can only be applied for the

prediction of the Henry's law constant of a single solute in different

ionic liquids.12,19 Since the scope of these methods is very restricted,

they are not considered further here.

In contrast, group-contribution equations-of-state (GC-EoS), from

which the Henry's law constant can be determined by well-

established routes,21 have a wider applicability. In GC-EoS the EoS is

typically combined with a mixing rule that is based on a model of the

Gibbs excess energy (GE). Using a group-contribution GE-model, such

as UNIFAC22 or modified UNIFAC (Dortmund),23 then results in a

GC-EoS, of which several have been proposed in the literature.21,24,25

The EoS used in these approaches are often simple cubic EoS for

which the GE-mixing rules are known to give good results for a large

variety of systems.21,26

The group-contribution concept enables predictions for systems

for which no data are available. The prerequisite for carrying out this

calculation is, however, that the group interaction parameters of the

GE-model are available. Parameter matrices including typical supercrit-

ical solutes, as they are encountered in gas solubility problems, have

been established for GC-EoS27; however, the parameter tables are still

far from covering all cases of interest.

One particularly successful GC-EoS, which has also been

implemented in commercial process simulators, is the Predictive

Soave-Redlich-Kwong (PSRK) EoS.27,28 The PSRK-EoS (simply named

PSRK in the following for brevity) is a combination of the cubic

Soave-Redlich-Kwong EoS29 with a mixing rule based on the original

UNIFAC model.22 The parameter tables for PSRK include many super-

critical compounds. Specifically, the current public parameter table of

the PSRK model distinguishes 81 main groups and comprises fitted

pair-interaction parameters for 956 combinations of them.27 Based on

the reported parameters, a large number of components and systems

can be modeled, and the PSRK model was also demonstrated to yield

reliable predictions for many different systems,27,30 although its pre-

dictive accuracy decreases for highly asymmetric systems.31 However,

note that there is still a substantial number of missing pair-interaction

parameters of the PSRK model, namely for 2284 combinations of the

present main groups, that have not been reported yet, which hampers

its applicability. PSRK is used here as physical reference model for

assessing the performance of the novel prediction methods based on

matrix completion that are developed in this work. Furthermore, the

physics-based PSRK is used in the development of a novel hybrid pre-

diction method by combining it with a data-driven ML method as

described in detail in the following sections.

The Henry's law constant Hij(T) can in principle also be

determined from the pure component vapor pressure pi
vap(T) and the

activity coefficient at infinite dilution γ∞ij Tð Þ using information on the

Poynting correction as well as on the pure component saturated vapor

fugacity coefficient; for details, see Equation S4. However, determin-

ing Hij(T) in this way implies that the solute i is subcritical at the tem-

perature T. In this case, typically Raoult's law would be used to

describe the equilibrium condition of the component i, rather than

using Henry's law, so that the Henry's law constant is not needed at

all. Nevertheless, a substantial part of the experimental literature data

on Hij(T) refers to this case. These data were included in the present

study, but we emphasize that the main area of application of Hij(T) is

the description of the solubility of supercritical components i.

This article is organized as follows: we first describe the data base

for Hij that we have used. We than introduce two different MCMs for

predicting Hij, one that is completely data-driven and one that consti-

tutes a hybrid of a data-driven MCM and the physics-based PSRK.

Subsequently, we present and discuss the results.

2 | DATA BASE

The experimental data on Henry's law constants Hij of solutes i in sol-

vents j at 298 K used in the present work were taken from the Dort-

mund Data Bank (DDB).32 298 K was chosen since at this

temperature, by far the most data points for Hij are reported in the

DDB, as shown in Figure S1. The raw data on Hij were preprocessed

as described in the following. Data points that were labeled to be of

poor quality in the DDB were excluded. Furthermore, only solutes

and solvents for which data for at least two different binary systems

were available were considered, as this is a prerequisite for the
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application of the leave-one-out analysis as described in detail below.

Finally, for those binary systems for which multiple data points in the

temperature range of 298.15 ± 1 K were available, the arithmetic

mean of Hij was calculated and used. The resulting data set comprises

I = 101 solutes and J = 247 solvents and can, hence, be represented

in a I� J matrix, which is depicted in Figure 1; information on the

considered solutes and solvents is summarized in Tables S1 and

S2, respectively. This matrix has 24,947 elements, but only 2661

of these are occupied with experimental data, corresponding to

10.7%. In Figure 1, the systems for which experimental data are

available are represented as colored entries with the color code

indicating the corresponding numerical value of Hij, whereas the

systems for which no experimental data are available are repre-

sented as black entries. The natural logarithm of Hij, i.e., ln Hij, is

thereby used in Figure 1 and throughout this work for scaling

purposes.

Only 16 of the 101 solutes are supercritical at the considered tem-

perature. This is an extremely small number, considering the importance

of gas solubility. In order to have a sufficiently large data base, we did

non differentiate between sub- and supercritical solutes in the present

work and simply operated on all available data in the DDB.

It is interesting that the entries in a single row in Figure 1 show a

fairly uniform color, i.e., for a given solute, the numbers of Hij are simi-

lar for most solvents. In contrast, for a given solvent, the numbers of

Hij vary strongly, depending on the solute it is combined with.

Furthermore, the color code indicating the values of Hij in Figure 1

reveals a strong correlation between the critical temperature of a

solute and its solubility: for solutes with lower critical temperature, in

general higher Hij are observed and vice versa.

There are, however, a few apparent exceptions: most of the con-

sidered solutes are hydrophobic and therefore substantially poorer

soluble in water (H2O) and heavy water (D2O) than in other solvents,

cf., labeled columns in Figure 1. Furthermore, the solute sulfur trioxide

(SO3) exhibits rather high Henry's law constants (poor solubilities)

despite a comparatively high critical temperature; however, as for SO3

only data for two solvents are available, this finding should not be

overly interpreted.

Twenty-nine of the components are present both as solute and

solvent in the data set, cf., Tables S1 and S2. The corresponding sol-

ute/solvent combinations would be pure components and were there-

fore not considered in the present work; for a detailed discussion of

these cases, we refer to the Supporting Information.

For subcritical solutes, Henry's law constants can also be calcu-

lated from the solute's vapor pressure and its activity coefficient at

infinite dilution. In principle, this could have been used for augmenting

the data base on Hij here. This option was considered but discarded,

firstly, as it would have further increased the already large fraction of

data for subcritical solutes, and, secondly, as the corresponding calcu-

lation requires assumptions on the fugacity coefficient of the solute

and the Poynting correction, which introduce additional errors.

3 | MATRIX COMPLETION METHODS

Two different MCMs were used in this work for predicting Henry's

law constants Hij for binary systems at 298 K. Both MCMs are based

on a Bayesian approach,7,8 which considers random variables drawn

from a probability distribution instead of scalar parameters and which

enables the incorporation of prior knowledge in a straightforward

manner, as described in detail below. Both MCMs are collaborative-

filtering methods5,33 that do not incorporate any direct information

on the pure components, such as physical component descriptors, but

use only the available mixture data for the binary systems, from which

they infer so-called latent variables (LVs) during the training.

In both MCMs, the natural logarithm of Hij is modeled as a sto-

chastic function of LVs:

ln HMCM
ij ¼ uTi �vjþbui þbvj , ð1Þ

where ui and vj are (column) vectors of length K, whereas bui and bvj
are scalars. ui and bui represent the LVs of the solute i, vj and bvj those

of the solvent j. Hence, in both MCMs, each solute and each solvent

is described by K+ 1 component-specific LVs, which are determined

from data on the mixture property ln Hij (all LVs are initially unknown

F IGURE 1 Matrix
representing the experimental
data on Henry's law constants Hij

of solutes i in pure solvents j at
298.15 ± 1 K as reported in the
DDB32 after preprocessing (see
text). The color code indicates the
numerical value of lnHij. The order
of the solvents is arbitrary, while
the solutes are arranged
according to their critical
temperature Tc according to the
DDB from low (top) to high
(bottom).
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and inferred from the training data on ln Hij during the training of the

MCMs). K is a hyperparameter of the models and was set to K = 4 in

all cases based on preliminary studies using cross-validation; however,

the presented MCMs are robust regarding variations of K as demon-

strated in Figure S10.

The product uTi �vj in Equation (1) describes the contribution of

specific pairwise interactions between solute i and solvent j to ln Hij ,

whereas bui and bvj can be interpreted as a general solubility of a solute

i and a general dissolving capacity of a solvent j, respectively,

irrespective of specific binary interactions. In the following, we refer

to bui and bvj as solute bias and solvent bias, respectively, or summarize

both under the term component biases. Such biases are also commonly

considered for users and movies in recommender systems of, for exam-

ple, movie streaming services, where they take into account that some

users are generally more critical than others when rating movies, and that

some movies are in general rated higher than others.34 They turn out to

improve the model also in the present application for predicting Hij. The

consideration of the solute bias bui is motivated in particular by the

observation that some solutes show poor solubility in almost all stud-

ied solvents whereas other solutes are highly soluble in most solvents,

cf., Figure 1. A similar behavior was not observed for activity coeffi-

cients at infinite dilution, which we studied in our previous work.7,8

In the Bayesian approach that is used here, all data and LVs are

modeled as random variables such that the MCMs are probabilistic

models, that are defined by two probability distributions: prior and

likelihood. The prior constitutes a probability distribution over the

parameters of a model (LVs of the MCM here) prior to fitting the

model to the training data. Hence, the prior contains a priori informa-

tion on the LVs before the actual training step. The likelihood, on the

other hand, describes the link between the training data and the LVs.

The likelihood constitutes a probability distribution over the observ-

able quantity (ln Hij here) conditioned on the LVs, i.e., it specifies how

the LVs manifest themselves in the data for ln Hij. The aim of Bayesian

inference is finding the so-called posterior, which is the probability dis-

tribution over the LVs that is consistent with both the a priori infor-

mation on the LVs (through the prior) and the evidence from the

training data (through the likelihood). As inference method, variational

inference35,36 was chosen in this work.

From the posterior, i.e., the inferred LVs, ln Hij can also be

predicted for previously unreported binary systems following

Equation (1). In each case, a probability distribution for ln Hij is

thereby predicted, which also provides information on the model

uncertainties. In the following sections, the characteristics of the two

MCMs developed in this work are discussed in more detail.

3.1 | Data-driven MCM

The first MCM is purely data-driven: its LVs are trained only to the

sparse available experimental data for ln Hij from the DDB, cf., Fig-

ure 1; no other information is used. We refer to this method as MCM-

data in the following. Figure 2 shows an overview of how MCM-data

is trained and used to predict ln Hij.

In the case of MCM-data, no information about the LVs is

available prior to the training. Therefore, a rather broad, thus unin-

formative, probability distribution was used as prior here. Specifi-

cally, a normal distribution centered around zero and standard

deviation σP = 1 for uTi and vj, and σP,CB = 10 for bui and bvj was

chosen:

p ui,kð Þ¼N 0,σPð Þ, for k¼1…K ð2Þ

p vj,k
� �¼N 0,σPð Þ, for k¼1…K ð3Þ

p bui
� �¼N 0,σP,CBð Þ ð4Þ

p
�
bvj
�¼N 0,σP,CBð Þ: ð5Þ

In general, the smaller the values for the standard deviations

(σP and σP,CB) are chosen, the stronger the LVs are restricted

and the smaller is the influence of the training data on the LVs. In

contrast, a very broad prior distribution (large values of σP and

σP,CB) barely constrains the LVs, such that the posterior is predomi-

nantly determined by the experimental data. The influence of the

choice of the hyperparameters was investigated in preliminary

studies. The values reported here represent good compromises

between the extremes “too narrow, i.e., too restrictive” and “too
broad, i.e., too irrelevant.” However, the window, in which good

results are obtained is wide and similar results as the ones

presented below can also be obtained with other choices of the

hyperparameters.

As likelihood, which models the probability of the data on ln Hij

conditioned to the LVs, a normal distribution with standard deviation

σL = 0.2 centered around uTi �vjþbui þbvj was chosen:

F IGURE 2 Schematic
illustration of the prediction of
lnHij with MCM-data. The MCM
is trained to experimental data
on lnHij (exp) with specified
hyperparameters. The inferred
LVs are subsequently used with
Equation (1) to obtain
predictions (pred) for all possible
solute-solvent combinations.
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p lnHijjui,vj ,bui ,bvj
� �

¼N uTi �vjþbui þbvj ,σL
� �

¼N ui,1 �vj,1þ���þui,K �vj,K þbui þbvj ,σL
� �

,
ð6Þ

The choice of the hyperparameter σL = 0.2 was motivated by the

uncertainty of the available experimental data, i.e., twice the value

found on average for the experimental uncertainty was chosen. All

data points were thereby treated equally, i.e., σL = 0.2 was used

throughout.

3.2 | HYBRID MCM

The second MCM is hybrid, as it is not only trained to (sparse) experi-

mental data on ln Hij, but also incorporates information from the Pre-

dictive Soave-Redlich-Kwong (PSRK) equation-of-state27 in the form

of PSRK predictions. Consequently, we refer to this MCM as MCM-

hybrid in the following. MCM-hybrid is based on the so-called whisky

approach proposed for the prediction of activity coefficients at infinite

dilution in previous work of our group8 and therefore only briefly dis-

cussed here; we refer to Reference [8] for more details. Figure 3

shows an overview of how MCM-hybrid is trained and used to pre-

dict ln Hij.

As MCM-data, MCM-hybrid models ln Hij according to Equa-

tion (1). However, in contrast to MCM-data, MCM-hybrid takes full

advantage of the Bayesian approach to matrix completion by using

an informative prior. The training of MCM-hybrid consists of

two steps. In the first step, MCM-hybrid was trained to simulated

data for ln Hij that was generated with PSRK. With PSRK and its

present public parameterization,27 predictions for 7760 (31.1%) of

all possible binary systems of the considered solutes and solvents

can be obtained; hence, the matrix with this simulated data for the

first training step is more densely occupied than the matrix with

the experimental data, cf., Figure 1. During the first training step,

the MCM infers (provisional) LVs of the solutes and solvents from

the predictions of PSRK, cf., Equation (1). This step can be considered

as extracting the physical knowledge on the solutes and solvents that

is implicitly encoded in PSRK and explicitly provided in the form

of PSRK predictions for ln Hij, and storing this knowledge in LVs.

However, as the PSRK predictions are less reliable than the experi-

mental data, the LVs obtained in this pretraining step are only prelimi-

nary and are therefore not directly used for predicting ln Hij. Instead,

they are used to generate an informative prior for a second training

step of the MCM. In the second training step, MCM-hybrid is,

similarly to MCM-data, trained to the sparse set of available experi-

mental data on ln Hij. The second step can be understood as a revision

of the preliminary LVs (inferred from the PSRK predictions alone)

based on the experimental data; we refer to this step as refinement

step in the following. The refinement step of MCM-hybrid yields the

final set of LVs that contain information from the PSRK predictions

and the experimental data. In the pretraining step of MCM-hybrid, the

same broad normal distribution as in MCM-data, i.e., a normal distri-

bution centered around zero with standard deviation σP,CB = 10 for

the component biases and σP = 1 for the remaining LVs, was used

as prior:

p ui,kð Þ¼N 0,σPð Þ, for k¼1…K ð7Þ

p vj,k
� �¼N 0,σPð Þ, for k¼1…K ð8Þ

p bui
� �¼N 0,σP,CBð Þ ð9Þ

p
�
bvj
�¼N 0,σP,CBð Þ: ð10Þ

A Cauchy distribution with scale λL = 0.2 was chosen as likeli-

hood, which is in contrast to the training of MCM-data:

p lnHijjui ,vj,bui ,bvj
� �

¼Cauchy uTi �vjþbui þbvj ,λL
� �

¼Cauchy ui,1 �vj,1þ�� �þui,K �vj,K þbui þbvj ,λL
� �

:
ð11Þ

F IGURE 3 Schematic
illustration of the prediction of
lnHij with MCM-hybrid. In the
pretraining step, the
hyperparameters are specified
and the MCM is trained to
simulated data for lnHij from
PSRK. The inferred (preliminary)
LVs are used to generate an
informative prior for the
refinement step, in which the
MCM is trained to experimental

data on lnHij (exp). The resulting
(final) LVs are subsequently used
with Equation (1) to obtain
predictions (pred) for all possible
solute-solvent combinations.
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The reason for using a Cauchy likelihood is that for some combi-

nations of solutes and solvents, PSRK gives extremely (and unreason-

ably) large/small predictions for ln Hij as shown in Figure S5. We

attribute these extreme outliers to badly chosen binary interaction

parameters of PSRK; the problematic predictions are basically limited

to hydrochloric acid (HCl) dissolved in alcohols. To prevent a negative

impact due to these obvious outliers in the pretraining step of MCM-

hybrid, the Cauchy distribution was chosen as it is more robust

toward extreme outliers than the normal distribution.

Of course, the pretraining step can extract information from the

PSRK predictions only for those solutes and solvents that can in gen-

eral be modeled by PSRK, i.e., for which at least one ln Hij within the

considered matrix can be predicted. With the present public version

of PSRK,27 this is the case for 81 of the 101 studied solutes (80.2%)

and 142 of the 247 studied solvents (57.5%). Hence, only for those

81 solutes and 142 solvents, meaningful preliminary LVs can be

inferred from the PSRK predictions and, as a consequence, an infor-

mative prior for the subsequent refinement step can be generated.

For those solutes and solvents that cannot be modeled by PSRK, the

same uninformative prior as for the training of the MCM-data was

chosen in the refinement step of MCM-hybrid: a normal distribution

centered around zero with standard deviation σP = 1 for ui and vj and

σP,CB = 10 for bui and bvj .

For those solutes and solvents that can be modeled by PSRK, an

informative prior for the LVs in the refinement step was generated

from the posterior of the pretraining step as described in the follow-

ing. Since the posterior of the pretraining step of the studied LVs was

approximately normally distributed in all cases, they were fitted with

normal distributions yielding mean and standard deviation for each

LV. The means were adopted, whereas the standard deviations of all

informed solute and solvent biases were subsequently scaled with a

constant factor, such that the mean of all resulting standard deviations

was σP,CB = 5; similarly, the standard deviations of the remaining

informed LVs were scaled to yield a mean standard deviation of

σP = 0.5. The scaling factors, which can be seen as hyperparameters,

were set to 6.44 for σP and 172.08 for σP,CB, respectively, to obtain

the specified mean standard deviations. This scaling procedure is nec-

essary, since the predictions of PSRK are in general less trustworthy

than the experimental data, and show some extreme outliers as exem-

plified in Figure S5. Without this scaling, the predictions of PSRK and

the experimental data would be basically treated in the same way,

resulting in an exaggerated influence of the PSRK predictions on the

training of the hybrid MCM. By setting the mean standard deviation

to half of the values for the uninformed prior (σP = 1 or σP,CB = 10,

cf., above), a stronger prior was obtained for those LVs for which a

priori information could be extracted from the PSRK predictions.

However, these informed prior probability distributions for the LVs

are still broad enough to give enough flexibility in the refinement step,

if sufficient evidence is provided by the experimental training data.

The scaling of the posterior distributions from the pretraining

step can in general lead to distributions that are broader than the

uninformed prior. Therefore, a last processing step was introduced to

ensure that the informed prior for those solutes and solvents for

which a priori information could be extracted from the PSRK predic-

tions is always stronger than the uninformed prior for those solutes

and solvents for which this is not the case. This was achieved by mul-

tiplying the scaled posterior from the pretraining step with the respec-

tive uninformative prior distributions, resulting in the final informative

prior for the refinement step of MCM-hybrid:

p ui,kð Þ¼N u�i,k ,σ
�
P

� �
, for k¼1…K ð12Þ

p vj,k
� �¼N �

v�j,k ,σ
�
P

�
, for k¼1…K ð13Þ

p bui
� �¼N bu�i ,σ�P,CB

� � ð14Þ

p
�
bvj
�¼N �

bv�j ,σ�P,CB
�
: ð15Þ

Again, normal prior distributions were used for all LVs, but not

centered around zero (as in the pretraining step of MCM-hybrid and

the training step of MCM-data) but centered around an initial guess

for each LV (u�i ,v
�
j ,b

u�
i ,bv�j ) based on the posterior of the preceding

pretraining step; also the standard deviations of the prior distributions

ðσ�P; σ�P;CBÞ in the refinement step were set based on the posterior of

the preceding pretraining step.

The final prior (informative for components that can be modeled

with PSRK, uninformative for components that cannot be modeled

with PSRK) was ultimately used in the refinement step of MCM-

hybrid, in which the method was trained to the available experimental

data for ln Hij from the DDB, cf., Figure 1. In the refinement step, a

normal likelihood with standard deviation σL = 0.2 was chosen, which

is in analogy to the (single) training step of MCM-data:

p ln Hijjui ,vj,bui ,bvj
� �

¼N uTi �vjþbui þbvj ,σL
� �

¼N ui,1 �vj,1þ���þui,K �vj,K þbui þbvj ,σL
� �

:
ð16Þ

Similar to MCM-data, preliminary studies have shown that MCM-

hybrid exhibits robust behavior for hyperparameters over a wide

range. The procedure can be adapted as needed, but the one pro-

posed here works well for predicting Henry's law constants.

4 | COMPUTATIONAL DETAILS

Both MCMs introduced in this work were implemented in the proba-

bilistic programming language Stan37; details on the models including

the source code to run them in Stan are given in Figures S2–S4. As

inference method, which inverts the generative process of the proba-

bilistic model and reasons about the LVs for given data (ln Hij here),

we resorted to Gaussian mean-field variational inference,36 which

approximates the posterior probability densities by solving an optimi-

zation problem.35 Since exact Bayesian inference is intractable except

for very simple cases and usually no closed form solution is accessible,

variational inference is commonly employed for this purpose and has

HAYER ET AL. 6 of 11
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been successfully applied to various models up to large scales.38 By

sampling from the approximated posterior distributions, the distribu-

tion of the ln Hij numbers can be calculated for any combination of

solutes and solvents from Equation (1). All pre- and postprocessing

steps were performed in MATLAB® R2019b.39

For evaluating the predictive performance of the two MCMs, a

leave-one-out analysis40 was used. Each MCM was thereby trained

multiple times, and in each run, one of the 2661 available experimen-

tal data points was withheld during the training and subsequently

predicted by the MCM; the prediction was then compared to the

withheld experimental value. This leave-one-out analysis requires that

for each solute and each solvent at least two data points for different

systems are available. If this condition is satisfied, there is at least one

data point for each component in the training set (after withholding

the test data point), such that the MCMs have at least some informa-

tion for learning the features of each component. Considering the

deviations between prediction and experimental value of all available

data points, the overall scores mean absolute error (MAE) and mean

squared error (MSE) were calculated and compared among the MCMs

and with those from PSRK. The latter comparison is, however, not

trivial: both MCMs developed here allow for the prediction of ln Hij

for all possible combinations of the studied solutes and solvents and

therefore for notably more binary systems within the considered

matrix than PSRK. They are assessed using leave-one-out analysis, i.e.,

based on real predictions, since the respective data point was not

used for training the MCMs. In contrast, the deviations reported for

PSRK are simply those from the trained method as it is reported in the

literature.27 Unfortunately, the training set that was used for

obtaining the parameters of PSRK has not been disclosed in the litera-

ture. It may be speculated that it contained a large fraction of the data

points that are considered here. Hence, even though we use formally

the same statistical quantities to characterize the deviations for the

MCMs on the one side and PSRK on the other, they refer to different

types of deviations. Of course, in contrast to the MCMs, PSRK can as

a group-contribution method be used to describe additional compo-

nents besides the 101 solutes and 247 solvents considered here.

In the Supporting Information, we report “final” LVs for all solvents
and solutes. They were inferred by MCM-hybrid using all 2661 experi-

mental data points for ln Hij (without applying a leave-one-out strat-

egy). The idea behind this is to obtain a single set of parameter values

that enables a direct application of the MCM for predicting ln Hij.

Comparing the numbers for the LVs reported in the Supporting Infor-

mation and those obtained in the leave-one-out analysis reveals, as

expected, only minor differences. Consequently, the numerical values

in the Supporting Information constitute a complete parameter set of

the final MCM-hybrid model and allows the prediction of ln Hij for any

binary combination of the studied solutes and solvents at 298 K.

5 | RESULTS AND DISCUSSION

In Figure 4, the performance of the two developed matrix completion

methods (MCM-data and MCM-hybrid) for the prediction of Henry's

law constants ln Hij in binary systems of a solute i and a solvent j at

298 K is evaluated in terms of MAE and MSE and compared to the

performance of PSRK.27 As described above, the scores of the MCMs

are thereby obtained by a leave-one-out analysis and comparing the

predictions with the respective experimental data from the DDB.32

Note that in addition to the two MCMs discussed here, a third MCM

was tested. It is a variant of MCM-data but without considering com-

ponent biases, cf., Equation (1). The results are presented in the

Supporting Information and show that using the biases yields substan-

tially better results.

In Figure 4, only those data points that can be described with

PSRK are considered. By using the latest published parameterization

given by Horstmann et al.,27 PSRK can predict ln Hij for 1438 of the

2661 binary systems (54.0%) for which experimental data are avail-

able in the DDB,32 cf., Figure 1.

The results in Figure 4A show that the MAE and MSE of PSRK

are substantially larger than the respective scores of both MCMs

(note the logarithmic scale). However, a closer analysis shows that the

poor scores of PSRK can mainly be attributed to only a handful of data

points that are extremely badly predicted by PSRK, as exemplified in

Figure S5. Most of these extreme outliers correspond to the solute

hydrochloric acid (HCl) dissolved in alcohols as solvents and can be

attributed to poor group-interaction parameters between the HCl

group and the alcohol group of PSRK. To obtain a fairer comparison,

we have also omitted these extreme outliers for calculating the MAE

and MSE of the methods and represent the respective scores in

Figure 4B.

When omitting the PSRK outliers, the performance of MCM-data

is similar to that of PSRK. The hybrid approach MCM-hybrid clearly

outperforms PSRK and MCM-data in both scores irrespective of

whether the PSRK outliers are taken into account or not. It is interest-

ing to realize that MCM-hybrid, which combines information from

PSRK predictions with scarce experimental data in the training, appar-

ently does not suffer from the extreme PSRK outliers. This underpins

the robustness of MCM-hybrid. The results shown in Figure 4 also

demonstrate that the Bayesian approach for the hybridization works

well and combines advantages of PSRK with those of the data-driven

MCM, while not being impaired by the weaknesses of the individual

methods.

In Figure 5, the predictions of PSRK, MCM-data, and MCM-

hybrid are compared in a parity plot (panel A) and a histogram repre-

sentation of the deviations from the experimental data (panel B).

The representations in Figure 5 support the findings described

above. Figure 5A clearly indicates that the hybrid approach particu-

larly improves the prediction of those data points that are rather

poorly predicted with PSRK or MCM-data (or both), which is consis-

tent with the observation of a substantially lower MSE in Figure 4.

This again indicates that MCM-hybrid represents an extremely robust

combination of two approaches that benefits from additional informa-

tion but is not notably prone to shortcomings of the individual

methods. Furthermore, Figure 5B illustrates that MCM-hybrid pre-

dicts most data points with a very high accuracy; the deviations are

often in the range of jΔln Hij=kPa
� � j <0:1, corresponding to
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deviations that are in the order of the experimental uncertainty in the

determination of Henry's law constants. For instance, we have esti-

mated the experimental uncertainty of ln Hij by calculating the mean

standard deviation for those binary systems for which multiple data

points in the temperature range of 298.15 ± 1 K were available in the

DDB and found a value of almost exactly 0.1.

Unlike the proposed MCMs, PSRK is, as group-contribution

method, also able to model systems outside the considered matrix,

which is not the case for all MCMs presented here. However, one

major disadvantage of PSRK is that its application is limited to

those components and systems for which the method has been

parameterized. As described above, only about 54.0% of the

experimental data on Hij taken from the DDB in this work can be

predicted with the present public version of PSRK, which is why

the comparison in Figures 4 and 5 was only carried out based on

those 54.0% of the data points. This restriction does not apply for

the MCMs developed in this work, as they allow the prediction of

Hij of all possible binary systems of the considered solutes and sol-

vents. This enables the evaluation of the predictive performance

of the MCMs based on all 2661 available experimental data points

for Hij by leave-one-out analysis, which is discussed in the

following.

Figure 6 shows the MAE and MSE of the predictions with

MCM-data and MCM-hybrid; Figure S11 depicts the predictions of

both methods in a parity plot (panel A) and a histogram representation

(panel B) similar to Figure 5. In Figure S12, a parity plot that addition-

ally includes information on the model uncertainties is given.

The observations are similar to those discussed above. The scores

are slightly worse when all available data are considered than when

only data that can be modeled with PSRK are considered. This is not

unexpected, as those components that cannot be described with

PSRK are in general less studied, i.e., for these components, less data

for training the MCMs are available.

(A) (B) F IGURE 4 Mean absolute error
(MAE) and mean squared error (MSE) of
PSRK, MCM-data, and MCM-hybrid for
the prediction of lnHij for binary systems
at 298 K. (A) Considering the full data
set (1438 data points). (B) Without
considering the worst 11 outliers of
PSRK, cf., Figure S5.

F IGURE 5 Comparison of the
predictions (pred) for lnHij with PSRK,
MCM-data, and MCM-hybrid without
considering the worst 11 outliers of
PSRK. (A) Parity plot of predictions over
experimental data (exp) from the DDB.
(B) Histogram of the deviations of the
predictions from the experimental data.
N is the number of binary systems. The
shown interval in the histogram contains
97.8% (PSRK), 98.4% (MCM-data), and
99.5% (MCM-hybrid) of all considered
data points.

F IGURE 6 Mean absolute error (MAE) and mean squared error
(MSE) of MCM-data and MCM-hybrid for the prediction of lnHij in
binary systems at 298 K. For the evaluation, all 2661 experimental
data points from the DDB were considered here.
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In the following, we briefly discuss how MCMs can not only be

applied for the prediction of mixture properties (ln Hij here), but also

enable interesting physical insights in the mixture data. We therefore

study the LVs of the solutes and solvents that were inferred during

the training of MCM-hybrid from the mixture data (PSRK predictions

and experimental data on ln Hij) in more detail.

Figure 7 shows the component biases bui and bvj of all solutes

(panel A) and all solvents (panel B), respectively; the solutes and sol-

vents are ordered in analogy to Figure 1, i.e., the solutes are sorted

according to their critical temperature in ascending order, while the

solvents are arranged by their DDB number (which is rather arbitrary).

Similar figures for the remaining LVs (ui and vj) are shown in

Figures S13 and S14.

The number of data points that was considered for each solute

(solvent) in Figure 7 equals the number of different binary systems in

the data set that contain the respective solute Ni (solvent Nj). This

number of data points is attributed to the performed leave-one-out

analysis, where one experimental ln Hij was withheld in each run and

all LVs were trained. Thereby, only those LVs were saved that were

obtained when the considered solute (solvent) was part of the one

system that was withheld. From the selected data points, mean and

standard deviation of bui (b
v
j ) were calculated and are depicted as sym-

bols and error bars in Figure 7, respectively. While Ni = 2 and Nj = 2

often lead to high standard deviations, rather small standard devia-

tions are observed for most solutes and solvents that appear at least

three times in the data set, i.e., for Ni ≥3 and Nj ≥3, respectively.

In our previous work,7,8 in which we employed MCMs for the

prediction of activity coefficients at infinite dilution, no component

biases were used. This is motivated by the fact that there is no such

thing as a solute that exhibits in general small (or in general large) activ-

ity coefficients in any solvent, and, analogously, there is no solvent

that in general leads to small (large) activity coefficients of any solute.

By contrast, there are, for example, gases whose solubility is in general

rather small (or large) irrespective of the solvent, and we take this fact

into account by considering component biases for the prediction of

Henry's law constants here; of course, a single gas does not exhibit

the exact same solubility in all solvents, which we take into account by

the other LVs that are considered. For the solute bias bui , a clear corre-

lation with the solute's critical temperature Tc,i is found: b
u
i decreases

with increasing Tc,i, cf., Figure 7A. This is consistent with Figure 1 and

the expectation that solutes with high critical temperatures generally

have a higher solubility than solutes with low critical temperature. For

instance, helium and hydrogen, which have a very low critical temper-

ature, are quite poorly soluble irrespective of the considered solvent.

For the solvent bias bvj , no trend and only rather small variations are

found (except for “extreme” molecules like water and heavy water),

cf., Figure 7B, which supports the hypothesis discussed in the analysis

of Figure 1 that the type of solute has a stronger influence on Hij than

the type of solvent. These observations do not only allow interesting

physical insights, but also open the path for an estimation of the

solute and solvent biases of components that are not included in the

current data set. For instance, bui could roughly be estimated from Tc,i

using the correlation shown in Figure 7A, whereas for bvj , the average

value of all solvent biases depicted in Figure 7B could be used. The

situation is more complicated when the other LVs are considered, cf.,

Figures S13 and S14. However, the examples shown in Figure 7

underline that correlations of the LVs with physical descriptors can be

found, even though they may not be as simple as in these fortunate

cases.

6 | CONCLUSIONS

In the present work, we have introduced a new class of prediction

methods for Henry's law constants Hij, namely matrix completion

methods (MCMs), and have demonstrated their applicability for Hij of

solutes i in pure solvents j at 298 K. The idea behind this approach is

that binary data can conveniently be stored in a matrix and that

MCMs, which are well established in machine learning, can be applied

for completing matrices even in cases where they are only sparsely

occupied with experimental data, as it is the case for Hij (and many

other mixture properties). Two MCMs for predicting Hij were

implemented in the present work using a Bayesian framework and the

probabilistic programming language Stan. The first MCM is purely

data-driven, i.e., it is trained only to the scarce available experimental

data on Hij, while the second MCM follows a hybrid approach by addi-

tionally incorporating predictions from the Predictive Soave-Redlich-

Kwong (PSRK) equation-of-state. The performance of both MCMs for

predicting Hij for 101 solutes i and 247 solvents j was evaluated by a

leave-one-out analysis using experimental data from the Dortmund

(A) (B)F IGURE 7 Component biases of all
solutes (A, ordered according to the
critical temperature) and solvents (B,
ordered according to the DDB number)
as inferred by MCM-hybrid. Means
(symbols) and standard deviations (error
bars) were calculated from the results of
the leave-one-out runs assuming normal
distributions for the predictions. Solutes

and solvents for which only data for two
different systems are available in the
data set are marked red.
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Data Bank (DDB).32 While with the purely data-driven MCM a predic-

tive accuracy comparable to that of PSRK was found, a substantially

better performance was obtained with the hybrid MCM.

The introduced MCMs have broad applicability: they are capable

of predicting the Hij for all 24,947 possible binary systems of the con-

sidered solutes and solvents as they are not limited by unavailable

parameters; in contrast, PSRK can only predict ln Hij for 31.1% of

these binary systems. Of course, as group-contribution method, PSRK

can in principle also be applied for predicting Hij in systems containing

other solutes and solvents than those studied here. Furthermore,

while the refinement and extension of physics-based prediction

methods like PSRK is very elaborate, the MCMs presented in this

work can be adapted in a straightforward manner when additional

data become available. Moreover, the presented matrix completion

approach is not restricted to the prediction of Henry's law constants

but can be transferred to other thermodynamic properties in a

straightforward manner. The success of the MCMs is thereby based

on uncovering structure in the respective mixture data, which can also

be expected for many other thermodynamic properties. Also refine-

ments and extension of the MCMs through the additional incorpora-

tion of pure component descriptors is an exciting field for future

research. The same holds for considering the temperature depen-

dence of the Henry's law constants.
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