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Introduction

One of the important achievements of singularity theory is the explicit classification
of certain “generic” classes of isolated hypersurface singularities via normal forms
and the analysis of its properties (cf. [AGV]). More complicated singularities de-
form into a collection of singularities from these classes and deformation theory is a
powerful tool in studying specific singularities. For a further classification of more
complicated classes of singularities the explicit determination of normal forms seems
to be impossible and not appropriate.

The aim of this article is to start towards a classification of isolated hypersurface
singularities of any dimension via geometric methods, that is by explicitely con-
structing a (coarse) moduli space for such singularities with certain invariants being
fixed. It is probably too optimistic to hope for a complete solution in general but we
believe that the proposed approach can be extended to other interesting classes of
singularities. Our method starts from deformation theory and leads to the construc-
tion of geometric quotients of quasiaffine spaces by certain algebraic groups whose
main part is unipotent. This last part is a major ingredient and uses the general
results of [GP 2]. In projective algebraic geometry, the theory of moduli spaces is
highly developed but in singularity theory only a few attempts have been made so
far, for example by Ebey, Zariski, Laudal, Pfister, Luengo, Greuel (cf. [LP] for a
systematic approach and [GP 1] for a short survey). In this paper we consider only
semiquasihomogeneous singularities given as a power series f € C{zy,... ,x,} or as
a complex space germ (X, 0) = (f7'(0),0) C (C",0), together with positive weights
wy, ... ,w, of the variables such that the principal part fy of f (terms of lowest
degree) has an isolated singularity.

For the classification we first fix the Milnor number, probably the most basic in-
variant of an isolated hypersurface singularity. Fixing the Milnor number is known
(for n # 3) to be equivalent to fixing, in a family, the embedded topological type of
the singularity. If the Milnor number is fixed, the classification of semiquasihomo-
geneous singularities falls naturally into two parts. Firstly, the classification of the
quasihomogeneous principal parts or, which amounts to the same, the classification
of hypersurfaces in a weighted projective space. Secondly, the classification of semi-
quasihomogeneous hypersurface singularities with fixed principal part. These two
parts differ substantially, since the group actions whose orbits describe isomorphism
classes of singularities are of a completely different nature. This article is devoted
to the second task.

The most important equivalence relations for hypersurface singularities are right
equivalence (change of coordinates in the source) and contact equivalence (change
of coordinates and multiplication with a unit or, equivalently, preserving the iso-
morphism class of space germs). It turns out that right equivalence, which is really
a classification of functions, is easier to handle. We prove the existence of a fi-
nite group Ey, acting on the affine space T_, the base space of the semiuniversal
p—constant deformation of fy of strictly negative weight, such that T_/Fy, is the
desired coarse moduli space. We also show that a fine moduli space almost never



exists. See §1 for definitions and precise statements. Hence, T_/Ey, classifies, up to
right equivalence, semiquasihomogeneous power series with fixed principal part.

An important step in the construction of moduli spaces with respect to right equiv-
alence as well as with respect to contact equivalence is to prove that isomorphisms
between two semiquasihomogeneous functions have necessarily non—negative degree.
This is proved in §2 and uses the fact that the filtration on the Brieskorn lattice
H{(f) induced by the weights coincides with the V-filtration defining the mixed
Hodge structure, which is independent of the coordinates. The proof relies on an
analysis of this filtration given in [He].

In order to obtain a moduli space with respect to contact equivalence we have
to fix, in addition to the Milnor number, also the Tjurina number. This is clear
because the dimensions of the orbits of the contact group acting on T_ depend on
the Tjurina number. But fixing the Tjurina number is not sufficient. The orbit
space of the contact group for fixed Tjurina number is, as a topological space,
in general not separated, hence, cannot carry the structure of a complex space.
It turns out, however, that if we fix the whole Hilbert function of the Tjurina
algebra induced by the weights, the orbit space is a complex space and a coarse
moduli space which classifies, up to contact equivalence, semiquasihomogeneous
hypersurface singularities with fixed principal part and fixed Hilbert function of the
Tjurina algebra. For precise statements see §4. These moduli spaces are actually
locally closed algebraic varieties in a weighted projective space.

The orbits of the contact group acting on T_ can also be described as orbits of an
algebraic group G = U x (Ey, - C*) where Fy, is the finite group mentioned above
and U is a unipotent algebraic group. The main ingredient for the proof in the case
of contact equivalence is the theorem on the existence of geometric quotients for
unipotent groups in [GP 2]. But, in order to give the above simple description of
the strata, we have to use, in a non-trivial way, a certain symmetry of the Kodaira—
Spencer map (cf. 3.2).

The stratification with respect to the Hilbert function of the Tjurina algebra and
the proof for the existence of a geometric quotient are constructive and allow the
explicit determination of the moduli spaces and families of normal forms for specific
examples.

We conclude the paper with some open problems.



1 Moduli spaces with respect to right equivalence

Let C{z1,...,2,} = C{z} be the convergent power series ring. Two power series
f,g € C{z} are called right equivalent (~) if there exists a ¥ € Aut(C{z})
such that f = t(g); f and g are called contact equivalent (~) if there exists
a € Aut(C{z}) and u € C{z}* such that f = uy(g). (Equivalently, the local
algebras C{z}/(f) and C{x}/(g) are isomorphic respectively the complex germs
(X,0) C (C",0) and (Y,0) C (C*,0) defined by f and g are isomorphic.)

Let d and wy,...,w, be any integers. A polynomial fy € Clz,,...,z,] = C[z] is
quasihomogeneous of type (d;wy, ... ,w,) if for any monomial z* = 27" -.... 227
occurring in fo,

deg 2% :=|a| ;== wia; + -+ + wyay
is equal to d. wy,... ,w, are called weights and deg z* is called the (weighted)
degree of z°.
For an arbitrary power series f = > c,a®, [ # 0, we set
deg f =inf{la| | c. # 0},

and call it the degree of f. For a family of power series F' = Y ¢, gz°s® € C{z, s},
parametrized by C{s}, we put deg, F' = inf{|a| | 33 such that ¢, 5 # 0}.

[ is called quasihomogeneous if it is a quasihomogeneous polynomial (of some type).

[ is called semiquasihomogeneous of type (d;wr,... ,w,), if
f=rfo+h,
where fy is a quasihomogeneous polynomial of type (d;wy,... ,w,), fi is a power

series such that deg f; > deg fy and, moreover, fy has an isolated singularity at
the origin. fy is called the principal part of f. Two right equivalent semiquasi-
homogeneous power series of the same type have right equivalent principal parts by

Theorem 2.1.
Recall ([SaK 1]) that a power series f with isolated singularity is right equivalent to
a quasihomogeneous polynomial with respect to positive weights if and only if

fejf):=(0f)0x,...,0f]0x,).

Moreover, in this case the normalized weights w; = “¢ € QN (0, 3] are uniquely

determined.

We may consider f € C{z}, f(0) = 0 as a map germ f : (C*,0) — (C,0). An
unfolding of f over a complex germ or a pointed complex space (5, 0) is by definition
a cartesian diagram

(C*,0) = (C*,0)x(S,0)
I l ¢
(C,0) = (C,0)x(S,0)

3 3
0 ) (S,0).



Hence, ¢(z,s) = (F(z,s),s) and the unfolding ¢ is determined by F' : (C*,0) x
(5,0) — (C,0), F(x,s) = f(z)+ g(z,s), g(x,0) = 0, and we say that F defines
an unfolding of f. Two unfoldings ¢ and ¢’ defined by F' and F' over (S5,0) are
called right equivalent if there is an isomorphism ¥ : (C*,0) x (5,0) 5 (C",0) x
(5,0), U(z,s) = (yY(z,s),s), such that po U = ¢'.

For the construction of moduli spaces we have to consider, more generally, families
of unfoldings over arbitrary complex base spaces. Let S denote a category of base
spaces, for example the category of complex germs or of pointed complex spaces or
of complex spaces. A family of unfoldings over S € S is a commutative diagram

(C,0) xS -2 (C,0) xS

p v
S.

Hence, ¢(z,s) = (G(z,s),s) =: (Gs(z),s) and for each s € S, the germ
¢ (C",0) x (S,s) — (C,0) x (S5,s) is an unfolding of G, : (C*,0) — (C,0). A
morphism of two families of unfoldings ¢ and ¢’ = (G',id;) over S is a morphism
U (C,0) xS — (C,0) x5, U(z,s) = (Y(z,s),s) = (Ys(x),s) such that
oW = ¢ (equivalently : Gy(¢(z,s)) = Gi(x)). ¢ and ¢ are called right
equivalent families of unfoldings if there is a morphism ¥ of ¢ and ¢’ such that

for each fixed s € S, ¥, € Aut(C",0).

From now on let fy € Clzy,...,x,] denote a quasihomogeneous polynomial with
isolated singularity of type (d;wy,... ,w,) with w; >0 fori=1,... ,n.

Consider a power series f which is right equivalent to a semiquasihomogeneous power
series of type (d;wy,... ,w,). We say that an unfolding F' defines an unfolding
of f of negative weight over (5,0) if F' is right equivalent to f'(z) + g(z,s) for
some semiquasihomogeneous power series f’ with g(z,0) = 0 and deg, g > d. This
holds, for instance, if there exists a C*—action with (strictly) negative weights on
(5,0) such that deg g = d, with respect to the C*~actions on (C*,0) and on (S,0).
By Theorem 2.1 the definition is independent of the choice of f.

We shall now describe the semiuniversal unfolding of fy of negative weight.
Let {z* | @« € B C N"}, be a monomial basis of the Milnor algebra
C{z}/(0fo/0x1,... ,0fo/0x,) which is of C-dimension g (the Milnor number of
fo), and let F(z,t) = fo(z) + Yoo TS0, 8 = (8a)aes € C" be the semiuniver-
sal unfolding of fy. We are mainly interested in the sub—unfolding over the affine
pointed space T_ = (C*,0),

k
F(at) = folz) + Y timi, t=(t,... tx) €T,
i=1

where the m; are the “upper” monomials, that is

{my,... . mp} ={2% | a € B, |a| > d}.
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For fixed t € T_, Fy(z) = F(z,t) € C[z] is a semiquasihomogeneous polynomial with
principal part f.

Let A = C[(sa)aecn) and A_ = Clty,... 1. If we give weights to s, and t; by
w(s,) = d — |a| and w(t;) = d — deg(m;), then F and F are quasihomogeneous
polynomials in C[z, s] respectively Clz,¢] and F is the restriction of F to T_, the
negative weight part of 7' = Spec A, defined by {t1,... 13} = {s. | w(s,) < 0}.

Example: f; = 2*+y*+27 is quasihomogeneous of type (d; wy, wq, w3) = (21;7,7,3)

with Milnor number g = 24. The upper monomials of a monomial basis of the
Milnor algebra C{z,y,z}/(2?,y?, 2%) are my = 22°, my = y2°, my = 2yz®, my =
ryz*, ms = xyz® and, hence, A_ = C[ty,... 5], T- = C°,

5
Flz,y,z,t)= fo+ Z tim; = fo +tixz® + lyyz® + tsxy2® + taayz* + tsxy2®,

=1

w(tl,. . ,t5) = (—17—17—2,—57—8).

Remark 1.1 Fix any ¢t € T_. F' defines an unfolding of F; of negative weight over
the pointed space (T-,t). If we restrict this unfolding to the germ (7-_,¢) this is
actually a semiuniversal unfolding of F} of negative weight because of the following:

The monomials m,... ,m; represent certainly a basis of C{x}/(%, cee %) for ¢
sufficiently close to 0, since pu(F;) = u(fo). But, using the C*~actions on 7_ and
on C", we see that any Fj is contact equivalent to some Fj, ' close to 0. Hence,
Ocnxr_oxt_ /(2. .. ,%) is actually free over T_ with basis mq,... ,m; and the

P
result follows. 1

We call the affine family
F:C"xT_ —C,
(z,t) — fo(z)+ Zle t;m; the semiuniversal family of unfoldings of negative

weight of semiquasihomogeneous power series with fixed principal part

fo.

Lemma 1.2 The family of unfoldings F' has the following property. If [ is any
semiquasithomogeneous power series with principal part fq, then:

(i) T_ = {0} if and only if fo is simple or simple elliptic.
(ii) There exists a t € T_ such that f ~ F}.

(iii) Let f ~ Fy and let G(x,s) = f(x) + g(x,s) be any unfolding of f of negative
weight over the germ (S,0). Then there exists a morphism, unique on the
tangent level, of germs ¢ : (S,0) — (T-,t) such that ©*F is right equivalent
to G (that is T_ does not contain trivial subfamilies of unfoldings).

(iv) Assume fo is neither simple nor simple elliptic. There exist t.t' € T_,t # 1/,
arbitrarily close to 0, such that F, ~ F! (that is F is nol universal in any

neighbourhood of 0 € T_ ).



Proof:

(i) is due to Saito [SaK 2].
(ii) follows from [AGV], 12.6, Theorem (p. 209).

(iii) If T_ would contain trivial subfamilies of unfoldings there must be a t € T_
with p(Fy) < p(fo), which is not the case.

(iv) The group pg of d-th roots of unit acts on 7_, has 0 as fixed point and a non-
trivial orbit for any ¢ # 0. Since for £ € pg, Fiur(€0x) = E4F(2) = Fy(z), two
different points of an orbit of u, correspond to right equivalent functions, we
obtain (iv).

Let us introduce the notion of a fine and coarse moduli space for unfoldings of
negative weight with principal part fy (the weights wy,... ,w, and f, are given as
above): let S be a category of base spaces. For S € S, a family of unfoldings of
negative weight with principal part f, over S is a family of unfoldings

¢:(C",0) xS = (C,0) xS, (z,s) — (G(z,s),s) = (Gs(x),s)

such that: for any s € S, G5 : (C*,0) — (C,0) is right equivalent to a semi-
quasithomogeneous power series with principal part fy and the germ of G at s,
G : (C,0) x (S,s) — (C,0), is an unfolding of G, of negative weight. For any
morphism of base spaces ¢ : T — S, the induced map ¢*¢ : (C*,0) x T" —
(C,0) x T, (z,t) — (G(x,p(t)),t), is an unfolding of negative weight with prin-
cipal part fo over T'. Hence, we obtain a functor

Unf}T0 : S = sets

which associates to S € S the set of right equivalence classes of families of unfoldings
of negative weight with principal part fy over S. If pt € S denotes the base space
consisting of one reduced point, then

Unf} (pt) = { right equivalence classes of power series f € C{z1,... ,2,} which
are right equivalent to a semiquasihomogeneous power series with

principal part fo}.

A fine moduli space for the functor Unf; is, by definition, a pair (T,v) where T
is a base space and v a natural transformation of functors

¢ Unf, — Hom(—,T)

such that (7, 1) represents the functor Unfy .
The pair (T,1) is a coarse moduli space for Unf} if

(1) if ¥(pt) is bijective, and



(ii) given the solid arrows (natural transformations) in the following diagram

Unfj_,0

N

Hom(—-,T) ______ ~  Hom(—,T"),

there exists a unique dotted arrow (natural transformation) making the dia-
gram commutative.

A fine moduli space is, of course, coarse.

The definitions of fine and coarse moduli spaces still depend on the category of base
spaces S. If § is the category of complex germs and if (5,0) € S, then Hom((S,0),7T)
denotes the set of morphisms of germs (5,0) — (7,t) where { may be any point of
T. In this case, if (T',¢) is a fine moduli space, given any ¢ € T', there exists a unique
(up to right equivalence) universal unfolding of negative weight with principal part
fo over the germ (7, t) which corresponds to id € Hom((7,t),(7,t)). But we may
not have a universal family over all of T'. If § is the category of all complex spaces,
the existence of a fine moduli space implies the existence of a global universal family
over T'. But we shall see that even for complex germs as base spaces a fine moduli
space may not exist. A coarse moduli space, however, does exist even if & is the
category of all complex spaces. The reason is that for a coarse moduli space we do
not require any kind of a universal family.

Theorem 1.3 Let Ey be the finite group defined in Definition 2.6, acting on T_.
The geometric quotient T_/Ey is a coarse moduli space for the functor Unf, -
complex spaces — sets.

Proof: Since Ej, is finite, and the action is holomorphic, the geometric quotient
T_/Ej, exists as a complex space. According to Theorem 2.1, Proposition 2.3 and
Corollary 2.6, for any semiquasihomogeneous power series [ with principal part fo
there exists a unique point ¢ € T_/Ey, such that if fi ~ f, ¢t € T_ maps to L.
In this way we obtain a bijection ¢(pt) from the set of right equivalence classes of
semiquasihomogeneous power series with principal part fy to 7.

Now let G : (C*,0) x S — (C,0) define an element of Unf}TO(S) for some com-
plex space S. We may cover S by open sets U; such that there exist morphisms
@i+ Ui = T_ with ¢*F < G/|p.. Even if the ¢; are not unique, by the properties of
a quotient the compositions U; & T_ — T_/E}, glue together to give a morphism
S — T_/Ey,. This construction is functorial and provides the desired natural trans-
formation Unf; — Hom(—,T_/FEy ). This finishes the proof of Theorem 1.3 (for

further details for construction of moduli spaces via geometric quotients cf. [Ne]).

Remark 1.4 (i) If f; is simple or simple elliptic, then the coarse moduli space
constructed above consists of one reduced point. Hence, it is even a fine moduli
space.



(i1) If fo is neither simple nor simple elliptic, Unf} does not admit a fine moduli
space, even not if we take complex germs as base spaces. This can be seen as
follows: assume there exists such a fine moduli space then, since it is also coarse,
it must be isomorphic to T_/Ey,. Moreover, there exists a universal unfolding over
the germ (T-/FE¢,,0) which can be induced from the semiuniversal unfolding F' over
the germ (7_,0) and vice versa. Since T_ does not contain trivial subfamilies, the
semiuniversal family F over (T_-,0) would be universal, which contradicts Lemma

1.2 (iv).

Example: Let fo(z,y) = 2* + y°>. We obtain T_ = C and F(z,y,t) = z* +
y® 4 ta*y®, (d;wr, we;w(t)) = (20;4,5;—2). In this case Ej = p4 and the ring of
invariant functions on T_ is C[t'°], hence T_/E; = C. We give a computational
argument that a fine moduli space does not exist:

A local universal family over (7_ /E,,0) would be given by G : (C*,0)x (T_-/Ey,) —
(C,0), (z,y,s)— G(z,y,s). The proof of Theorem 1.3 shows that then F' would be
induced from G by the canonical map T- — T_/Fy,, which is not an isomorphism.
Moreover, the fibre F~'(0) would be isomorphic to G='(0) under the map (z, y, ) —
(z,y,s = t'°). The image of this map can be computed by eliminating ¢ from
F(z,y,t) = 0, s — ! = 0. The result is the hypersurface defined by G = (z* +
y*)1 — 52?30, The special fibre for s = 0 has a non-isolated singularity, hence is
not isomorphic to fy = 0.

Remark 1.5 Since the group Fy, acts even algebraically on T_ by Proposition 2.4,
T_/Ey, is an algebraic variety. We may take the category of base spaces S to be the
category of (separated) algebraic spaces and define (families of) unfoldings in the
same manner as above, replacing the analytic local ring C{z} by the henselization
of Clz]. With the same proof as above we obtain that T_/Fy, is a coarse moduli
space for the functor

Unf : algebraic spaces — sets.



2 Isomorphism of semiquasihomogeneous singu-
larities

We fix weights wy,...,w, € N and a degree d € N such that the normalized weights
w; = % fulfill 0 < w; < 1. The weights induce a filtration on C{z}. An auto-
morphism ¢ # id of C{z} has degree m = deg ¢ if m is the maximal number such
that

|

deg(p(z;) —zi) > wi+m Yi=1,..n

The automorphisms of degree > 0 form the group Aut>o(C{z}) of all automor-
phisms of C{z} which respect the filtration. The automorphisms of degree > 0 form
a normal subgroup Autso(C{z}) in Aut>o(C{z}). Automorphisms will be called
quasihomogeneous if they map each quasihomogeneous polynomial to a quasihomo-
geneous polynomial of the same degree. They form a group G,, C Autso(C{z}),
which is isomorphic to the quotient Autso(C{z})/Autso(C{z}).

The image ¢(f) of a semiquasihomogeneous power series f of degree d by an auto-

morphism ¢ of C{z} is semiquasihomogeneous of the same degree if deg p > 0. The
converse 1is true, too:

Theorem 2.1 Let [ and g be semiquasihomogeneous of degree d, and lel ¢ be an
automorphism of C{z} such that o(f) = g. Then degy > 0.

Proof: The proof uses some facts which come from the Gauss—Manin connection
for isolated hypersurface singularities ([SS], [SaM], [AGVII], [He]). The main idea
is the following: in the case of a semiquasihomogeneous singularity the weights w;
induce a filtration on C{z} and a filtration on the Brieskorn lattice H{(f). This
last filtration coincides with the V-filtration and is independent of the coordinates.

The Brieskorn lattice HJ/(f) is
HY =" /df AdQ™1.

Here Q% = Qf, o denotes the space of germs of holomorphic k—forms. The class
of w € Q" in HJ(f) is denoted by s[w]o € H{(f). The V-iltration on Hy(f) is
determined by the orders ay(w) = ay(s[w]y) of n—forms w € Q. The most explicit
description of the order af(w) might be the following ([AGVII], [He]):



af(w) =min{a | I (manyvalued) continuous family of cycles
§(t) € Hu—1(X¢, Z) on the Milnor fibers X;
of the singularity f: (C*,0) — (C,0),
such that a, # 0 in
/ :—f = Za@k 4P (lnt‘)]‘C
() ok
forak with0<k<n-—1}.

The description shows that we have

af(w) = ay(p(w)) = ag(p(h)de(z))
for w = h(z)dz;...dx,, = hdx € Q".

Since f is semiquasihomogeneous it is possible to give a simple algebraic description
of the order af(w). Indeed, we define mappings

v (C{:Ela"wxn} %QZOU{OO}a
vog @ 2" = Qs_y U{oo},
vy + HJ(f) = Qs_y U{oc}

by
ve(z®) = Zmai , ve(0) = oo, I/C(Z box®) = min{ve(z®) | b, # 0}
=1
and
vo(hdz) = vo(hzy..x,) — 1
and

vi(slwlo) = ve(w) = max{va(n) | s[nlo = s[wlo}
Then, from [He], Chapter 2.4, it follows that
vi(w) = ap(w) = as(p(w)) = vy(p(w))-

For all n € 0"~% we have

DN | —

ve(df Ndn) > —1+ Zﬁj + (1 — max(w;)) > Zﬁj —

For w with

min{ve(w), vs(w), vy(p(w)), va(p(w))} < ij B %

10



this implies

We obtain

Y W — 1 = va(de) = vs(de) = vy(dp(2)) = va(dp(z)).

J

For 7 with w; < % we obtain

w; +vo(de) = ve(z) +va(de) = vo(zde) = ve(zd)
= vy(p(zi)dp()) = va(p(wi)de()) = volp(wi) + va(de(z))
= vo(p(w:) + va(dr)

and vo(e(z;)) = w,.
For ¢ with w; = % the equality vo(z;dz) = > w; — ]E implies

vao(p(zdx)) > Zﬁi — %

and vo(p(z;)) > % Therefore, vo(e(z;)) > ve(z) = w; Vi = 1,...,n, and thus
degp > 0.

Remark 2.2 In the following, Theorem 2.1 will be used to describe a finite group
Ey C Aut(7T_) which operates transitively on each set of parameters in 7_ which
belong to one right equivalence class. Theorem 2.1 also shows that the Hilbert func-
tion of the Tjurina algebra (cf. Chapter 4) is an invariant of the contact equivalence
class.

Now let fo € Clz1, ..., ,] be quasihomogeneous of degree d with an isolated singu-
larity in 0. Let my,...,m; denote the monomials of degree > d in a monomial base
of the Milnor algebra of fy. Consider the semiuniversal unfolding of fy of negative
weight,

k
F=fo+ Z m;t;.
=1
For a fixed value of ¢ we write Fy = fo+Y m;t;. With degt; = w(t;) = d—degm; < 0

we obtain a filtration on C[ty, ..., ;] = A_ such that ' € C[z,{] is quasihomogeneous
of degree d in z and t. We write T_ = Spec A_ (cf. §1).

Proposition 2.3 For any semiquasihomogeneous power series [ with principal part
Jo there exist an automorphism ¢ € Autso(C{z}) and a parametert € T_ such that
o(f) = Fi. Thet € T_ is uniquely determined.

11



Proof: The existence of ¢ and ¢ is proved in [AGV], 12.6, Theorem (p. 209). The
following proves the uniqueness of ¢.

Let ¢ and ' € T_ and ¢ € Autso(C{z}) be given such that (F;) = Fy. With
Ys(x;) = x;+s(¢(x;) — ;) we obtain a family 15 of automorphisms in Autso(C{z}).
The family ¢4(F;) of semiquasihomogeneous functions with principal part fy con-
nects Yo(Fy) = F; and ¢ (F;) = Fy. The family may not be contained in 7_, but can
be induced from 7_ by a suitable base change: Following the proof of the theorem
in [AGV], 12.6 (p. 209), we can find a family y, of automorphisms and a holomor-
phic map o : C — T_ such that y, o ¢ (F}) = Fy(s) and x, € Autso(C{z}) and
even xog = id = x1, 0(0) = ¢, o(l) = t’. But since T_ is part of the semiuniversal
deformation, which is miniversal on the g—constant stratum, and since T_ does not
contain trivial subfamilies with respect to right equivalence, t = 1" as desired.

Proposition 2.4 1. For any p € G0 = {¢p € Gy | ¥(fo) = fo} and any t € T-
there exist s = 0(p)(t) € T— and an aultomorphism ¢ € Autso(C{z}) such
that ¢ o o(Fy) = Fj.

2. The function 0(¢) : T- — T_ is uniquely determined, bijective and fulfills
0(o™") = 07 (p) and 6(y) 0 0(sp) = 6( 0 ¥) for any ¢ € Gfy.

3. The components 0(p)(t;) are quasihomogeneous polynomials in A_ of degree

deg(ti) .

Proof: The statements 1. and 2. follow from Proposition 2.3 and from the fact that
Auts(C{z}) is a normal subgroup of Autso(C{z}). Statement 3. follows from the
proof of the theorem in [AGV], 12.6 (p. 209). Along the lines of this proof one can
construct power series 1, ..., 1, € C{z,t} and a family of automorphisms ¢ (¢) such
that ¢ (¢)(z;) = i(t) with the following properties:

Y; 1s quasihomogeneous in = and ¢ of degree w;,

; — x; has degree > w; in z,

for any fixed ¢ the automorphism ¢(t) € Autso(C{z}) with ¢(t)(z;) =
Yi(t) gives ¢(t) o p(Fy) = Fyp)(0)-

The power series F' = fy + Y m;l;, and ¢(F) = fo + ... and (1) o o(F) =

Jo+ > mib(p)(t;) are all quasihomogeneous of degree d with respect to = and .
This proves 3.

The functions §(p) are biholomorphic.

Definition 2.5 The image 0(GL) in Aut(T-) will be denoted by Ey, .
Corollary 2.6 The map 0 : Gfo — E; C Aut(T-) is a group homomorphism. The
automorphisms 0(p) of T_ commute with the C*-operation on T_. Fach orbit of Fy,

consists of all parameters in T_ which belong to one right equivalence class.
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Proof: The first two statements follow from Proposition 2.4, the third statement
follows from Theorem 2.1.
Proposition 2.7 1. The group G is finite if Wy, ..., W,_, < % and w, < %

2. The group Ey, is finile.

Proof:
1. The dimension of the algebraic group G, is

dimG, = Z #( monomials 2% of degree w; ).

=1

The group G, operates on

@ C -z

degz¥=d
Let j(fo) denote the Jacobi ideal of fy and j;(fo) the ideal

N 0fo  0fo 0fo
il fo) = (871’“' Brey B ’8$n)'

The tangent space Ty, Gy fo C TV of Gy fo in [y is

TfOwaO = .](fO) nv.

For any relation

Y o af af
OZZ 2:_ ‘a'a*i'” - Zbax(j
Ao _—

with a,;, € C and b, = Zdegz“’:u},‘ a,,; -+ we have degb; = w; and deg =

d — w; > w; for 5 # 1. Therefore, b; ¢ jz(fo) or b; = 0. But since fy has an 1solated

3 fo

a
fo ,aﬂ) is a regular sequence and 22 is not a zero
Tn ox;

%, e
divisor in j;(fo). This implies b; = 0 for any 1, and

j(fo)nV = @ p c afo

=1 degr®=w;

singularity, the sequence (

and

dim Gl = dim G, — dimj(fo) NV = 0.

2.  One can order the weights w; such that wy,... ,w, < %, Wyglyeoe , Wy = % The
generalized Morse lemma and Theorem 2.1 imply the existence of an automorphism
¢ € G, and of a quasihomogeneous polynomial g, € Cl[z,,... ,z,| of degree d such
that o(fo) = go+ 271 + ...+ 2. Now let my,...,my be the monomials of degree
> d in a monomial base of the Jacobi algebra of gy. Analogously to F' we obtain

families

13



k
G = go + Zﬁ%g
i=1

and G = é+xf+1+...+xi.

It is well known that Gy and Gy are right equivalent if and only if G, and Gy
are right equivalent. Let w be the tuple of weights w = (wy,... ,w,). The group
G% is finite by the first part of this proposition and induces a finite group Ez of
automorphisms of T_ = Spec C[t]. Tn fact this is the largest subgroup of Aut(f_)
which respects the right equivalence classes. Similarly to Proposition 2.4 one can
prove that ¢ induces a biholomorphic mapping from 7_ to 7_ which respects the
right equivalence classes. This gives an injective (in fact bijective) mapping from

Ey to Eg. Hence, Ey, is finite.

Example 2.8 f, = 2% + ¢* + 27, (djwi,wy,ws) = (21;7,7,3), T- = C, F =
fo + Z?zl tim; = fo+ tixz® 4 tyyz® + +izzyz® + taayz? + ts2yz®, the weights of
(t1,...,15) are (—1,—1, =2, =5, —=8).

GYo contains 6 - 3 - 7 elements: obviously, Gfo = Gg; 1y X Z7 where gy = z° + y°.
The group G“?il) is isomorphic to a subgroup of Gl(2 (C) The image in PGI(2, C)

permutes three points in P*C and is isomorphic to 53, the kernel is isomorphic to

{id, ¢ -id, €% - id}, where € = 2™/, Therefore G

(1,1 !

Ghy = (@) X (B)) X () X (8) = S5 X Zs x 2

with
o (w,y,z) — (y,.L z)
B (w,y,2) = (§2,8%,2),
v o (z,y.2) = (Ex, €y, 2),
§ 1 (r,y2) = (w,y,e™7z).

The mapping 0 : G¥ — Fy is an isomorphism with

O(a) : (ti,ta,t3,ta,t5) — (Lo, t1, 13,105 t5),

H(Q) (t Ly, l3, 4, 5) — (ftlafzt%t&t4,t5),

0(v) = (bistats,layts) — (€, Eta, E3s, 6704, E%5),

0(8) = (Lo, ls,tasts) — (CPty, COly, Cls, (g, COls) with ¢ = 27/7,

Let C* denote the group of C*-operations on T_. Then FEy N C* = (0(y),0(d)) and
Eg - C = (0(a),0(8)) x C = S5 x C*.
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3 Kodaira—Spencer map and integral manifolds

Let fo be semiquasihomogeneous of type (d;ws,... ,w,), w; > 0,and F: C" xT_ —
k
C, (z,t) = fo(x)+>] tim;, the semiuniversal family of unfoldings of negative weight

=1
as in §1. In order to describe the orbits of the contact group acting on 7_ we study
the Kodaira—Spencer map of the induced semiuniversal family of deformations (of
space germs) defined as follows. Let

X ={(x,1)eC" xT_ | F(z,1) =0}

and let (X,0 x T_) denote the germ of X" along the trivial section 0 x T_ which is a
subgerm of (C* x T_,0 x T_) = (C",0) x T_. The composition with the projection
gives a morphism
¢ (X, 0xT)— (C*,0) xT_ = T_

such that, for any ¢t € T_, (¢71(¢),(0,1)) = (X, 0) C (C*,0) is a semiquasihomoge-
neous hypersurface singularity with principal part equal to (X, 0) = (f;7(0),0) =:
(Xo,0). We call this family the semiuniversal family of deformations of neg-
ative weight of semiquasihomogeneous hypersurface singularities with
fixed principal part (Xg,0) (see also §4).

For the study of the Kodaira—Spencer map of (X',0x7_) — T_ it is more convenient
to work on the ring level A_ — A_{z}/F.

The Kodaira-Spencer map (cf. [LP]) of the family A_ — A_{z}/F,
o 2P

p:DercA_ — (z)A_{z}/ <F+ <$)(a_x1’“' "Dy,

k
is defined by p(8) = class(§F) = class(d o(t;)m;).
=1

Let £ be the kernel of p. L is a Lie-algebra and along the integral manifolds of £
the family is analytically trivial (cf. [LP]).

In our situation it is possible to give generators of £ as A_—module:

Let I = A_{z}/( or .2 ), then [ is a free A_~module and {m;};=1,.. x can be

%7 . S Dzm
extended to a free basis.

k
Multiplication by F' defines an endomorphism of I and F'I C Hm;A_.

=1

Define h, ; by
2 F = Zha’jmj in /.

Then h,; is homogeneous of degree || + deg(t;) = |a| + d — deg(m;). This implies
ho; = 0if |af + deg(t;) > 0, in particular h,; = 0 if o] > (n — 1)d — 2 ) w;. For «
and |a| < (n—1)d —2) w; let §, := Zha,j%.

Proposition 3.1 (¢f. [LP], Proposition 4.5):
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1. 8, is homogeneous of degree |al.

2. L= A4,

Now there is a non—degenerate pairing on [ (the residue pairing) which is defined
by (h,k) = hess(h-k). Here hess(h) is the evaluation of & at the socle (the hessian
of f).

Using the pairing one can prove the following:

Proposition 3.2 There are homogeneous elements ny,... ,ny € A_{x} with the
following properties:

1. ]f nzF = Ele hijm]- in I then hij = hk—j-}-],k—i-l-] .
2. 1If 6; = Zle hij% then &; is homogeneous of degree deg(n;) and L =
ST

In [LP] (Proposition 5.6) this proposition is proved for n = 2. The proof can easily
be extended to arbitrary n. The important fact is the symmetry, expressed in 1.

Let L4 be the Lie-algebra of all vector fields of £ of degree > w = min{w;}. Then

iP5t

Euler vector field (cf. [LP]). Let L = Ly @& Coy then L is a finite dimensional and
solvable Lie-algebra and £ =Y A_L, L/L, = Cé,.

k
L is finite dimensional and nilpotent. d,,...,d; € Ly and & = ), deg(;)t 9 is the
=1

Corollary 3.3 The integral manifolds of L coincide with the orbits of the algebraic
group exp(L).

Now consider the matrix M(t) := (8;(;))ij=1,..k = (hij)ij=1,. k. Evaluating this

matrix at ¢t € T_ we have

rank M(t) = dimension of a maximal integral manifold of £
(resp. of the orbit of exp(L)) at ¢

= U= T(t)7
where 7(t) denotes the Tjurina number of the singularity defined by ¢ i.e. of F(z,1).

Example 3.4 We continue with Example 2.8, fo = 2° + ¢® + 27. Let
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ny = —21

ny = —2lz+ (%ﬁtg + ?tftg — %t;‘) y — ?tgtgw
ny = —21z° — 30ty
ng = —2lx
ns = —2ly
then the matrix defined by Proposition 3.2 is
t 1y 2y 5t 8t
0 0 0 25— 2ty iy
(6:i(t;))=1 0 0 0 0 2t
0 0 0 0 ty
0 0 O 0 3]

We have p = 24 and

=21 ifand only if 2t3 — 2414, # 0,

T =22 ifandon]yif?tg—ghtg:oandh #0orty #0orits#0orty#0,
7=23 ifand only if t; =ty =13 =14 =0and t5 £ 0,

7=24 ifandonlyift; =t, =1t3=14=15 = 0.
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4 Moduli spaces with respect to contact equiva-
lence

In this section we want to construct a coarse moduli space for semiquasihomoge-
neous hypersurface singularities with fixed principal part with respect to contact
equivalence, that is isomorphism of space germs. Such a moduli space does only
exist if we fix further numerical invariants. We shall use the Hilbert function of the
Tjurina algebra induced by the given weights.

Let us first define the functor for which we are going to construct the moduli space.

A complex germ (X,0) C (C*,0) is called a quasihomogeneous (respectively

semiquasihomogeneous) hypersurface singularity of type (d;w,...  w,) if
there exists a quasihomogeneous polynomial f € Clzy,... ,z,] (respectively a semi-
quasihomogeneous power series [ € C{zy,...,z,}) of type (d;wq,... ,w,) such

that (X,0) = (f74(0),0). If fy is the principal part of f then (Xo,0) = (f57'(0),0)
is called the principal part of (X,0). Multiplying f with a unit changes fo by
a constant, hence the principal part if well-defined. Two power series are contact
equivalent if and only if the corresponding space germs are isomorphic.

A deformation (with section) of (X, 0) over a complex germ or a pointed complex
space (5,0) is a cartesian diagram

0 <= (5,0)
! Lo
(X,O) — (/Y,O)
1 l o
0 — (5,0)

such that ¢ is flat and ¢ 0 0 = id. Two deformations (¢, o) and (¢',0') of (X,0)
over (5,0) are isomorphic if there is an isomorphism (X,0) = (X”,0) such that the
obvious diagram commutes. We shall only consider deformations with section.

If (X,0) = (f71(0),0) and if F': (C*,0)x(S,0) — (C,0) is an unfolding of f then the
projection (X,0) = (F~(0),0) — (5,0) is a deformation of (X,0) — (X,0) with
trivial section o(s) = (0,s). Conversely, any deformation of (X,0) is isomorphic
to a deformation induced by an unfolding in this way. A deformation (¢, o) of
a hypersurface singularity (X,0), which is isomorphic to a semiquasihomogeneous
hypersurface singularity (X’,0) = (f71(0),0) of type (d;wy,...,w,) over (S,0),
is called deformation of negative weight if it is isomorphic to a deformation
induced by an unfolding of f of negative weight.

We have to show that the definition is independent of the chosen unfolding: two
inducing unfoldings differ by a right equivalence and a multiplication with a unit.
We have shown in §1 that the definition depends only on the right equivalence
class. Hence, we have to show the following: if f(z) is a semiquasihomoge-
neous power series, f(z) + g(z,s), ¢g(z,0) = 0, deg,g > d, an unfolding of
negative weight and u(z,s) € Ofnygo a unit, then u(f + g) ~ fl(x) + g'(x, )
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for a suitable semiquasihomogeneous f' with f=1(0) = f='(0), ¢'(x,0) = 0
and deg, g’ > d. Replacing u(z,s) by (u(z,0)) 'u(x,s) we may assume that
u(z,s) = uo(s)+ui(z,s), ug(0) =1, u1(0,s) = 0. If v € Ogy is a d-th root of ug and
if ¢ denotes the automorphism of degree 0, ¥(x, s) = (v(s)“ z1,... ,v(s)" x,), then
uo(s)f(z) = f(;b(x,s))-l—sf(x,s), deg, f > d. But this implies u(f+g)oyp™ = f+¢'
with ¢'(z,0) = 0 and deg ¢}, > d as desired.

Again, we have to consider not only germs but also arbitrary complex spaces as
base spaces. A family of deformations of hypersurface singularities over a base
space S € § is a morphism ¢ : X — S of complex spaces together with a section
oS — X such that for each s € S the morphism of germs ¢ : (X, 0(s)) — (5,s) is
flat and the fibre (X5, 0(s)) = (¢7'(s), o(s)) is a hypersurface singularity. This is, of
course, only a condition on the germ (X, o(5)) of X' along o(5). A morphism of two
families (¢, 0) and (¢',0') over S is a morphism ¢ : X — X" such that ¢ = ¢’ 0 ¢
and ¢/ = oo. (¢,0) and (¢,0') are called contact equivalent or isomorphic
families of deformations if there exists a morphism 1 such that for any s € S, 9
induces an isomorphism of the germs of the fibres (X, o(s)) = (X7, 0'(s)).

Let us fix a quasihomogeneous hypersurface singularity (Xy,0) C (C*,0) of type
(d;wy,... ,w,). For § € §, a family of deformations of negative weight with
principal part (Xg,0) over S is a family of deformations

S5 (X,0(8) 5 S

with section such that: for any s € S the fibre (X, 0(s)) is isomorphic to a semi-
quasihomogeneous hypersurface singularity with principal part (Xo,0) and the germ

(S,5) 2 (X, 0(s)) kA (S, s) is a deformation of (X, o(s)) of negative weight.

For any morphism of base spaces ¢ : T — 5, the induced deformation 7' —
(p*X, ¢*o(T)) — T is a family of deformations with negative weight and prin-
cipal part (Xo,0). We obtain a functor

Def)_(0 : S — sets

which associates to S € S the set of isomorphism classes of families of deformations
of negative weight with principal part (Xy,0) over S. The notations of fine and
coarse moduli space for the functor Defy are defined in the same manner as for
the functor Unf in §1. The objects we are going to classify are elements of

Defy (pt) = { isomorphism classes of complex space germs (X,0)
which are isomorphic to a semiquasihomogeneous hy-
persurface singularity with principal part X}.

Again, as for Unf, , we cannot expect to obtain fine moduli spaces in general. In
order to obtain a coarse moduli space, we have to stratify 7_ into G—invariant strata
on which the geometric quotient with respect to G exists, where G = exp Ly x (Fy, -
C*) C Aut(7-). Once we have this, the proof is the same as for Theorem 1.3.

We want to apply Theorem 4.7 from [GP 2] to the action of Ly on T_.
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Theorem 4.1 ([GP 2]) Let A be a noetherian C-algebra and Ly C Derf'A a
finite dimensional nilpotent Lie algebra. Suppose A has a fillration

F*:0=FYA)CF(A)CF(A)C...
by subvector spaces F*'(A) such that
(F) SFI(A) C F=Y(A) foralli €T, 6 € Ly.
Suppose, moreover, Ly has a filtration
Zei Ly =Z1(Ly) 2 Zy(Ly) 2 ... 2 Ze(Ly) 2 Zeyr(Ly) =0
by sub Lie algebras 7; (L) such that
(Z) (L4, Zi(Ly)] € Zjsr(Ly) for allj € Z.

Let d : A — Homg(Ly, A) be the differential defined by d(a)(6) = 6(a) and let
Spec A = UU,, be the flattening stratification of the modules

Home(Ly, A)JAd(F'(A)) i=1,2,...
and
Home(Z;(Ly), A)/mj(A(dA)) 7=1,... €,
where 7; denotes the projection Home(Ly, A) — Home(Z;(Ly), A).
Then U, is invariant under the action of Ly and U, — U, /Ly is a geometric quo-
tient which is a principal fibre bundle with fibre exp(Ly). Furthermore, the closure

U, of U, is affine, U, = Spec A,, and the canonical map U, /Ly — Spec AL+ is
an open embedding.

To apply the theorem we have to construct these filtrations and interpret the
corresponding stratification in terms of the Hilbert function of the Tjurina algebra.

There are natural filtrations H*(C{z}) respectively F*(A_) on C{z} respectively
A_ defined as follows:

Let F'(A_) C A_ be the C—vectorspace generated by all quasihomogeneous poly-
nomials of degree > —(i + 1)w and H'(C{z}) be the ideal generated by all quasiho-

mogeneous polynomials of degree > 1w, where
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w = min{wy, ... ,w,}.

The filtration F'*(A_) has the property (F) because every homogeneous vector field
of Ly is of degree > w. We also have A_dA_ = A_dF*A_ with s = {(n_l)dw#m} )

since nd — 2 w; is the degree of the Hessian of f and # is the variable of smallest
degree.

To define Z, let Z;(L,) :=
homogeneous and deg(d) > r

ri := min{deg(d;) | tr+1-; Fs_i(A_)}.

Zo(L4) has the property (Z) because deg([d,4']) > deg(d)+deg(d’) for all 6,8" € L.

the Lie algebra generated by the vectorfields 6 € Ly, ¢

Example 4.2 We continue with Example 3.4, fy = 2® + y3 4 27.

w=3.

F°(A_) is the C-vector space generated by {1, 1s, 15,15, L11s, 1.

F'(A_) is the C—vector space generated by t4, {t¥1513 }, 4 2725

F?(A_) is the C—vector space generated by ts, {t¥1513ta boppsor<s, {71518 o spsoncs.
We have s =2 = [M]

3

A_dF°(A_) = @A dt;.

A_dFY(A_) = @A dt;.
A_dF?(A_) = A_dA_.

ry = 3, o = 6.

Ly = Z1(Ly).

Z3(Ly) generated by the homogeneous vector fields § € Ly with deg(d) > 6.
5

Especially A_Zy(Ly) = > A_4;.
=3

Z5(Ly) = 0.

We can use Theorem 4.1 to obtain a geometric quotient of the action of L; on the
flattening stratification defined by the filtrations F'* and Z,. Before doing this we
shall prove that this flattening stratification is also the flattening stratification of
the modules defining the Hilbert function of the Tjurina algebra.

For t € T_ the Hilbert function of the Tjurina algebra

Clz}/ <F(t), agj?, L aic(?)
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corresponding to the singularity defined by ¢ with respect to H* is by definition the
function

m — T, (1) := dime C{z}/ (F(t), 8}7—(7‘,)’ cee 8}7—(7‘,)’ H™ ).
8:& 8$n
Notice that 7,,(¢) = 7(¢) if m is large and 7,,(¢) does not depend on ¢ for small
m. On the other hand, p,, := p,(t) := dimg (C{x}/(ag;(f) ey 8;;(;), H™) does not
depend on t € T_ and

fim — T (1) = rank (6;(¢;)(1))deg(t,)>d—mw-

This is an immediate consequence of the following fact:

Let
oF oF )

T :A_{.r}/ (F’a_—y;l’...’a_—y;n’H

then the following sequence is exact and splits: let {X*},cp be a monomial base of

A{a}] (2, 28,

0 - & A_zx* — Tt — DercA_/ (E + Zdeg(t‘)<—iw A—%) —+ 0
lal<d_ " ’
% Class(mo‘)

class(m;) class(%),
J

and with the identification > A_% ~ AN we obtain
deg(t;)>—iw J
DercA_/(L+ Y.  A_2)~ AN‘/M;, where M; is the A_-submodule generated
deg(t;)<—iw !
by the rows of the matrix (6;(4;))deg(t;)>—iw-
We have F' € H™, hence p,, = 7, if m < % and H™ C (g—fl,... ,%), hence

Pm — Tm (1) is independent of m and equal to y — 7(¢), if m > % +s+1.

Therefore, we have s + 1 relevant values for 7;, and we denote

T(t) = (rag(l);- 5 Tapan (1),
Ho= (:u%+17"-7:u%+s+1)'
Moreover, let ¥ = {r := (r,... ,7541) | 3t € T_ so that p — z(t) = r} and

T_ = UexU, be the flattening stratification of the modules T%‘H, e ,T%“H. That
is, {U,} is the stratification of T_ defined by fixing the Hilbert function 7 =y —r
with the scheme structure defined by the flattening property.

Let us now consider an arbitrary deformation ¢ : (X, {0} x 5) — (C*,0) x S — S
of (X,0) C (C*,0) of negative weight over a base space S € S where, for each
s € S, the ideal of the germ (X,(0,s)) C (C* x 5,(0,s)) is defined by F(z,s) =
flx)+g(z,s), g(z,0) = 0.
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Let us denote by Og{z} = Ocnxsoxs the topological restriction of Ogys to
0 x S, considered as a sheaf on S. Then J(Iyoxs), the Jacobian ideal sheaf of
(X, {0} x S) C (C*,0) x S, is locally defined by (F, 2, ... ’8x "y ¢ Os{z} and

Y Bz
HZ C Og{z} is the ideal sheaf generated by g € OS{ -} such that deg,g >
mw, w = min{wy,... ,w,} as above. We say that the family ¢ is r—constant

if the coherent Og—sheaves
7§ = Os{z}/J(1x,qoyxs) + HS

are flat for % +1<m< % + s+ 1 (equivalently, for all m). Of course, if T3 is flat,
then
T (s) := dimg ngs ® Ogs /Mg,

is independent of s € S. The converse holds for reduced base spaces:

Lemma 4.3 If S is reduced, then the sheaf T is flal if and only if 7,,(s) is inde-
pendent of s € S.

The proof is standard (cf. [GP 3]). Hence, over a reduced base space S, 7—constant
means just that the Hilbert function 7(s) = (7a,(s),... ,7a,,.,(s)) of the Tjurina

algebra is constant. But for arbitrary base spaces we have to require flatness of the
corresponding T'".

Example (fo = * + y* + 27, continued)

z( (7s(2), 7o(), Ti0(1))

o~
~—
|

po= (ps, po, p1o) = (22,23,24)
¥ = {(0,0,0),(0,0,1),(0,1,2),(1,1,2),(1,2,3)}
10
Utaps = D(2t5 — 7t1t2) CT. =C
10

Unng = V(23— —t 1t2) N D(ty,ty) C T

U(O,I,Z) == V(t t2,t3) N D( ) T_
U(0,0,1) = V<tlat27t3at4) N D( ) cT-
U(O,O,O) = {(0a0707070)}

Lemma 4.4 1. (0,...,0,1) and (0,...,0) € X. U,... o) = {0} is a smooth point
and U,... 1y is defined by t, = --- =11 = 0 and 1, # 0.

2. Let ¥ =X\{(0,...,0)} and forr € ¥ put

i7 { U, if r # (0, ,0,1)
- U(o,...,0,1) U U(o,...,o) if r = ( -0, 1)

Then {ﬁi}zei is  the  flatlening  stratification  of  the  modules
{Homg(Ly, A_)JA_dF'A_} and {Homg(Z;(Ly), A_)/mi(A_dA_)}.
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Proof of Lemma 4.4: Becau%e of the exact sequence above the flattening stratifi-
cation of the modules {Tw 'H} is also the flattening stratification of {DercA_/(L +
Zdeg (t,)<—iw _atj)} respectively the flattening stratification of {A]_V /M;}, M; the

submodule generated by the rows of the matrix (5i(tj))deg(tj)>—iw-
Now we have

(%) 0i(t;) = Ok—jtr (Lritn).

By definition of Z;(Ly) we have

AZ(Ly) = ) ALY

tk+1—jEFS_i

and with the identification
d AL = A

and M* the submodule generated by the rows of the matrix (0¢(t;))e>r; we obtain

DercA_JA_Z;(Ly) = A /M.

(*) implies that the flattening stratification of the modules {T%'H,... ,T%"'S},

which is T_ = U,esU,, is the flattening stratification of the modules
{Der@A_/A_ZZ-(L+)}7;:]7___73.

Furthermore the modules {Hom@(L_,_, _)JA_dF*A_} and
{DercA_/A_Ly + 2 deg(ty)<—iw A2 7 } have the same flattening stratification and

they are flat on U,, because

0 0
0— A_— DercA_/A_Ly+ ) A_a——> DercA_/L+ > Ao— =0

ot;
deg(t;)<—iw deg(t;)<—1w

is exact and splits on T_\{0}.

This proves the lemma.

Remark 4.5 The main point of the lemma is that the flattening stratification of the
modules {Homg(Ly, A_)/A_dF'A_} is equal to the flattening stratification of the
modules {Home(Z;(Ly), A_)/mi(A_dA_)}, hence, is defined by the Hilbert function

of the Tjurina algebra alone, without any reference to the action of L. This is a
consequence of the symmetry expressed in Proposition 3.2.

As a corollary we obtain the following
Theorem 4.6 Forr € ¥, (?E is tnvariant under the action of Ly. Let Spec A, be

the closure of ﬁi then (7& — ﬁi/lq_ is a geomelric quolient contained in Spec A£‘+

as an open subscheme of Spec AL+,
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Example (fy = 2° + y® + 27, continued)

1) (7(17273) = D(Qt'% - %t]ié) — (7(17273)/L+ = Spec C[t17t27t3]2t3—%t1tz

Nl
Spec (C[tl, ,t5]

2) Un i)
M|

Spec C[t17t27t4,t5] —

l

l

Al

Spec (C[tl 5 tg, tg]

U/ Ly = Dt t2)

Al

Spec (C[tl 5 tg, t4]

(identiﬁying (C[tl, e ,t5]/2t3 — %tth = (C[tl s tQ, t4, t5])

3) U(0,1,2) —
N
Spec C[t4, t5] —
4) Uo0,1) =
|
Spec Clt5] =

Now L/L, ~ Cd; acts on the geometric quotients ﬁﬁ/L_I_ (the C*~action defined by
the Euler vector field d;). Also the group Ey, acts and this action commutes with
the C*—action (cf. 2.6). If we combine this fact with Theorem 4.6 we obtain the

Ut 2y/ L+ = D(ts)

N
Spec C[t4]
Uioo1y/ L+

I
Spec Clts]

main theorem of this article. In order to formulate it properly let us denote by

Def)_(oﬁ : S — sets

the subfunctor of Defy ~which associates to a base space S € S the set of iso-
morphism classes of 7—constant families of deformations of negative weight with
principal part (Xg,0) over S. For such a family 7(s) is constant and equal to some

tuple p —r € |\

Theorem 4.7 Let G =exp Ly x (FEy, - C) C Aut (T-).

1. The orbits of G are unions of finitely many integral manifolds of L.

2. Let T_ = U,exU, be the stratification fizing the Hilbert funclion T of the Tyu-
rina algebra described above. U, s tnvarianl under the action of G and the
geometric quotient U, — U, /G exists and is locally closed in a weighted pro-

jective space.

3. U./G is the coarse moduli space for the functor Defy, , -

sels with T = p —r.
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Remark 4.8 As in the case of right equivalence (see Remark 1.5) we may take
(separated) algebraic spaces as category of base spaces. That is, U,/ is a coarse
moduli space for the functor

Defy, . : algebraic spaces — sets.

Proof (of Theorem 4.7): We first prove that U, is invariant under the action of
and that U, — U, /G is a geometric quotient.

To prove that U, is invariant under the action of G it is enough by definition of
U, that it is invariant under the action of Ey. The Hilbert function 7 of the
Tjurina algebra is invariant under contact equivalence. This is a consequence of
Theorem 2.1 because an automorphism ¢ of C{z} inducing the isomorphy of two
semiquasihomogeneous singularities with principal part fy has degree > 0. More
precisely, let f, g be semiquasihomogeneous with principal part fy and uf = ¢(g)

for a unit u then deg(p) > 0 and consequently ( ,%,... ,%,H’”) is mapped
isomorphically to (g, ;Tgl’ cee ;Tg, H™) for all m, in particular z(f) = z(g).

Moreover, let o € Ey, then there is a ¢ : A_{z} — A_{z}, degx(ap) > 0 and
@|la_ = 1ds_ such that

o(F(z,t)) = F(z,0(t)) mod A_HY for sufficiently large N

(cf. proof of Proposition 2.4).

This implies o(7"™) = T™ for all m and proves that Ey and, therefore, G acts on
the strata U, of the flattening stratification of the modules {7™}.

Now we prove that U, — U,/G is a geometric quotient. First of all it is obvious
that the geometric quotients

U,...00) = Ug,...01)/G = {*}

and
Ug,...0) = {*} = Uo,...0)/ G = {#}

exist.

Let r # (0,...,0,1), (0,...,0) then (7& = U,. Let Uc, = SpecA, be the closure of
U, then we obtain
SpecA, — SpecA£+
Ul 2 Ul j
7|y

Uv. — UJ/L;.

7|y, defines a geometric quotient and 4, j are open embeddings (Theorem 4.6). No-
tice that 7 itself is not necessarily a geometric quotient.

Now SpecA£‘+ is affine and Ey acts on SpecA£‘+ and also on U, /L. This implies
(cf. [MF]) that
SpecAﬁ+ A Spec(A£+)Ef0
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is a geometric quotient (not necessarily as algebraic schemes since AL+ need not be
of finite type over C) and consequently

A Up/Ly + UE/L+ — (UE/L-I-)/E)‘O

is a geometric quotient which is an algebraic scheme. Especially (U,/Ly)/E; C
Spec(A£+)Ef0 is an open subset.

Finally, C* acts on Spec(Af,_:+)Ef0. It has one fixed point {*} corresponding to
Uo,....0) € U, = SpecA,. Outside this fixed point the C*—action leads to a geometric
quotient:

geeey

Spec(AT)PR\{x} —+  Proj(AL+)Pn
U U
U/ L)/ By — ((Up/L1)]Ey,)[C
|
U,/G.
This proves part (1) and (2) of the theorem.

It remains to prove that if ¢,¢" € T_ define isomorphic singularities then ¢ and ' are
in the same orbit of G.

Let Fy = up(Fy) for t,t' € T_,u € C{z}* a unit and ¢ an automorphism of C{z}.

Using the C*—action we find t" € T_, u; = w0 € C{z}* and an automorphism ¢; of

C{z} such that Fi = uipi(Fy), u1(0) =1 and ¢’ and ¢" are in one C*—orbit. Then
G(z):= (14 z(ur — 1)1 (Fun)

is an unfolding of G(0) = F; of negative weight. This unfolding can be induced by the
semiuniversal unfolding, that is there exists a family of coordinate transformations
Y(z, =) and a path v in T_ such that

G(z) = F(1(z,2),. .. ,¥u(z,2),0(2))
and v(0) = t and Fy ~ F(p(1,2),v(1)). Now ¢ = v(0) and v(1) are in one orbit of
exp L, and v(1) and ¢” are in one orbit of E¢. Hence the result.
Now (3) follows in the same manner as the proof of Theorem 1.3.

Example (fy = 2° + y® + 27, continued)

1. U(1’273) — U(1’273)/G ~ (C2, T = (21,21,21), T =21
normal form: fo + t1x2° + toy2® + tazy2s,
(ti:ta:t3) € Dy(2t3 — $t1t2)/53 C IFD?1:1:2)/53
(Dy(2t5 — 2H413) /S5 ~ C, the Sz—action being explained in Example 2.8).

2. Uy — Unpg/G = PEo g\(0:0: 1), 7= (21,22,22), 7 =22
normal form: fy + tyzz® + lyyz® + %tltgxyz‘g’ + tazy2?,

(Lot ta) € IFD%1:1:5)/5’3 (~ IP%Q,B,S))
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3' U(Ovlvz) _> U(071727)/G - {*}7 z - (227 227 22)? T = 22
normal form: fy + zyz?

4, U(07071) — U(070,17)/G = {*}, T = (22,23,23), T =23

normal form: fo + zyz°

5. U(()’()’()) — U(O’O’()’)/G = {*}, T = (22,23,24), T=24

normal form: fy

Hence the moduli space of semiquasihomogeneous hypersurface singularities X =
{(z,y,2) | f(z,y,2z) = 0} with principal part Xo = {(z,y,2) | 2* +y* + 2" = 0}
consists of 5 strata (C?, IF’%QSS)\(O : 0 : 1), and 3 isolated points) corresponding

to 5 possible Hilbert functions 7 of the Tjurina algebra C{z,y,z}/(f, %, %, %)

The generic stratum Upy 5 3) (minimal 7) is an open subset in C°, the quotient being
2—-dimensional, as well as the quotient of the 4—dimensional “subgeneric” stratum
Un,,2)- Note that the families of normal forms are not universal. It just means
that each semiquasihomogeneous singularity with principal part fy occurs and that
different parameters do not give contact equivalent singularities, except modulo the
C*— and Ss—action.

We see that U(LLQ)/G can be compactified by U(O’l’g)/G, that is
U2y Y U2y = (U1, U U01,2) /G = Pl a5

i1s a geometric quotient. So in this example there exist geometric quotients of the
strata with constant Tjurina number and, hence, a coarse moduli space for fixed
principal part and fixed Tjurina number. In general this is false (cf. [LP], §7).

Remark 4.9 1. The generic stratum Ujpmin corresponding to minimal Hilbert
function 7 (with respect to lexicographical ordering) is an open, quasiaffine subset
of T_ and, hence, U, min/ L+ is smooth by Theorem 4.1. In particular, the generic
moduli space U, min/G has, at most, quotient singularities (coming from the C*-
action and the finite group Fy, ). It is not known whether the bigger stratum U yin
corresponding to minimal Tjurina number 7 admits a geometric quotient, except for

n =2 (cf. [LP]).
2. We always have two special strata, the most special U,... o) = {*} (correspond-
ing to fo) and the “subspecial” or “hessian” stratum Uy .. 1) = C\{*} (correspond-
ing to the singularity fo + my, my generating the socle of C{z}/j(fo), that is the
monomial of maximal degree). The G—quotients of these strata give two reduced,
isolated points.

3. As we have seen for z? + y? + 27, the finite group Ej, need not be abelian. If
Jfo ="+ -+ + 2% is of Brieskorn-Pham type and ged(a;,a;) = 1 for ¢ # j, then
E = pg, the group of d’th roots of unity, d = deg fo.

4. Note that a coarse moduli space is more than just a bijection between its
points and the corresponding set of isomorphism classes. For instance, let U, /G
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be affine and let S % (X, 0(S)) % S be a family of deformations from Defy (S5)
with (X, 0(s)) = p — . If S is compact then ¢ must be locally trivial since any
morphism from S to U, /G maps S onto finitely many points.

Problems 4.10 1. A natural continuation would be to vary the principal part
of a semiquasihomogeneous singularity. First, one should consider only qua-
sthomogeneous singularities with respect to fixed weights and degree and try
to construct a moduli space. If this is not possible (in the algebraic category)
one should find and fix (natural) invariants such that the moduli space exists.

If this is done, it should be possible, using the methods in this paper, to
construct moduli spaces for all (with respect to fixed weights and degrees)
semiquasihomogeneous singularities with certain natural invariants fixed.

2. Another natural continuation would be to treat the case of semiquasihomoge-
neous complete intersection singularities (in the spirit of this paper or, more
generally, similarly to Problem 1).

3. Which class of non—-semiquasihomogeneous singularities can be studied using
the approach of this paper? One idea could be to fix the Newton boundary
of a non—degenerate hypersurface singularity, try to describe the py—constant
deformations and study the Kodaira—Spencer map of this family. Here again,
it will be necessary to find good invariants.

4. Possible invariants which generalize the Hilbert function of the Tjurina algebra
from semiquasihomogeneous to arbitrary singularities are the following:
Let amin and amax denote the minimal and maximal spectral number of the
Viltration V'* of the Gauss—Manin connection of an isolated singularity f

(cf. [He]). The function

z(a) = dim H{(f)/(07 H (f) + tHG(f) + V%),

2micy

(min < @ < Omax, € eigenvalue of the monodromy) generalizes this Hilbert

function.
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