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Introduction

Let G be a unipotent algebraic group over K (a field of characteristic 0) which
acts rationally on an affine scheme X = Spec A over K, where A is a commu-
tative K-algebra. The problem of finding sufficient and manageable conditions
to guarantee that the geometric quotient X /G exists is of fundamental interest
in the theory of moduli spaces for local objects such as isolated singularities
or (Cohen-Macaulay) modules over the local ring of a singularity (cf. [L-P],
[G_P2]7 [G_H_P]a [H])

In [G-P1] we derived such conditions which are complemented in this
paper. These conditions are even useful when the geometric quotient does not
exist globally. Namely, they allow the construction of a stratification of X into
locally closed G-stable subschemes on which the geometric quotient exists. If
the action of G is sufficiently explicitly given, say in terms of coordinates of
X and generators of GG, then the stratification can be described explicitly in
terms of these data. Note that for unipotent groups, in contrast to reductive
groups, the existence of a geometric quotient depends in general not only on X
and G but also on the action, that is, knowledge about the action is necessary.
The purpose of [G-P1] was to prove existence criteria which were as general
and as explicit as possible. In all applications so far, the explicit description of
the strata was the key point to being able to describe the strata in terms of
invariants of the singularities or modules.

On the other hand, the explicit formulation in terms of coordinates and
generators made the statements of the theorems in [G-P1] somewhat technical,
even in the case of a free action, which is an important cornerstorne for the
general theory (cf. Theorem 3.10 in [G-P1]). One of the equivalent conditions
of that theorem (loc. cit.) was the vanishing of H'(G, A) (the usual algebraic



group cohomology), in particular we showed that H'(G, A) = 0 is equivalent
to Spec A — Spec A® being a trivial geometric quotient (which implies in
particular that A is of finite type over K if A is of finite type over K).
Moreover, we proved that H'(G, A) = 0 implies that Spec A — Spec A% is a
principal fibre bundle with group G, that is, Spec A — Spec A% is faithfully
flat and the canonical map A ® 46 A — A ®k K|[G] is an isomorphism (cf.
[M-F], Def. 0.10).

In this note, which is intended to be a supplement of [G-P1], we prove the
converse of the last statement, providing the following conceptual, necessary
and sufficient condition for H'(G, A) = 0.

Theorem: Let A be a commutative K-algebra and G a unipotent algebraic
group over K acting rationally on Spec A. Then the following are equivalent:

(i) HY(G,A) =0;

(ii) Spec A — Spec AC is faithfully flat and the canonical map
(x) A® 6 A — A®k KI[G] is an isomorphism.

Moreover, if A is reduced, then (i) and (ii) are equivalent to

(ii’) Spec A — Spec AC is faithfully flat and the canonical map
(xx) A®rx A — A®k K|[G] is surjective.

Condition (%) means that X xx G — X X X is a closed immersion, that
is, the action is free in the sense of Mumford (cf.[M-F], Def. 0.8). We ignore
whether we can drop the assumption of A being reduced in (ii’). Note that
(%) implies (xx) but that (x) does not imply the flatness of A over A%, cf. the
example in [D-F], examined at the end of this paper.

That (i) implies (ii) follows from [G-P1], Theorem 3.10 and Remark 3.11;
(ii") is a trivial consequence of (ii). The remaining implications are proved in
this paper.

The equivalence of (i) and (ii) was already mentioned in [K-M-T], but
some arguments in the proof seemed to be insufficient. More recently, in
[D-F-GJ, a result was proved which states (in our terms) the implication (ii)
= (i) for G the additive group of K = C and A the polynomial ring over C.
In any case, here we give an elementary proof of the following slightly more
general fact.

If (*) holds, and if the canonical map Spec A — Spec A is flat,
then Spec A is mapped onto an open set U C Spec A% such that
Spec A — U is a geometric quotient and a principal fibre bundle
with group G.



This article was inspired by discussions with C. Hertling, when we tried to
extend the results of [G-H-P], in order to construct moduli spaces for semiquasi-
homogeneous hypersurface singularities without fixing the principal part. We
could not prove the existence of a geometric quotient as an algebraic C-scheme.
From the examples of Deveney and Finston we learned that, additionally, at
least the flatness of A as an A%-module is necessary. Condition (ii’) shows
that it is also sufficient if A is reduced. Although we could not prove the exis-
tence of a geometric quotient as an algebraic C-variety under the assumption
“Spec A —» Spec A9 surjective and (%) holds”, in our application Hertling
was able to prove the existence of a geometric quotient as a complex space.

The following conjecture points in the same direction (G and A as above):

Congecture. Assume that G acts freely on Spec A (in the sense of Mumford).
Then there exists an étale covering {Spec B;} of Spec A and a lifting of the
action of G to B; such that H'(G, B;) = 0.

Notice that under our assumption the quotient exists in the category of alge-
braic spaces (cf. [P, Theorem 3.7]). Our conjecture says that this quotient is
locally trivial. We prove this under a slightly different assumption. We should
like to emphasize that passing to an étale covering is necessary, as we show at
the end of this paper.

As in [G-P1] we prefer to work with the Lie algebra L of G. Since G is
unipotent and char K = 0 this is equivalent. Also the Lie algebra cohomology
([C-E]) coincides in this case with the group cohomology.

1 Special representations

Let L be an n-dimensional nilpotent K-Lie algebra. We deduce the van-
ishing of H'(L,K[X1,...,X,]) for certain special representations of L in
der k A[X1,...,X,], in particular for the representation of L on the coordi-
nate algebra K[G(L)] = K[L] = K[X,...,X,] of its associated unipotent
group G(L) derived from the left regular representation of G(L) on K[G(L)].
This result is perhaps known to the specialists but we could not find a refer-
ence. In any case, it is an immediate consequence of Theorem 3.10 in [G-P1].
In order to apply that theorem we need a description of the left regular action
in terms of coordinates.

Let X,Y € L be two elements and H(X,Y) =Y, H(X,Y) the series
of Campbell-Hausdorff (cf. [G]), where

HYX,)Y) = X+Y,
H(X,Y) = L[X.V],
H3(X,Y) = %([X,[X,Y]]+[Y,[Y,X]]),...

and H'(X,Y) = 0 for large i since L is nilpotent.



Consider L as an affine K-variety. Then the multiplication H : LxL — L
gives L the structure of a unipotent algebraic group which we call G(L), with
Lie-algebra isomorphic to L (cf. [D-G]). -

Let {d1,...,0,} be a basis of L and [4;,8;] = >, C;’ ). The choice of
a basis defines an isomorphism G(L) 2 Spec K[X1,...,X,] and then the co-
multiplication

m:K[Xy,..., X, — K[X1,..., Xn] @k K[X1,..., X,],
is given in terms of the chosen coordinates by
m(Xp) =X @1+10 X+ CIXi@X;+....
ij

Via G(L) = Spec K[X1,...,X,] the Lie-algebra L is represented as a subalge-
bra of Derg K[X1, ..., X,] with basis {§;} and 6;(Xr) = 0 + >, C}? Xi + hji
(8;x the Kronecker symbol, hji € (X1,...,Xp)?), the derived left regular rep-
resentation of L on K[G(L)] = K[L] = K[X4,...,Xy].

Since L is nilpotent, we can choose the basis {01, ..., 0} such that C,ij =0
if K < max{i,j}. This implies that L acts on K[L] via
1. 0;(X;) =1,

2. 6;(X) =0if j > k,
3. 0;(Xk) € K[Xq,...,Xp1]if j <k
and, in particular,
3! 6:6;(Xk) =0ifi> k.
Using Theorem 3.10 in [G-P1], we obtain the following

Proposition 1.1 The derived left reqular representation of L on K[L] satisfies
HY(L,K[L]) = 0.

Corollary 1.2 Let L be an n-dimensional nilpotent K -Lie-algebra. There ex-
ists a faithful representation p: L — Derg K[Xy, ..., X,] such that

HYL,K[X1,...,X,]) = 0.

Corollary 1.3 Let A be a commutative K-algebra (with unit 1), L an n-
dimensional nilpotent K-Lie-algebra and ¢ : L — DergA a representa-
tion such that the elements of ¢(L) are locally nilpotent. Let p : L —>
DergK[X;,...,X,] be any representation satisfying

HY(L,K[X4,...,X,]) =0.

Then for the tensor-product representation ¢ ® p : L — Derg A[X1, ..., Xy]
we have



(i) HY(L, A[X1,...,X,]) =0.

(it) Let {01,...,0n} be a basis of L such that [0;,0;] € 3= ys maxsijy KOt (such
a basis does always exist) then (exp(—X1d1) o --- 0 exp(—Xpdpn))(A) =
A[Xy,..., Xk,

(i1i) Consider a basis {61,...,0n} of L as in (ii) and extend it trivially to
A[Xq,..., Xy] (that is 6;(X;) =0), then

d; oexp(—X1d1) o --- o exp(—Xpdp)
= eXp(—X151) 0---0 eXp(—Xn5n) o (51 + Zk>z’ é‘ikék)

for suitable &, € K[Xqy,...,X,].

Proof. The first claim follows because H! (L, K[ X1, ..., X,]) = 0.
To prove (ii) let 0; = p ® ¢(d;). Denote by

st AXy, ..., Xp] — A[Xy, ..., X"
the section (cf. [G-P1]) defined by
s(h) = (exp T1dy 0 --- 0 exp Tpdy)(W)(Ty = =Xy, ..., Tn = —X,,),
where (Th = —X;,...,T, = —X,,) means evaluation at T; = —Xj;.
If a € A then d;(a) = 6;(a). This implies s(a) = (exp(—X161) 0 ---o0
exp(—Xndn))(a), that is
exp(—X161) 0 ---oexp(—Xp0,)(A) C A[Xy,..., X"

Ifh=a+) X;h;,a € A, then s(h) = s(a) because s(X;) = 0. This proves (ii).
Since [(51,(5]] € Zl>max{i,j} Ké, (iii) holds. O

The following corollary points towards the conjecture in the introduction. It is
an improvement of Remark 3.12 of [G-P1], where we assumed that L is abelian.
Note that det(d;(a;)) € A* implies that the action is set theoretically free.

Corollary 1.4 Let A be a commutative K -algebra with 1 and L C der x(A) an
n-dimensional nilpotent K -Lie algebra. Assume that there exist d1,...,0, € L
and ai,...,a, € A such that det(d;(a;)) is a unit in A. Let Xi,..., X, be
indeterminates and define F; := exp(—X161) o - - o exp(—X,0p)(a;). Then

B = A[Xl,,Xn]/(Fl,,Fn)

is étale over A, the action of L on A lifts to B and H'(L, B) = 0.



Proof. By Corollary 1.3 there exists a faithful representation of L such that
HY(L,K[Xi,...,X,]) = 0. Using any such representation, we define the ten-
sor product representation of L on A[Xy,...,X,] as in 1.3. Then the F; are
invariant under L by 1.3 (ii). The vanishing of H!(L, B) is now a consequence
of 1.3(i) and Theorem 3.10 in [G-P1].

To prove that A — B is étale, we may assume that 41, .. .,d, are chosen as
in (ii) of 1.3 and 6;,...,0, € DergA[X1,...,X,] are extensions of dy,...,0d,
such that 8i(Fj) =0forall i,j. Let 6; := 6; —Si, i =1...n (the §; are trivially
extended to A[X1,...,X,]); then §; € DeraA[Xy,..., X,].

Furthermore, by 1.3 (iii),

6:i(Fy) = 0:(Fy)
= d; oexp(—X161) o --- 0 exp(—X,0,)(a;)
exp(—X101) o - - 0 exp(—X,0,)(0i(az) + g~ &in Ok (ay))-

det(gi(Fj)) = exp(—X161) o --- o exp(—X,,0y) (det(éi(aj) + 2ksi Sin 5k(aj)))
= exp(—X161) o --- o exp(—X,,0,) (det(d;(a;)))

This implies that det(d;(F})) is a unit and, therefore,
A— A[Xl,,Xn]/(F]_,,Fn)

is étale. O

2 Free actions

We are now going to prove the main theorem which was explained in the
introduction.

Theorem 2.1 Let A be a commutative K-algebra. Let L = Y@ K& C
Derg (A) be an n-dimensional nilpotent Lie-algebra and assume that the §; are
locally nilpotent. Assume, moreover, that

1. Spec A — Spec AT is faithfully flat,
2. the canonical map A Q1 A — A[Zy,...,7Z,) defined by L,
a®b~ a-(exp Z161 050exp Z,0,)(b)
is an isomorphism.

Then H(L, A) = 0.



Proof. We prove the theorem by induction on n = dim L. In the case n = 1 let
L=Kéband [Al = {a€ A|(a) € AT}.
The sequence

0— / AL 4% 4
is exact. Let L act on A[Z] by §(Z) := —1, then B := exp(—ZJ)(A) C A[Z]*,
and B is via AL C A =5 B an Al-algebra. Since B is flat over AL,

2
0_>/AL®ALB—>A®ALB‘5&1)BA®ALB

is exact.
By assumption, A ® 4z A — A[Z] is an isomorphism, that is, we may
identify A ® 4o B with A[Z] and obtain the commutative diagram:

’®1p

fAL®ALB

AQ®s. B

AR®ur B

0 —— /B AlZ] A[Z].
Also by assumption Z = Y &hy, & € A, h; € B. On the other hand, §(Z) =
—1 whence §%(Z) = 0. This implies that we can choose the &; to be in [ AL, by
the above diagram.

Then —1 = 46(Z) =Y 6(&)h; and, in particular,

—1=Y"6(&)hi(Z = 0).

Now 6(&;) € AL and hi(Z = 0) € A. If a = ({6(&;) }:) denotes the AL-ideal gen-
erated by the 6(&;) in AL, then aA = A. By faithful flatness we have a = A%,
that is there are n; € AL such that 1 = 8(&)m; = 6(3 &mi)-

If we define = := Y &m; € A then §(z) = 1 and this implies H' (L, A) = 0
([G-P1], 3.10).

Now assume the theorem for (n—1)-dimensional Lie-algebras. Let L =
>, K6; and assume 6, € Z(L), where Z(L) denotes the centre of L and let
Ly := K§6,. We shall prove that H'(Lg, A) = 0. By Corollary 1.2 we can extend
the action of L to A[Z1, ..., Z,] with the properties (i), (ii) of Corollary 1.3.

As before, we consider the exact sequence

0— [AL — A — A"
a ~ (6;6;(a))

and put B := exp(—Z1d1) oo exp(—Zndn)(A), [ A¥ ={a € A|i(a) € A"
for all § € L}. Then the following commutative diagram has exact rows:



fAL®ALB A®L B An2®ALB
[B A[Zy,. .., Zn) A[Zy, ..., Z"

By assumption we have Z,, = > &h;, & € A, h; € B. As in the case n = 1
(since 6;0,,(Z ) = 6,0;(Z,) = 0) we obtain a presentation of Z,, with & € [AF
and deduce H'(Lg, A) = 0 and ALo[z] = A for a suitable z € A.

Now L = L/L¢ acts on AL0. In order to proceed by induction, we have to
verify that

1. Spec Ao — Spec AL is faithfully flat,
2. Ao @4 Alo — Alo [Z1,...,2Zp—1] is an isomorphism.

The first property is clear because AL C A = ALlo[z] is faithfully flat, and
Spec A —s Spec Al is surjective.
Consider the following commutative diagram:

Abo @ 41 Ao ™o ALlo[Zy ... Zn ]
AR A A[Zl,,Zn]
ALo[z] @ 4o ALo[z] ALo[z)[Z4,. .., Zy)
defined by

e i(a®b)=a®b,

o j(h(Z1,.... Zn1))=h(Z1,..., Z0—1),

o 7(a(z) ® b(z)) = a(0) ® b(0)

o Y(h(@, Z1rny Z3)) = B(0, Z1yeery Znr, —€XP Z1610- - -0 €XP Zn—10pn—1(2)),
e mo(a®b) =a- exp Z1610---0 exp Zp_10,-1(b),

e mi(a(zr)®b(x)) = a(z)- exp Z1610---0 exp Zp_10p—10 €xp Zpon(b(x)).



my is an isomorphism by assumption, v is obviously surjective and i is injective.
This implies that mg is an isomorphism and 2. is proved.

By induction hypothesis we obtain H'(L/Lo, AL?) = 0. Together with
AlLo[z] = A this implies H!(L, A) = 0. O

Corollary 2.2 Let A be a commutative K-algebra, which we assume to be
reduced. Let L =) | K§; C Derg(A) be a nilpotent Lie-algebra and assume
that the &; are locally nilpotent. Assume, moreover, that

1. A is a faithfully flat A -algebra.
2. The map AQg A — A[Zy,...,Z,] defined by L is surjective.
Then HY(L, A) = 0.

Proof. We have to prove that the canonical map A ®4c A — A[Z1,...,Z,] is
injective.

In [G-P1], proof of Proposition 1.6, we proved that there is a dense open
subset UD(f;) C Spec A, f; € A" such that Spec Ay, — Spec A%, is a trivial
quotient. This implies that

(A®AL A)fi :Afi ®A§,i Afi — Afl.[Zl,...,Zn]

is an isomorphism.
Since UD(f;) is dense, we obtain that A ® 4z A — A[Z1,...,Z,] is in-
jective, which proves the corollary. O

Corollary 2.3 Let A and L be as in Theorem 2.1 (respectively, moreover,
that A is reduced). Assume that the map A ® 1 A — A[Z1,...,Zy,] defined by
L is an isomorphism (respectively the map A @x A — A[Z1,...,Z,] defined
by L is surjective) and A is a flat AL-algebra. Then there is an open subset
U C Spec AL such that Spec A — U is a locally trivial geometric quotient.

Example. (cf. [D-F))
A= Kl[z1,22,y1,Y2,2], 6= .7:18%2 +ylaiy2 +(1 +x1y§)%.

We obtain A° = Kluy,us,us,us,us] with uy = 21, y = y1, yz3 = T1ys —
ToY1, Us = Y12 —T1Ys — 3ya, us = 3152 — 322 T2y3 + 311 23Y1y2 — T3Y1 — 37122,
with relation uous — uus — u3 — 3ujuz = 0.

We define F(t) := (exp t6)(2) = $2197t3 +z1312t> + (1+21y3)t+ 2. Then
d:=9-disc(F) = z1 (229§ — 62191952 + 62195 + Y322 — 18y 1y22 + 9y3) +4 =
u1u? +4 € A% and we obtain that B; := A4[t]/F is étale over A,. § extends to
B, by 6(t) = —1 and then we have B{[t] = B;.

Altogether we see: Spec A = D(z1)UD(d), on the open set D(z;) a trivial
quotient exists since A2 [z2] = A;, =: Bs, but on D(d) the quotient does



not exist since over D(d) we have fibres of different dimensions (here flatness
fails, although the action is free in the sense of Mumford, cf. [D-F]). On the
other hand, we have constructed an explicit étale covering {Spec By, Spec B2}
of Spec A with H'(K§, B;) = 0, as it should be, according to the conjecture of
the introduction.
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